WorldWideScience

Sample records for chamber fission ionization

  1. Cold fission studies using a double-ionization chamber

    International Nuclear Information System (INIS)

    An investigation on spontaneous fission of 252Cf is described. Both fission fragments are detected coincidentally with a double ionization chamber as a 4 π detector. Special techniques are demonstrated which allow the determination of nuclear masses and charges for cold fission fragments. Detector properties such as systematic errors and their correction are studied with the help of α particles. (orig.)

  2. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    Science.gov (United States)

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  3. a High Resolution Ionization Chamber for the SPIDER Fission Fragment Detector

    Science.gov (United States)

    Meierbachtol, K.; Tovesson, F.; Arnold, C. W.; Laptev, A. B.; Bredeweg, T. A.; Jandel, M.; Nelson, R. O.; White, M. C.; Hecht, A. A.; Mader, D.

    2014-09-01

    An ionization chamber for measuring the energy loss and kinetic energy of fragments produced through neutron-induced fission at the Los Alamos Neutron Science Center (LANSCE) has been designed as a component of the the new SPIDER detector. Design criteria included energy resolutions of <1% for high energy resolution and increased charge resolution. The ionization chamber will be combined with a high resolution time-of-flight detector to achieve fragment yield measurements with mass and nuclear charge resolutions of 1 amu and Z=1. The present status of the ionization chamber will be presented.

  4. Design and Simulation of High Radioactivity Fission Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  5. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Science.gov (United States)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  6. Development of an Ionization Chamber for the SPIDER Fission Fragment Detector

    Science.gov (United States)

    Meierbachtol, K.; Tovesson, F.; Arnold, C. W.; Laptev, A. B.; Bredeweg, T. A.; Jandel, M.; Nelson, R. O.; White, M. C.

    2014-05-01

    The ionization chamber component of the SPIDER detector has been designed to measure energy loss and kinetic energy of fragments produced through neutron-induced fission with energy resolutions of <1% and a time-dependent signal collection. Important design elements implemented are an axial configuration of the electrodes for improved energy loss and measurement and a thin silicon nitride entrance window to minimize both energy loss and energy straggling of the incoming fragments. High energy resolution and improved charge resolution from the ionization chamber are combined with the high precision of the upstream time-of-flight component of SPIDER to achieve resolutions in mass and nuclear charge of 1 AMU and Z=1. A discussion of the present resolution capabilities of the ionization chamber will be presented.

  7. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  8. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  9. Development of fission chamber for nuclear reactors controlling

    International Nuclear Information System (INIS)

    Fission Chambers are gas-filled type detectors that operate in the ionization chamber regime, which is without electron multiplication. As the fill-gas is not directly ionized by neutrons, fission chambers are lined with fissile material that through interaction with neutrons fission products are produced, are highly ionizing particles. Pulse type operation of these detectors are used for neutron flux measurements during start up and shut-down reactor conditions in which pulses of high amplitude produced by fission products can be easily discriminated from those produced by alpha radiation from uranium and also from the external gamma field. With current or current fluctuation mode operation (Campbell) the use of these detectors can be extended for the whole range of reactor operation. In this work, it is presented the development and construction of a fission chamber at IPEN-CNEN/SP. Furthermore, the material and techniques used and also the operational characteristics obtained with the first prototype are given. (author)

  10. Multi-chamber ionization detector

    International Nuclear Information System (INIS)

    For the detector a single beta ionization source and a double- or three-chamber set-up is used, the chambers being designed in the shape of a truncated cone and facing each other with their bases. The source can be positioned with respect to the common center or modal electrode, the adjustment of the ionization in each chamber this becoming easier. The center or modal electrode also can be adjusted with respect to the source. (DG)

  11. Subminiature fission chamber with gas tight penetration

    International Nuclear Information System (INIS)

    Fission chambers suffer from gas leaks at electric feed-trough. This micro chamber suppresses that defect thanks to an alumina plug and welded seal of the chamber sleeve. This device is easy to produce at industrial scale with reduced dimensions (1,5 mm diameter, 25 mm length). It can work with 30 m long feeding cables. (D.L.). 3 figs

  12. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  13. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  14. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  15. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  16. Neutron measurements performed with miniature fission chambers

    International Nuclear Information System (INIS)

    This research aims at proposing solutions regarding instruments to perform neutron flow measurements in nuclear power reactors and to perform measurements of the reaction rates of highly radioactive transuranic fissile elements in experimental reactors. This research is also part of a program aimed at the adjustment of the Cadarache cross section set. The report defines the instrumentation, recalls the operation of fission chambers, discusses the implemented instrumentation, and discusses the obtained measurements

  17. Relative quantifying technique to measure mass of fission plate in a fission chamber

    International Nuclear Information System (INIS)

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  18. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  19. Multi-anode ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey E. (South Setauket, NY); Smith, Graham (Port Jefferson, NY); Mahler, George J. (Rocky Point, NY); Vanier, Peter E. (Setauket, NY)

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  20. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  1. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  2. Ionization-chamber smoke detector system

    Science.gov (United States)

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  3. Classification of the LHC BLM Ionization Chamber

    CERN Document Server

    Stockner, M; Fabjan, Christian Wolfgang; Holzer, E B; Kramer, Daniel

    2008-01-01

    The LHC beam loss monitoring (BLM) system must prevent the super conducting magnets from quenching and protect the machine components from damage. The main monitor type is an ionization chamber. About 4000 of them will be installed around the ring. The lost beam particles initiate hadronic showers through the magnets and other machine components. These shower particles are measured by the monitors installed on the outside of the accelerator equipment. For the calibration of the BLM system the signal response of the ionization chamber is simulated in GEANT4 for all relevant particle types and energies (keV to TeV range). For validation, the simulations are compared to measurements using protons, neutrons, photons and mixed radiation fields at various energies and intensities. This paper will focus on the signal response of the ionization chamber to various particle types and energies including space charge effects at high ionization densities.

  4. The GODDESS ionization chamber: developing robust windows

    Science.gov (United States)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  5. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  6. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  7. Pressurized ionization chamber detectors for industrial use

    International Nuclear Information System (INIS)

    The measurement of the thickness of the sheets made of different materials, e.g. metal, plastic, paper, cellulose, rubber, etc., is one of many industrial applications of nuclear techniques. The ionizing radiation detectors of ionization chamber type are based on measuring the variations in either exposure rate (for gamma radiation) or absorbed dose rate (for beta radiation) occurring in materials of different thickness, placed between the radiation source and the detector. The variations in exposure rate and absorbed dose rate can be traced by using radiation detectors of the ionization chamber type, which convert the exposure rate, X point, or the absorbed dose rate, D point, into a proportional electric current. The more stable the ionization current of the chambers (keeping a constant exposure rate or absorbed dose rate), the slighter the variations that can be detected in either exposure rate or absorbed dose rate, hence in the absorbing material placed between the radiation source and the detector. Based on these facts, several variants of such detectors, including the ionization chamber CIS-P5M-100Kr, CIS-P2M-1000Kr and CIS-P8M-70Kr, have been made. (author)

  8. IKAR, a ionization chamber for WA9

    CERN Document Server

    1976-01-01

    This ionization chamber arrived at CERN from Leningrad for a high precision study of hadron elastic scattering by a CERN-Clermont-Ferrand-Leningrad-Lyon-Uppsala Collaboration in the H3 beam (WA9). G.A. Korolev (third from right) looks at the drawings.

  9. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki;

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...

  10. Initial Back-to-Back Fission Chamber Testing in ATRC

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

  11. Multi-layered parallel plate ionization chamber for cross-section measurements of minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K., E-mail: hirose@lns.tohoku.ac.j [Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826 (Japan); Ohtsuki, T.; Shibasaki, Y. [Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Hori, J.; Takamiya, K.; Yashima, H. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennangun, Osaka 590-0494 (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kiyanagi, Y. [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2010-09-21

    A multi-layered parallel plate ionization chamber (MLPPIC) has been developed for the measurement of neutron-induced fission cross-sections using the lead slowing-down neutron spectrometer at the Research Reactor Institute, Kyoto University. The MLPPIC consists of two sets of multi-layered electrodes to detect fission fragments from two samples located back-to-back between them. The performance of the MLPPIC was tested with a spontaneous fission of {sup 248}Cm. The cross-section for the neutron-induced fission of {sup 241}Am was successfully obtained using that of {sup 235}U as a reference.

  12. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  13. LET measurements with a liquid ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Tegami, Sara

    2013-02-08

    Deep-seated tumors can be efficiently treated with heavy charged particles. The characteristic depth dose profile inside the tissue (Bragg peak) allows to deliver a high dose inside the tumor, while sparing the neighboring healthy tissue. As compared to protons, heavy ions like carbon or oxygen produce a higher amount of ionization events along their track (and in particular at the end of the ion beam path), resulting in an irreparable damage to the DNA of the tumor cells. The density of such ionization events is described in terms of Linear Energy Transfer (LET), an important physical quantity, but difficult to be measured directly. The aim of this work is to determine LET of hadrontherapy beams by using Liquid Ionization Chambers (LIC). The ionization signal in LICs is affected by recombination effects that depend on the LET of the incident radiation. Differences in recombination effects in LICs and air-filled ionization chambers can be exploited to obtain the recombination index, which can be related to the LET, calculated by Monte Carlo methods. We thus developed a method to construct a calibration curve, which relates the recombination index with the LET at each depth in water. The result of this work can be used for online monitoring of the ion beam quality.

  14. Smart ionization chamber for gamma-ray monitoring

    OpenAIRE

    Drndarević Vujo R.; Jevtić Nenad J.; Rajović Vladimir M.; Stanković Srboljub J.

    2014-01-01

    A design and implementation of a smart ionization chamber suitable for connection into gamma radiation monitoring networks is presented in this paper. The smart ionization chamber consists of air-equivalent one liter ionization chamber with associated electronics and a built-in memory for storage of electronic data specifications. Generally, operating and measurement characteristics of the used ionization chamber are written into the memory chip attached to...

  15. Calibration of a pencil ionization chamber with and without preamplifier

    OpenAIRE

    Maia, Ana Figueiredo

    2004-01-01

    The pencil ionization chamber is a cylindrical dosimeter developed for computed tomography beams. Many kinds of ionization chambers have a preamplifier connected to the chamber to make it electrically more stable, specially for field instruments. In this study, the performance of a Victoreen pencil ionization chamber with the original preamplifier and after its removal was compared. The objective of the preamplifier removal was to enable connecting the chamber to other kinds of electromete...

  16. Improvement of a New Gas Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to identify heavier elements, we have developed a new longitudinal field gas ionization chamber (IC)with an angle of 30° of plate (as shown in Fig.1). The IC is operated in flowing iso-butane gas at a pressure of 10kPa. After testing by using a 3- component α particle source and comparing with the old longitudinal field

  17. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  18. Smart ionization chamber for gamma-ray monitoring

    Directory of Open Access Journals (Sweden)

    Drndarević Vujo R.

    2014-01-01

    Full Text Available A design and implementation of a smart ionization chamber suitable for connection into gamma radiation monitoring networks is presented in this paper. The smart ionization chamber consists of air-equivalent one liter ionization chamber with associated electronics and a built-in memory for storage of electronic data specifications. Generally, operating and measurement characteristics of the used ionization chamber are written into the memory chip attached to the chamber. A microcontroller-based data acquisition system with a mixed-mode interface has been implemented for the purpose of reading electronic data specifications from the memory chip, and for configuration and interfacing of the ionization chamber to the monitoring network using plug-and-play concept. The details of smart ionization chamber implementation and test results are included in the paper. [Projekat Ministarstva nauke Republike Srbije, br. TR36047 i br. TR32043

  19. Characterization of a homemade ionization chamber for radiotherapy beams.

    Science.gov (United States)

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams.

  20. Characterization of a homemade ionization chamber for radiotherapy beams.

    Science.gov (United States)

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  1. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is got.

  2. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  3. A new ring-shaped graphite monitor ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, M.T., E-mail: mairaty@ipen.b [Instituto de Pesquisas Energeticas e Nucleares IPEN - CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil); Caldas, L.V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares IPEN - CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil)

    2010-07-21

    A ring-shaped monitor ionization chamber was developed at the Instituto de Pesquisas Energeticas e Nucleares. This ionization chamber presents an entrance window of aluminized polyester foil. The guard ring and collecting electrode are made of graphite coated Lucite plates. The main difference between this new ionization chamber and commercial monitor chambers is its ring-shaped design. The new monitor chamber has a central hole, allowing the passage of the direct radiation beam without attenuation; only the penumbra radiation is measured by the sensitive volume. This kind of ionization chamber design has already been tested, but using aluminium electrodes. By changing the electrode material from aluminium to a graphite coating, an improvement in the chamber response stability was expected. The pre-operational tests, as saturation curve, recombination loss and polarity effect showed satisfactory results. The repeatability and the long-term stability tests were also evaluated, showing good agreement with international recommendations.

  4. Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yu-lai; WANG; Qiang; YANG; Lu

    2013-01-01

    The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with

  5. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    Science.gov (United States)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  6. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  7. Development of high-temperature fission counter chambers

    International Nuclear Information System (INIS)

    High-performance and 600 0C heat-resisting fission counter-chambers have been developed in which a fast counting gas is used, and satisfactory results have been obtained. The compatibility of the pulse output performance with the high-temperature resistivity of the chamber was investigated in connection with fast counting gases and structural metals, and the instability problem of the high-performance counter-chamber at high temperature was overcome using the combination of a mixed counting gas of 94 % argon, 5 % nitrogen and 1 % helium and the electrodes and structural metal-components made of a nickel alloy containing about 75 % nickel, 16 % chromium and some iron. The relivant works were performed successfully also in development of heat-resisting components and structures such as a metal-ceramic seal to be able to withstand the temperatures over 750 0C and an electrode supporting structure to enable to keep a narrow spacing between electrodes at high temperatures. Several types of such chambers have been made and tested to confirm their performance and operating stability at high temperatures. The test results showed that these fission counter-chambers operate quite stably at temperature up to 600 0C and have high-performance characteristics such as a very large neutron pulse current, e.g. of 2.6 μA and a short collection time, e.g. of 43 ns. It was also proved through the tests that the chambers have the ability to monitor about 10 decades of reactor operating range as a sensor of the nuclear instrumentation system of the nuclear power plant and withstand at least 6.5 x 1018 n/cm2 of neutron irradiation at 600 0C. Further, the chamber operated stably up to 800 0C in a post-accident monitoring(PAM) condition and withstood a long-term real-time in-reactor operating test at 600 0C for 3.3 years. (author)

  8. A Fast Ionization Chamber for GODDESS

    Science.gov (United States)

    Lumb, R. T.; Lipman, A. S.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Pain, S. D.; Kozub, R. L.

    2014-09-01

    Transfer reactions are among the main methods used in nuclear physics to probe the structure of nuclei. Such information is needed to constrain nuclear models and to understand various nucleosynthesis processes. In many cases, the nuclear level densities are too high to be resolved in transfer reactions via charged particle detection alone. This problem and issues arising from contaminants in radioactive beams can be addressed by using particle- γ coincidence techniques along with heavy recoil identification in inverse kinematics. A device to accomplish these tasks is Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS), currently being commissioned for the ATLAS facility at ANL. We are currently building a compact, tilted grid ionization chamber for GODDESS to detect and identify beam-like recoils near zero degrees in the lab. The tilt (30 degrees off normal to the beam) helps the ion pairs to be detected quickly, after drifting only a short distance away from the beam axis. This reduces the response time, allowing counting rates of ~500,000/s. The design and current status of the project will be presented. Research supported by the U. S. DOE.

  9. Monolithic JFET preamplifier for ionization chamber calorimeters

    International Nuclear Information System (INIS)

    A prototype preamplifier circuit is presented for use in SSC ionization chamber calorimeters. It consists of a new type of silicon integrated circuit comprised of very low noise junction FET (JFET) components. Presently, monolithic preamplifier circuits for use in highly segmented detectors are made of implanted channel JFETs or MOS devices. While such circuits solve the density problems, they do not perform to the same level of low noise characteristics as found in discrete JFET components. The JFETs which comprise this new integrated circuit preserve the excellent low noise performance normally found only in discrete JFETs. JFETs also are much more radiation resistant and less prone to damage by electromagnetic discharges than MOS transistors. Two innovative fabrication processes are discussed. They solve the difficult gate-to-gate isolation problem needed to manufacture JFET integrated circuits. Both allow the use of an epitaxially formed channel and a diffused gate, as in standard discrete JFET processing. This, presumably, results in JFETs which exhibit lower noise than those made with implanted channels. 11 refs., 9 figs

  10. Characterization of a homemade ionization chamber for radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Santos, Gelson P. dos, E-mail: gpsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Xavier, Marcos, E-mail: mxavier@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.br [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, 50740-540 Recife (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil)

    2012-07-15

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of {sup 60}Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. - Highlights: Black-Right-Pointing-Pointer A homemade ionization chamber was studied for routine use in radiotherapy. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer This chamber was compared to commercial ones and the results were similar. Black-Right-Pointing-Pointer This chamber is suitable for calibration procedures in {sup 60}Co beams.

  11. Preliminary studies of a new monitor ionization chamber.

    Science.gov (United States)

    Yoshizumi, Maíra T; Vivolo, Vitor; Caldas, Linda V E

    2010-01-01

    A new monitor ionization chamber was developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN) in order to monitor X-ray beams. The main difference of this monitor ionization chamber in relation to other monitor chambers is its geometry, which consists of a ring-shaped sensitive volume. Because of this geometry, the monitor chamber has a central hole through which the direct radiation beam passes. The operational characteristics of the monitor chamber were evaluated: saturation, ion collection efficiency and polarity effect. Besides these tests, the short- and medium-term stabilities of its response were also evaluated. During the tests the leakage current was always negligible. All results showed values within those recommended internationally (IEC, 1997. Medical electrical equipment-dosimeters with ionization chambers and/or semi-conductor detectors as used in X-ray diagnostic imaging. IEC 61674. International Electrotechnical Commission, Genève).

  12. Calibration of ionization chambers used in LDR brachytherapy

    International Nuclear Information System (INIS)

    In this work was developed a calibration procedure of well-type ionization chambers used for measurements of I-125, seed type. It was used as a standard an ionization chamber Capintec CRC-15BT, with calibration certificate of the University of Wisconsin. It were calibrated two well-type ionization chambers of Capintec CRC-15R model. A source of I-125 was used in clinical use (18.5 to 7.4 MBq). The results showed that with the application of calibration factors was possible to decrease read deviate from 16% to just 1.0%

  13. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  14. Development of standard ionization chamber counting system for activity measurements

    CERN Document Server

    Pyun, W B; Lee, H Y; Park, T S

    1998-01-01

    This study is to set up the activity measuring system using a 4 pi gamma ionization chamber as used mainly in national standards laboratories that are responsible for radionuclide metrology. The software for automatic control between the electrometer and personal computer is developed using Microsoft visual basic 4.0 and IEEE488 Interface. The reproducibility of this 4 pi gamma ionization chamber is about 0.02% and the background current is 0.054+-0.024 pA. this 4 pi gamma ionization chamber is calibrated by 6 standard gamma emitting radionuclides from KRISS. According to the result of this study, it is revealed that this 4 pi gamma ionization chamber counting system can be used as a secondary standard instrument for radioactivity measurement.

  15. Feasibility study of new microscopic fission chambers dedicated for Ads

    International Nuclear Information System (INIS)

    In the frame of the MEGAPIE project we propose to measure the neutron flux inside the molten 1 MW Pb-Bi target at PSI (Switzerland). For this purpose a new type of microscopic fission chambers, developed for on-line measurements of the actinide incineration rates in the high neutron fluxes, will be placed in the central rod of the Pb-Bi target to determine both thermal and fast components of the neutron spectra. In addition to the neutron flux measurements in absolute value, both - time and space dependent variations - of it will be monitored on-line with a precision better than 10%. In this work we show that these measurements are feasible. (author)

  16. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values

  17. Development of Master Chamber Software for Data Acquisition of Ionization Chamber for Indus 2 RRCAT

    OpenAIRE

    Priyesh Soni; Mrs. B. Harita; Nawaz Ali Sayed

    2013-01-01

    The main goal of this paper was to Develop Master control software for DAQ of ionization chamber for INDUS-2 beam lines for detection of X-ray flux by an Ionization chamber that will remotely control and monitor the ultra low current signal detection analog module precisely. This application will be useful to measure the intensity of X-ray flux through ionization chamber in a beam line of synchrotron radiation source which is mounted in INDUS-2. It is one of new technique of detection. Beam l...

  18. A Time Projection Chamber for High Accuracy and Precision Fission Cross Section Measurements

    CERN Document Server

    Heffner, M; Baker, R G; Baker, J; Barrett, S; Brune, C; Bundgaard, J; Burgett, E; Carter, D; Cunningham, M; Deaven, J; Duke, D L; Greife, U; Grimes, S; Hager, U; Hertel, N; Hill, T; Isenhower, D; Jewell, K; King, J; Klay, J L; Kleinrath, V; Kornilov, N; Kudo, R; Laptev, A B; Leonard, M; Loveland, W; Massey, T N; McGrath, C; Meharchand, R; Montoya, L; Pickle, N; Qu, H; Riot, V; Ruz, J; Sangiorgio, S; Seilhan, B; Sharma, S; Snyder, L; Stave, S; Tatishvili, G; Thornton, R T; Tovesson, F; Towell, D; Towell, R S; Watson, S; Wendt, B; Wood, L; Yao, L

    2014-01-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4$\\pi$ acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  19. Effects of air humidity on ionization chamber response

    International Nuclear Information System (INIS)

    A study of the effect of air humidity on four different ionization chamber cap materials verified earlier studies (Kristensen and Sundbom, 1981; Mijnheer et al., 1983) and extended our understanding of the problem. We found nylon and A-150 plastic caps swell as they absorb water from the air. This accounts for as much as 2.5% increase in ionization response. Graphite chambers readily absorb and desorb water from the air. This creates a problem in maintaining dry air in a wet graphite chamber. Humid air has a different density and W value than dry air (Niatel, 1969, 1975). This decreases the charge collected in a wet graphite chamber. We observe a decrease in response of approximately 2%, a value greater than can be accounted for by these effects alone. Polyethylene chambers are unaffected by humid air. 4 refs., 9 figs

  20. Performance of vintage direct reading pocket ionization chambers.

    Science.gov (United States)

    Bergen, Robert J; Harvey, John A; Kearfott, Kimberlee J

    2010-05-01

    The linearity, accuracy, and precision of each of two groups of vintage 51.6 microC-kg-1 maximum scale passive direct reading pocket ionization chambers, each from a different manufacturer and all aged at least 50 years since manufacture, were tested. The pocket ionization chambers were suspended on a phantom and exposed using a 137Cs source. Variations from trial to trial were smaller than variations from chamber to chamber. The average percent standard deviations ranged from 5.7% to 14% across all exposures. The accuracy of the dosimeter readings increased as the exposure level increased. Percent error from known exposure values decreased as exposure increased. An independent samples t test indicated there was a statistically significant difference between the two groups only at a delivered exposure of 6.45 microC-kg-1. Testing was performed in a 222Rn drum to determine the effect of Rn on the pocket ionization chambers. Exposure of five chambers to an average Rn level of 4.70 kBq m-3 and thirty chambers to 3.86 kBq m-3 over a 7-d period produced abnormally high readings at least three times background in eight of the 35 chambers tested.

  1. Characterization of a CT ionization chamber for radiation field mapping

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Vivolo, Vitor, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Xavier, Marcos, E-mail: mxavier@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: hjkhoury@gmail.com [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, 50740-540, Recife, PE (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil)

    2012-07-15

    A pencil-type ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares (IPEN), was characterized with the objective to verify the possibility of its application in radiation field mapping procedures. The characterization tests were evaluated, and the results were satisfactory. The results obtained for the X radiation field mapping with the homemade chamber were compared with those of a PTW Farmer-type chamber (TN 30011-1). The maximum difference observed in this comparison was only 1.25%, showing good agreement. - Highlights: Black-Right-Pointing-Pointer A new ionization chamber was made and tested for radiation field mapping. Black-Right-Pointing-Pointer This ionization chamber was made using only accessible low cost materials. Black-Right-Pointing-Pointer The operational tests were made and the results were within the recommended limits. Black-Right-Pointing-Pointer The field map was compared with a commercial chamber presenting a 1.25% difference. Black-Right-Pointing-Pointer Our chamber presents potential for assurance reliability in calibration procedures.

  2. Construction and commissioning of a position-sensitive ionization chamber

    Science.gov (United States)

    Kwag, M. S.; Chae, K. Y.; Cha, S. M.; Kim, A.; Kim, M. J.; Lee, E. J.; Lee, J. H.

    2016-05-01

    A position-sensitive ionization chamber has been constructed and commissioned at the Physics Department of Sungkyunkwan University to extract position information on incident charged particles for future nuclear reaction measurements. By utilizing the newly-designed position-sensitive anodes and the previously-commissioned portable gas-filled ionization chamber by Chae et al., position information on incident particles could be obtained. The device was tested with an 241Am α-emitting source, and the standard deviation of the fitted Gaussian distribution was measured to be 1.76 mm when a collimator with a 2 mm hole was used.

  3. Characterization of a free air ionization chamber for low energies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: mxavier@ipen.br, E-mail: vivolo@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition. (author)

  4. Characterization of a free air ionization chamber for low energies

    International Nuclear Information System (INIS)

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition. (author)

  5. Experimental and calculated calibration of ionization chambers with air circulation

    CERN Document Server

    Peetermans, A

    1972-01-01

    The reports describes the method followed in order to calibrate the different ionization chambers with air circulation, used by the 'Health Physics Group'. The calculations agree more precisely with isotopes cited previously (/sup 11/C, /sup 13/N, /sup 15/O, /sup 41 /Ar, /sup 14/O, /sup 38/Cl) as well as for /sup 85/Kr, /sup 133/Xe, /sup 14/C and tritium which are used for the experimental standardisation of different chambers.

  6. Gridded Ionization Chamber; Camara de ionizacion con reja

    Energy Technology Data Exchange (ETDEWEB)

    Manero Amoros, F.

    1962-07-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs.

  7. Ionization Chambers for Monitoring in High-Intensity Neutrino Beams

    CERN Document Server

    McDonald, J; Velissaris, C; Erwin, A R; Ping, H; Viren, B M; Diwan, M V

    2002-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  8. LET measurements with a Liquid Ionization Chamber

    OpenAIRE

    Tegami, S.

    2013-01-01

    Deep-seated tumors can be efficiently treated with heavy charged particles. The characteristic depth dose profile inside the tissue (Bragg peak) allows to deliver a high dose inside the tumor, while sparing the neighboring healthy tissue. As compared to protons, heavy ions like carbon or oxygen produce a higher amount of ionization events along their track (and in particular at the end of the ion beam path), resulting in an irreparable damage to the DNA of the tumor cells. The density of such...

  9. Characterization of a CT ionization chamber for radiation field mapping.

    Science.gov (United States)

    Perini, Ana P; Neves, Lucio P; Vivolo, Vitor; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A pencil-type ionization chamber, developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN), was characterized with the objective to verify the possibility of its application in radiation field mapping procedures. The characterization tests were evaluated, and the results were satisfactory. The results obtained for the X radiation field mapping with the homemade chamber were compared with those of a PTW Farmer-type chamber (TN 30011-1). The maximum difference observed in this comparison was only 1.25%, showing good agreement.

  10. Segmented ionization chambers for beam monitoring in hadrontherapy

    Science.gov (United States)

    Braccini, Saverio; Cirio, Roberto; Donetti, Marco; Marchetto, Flavio; Pittà, Giuseppe; Lavagno, Marco; La Rosa, Vanessa

    2015-05-01

    Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.

  11. A multiple sampling ionization chamber for the External Target Facility

    Science.gov (United States)

    Zhang, X. H.; Tang, S. W.; Ma, P.; Lu, C. G.; Yang, H. R.; Wang, S. T.; Yu, Y. H.; Yue, K.; Fang, F.; Yan, D.; Zhou, Y.; Wang, Z. M.; Sun, Y.; Sun, Z. Y.; Duan, L. M.; Sun, B. H.

    2015-09-01

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4-0.6 was achieved for nuclear fragments of 18O at 400 AMeV.

  12. Automatic control system for measuring currents produced by ionization chambers

    International Nuclear Information System (INIS)

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for 18F and 153Sm were obtained, making possible to determine activities of these radionuclides. (author)

  13. Space-charge effects in liquid argon ionization chambers

    Science.gov (United States)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  14. A correction to Birks' Law in liquid argon ionization chamber simulations for highly ionizing particles

    International Nuclear Information System (INIS)

    We present a study of the performance of Birks' Law in liquid argon ionization chamber simulations as applied to highly ionizing particles, such as particles with multiple electric charges or with magnetic charge. We used Birks' Law to model recombination effects in a GEANT4 simulation of heavy ions in a liquid argon calorimeter. We then compared the simulation to published heavy-ion data to extract a highly ionizing particle correction to Birks' Law.

  15. Design and construction of a radiation monitor with ionization chamber

    International Nuclear Information System (INIS)

    The design and construction of a portable radiation monitor with ionization chamber for gamma and x rays measurements in the range from 40 KeV to 2 MeV are described in detail. The monitor is calibrated to give the exposure rate in Roentgens/hour in three linear ranges: 0-25 mR/h, 0-250 mR/h and 0-2500 mR/h for an ionization chamber with a sensitive volume of 600 cubic centimeters. Two conventional 9 V alkaline batteries are used to energize the monitor. The small current coming from the ionization chamber is measured by an operational amplifier with electrometer characteristics. The high voltage power supply to bias the chamber is made with a blocking oscillator and a ferrite transformer. Starting form a discussion of the desired characteristics of the monitor, the technical specifications are established. The design criteria for every section are shown. The testing procedures used to qualify every block and the results for three units are reported. (Author)

  16. NIST Ionization Chamber “A” Sample-Height Corrections

    OpenAIRE

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber “A” (PIC “A”) to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused ...

  17. Study of the response of low pressure ionization chambers

    CERN Document Server

    Nebot Del Busto, E; Effinger, E; Grishin, V; Herranz Alvarez, J

    2012-01-01

    The Beam Loss Monitoring System (BLM) of the Large Hadron Collider (LHC) is based on parallel plate Ionization Chambers (IC) with active volume 1.5l and a nitrogen filling gas at 0.1 bar overpressure. At the largest loss locations, the ICs generate signals large enough to saturate the read-out electronics. A reduction of the active volume and filling pressure in the ICs would decrease the amount of charge collected in the electrodes, and so provide a higher saturation limit using the same electronics. This makes Little Ionization Chambers (LIC) with both reduced pressure and small active volume a good candidate for these high radiation areas. In this contribution we present measurements performed with several LIC monitors with reduced active volume and various filling pressures. These detectors were tested under various conditions with different beam setups, with standard LHC ICs used for calibration purposes

  18. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  19. Cosmic Rays Response of High-pressure Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; XIAO; Xue-fu; NI; Ning; ZHANG; Xi; HOU; Jin-bing; SONG; Ming-zhe; WANG; Hong-yu

    2013-01-01

    In order to study cosmic rays response characteristics of self-designed HPIC(high pressure ionization chamber),model JLZ-Ⅲ,the JLZ-Ⅲwas placed on a boat which is 3 meters much deeper and at least 1 kilometer away from land to measure air kerma rate in the open water in Miyun Reservoir(geomagnetic latitude 29°N,altitude 160 m),Beijing.The result was compared with the measurement

  20. Imaging with high Dynamic using an Ionization Chamber

    OpenAIRE

    Menk, Ralf-Hendrik; Amenitsch, Heinz; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the describ...

  1. A multiple sampling ionization chamber for the External Target Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhxh@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, S.W.; Ma, P.; Lu, C.G.; Yang, H.R.; Wang, S.T.; Yu, Y.H.; Yue, K.; Fang, F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan, D.; Zhou, Y.; Wang, Z.M.; Sun, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Z.Y.; Duan, L.M. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, B.H. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2015-09-21

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a {sup 239}Pu α source and RI beams. A Z resolution (FWHM) of 0.4–0.6 was achieved for nuclear fragments of {sup 18}O at 400 AMeV.

  2. Two-dimensional position sensitive ionization chamber with GEM

    Science.gov (United States)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  3. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Science.gov (United States)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  4. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D., E-mail: damien.fourmentel@cea.fr [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Filliatre, P.; Villard, J.F.; Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C. [Aix-Marseille Université, LISA EA 4672, cedex 20, Marseille 13397 (France); Carcreff, H. [CEA, DEN, DRSN, Saclay, F-91191 Gif-sur-Yvette (France)

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g{sup −1} and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  5. Growth Of 222Rn By Using Merlin Gerin, Vinten 271/671 And Centronic Ionization Chambers

    International Nuclear Information System (INIS)

    Growth measurements of exp.222 Rn by using Merlin Gerin, Vinten 271/671 and Centronic 1G 11/A20 ionization chamber have been studied. The aim of this measurement is to determine the optimum growth in the seculer equilibrium of exp.222 Rn by using three ionization chambers. The optimum growth of exp.222 Rn by using merlin Gerin ionization chamber was (19.06 n 0.07) days, by using Vinten 271/671 ionization chamber was (19.20 n 0.01) days and with Centronic 1G 11/A20 ionization chamber was (19.64 n 0.43) days

  6. A novel micro liquid ionization chamber for clinical dosimetry

    International Nuclear Information System (INIS)

    Absorbed-dose-based protocols recommend calibration of clinical linear accelerators using airfilled ionization chambers for which an absorbed-dose to water calibration factor has been established in a 60Co beam. The factor kQ in these protocols involves the ratio of the mean restricted collision mass stopping power water-to-air, which is energy dependent. For high-energy clinical photon beams, the stopping power ratio water-to-air varies by up to 4%, whereas for electron beams the variation is even larger. For certain insulating liquids, however, the stopping power ratio water-to-liquid shows very little energy dependence, making a liquid-filled ionization chamber a potentially attractive dosimeter for clinical reference dosimetry. In this work some properties of two liquid-filled ionization chambers are investigated including ion recombination and variation of response as a function of energy for photon beams. In this work we used an Exradin A14P planar microchamber with chamber body and electrodes composed of C552 plastic. This chamber was modified, reducing the gap between the cap and collecting electrode to 0.5 mm. The diameter of the collecting electrode is 1.5 mm and the nominal sensitive volume of 1.12 mm3 was filled with isooctane. This chamber will be referred to as the MicroLIC. The energy response of the MicroLIC was compared to previous results measured using the LIC 9902-mix chamber, developed by G. Wickman of Umea University, Sweden. The sensitive volume of this chamber has a diameter of 2.5 mm, thickness of 0.35 mm and is filled with 60% isooctane, 40% tetramethylsilane by weight. The linear accelerator used was a Varian Clinac 21EX with nominal photon beam energies of 6 and 18 MV. Measurements were done in a 20x20x20 cm3 RMI Solid Water phantom at 10 cm depth with a 10x10 cm2 field at the phantom surface. Absorbed dose was determined using an Exradin A12 chamber with an absorbed-dose to water calibration factor for 60Co established at a primary

  7. High temperature and sensitivity fission chambers: qualification of the CFUCO7 in reactor

    International Nuclear Information System (INIS)

    We present, in this paper, the whole tests performed both in laboratory and in reactor on the high temperature, wide dynamic fission chamber CFUCO7 and on its associated electronics. Except the long time tests to be realized in the PHENIX reactor, this measurement device, fission chamber and wide range electronic, can be considered as qualified to be used in a large LMFBR. We present also the new improvements on the detector design and the future programme in the reactor SUPER-PHENIX. (authors). 9 figs., 4 tabs., 2 refs., 2 appendix

  8. Characterization tests of a new parallel plate ionization chamber for use in electron beams

    Science.gov (United States)

    Nonato, Fernanda B. C.; Sakuraba, Roberto K.; da Cruz, José Carlos; Caldas, Linda V. E.

    2014-11-01

    Linear accelerators with electron beams are used in several Brazilian hospitals. Consequently, there is an increasing demand for parallel-plate ionization chambers, to be utilized for dosimetry of electron beams. In Brazil, the commercial ionization chambers utilized are imported. The ionization chambers have usually a simple construction, using different materials and geometries. A homemade ionization chamber was developed to be used in electron beams of linear accelerator. The ionization chamber body is made of acrylic and the collecting electrode is painted with graphite powder mixed with nail polish. Several tests were applied, and the results showed values better than the limits established by the international recommendations, except for the polarity effect test, but the response of the developed ionization chamber, for this test, is similar in relation to the response of other commercial ionization chambers from the literature.

  9. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kleinrath, Verena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  10. Response of ionization chamber based pocket dosimeter to beta radiation.

    Science.gov (United States)

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles.

  11. Establishment of a tandem ionization chamber system in standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas O. da; Caldas, L.V.E., E-mail: jonas.silva@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A double-faced tandem ionization chamber system was developed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminium and graphite. The response repeatability and reproducibility and the energy dependence test of this tandem ionization chamber were evaluated. The chamber response stability is within the {+-}3% limit recommended in international standards. The energy dependence test of the ionization chamber system using the tandem curve obtained, presented agreement with literature results. (author)

  12. Analytical form of current-voltage characteristic of cylindrical and spherical ionization chambers

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The basic processes of ionization and recombination of gas-filled ionization chamber are presented in this article. A differential equation describing the distribution of current densities in the volume of the ionization chamber is obtained from the balance of the particles and charges densities. As a result of the differential equation solving an analytical form of the current-voltage characteristic of cylindrical and spherical ionization chambers is got.

  13. Development of Master Chamber Software for Data Acquisition of Ionization Chamber for Indus 2 RRCAT

    Directory of Open Access Journals (Sweden)

    Priyesh Soni

    2013-02-01

    Full Text Available The main goal of this paper was to Develop Master control software for DAQ of ionization chamber for INDUS-2 beam lines for detection of X-ray flux by an Ionization chamber that will remotely control and monitor the ultra low current signal detection analog module precisely. This application will be useful to measure the intensity of X-ray flux through ionization chamber in a beam line of synchrotron radiation source which is mounted in INDUS-2. It is one of new technique of detection. Beam line area is highly restricted because of hazardous radiation, so through this application remote interfacing is provided for the ultra low current signal detection card that can be controlled by Master software. The development of such type arrangement we used software in C#.NET there are many issues like develop code, Design forms, to achieve the specified response from the CPU card, code developed in C# .NET. Initially, I explored and gained the knowledge of C#.NET. I practices some small modular projects as part to learn how the system works. I used programming language C#.NET architecture version 3.5 in Visual Studio 2008

  14. Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry.

    Science.gov (United States)

    Wagner, A; Crop, F; Lacornerie, T; Vandevelde, F; Reynaert, N

    2013-04-21

    Liquid ionization chambers (LICs) offer an interesting tool in the field of small beam dosimetry, allowing better spatial resolution and reduced perturbation effects. However, some aspects remain to be addressed, such as the higher recombination and the effects from the materials of the detector. Our aim was to investigate these issues and their impact. The first step was the evaluation of the recombination effects. Measurements were performed at different SSDs to vary the dose per pulse, and the collection efficiency was obtained. The BEAMnrc code was then used to model the Cyberknife head. Finally, the liquid ionization chamber itself was modelled using the EGSnrc-based code Cavity allowing the evaluation of the influence of the volume and the chamber materials. The liquid ionization charge collection efficiency is approximately 0.98 at 1.5 mGy pulse(-1), the highest dose per pulse that we have measured. Its impact on the accuracy of output factors is less than half a per cent. The detector modelling showed a significant contribution from the graphite electrode, up to 6% for the 5 mm collimator. The dependence of the average electronic mass collision stopping power of iso-octane with beam collimation is negligible and thus has no influence on output factor measurements. Finally, the volume effect reaches 5% for the small 5 mm collimator and becomes much smaller (<0.5%) for diameters above 10 mm. LICs can effectively be used for small beam relative dosimetry as long as adequate correction factors are applied, especially for the electrode and volume effects.

  15. Development of a cathode strip chamber for minimum ionizing particles

    International Nuclear Information System (INIS)

    A cathode strip chamber (CSC) capable of measuring position information for minimum ionizing particles (MIPS) has been developed. The chamber operates in the proportional or limited proportional region, where the avalanche on the anode wire is localised to a small region around the anode wire. The position of the avalanche can be obtained by the pulse heights induced on the cathode strips which run perpendicular to direction of the anode wire. The pulse height induced on the cathode strips is proportional directly to the strip width and inversely to the distance between the strip centre to the avalanche location. Thus by measuring the pulse heights on at least three cathode strips for every event, one can reconstruct the centroid that would give the location of the avalanche on the anode

  16. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    CERN Document Server

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  17. Performance parameters of a liquid filled ionization chamber array

    Energy Technology Data Exchange (ETDEWEB)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26121 (Germany); Harder, D. [Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen 37073 (Germany); Willborn, K. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121 (Germany)

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of

  18. Amplitude distribution of ionization jerks in ionization-chamber ASK-1 according long-term measurements

    Science.gov (United States)

    Timofeev, Vladislav

    2016-07-01

    As part of the Yakut complex systems by measuring the intensity of cosmic rays has a unique device spherical - ionization chamber ASK-1 with a lead screen thickness of 12 cm. The camera allows you to explore the physical characteristics of the so-called "ionization jerks " - sharp increases ionization current caused by the passage through the device much ionizing particles of cosmic origin. Due to a large increase in current nuclear cascade "showers", formed mainly by particles of cosmic rays in the camera screen. Over the entire period of observation (50 years old) camera ASK-1 was registered 59125 aftershocks. Their nature and properties still does not sufficiently studied, especially in medium and large amplitudes.

  19. Twin ionization chamber for studies of (n, p), (n, α) reactions

    International Nuclear Information System (INIS)

    For investigation of the fast neutron induced (n, p), (n, α) reactions the new twin grid ionization chamber was constructed. The working conditions of the chamber were investigated. Using the ionization chamber, the energy spectra, angular distributions and cross sections of the (n, p), (n, α) reactions were obtained for some nuclei

  20. Development of a portable gas-filled ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Chae, K. Y.; Cha, S. M.; Gwak, M. S. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-02-15

    A new portable gas-filled ionization chamber has been designed and constructed at the Physics Department of Sung Kyun Kwan University. To overcome the maximum count rate of ∼ 10{sup 5} particles per second of a conventional ionization chamber, which utilizes a Frisch grid, and to enhance the portability of a detector, we adopted the design of multiple electrodes and modified it from the original designs by Kimura et al. and Chae et al. The new design utilizes a stack of multiple electrodes installed perpendicular to the optical beam axis. This configuration provides a fast response time for the detector, which is essential for high-rate counting. The device has been tested with a {sup 241}Am (t{sub 1/2} = 432.2 years) radioactive α source, which mainly emits 5.486-MeV (branching ratio of 85%) and 5.443-MeV (branching ratio of 13%) α particles. An energy resolution of 6.3% was achieved.

  1. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  2. Imaging with high Dynamic using an Ionization Chamber

    CERN Document Server

    Menk, Ralf-Hendrik; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the described detector is an ionization chamber adapted to fan beam geometry with an active area of 192 cm and a pitch of the anode strips of 150 micrometer. In the vertical direction beams as high as 10 mm can be accepted. Every read-out strip is connected to an analogue integrating electronics channel realized in a custom made VLSI chip. A MicroCAT structure utilized as a shielding grid enables frame rates as high as 10kHz. The high dynamic range observed stems from the fact that the MicroCAT enables active electron amplification ...

  3. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in the ionization chamber are considered. On the basic of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage.

  4. Comparison between a commercial and homemade ionization chamber for dosimetry of {sup 60}Co beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V.E., E-mail: lpneves@ipen.b, E-mail: aperini@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Calibration Laboratory at IPEN/CNEN (LCI) has developed several ionization detectors for dosimetry in diagnostic radiology, radiation protection and radiotherapy. Recently, a cylindrical ionization chamber, with a sensitive volume of 1.06cm{sup 3}, was developed, and several tests were performed to characterize this ionization chamber for radiotherapy level. The results showed that its performance was within the recommended international limits. In order to complement the studies regarding the response of this ionization chamber, in this work, the chamber response was compared with that of a commercial ionization chamber Farmer PTW, model TN30011-1. The ionization chamber produced at LCI is made of PVC and PMMA. A special build-up cap for {sup 60}Co beams was made of acrylic, with 4.00 mm thickness. All tests of both ionization chambers were performed under the same conditions, allowing good geometrical reproducibility. The performed tests were: saturation, ion collection efficiency, polarity effect and chamber tilt. The results obtained in this comparison program were all within the international recommendations, and demonstrate a good agreement of the performance of the commercial and the homemade ionization chambers. From this comparison results and from previous data, it is possible to conclude that the ionization chamber produced at IPEN presents usefulness for dosimetric applications at radiotherapy level in {sup 60}Co beams.(author)

  5. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  6. Fission chambers designer based on Monte Carlo techniques working in current mode and operated in saturation regime

    Science.gov (United States)

    Antolínez, Alfonso; Rapisarda, David

    2016-07-01

    Fission chambers have become one of the main devices for the measurement of neutron fluxes in nuclear facilities; including fission reactors, future fusion ones, spallation sources, etc. The main goal of a fission chamber is to estimate the neutron flux inside the facility, as well as instantaneous changes in the irradiation conditions. A Monte Carlo Fission Chamber Designer (MCFCD) has been developed in order to assist engineers in the complete design cycle of the fission chambers. So far MCFCD focuses on the most important neutron reactions taking place in a thermal nuclear reactor. A theoretical model describing the most important outcomes in fission chambers design has been developed, including the expected electrical signals (current intensity and drop in potential) and, current-polarization voltage characteristics (sensitivity and saturation plateau); the saturation plateau is the zone of the saturation curve where the output current is proportional to fission rate; fission chambers work in this region. Data provided by MCFCD are in good agreement with measurements available.

  7. Characterization tests of a new parallel plate ionization chamber for use in electron beams

    International Nuclear Information System (INIS)

    Linear accelerators with electron beams are used in several Brazilian hospitals. Consequently, there is an increasing demand for parallel-plate ionization chambers, to be utilized for dosimetry of electron beams. In Brazil, the commercial ionization chambers utilized are imported. The ionization chambers have usually a simple construction, using different materials and geometries. A homemade ionization chamber was developed to be used in electron beams of linear accelerator. The ionization chamber body is made of acrylic and the collecting electrode is painted with graphite powder mixed with nail polish. Several tests were applied, and the results showed values better than the limits established by the international recommendations, except for the polarity effect test, but the response of the developed ionization chamber, for this test, is similar in relation to the response of other commercial ionization chambers from the literature. - Highlights: • An ionization chamber was developed to be used in radiotherapy electron beams. • The ionization chamber was submitted to several characterization tests. • The test results showed values within the international standard limits

  8. Testing a ring-shaped ionization chamber in standard beta radiation

    International Nuclear Information System (INIS)

    A ring-shaped ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares, was tested in standard beta radiation fields. This ionization chamber was primarily developed to be used as a monitor chamber in X-ray diagnostic radiology beams. It has a large sensitive volume and parallel-plate aluminium electrode. Its entrance window is made of a thin aluminized polyester foil, which allows the collection of electrons. The ring-shaped monitor chamber was already tested in X radiation beams, showing a good performance. The aim of this work was to verify the applicability of the ionization chamber for beta radiation field dosimetry at calibration distances. (author)

  9. An automated ionization chamber for secondary radioactivity standards

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, R., E-mail: ryan.fitzgerald@nist.go [Physics Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2010-07-15

    I report on the operation and characterization of a new ionization chamber system, 'AUTOIC', featuring a commercial digital electrometer and a commercial robotic sample changer. The relative accuracy of the electrometer was improved significantly beyond the manufacturer's specifications through an in-house calibration of the various ranges, applied via software. The measurement precision and repeatability of the system have been determined by measuring multiple samples of the same radionuclide over the span of two or three years. The linearity of the system was examined by following the decay of {sup 99m}Tc, {sup 99}Mo and {sup 133}Xe sources for up to 19 half-lives and determining half-life values. All of these values agree with the accepted literature values, within their combined uncertainties.

  10. An automated ionization chamber for secondary radioactivity standards.

    Science.gov (United States)

    Fitzgerald, R

    2010-01-01

    I report on the operation and characterization of a new ionization chamber system, "AUTOIC", featuring a commercial digital electrometer and a commercial robotic sample changer. The relative accuracy of the electrometer was improved significantly beyond the manufacturer's specifications through an in-house calibration of the various ranges, applied via software. The measurement precision and repeatability of the system have been determined by measuring multiple samples of the same radionuclide over the span of two or three years. The linearity of the system was examined by following the decay of (99m)Tc, (99)Mo and (133)Xe sources for up to 19 half-lives and determining half-life values. All of these values agree with the accepted literature values, within their combined uncertainties.

  11. Characterization tests and application of special ionization chambers in standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Cristiane J.C.; Caldas, Linda V.E., E-mail: cristianehonda@usp.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Jonas O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Instituto de Fisica

    2015-07-01

    The most used instrument for quality assurance programs in mammography beams is the ionization chamber. At the Calibration Laboratory of IPEN three different ionization chambers were recently designed and assembled for dosimetry in standard mammography beams. These ionization chambers are parallel plate chambers, with different geometries. The objective of this work was to study the performance of all three ionization chambers in relation to a commercial one. The established standard beams at an industrial X-ray system Pantak-Seifert were used for the characterization tests of the ionization chambers as short- and medium-term stability, saturation curves, polarity effect, ion collection efficiency, response linearity and angular dependence. All of the results obtained were within the limits recommended by the international standards IEC 61674 and IEC 60731. (author)

  12. NIST Ionization Chamber "A" Sample-Height Corrections.

    Science.gov (United States)

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber "A" (PIC "A") to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10(-5) to 10(-3) per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC "A". In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures.

  13. NIST Ionization Chamber “A” Sample-Height Corrections

    Science.gov (United States)

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber “A” (PIC “A”) to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10−5 to 10−3 per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC “A”. In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures. PMID:26900515

  14. A well-type ionization chamber geometric correction factor

    International Nuclear Information System (INIS)

    To correct for the influence of source configuration on the measured activity of spherical and cylindrical brachytherapy sources, a geometric correction factor was calculated for the Standard Imaging HDR-1000 well-type ionization chamber. A Fortran program modelled each source as a lattice of point sources. Because of the cylindrical symmetry of the well chamber, it could be uniquely modelled by point detectors along the perimeter of the radial plane of the detection volume. Path lengths were calculated and attenuation factors were applied to each source - detector point combination individually. The total dose rate at each detection point was found through a Sievert summation of the point source contributions. For 137Cs sources with identical activities, a correction factor of 0.965±0.005 was calculated, equal to the ratio of the dose rate of the cylindrical source to that of the sphere. Experimental verification using a Nuclear Associates 67-809 series cylindrical source and an Amersham spherical 137Cs source yielded a correction factor of 0.958±0.016. (author)

  15. Performance of the ETH gas ionization chamber at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.M., E-mail: arnold.mueller@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH-Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland); Doebeli, M.; Suter, M.; Synal, H.-A. [Laboratory of Ion Beam Physics, ETH-Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland)

    2012-09-15

    The performance of gas ionization chambers (GIC) for the detection of low energy ions has been considerably improved in the past years by the use of silicon nitride entrance windows and low noise preamplifiers. This has led to an increased use of high resolution GICs in the fields of accelerator mass spectrometry and ion beam analysis. This development and the underlying physical principles are reviewed and the latest technical status of such devices is summarized. A detailed study on energy resolution and pulse height defect is presented with projectiles covering a wide particle mass range (H, {sup 9}Be, {sup 13}C, {sup 27}Al, {sup 35}Cl, {sup 127}I, {sup 232}Th) with energies between 0.1 and 2.2 MeV. The dependence of energy resolution and charge output per unit particle energy on the nuclear charge of the projectile is investigated and parametrized. SRIM calculations of ionizing energy loss considerably differ from these experimental findings. For 1 MeV particles discrepancies up to 50% are observed. The performance of GICs and their practical use is compared to that of solid state detectors. The potential for further improvement of the technology and its fields of application are assessed.

  16. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.

    Science.gov (United States)

    Ogata, Toshiyuki; Uehara, Kazuyuki; Nakayama, Masao; Tsudou, Shinji; Masutani, Takashi; Okayama, Takanobu

    2016-07-01

    In this study, we aimed to compare the polarity correction factor in ionization chambers for flattening filter free (FFF) photon beams and flattening filter (FF) beams. Measurements were performed with both 6 and 10 MV FFF and FF beams. Five commercial ionization chambers were evaluated: PTW TN30013; IBA Dosimetry CC01, CC04, and CC13; and Exradin A12S. Except for the CC01 ionization chamber, the other four chambers showed less than a 0.3 % difference in the polarity effect between the FFF and the FF beams. The CC01 chamber showed a strong field-size-dependence, unlike the other chambers. The polarity effect for all chambers with FFF beams did not change with the dose rate. Except in the case of the CC01 chamber, the difference in the polarity effect between FFF and FF beams was not significant.

  17. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    Science.gov (United States)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  18. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    Science.gov (United States)

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  19. A measure method of the time respond function for gas ionization chamber

    CERN Document Server

    Wang Li; Qing Shang Yu

    2002-01-01

    In quick scanning radiography system, the time respond speed of array gas ionization chamber effects the image clarity directly. The author presents a measure method of the time respond function for gas ionization chamber. The image clarity will be improved by inverse convoluting the image data

  20. A time dependent solution for the operation of ion chambers in a high ionization background

    CERN Document Server

    Velissaris, C

    2005-01-01

    We have derived a time dependent solution describing the development of space charge inside an ion chamber subjected to an externally caused ionization rate N. The solution enables the derivation of a formula that the operational parameters of the chamber must satisfy for saturation free operation. This formula contains a correction factor to account for the finite duration of the ionization rate N.

  1. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  2. A new method for measuring the response time of the high pressure ionization chamber.

    Science.gov (United States)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-08-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers.

  3. Search for impurities of counting gases in ionization chambers

    International Nuclear Information System (INIS)

    In order to reach for the gas detectors applied at the ALADIN spectrometer of the GSI an as good as possible and timely remaining gas purity, a study on the kind and effects of impurities in different counting gases was performed. The gas purity was observed via the signal height of an α source after a drift path of the electrons of 50 cm. A steady decrease of the α-signals was measures, the steepness of which decreases slowly as function of the time. The half-life lies in the range of weeks, which lets conclude on a slow outgassing from the materials of the arrangement. By a gas chromatography and mass spectroscopy these impurities could be determined. Beside impurities by polar molecules as water and oxygen from the atmosphere, which are deposed in microscopical capillaries of the chamber materials and then outgassed in the samples after several days so-called softeners could be observed. Because these impurities in the arrangement at the ALADIN spectrometer cannot be avoided, a purification system in the flow-through operation was constructed and its effect tested. The gas quality can by this over several days be kept in the mean constant. In this dynamical process the fluctuations of the signal heights lie at ±0.7%. A ionization chamber as monitor for the gas purity was constructed and tested with different gas mixtures concerning observables like signal height and drift time. By this calibrated monitor in the experiment at the ALADIN spectrometer the gas quality can be independently determined. (orig.)

  4. A double faced ionization chamber for quality control in diagnostic radiology beams.

    Science.gov (United States)

    Silva, Jonas O; Caldas, Linda V E

    2012-07-01

    The development of new radiation detectors of low cost but with adequate materials is a very important task for countries that have to import ionization chambers such as Brazil. A special double faced ionization chamber was developed for use in conventional diagnostic radiology beams and computed tomography energy ranges. The results show that this new chamber present applicability in conventional diagnostic radiology and computed tomography quality control programs.

  5. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    Science.gov (United States)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.

    2015-11-01

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  6. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation.

    Science.gov (United States)

    Butler, D J; Stevenson, A W; Wright, T E; Harty, P D; Lehmann, J; Livingstone, J; Crosbie, J C

    2015-11-21

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. PMID:26510214

  7. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    International Nuclear Information System (INIS)

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. (paper)

  8. Characterization tests of a homemade ionization chamber in mammography standard radiation beams

    International Nuclear Information System (INIS)

    A mammography homemade ionization chamber was developed to be applied for mammography energy range dosimetry. This chamber has a sensitive volume of 6 cm3 and is made of a Lucite body and graphite coated collecting electrode. Characteristics such as saturation, ion collection efficiency, linearity of chamber response versus air kerma rate and energy dependence were determined. The results obtained with the mammography homemade ionization chamber are within the limits stated in international recommendations. This chamber can be used in quality control programs in the diagnostic radiology area. All measurements were carried out at the Calibration Laboratory of IPEN. - Highlights: • We constructed a mammography homemade ionization chamber. It was submitted to standard mammography X-rays beam qualities. • The results obtained showed good agreement with international standards. • This chamber can be used in quality control programs of diagnostic radiology area

  9. A new mini gas ionization chamber for IBA applications

    Science.gov (United States)

    Müller, A. M.; Cassimi, A.; Döbeli, M.; Mallepell, M.; Monnet, I.; Simon, M. J.; Suter, M.; Synal, H.-A.

    2011-12-01

    Novel prototypes of high resolution gas ionization chambers ( GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis ( IBA) and accelerator mass spectrometry ( AMS) . Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy ( STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10 15 protons per cm 2 while the performance of the Si detector clearly started to degrade at 10 12 particles per cm 2.

  10. A new mini gas ionization chamber for IBA applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.M., E-mail: arnold.mueller@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Cassimi, A., E-mail: cassimi@ganil.fr [CIMAP/CIRIL, CEA/CNRS/ENSICAEN, BP5133, F-14070 Caen cedex 5 (France); Doebeli, M., E-mail: doebeli@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Mallepell, M., E-mail: mallepell@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Monnet, I., E-mail: monnet@ganil.fr [CIMAP/CIRIL, CEA/CNRS/ENSICAEN, BP5133, F-14070 Caen cedex 5 (France); Simon, M.J. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Suter, M., E-mail: martin.suter@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Synal, H.-A., E-mail: synal@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2011-12-15

    Novel prototypes of high resolution gas ionization chambers (GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV {sup 129}Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis (IBA) and accelerator mass spectrometry (AMS). Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy (STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10{sup 15} protons per cm{sup 2} while the performance of the Si detector clearly started to degrade at 10{sup 12} particles per cm{sup 2}.

  11. A correction to Birks' Law in liquid argon ionization chamber simulations for highly ionizing particles

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, Sergey [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Horbatsch, Marko [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Taylor, Wendy, E-mail: taylorw@yorku.ca [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada)

    2012-02-01

    We present a study of the performance of Birks' Law in liquid argon ionization chamber simulations as applied to highly ionizing particles, such as particles with multiple electric charges or with magnetic charge. We used Birks' Law to model recombination effects in a GEANT4 simulation of heavy ions in a liquid argon calorimeter. We then compared the simulation to published heavy-ion data to extract a highly ionizing particle correction to Birks' Law.

  12. A double faced ionization chamber for quality control in diagnostic radiology beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas O., E-mail: josofisico@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, 05508-000, Sao Paulo (Brazil); Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, 05508-000, Sao Paulo (Brazil)

    2012-07-15

    The development of new radiation detectors of low cost but with adequate materials is a very important task for countries that have to import ionization chambers such as Brazil. A special double faced ionization chamber was developed for use in conventional diagnostic radiology beams and computed tomography energy ranges. The results show that this new chamber present applicability in conventional diagnostic radiology and computed tomography quality control programs. - Highlights: Black-Right-Pointing-Pointer We constructed a double faced ionization chamber. Black-Right-Pointing-Pointer It was submitted to conventional diagnostic and computed tomography X-rays beams. Black-Right-Pointing-Pointer The results obtained showed good agreement with international standards. Black-Right-Pointing-Pointer This ionization chamber can be used in clinic quality control program.

  13. Low-level measurements of Ra-226/Rn-222 by pulse ionization chambers

    Science.gov (United States)

    El-Daoushy, Fand; Garcia-Tenorio, Rafael

    1988-10-01

    Characteristics of two ionization chambers have been studied and the chambers utilized for 226Ra/ 222Rn measurements for more than ten years. The results obtained show that coating of internal surfaces with a pure and thin Ag-layer enhances the background of ionization chambers in spite of some improvements at the early stages of operation. In addition to previously known parameters influencing the accuracy in routine measurements, new correction factors are suggested. 226Ra impurities in the body of ionization chambers are found to act not only as a permanent, but also as a temperature-dependent source of background. Earlier accuracies of 226Ra/ 222Rn measurements have been considerably improved by assuring long-term mechanical and thermal stability of the ionization chambers.

  14. Radiation dosimetry with plane-parallel ionization chambers: An international (IAEA) code of practice

    International Nuclear Information System (INIS)

    Research on plane-parallel ionization chambers since the IAEA Code of Practice (TRS-277) was published in 1987 has expanded our knowledge on perturbation and other correction factors in ionization chamber dosimeter, and also constructional details of these chambers have been shown to be important. Different national organizations have published, or are in the process of publishing, recommendations on detailed procedures for the calibration and use of plane-parallel ionization chambers. An international working group was formed under the auspices of the IAEA, first to assess the status and validity of IAEA TRS-277, and second to develop an international Code of Practice for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams. The purpose of this work is to describe the forthcoming Code of Practice. (author). 39 refs, 3 figs, 2 tabs

  15. A calibration method of an ionization chamber for measuring 222Rn concentration

    International Nuclear Information System (INIS)

    When 222Rn concentration is measured with an ionization chamber, the conversion factor of ionization current to 222Rn concentration has been decided in individual case. A flow-type ionization chamber (the effective volume; 18 l) was used for measuring 222Rn concentration in this work. The conversion factor of this ionization chamber was obtained 1.11 (Bq/m3/fA) by the use of RaDEF standard source. From the results of three other literatures and this work, the following formula to calculate the conversion factor (a) was obtained as a function of the effective volume V (m3) of ionization chamber; a = (1.036 x 102-1) / [V·(log V + 6.908)] (Bq/m3/fA). (author)

  16. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    Directory of Open Access Journals (Sweden)

    Coburn Jonathan

    2016-01-01

    Full Text Available When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time.

  17. Development of fission micro-chambers for nuclear waste incineration studies

    CERN Document Server

    Fadil, M; Christophe, S; Deruelle, O; Fioni, G; Marie, F; Mounier, C; Ridikas, D; Trapp, J P

    2002-01-01

    The Incineration by Accelerator (INCA) project of the Directorate for Science of Matter of the French Atomic Energy Authority (CEA/DSM) aims to outline the ideal physical conditions to transmute minor actinides in a high intensity neutron flux obtained either by hybrid systems or innovative critical reactors. To measure on-line the incineration rates of minor actinides, we are developing an innovative Double Deposit Fission Chamber (DDFC) working in current mode. Our method is based on a comparison between the isotope under study and a reference material whose nuclear parameters are well known, as sup 2 sup 3 sup 5 U and sup 2 sup 3 sup 9 Pu. This new fission chamber will be used in the High Flux Reactor in Grenoble/France in a neutron flux of 1.2x10 sup 1 sup 5 n cm sup - sup 2 s sup - sup 1 for 50 days, the operating cycle of the reactor. These specific experimental conditions require substantial modifications of the existing chambers. The first experiment will be carried out in fall 2000.

  18. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    Science.gov (United States)

    Coburn, Jonathan; Luker, S. Michael; Parma, Edward J.; DePriest, K. Russell

    2016-02-01

    When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ) or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks) before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR) central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Experimental determination of wall correction factors. Pt. 2; NACP and Markus plane-parallel ionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Wittkaemper, F.W.; Mijnheer, B.J. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands)); Aalbers, A.H.L. (Netherlands Measurements Inst., Bilthoven (Netherlands))

    1992-04-01

    The formalism to derive the absorbed dose to water from ionization chamber measurements in a phantom includes several wall correction factors depending on shape, size and composition of the chamber. Wall correction factors have been measured for a number of NACP and PTW/Markers Chambers. Significant deviations from calculated values occur due to uncertainties in the contribution to the total ionization from the different materials of these inhomogeneous ionization chambers. The discrepancies illustrate the need for the development of a homogeneous plane-parallel chamber. In addition, detailed Monte Carlo calculations, taking the different wall materials into account, are required to quantitatively predict the response of heterogeneous plane-parallel chambers in photon beams. (UK).

  20. Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements

    Science.gov (United States)

    Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang

    2014-10-01

    Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.

  1. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  2. Calibration of ionization chamber for ¹⁸F and ⁶⁸Ga.

    Science.gov (United States)

    da Silva, Carlos J; de Oliveira, Estela M; Iwahara, A; Delgado, José U; Poledna, R; de Oliveira, Antônio E; Moreira, Denise S; da Silva, Ronaldo L; Gomes, Regio dos Santos; de Veras, Eduardo V

    2014-05-01

    In order to maintain the results of primary activity standardizations carried out in 2011 the LNMRI has determined the calibration factors for a pressurized 4π-ionization chamber for the nuclides (18)F and (68)Ga. This ionization chamber is coupled to a 6517A Keithley electrometer which is controlled by a homemade LabVIEW program. This paper will describe the main issues related to the calibration of an ionization chamber system for positron emitters and short half-life radionuclides such as timing, current measurement, background, decay, and (226)Ra check source measurements.

  3. Campbelling-type theory of fission chamber signals generated by neutron chains in a multiplying medium

    Energy Technology Data Exchange (ETDEWEB)

    Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49 (Hungary); Pázsit, I., E-mail: imre@chalmers.se [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden)

    2015-09-11

    The signals of fission chambers are usually evaluated with the help of the co-called Campbelling techniques. These are based on the Campbell theorem, which states that if the primary incoming events, generating the detector pulses, are independent, then relationships exist between the moments of various orders of the signal in the current mode. This gives the possibility to determine the mean value of the intensity of the detection events, which is proportional to the static flux, from the higher moments of the detector current, which has certain advantages. However, the main application area of fission chambers is measurements in power reactors where, as is well known, the individual detection events are not independent, due to the branching character of the neutron chains (neutron multiplication). Therefore it is of interest to extend the Campbelling-type theory for the case of correlated neutron events. Such a theory could address two questions: partly, to investigate the bias when the traditional Campbell techniques are used for correlated incoming events; and partly, to see whether the correlation properties of the detection events, which carry information on the multiplying medium, could be extracted from the measurements. This paper is devoted to the investigation of these questions. The results show that there is a potential possibility to extract the same information from fission chamber signals in the current mode as with the Rossi- or Feynman-alpha methods, or from coincidence and multiplicity measurements, which so far have required detectors working in the pulse mode. It is also shown that application of the standard Campbelling techniques to neutron detection in multiplying systems does not lead to an error for estimating the stationary flux as long as the detector is calibrated in in situ measurements.

  4. Practical electron dosimetry: a comparison of different types of ionization chambers

    International Nuclear Information System (INIS)

    Since Markus chambers are no longer recommended in the 1997 DIN 6800-2 version there are uncertainties as to the use of alternative chamber types for electron dosimetry. Therefore, we performed a comparison between different types of ionization chambers. In particular, the widespread Farmer and Roos chambers were compared with the Markus chamber for polarity effect, chamber-to-chamber variation, and deviations of the measured absorbed dose relative to the value obtained with the Roos chamber (which is regarded as an ideal Bragg-Gray-chamber). The perturbation correction factor at 60Co radiation was determined experimentally as 1,029 ± 0,5% (Roos chamber) and 1,018 ± 0,5% (Markus chamber) for the investigated plane-parallel chambers. In addition, we could show that the Roos chambers do not have a larger chamber-to-chamber variation than the Farmer chambers. Likewise, our results suggest that Farmer chambers could be used for electron energies above 6 MeV. (orig.)

  5. LARGE VOLUME IONIZATION CHAMBER USED AS LABORATORY REFERENCE FOR LOW ENERGY X—RAY MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    杨国山; 薛永库; 等

    1994-01-01

    A large volume spherical ionization chamber of 195mm diameter and 0.36mg/cm2 wall thickness made from conducting carbon-fibre epoxy composite material has been developed.The mechanical intensity of the chamber is satisfactory for a good longterm volume stability.Owing to its large volume and thin wall,the chamber is sensitive to low energy photon beams and has excellent energy-response characteristics.This ionization chamber is suitable not only for a laboratory reference but also for measurement of low energy photon beam exposure rates at protection-level.

  6. Polarity effect of the thimble-type ionization chamber at a low dose rate

    Science.gov (United States)

    Kim, Yong-Kyun; Park, Se-Hwan; Kim, Han-Soo; Kang, Sang-Mook; Ha, Jang-Ho; Chung, Chong-Eun; Cho, Seung-Yeon; Kim, J. K.

    2005-11-01

    It is known that the current collected from an ionization chamber exposed to a constant radiation intensity changes in magnitude when the polarity of the collecting potential is reversed. It is called the polarity effect of the ionization chamber. There are many possible causes that induce the polarity effect and one of them can be a field distortion due to a potential difference between the guard electrode and the collector. We studied how much the polarity effect depends on the design of the electrodes in the thimble-type ionization chamber. Two thimble-type ionization chambers, which had different electrode structures, were designed and fabricated at KAERI. We calculated the field distortions due to the potential difference between the guard electrode and the collector for the two ionization chambers. MAXWELL and Garfield were employed to calculate the electron drift lines inside the chamber. The polarity effects of the two ionization chambers were measured, and they were consistent with the field calculation. We could conclude that the polarity effect is mostly induced from the field distortion due to the potential difference between the guard electrode and the collector in our experiment and it depends significantly on the design of the electrodes.

  7. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  8. Stability results of a free air ionization chamber in standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: mxavier@ipen.br, E-mail: vivolo@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Free air ionization chambers are absolute dosimeters, because they can measure basic physical quantities directly without the need of their calibration in a standard radiation beam. They are used for measuring exposure and air kerma in X and gamma radiation beams. The Calibration Laboratory (LCI) of IPEN has a free air ionization chamber of the cylindrical type for low energies. The characterization of this ionization chamber was already performed and reported in a previous study. After a modification in the support of the micrometers used for the movement of the internal cylinder devices, the tests were redone. The objective of this work was to present the new alignment protocol of the free air ionization chamber in low energies of X-ray beams of standard mammography qualities, assuring the positioning reproducibility, and new results of stability tests performed with the application of this protocol will be presented. (author)

  9. Initial recombination in the track of heavy charged particles: Numerical solution for air filled ionization chambers

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki;

    2012-01-01

    Introduction Modern particle therapy facilities enable sub-millimeter precision in dose deposition. Here, also ionization chambers (ICs) are used, which requires knowledge of the recombination effects. Up to now, recombination is corrected using phenomenological approaches for practical reasons. ...

  10. Experimental and Monte Carlo evaluation of an ionization chamber in a 60Co beam

    Science.gov (United States)

    Perini, A. P.; Neves, L. P.; Santos, W. S.; Caldas, L. V. E.

    2016-07-01

    Recently a special parallel-plate ionization chamber was developed and characterized at the Instituto de Pesquisas Energeticas e Nucleares. The operational tests presented results within the recommended limits. In order to determine the influence of some components of the ionization chamber on its response, Monte Carlo simulations were carried out. The experimental and simulation results pointed out that the dosimeter evaluated in the present work has favorable properties to be applied to 60Co dosimetry at calibration laboratories.

  11. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators.

    Science.gov (United States)

    Rodrigues, Ary A; Vieira, Jose M; Hamada, Margarida M

    2010-01-01

    A 1 cm(3) cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a (60)Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  12. Experimental and Monte Carlo evaluation of an ionization chamber in a {sup 60}Co beam

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P.; Neves, Lucio Pereira, E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), MG (Brazil). Instituto de Fisica; Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Recently a special parallel-plate ionization chamber was developed and characterized at the Instituto de Pesquisas Energeticas e Nucleares. The operational tests presented results within the recommended limits. In order to determine the influence of some components of the ionization chamber on its response, Monte Carlo simulations were carried out. The experimental and simulation results pointed out that the dosimeter evaluated in the present work has favorable properties to be applied to {sup 60}Co dosimetry at calibration laboratories. (author)

  13. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  14. Pencil beam proton radiography using a multilayer ionization chamber

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  15. Pencil beam proton radiography using a multilayer ionization chamber.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program. PMID:27164479

  16. Beam Tests of Ionization Chambers for the NuMI Neutrino Beam

    CERN Document Server

    Zwaska, R M; Kopp, S E; Proga, M; Erwin, A R; Ping, H; Velissaris, C; Harris, D A; Naples, D; McDonald, J; Northacker, D; Diwan, M V; Viren, B M; Hall, James; Kopp, Sacha E.; Proga, Marek; Erwin, Albert R.; Ping, Huican; Velissaris, Christos; Harris, Deborah A.; Naples, Donna; Donald, Jeffrey Mc; Northacker, David; Diwan, Milind; Viren, Brett

    2003-01-01

    We have conducted tests at the Fermilab Booster of ionization chambers to be used as monitors of the NuMI neutrino beamline. The chambers were exposed to proton fluxes of up to 10$^{12}$ particles/cm$^2$/1.56$\\mu$s. We studied space charge effects which can reduce signal collection from the chambers at large charged particle beam intensities.

  17. Pre-evaluation of an ionization chamber for clinical radiotherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P.; Perini, Ana P.; Xavier, Marcos; Caldas, Linda V.E., E-mail: mxavier@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    This work presents some pre-operational tests for characterization of a new homemade ionization chamber developed at the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP). This chamber was designed for use in radiotherapy dosimetry. To study the utilization of this chamber in radiotherapy, some tests were undertaken: short- and medium-term stabilities, saturation curve, recombination loss, polarity effect and leakage current. All results obtained in these tests were within the international recommendations. (author)

  18. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  19. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  20. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  1. A twin-type airflow pulse ionization chamber for continuous alpha-radioactivity monitoring in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada@nf.eie.eng.osaka-u.ac.j [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Dwaikat, Nidal; Datemichi, Jun; Sato, Fuminobu; Murata, Isao; Kato, Yushi; Iida, Toshiyuki [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-10-15

    A simple and inexpensive twin-type airflow pulse ionization chamber was developed for the continuous monitoring of alpha-radioactivity in atmosphere under high humidity condition. The symmetrical structure of the twin-type ionization chamber was effective in the improvement of the ratio of signal to noise in the measurement of pulses induced by alpha-rays. Outdoor alpha-ray measurement was well performed with this ionization chamber by applying sufficiently high bias voltage to the electrodes, except for at very high humidity conditions. It was confirmed that the declination of the counting efficiency due to wetting was easily recovered by the dry-up of the inside of the chamber. Alpha-radioactivity from radon and other alpha-emitting radionuclide in atmosphere was satisfactorily monitored by the detector.

  2. Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber

    CERN Document Server

    Wieloch, A; Péter, J; Lojek, K; Alamanos, N; Amar, N; Anne, R; Angélique, J C; Auger, G; Dayras, R; Drouart, A; Fontbonne, J M; Gillibert, A; Grévy, S; Hanappe, F; Hannachi, F; Hue, R; Khouaja, A; Legou, T; López-Martens, A; Liénard, E; Manduci, L; De Oliveira-Santos, F; Politi, G; Saint-Laurent, M G; Stodel, C; Stuttgé, L; Tillier, J; De Tourreil, R; Villari, A C C; Wieleczko, J P

    2004-01-01

    Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.

  3. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    Science.gov (United States)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  4. [Influence on measurements of pre-irradiation due to differences in ionization chamber shape or frequency in use].

    Science.gov (United States)

    Shimono, Tetsunori; Nambu, Hidekazu; Matsubara, Kosuke; Koshida, Kichiro; Gomi, Tsutomu

    2012-01-01

    Ionization chamber measurements in radiation therapy should be repeatedly performed until a stable reading is obtained. Ionization chambers exhibit a response which depends on time elapsed since the previous irradiation. In this study, we investigated the response of a set of two Farmer-style, one Plane parallel, and seven small ionization chambers, which are exposed to 4, 6, 10, and 14 MV. The results show that Farmer-style and Plane parallel ionization chambers settle quickly within 9-20 min. On the other hand, small ionization chambers exhibit settling times of 12-33 min for 6, 10, and 14 MV. It will take longer for a settling time of 4 MV. The settling time showed time dependent irradiation. The first reading was up to 0.76% lower in the Farmer-style and Plane parallel ionization chambers. The small ionization chambers had a 2.60% lower first reading and more gradual response in reaching a stable reading. In this study, individual ionization chambers can vary significantly in their settling behavior. Variation of the responses on ionization chambers were confirmed not only when radiation was not used for a week but also when it was halted for a month. Pre-irradiation of small ionization chambers is clearly warranted for eliminating inadvertent error in the calibration of radiation beams.

  5. Maximum Alpha to Minimum Fission Pulse Amplitude for a Parallel-Plate and Hemispherical Cf-252 Ion-Chamber Instrumented Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Oberer, R.B.

    2000-12-07

    In an instrumented Cf-252 neutron source, it is desirable to distinguish fission events which produce neutrons from alpha decay events. A comparison of the maximum amplitude of a pulse from an alpha decay with the minimum amplitude of a fission pulse shows that the hemispherical configuration of the ion chamber is superior to the parallel-plate ion chamber.

  6. Backscattered radiation into a transmission ionization chamber: measurement and Monte Carlo simulation.

    Science.gov (United States)

    Yoshizumi, Maíra T; Yoriyaz, Hélio; Caldas, Linda V E

    2010-01-01

    Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.

  7. Evaluation of a plane-parallel ionization chamber for low-energy radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E., E-mail: aperini@ipen.br, E-mail: lpneves@ipen.br, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    A plane-parallel ionization chamber, with a sensitive volume of 6.3 cm{sup 3}, developed at the Calibration Laboratory of IPEN (LCI), was utilized to verify the possibility of its application in low-energy X-ray beam qualities for radiotherapy (T-qualities). This homemade ion chamber was manufactured using polymethyl methacrylate (PMMA) coated with graphite, and co-axial cables. In order to evaluate the performance of this ionization chamber, some characterization tests were performed: short- and medium-term stability, leakage current, saturation, ion collection efficiency, polarity effect and linearity of response. The maximum value obtained in the short-term stability test was 0.2%, in accordance with the limit value of 0.3% provided by the IEC 60731 standard. The saturation curve was obtained varying the applied voltage from -400 V to +400 V, in steps of 50 V, using the charge collecting time of 20 s. From the saturation curve two other characteristics were analyzed: the polarity effect and the ion collection efficiency, with results within the international recommendations. The leakage current of the ionization chamber was measured in time intervals of 20 minutes, before and after its irradiations, and all the results obtained were in agreement with the IEC 60731 standard. The linearity of response was verified utilizing the T-50(b) radiation quality, and the ionization chamber was exposed to different air kerma rates. The response of the ionization chamber presented a linear behavior. Therefore, all results were considered satisfactory, within international recommendations, indicating that this homemade ionization chamber presents potential routine use in dosimetry of low-energy radiotherapy beams. (author)

  8. An open-walled ionization chamber appropriate to tritium monitoring for glovebox.

    Science.gov (United States)

    Chen, Zhilin; Chang, Ruiming; Mu, Long; Song, Guoyang; Wang, Heyi; Wu, Guanyin; Wei, Xiye

    2010-07-01

    An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of beta particles produced by tritium decay. The minimum detection limit of the chamber is 3.7x10(5) Bq/m(3).

  9. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    Science.gov (United States)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  10. Measurement of ion and electron drift velocity and electronic attachment in air for ionization chambers

    CERN Document Server

    Boissonnat, Guillaume; Colin, Jean; Remadi, Aurelien; Salvador, Samuel

    2016-01-01

    Air-ionization chambers have been used in radiotherapy and particle therapy for decades. However, fundamental parameters in action in the detector responses are sparsely studied. In this work we aimed to measure the electronic attachment, electrons and ions mobilities of an ionization chamber (IC) in air. The main idea is to extract these from the actual response of the IC to a single ionizing particle in order to insure that they were measured in the same condition they are to be used while neglecting undesired phenomena: recombination and space charge effect. The non-standard signal shape analysis performed here were also confronted to a more standard drift chamber measurements using time-of-flight. It was found that both detectors displayed compatible results concerning positive and negative ions drift velocities where literature data is well spread out. In the same time, electron attachment measurements sit in the middle of known measurements while electron drift velocities seemed to show an offset compar...

  11. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  12. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    CERN Document Server

    Datte, P S; Haguenauer, Maurice; Manfredi, P F; Manghisoni, M; Millaud, J E; Placidi, Massimo; Ratti, L; Riot, V J; Schmickler, Hermann; Speziali, V; Traversi, G; Turner, W C

    2003-01-01

    A novel segmented multigap pressurized gas ionization chamber is being developed for optimization of the luminosity of the Large Hadron Collider (LHC). The ionization chambers are to be installed in the front quadrupole and 0 degrees neutral particle absorbers in the high luminosity interaction regions (IRs) and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast pulse-shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper, we report the initial results of our second test of this instrumentation in a super proton synchrotron (SPS) external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentation to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated. (10 refs) .

  13. Calibration of KRISS reference ionization chamber for key comparison of (99m)Tc measurement.

    Science.gov (United States)

    Lee, Jong-Man; Lee, K B; Lee, S H; Park, Tae Soon

    2012-09-01

    KRISS, as the national metrology institute of Korea, has used a reference ionization chamber system to certify the activity of (99m)Tc aqueous sources, but could only recently participate in a comparison exercise by the BIPM (BIPM.RI(II)-K4.Tc-99m) to secure the international equivalence of (99m)Tc radioactivity measurement by way of the BIPM transfer instrument (SIRTI). The KRISS ionization chamber system was calibrated about 100 days before the comparison with a (99m)Tc solution source standardized by the 4πβ(LS)-γ(NaI(Tl)) coincidence counting method. During the comparison, beginning with a higher activity mother solution, the KRISS ionization chamber measured its specific activity without a dilution. The activity of a diluted-solution source was measured by the SIRTI at the same time.

  14. Evaluation of a tissue equivalent ionization chamber in X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Frimaio, Audrew [Seal Technology Ind. Com. Ltda, Sao Paulo, SP (Brazil); Costa, Paulo R. [Universidade de Sao Paulo (USP/IF), Sao Paulo, SP (Brazil). Inst. de Fisica

    2014-07-01

    Tissue equivalent materials present a variety of uses, including routine quality assurance and quality control programs in both diagnostic and therapeutic physics. They are frequently used in research facilities to measure doses delivered to patients undergoing various clinical procedures. This work presents the development and evaluation of a tissue equivalent ionization chamber, with a sensitive volume of 2.3 cm{sup 3}, for routine use in X-rays beams. This ionization chamber was developed at the Calibration Laboratory/IPEN. The new tissue equivalent material was developed at the Physics Institute of the University of Sao Paulo. In order to evaluate the dosimetric performance of the new ionization chamber, several tests described by international standards were undertaken, and all results were within the recommended limits. (author)

  15. Design and preliminary test of a free-air ionization chamber for low-energy X-ray

    Institute of Scientific and Technical Information of China (English)

    WU Jin-Jie; YANG Yuan-Di; WANG Pei-Wei; CHEN Jing; LIU Jia-Cheng

    2011-01-01

    A free-air ionization chamber in low-energy X-ray has been designed and manufactured at theNational Institute of Metrology (NIM, China) according to the defination of alr-kerma. The results of a preliminary test show that the leakage current of ionization chamber is around 2×10A, and the correction factor of ion recombination for the ionization chamber is also obtained. The free-air ionization chamber is suitable for the primary standard in low-energy X-rays.

  16. Performance of three pencil-type ionization chambers (10 cm) in computed tomography standard beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E., E-mail: mcastro@ipen.br, E-mail: mxavier@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of computed tomography (CT) has increased over the years, thus generating a concern about the doses received by patients undergoing this procedure. Therefore, it is necessary to perform routinely beam dosimetry with the use of a pencil-type ionization chamber. This detector is the most utilized in the procedures of quality control tests on this kind of equipment. The objective of this work was to perform some characterization tests in standard CT beams, as the saturation curve, polarity effect, ion collection efficiency and linearity of response, using three ionization chambers, one commercial and two developed at the IPEN. (author)

  17. Influence of the radioactive source position inside the well-type ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kuahara, L.T.; Correa, E.L.; Potiens, M.P.A., E-mail: liliankuahara@usp.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The activimeter, instrument used in radionuclide activity measurement, consists primarily of a well type ionization chamber coupled to a special electronic device. Its response, after calibration, is shown in activity units (Becquerel or Curie). The goal of this study is to verify radioactive source position influence over activity measured by this instrument. Radioactive sources measurements were made at different depths inside the ionization chamber well. Results showed maximum variation of -23 %, -28 % and -15 % for {sup 57}Co, {sup 133}Ba and {sup 137}Cs, respectively. (author)

  18. Performance of three pencil-type ionization chambers (10 cm) in computed tomography standard beams

    Science.gov (United States)

    de Castro, Maysa C.; Xavier, Marcos; Caldas, Linda V. E.

    2016-07-01

    The use of computed tomography (CT) has increased over the years, thus generating a concern about the doses received by patients undergoing this procedure. Therefore, it is necessary to perform routinely beam dosimetry with the use of a pencil-type ionization chamber. This detector is the most utilized in the procedures of quality control tests on this kind of equipment. The objective of this work was to perform some characterization tests in standard CT beams, as the saturation curve, polarity effect, ion collection efficiency and linearity of response, using three ionization chambers, one commercial and two developed at the IPEN.

  19. Response and Monte Carlo evaluation of a reference ionization chamber for radioprotection level at calibration laboratories

    Science.gov (United States)

    Neves, Lucio P.; Vivolo, Vitor; Perini, Ana P.; Caldas, Linda V. E.

    2015-07-01

    A special parallel plate ionization chamber, inserted in a slab phantom for the personal dose equivalent Hp(10) determination, was developed and characterized in this work. This ionization chamber has collecting electrodes and window made of graphite, and the walls and phantom made of PMMA. The tests comprise experimental evaluation following international standards and Monte Carlo simulations, employing the PENELOPE code to evaluate the design of this new dosimeter. The experimental tests were conducted employing the radioprotection level quality N-60 established at the IPEN, and all results were within the recommended standards.

  20. Construction of a fast ionization chamber for high-rate particle identification

    Science.gov (United States)

    Chae, K. Y.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Manning, B.; Pain, S. D.; Peters, W. A.; Schmitt, K. T.; Smith, M. S.; Strauss, S. Y.

    2014-07-01

    A new gas-filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). To enhance the response time of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from an original design by Kimura et al. [1]. A maximum counting rate of ~700,000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF.

  1. Construction of a fast ionization chamber for high-rate particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Chae, K.Y., E-mail: kchae@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ahn, S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Bardayan, D.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Chipps, K.A. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Manning, B. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Pain, S.D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Peters, W.A. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Schmitt, K.T. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Smith, M.S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Strauss, S.Y. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-07-01

    A new gas-filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). To enhance the response time of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from an original design by Kimura et al. [1]. A maximum counting rate of ∼700,000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF.

  2. Update of NIST half-life results corrected for ionization chamber source-holder instability.

    Science.gov (United States)

    Unterweger, M P; Fitzgerald, R

    2014-05-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties.

  3. Comparison of the half-value layer: ionization chambers vs solid-state meters

    International Nuclear Information System (INIS)

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  4. Characterization of a free air ionization chamber for low energy X-rays

    Science.gov (United States)

    Silva, N. F.; Xavier, M.; Vivolo, V.; Caldas, L. V. E.

    2016-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition.

  5. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    International Nuclear Information System (INIS)

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (equation of state) TPC and other EOS collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI. (orig.)

  6. New look at displacement factor and point of measurement corrections in ionization chamber dosimetry

    International Nuclear Information System (INIS)

    A new technique is presented for determination of the effective point of measurement when cavity ionization chambers are used to measure the absorbed dose due to ionizing radiation in a dense medium. An algorithm is derived relating the effective point of measurement to the displacement correction factor. This algorithm relates variations of the displacement factor to the radiation field gradient. The technique is applied to derive the magnitudes of the corrections for several chambers in a p(66)Be(49) neutron therapy beam. 30 references, 4 figures, 1 table

  7. A comparative study of three ionizing chambers for measurements of personal dose equivalent, Hp(10)

    Science.gov (United States)

    Oliveira, C.; Cardoso, J.; Silva, H.

    2015-11-01

    A comparative study of three ionization chambers which directly measure the quantity personal dose equivalent Hp(10), was performed. Results show that the ratio between the response (air kerma) determined by Monte Carlo and the experimental response (collected charge) normalized by the monitor unit is the same whatever is the chamber and that this ratio is proportional to the conversion coefficients for air kerma from photon fluence.

  8. Comparison of experimental and calculated calibration coefficients for a high sensitivity ionization chamber.

    Science.gov (United States)

    Amiot, M N; Mesradi, M R; Chisté, V; Morin, M; Rigoulay, F

    2012-09-01

    The response of a Vacutec 70129 ionization chamber was calculated using the PENELOPE-2008 Monte Carlo code and compared to experimental data. The filling gas mixture composition and its pressure have been determined using IC simulated response adjustment to experimental results. The Monte Carlo simulation revealed a physical effect in the detector response to photons due to the presence of xenon in the chamber. A very good agreement is found between calculated and experimental calibration coefficients for 17 radionuclides.

  9. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    CERN Document Server

    Kawaguchi, T

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the gamma-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is a...

  10. A ΔE-E Telescope with Ionization Chamber Used in Excitation Function Measurement

    Institute of Scientific and Technical Information of China (English)

    LiSonglin; WangQi; DongYuchuan; XuHuagen; ChenRuofu

    2003-01-01

    A thorough study of excitation function in dissipative heavy ion collision requires the identification of the nuclear charge number Z of the reaction products. For this purpose, a special designed ΔE-E telescope is employed, which consists of a gas filled ionization chamber to detect the energy loss and a position sensitive semiconductor Si detector (300μm in thickness and 8 mm×45 mm in active area) as the residual energy detector. The ionization chamber with a sensitive length of about 60 mm, is divided into two parts of ΔE1 and ΔE2, each with length of 30 mm. The trajectory of the incident particles is parallel to the direction of the electric field in the ionization chamber. The anodes of ΔE1 and ΔE2 are realized through the rectangular empty metallic frames. In order to collect ionized charge produced by the incident particle inside the ionization chamber effectively, two equipotential frame-shape electrodes were placed on both sides of each anode, to form a strong electric focused field toward the anode. The advantages of this type of the detector arc as follows: (1)lower energy detection threshold; (2) wide dynamical range both for the light particles and the heavy fragments;(3) larger solid angle coverage with a relatively smaller detector size based on the position information from the Si detector.

  11. Ionization chambers for monitoring in high-intensity charged particle beams

    CERN Document Server

    McDonald, J; Viren, B; Diwan, M; Erwin, A R; Naples, D; Ping, H

    2003-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility at the Brookhaven National Laboratory. The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline at the Fermi National Accelerator Laboratory. Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  12. Digital mammography with multi-electrode ionization chamber

    CERN Document Server

    Groshev, V R; Nifontov, V I; Pishenuok, S M; Samsonov, A A; Shekhtman, L I; Telnov, V I

    2000-01-01

    For viewing micro-calcifications smaller than 100 mu m investigation of image formation in mammography shows that a significant dose to the patient is imperative. We propose a novel one-dimensional Multi- electrode Ionisation Chamber (MIC), with high spatial resolution, and lowered doses. In this work, first results from a prototype are presented. High spatial resolution is demonstrated working with Xe mixture at high pressure. An addition of a Gas Electron Multiplier (GEM) allowed an improvement in sensitivity up to almost single- photon level. (8 refs).

  13. Assessment of small volume ionization chambers as reference dosimeters in high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Le Roy, M; De Carlan, L; Delaunay, F; Donois, M; Fournier, P; Ostrowsky, A; Vouillaume, A; Bordy, J M, E-mail: loic.decarlan@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette CEDEX (France)

    2011-09-07

    LNE-LNHB is involved in a European project aiming at establishing absorbed dose-to-water standards for photon-radiation fields down to 2 x 2 cm{sup 2}. This requires the calibration of reference ionization chambers of small volume. Twenty-four ionization chambers of eight different types with volume ranging from 0.007 to 0.057 cm{sup 3} were tested in a {sup 60}Co beam. For each chamber, two major characteristics were investigated: (1) the stability of the measured current as a function of the irradiation time under continuous irradiation. At LNE-LNHB, the variation of the current should be less than {+-}0.1% in comparison with its first value (over a 16 h irradiation time); (2) the variation of the ionization current with the applied polarizing voltage and polarity. Leakage currents were also measured. Results show that (1) every tested PTW (31015, 31016 and 31014) and Exradin A1SL chambers demonstrate a satisfying stability under irradiation. Other types of chambers have a stability complying with the stability criterion for some or none of them. (2) IBA CC01, IBA CC04 and Exradin A1SL show a proper response as a function of applied voltage for both polarities. PTW, Exradin A14SL and Exradin A16 do not. Only three types of chambers were deemed suitable as reference chambers according to LNE-LNHB requirements and specifications from McEwen (2010 Med. Phys. 37 2179-93): Exradin A1SL chambers (3/3), IBA CC04 (2/3) and IBA CC01 (1/3). The Exradin A1SL type with an applied polarizing voltage of 150 V was chosen as an LNE-LNHB reference chamber type in 2 x 2 cm{sup 2} radiation fields.

  14. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  15. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    Science.gov (United States)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  16. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    CERN Document Server

    Poujade, O; Poujade, Olivier; Lebrun, Alain

    1999-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-voltage characteristics (sensitivity and saturation plateau) of a fission chamber whose geometrical features are given, taking into account the neutron flux to be measured (spectrum and intensity). The proposed theoretical model describes electric field distortion resulting from charge collection effect. A computer code has been developed on this model basis. Its application to 3 kinds of fission chambers indicates excellent agreement between theoretical model and measured characteristics.

  17. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  18. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    Science.gov (United States)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  19. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    NARCIS (Netherlands)

    Louwe, R.J.; Wendling, M.; Monshouwer, R.; Satherley, T.; Day, R.A.; Greig, L.

    2015-01-01

    PURPOSE: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assu

  20. Measurement of surface alpha-acrivity of different samples with ion pulse ionization chamber

    CERN Document Server

    Gavriljuk, Yu M; Gangapshev, A M; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S

    2007-01-01

    The construction of an ion pulse ionization chamber aimed at measuring ultra-low levels of surface alpha-activity of different samples is described. The results of measurement carried out with alpha-source and copper samples and light-reflecting film VM2000 are presented.

  1. Calibration coefficient of reference brachytherapy ionization chamber using analytical and Monte Carlo methods.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D

    2010-06-01

    A cylindrical graphite ionization chamber of sensitive volume 1002.4 cm(3) was designed and fabricated at Bhabha Atomic Research Centre (BARC) for use as a reference dosimeter to measure the strength of high dose rate (HDR) (192)Ir brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin general cavity theory and by the Monte Carlo method. In the analytical method, calibration coefficients were calculated for each spectral line of an HDR (192)Ir source and the weighted mean was taken as N(K). In the Monte Carlo method, the geometry of the measurement setup and physics related input data of the HDR (192)Ir source and the surrounding material were simulated using the Monte Carlo N-particle code. The total photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficients. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber and N(K) was determined. The Monte Carlo calculated N(K) agreed within 1.77 % of that obtained using the analytical method. The experimentally determined RAKR of HDR (192)Ir sources, using this reference ionization chamber by applying the analytically estimated N(K), was found to be in agreement with the vendor quoted RAKR within 1.43%.

  2. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    CERN Document Server

    Bonazzola, G C; Cirio, R; Donetti, M; Figus, M; Marchetto, F; Peroni, C; Pernigotti, E; Thénard, J M; Zampieri, A

    1999-01-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  3. Calculational-theoretical studies of the system of local automated regulators and lateral ionization chambers

    International Nuclear Information System (INIS)

    Methods of engineering synthesis of the systems for nuclear reactor local automated power regulation and radial-azimuthal energy distribution stabilization operating according to lateral ionization chamber signals are described. Results of calculational-theoretical investigations into the system efficiency and peculiarities of its reaction to some perturbations typical of the RBMK type reactors are considered

  4. Future development of the demands on therapy dosemeters with ionization chambers

    International Nuclear Information System (INIS)

    Only little will change with the introduction of the European internal market with regard to the demands on ionization chamber dosemeters used in radiotherapy, provided that the harmonized standard is aligned with IEC publication 731. Type licences for domestic calibration will be replaced by European Communities licences. (orig.)

  5. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki;

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create a...

  6. Performance of a Roos ionization chamber in gamma radiation beams ({sup 60}Co)

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Among the different types of dosimetry instruments, the ionization chambers are the most practical and and important radiation measurement devices due to their high sensitivity and relatively constant response within a wide range of energies. A commercial PTW ionization chamber (Roos electron chamber) usually utilized in X-ray beams, was tested to verify the possibility of its dosimetric application in {sup 60}Co beams. The main tests in this work were: short- and long-term stability, saturation, ion collection efficiency, polarity effect, leakage current and angular dependence. The characterization tests were performed using a Gammatron {sup 60}Co irradiator and a special goniometer made of PMMA. All results were within international recommendations. The reproducibility test presented results within the recommended limit of {+-}1%, and all coefficients of variation observed in the repeatability test were lower than {+-}0.07%. The ion collection efficiency was better than 99.9% for both polarities. For all pairs of polarity evaluated during the saturation test, the polarity effect was lower than the recommended limit. The maximum variation obtained for angular dependence test was only 0.5%. The chamber tested in this work achieved the expected results in the case of all pre-operational tests realized: stability, leakage current, angular dependence, saturation, ion collection and polarity effect. Evaluating the satisfactory results obtained, it is possible to indicate the usefulness of this ionization chamber for dosimetry in {sup 60}Co gamma radiation beams. (author)

  7. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    Science.gov (United States)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  8. High-resolution ion pulse ionization chamber with air filling for the Rn-222 decays detection

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Etezov, R A; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register alpha-particles from the $^{222}$Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  9. The Time Response of Glass Resistive Plate Chambers to Heavily Ionizing Particles

    CERN Document Server

    Artamonov, A; Bogomilov, M; Booth, C; Borghi, S; Catanesi, M G; Chimenti, P; Gastaldi, Ugo; Giani, S; Graulich, J S; Grégoire, G; Grossheim, A; Guglielmi, A; Ivantchenko, V; Kolev, D; Meurer, C; Mezzetto, M; Panman, J; Popov, B; Radicioni, E; Schroeter, R; Temnikov, P; Chernyaev, E; Tsenov, R; Tsukerman, I; Wiebusch, C

    2007-01-01

    The HARP system of resistive plate chambers (RPCs) was designed to perform particle identification by the measurement of the difference in the time-of-flight of different particles. In previous papers an apparent discrepancy was shown between the response of the RPCs to minimum ionizing pions and heavily ionizing protons. Using the kinematics of elastic scattering off a hydrogen target a controlled beam of low momentum recoil protons was directed onto the chambers. With this method the trajectory and momentum, and hence the time-of-flight of the protons can be precisely predicted without need for a measurement of momentum of the protons. It is demonstrated that the measurement of the time-of-arrival of particles by the thin gas-gap glass RPC system of the HARP experiment depends on the primary ionization deposited by the particle in the detector.

  10. Development and production of the ionization chamber for the T2K muon monitor

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, K., E-mail: matsuoka@scphys.kyoto-u.ac.j [Kyoto University, Kitashirakawa-Oiwake-cho Sakyo-ku, Kyoto 606-8502 (Japan); Ichikawa, A.; Kubo, H. [Kyoto University, Kitashirakawa-Oiwake-cho Sakyo-ku, Kyoto 606-8502 (Japan); Maruyama, T. [High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba 305-0801 (Japan); Murakami, A.; Nakaya, T.; Yokoyama, M. [Kyoto University, Kitashirakawa-Oiwake-cho Sakyo-ku, Kyoto 606-8502 (Japan)

    2010-11-01

    We report on the development of an ionization chamber for the muon monitor in the T2K (Tokai-to-Kamioka) long baseline neutrino oscillation experiment. In the T2K experiment, we generate a muon neutrino beam using the 50-GeV proton synchrotron in J-PARC and detect it in the Super-Kamiokande detector, which is 295 km away from J-PARC. We aim the neutrino beam off-axis by 2.5{sup o} from Super-Kamiokande in order to maximize the sensitivity to the neutrino oscillation measurement. Since the beam direction is required to be aimed within 1 mrad, we need to monitor it with a precision better than 1 mrad. The muon monitor is the only instrument that can monitor the neutrino beam direction in real time by measuring a profile of muons which are generated along with neutrinos. It is required to measure the intense muon beam precisely and stably in a high radiation area. Therefore, we use two independent systems for the muon monitor: an array of ionization chambers and another array of solid-state detectors. We developed the ionization chamber and performed beam tests with an electron beam at the Laboratory of Particle Beam Science in Kyoto University. We also had a long-term test in the NuMI beamline at Fermilab. Then we finalized the design of the ionization chamber and built it. We expect the ionization chambers as the muon monitor to monitor the beam direction with a precision of 0.2 mrad.

  11. Performance evaluation of multi sampling ionization chamber for heavy ion beams by comparison with GEANT4 simulation

    Science.gov (United States)

    Kanke, Yuki; Himac H093 Collaboration

    2014-09-01

    In high-energy heavy-ion accelerator facilities, multi sampling ionization chambers are often used for the identification of the atomic number Z by detecting the energy deposit in it. In the study at GSI, the picture of the escape of secondary electrons, δ rays, from the ionization chamber explains the experimental data of pulse-height resolution. If this picture is correct, the pulse-height resolution should depend on the effective area of the ionization chamber. The experiment have been performed at NIRS-HIMAC. The pulse-height resolutions of two ionization chambers with different effective area were compared by using a 400-MeV/u Ni beam and their fragments. The difference in the pulse-height resolutions was observed. By comparison with the GEANT4 simulation including the δ-rays emission, the performance of the ionization chamber have been evaluated.

  12. Determination of ion recombination correction factors for a liquid ionization chamber in megavoltage photon beams

    Science.gov (United States)

    Choi, Sang Hyoun; Kim, Kum-Bae; Ji, Young Hoon; Kim, Chan Hyeong; Kim, Seonghoon; Huh, Hyun Do

    2015-05-01

    The aim of this study is to determine the ion recombination correction factor for a liquid ionization chamber in a high energy photon beam by using our experimental method. The ion recombination correction factors were determined by using our experimental method and were compared with theoretical and experimental methods proposed by using the theoretical method (Greening, Johansson) and the two-dose rate method in a cobalt beam and a high energy photon beam. In order to apply the liquid ionization chamber in a reference and small field dosimetry, we acquired the absorbed dose to water correction coefficient, the beam quality correction factor, and the influence quantities for the microLion chamber according to the TRS-398 protocol and applied the results to a high energy photon beam used in clinical fields. As a result, our experimental method for ion recombination in a cobalt beam agreed with the results from the heoretical method (Greening theory) better than it did with the results from the two-dose rate method. For high energy photon beams, the two-dose rate and our experimental methods were in good agreement, less than 2% deviation, while the theoretical general collection efficiency (Johansson et al.) deviated greatly from the experimental values. When we applied the factors for the absorbed dose to water measurement, the absorbed dose to water for the microLion chamber was in good agreement, within 1%, compared with the values for the PTW 30013 chamber in 6 and 10 MV Clinac iX and 6 and 15 MV Oncor impression. With these results, not only can the microLion ionization chamber be used to measure the absorbed dose to water in a reference condition, it can also be used to a the chamber for small, non-standard field dosimetry.

  13. Evaluation of linearity of response and angular dependence of an ionization chamber for dosimetry in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P.; Neves, Lucio P.; Xavier, Marcos; Caldas, Linda V.E., E-mail: mxavier@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    In this paper a pencil-type ionization chamber designed and manufactured at Instituto de Pesquisas Energeticas e Nucleares was evaluated for dosimetric applications in computed tomography beams. To evaluate the performance of this chamber two tests were undertaken: linearity of response and angular dependence. The results obtained in these tests showed good results, within the international recommendations. Moreover, this homemade ionization chamber is easy to manufacture, of low cost and efficient. (author)

  14. Development of a High Sensitive Fission Chamber%一种高灵敏度裂变室的研制

    Institute of Scientific and Technical Information of China (English)

    杨波

    2012-01-01

    It describes the development of a high - sensitivity fission chamber of its design, manufacturing processes and performance. The fission chamber sensitive district wide, high thermal neutron sensitivity, the a-bility of anti - γ. Detector can be used as reactor heap outside the neutron fluence rate measurement, the power monitoring signal can be given in the startup of the reactor and different power operation. The fission chamber through the test of LOCA conditions, can be used for accident monitoring.%介绍了一种高灵敏度裂变室的研制,探讨了其设计方案、制造工艺和性能.这种裂变室灵敏区较宽、热中子灵敏度较高、抗γ能力较强,可作为核反应堆堆外中子注量率测量探测器,可在反应堆启动和不同功率运行时给出功率监测的信号.该裂变室通过了LOCA工况试验测试,可用于事故后监测.

  15. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Science.gov (United States)

    Elter, Zs.; Jammes, C.; Pázsit, I.; Pál, L.; Filliatre, P.

    2015-02-01

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  16. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Energy Technology Data Exchange (ETDEWEB)

    Elter, Zs. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Jammes, C., E-mail: christian.jammes@cea.fr [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pázsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49 (Hungary); Filliatre, P. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-02-21

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  17. Long Term Stability Of Farmer Type Ionization Chamber Calibration Coefficient belonging To Local Radiotherapy Centres In Malaysia

    International Nuclear Information System (INIS)

    The accuracy of the ionization chambers calibration coefficient is one of the factors that would contribute to efficient radiotherapy treatment. The IAEA therefore has recommended that an ionization chamber be calibrated every year, with a condition that the deviations between the previous and new calibration coefficients ND,w should not differ by ±1.5 %. It has been identified that Farmer type ionization chambers is the most popular ionization chamber among the radiotherapy centres in Malaysia. For this reason, the purpose of this work is to evaluate the calibration coefficients long term stability of the Farmer type ionization chambers. A total of 33 Farmer type ionization chambers were studied and the mean μ of the ND,w deviation together with its standard error SE were calculated. This μ ±SE will be used to measure stability of ND,w. Our results showed that most chambers have μ ±SE lies within the ±1.5 %. It is thus concluded that most of the Farmer type ionization chamber were stable in their ND,w and safe to be used for radiotherapy treatment. (author)

  18. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  19. Study of Neutron-Induced Ionization in Helium and Argon Chamber Gases

    CERN Document Server

    Indurthy, D; Harris, D; Kopp, S; Proga, M; Zwaska, R M

    2004-01-01

    Ion chambers used to monitor the secondary hadron and tertiary muon beam in the NuMI neutrino beamline will be exposed to background particles, including low energy neutrons produced in the beam dump. To understand these backgrounds, we have studied Helium- and Argon-filled ionization chambers exposed to intense neutron fluxes from PuBe neutron sources ($E_n=1-10$ MeV). The sources emit about 10$^8$ neutrons per second. The number of ion pairs in the chamber gas volume per incident neutron is derived. While limited in precision because of a large gamma ray background from the PuBe sources, our results are consistent with the expectation that the neutrons interact purely elastically in the chamber gas.

  20. An ionization chamber for (n,z) reaction cross section measurements on gaseous targets

    CERN Document Server

    Machrafi, R; Son, D; Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P; Gledenov, Yu.M.

    2002-01-01

    An ionization chamber with gaseous samples has been designed. It has been tested on the beam of the pulsed reactor IBR-30 of FLNP, JINR-Dubna. The experiment has been carried out with resonance neutrons. The exposed gas volume serves as a target for neutron beam. We have compared the chamber to samples on substrates, the background component due to Li and B microimpurities in this case is totally absent. It has been tested also the recovery capability of the chamber after the reactor power pulse using the protons from the 3He(n,p)3H reaction, alpha-particles from a U-source and a pulsed precision generator. Moreover the energy resolution of the chamber with its equipment has been carried out.

  1. A free-air ionization chamber with a large aperture diaphragm

    Energy Technology Data Exchange (ETDEWEB)

    Takata, N., E-mail: n.takata@aist.go.j [Ionizing Radiation Section, NMIJ, AIST, Tsukuba, Ibaraki 305-8568 (Japan)

    2010-07-21

    Calculations of the electric field distributions in free-air ionization chambers reveal that the distortion of the charge collection volume is small even for wide X-ray beam passage if the diaphragm and the X-ray shielding box are kept at a potential equal to half that applied to the high-voltage electrode. Applying this potential to the diaphragm and the shielding box permits a larger aperture diaphragm to be used. This will allow a wider X-ray beam to enter the chamber, thus generating a larger signal. In addition, the distance between the diaphragm and the charge collection volume can be shortened to reduce the amount of X-ray attenuation. It is also possible to calibrate a dosimeter against a free-air ionization chamber that has a diaphragm whose aperture size is equal to the size of the dosimeter in an X-ray field that is collimated to the same size. This is important since free-air ionization chambers are not sensitive to X-rays that are incident at large angles, such as those scattered by the collimator, filters and air.

  2. Calculation of correction factors for ionization chamber measurements with small fields in low-density media.

    Science.gov (United States)

    Pisaturo, O; Pachoud, M; Bochud, F O; Moeckli, R

    2012-07-21

    The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.

  3. The effect of waterproofing sleeves on the response of FARMER like ionization chambers

    International Nuclear Information System (INIS)

    According to most recent dosimetry protocols, the determination of the absorbed dose to water for photon and electron beams should be performed with non-water-proof ionization chamber along with plastic waterproofing sleeves whose thickness should be less than 1 mm. In these protocols, the correction for the waterproofing sleeve is incorporated in the equation of the perturbation factor pwall. Many SSDLs and hospitals were previously provided with thicker sleeves and are probably still using them for routine calibrations. The objective of the work presented in this paper is to investigate the effect of the waterproofing sleeves on the response of a WELLHOFER IC 70 ionization chambers in a 60Co and two high energy X-ray beams, 6MV and 18 MV. This chamber is inherently waterproof, thus, the ionisation current obtained with sleeves of different thickness is compared to the current obtained without sleeve. The results are improved by performing, for each thickness, at least two series of measurements with and without sleeve. The results show that with 60Co, the ionization response increases from 0.08% to 0.47% for sleeves from 0.75 mm to 1.75 mm. For 6 MV and 18 MV X-rays, the signal decreases respectively by 0.8% and 1%. When taking into account the perturbation correction factor including the waterproofing sleeve component, the ratio R/Ro , where R is the product of the chamber signal and the perturbation factor (the subscript is for the response without sleeve) is increasing from 0.14% to 0.55% for 60Co. For X-rays, this ratio decreases up to 0.75% and 0.59% respectively for 6 MV and for 18 MV. Similar results are obtained with FARMER like ionization chambers

  4. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading.

    Science.gov (United States)

    Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  5. The wall correction factor for a spherical ionization chamber used in brachytherapy source calibration

    Energy Technology Data Exchange (ETDEWEB)

    Piermattei, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Azario, L [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Fidanzio, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Viola, P [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Dell' Omo, C [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Iadanza, L [Centro di Riferimento Oncologico della Basilicata-Rionero in Vulture, Pz (Italy); Fusco, V [Centro di Riferimento Oncologico della Basilicata-Rionero in Vulture, Pz (Italy); Lagares, J I [Universidad de Sevilla, Facultad de Medicina, Dpto Fisiologia Medica y Biofisica, Sevilla (Spain); Capote, R [Universidad de Sevilla, Facultad de Medicina, Dpto Fisiologia Medica y Biofisica, Sevilla (Spain)

    2003-12-21

    The effect of wall chamber attenuation and scattering is one of the most important corrections that must be determined when the linear interpolation method between two calibration factors of an ionization chamber is used. For spherical ionization chambers the corresponding correction factors A{sub w} have to be determined by a non-linear trend of the response as a function of the wall thickness. The Monte Carlo and experimental data here reported show that the A{sub w} factors obtained for an Exradin A4 chamber, used in the brachytherapy source calibration, in terms of reference air kerma rate, are up to 1.2% greater than the values obtained by the linear extrapolation method for the studied beam qualities. Using the A{sub w} factors derived from Monte Carlo calculations, the accuracy of the calibration factor N{sub K,Ir} for the Exradin A4, obtained by the interpolation between two calibration factors, improves about 0.6%. The discrepancy between the new calculated factor and that obtained using the complete calibration curve of the ion-chamber and the {sup 192}Ir spectrum is only 0.1%.

  6. Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine

    International Nuclear Information System (INIS)

    In this paper we present the results of a dosimetric evaluation of a 2D ionization chamber array with the objective of its implementation for quality assurance in clinical routine. The pixel ionization chamber MatriXX (Scanditronix Wellhofer, Germany) consists of 32 x 32 chambers with a distance of 7.6 mm between chamber centres. The effective depth of measurement under the surface of the detector was determined. The dose and energy dependence, the behaviour of the device during its initial phase and its time stability as well as the lateral response of a single chamber of the detector in cross-plane and diagonal directions were analysed. It could be shown, that the detector's response is linear with dose and energy independent. Taking the lateral response into account, two different dose profiles, for a pyramidal and an IMRT dose distribution, were applied to compare the data generated by a treatment planning system with measurements. From these investigations it can be concluded that the detector is a suitable device for quality assurance and 2D dose verifications

  7. Set-Up on the Basis of Multiwire Proportional and Ionization Chambers for Radioactive Beam Experiments

    CERN Document Server

    Astabatyan, R A; Kavalov, R L; Kugler, A; Kuznetsov, I V; Kushniruk, V F; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Mikhailov, L; Penionzhkevich, Yu E; Poroshin, N O; Skobelev, N K; Smirnov, V I; Sobolev, Yu G; Ugryumov, V Yu

    2002-01-01

    A large-aperture set-up designed for nuclear physics experiments on beams of radioactive nuclei is described. The set-up includes Multiwire Proportional Chamber (MWPC) for measuring the beam profile, MWPC for measuring reaction product angular distributions, a CsI(Tl)-crystal detector and a longitudinal drift ionization chamber for identifying scattered particles and measuring their energy. The results of tests of coordinate MWPCs, particle identification on photon and ion beams, and preliminary measurements of the elastic scattering and the charge exchange reaction of 170 MeV ^{6}He on a CH_{2} target are presented.

  8. Beam-loss monitoring system with free-air ionization chambers

    Science.gov (United States)

    Nakagawa, H.; Shibata, S.; Hiramatsu, S.; Uchino, K.; Takashima, T.

    1980-08-01

    A monitoring system for proton beam losses was installed in the proton synchrotron at the National Laboratory for High Energy Physics in Japan (KEK). The system consists of 56 air ionization chambers (AIC) for radiation detectors, 56 integrators, 56 variable gain amplifiers, two multiplexers, a computer interface circuit, a manual controller and a high tension power supply. The characteristics of the AIC, time resolution, radiation measurement upper limit saturation, kinetic energy dependence of the sensitivity, chamber activation effect, the beam loss detection system and the results of observations with the monitoring system are described.

  9. Total diesel exhaust particulate length measurements using a modified household smoke alarm ionization chamber.

    Science.gov (United States)

    Vojtisek-Lom, Michal

    2011-02-01

    To evaluate the effectiveness of various means to combat the negative health effects of ultrafine particles emitted by internal combustion engines, a reliable, low-cost instrument for dynamic measurements of the exhaust emissions of ultrafine particulate matter (PM) is needed. In this study, an ordinary ionization-type building smoke detector was modified to serve as a measuring ionization chamber and utilized for dynamic measurements of PM emissions from diesel engines. When used with diluted exhaust, the readings show an excellent correlation with total particulate length. The instrument worked well with raw and diluted exhaust and with varying emission levels and is well suitable for on-board use.

  10. Micro Plate Fission Chamber Development%小型平板铀裂变电离室研制

    Institute of Scientific and Technical Information of China (English)

    王玫; 温中伟; 林菊芳; 蒋励; 刘荣; 王大伦; 朱通华

    2014-01-01

    为了测量特定实验条件下狭小空间内中子注量率分布,研制了小型平板浓缩铀裂变电离室,该裂变室具有体积小、结构材料少等优点。论文叙述了裂变电离室的结构和制作工艺,通过测量自发衰变α粒子谱、裂变碎片谱对裂变电离室的性能进行了测试和评定,并标定了裂变电离室测量裂变碎片的探测效率。从指标上看,裂变电离室能达到设计要求和目的,可用于中子注量率的测量。%To accurately measure neutron flux at several positions of small space inside assemblies in integral neutron experiments ,a micro plate fission chamber was designed and fabricated .Smaller volume and less struc-ture material were taken into consideration in the development of the detector .In this paper , the structure of fission chamber and process of fabrication were introduced and performance were tested and evaluated by meas -uring alpha spectrum from self -decay and fission spectrum .The detection efficiency of the detector was cali-brated and it is 91 .7%.The performance test results indicate that , the fission chamber has achieved the aimed parameter and goal , can be used in measurement of neutron flux .

  11. Characterization of Tandem systems of commercial ionization chambers for radiation dosimetry (radiotherapy level)

    CERN Document Server

    Galhardo, E P

    1998-01-01

    The use of X rays for radiotherapy purposes is of great importance for Medicine, and it is necessary to control periodically the performance of the ionization chambers and the radiation beams in order to obtain the best results. The verification of the beam characteristics is made by using standard dosimetry procedures which include the determination of the half-value layers and the exposure rates or the absorbed dose rates in air. Several Tandem systems were set up and tested, using commercial ionization chambers in the energy interval from 14 up to 130 KeV at the Instrumentation Calibration Laboratory of IPEN and at other three institutions, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The obtained results show the usefulness of these Tandem system for the routine dosimetric procedures of radiotherapy X radiation beams.

  12. PTRAC File Utilization for Calculation of Free-Air Ionization Chamber Correction Factors by MCNPX

    Science.gov (United States)

    Šolc, Jaroslav; Sochor, Vladimír

    2014-06-01

    A free-air ionization chamber is used as a standard of photon air-kerma. Several correction factors are applied to the air-kerma value. Correction factors for electron loss (kloss) and for additional ionization current caused by photon scatter (ksc), photon fluorescence (kfl), photon transmission through diaphragm edge (kdtr), and photon scatter from the surface of the diaphragm aperture (kdsc) were determined by the MCNPX code utilizing information stored in Particle Track (PTRAC) output files. Individual steps of the procedure are described and the calculated values of the correction factors are presented. The values are in agreement with the correction factors published in a literature for similar free-air chambers.

  13. Measurements and Simulations of Ionization Chamber Signals in Mixed Radiation Fields for the LHC BLM System

    CERN Document Server

    Dehning, B; Ferioli, G; Holzer, EB; Stockner, M

    2006-01-01

    The LHC beam loss monitoring (BLM) system must prevent the super conducting magnets from quenching and protect the machine components from damage. The main monitor type is an ionization chamber. About 4000 of them will be installed around the ring. The lost beam particles initiate hadronic showers through the magnets, which are measured by the monitors installed outside of the cryostat around each quadrupole magnet. They probe the far transverse tail of the hadronic shower. The specification for the BLM system includes a factor of two absolute precision on the prediction of the quench levels. To reach this accuracy a number of simulations are being combined to calibrate the monitor signals. To validate the monitor calibration the simulations are compared with test measurements. This paper will focus on the simulated prediction of the development of the hadronic shower tails and the signal response of ionization chambers to various particle types and energies. Test measurements have been performed at CERN and ...

  14. Using a tandem ionization chamber for quality control of X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, Maira T.; Caldas, Linda V.E., E-mail: mairaty@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    X-ray beam qualities are defined by both the mean energies and by the half-value layers (HVL). Many international protocols use the half-value layer and the beam voltage to characterize the X-ray beam quality. A quality control program for X-ray equipment includes the constancy check of beam qualities, i.e., the periodical verification of the half-value layer, which can be a time consumable procedure. A tandem ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares, was used to determine the HVL and its constancy for five radiotherapy standard beam qualities. This ionization chamber is composed by two sensitive volumes with inner electrodes made of different materials: aluminum and graphite. The beam quality constancy check test was performed during two months and the maximum variation obtained was 1.24% for the radiation beam quality T-10. This result is very satisfactory according to national recommendations. (author)

  15. Source self-attenuation in ionization chamber measurements of (57)Co solutions.

    Science.gov (United States)

    Cessna, Jeffrey T; Golas, Daniel B; Bergeron, Denis E

    2016-03-01

    Source self-attenuation for solutions of (57)Co of varying density and carrier concentration was measured in nine re-entrant ionization chambers maintained at NIST. The magnitude of the attenuation must be investigated to determine whether a correction is necessary in the determination of the activity of a source that differs in composition from the source used to calibrate the ionization chamber. At our institute, corrections are currently made in the measurement of (144)Ce, (109)Cd, (67)Ga, (195)Au, (166)Ho, (177)Lu, and (153)Sm. This work presents the methods used as recently applied to (57)Co. A range of corrections up to 1% were calculated for dilute to concentrated HCl at routinely used carrier concentrations.

  16. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  17. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Müller, O., E-mail: o.mueller@uni-wuppertal.de; Lützenkirchen-Hecht, D.; Frahm, R. [Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal 42119 (Germany)

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  18. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    Science.gov (United States)

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  19. Calibration methods of plane-parallel ionization chambers used in electron dosimetry

    International Nuclear Information System (INIS)

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of 60 Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  20. Determination of correction factor ksat for recombination losses in ionization chambers using dual-voltage method

    International Nuclear Information System (INIS)

    A review is presented of determining the saturation correction factor ksat of ionization chambers using a dual-voltage method. Basic relations are listed for the calculation of the correction factor for continuous, pulsed, and pulsed swept radiation, and the methods are presented of solving the relations. The computer code, graphs and tables are listed for determination of the saturation factor on the basis of measurements. The feasibility of the method for practical measurements is discussed. (author). 3 figs., 2 tabs., 10 refs

  1. Comparative study of ionization chamber detectors vis-a-vis a CCD detector for dispersive XAS measurement in transmission geometry

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai -400 085 (India)

    2013-02-05

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  2. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    Energy Technology Data Exchange (ETDEWEB)

    Stelljes, T. S., E-mail: tenzin.s.stelljes@uni-oldenburg.de; Looe, H. K.; Chofor, N.; Poppe, B. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129 (Germany); Harmeyer, A.; Reuter, J. [WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129 (Germany); Harder, D. [Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen 37073 (Germany)

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  3. Comments on 'Ionization chamber volume determination and quality assurance using micro-CT imaging'.

    Science.gov (United States)

    Ross, C K

    2009-03-21

    The authors of a recent paper (McNiven et al 2008 Phys. Med. Biol. 53 5029-43) measured the volume of a particular type of a small ionization chamber using CT images. Using four Exradin A1SL chambers, they find that the volume measured using CT imaging is, on average, 4.3% larger than the value derived from the chamber calibration coefficient. Although they point out that the effective chamber volume is defined by electric field lines between the collector and the chamber body, they do not estimate how the mechanical volume might differ from the effective volume. We have used a commercial software package to calculate the electric field in the cavity and we show that the field lines define a volume that is about 11% smaller than the mechanical volume. We also show that the effective volume is very sensitive to small changes in the chamber geometry near the base of the collector. We conclude that simply determining the mechanical volume without careful consideration of the electric field lines within the cavity is not a useful dosimetric technique.

  4. Rapid measurement of 210Po in seafood with large area grid ionization chamber α spectrometry

    Institute of Scientific and Technical Information of China (English)

    Li Yucheng; Yin Liangliang; Chen Fei; Shao Xianzhang; Shen Baoming; Kong Xiangyin; Ji Yanqin

    2015-01-01

    Objective To develop a rapid and reliable method for determination of 210Po using large-area grid ionization chamber α spectrometry.Methods Samples were digested using a microwave digestion system.After preparation of sample source,the concentration of 210Po in clam was detected by large-area grid ionization chamber (φ 25 cm).209Po tracer was used to obtain the recovery.Results Large-area grid ionization chamber could achieve better counting and α spectrum resolution when the optimized thickness was 250 μg/cm2.By spiking 209Po tracer in clam,the minimum detectable activity was 9.870 × 10 4 Bq and the recovery of 210Po was 98%.Conclusions Compared with the traditional method,the developed method can avoid separation process,using less quantity of sample (0.2-0.5 g dry) and simplify the measurement process.This method may be has broad application prospects.

  5. Development and characterization of a new graphite ionization chamber for dosimetry of {sup 60}Co beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio Pereira; Perini, Ana Paula; Santos, William de Souza; Caldas, Linda V.E., E-mail: lpneves@ipen.br, E-mail: aperini@ipen.br, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    Ionization chambers are the most employed dosimeters for precise measurements, as those required in radiotherapy. In this work, a new graphite ionization chamber was developed and characterized in order to compose a primary standard system for the beam dosimetry of the {sup 60}Co sources. This dosimeter is a cylindrical type ionization chamber, with walls and collecting electrode made of high-purity graphite, and the insulators and stem made of Teflon®. The walls are 3.0 mm thick, and it has a sensitive volume of 1.40 cm{sup 3}. The characterization was divided in two steps: experimental and Monte Carlo evaluations. This new dosimeter was evaluated in relation to its saturation curve, ion collection efficiency, polarity effect, short- and medium-term stabilities, leakage current, stabilization time, linearity of response and angular dependence. All results presented values within the established limits. The second part of the characterization process involved the determination of the correction factors, obtained by Monte Carlo simulations. Comparing these correction factors values with those from other primary standard laboratories, the highest differences were those for the wall and stem correction factors. The air-kerma rate of the {sup 60}Co source was determined with this new dosimeter and with the IPEN standard system, presenting a difference of 1.7%. These results indicate that this new dosimeter may be used as a primary standard system for {sup 60}Co gamma beams. (author)

  6. Air-kerma determination using a variable-volume cavity ionization chamber standard.

    Science.gov (United States)

    Burns, D T; Kessler, C; Roger, P

    2007-12-01

    A graphite-walled cavity ionization chamber of modular design and variable volume has been used to determine the air-kerma rate in the reference 60Co field at the BIPM. The chamber can be configured in five sizes. High-accuracy mechanical measurements of the volume of the air cavity were made for each configuration using a co-ordinate measuring machine. Ionization current measurements were made for each configuration and corrected for the effects of ion recombination and diffusion, stem scatter and chamber orientation. Monte Carlo calculations of cavity dose were made to evaluate the correction factors kwall and kan. A reproducibility of the ionization current per mass of 1.5 parts in 10(4) was achieved on the repeated assembly of each configuration. The results show an air-kerma rate determination that increases with volume, the total change being around 8 parts in 10(4). When analysed differentially, the air-kerma rate relative to the BIPM standard is Kdiff/KBIPM = 1.0026(6). A detailed uncertainty budget is presented. Possible reasons for the observed behaviour are discussed that might have consequences for all existing standards for air-kerma.

  7. Development and characterization of a new graphite ionization chamber for dosimetry of 60Co beams

    International Nuclear Information System (INIS)

    Ionization chambers are the most employed dosimeters for precise measurements, as those required in radiotherapy. In this work, a new graphite ionization chamber was developed and characterized in order to compose a primary standard system for the beam dosimetry of the 60Co sources. This dosimeter is a cylindrical type ionization chamber, with walls and collecting electrode made of high-purity graphite, and the insulators and stem made of Teflon®. The walls are 3.0 mm thick, and it has a sensitive volume of 1.40 cm3. The characterization was divided in two steps: experimental and Monte Carlo evaluations. This new dosimeter was evaluated in relation to its saturation curve, ion collection efficiency, polarity effect, short- and medium-term stabilities, leakage current, stabilization time, linearity of response and angular dependence. All results presented values within the established limits. The second part of the characterization process involved the determination of the correction factors, obtained by Monte Carlo simulations. Comparing these correction factors values with those from other primary standard laboratories, the highest differences were those for the wall and stem correction factors. The air-kerma rate of the 60Co source was determined with this new dosimeter and with the IPEN standard system, presenting a difference of 1.7%. These results indicate that this new dosimeter may be used as a primary standard system for 60Co gamma beams. (author)

  8. A numerical model of initial recombination for high-LET irradiation: Application to liquid-filled ionization chambers

    Science.gov (United States)

    Aguiar, P.; Pardo-Montero, J.

    2016-02-01

    In this paper we present a numerical model of initial recombination in media irradiated with high linear energy transfer (LET) ions, which relies on an amorphous track model of ionization of high LET particles, and diffusion, drift and recombination of ionized charge carriers. The model has fundamental applications for the study of recombination in non-polar liquids, as well as practical ones, like in modelling hadrontherapy dosimetry with ionization chambers. We have used it to study the response of liquid-filled ionization chambers to hadrontherapy beams: dependence of initial recombination on ion species, energy and applied external electric field.

  9. Theoretical study of Jesse effect in tritium measurements using ionization chambers

    Science.gov (United States)

    Chen, Zhilin; Peng, Shuming; Lu, Hanghang; Tan, Zhaoyi; Wang, Heyi; Long, Xingui; Masao, Matsuyama

    2016-01-01

    Jesse effect caused by impurities in helium might enhance the output signal significantly in tritium measurements with ionization chamber, which will lead to overestimation of tritium concentration in experiments. A theoretical method was proposed to evaluate Jesse effect quantitatively. Results indicate that besides Penning ionization, sub-excitation electrons also place very important influence on ionization enhancement by Jesse effect. An experiential expression about the relationship between enhancement factor and impurity concentration was established, in which second order of it fits experimental results very well. Theoretical calculation method in this paper is also applicable to evaluate Jesse effect in other kinds of mixtures besides hydrogen as impurities in helium. In addition, Jesse effects about tritium molecules as impurities have also been investigated.

  10. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    OpenAIRE

    Poujade, Olivier; LEBRUN Alain

    2002-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-vol...

  11. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  12. Calibration of the KRISS reference ionization chamber for certification of ²²²Rn gaseous sources.

    Science.gov (United States)

    Lee, J M; Lee, K B; Lee, S H; Oh, P J; Park, T S; Kim, B C; Lee, M S

    2013-11-01

    A primary measurement system for gaseous (222)Rn based on the defined solid angle counting method has recently been constructed at KRISS and the reference ionization chamber used to measure the activities of gamma-emitting single radionuclides was adopted as a secondary standard for gaseous (222)Rn. A 20 mL flame-sealed glass ampoule source from the primary measurement system was used to calibrate the ionization chamber for (222)Rn. The (222)Rn efficiency of the ionization chamber was compared with that calculated by using a photon energy-dependent efficiency curve and that measured by using a standard (226)Ra solution. From the comparisons we draw the conclusion that the reference ionization chamber for gamma-emitting radionuclides can be a suitable secondary measurement system for gaseous (222)Rn sources.

  13. Ionization chamber intended to use in a system of a valuation of patient exposition on ionizing radiation during X-ray diagnostic examinations

    International Nuclear Information System (INIS)

    The construction of the air ionization chamber intended to use in a system of a valuation of patient exposition on ionizing radiation during X-ray diagnostic examinations is described. A collaboration system with X-ray limiter is discussed and a measuring method is presented. The results of testing a model of the chamber obtained in conditions of its collaboration with the X-ray limiter and X-ray generator are presented and discussed. An analysis of the experimental results is made. In a recapitulation the different possibilities of a wide application of the chamber are presented. (author)

  14. Establishment of a new calibration method of pencil ionization chamber for dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Pencil ionization chambers are used for beam dosimetry in computed tomography equipment (CT). In this study, a new calibration methodology was established, in order to make the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (LCI) suitable to international metrological standards, dealing with specific procedures for calibration of these chambers used in CT. Firstly, the setup for the new RQT radiation qualities was mounted, in agreement with IEC61267 from the International Electrotechnical Commission (IEC). After the establishment of these radiation qualities, a specific calibration methodology for pencil ionization chambers was set, according to Technical Report Series No. 457, from the International Atomic Energy Agency (IAEA), which describes particularities of the procedure to be followed by the Secondary Standard Dosimetry Laboratories (SSDL's), concerning to collimation and positioning related to the radiation beam. Initially, PPV (kV) measurements and the determination of copper additional filtrations were carried out, measuring the half value layers (HVL) recommended by the IEC 61267 standard, after that the RQT 8, RQT 9 and RQT 10 radiation quality references were established. For additional filters, aluminum and copper of high purity (around 99.9%) were used. RQT's in thickness of copper filters equivalent to the set 'RQR (Al) + Additional Filtration (Cu)' was directly found by an alternative methodology used to determine additional filtrations, which is a good option when RQR's have not the possibility of be setting up. With the establishment of this new methodology for the ionization pencil chambers calibration, the LCI is ready to calibrate these instruments according to the most recent international standards. Therefore, an improvement in calibration traceability, as well as in metrological services offered by IPEN to all Brazil is achieved. (author)

  15. Design and construction of the first prototype ionization chamber for CSNS and PA beam loss monitor (BLM) system

    Institute of Scientific and Technical Information of China (English)

    XU Mei-Hang; TIAN Jian-Min; CHEN Chang; CHEN Yuan-Bo; XU Tao-Guang; LU Shuang-Tong

    2009-01-01

    Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (<0.1 pA), good plateau (≈800 V) and linearity range up to 200 Roentgen/h axe obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.

  16. Characterization of a 2D ionization chamber array for IMRT plan verification

    Energy Technology Data Exchange (ETDEWEB)

    Alashrah, S. [Universiti Sains Malaysia, Penang (Malaysia); Kandaiya, S., E-mail: sivamany@usm.m [Universiti Sains Malaysia, Penang (Malaysia); Yong, S.Y.; Cheng, S.K. [Mount Miriam Hospital, Penang (Malaysia)

    2010-07-21

    A commercialized array of 2D pixel ionization chambers MatriXX from Scanditronix Wellhoefer was evaluated with the objective to implement for quality assurance in IMRT treatment plan verification. The device consists of 1020 chambers arranged in a 32x32 grid. The distance between the chamber centres is 7.6 mm and the volume of the chamber is 0.08 cm{sup 3}. The effective point measurement of the MatriXX was verified and it agreed with the MatriXX's manual specifications. The start-up behaviour, and the short- and long-term reproducibilities of the array detector were tested. Dose linearity and energy independence were also analyzed. The results showed that the dose was linear within the range 9-800 cGy and the response of the 2D array was independent of energy for 6 and 10 MV photon beams. The MatriXX was independent of dose rate ranging from 183 to 483 cGy/min. For field sizes 3x3 cm{sup 2} and above the output factors of the 2D agreed within 1% with those obtained using the FC65-G ionization chamber. But at field size 2x2 cm{sup 2} the percentage difference was 5%. However, there was a poor correlation with differences greater than 1 mm in the penumbra region. The preliminary investigations indicate that the detector is suitable for IMRT plan verifications but corrections have to be applied in regions of high dose gradient.

  17. A liquid-filled ionization chamber for high precision relative dosimetry.

    Science.gov (United States)

    González-Castaño, D M; Gómez, F; Brualla, L; Roselló, J V; Planes, D; Sánchez, M; Pombar, M

    2011-04-01

    Radiosurgery and intensity modulated radiation therapy (IMRT) treatments are based on the delivery of narrow and/or irregularly shaped megavoltage photon beams. This kind of beams present both lack of charged particle equilibrium and steep dose gradients. Quality assurance (QA) measurements involved in these techniques must therefore be carried out with a dosimeter featuring high small volume. In order to obtain a good signal to noise ratio, a relatively dense material is needed as active medium. Non-polar organic liquids were proposed as active mediums with both good tissue equivalence and showing high signal to noise ratio. In this work, a liquid-filled ionization chamber is presented. Some results acquired with this detector in relative dosimetry are studied and compared with results obtained with unshielded diode. Medium-term stability measurements were also carried out and its results are shown. The liquid-filled ionization chamber presented here shows its ability to perform profile measurements and penumbrae determination with excellent accuracy. The chamber features a proper signal stability over the period studied.

  18. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.

    Science.gov (United States)

    Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad

    2010-01-01

    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.

  19. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    Science.gov (United States)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  20. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    Science.gov (United States)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  1. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  2. Analysis of dose perturbation factors of a NACP-02 ionization chamber in clinical electron beams.

    Science.gov (United States)

    Chin, E; Palmans, H; Shipley, D; Bailey, M; Verhaegen, F

    2009-01-21

    For well-guarded plane-parallel ionization chambers, international dosimetry protocols recommend a value of unity for electron perturbation factors in water. However, recent data published by various groups have challenged this. Specifically for the NACP-02 chamber, non-unity electron perturbation factors have already been published by Verhaegen et al (2006 Phys. Med. Biol. 51 1221-35) and Buckley and Rogers (2006 Med. Phys. 33 1788-96). Recently it was found that the mass thickness of the front chamber window can be 35% greater than is listed in the IAEA's TRS-398 absorbed dose protocol (Chin et al 2008 Phys. Med. Biol. 53 N119-26). This study therefore recalculated NACP-02 electron perturbation correction factors for energies 4-18 MeV at depths z(ref) and R(50) to determine the effect of the chamber model change. Results showed that perturbation factors at z(ref) are fairly stable for similar chamber models but become highly sensitive to small changes at deeper depths. The results also showed some dependence on using 1 keV versus 10 keV for the transport cut-off. Additional investigations revealed that the wall perturbation factor, p(wall), is strongly influenced by the chamber back wall at z(ref) and at larger depths small changes in the positioning of the effective point of measurement cause large fluctuations in the final value. Finally, the cavity perturbation factor, p(cav), was found to be primarily influenced by electron backscatter.

  3. Effects of thoron on a radon detector of pulse-ionization chamber type.

    Science.gov (United States)

    Ishikawa, T

    2004-01-01

    A radon detector of pulse-ionization chamber (PIC) type could have some sensitivity for thoron. Thus, the presence of thoron could interfere with precise measurement of radon. In the present study, effects of thoron on the most common type of PIC detector (commercial name AlphaGUARD) were investigated using an exposure chamber. The AlphaGUARD was exposed to a mixture of radon and thoron, together with a radon/thoron discriminative monitor that employs a silicon solid-state detector. The thoron sensitivity of the PIC detector was estimated by comparing the two detectors. As a result, the thoron sensitivity was about 10% compared with the radon sensitivity. In other words, the radon concentration (Bq m(-3)) measured with the PIC detector was approximately the sum of the actual radon concentration (Bq m(-3)) and 10% of the thoron concentration (Bq m(-3)). The sensitivity to thoron should be considered in measurements in thoron-enhanced areas. PMID:15103062

  4. Detection and measurement of delay in the yield of negative ions from the ionization chamber of a mass spectrometer

    Science.gov (United States)

    Lukin, V. G.; Khvostenko, O. G.; Tuimedov, G. M.

    2016-02-01

    The times of extraction of negative ions from the ionization chamber of a mass spectrometer have been measured. The obtained values amount to several dozen microseconds or above—that is, significantly exceed the time of free ion escape from the chamber. It is established that ions are retained in the ionization chamber because of their adsorption on the inner surface. This leads to distortion of the experimentally measured lifetimes of negative ions that become unstable with respect to autodetachment of the excess electron.

  5. Characterization of a new ionization chamber in radiotherapy beams: angular dependence and variation of response with distance.

    Science.gov (United States)

    Silva, Jonas O; Linda V E, Caldas

    2012-10-01

    A new double faced ionization chamber was constructed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminum and graphite. It was irradiated in standard radiotherapy beams ((60)Co and X-rays). The response variation with distance and the angular dependence of this ionization chamber were evaluated. It was verified that the chamber response follows the inverse square law within a maximum variation of 11.2% in relation to the reference value. For the angular dependence it showed good agreement with international standards.

  6. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Science.gov (United States)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  7. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier

  8. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  9. (n, {alpha}) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Yamazaki, Tetsuro; Sato, Jun; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    We have developed a measuring method of (n, {alpha}) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the {sup 12}C(n, {alpha}{sub 0}) and the {sup 16}O(n, {alpha}{sub 0}), (n, {alpha}{sub 123}) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the {sup 12}C(n, x{alpha}) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the {sup 12}C(n, n`3{alpha}). (author)

  10. Application of patent BR102013018500-0 in well type ionization chambers

    International Nuclear Information System (INIS)

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeter helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U = 0.2276 and 0.2677 % (k = 2) 95.45%. (author)

  11. Attachment of membrane separator for removal of radon to ionization chamber installed for tritium stack monitor

    International Nuclear Information System (INIS)

    The effect of background counts induced by α-particles mainly from Rn in air was removed by the attachment of a water-permselective membrane separator to a tritium stack monitor equipped previously. Water vapor, after permeating the membrane selectively, was carried by N2 gas into an ionization chamber where the activity of tritium was measured. The consumption of N2 gas for carrier was reduced by recycling the gas through dehumidification processes; (1) condensation by pressure, (2) condensation by refrigeration and (3) adsorption (by adsorbents), so that there is no added daily work arising from the attachment for maintenance of the tritium monitor. (author)

  12. Application of patent BR102013018500-0 in well type ionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, C.H.S.; Peixoto, J.G.P., E-mail: chenriques2@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeter helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U = 0.2276 and 0.2677 % (k = 2) 95.45%. (author)

  13. IFIN-HH ionization chamber calibration and its validation; electrometric system improvement

    Energy Technology Data Exchange (ETDEWEB)

    Sahagia, M., E-mail: msahagia@nipne.r [' Horia Hulubei' National Institute of R and D for Physics and Nuclear Engineering, IFIN-HH, P.O. Box MG-6, Bucharest, RO-77125 (Romania); Waetjen, A.C.; Luca, A.; Ivan, C. [' Horia Hulubei' National Institute of R and D for Physics and Nuclear Engineering, IFIN-HH, P.O. Box MG-6, Bucharest, RO-77125 (Romania)

    2010-07-15

    The paper presents the results obtained in the calibration of the CENTRONIC IG12/20A ionization chamber for 18 gamma ray emitters, and its improvement with a Keithley 6517A electrometer. The calibration figures were determined either directly in pA MBq{sup -1} units, or calculated from old units, by using the system capacity value. The calibration figures, determined with RML's standards, are compared with those deduced from the KCRV or the mean of the comparisons, and the values determined at PTB-Germany.

  14. Calibration and efficiency curve of SANAEM ionization chamber for activity measurements.

    Science.gov (United States)

    Yeltepe, Emin; Kossert, Karsten; Dirican, Abdullah; Nähle, Ole; Niedergesäß, Christiane; Kemal Şahin, Namik

    2016-03-01

    A commercially available Fidelis ionization chamber was calibrated and assessed in PTB with activity standard solutions. The long-term stability and linearity of the system was checked. Energy-dependent efficiency curves for photons and beta particles were determined, using an iterative method in Excel™, to enable calibration factors to be calculated for radionuclides which were not used in the calibration. Relative deviations between experimental and calculated radionuclide efficiencies are of the order of 1% for most photon emitters and below 5% for pure beta emitters. The system will enable TAEK-SANAEM to provide traceable activity measurements.

  15. Application of patent BR102013018500-0 in well type ionization chambers

    Science.gov (United States)

    Sousa, C. H. S.; Peixoto, J. G. P.

    2016-07-01

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeters helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U =2276 and 0.2677% (k = 2) 95.45%.

  16. IFIN-HH ionization chamber calibration and its validation; electrometric system improvement.

    Science.gov (United States)

    Sahagia, M; Wätjen, A C; Luca, A; Ivan, C

    2010-01-01

    The paper presents the results obtained in the calibration of the CENTRONIC IG12/20A ionization chamber for 18 gamma ray emitters, and its improvement with a Keithley 6517A electrometer. The calibration figures were determined either directly in pA MBq(-1) units, or calculated from old units, by using the system capacity value. The calibration figures, determined with RML's standards, are compared with those deduced from the KCRV or the mean of the comparisons, and the values determined at PTB-Germany.

  17. A method to measure the activity of sealed gamma sources by means of ionization chambers

    International Nuclear Information System (INIS)

    The paper contains a recommendation concerning the propagation of the activity unit for sealed gamma sources from the normals of the national metrological authorities of the USSR (VNIM) and the GDR (ASMW) to normals of lower order. Propagation of the activity unit is provided by comparative measurements with ionization chambers. The recommendation implies cases in which the source contains impurities as well as cases in which the design of the sources to be compared is different. Furthermore, the recommendation includes the method of error evaluation. (author)

  18. Signal processing system for parallel plate ionization chamber at test beam of BEPC II

    International Nuclear Information System (INIS)

    A signal processing system has been designed in order to read out the electrode signals of 2D parallel plate ionization chamber at test beam facility of BEPC II. The system mainly includes that charge sensitive pre-amplifier, main-amplifier, analog to digital convertor and personal computer. Digital signals were recorded and displayed real time in histograms using data acquirement program based on Linux operating system. This signal processing system can be operated easily and has lower electronic noise and stable performance. (authors)

  19. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  20. Development and characterization of a graphite-walled ionization chamber as a reference dosimeter for 60Co beams

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V. E.

    2014-11-01

    A graphite-walled ionization chamber with a sensitive volume of 6.4 cm3 was developed at the Calibration Laboratory of IPEN (LCI) to determine the air kerma rate of a 60Co source. This new prototype was developed to be a simple chamber, without significant nongraphite components and with a simple set-up, which allows the determination of its various required correction factors by Monte Carlo simulations. This new ionization chamber was characterized according to the IEC 60731 standard, and all results were obtained within its limits. Furthermore, Monte Carlo simulations were undertaken to obtain the correction factors involved with the air kerma determination. The air kerma rate obtained with the graphite-walled ionization chamber was compared with that from the reference dosimeter at the LCI, a PTW ionization chamber (model TN30002). The results obtained showed good agreement within the statistical uncertainties. A graphite ionization chamber was assembled and characterized as a reference dosimeter. The characterization test results were within recommended limits. Monte Carlo simulations were undertaken to obtain the correction factors. The air kerma rate of a 60Co source was obtained with satisfactory results.

  1. A prototype of an ionization chamber for gamma radiation beams of 60Co: Experimental and Monte Carlo preliminary results

    International Nuclear Information System (INIS)

    Ionization chambers are the most widely used instruments for dosimetry in radiotherapy. With the aim to test new configurations and materials using low-cost and easily-available components, verify the possibility of its application in the gamma radiation field of 60Co and fulfill the need of a chamber for scientific metrological purposes, in this paper the prototype of a plane-parallel ionization chamber has been designed and built, and its performance has been studied at the SSDL of KARAJ. The front wall and back wall of the chamber were made of graphite and Plexiglas respectively, as opposed to the one type of material in commercially available chambers. The collecting electrode has a diameter of 20 mm. The sensitive volume is 0.63 cm3. It was found that the Leakage current, the short-term stability and the polarity effect were within the international recommendations. The results were compared with those of a reference cylindrical chamber. The maximum difference observed in this comparison was 1.1%. The relative uncertainty was below 0.2%. Moreover, Monte Carlo simulation was undertaken using MCNP4C code and the relative difference of 1.9% was observed compared to the experiment. As a result the chamber presented a satisfactory performance in all evaluated tests in Gamma radiation field of 60Co. -- Highlights: • The prototype of a plane-parallel Ionization Chamber was designed. • Its performance was studied in Gamma radiation field of 60Co. • The response of the chamber was measured and compared with that of the cylindrical ionization chamber. • The chamber was simulated using the MCNP4C Monte Carlo code. • The Leakage current, the short-term stability and the polarity effect were within the international recommendations

  2. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Brett [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  3. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

    International Nuclear Information System (INIS)

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, pQ, has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate pwall, pcav and pQ perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth zref and the depth where the dose has decreased to 50% of the maximum dose, R50. pwall was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at zref. For higher energy electron beams pwall decreased to a value of about 1%. Combined with a pcav about 1% below unity for all energies at zref, this was found to cause pQ to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber

  4. Long term response stability of a well-type ionization chamber used in calibration of high dose rate brachytherapy sources

    Directory of Open Access Journals (Sweden)

    Vandana S

    2010-01-01

    Full Text Available Well-type ionization chamber is often used to measure strength of brachytherapy sources. This study aims to check long term response stability of High Dose Rate (HDR -1000 Plus well-type ionization chamber in terms of reference air kerma rate (RAKR of a reference 137 Cs brachytherapy source and recommend an optimum frequency of recalibration. An HDR-1000 Plus well-type ionization chamber, a reference 137 Cs brachytherapy source (CDCSJ5, and a MAX-4000 electrometer were used in this study. The HDR-1000 Plus well-type chamber was calibrated in terms of reference air kerma rate by the Standards Laboratory of the International Atomic Energy Agency (IAEA, Vienna. The response of the chamber was verified at regular intervals over a period of eight years using the reference 137 Cs source. All required correction factors were applied in the calculation of the RAKR of the 137 Cs source. This study reveals that the response of the HDR-1000 Plus well-type chamber was well within ±0.5% for about three years after calibration/recalibration. However, it shows deviations larger than ±0.5% after three years of calibration/recalibration and the maximum variation in response of the chamber during an eight year period was 1.71%. The optimum frequency of recalibration of a high dose rate well-type chamber should be three years.

  5. Long term response stability of a well-type ionization chamber used in calibration of high dose rate brachytherapy sources.

    Science.gov (United States)

    Vandana, S; Sharma, S D

    2010-04-01

    Well-type ionization chamber is often used to measure strength of brachytherapy sources. This study aims to check long term response stability of High Dose Rate (HDR)-1000 Plus well-type ionization chamber in terms of reference air kerma rate (RAKR) of a reference (137)Cs brachytherapy source and recommend an optimum frequency of recalibration. An HDR-1000 Plus well-type ionization chamber, a reference (137)Cs brachytherapy source (CDCSJ5), and a MAX-4000 electrometer were used in this study. The HDR-1000 Plus well-type chamber was calibrated in terms of reference air kerma rate by the Standards Laboratory of the International Atomic Energy Agency (IAEA), Vienna. The response of the chamber was verified at regular intervals over a period of eight years using the reference (137)Cs source. All required correction factors were applied in the calculation of the RAKR of the (137)Cs source. This study reveals that the response of the HDR-1000 Plus well-type chamber was well within +/-0.5% for about three years after calibration/recalibration. However, it shows deviations larger than +/-0.5% after three years of calibration/recalibration and the maximum variation in response of the chamber during an eight year period was 1.71%. The optimum frequency of recalibration of a high dose rate well-type chamber should be three years.

  6. Proton energy determination using activated yttrium foils and ionization chambers for activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Edificio de Investigacion P.B, Cd. Universitaria, Circ. Interior, C.P. 04510 Mexico D.F. (Mexico)], E-mail: avilarod@uwalumni.com; Rajander, J.; Lill, J.-O. [Turku PET Centre, Abo Akademi University, Porthansg 3, 20500 Turku (Finland); Gagnon, K. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 (Canada); Schlesinger, J. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland); Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 (Canada); Solin, O. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland)

    2009-05-15

    Excitation functions of the {sup 89}Y(p, xn) nuclear reactions were measured up to 18 MeV by the conventional activation method using the stacked-foil technique, and the irradiation of single foils. Activity assays of the irradiated foils were performed via ionization chamber and gamma spectroscopy methods. Activity ratios of the activation products were measured in two different facilities and evaluated for use as a practical and simple method for proton energy determinations. Cross section values measured in this work were compared with published data and with theoretical values as determined by the nuclear reaction model code EMPIRE II. In general, there was a good agreement between the experimental and theoretical values of the cross section data. Activity ratios of the isomeric and ground state of {sup 89}Zr measured via ionization chamber were found to be useful for proton energy determinations in the energy range from 7 to 15 MeV. Proton energies above 13 MeV were accurately determined using the {sup 89g}Zr/{sup 88}Zr and {sup 89g}Zr/{sup 88}Y activity ratios measured via gamma spectroscopy.

  7. Performance, at ambient temperature, of ionization chambers filled with a liquid dielectric

    International Nuclear Information System (INIS)

    The authors describe the performance characteristics of ionization chambers filled with carefully purified normal hexane. A detailed study of the background of a detector of this type enabled them to define the conditions in which it is possible to stabilize this background and to reduce it to about 10-14 A/cm2, for a uniform electric field of 8000 V/cm. Under irradiation with alpha or gamma rays, and at laboratory temperature, the current which passes through the chamber is a linear function of the applied electric field, up to a critical field value which is a function of the degree of purity of the liquid. Above that critical value, a process of ion-multiplication takes place, somewhat, similar to that which takes place in gases. The change in the ionization current then becomes exponential. In that area of multiplication the authors detected impulses created by the passage of individual alpha particles. The low mobility of the ions in the hexane and their extensive recombination considerably limits the amplitude of the impulses, which can easily be confused with the amplifier's background if a certain number of precautions are not taken. Impulses were recorded with amplitudes varying between 2.5 x 10-5 and 25 x 10-5 V, and with growth-times between 2 and 20 μs in electric fields of 21600 to 65600 V/cm. A number of preliminary results for other liquid fillings are given. (author)

  8. High-rate axial-field ionization chamber for particle identification of radioactive beams

    CERN Document Server

    Vadas, J; Visser, G; Alexander, A; Hudan, S; Huston, J; Wiggins, B B; Chbihi, A; Famiano, M; Bischak, M M; deSouza, R T

    2016-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV/A) the detector presents only three 0.5 $\\mu$m/cm$^2$ foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate. Tests with an $\\alpha$ source establish the detector energy resolution as $\\sim$8 $\\%$ for an energy deposit of $\\sim$3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A $^{39}$K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3 x 10$^5$ ions/s the energy resolution has degraded to 14% with a pileup of 12%. The go...

  9. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Yuya, E-mail: yuya.sugama@gmail.com [Proton Therapy Center, Aizawa Hospital, Nagano 390-0821, Japan and Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 (Japan); Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551 (Japan); Onishi, Hiroshi [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 (Japan)

    2015-07-15

    Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods: In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.

  10. Development of special ionization chambers for a quality control program in mammography; Desenvolvimento de camaras de ionizacao especiais para controle de qualidade em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas Oliveira da

    2013-07-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  11. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code.

    Science.gov (United States)

    Reis, C Q M; Nicolucci, P

    2016-02-01

    The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams.

  12. Evaluation of a special pencil ionization chamber by the Monte Carlo method; Avaliacao de uma camara de ionizacao tipo lapis especial pelo metodo de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Dalila; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), Uberlandia, MG (Brazil). Instituto de Fisica; Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    A special pencil type ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares, was characterized by means of Monte Carlo simulation to determine the influence of its components on its response. The main differences between this ionization chamber and commercial ionization chambers are related to its configuration and constituent materials. The simulations were made employing the MCNP-4C Monte Carlo code. The highest influence was obtained for the body of PMMA: 7.0%. (author)

  13. A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories

    Science.gov (United States)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.

    2014-11-01

    60Co sources are used mostly at dosimetry laboratories for calibration of ionization chambers utilized for radiotherapy dosimetry, mainly in those laboratories where there is no linear accelerator available. In this work, a new cylindrical ionization chamber was developed and characterized to be used as a reference dosimeter at the Calibration Laboratory of the IPEN. The characterization tests were performed according to the IEC 60731 standard, and all tests presented results within its recommended limits. Furthermore, the correction factors for the wall, stem, central collecting electrode, nonaxial uniformity and the mass-energy absorption coefficient were determined using the EGSnrc Monte Carlo code. The air kerma rate determined with this new dosimeter was compared to the one obtained with the IPEN standard, presenting a difference of 1.5%. Therefore, the new ionization chamber prototype developed and characterized in this work presents potential use as a primary standard dosimeter at radiation metrology laboratories.

  14. Modeling of a double fission chamber using MCNPX for power calibration at the zero-power teaching reactor CROCUS

    International Nuclear Information System (INIS)

    MCNPX-2.5 simulations and experiments were performed to improve the power prediction of the zero-power teaching reactor CROCUS at the Ecole Polytechnique Federale de Lausanne (EPFL) using a calibrated double fission chamber (DFC). The CROCUS facility is a zero-power critical reactor used for educational purposes. Traditionally, the core power is determined by irradiating thin gold foils placed along the core centre and by measuring the 411 keV γ-rays on HPGe detectors. The average 197Au(n,γ) self-shielded macroscopic cross-section obtained with the deterministic BOXER code (1σ - 10%) is employed to determine the flux and the reactor power. To benchmark the BOXER calculations, a DFC containing known amounts of enriched 235U and 239Pu deposits was installed within the reflector core and simulated with MCNPX-2.5/JEF-2.2. Particular care was taken to model the fissile deposits allowing to reduce the power uncertainty to 2% compared to the gold foil technique. A code-to-code comparison (BOXER vs. MCNPX) was performed and the results have shown a good agreement (2 to 5%) for most of the quantities calculated (flux, reaction rates). However, the normalization factor differed by 17% (flux-to-power ratio). Consequently, the core power was overestimated by 17% until now. Finally, the current investigations lead to an improved fission power determination and contribute to better core safety standard. (author)

  15. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  16. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    Science.gov (United States)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  17. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A., E-mail: camila_fmedica@hotmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  18. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    Science.gov (United States)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  19. A comparison of different experimental methods for general recombination correction for liquid ionization chambers

    DEFF Research Database (Denmark)

    Andersson, Jonas; Kaiser, Franz-Joachim; Gomez, Faustino;

    2012-01-01

    of the charge carriers, as compared to using air as the sensitive medium has to be corrected for. Due to the presence of initial recombination in LICs, the correction for general recombination losses is more complicated than for air-filled ionization chambers. In the present work, recently published...... experimental methods for general recombination correction for LICs are compared and investigated for both pulsed and continuous beams. The experimental methods are all based on one of two approaches: either measurements at two different dose rates (two-dose-rate methods), or measurements at three different LIC...... polarizing voltages (three-voltage methods). In a comparison with the two-dose-rate methods, the three-voltage methods fail to achieve accurate corrections in several instances, predominantly at low polarizing voltages and dose rates. However, for continuous beams in the range of polarizing voltages...

  20. A new multi-strip ionization chamber used as online beam monitor for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhiguo [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Mao, Ruishi [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); Duan, Limin, E-mail: lmduan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); She, Qianshun; Hu, Zhengguo; Li, He; Lu, Ziwei; Zhao, Qiecheng; Yang, Herun; Su, Hong; Lu, Chengui; Hu, Rongjiang; Zhang, Junwei [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China)

    2013-11-21

    A multi-strip ionization chamber has been built for precise and fast monitoring of the carbon beam spatial distribution at Heavy Ion Researched Facility of Lanzhou Cooling Storing Ring (HIRFL-CSR). All the detector's anode, cathode and sealed windows are made by 2μm aluminized Mylar film in order to minimize the beam lateral deflection. The sensitive area of the detector is (100×100)mm{sup 2}, with the anode segmented in 100 strips, and specialized front-end electronics has been developed for simplifying the data acquisition and quick feedback of the relevant parameters to beam control system. It can complete one single beam profile in 200μs.

  1. Ionization chamber array for patient specific VMAT, Tomotherapy and IMRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, Sotiri, E-mail: Stathakis@uthscsa.ed [Department of Radiation Oncology, Cancer Therapy and Research Center at the University of Texas Health Science Center, San Antonio TX 78229 (United States)

    2010-11-01

    The evaluation between measured and calculated dose is essential in the patient specific quality assurance procedures for intensity modulated radiation therapy. The high complexity of volumetric arc radiotherapy, Tomotherpay and intensity modulated radiation therapy deliveries attributed to the dynamic and synchronization requirements of such techniques require new methods and potentially new tools for the quality assurance of such techniques. Studies evaluating the dosimetric performance of EDR2 film and a 2D ionization chamber array quality assurance device have been performed in our institution. Our results showed that differences between the detector systems are small. The respective gamma index histograms showed that when 3% dose difference and 3mm distance to agreement are used, more than 90% of the evaluated points were within the tolerance criteria

  2. Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber

    CERN Document Server

    Ni, K; Day, D; Giboni, K L; Lopes, J A M; Majewski, P; Yamashita, M

    2005-01-01

    Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.

  3. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    Science.gov (United States)

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed.

  4. A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams

    CERN Document Server

    Christensen, Jeppe brage; Bassler, Niels

    2016-01-01

    Dosimetry with ionization chambers in clinical ion beams for radiation therapy requires correction for recombination effects. However, common radiation protocols discriminate between initial and general recombination and provide no universal correction method for the presence of both recombination types in ion beams of charged particles heavier than protons. Here, we present the open source code IonTracks, where the combined initial and general recombination effects in principle can be predicted for any ion beam with arbitrary particle-energy spectrum and temporal structure. IonTracks uses track structure theory to distribute the charge carriers in ion tracks. The charge carrier movements are governed by a pair of coupled differential equations, based on fundamental physical properties as charge carrier drift, diffusion, and recombination, which are solved numerically while the initial and general charge carrier recombination is computed. The algorithm is numerically stable and in accordance with experimental...

  5. On the neutron spatial distribution in ionization chamber channels of the WWER type reactors

    International Nuclear Information System (INIS)

    Results of experimental and calculational studies permitting to estimate the neutron flux spatial distribution in ionization chamber channels of the commercial WWER-1000 and WWER-440 reactors and also of the WWER-440 reactor with water biological shield are presented. The integral neutron flux density distribution along the channel cross section approximately at height of the core middle and the corresponding thermal and fast neutron flux density distributions are measured by the activation detectors. It is shown that the difference in fast neutron flux density exceeds that of thermal neutrons. The commercial WWER-1000 type reactor the fast neutron flux density is decreased by the factor of 1.7, and thermal neutron flux density - by the factor of 1.2, for the commercial WWER-440 reactor these values are 1.37 and 1.18, and for the WWER-440 one with water shield - 1.5 and 1.18

  6. Improved design and construction of an ionization chamber for the CSNS beam loss monitor (BLM)

    Institute of Scientific and Technical Information of China (English)

    TIAN Jian-Min; XU Mei-Hang; ZHAO Zhong-Liang; CHEN Chang; RUAN Xiang-Dong; CHEN Yuan-Bo; XU Tao-Guang; LU Shuang-Tong

    2012-01-01

    Based on the first ionization chamber (IC) prototype,the structure,working gas component and electrode material of the IC are improved.The test of the improved IC shows that the plateau length is about 2000 V,the plateau slope is less than 0.2%/100 V,the sensitivity is 19.6 pA/rad.h-1,the up-limitation of the linearity can be up to 3.6× 105 rad/h,and the applied voltage can be operated to 3500 V.The test results show that the performance of the improved IC meets the requirements of the beam loss monitor.

  7. Energy resolution of gas ionization chamber for high-energy heavy ions

    Science.gov (United States)

    Sato, Yuki; Taketani, Atsushi; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Nishimura, Daiki; Fukuda, Mitsunori; Inabe, Naohito; Murakami, Hiroyuki; Yoshida, Koichi; Kubo, Toshiyuki

    2014-01-01

    The energy resolution is reported for high-energy heavy ions with energies of nearly 340 MeV/nucleon and was measured using a gas ionization chamber filled with a 90%Ar/10%CH4 gas mixture. We observed that the energy resolution is proportional to the inverse of the atomic number of incident ions and to the inverse-square-root of the gas thickness. These results are consistent with the Bethe-Bloch formula for the energy loss of charged particles and the Bohr expression for heavy ion energy straggling. In addition, the influence of high-energy δ-rays generated in the detector on the energy deposition is discussed.

  8. Quality assurance of proton beams using a multilayer ionization chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew; Taylor, M. Brad; Summers, Paige; Zhu, X. Ronald; Poenisch, Falk; Gillin, Michael [Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, Texas 77030 (United States)

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF

  9. Unexpected bias in NIST 4πγ ionization chamber measurements.

    Science.gov (United States)

    Unterweger, M P; Fitzgerald, R

    2012-09-01

    In January of 2010, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) has not been stable. The positioning ring that determines the height of the sample in the reentrant tube of the IC has slowly shifted during 35 years of use. This has led to a slow change in the calibration factors for the various radionuclides measured by this instrument. The changes are dependent on γ-ray energy and the time the IC was calibrated for a given radionuclide. A review of the historic data with regard to when the calibrations were done has enabled us to approximate the magnitude of the changes with time. This requires a number of assumptions, and corresponding uncertainty components, including whether the changes in height were gradual or in steps as will be shown in drawings of sample holder. For calibrations the changes in calibration factors have been most significant for low energy gamma emitters such as (133)Xe, (241)Am, (125)I and (85)Kr. The corrections to previous calibrations can be approximated and the results corrected with an increase in the overall uncertainty. At present we are recalibrating the IC based on new primary measurements of the radionuclides measured on the IC. Likewise we have been calibrating a new automated ionization-chamber system. A bigger problem is the significant number of half-life results NIST has published over the last 35 years that are based on IC measurements. The effect on half-life is largest for long-lived radionuclei, especially low-energy γ-ray emitters. This presentation will review our results and recommend changes in values and/or uncertainties. Any recommendation for withdrawal of any results will also be undertaken.

  10. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain); Perez-Calatayud, Jose [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain); Simancas, Fernando; Lallena, Antonio M. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Gazdic-Santic, Maja [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  11. Alpha spectroscopy with ionization chamber to determine uranium and thorium in environmental samples

    International Nuclear Information System (INIS)

    A high-resolution, parallel Frisch ionization chamber with an efficient area of 320 cm2 was developed and applied as an alpha spectrometer. The resolution of the spectrum is approximatelly 40 KeV fwhm (full width half maximum) for 233U point source. The spectrum is recorded by a 1024 channels pulse-height analyser. The counting gas is commercial available mixture of argon and methane. The counting efficiency for 233U energy-window selected is in order of 42% for a calibration source placed on the cathode axis. No radial dependence of this efficiency was observed. The chamber was used for counting the activity of uranium and thorium isotopes on large area stainless steel planchets. The large area thin sources were prepared extracting the uranium and thorium isotopes from 1M HNO3- aqueous solution with polymeric membranes containing tri-n-octyl-phosphine oxide adhered on the surface of the 314 cm2 planchet. The integral back-ground is typically 7 counts/min between 4 and 6 MeV. The sensitivity of the procedure used ofr 238U is about 30 Bq/1 based on 3S of back-ground, 1 liter sample volume and 30 min counting time. (Author)

  12. The properties of the ultramicrocylindrical ionization chamber for small field used in stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Accurate dosimetry of small-field photon beams tends to be difficult to perform due to the presence of lateral electronic disequilibrium and steep dose gradients. In stereotactic radiosurgery (SRS), small fields of 6-30 mm in diameter are used. Generally thermoluminescence dosimetry chips, Farmer, Thimble ion chamber, and film dosimetry are not adequate to measure dose in SRS beams. These techniques generally do not provide the required precision due to their energy dependence and/or poor resolution. It is necessary to construct a small, accurate detector with high spatial resolution for the small fields used in SRS. The ultramicrocylindrical ionization chamber (UCIC) with a gold wall of 2.2 mm in diameter and 4.0 mm in length has dual sensitive volumes of air (8.0 mm3) and borosilicate (2.6 mm3) cavity. Reproducibility, linearity, and radiation damage with respect to absorbed dose, beam profile of small beam, and independence of dose rate of the UCIC are tested by the dose measurements in high energy photon (5, 15 MV) and electron (9 MeV) beams. The UCIC with a unique supporting system in the polystyrene phantom is demonstrated to be a suitable detector for the dose measurements in a small beam size

  13. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    International Nuclear Information System (INIS)

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon 40Ar and 0.30e fwhm for 1.08 GeV/nucleon 139La and 139La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with σ≅100 μm. (orig.)

  14. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    Science.gov (United States)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C. J.; Sardo, A.; Trevisiol, E.

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25∗25 cm2. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  15. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  16. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Sempau, Josep [Technical University of Catalonia (Spain)

    2010-07-01

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  17. A convolution model for obtaining the response of an ionization chamber in static non standard fields

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Castano, D. M.; Gonzalez, L. Brualla; Gago-Arias, M. A.; Pardo-Montero, J.; Gomez, F.; Luna-Vega, V.; Sanchez, M.; Lobato, R. [Radiation Physics Laboratory, Universidad de Santiago de Compostela, 15782 (Spain) and Dpto de Fisica de Particulas, Universidad de Santiago de Compostela, 15782 (Spain); Servicio de Radiofisica ERESA, Consorcio Hospital General Universitario de Valencia, 46014 (Spain); Dpto de Fisica de Particulas, Universidad de Santiago de Compostela, 15782 (Spain); Radiation Physics Laboratory, Universidad de Santiago de Compostela, 15782 Spain and Dpto de Fisica de Particulas, Universidad de Santiago de Compostela, 15782 (Spain); Servicio de Radiofisica y Proteccion Radiologica, Hospital Clinico Universitario de Santiago, Santiago de Compostela, 15782 (Spain)

    2012-01-15

    Purpose: This work contains an alternative methodology for obtaining correction factors for ionization chamber (IC) dosimetry of small fields and composite fields such as IMRT. The method is based on the convolution/superposition (C/S) of an IC response function (RF) with the dose distribution in a certain plane which includes chamber position. This method is an alternative to the full Monte Carlo (MC) approach that has been used previously by many authors for the same objective. Methods: The readout of an IC at a point inside a phantom irradiated by a certain beam can be obtained as the convolution of the dose spatial distribution caused by the beam and the IC two-dimensional RF. The proposed methodology has been applied successfully to predict the response of a PTW 30013 IC when measuring different nonreference fields, namely: output factors of 6 MV small fields, beam profiles of cobalt 60 narrow fields and 6 MV radiosurgery segments. The two-dimensional RF of a PTW 30013 IC was obtained by MC simulation of the absorbed dose to cavity air when the IC was scanned by a 0.6 x 0.6 mm{sup 2} cross section parallel pencil beam at low depth in a water phantom. For each of the cases studied, the results of the IC direct measurement were compared with the corresponding obtained by the C/S method. Results: For all of the cases studied, the agreement between the IC direct measurement and the IC calculated response was excellent (better than 1.5%). Conclusions: This method could be implemented in TPS in order to calculate dosimetry correction factors when an experimental IMRT treatment verification with in-phantom ionization chamber is performed. The miss-response of the IC due to the nonreference conditions could be quickly corrected by this method rather than employing MC derived correction factors. This method can be considered as an alternative to the plan-class associated correction factors proposed recently as part of an IAEA work group on nonstandard field dosimetry.

  18. Source geometry factors for HDR ¹⁹²Ir brachytherapy secondary standard well-type ionization chamber calibrations.

    Science.gov (United States)

    Shipley, D R; Sander, T; Nutbrown, R F

    2015-03-21

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) (192)Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated (192)Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR (192)Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, k(sg), is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR (192)Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR (192)Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR (192)Ir Flexisource k(sg) was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  19. Design and preliminary test of a free-air ionization chamber for low-energy X-ray

    Institute of Scientific and Technical Information of China (English)

    吴金杰; 杨元第; 王培玮; 陈靖; 柳加成

    2011-01-01

    A free-air ionization chamber in low-energy X-ray has been designed and manufactured at the National Institute of Metrology (NIM, China) according to the defination of air-kerma. The results of a preliminary test show that the leakage current of ionizatio

  20. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers

    International Nuclear Information System (INIS)

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  1. An allene-doped liquid argon ionization chamber for Ar and Ca ions at around 100 MeV/n

    CERN Document Server

    Yunoki, A; Fukuda, N; Kase, M; Kato, T; Kikuchi, J; Masuda, K; Niimura, M; Okada, H; Ozaki, K; Piao, Y; Shibamura, E; Tanaka, M; Tanihata, I; Terasawa, K

    1999-01-01

    An allene-doped liquid argon ionization chamber with 48 mmx48 mmx40 mm sensitive volume has been constructed for precise energy measurement of heavy ions at around 100 MeV/n. An energy resolution of 0.6%-0.7% (FWHM) was achieved for Ca and Ar ions both at 78 MeV/n. (author)

  2. Super-resolution non-parametric deconvolution in modelling the radial response function of a parallel plate ionization chamber.

    Science.gov (United States)

    Kulmala, A; Tenhunen, M

    2012-11-01

    The signal of the dosimetric detector is generally dependent on the shape and size of the sensitive volume of the detector. In order to optimize the performance of the detector and reliability of the output signal the effect of the detector size should be corrected or, at least, taken into account. The response of the detector can be modelled using the convolution theorem that connects the system input (actual dose), output (measured result) and the effect of the detector (response function) by a linear convolution operator. We have developed the super-resolution and non-parametric deconvolution method for determination of the cylinder symmetric ionization chamber radial response function. We have demonstrated that the presented deconvolution method is able to determine the radial response for the Roos parallel plate ionization chamber with a better than 0.5 mm correspondence with the physical measures of the chamber. In addition, the performance of the method was proved by the excellent agreement between the output factors of the stereotactic conical collimators (4-20 mm diameter) measured by the Roos chamber, where the detector size is larger than the measured field, and the reference detector (diode). The presented deconvolution method has a potential in providing reference data for more accurate physical models of the ionization chamber as well as for improving and enhancing the performance of the detectors in specific dosimetric problems.

  3. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.

    Science.gov (United States)

    Verhaegen, F; Zakikhani, R; Dusautoy, A; Palmans, H; Bostock, G; Shipley, D; Seuntjens, J

    2006-03-01

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p(Q), has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p(wall), p(cav) and p(Q) perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z(ref) and the depth where the dose has decreased to 50% of the maximum dose, R50. p(wall) was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z(ref). For higher energy electron beams p(wall) decreased to a value of about 1%. Combined with a p(cav) about 1% below unity for all energies at z(ref), this was found to cause p(Q) to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber. PMID:16481689

  4. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, F [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada); Zakikhani, R [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada); DuSautoy, A [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Palmans, H [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Bostock, G [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Shipley, D [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Seuntjens, J [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada)

    2006-03-07

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p{sub Q}, has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p{sub wall}, p{sub cav} and p{sub Q} perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z{sub ref} and the depth where the dose has decreased to 50% of the maximum dose, R{sub 50}. p{sub wall} was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z{sub ref}. For higher energy electron beams p{sub wall} decreased to a value of about 1%. Combined with a p{sub cav} about 1% below unity for all energies at z{sub ref}, this was found to cause p{sub Q} to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber.

  5. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method

    International Nuclear Information System (INIS)

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs

  6. Simulation of ionization-front-forming process at injection of relativistic electron beam with a gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dolya, S.N.; Zhidkov, E.P.; Rubin, S.B.; Semerdzhiev, Kh.I.

    1982-01-01

    The methodical work on creation of computer program for numerical study of the processes of forming and motion of a virtual cathode at the injection of relativistic electron beam into a short cylindrical chamber, filled with gas, has been carried out. The obtained plots of the distributions of fields, potential and density appearing out of ion and electron gas of the beam itself are presented. The dependence of cross-section ionization on the electron velocity has been taken into account at the calculation; the resonance contribution into summarized cross-section of ionization was simulated. It is shown that the injection into the chamber without gas, some oscillations of the virtual cathode are observed. At the presence of the final front of the beam, the fields level at the initial stage is smaller than for the beam with a sharp front. However, in some time the field amplitudes are compared. The motion of simulated probe ions in the chamber is analyzed.

  7. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  8. Determinations of the correction factors for small fields in cylindrical ionization chambers based on measurement and numerical calculation

    Science.gov (United States)

    Park, Kwangwoo; Choi, Wonhoon; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-07-01

    We investigated the volume averaging effect for air-filled cylindrical ionization chambers to determine the correction factors in a small photon field for a given chamber. We measured output factors with several cylindrical ionization chambers, and by using a mathematical method similar to deconvolution, we modeled the non-constant and inhomogeneous exposure function in the cavity of the chamber. The parameters in the exposure function and the correction factors were determined by solving a system of equations that we had developed by using the measured data and the geometry of the given chamber. The correction factors (CFs) were very similar to those obtained from Monte Carlo (MC) simulations. For example, the CFs in this study were found to be 1.116 for PTW31010 and 1.0225 for PTW31016 while the CFs obtained from MC simulations were reported as being approximately between 1.17 and 1.20 for PTW31010 and between 1.02 and 1.06 for PTW31016 in a 6-MV photon beam of 1 × 1 cm2. Furthermore, the method of deconvolution combined with the MC result for the chamber's response function showed a similar CF for PTW 30013, which was reported as 2.29 and 1.54 for a 1 × 1 cm2 and a 1.5 × 1.5 cm2 field size, respectively. The CFs from our method were similar, 2.42 and 1.54. In addition, we report CFs for PTW30013, PTW31010, PTW31016, IBA FC23-C, and IBA CC13. As a consequence, we suggest the use of our method to measure the correct output factor by using the fact that an inhomogeneous exposure causes a volume averaging effect in the cavity of air-filled cylindrical ionization chamber. The result obtained by using our method is very similar to that obtained from MC simulations. The method we developed can easily be applied in clinics.

  9. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Louwe, Robert J. W., E-mail: rob.louwe@ccdbh.org.nz; Satherley, Thomas; Day, Rebecca A.; Greig, Lynne [Department of Radiation Oncology, Wellington Blood and Cancer Centre, Wellington Hospital, Wellington 6242 (New Zealand); Wendling, Markus; Monshouwer, René [Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6500 HB (Netherlands)

    2015-04-15

    Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed software was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This

  10. Fusion cross sections of carbon isotopes obtained with an ionization chamber in active target mode

    International Nuclear Information System (INIS)

    Carbon fusion has provided questions to both physicists and astronomers for at least the last 50 years. From fundamental nuclear structure to recent discoveries in stellar phenomena there are still open topics. Fusion in the 12C + 12C system show oscillations that are not present in neighboring systems and are yet not completely understood. Unexplained behavior in the threshold between 1p and 2s1d shells is seen as fusion cross sections show significant changes in systems which differ by only a nucleon. A new type of stellar explosions, called super bursts, in X-ray binaries were recently observed and are thought to require fusion of radioactive carbon isotopes for an explanation, opening new paths for stellar nucleosynthesis. These are a few interesting examples that motivated the development of a new measurement technique, which comprises a Multi Sampling Ionization Chamber (Music) operated in active target mode, with methane gas (C H4) as both counting gas and reaction target. This offers a high efficiency detection method where excitation functions can be sampled, using a single beam energy, in a range determined by the ionization gas pressure. This is a great advantage since it drastically reduces the measurement time and the data are automatically normalized. The high efficiency of the detector makes it ideal for experiments where the reaction cross section and/or the beam intensity are low, i.e. for processes involving radioactive nuclei. Using the Music, fusion cross sections in systems with carbon isotopes of mass numbers A = 10, 12, 13, 14, 15 impinging on a carbon-12 target have been measured. Beam energies of about 3 MeV/A were used for obtaining fusion excitation functions in the center of mass energy range between 10 and 20 MeV. In this contribution, the operation principle of the Music is discussed. Then, the experimental excitation functions are presented and compared with previous data (3when available) and different theoretical models

  11. Patient specific IMRT quality assurance with film, ionization chamber and detector arrays: Our institutional experience

    International Nuclear Information System (INIS)

    -value>0.05). Conclusions: Among the TPSs, Tomoplan and Corvus had the best agreement with the point dose measurement. Based on anatomical location of treatment site, head and neck cancers had the lowest gamma value for the patients treated and brain sites had the highest gamma value. However, the values are not significantly different. TomoTherapy machines continue to have the best overall gamma values as compared to CLINAC machines. - Highlights: • IMRT QA methods performed at our institution were analyzed retrospectively. • IMRT QA using film & ionization chamber was compared with 2D array of ion chambers. • Dosimetric measurements were compared against the plan based on multiple criteria. • Criteria included TPS, anatomic site, Linac type, number of control points, arcs or beams. • Average dose differences and Gamma analysis were estimated to exceed passing criteria

  12. A high dynamic Micro Strips Ionization Chamber featuring Embedded Multi DSP Processing

    CERN Document Server

    Voltolina, Francesco; Carrato, Sergio; 10.1109/NSSMIC.2004.1466924

    2010-01-01

    An X-ray detector will be presented that is the combination of a segmented ionization chamber featuring one-dimensional spatial resolution integrated with an intelligent ADC front-end, multi DSP processing and embedded PC platform. This detector is optimized to fan beam geometry with an active area of 192 mm (horizontal) and a vertical acceptance of 6 mm. Spatial resolution is obtained by subdividing the anode into readout strips, having pitch of 150 micrometers, which are connected to 20 custom made integrating VLSI chips (each capable of 64-channel read-out and multiplexing) and read out by 14 bits 10 MHz ADCs and fast adaptive PGAs into DSP boards. A bandwidth reaching 3.2Gbit/s of raw data, generated from the real time sampling of the 1280 micro strips, is cascaded processed with FPGA and DSP to allow data compression resulting in several days of uninterrupted acquisition capability. Fast acquisition rates reaching 10 kHz are allowed due to the MicroCAT structure utilized not only as a shielding grid in i...

  13. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  14. Detecting MLC errors in stereotactic radiotherapy plans with a liquid filled ionization chamber array.

    Science.gov (United States)

    O'Connor, Patrick; Seshadri, Venkatakrisnan; Charles, Paul

    2016-03-01

    Quality assurance of stereotactic radiotherapy demands the use of equipment with the highest resolution and sensitivity available. This study examines the sensitivity of a commercially available liquid-filled ionization chamber array--the Octavius 1000 SRS (PTW, Frieburg, Germany) for detecting small (sub-millimetre) multi-leaf collimator (MLC) alignment errors in static square fields (side length 16-40 mm). Furthermore, the effectiveness of detecting small MLC errors in clinical stereotactic radiotherapy patient plans using the device was also evaluated. The commonly used gamma pass rate metric (of the measurements compared with treatment planning system generated results) was used. The gamma pass rates were then evaluated as a function of MLC position error (MLC error size 0.1-2.5 mm). The detector array exhibited a drop in pass rate between plans without error and those which had MLC errors induced. For example a drop in pass rate of 4.5% (gamma criteria 3%, 1 mm) was observed when a 0.8 mm error was introduced into a 16 mm square field. Furthermore the drop in pass rate increased as the MLC position error increased. This study showed that the Octavius 1000 SRS array could be a useful tool for applications requiring the detection of small geometric delivery uncertainties.

  15. The control system of the multi-strip ionization chamber for the HIMM

    Science.gov (United States)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  16. Liquid ionization chamber initial recombination dependence on LET for electrons and photons.

    Science.gov (United States)

    Johansson, Erik; Andersson, Jonas; Johansson, Lennart; Tölli, Heikki

    2013-06-21

    The possibility of indirect measurements of linear energy transfer (LET) with a liquid ionization chamber (LIC) has been investigated by studying initial recombination losses at different applied voltages. A linear fit is made to the voltage-signal curve and the intersection point of the fit and the voltage-axis is shown to correlate with LET. The LIC applied voltages were 100-700 V, which corresponds to electric field strengths between 0.3 and 2.0 MV m(-1). Several different photon and electron beams have been studied, and by using MCNPX™ the respective LET spectra have been determined. The beam qualities in this study were found to have a fluence averaged LET between 0.17 and 1.67 keV µm(-1) and a corresponding dose averaged LET between 0.97 and 4.62 keV µm(-1). For the experimental data in this study the linear fit method yields consistent results with respect to Monte Carlo simulated LET values. A calibration curve for LET determination is provided for the LIC used in the present work.

  17. Calibration of ionization energy loss at relativistic rise with STAR Time Projection Chamber

    CERN Document Server

    Xu, Yichun; Bichsel, Hans; Dong, Xin; Fachini, Patricia; Fisyak, Yuri; Kocolosky, Adam; Mohanty, Bedanga; Netrakanti, Pawan; Ruan, Lijuan; Suarez, Maria Cristina; Tang, Zebo; van Buren, Gene; Xu, Zhangbu

    2008-01-01

    We derive a method to improve particle identification (PID) at high transverse momentum ($p_T$) using the relativistic rise of the ionization energy loss ($rdE/dx$) when charged particles traverse the Time Projection Chamber (TPC) at STAR. Electrons triggered and identified by the Barrel Electro-Magnetic Calorimeter (BEMC), pure protons and pions from $\\Lambda\\to p+\\pi^{-}$ ($\\bar{\\Lambda}\\to \\bar{p}+\\pi^{+}$), and $K^{0}_{S}\\to\\pi^{+}+\\pi^{-}$ decays are used to obtain the $dE/dx$ value and its width at given $\\beta\\gamma=p/m$. We found that the deviation of the $dE/dx$ from the Bichsel function can be up to $0.4\\sigma$ ($\\sim3%$) in p+p collisions at $\\sqrt{s_{NN}}=200$ GeV taken and subsequently calibrated in year 2005. The deviation is approximately a function of $\\beta\\gamma$ independent of particle species and can be described with a function of $f(x) = A+\\frac{B}{C+x^{2}}$. The deviations obtained with this method are used to re-calibrate the data sample from p+p collision for physics analysis of ident...

  18. Dose verifications by use of liquid ionization chamber of an electronic portal imaging device (EPID).

    Science.gov (United States)

    Tateoka, Kunihiko; Oouchi, Atsushi; Nakata, Kensei; Hareyama, Masato

    2008-07-01

    In this study, we examined the ability of an L-EPID to verify rectangular and irregular fields and to measure the transmitted exit doses. With respect to the beam profile of rectangular and irregular fields and the doses transmitted through an inhomogeneous phantom, the L-EPID dose obtained from the L-EPID measurement was compared with the conventional dose measured by use of a 0.12-cc ionization chamber and a 3D water phantom. In the comparison of the rectangular and irregular fields, the difference in the off-center ratio (OCR) between the L-EPID dose and the conventional dose was approximately 3% in the steep-dose-gradient region (penumbra regions, >30%/cm) and approximately +/-0.5% in the gentle-dose-gradient region (5%/cm). On the other hand, the dose differences between the L-EPID and the measured doses were less than approximately 2% in the gentle-dose-gradient region. In addition, in the steep-dose-gradient region, the maximum difference was 30%. However, the differences in the distance-to-agreement (DTA) were less than approximately +/-1 mm and were unrelated to the dose gradient. These results suggest that dose verification by L-EPID is very useful in clinical applications.

  19. Quantitative Verification of Dynamic Wedge Dose Distribution Using a 2D Ionization Chamber Array.

    Science.gov (United States)

    Sahnoun, Tarek; Farhat, Leila; Mtibaa, Anis; Besbes, Mounir; Daoud, Jamel

    2015-10-01

    The accuracy of two calculation algorithms of the Eclipse 8.9 treatment planning system (TPS)--the anisotropic analytic algorithm (AAA) and pencil-beam convolution (PBC)--in modeling the enhanced dynamic wedge (EDW) was investigated. Measurements were carried out for 6 and 18 MV photon beams using a 2D ionization chamber array. Accuracy of the TPS was evaluated using a gamma index analysis with the following acceptance criteria for dose differences (DD) and distance to agreement (DTA): 3%/3 mm and 2%/2 mm. The TPS models the dose distribution accurately except for 20×20 cm(2) field size, 60 (°) and 45 (°) wedge angles using PBC at 6 MV photon energy. For these latter fields, the pass rate and the mean value of gamma were less than 90% and more than 0.5, respectively at the (3%/3 mm) acceptance criteria. In addition, an accuracy level of (2%/2 mm) was achieved using AAA with better agreement for 18 MV photon energy.

  20. The control system of the multi-strip ionization chamber for the HIMM

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min, E-mail: limin@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Mao, R.S., E-mail: Maorsh@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Xu, Z.G.; Li, Peng; Zhao, T.C.; Zhao, Z.L. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Zhang, Nong [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-03-11

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer–consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  1. Feasibility study for the development of a Dose Calibrator with a well ionization chamber

    International Nuclear Information System (INIS)

    Dose calibrators are intended for the metrological assurance of medical diagnostic studies in which radiopharmaceuticals are used. It is the final link in the national system of standards to ensure quality control and the radiation safety of the dose administered to patients while using these nuclear techniques. The wide utilization of radiopharmaceuticals in our country in several modules of nuclear medicine and other laboratories where radio-isotopic preparations are used, as well as the existence of the National Center of Isotopes to produce them determine the necessity of national production of dose calibration equipment. In this paper, it is presented the result of a feasibility study to develop a dose calibrator with a well-type ionization chamber for nuclear medicine services of the National Health System with gamma camera. It is specifically intended to contribute to monitor and control the activity of the prepared samples to be administered to patients under studies with gamma cameras to ensure compliance with the current requirements of quality and radiation safety. (Author)

  2. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  3. Testing an ionization chamber with gaseous samples and measurements of the (n, alpha) reaction cross sections

    CERN Document Server

    Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P

    1999-01-01

    A new ionization chamber with gaseous samples (GIC) has been designed and tested on the thermal and resonance neutron beams of FLNP's neutron sources. The exposed gas volume serves as a target for neutrons. The obtained thermal cross sections for the sup 1 sup 7 O(n, alpha) sup 1 sup 4 C, sup 2 sup 1 Ne(n, alpha) sup 1 sup 8 O and sup 3 sup 6 Ar(n, alpha) sup 3 sup 3 S reactions are (233+-12) mb, (0.18+-0.09) mb and (5.43+-0.27) mb, respectively. These measurements have been performed on a pure beam of thermal neutrons from the high flux reactor IBR-2; and they demonstrated high efficiency and reliability of the method. Compared to samples on substrates, the application of gaseous samples makes the beam background essentially lower, and what is more important, the background component is totally absent due to the absence of Li and B microimpurities in gaseous samples while they do present in the samples on substrates. The method is also applicable to measurements with resonance neutrons. The recovery capabili...

  4. Design and building of an extrapolation ionization chamber for beta dosimetry

    International Nuclear Information System (INIS)

    An extrapolation chamber was designed and built to be used in beta dosimetry. The basic characteristics of an extrapolation chamber are discussed, together with fundamental principle of the dosimetric method used. Details of the chamber's design and properties of materials employed are presented. A full evaluation of extrapolation chamber under irradiation from two 90Sr + 90Y beta sources is done. The geometric parameters of the chamber, leakage current and ion collection efficiency are determined. (Author)

  5. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baeumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-01-01

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.

  6. Determination of Correction Factors for Small Field Based on Measurement and Numerical Calculation using Cylindrical Ionization Chambers

    CERN Document Server

    Park, Kwangwoo; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-01-01

    We studied the investigation of volume averaging effect for air-filled cylindrical ionization chambers to determine correction factors in small photon field for the given chamber. As a method, we measured output factors using several cylindrical ionization chambers and calculated with mathematical method similar to deconvolution in which we modeled non-constant and inhomogeneous exposure function in the cavity of chamber. The parameters in exposure function and correction factors were determined by solving a system of equations we developed with measurement data and geometry of the given chamber. Correction factors (CFs) we had found are very similar to that from Monte Carlo (MC) simulation. For example, CFs in this study were computed as 1.116 for PTW31010, and 1.0225 for PTW31016, while CFs from MC were reported as approximately between 1.17 and 1.20 for PTW31010, and between 1.02 and 1.06 for PTW31016 in of 6MV photon beam . Furthermore, the result from the method of deconvolution combined with MC for cham...

  7. Determination of the recombination correction for the BIPM parallel-plate ionization chamber type in a pulsed photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Picard, Susanne; Burns, David T. [Bureau International des Poids et Mesures, Pavillon de Breteuil, F92312 Sevres cedex (France); Ostrowsky, Aime [Laboratoire National Henri Becquerel - LNHB, CEA Saclay - 91191 Gif-sur-Yvette Cedex (France)

    2011-09-15

    The correction factor for recombination losses k{sub s} has been determined for the BIPM parallel-plate ionization chamber type in the pulsed photon beam of a clinical linear accelerator. Initial recombination is in agreement with that obtained for the same chamber type in a continuous beam, while linearity in the volume recombination loss is confirmed at dose rates up to 80 pC per pulse, which corresponds to about 0.33 mGy per pulse (or around 2 Gy min{sup -1} at 100 Hz)

  8. Effect of the calibration in water and the build-up cap on the Mg(Ar) ionization chamber measurements.

    Science.gov (United States)

    Koivunoro, H; Hyvönen, H; Uusi-Simola, J; Jokelainen, I; Kosunen, A; Kortesniemi, M; Seppälä, T; Auterinen, I; Savolainen, S

    2011-12-01

    Magnesium-walled argon gas flow ionization chamber (Mg(Ar)) is used for photon dose measurements in the epithermal neutron beam of FiR 1 reactor in Finland. In this study, the photon dose measurements were re-evaluated against calculations applying a new chamber calibration factor defined in water instead of in air. Also, effect of the build-up cap on the measurements was investigated. The new calibration factor provides improved agreement between measured and calculated photon dose. Use of the build-up cap does not affect the measured signal in water in neutron beam.

  9. Effect of the calibration in water and the build-up cap on the Mg(Ar) ionization chamber measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Boneca Corporation, FI-00290 Helsinki (Finland)] [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, 00029 HUS (Finland); Hyvoenen, H. [Boneca Corporation, FI-00290 Helsinki (Finland); Uusi-Simola, J. [HUS Helsinki Medical Imaging Center, University of Helsinki (Finland); Jokelainen, I.; Kosunen, A. [Radiation Metrology Laboratory, Radiation and Nuclear Safety Authority-STUK, FI-00881 (Finland); Kortesniemi, M. [HUS Helsinki Medical Imaging Center, University of Helsinki (Finland); Seppaelae, T. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, 00029 HUS (Finland); Auterinen, I. [VTT Technical Research Centre of Finland, Espoo (Finland); Savolainen, S. [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [HUS Helsinki Medical Imaging Center, University of Helsinki (Finland)

    2011-12-15

    Magnesium-walled argon gas flow ionization chamber (Mg(Ar)) is used for photon dose measurements in the epithermal neutron beam of FiR 1 reactor in Finland. In this study, the photon dose measurements were re-evaluated against calculations applying a new chamber calibration factor defined in water instead of in air. Also, effect of the build-up cap on the measurements was investigated. The new calibration factor provides improved agreement between measured and calculated photon dose. Use of the build-up cap does not affect the measured signal in water in neutron beam.

  10. Determination of the recombination correction for the BIPM parallel-plate ionization chamber type in a pulsed photon beam

    International Nuclear Information System (INIS)

    The correction factor for recombination losses ks has been determined for the BIPM parallel-plate ionization chamber type in the pulsed photon beam of a clinical linear accelerator. Initial recombination is in agreement with that obtained for the same chamber type in a continuous beam, while linearity in the volume recombination loss is confirmed at dose rates up to 80 pC per pulse, which corresponds to about 0.33 mGy per pulse (or around 2 Gy min-1 at 100 Hz)

  11. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Majumdar Bishnu

    2006-01-01

    Full Text Available The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory.

  12. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams; Projeto, construcao e caracterizacao de camaras de ionizacao para utilizacao como sistemas padroes em feixes de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula

    2013-07-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  13. Physical fundamentals for the functional simulation of the ionization transmission chamber in X-ray diagnostics; Physikalische Grundlagen fuer die Funktionssimulation der Ionisations-Durchstrahlkammer in der Roentgendiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Horst

    2012-11-01

    The presentation of the physical fundamentals for the functional simulation of the ionization transmission chamber in X-ray diagnostics covers the mathematical description of the interaction of photons with solid materials in Mote Carlo compliable way, including Rayleigh and Compton scattering and photoabsorption. The energy dependence of the emitted secondary electrons is described according the Coulomb and Moeller scattering theory. The simulation is aimed to determine the spectral electron flux density in the air-filled measuring space of the ionization chamber for the defined X-ray energy spectrum dependent on the voltage at the X-ray tube. The influence of geometry and materials on the spectral energy flux density provides hints for the construction of the ionization transmission chamber. The differential energy loss of the secondary electrons in air is determined allowing the calculation of the ionization rate. The ionization of air is described, providing the conditions for a linear relation between ionization rate and ionic current.

  14. Study of ionization-chamber measurement systems for activity determination; Untersuchung von Ionisationskammer-Messsystemen fuer Aktivitaetsbestimmungen

    Energy Technology Data Exchange (ETDEWEB)

    Niedergesaess, Christiane; Schrader, Heinrich; Kossert, Karsten

    2011-04-15

    The present report describes the performance and results of a common project of the company MED Nuklear-Medizintechnik Dresden GmbH and the Working Group 6.11 ''Activity Unit'' of the Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig with the subject ''Activity measurements with radionuclide calibrators (activity meters) for nuclear medicine and metrology''. In the frame of this project, the company MED provided three ionization chamber measuring systems, whereas the PTB adjoined the necessary personal, technical support and the radioactive sources and standards for the calibration in terms of activity. The goal of the project was a systematic study of the performance of the ionization chambers for activity measurements. This covers the subject of determination of various radionuclide efficiencies (calibration factors) necessary for activity determinations in practice. Using two of the ionization chambers of identical construction, a comparison of the reproducibility within exemplars was made using common calibration results. Furthermore, the instrument stability during a period of about two years and the system linearity for activity values within a range of about four orders of magnitude were studied. In addition, the energy-dependent efficiency curves were determined, which allowed the calculation of calibration factors for the three ionization chamber measuring systems using emission probabilities of the corresponding radionuclide. The uncertainties of the involved measurands, particularly for the activity values to be determined, were calculated using the rules of the ''Guide to the expression of uncertainty in measurement'' (GUM, JCGM, 2008). (orig.)

  15. The research on the consistency of the testing accuracy for smoke measuring equipment based on ionization chamber principle

    Directory of Open Access Journals (Sweden)

    Wang Ting Ting

    2016-01-01

    Full Text Available A convenient method is proposed here to determine the relative accuracy of measuring ionization chamber (MIC. A non-dimensional quantity is presented here to characterize the relative accuracy of the testing sample to the reference sample. There are two key points of the program. One is comparison by pairs. The other is eliminating the uncertainty in the program by exchanging the position and control unit in each testing group.

  16. Calculation of the charge spectrum generated by ionizing particles in Resistive Plate Chambers at low gas gain

    CERN Document Server

    Fonte, P

    2012-01-01

    The charge spectrum generated by ionizing particles in Resistive Plate Chambers under Townsend avalanche conditions, that is, for sufficiently small avalanches not affected by space-charge, has not been calculated from first principles. In this article it is shown that, just neglecting cluster statistics, it follows closely the statistical gamma distribution. Remarkably, this distribution seems to describe as well data measured beyond these assumptions, rising some interpretation issues.

  17. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    International Nuclear Information System (INIS)

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  18. Automated system with LabVIEW for the obtention of voltage plateau, graphic of sensitivity and operation voltage in an ionization chamber

    International Nuclear Information System (INIS)

    The work developed for the Laguna Verde Nuclear Power Central allows to obtain the voltage plateau, graphic of sensitivity and operation voltage of three types of ionization chambers which are used in their monitoring systems of process radiation. The automated system is based in a personal computer (Pc) for controlling and acquiring data from the different instruments used, its programming was realized with virtual instruments (LabVIEW, National Instruments software). The system also realizes a diagnosis of the ionization chamber and determine whether the parameters obtained are inside of the manufacturer specifications, that is to say, it determines when the ionization chamber must be replaced. (Author)

  19. A standard Fricke dosimeter compared to an ionization chamber used for dosimetric characterization of 60Co photon beam

    Science.gov (United States)

    Moussous, Ouiza; Medjadj, Toufik

    2016-06-01

    The main objective of this study was to investigate the Fricke dosimeter water equivalent system for measurement of dosimetric parameters for photon beam. The parameters measured with the Fricke dosimeter were compared to those obtained with an ionization chamber. In this work characteristics for 60Co γ-rays of field sizes ranging from 5 × 5 cm2 to 20 × 20 cm2 are reported. The measurements were carried out in the secondary standard dosimetry laboratory using a collimated 60Co gamma source therapy unit. The 60Co beam output in terms of absorbed dose to water was obtained as per IAEA TRS 398 recommendations using cylindrical ionization chamber, whose ND,w has been supplied by the IAEA's reference laboratory. Specific quantities measured include: output factors, peak scatter factor, lateral beam profiles and percentage depth dose. The Fricke dosimeters were irradiated in a water phantom using the suitable poly (methyl methacrylate), PMMA stand. Our results demonstrate that Fricke dosimeter and ionization chamber agree with each other.

  20. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers

    Science.gov (United States)

    Gomà, Carles; Andreo, Pedro; Sempau, Josep

    2016-03-01

    This work calculates beam quality correction factors (k Q ) in monoenergetic proton beams using detailed Monte Carlo simulation of ionization chambers. It uses the Monte Carlo code penh and the electronic stopping powers resulting from the adoption of two different sets of mean excitation energy values for water and graphite: (i) the currently ICRU 37 and ICRU 49 recommended {{I}\\text{w}}=75~\\text{eV} and {{I}\\text{g}}=78~\\text{eV} and (ii) the recently proposed {{I}\\text{w}}=78~\\text{eV} and {{I}\\text{g}}=81.1~\\text{eV} . Twelve different ionization chambers were studied. The k Q factors calculated using the two different sets of I-values were found to agree with each other within 1.6% or better. k Q factors calculated using current ICRU I-values were found to agree within 2.3% or better with the k Q factors tabulated in IAEA TRS-398, and within 1% or better with experimental values published in the literature. k Q factors calculated using the new I-values were also found to agree within 1.1% or better with the experimental values. This work concludes that perturbation correction factors in proton beams—currently assumed to be equal to unity—are in fact significantly different from unity for some of the ionization chambers studied.

  1. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2012-03-15

    Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  2. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Togno, M [Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen (Germany); IBA Dosimetry, Schwarzenbruck (Germany); Wilkens, J [Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen (Germany); Menichelli, D [IBA Dosimetry, Schwarzenbruck (Germany)

    2014-06-01

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm{sup 3} sensitive volume. The detector was characterized in a plastic phantom with {sup 60} Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm{sup 2}, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm{sup 2}, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this

  3. 用铀裂变室研究反射中子测量技术%Study on technique for measuring reflection neutrons byuranium fission chamber

    Institute of Scientific and Technical Information of China (English)

    刘荣; 林理彬; 王大伦; 励义俊; 蒋励; 王玫; 刘成龙; 杨可

    2000-01-01

    In a cement shielding designed by ourselves, technique for measuring reflection neutrons was studied by using the depleted and enriched uranium fission chambers. In different experiment systems, absolute fission reaction rates, derived from reflection neutrons, at different positions of the surface of an iron spherical shell were measured. The experimental error was about 3.5%4.1%%在自行设计的水泥屏蔽体中,用铀裂变室研究了反射中子测量技术。在不同实验系统上,测量了铁球壳表面不同位置上中子引起的绝对裂变反应率分布。实验总误差为3.9%。

  4. Characterization of recombination effects in a liquid ionization chamber used for the dosimetry of a radiosurgical accelerator.

    Science.gov (United States)

    Wagner, Antoine; Crop, Frederik; Lacornerie, Thomas; Reynaert, Nick

    2014-01-01

    Most modern radiation therapy devices allow the use of very small fields, either through beamlets in Intensity-Modulated Radiation Therapy (IMRT) or via stereotactic radiotherapy where positioning accuracy allows delivering very high doses per fraction in a small volume of the patient. Dosimetric measurements on medical accelerators are conventionally realized using air-filled ionization chambers. However, in small beams these are subject to nonnegligible perturbation effects. This study focuses on liquid ionization chambers, which offer advantages in terms of spatial resolution and low fluence perturbation. Ion recombination effects are investigated for the microLion detector (PTW) used with the Cyberknife system (Accuray). The method consists of performing a series of water tank measurements at different source-surface distances, and applying corrections to the liquid detector readings based on simultaneous gaseous detector measurements. This approach facilitates isolating the recombination effects arising from the high density of the liquid sensitive medium and obtaining correction factors to apply to the detector readings. The main difficulty resides in achieving a sufficient level of accuracy in the setup to be able to detect small changes in the chamber response.

  5. First demonstration of a sub-keV electron recoil energy threshold in a liquid argon ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgio, S., E-mail: samuele@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Joshi, T.H. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Coleman, J. [Department of Physics, University of Liverpool, Oxford St, Liverpool L69 7Ze (United Kingdom); Foxe, M. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Hagmann, C. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Kazkaz, K. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Mavrokoridis, K. [Department of Physics, University of Liverpool, Oxford St, Liverpool L69 7Ze (United Kingdom); Mozin, V.; Pereverzev, S.; Sorensen, P. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2013-11-11

    We describe the first demonstration of a sub-keV electron recoil energy threshold in a dual-phase liquid argon time projection chamber. This is an important step in an effort to develop a detector capable of identifying the ionization signal resulting from nuclear recoils with energies of order a few keV and below. We obtained this result by observing the peaks in the energy spectrum at 2.82 keV and 0.27 keV, following the K- and L-shell electron capture decay of {sup 37}Ar respectively. The {sup 37}Ar source preparation is described in detail, since it enables calibration that may also prove useful in dark matter direct detection experiments. An internally placed {sup 55}Fe x-ray source simultaneously provided another calibration point at 5.9 keV. We discuss the ionization yield and electron recombination in liquid argon at those three calibration energies. -- Highlights: • We measure sub-keV electron recoils in a dual-phase argon time projection chamber. • Ar-37 is produced via neutron irradiation and used as calibration source. • Ar-37 electron captures at 2.82 and 0.27 keV are measured together with Fe-55 x-rays. • Spurious single ionization electrons provided absolute calibration of charge signal. • Modified Thomas–Imel model describes low-energy electron-recoils in liquid Ar.

  6. Power measurement in the 7A2 configuration of the RP-0 reactor using the neutron noise technique connected to a compensated ionized chamber

    International Nuclear Information System (INIS)

    Results of the neutron noise measurements carried out in the 7A2 configuration of the RP-0 reactor using the BC3 rod to reach criticality are presented. These measurements were carried out using a compensated ionized chamber (CIC) located at E2 position. Finally, potential calibration of the march chamber 4 from the reactor instrumentation is presented

  7. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    International Nuclear Information System (INIS)

    Highlights: ► We report first time that ionizing radiation induces mitochondrial dynamic changes. ► Radiation-induced mitochondrial fission was caused by Drp1 localization. ► We found that radiation causes delayed ROS from mitochondria. ► Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O2·- production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O2·-. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  8. A liquid xenon ionization chamber in an all-fluoropolymer vessel

    CERN Document Server

    LePort, F; Baussan, E; Breidenbach, M; Conley, R; DeVoe, R; Diez, M M; Fairbank, W; Farine, J; Fierlinger, P; Flatt, B; Gratta, G; Green, M; Hall, C; Hall, K; Hallman, D; Hargrove, C K; Hodgson, J; Jeng, S; Koffas, T; Leonard, D S; Mackay, D; Martin, Y; Neilson, R; O'Sullivan, K; Odian, A; Ounalli, L; Piepke, A; Pocar, A; Prescott, C Y; Rowson, P C; Schenker, D; Sinclair, D; Skarpaas, K V; Stekhanov, V; Strickland, V; Virtue, C; Vuilleumier, J L; Vuilleumier, J M; Waldman, S J; Wamba, K; Weber, P; Wodin, J; Woisard, D

    2006-01-01

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  9. Calibration of a 4π-γ well-type ionization chamber system for measuring of the radionuclides activity

    International Nuclear Information System (INIS)

    The calibration of a 4π well-type ionization Chamber System installed at the Laboratorio de Metrologia Nuclear, of the Instituto de Energia Atomica of Sao Paulo used for of the activity determination of radioactive solutions is descrided. The determination can be performed by two methods: 1) Direct Method, comparing the ionization Chamber response for solutions of unknown activity against that obtained with a solution which is standardized by the Absolute 4πβγ Coincidence Method. By this method the following radionuclides are standardized: 241Am, 139Ce, 198Au, 22Na, 134Cs, 54Mn, 60Co, 42K, 24Na. In this case, the accuracy achieved is about 0.2 to 0,4%. 2) Indirect Method, by means of curves of relative beta or gama efficiency, which were determined in this work. This method can be applied for those radionuclides not included in the direct method. In this case, the accuracy depends on the gama energy range of the curves and on the accuracy of the absolute gama intensities, taken from the literature. In general the uncertainty is greater than the direct method, but values of 0,2% can be achieved in favourable cases. The upper and lower limits of Activity that can be measured depend on the radionuclide. These limits are from a few micro-curies to many mili-curies, which are satisfactory for most purposes. The sample preparation is simple and the time spent in the measurement is, in general, restricted to a few minutes. These are some of the advantages of this ionization Chamber System in comparison with other systems

  10. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography

    International Nuclear Information System (INIS)

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  11. First demonstration of a sub-keV electron recoil energy threshold in a liquid argon ionization chamber

    CERN Document Server

    Sangiorgio, S; Coleman, J; Foxe, M; Hagmann, C; Joshi, T H; Jovanovic, I; Kazkaz, K; Mavrokoridis, K; Mozin, V; Pereverzev, S; Sorensen, P

    2013-01-01

    We make a first demonstration of a sub-keV electron recoil energy threshold in a dual-phase liquid argon time-projection chamber. This is an important step in a program to build a detector capable of identifying the ionization signal resulting from nuclear recoils at a few keV and below. We obtained this result by observing the peaks in the energy spectrum at 2.82 keV and 0.27 keV, following the K- and L-shell electron capture decay of Ar-37. We describe the details of the Ar-37 source preparation, as this calibration technique may prove useful, e.g. for dark matter direct detection experiments. A Fe-55 internal x-ray source was also measured simultaneously and provided another calibration point at 5.9 keV. We discuss the ionization yield and electron recombination in liquid argon at the three calibration energies.

  12. Evaluation of dosimetric characteristics of multi-leaf and conventional collimated radiation fields using a scanning liquid ionization chamber EPID.

    Science.gov (United States)

    Mohammadi, M; Bezak, E

    2008-12-01

    The characteristics of radiation fields set up using conventional and Multi-Leaf collimators were investigated using a Scanning Liquid Ionization Chamber Electronic Portal Imaging Device (SLIC-EPID). Results showed that the radiation fields set up using MLCs are generally larger than those set up using conventional collimators. A significant difference was observed between the penumbra width for conventional and MLC radiation fields. SLIC-EPID was found to be a sensitive device to evaluate the characteristics of the radiation fields generated with MLCs.

  13. A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization

    CERN Document Server

    Rossi, B; Ereditato, A; Haug, S; Hanni, R; Hess, M; Janos, S; Juget, F; Kreslo, I; Lehmann, S; Lutz, P; Mathieu, R; Messina, M; Moser, U; Nydegger, F; Schutz, H U; Weber, M S; Zeller, M

    2009-01-01

    This paper describes the design, realization and operation of a prototype liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the development of a novel online monitoring and calibration system exploiting UV laser beams. In particular, the system is intended to measure the lifetime of the primary ionization in LAr, in turn related to the LAr purity level. This technique could be exploited by present and next generation large mass LAr TPCs for which monitoring of the performance and calibration plays an important role. Results from the first measurements are presented together with some considerations and outlook.

  14. Study on the realization of a minimum ionizing particle detector: development of a PPAC (Parallel-plate Avalanche Chamber)

    International Nuclear Information System (INIS)

    Parallel-Plate Avalanche Chamber (PPAC) detectors are used currently to observe nuclear disintegrations in nuclear physics. The work that has been done here shows PPAC can be used in high energy physics under certain conditions to detect minimum ionizing particles. Their advantage is to join good time resolution with low matter density. A PPAC prototype has been made with 90% efficiency, 3 NS jitter, 2 NS rise time, 20 mg/cm2 mass, 1.5 mm spatial accuracy. The parameters studied were electrodes design, choice of gas filling, electronics and anode strips. The detector is to be used as a hodoscope with high flux of particles

  15. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan [Departamento de Fisica de Particulas, Facultad de Fisica, Universidade de Santiago de Compostela, A Coruna 15782 (Spain); Servicio de Fisica Medica, Hospital Ruber Internacional, Madrid 28034 (Spain); Departamento de Fisica de Particulas, Facultad de Fisica, Universidade de Santiago de Compostela, A Coruna 15782, Spain and Laboratorio de Radiofisica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruna 15782 (Spain); National Physical Laboratory, Teddington, Middx TW11 OLW (United Kingdom); Departamento de Fisica de Particulas, Facultad de Fisica, Universidade de Santiago de Compostela, A Coruna 15782, Spain and Laboratorio de Radiofisica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruna 15782 (Spain); Departamento de Fisica de Particulas, Facultad de Fisica, Universidade de Santiago de Compostela, A Coruna 15782 (Spain)

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between

  16. A Solid-State Spark Chamber for Detection of Ionizing Radiation

    OpenAIRE

    Fabio ALVES; Smith, Craig; Karunasiri, Gamani

    2014-01-01

    The article of record as published may be found at http://dx.doi.org/10.1016/j.sna.2014.05.0150924-4247/ In this article we report on an ionizing radiation detector based on a silicon controlled switch (SCS). An SCS connected to an RC load was exposed to ionizing radiation resulting in the generation of a large voltage pulse for each ionization event. Alpha particles from an Am-241 source were detected with near 100% efficiency. Beta particles from a Cs-137 source were detected us...

  17. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards; Avaliacao da dependencia energetica de camaras de ionizacao do tipo lapis calibradas em feixes padroes de tomografia

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A., E-mail: lpfontes@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  18. Positioning of a plane-parallel ionization chamber in clinical electron beams and the impact on perturbation factors.

    Science.gov (United States)

    Zink, K; Wulff, J

    2009-04-21

    Current dosimetry protocols recommend the use of plane-parallel ionization chambers for the dosimetry of clinical electron beams. The necessary perturbation corrections p(wall) and p(cav) are assumed to be unity, independent of the depth of measurement and the energy of the primary electrons. To verify these assumptions detailed Monte Carlo studies of a Roos chamber in clinical electron beams with energies in the range of 6-21 MeV are performed at different depths in water and analyzed in terms of Spencer-Attix cavity theory. Separate simulations for the perturbation corrections p(wall) and p(cav) indicate quite different properties of both correction factors with depth. Dose as well as fluence calculations show a nearly depth-independent wall correction factor for a shift of the Roos chamber Deltaz = -0.017 cm toward the focus. This value is in good agreement with the positioning recommendation given in all dosimetry protocols. Regarding the fluence perturbation p(cav) the simulation of the electron fluence inside the air cavity in comparison to water unambiguously reveals an in-scattering of low energy electrons, despite the fact, that the cavity is 'well guarded'. For depths beyond the reference depth z(ref) this effect is superimposed by an increased loss of primary electrons from the beam resulting in p(cav) > 1. This effect is largest for low electron energies but present for all electron energies involved in this study. Based on the different depth dependences of p(wall) and p(cav) it is possible to choose a chamber shift Deltaz in a way to minimize the depth dependence of the overall perturbation factor p. For the Roos chamber this shift is Deltaz = -0.04 cm independent of electron energy.

  19. A new method to identify nuclear charges of fission fragments

    International Nuclear Information System (INIS)

    For a mass and velocity selected beam of fission fragments, the elemental components of the beam have been determined by measuring the difference between the time the fragments enter an axial ionization chamber (with the electrical field lines parallel to the particle trajectory) and the time the anode pulse crosses a given level. The nuclear charge resolution achieved for typical fission fragments out of the light mass group in thermal neutron induced fission of 235U is Z/δZ = 43 for a nuclear charge Z = 39. (orig.)

  20. Multiple sampling ionization chamber (MUSIC) for investigation of fusion induced by halo nuclei

    International Nuclear Information System (INIS)

    A high resolution MUSIC for low and medium energy ions up to ∼ 20 AMeV, for investigation of fusion processes induced by halo nuclei, has been achieved. The chamber was used in the first experiments, aiming at investigating fusion processes induced by 9,11 Li with light targets. In these experiments MUSIC was used for the identification of the inclusive evaporation residues produced in the Si detector target, mounted inside the chamber. By using MUSIC it was possible to separate the inclusive spectra corresponding to the fusion processes, from the background due to the energy degraded beam particles. In principle such a chamber could be also used for investigation of particular fusion channels produced in the entrance window. In this case one could obtain the fusion product trajectory angle with the horizontal plane, by coupling each anode pad to a TDC. The chamber was also provided by a position grid, mounted between the Frisch grid and the anode pads. The energy loss distribution widths were measured using α particles. The chamber was filled with P-10 gas at pressures between 200 and 300 torr. The obtained resolution corresponding to a single pad, is close to the limit derived from the theory of Badhwar. (authors)

  1. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber

    International Nuclear Information System (INIS)

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium

  2. Beta-efficiency of a typical gas-flow ionization chamber using GEANT4 Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hussain Abid

    2011-01-01

    Full Text Available GEANT4 based Monte Carlo simulations have been carried out for the determination of efficiency and conversion factors of a gas-flow ionization chamber for beta particles emitted by 86 different radioisotopes covering the average-b energy range of 5.69 keV-2.061 MeV. Good agreements were found between the GEANT4 predicted values and corresponding experimental data, as well as with EGS4 based calculations. For the reported set of b-emitters, the values of the conversion factor have been established in the range of 0.5×1013-2.5×1013 Bqcm-3/A. The computed xenon-to-air conversion factor ratios have attained the minimum value of 0.2 in the range of 0.1-1 MeV. As the radius and/or volume of the ion chamber increases, conversion factors approach a flat energy response. These simulations show a small, but significant dependence of ionization efficiency on the type of wall material.

  3. Design and Development of Ionization Chamber for Detection of X-Ray Beam AT INDUS-2 RRCAT

    Directory of Open Access Journals (Sweden)

    Nawaz Ali Sayed

    2013-02-01

    Full Text Available The goal of this paper was to design and develop a Microcontroller based data acquisition unit for detection of X-ray flux through Ionization chamber that will remotely control and monitor the ultra-low current signal detection analog module precisely. This application will be useful to measure the intensity of x-ray flux through the ionization chamber in a beam line of synchrotron radiation source which is mounted in INDUS-2. The beam line area is highly restricted because of hazardous radiation, so through this application remote interfacing provides for the ultra-low current signal detection card that can be controlled by personal computer. To design a perfect embedded system there are many issues like designing a proper PCB, to achieve the specified resolution of the ADC used in chip, code developed using any compiler should be within the limit of the memory of the microcontroller system and integrity of the devices used in the circuit. Initially explore and gain the knowledge of embedded systems by doing a small project and writing the code for the same, and gain a knowledge how the system works. Programming has done in assembly language 8051, for schematic design PCB design tool ORCAD (VERSION 9.0 use

  4. Experimental study on the influence of the central electrode in Farmer-type ionization chambers

    International Nuclear Information System (INIS)

    In the IAEA TRS-381 protocol, kcel and pcel account for the central electrode perturbation during the air kerma chamber calibration and the in-phantom measurements. The values of these correction factors are based mainly on Monte Carlo simulations. In the present work experimental data on kcel and pcel for the NE-2571 chamber is provided, relative to a graphite electrode. In addition, the relative influence of the 3 mm diameter A-150 central electrode of the NE-2581 chamber is studied. The experimentally determined value of kcel for a 1 mm aluminium electrode is 1.008±0.2%, and of pcel in photon and electron beams 0.993±0.2% and 0.997±0.2% respectively. The experimental data and the Monte Carlo simulations agree to within 0.2%. No significant influence of the A-150 central electrode diameter on the absorbed dose determination is shown. (author)

  5. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance.

    Science.gov (United States)

    Arjomandy, Bijan; Sahoo, Narayan; Ding, Xiaoning; Gillin, Michael

    2008-09-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32 x 32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry.

  6. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  7. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Science.gov (United States)

    Sharifi, B.; Zamani Zeinali, H.; Soltani, J.; Negarestani, A.; Shahvar, A.

    2015-01-01

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  8. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    Science.gov (United States)

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry.

  9. Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber

    Science.gov (United States)

    Martschini, Martin; Buchriegler, Josef; Collon, Philippe; Kutschera, Walter; Lachner, Johannes; Lu, Wenting; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-10-01

    93Zr with a half-life of 1.6 Ma is produced with high yield in nuclear fission, and thus should be present as a natural or anthropogenic trace isotope in all compartments of the general environment. Sensitive measurements of this isotope would immediately find numerous applications, however, its detection at sufficiently low levels has not yet been achieved. AMS measurements of 93Zr suffer from the interference of the stable isobar 93Nb. At the Vienna Environmental Research Accelerator VERA a new multi-anode ionization chamber was built. It is optimized for isobar separation in the medium mass range and is based on the experience from AMS experiments of 36Cl at our 3-MV tandem accelerator facility. The design provides high flexibility in anode configuration and detector geometry. After validating the excellent energy resolution of the detector with 36S, it was recently used to study iron-nickel and zirconium-niobium-molybdenum isobar separation. To our surprise, the separation of 94Zr (Z = 40) from 94Mo (Z = 42) was found to be much better than that of 58Fe (Z = 26) from 58Ni (Z = 28), despite the significantly larger ΔZ/Z of the latter pair. This clearly contradicts results from SRIM-simulations and suggests that differences in the stopping behavior may unexpectedly favor identification of 93Zr. At 24 MeV particle energy, a 93Nb (Z = 41) suppression factor of 1000 is expected based on a synthetic 93Zr spectrum obtained by interpolation between experimental spectra from the two neighboring stable isotopes 92Zr and 94Zr. Assuming realistic numbers for chemical niobium reduction, a detection level of 93Zr/Zr below 10-9 seems feasible.

  10. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R50 < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications

  11. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B R; McEwen, M R [Measurement Science and Standards, National Research Council, Ottawa, ON (Canada)

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  12. Calibration of well-type ionization chambers; Calibracao de camaras de ionizacao do tipo poco

    Energy Technology Data Exchange (ETDEWEB)

    Alves, C.F.E.; Leite, S.P.; Pires, E.J.; Magalhaes, L.A.G.; David, M.G.; Almeida, C.E. de, E-mail: cfealves@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Di Prinzio, R. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper presents the methodology developed by the Laboratorio de Ciencias Radiologicas and presently in use for determining of the calibration coefficient for well-type chambers used in the dosimetry of {sup 192}Ir high dose rate sources. Uncertainty analysis involving the calibration procedure are discussed. (author)

  13. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zink, K., E-mail: klemens.zink@kmub.thm.de [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390, Germany and Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg D-35043 (Germany); Czarnecki, D.; Voigts-Rhetz, P. von [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390 (Germany); Looe, H. K. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg D-26129, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg D-26129 (Germany); Harder, D. [Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen D-37073 (Germany)

    2014-11-01

    Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known “inscattering effect,” whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the in–out balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the in–out balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the

  14. Characterization of the PTW SourceCheck ionization chamber with the Valencia lodgment for (125)I seed verification.

    Science.gov (United States)

    Tornero-López, Ana M; Torres Del Río, Julia; Ruiz, Carmen; Perez-Calatayud, Jose; Guirado, Damián; Lallena, Antonio M

    2015-12-01

    In brachytherapy using (125)I seed implants, a verification of the air kerma strength of the sources used is required. Typically, between 40 and 100 seeds are implanted. Checking all of them is unaffordable, especially when seeds are disposed in sterile cartridges. Recently, a new procedure allowing the accomplishment of the international recommendations has been proposed for the seedSelectron system of Elekta Brachytherapy. In this procedure, the SourceCheck ionization chamber is used with a special lodgment (Valencia lodgment) that allows to measure up to 10 seeds simultaneously. In this work we analyze this procedure, showing the feasibility of the approximations required for its application, as well as the effect of the additional dependence with the air density that shows the chamber model used. Uncertainty calculations and the verification of the approximation needed to obtain a calibration factor for the Valencia lodgment are carried out. The results of the present work show that the chamber dependence with the air density is the same whether the Valencia lodgment is used or not. On the contrary, the chamber response profile is influenced by the presence of the lodgment. The determination of this profile requires various measurements due to the nonnegligible variability found between different experiments. If it is considered, the uncertainty in the determination of the air-kerma strength increases from 0.5% to 1%. Otherwise, a systematic additional uncertainty of 1% would occur. This could be relevant for the comparison between user and manufacturer measurements that is mandatory in the case studied here.

  15. High resolution measurements of neutral density and ionization rate in the main chamber of the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, R.L. E-mail: boivin@psfc.mit.edu; Goetz, J.; Hubbard, A.; Hughes, J.W.; Irby, J.; LaBombard, B.; Marmar, E.; Mossessian, D.; Terry, J.L

    2001-03-01

    Recent theoretical and experimental work has focused on the importance of neutrals in the edge dynamics of Alcator C-Mod plasmas. Two new high resolution detectors have been installed on the Alcator C-Mod tokamak to measure the neutral density and ionization rate near the edge of the discharge in the main chamber. The detectors consist of a 20 channel photodiode array which views the plasma tangentially 12.5 cm below the outer midplane, and 10 cm above the inner midplane, with a nominal radial resolution of 2 and 3 mm, respectively. The spectral bandwidth is limited by a filter with a very narrow band around the neutral deuterium Lyman alpha wavelength (1215 Angstrom). The local emissivity is then obtained via a standard Abel inversion of the absolutely calibrated brightness profile. Employing well-known branching ratios, and using measured local electron density and temperature, we therefore, infer the neutral density and ionization rate with similar radial resolution. We have observed that both Lyman alpha emissivity and ionization rate are usually peaked near the separatrix with a full width, half-maximum between 1 and 2 cm. The neutral density was found to drop rapidly with decreasing minor radius, from 2-3x10{sup 17}/m{sup 3} (5-10 mm outside the separatrix) to 1-2x10{sup 16}/m{sup 3} (5-10 mm inside the separatrix) for a line averaged density of 2.0x10{sup 20}/m{sup 3}. Variations in ionization rate and neutral density from low to high confinement mode (L and H mode) are also discussed.

  16. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    Science.gov (United States)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  17. Method for determining correction factors induced by irradiation of ionization chamber cables in large radiation field

    International Nuclear Information System (INIS)

    A simple method was developed to be suggested to hospital physicists in order to be followed during large radiation field dosimetry, to evaluate the effects of cables, connectors and extension cables irradiation and to determine correction factors for each system or geometry. All quality control tests were performed according to the International Electrotechnical Commission for three clinical dosimeters. Photon and electron irradiation effects for cables, connectors and extention cables were investigated under different experimental conditions by means of measurements of chamber sensitivity to a standard radiation source of 90Sr. The radiation induced leakage current was also measured for cables, connectors and extension cables irradiated by photons and electrons. All measurements were performed at standard dosimetry conditions. Finally, measurements were performed in large fields. Cable factors and leakage factors were determined by the relation between chamber responses for irradiated and unirradiated cables. (author)

  18. Double ionization chamber as neutron flux monitor and for tritium breeding studies in fusion blanket experiments

    International Nuclear Information System (INIS)

    A new method for direct determination of tritium breeding, specially suited to thermal blankets is presented. The method can provide true tritium events even in the presence of a reasonable fraction of high energy neutrons. There exists no transfer or recovery losses and also the method exhibits good efficiency, in addition to being an on-line one. The detector consist of two identical chambers separated by a common earthing ring which supports a thin nickel foil loaded with Li6F covered with a thin gold layer acting as a conducting electrode. Two nickel discs are held symmetrically on either side of the central electrode as charge collectors. The chambers can be filled with a suitable inert gas. The system response to thermal neutrons was calculated by both analytical as well Monte Carlo method and is in good agreement with experimental results

  19. Multiple sampling ionization chamber (MUSIC) for fusion induced by halo nuclei investigation

    International Nuclear Information System (INIS)

    A high resolution MUSIC, for low and medium energy ion, has been developed. The high pulse height resolution was obtained by coupling the preamplifiers directly to the anode pads. The pulse height measurements were performed by using a 241 Am alpha source. The energy loss distribution widths measured in P-10 gas at pressures between 200 and 300 torr are in agreement with the theory of Badhwar. The achieved resolution of the chamber is closed to the statistical limit. MUSIC was used for fusion investigation by using 11 Li radioactive beam and Si and C targets. It was found to be very useful in eliminating the energy degraded and parasitic beam admixtures. It was expected that this type of chamber could be used also for isotopes of light elements identification, in Accelerator Mass Spectrometry applications. (authors)

  20. Analysis of ionization distributions in a low-pressure cloud chamber

    International Nuclear Information System (INIS)

    A low-pressure cloud chamber has been constructed which can resolve individual ions in the tracks of low-energy electrons. Droplets formed by photoelectrons and Auger electrons from characteristic aluminum x rays have been photographed and their three-dimensional coordinates reconstructed. The accuracy of these coordinates is limited mainly by diffusion in the chamber which is estimated to be equivalent to 4.0 +- 1.5 nm in water at unit density. This paper describes a method of computing and analyzing individual electron tracks from the droplet coordinates. Track-length data have been determined for each type of track. Rossi Y distributions have been calculated for target sizes equivalent to 6, 12, and 24 nm in water at unit density. Histograms of interdroplet distances (T distributions) have been calculated and compared to similar distributions derived from results of Monte Carlo calculations. The cloud chamber has been filled with an approximately tissue-equivalent mixture. Results should be useful for checking the physical basis of target theories of radiation action

  1. Comparison of the half-value layer: ionization chambers vs solid-state meters; Comparacao entre medidas de camada semirredutora: camara de ionizacao vs medidores de estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.C.S.; Navarro, V.C.C.; Navarro, M.V.T.; Macedo, E.M., E-mail: larapereira@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude

    2015-07-01

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  2. Experimental research of high-pressure tissue equivalent ionization chamber used for detecting in mixed radiation field

    International Nuclear Information System (INIS)

    The design principle of tissue equivalent ionization chamber based on the theory of recombination was described, and the area neutron and gamma dose equivalent instrument was designed. This detection system can indirectly acquire the information of the ambient dose equivalent, the absorbed dose and the quality factor of the mixed radiation field using only one probe. Moreover, the detection system was tested by the accelerator and the standard radiation field. The results indicate that the system has good energy response and sensitivity to the neutron and gamma radiation, especially to the high energy gamma radiation and the neutrons with energy ranging from thermal to dozens of MeV. The uncertainty can be controlled within ±50%, while the dose rate of the radiation is above dozens of μSv/h, so this detection system can serve as the necessary measurement instruments and monitoring technology for the places having the mixed radiation field of neutron and gamma ray. (authors)

  3. Multi-concentric-ring open-air ionization chamber for high-intensity X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Nariyama, Nobuteru

    2014-11-01

    An ionization chamber with four concentric ring electrodes was used to measure doses of white, 10, 15 and 20 keV synchrotron X-ray beams. The ring-shaped electrodes, which had diameters less than 11.8 mm, collected charges independently only around the beam, excluding strong in-beam charges when the beams passed through a small hole in the electrode centers. As a result, under low saturation voltages, the measured dose rates were confirmed to correlate with the beam intensity when conversion factors calculated with a Monte Carlo code were employed. The influence of the assumed beam sizes and incident positions on the current was almost negligible, with the exception of the incident position dependence at 10 keV.

  4. Study of the performance of the ATLAS monitored drift tube chambers under the influence of heavily ionizing $\\alpha$-particles

    CERN Document Server

    Sampsonidis, Dimitrios; Liolios, Anastasios; Manolopoulou, Metaxia; Petridou, C

    2004-01-01

    The MDT chambers of the ATLAS Muon Spectrometer will operate in a heavy LHC background environment mainly from photons and neutrons. The ionization produced by neutron recoils is much higher than the one from photons or muons and can be simulated by the use of alpha particles. A systematic study of the behavior of the ATLAS Monitored Drift Tubes (MDTs) under controlled irradiation has been performed. The presence of alpha particles results in the reduction of the gas gain due to space charge effects. The gas gain reduction has been studied in a single tube set up using a well controlled radium (/sup 226/Ra) source in order to enrich the tube gas (Ar/CO/sub 2/) with the alpha emitter /sup 220/Rn and irradiate the tubes internally. The results are confronted with Garfield simulations.

  5. Characteristics of A-150 plastic equivalent gas in A-150 plastic ionization chambers for p(66)Be(49) neutrons

    International Nuclear Information System (INIS)

    The average energy necessary to produce an electron-ion pair (anti W) of a gas mixture having an atomic composition very close to that of A-150 plastic has been studied through use in different size ionization chambers made of that plastic in a p(66)Be(49) neutron therapy beam. A tentative value for anti W(A-150-gas) of 27.3 +/ -0.5 J C-1 was derived. The anti W value of the A-150 equivalent gas mixture is compared to those of methane-based tissue-equivalent gas and of air for the p(66)Be(49) neutron beam as well as to corresponding values found in similar experiments using 14.8 MeV monoenergetic neutrons

  6. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Chun [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Liu, Yuan-Hao, E-mail: yhl.taiwan@gmail.com [Boron Neutron Capture Therapy Center, Nuclear Science and Technology Development Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan (China); Nievaart, Sander [Institute for Energy, Joint Research Centre, European Commission, Petten (Netherlands); Chen, Yen-Fu [Department of Engineering and System Science, National Tsing Hua University, Taiwan (China); Wu, Shu-Wei; Chou, Wen-Tsae [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Jiang, Shiang-Huei [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)

    2011-10-01

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary {sup 60}Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the {sup 60}Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  7. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    International Nuclear Information System (INIS)

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  8. Study on High Stable Measurement Techniques for Campbell Fission Chambers%坎贝尔裂变室的高稳定性测量技术研究

    Institute of Scientific and Technical Information of China (English)

    毕道伟

    2016-01-01

    由于负电性分子俘获等微观机理影响,坎贝尔裂变室的动态特性在运行期间将发生变化,甚至导致测量输出严重偏离堆芯真实功率。为防止上述因素对核电厂安全造成的不利影响,建立了裂变室时频冲击响应模型,研究了微观过程与频谱特性的映射关系,引入带通滤波方法对传统测量系统进行改进,将坎贝尔测量限制在电子漂移区,实现了复杂变化条件下的高稳定性测量。%Dynamic characteristics of Campbell fission chambers will change while in operation , due to the im-pacts of such microscopic mechanisms as capturing of electrically negative molecules , which could potentially result in measurement outputs significantly deviating from the true reactor power .To avoid the abovementioned negative impacts on reactor safety , time-frequency impulse response models are established for fission cham-bers, and the mapping relationship between microscopic processes and frequency characteristics are well stud -ied.The signal processing method of band -pass filtering is therefore introduced to improve performance of tra-dition measurement systems and limit the Campbell measurement within the range of electron drift zone , thus a-chieving highly stable measurement under complicated changing conditions .

  9. A method to increase the nominal range resolution of a stack of parallel-plate ionization chambers

    Science.gov (United States)

    Rinaldi, I.; Brons, S.; Jäkel, O.; Voss, B.; Parodi, K.

    2014-09-01

    A detector prototype based on a stack of 61 parallel-plate ionisation chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) was assembled for transmission imaging purposes in ion beam therapy. The thickness of the absorber sheets in the PPIC stack determines the nominal range resolution of the detector. In the current set-up, 3 mm PMMA slabs are used. The signal of the 61 active channels of the stack thereby provides a discrete approximation of the Bragg curve in the detector. In this work, a data processing method to increase the range resolution (MIRR) in a stack of ionization chambers is presented. In the MIRR the position of the maximum of the Bragg curve is deduced from the ratio of measured signals in adjacent PPIC channels. The method is developed based on Bragg curves obtained from Monte Carlo simulations and validated with experimental data of a wedge-shaped PMMA phantom acquired with the PPIC stack using carbon ion beams. The influence of the initial beam energy and of phantom inhomogeneities on the MIRR is quantitatively evaluated. Systematic errors as well as inaccuracies related to signal noise are discussed and quantified. It is shown that with the MIRR an increased range resolution of 0.7 mm PMMA equivalent or 0.8 mm water equivalent thickness is achieved for the considered experimental data.

  10. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, C. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Boissonnat, G., E-mail: boissonnat@lpccaen.in2p3.fr [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Brusasco, C. [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Colin, J.; Cussol, D.; Fontbonne, J.M. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Marchand, B.; Mertens, T.; Neuter, S. de [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Peronnel, J. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France)

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  11. Scattering study at free air ionization chamber diaphragm; Estudo do espalhamento no diafragma da camara de ionizacao de ar livre

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Alexandre Lo Bianco dos

    2011-07-01

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are k{sub RQR-M1}=0,9946, k{sub RQR} {sub -M2}=0,9932, k{sub RQR-M3}=0,9978 and k{sub RQR-M4}=0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  12. Electron beam quality kQ,Q0 factors for various ionization chambers: a Monte Carlo investigation with penelope

    Science.gov (United States)

    Erazo, F.; Brualla, L.; Lallena, A. M.

    2014-11-01

    In this work we calculate the beam quality correction factor {{k}\\text{Q,{{\\text{Q}}0}}} for various plane-parallel ionization chambers. A set of Monte Carlo calculations using the code penelope/penEasy have been carried out to calculate the overall correction factor fc,Q for eight electron beams corresponding to a Varian Clinac 2100 C/D, with nominal energies ranging between 6 MeV and 22 MeV, for a 60Co beam, that has been used as the reference quality Q0 and also for eight monoenergetic electron beams reproducing the quality index R50 of the Clinac beams. Two field sizes, 10 × 10 cm2 and 20 × 20 cm2 have been considered. The {{k}\\text{Q,{{\\text{Q}}0}}} factors have been calculated as the ratio between fc,Q and {{f}\\text{c,{{\\text{Q}}0}}} . Values for the Exradin A10, A11, A11TW, P11, P11TW, T11 and T11TW ionization chambers, manufactured by Standard Imaging, as well as for the NACP-02 have been obtained. The results found with the Clinac beams for the two field sizes analyzed show differences below 0.6%, even in the case of the higher energy electron beams. The {{k}\\text{Q,{{\\text{Q}}0}}} values obtained with the Clinac beams are 1% larger than those found with the monoenergetic beams for the higher energies, above 12 MeV. This difference can be ascribed to secondary photons produced in the linac head and the air path towards the phantom. Contrary to what was quoted in a previous work (Sempau et al 2004 Phys. Med. Biol. 49 4427-44), the beam quality correction factors obtained with the complete Clinac geometries and with the monoenergetic beams differ significantly for energies above 12 MeV. Material differences existing between chambers that have the same geometry produce non-negligible modifications in the value of these correction factors.

  13. Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber.

    Science.gov (United States)

    Meijsing, I; Raaymakers, B W; Raaijmakers, A J E; Kok, J G M; Hogeweg, L; Liu, B; Lagendijk, J J W

    2009-05-21

    The UMC Utrecht is constructing a 1.5 T MRI scanner integrated with a linear accelerator (Lagendijk et al 2008 Radiother. Oncol. 86 25-9). The goal of this device is to facilitate soft-tissue contrast based image-guided radiotherapy, in order to escalate the dose to the tumour while sparing surrounding normal tissues. Dosimetry for the MRI accelerator has to be performed in the presence of a magnetic field. This paper investigates the feasibility of using a Farmer NE2571 ionization chamber for absolute dosimetry. The impact of the mcagnetic field on the response of this ionization chamber has been measured and simulated using GEANT4 Monte Carlo simulations. Two orientations of the ionization chamber with respect to the incident beam and the magnetic field which are feasible in the MRI accelerator configuration are taken into account. Measurements are performed using a laboratory magnet ranging from 0 to 1.2 T. In the simulations a range from 0 to 2 T is used. For both orientations, the measurements and simulations agreed within the uncertainty of the measurements and simulations. In conclusion, the response of the ionization chamber as a function of the magnetic field is understood and can be simulated using GEANT4 Monte Carlo simulations.

  14. Estimate of control rods effectiveness of the RP-0 reactor 7A2 core by the rod-drop method using a compensated ionization chamber

    International Nuclear Information System (INIS)

    Value estimate results of the four control rods by the rod-drop method are presented using the 'point reactor model' for the RP-0 reactor 7A2 core employing the inverse kinetics neutronic noise equipment and a compensated ionization chamber located in the E2 core. At every moment, the reactor power was known and it was calibrated with the same equipment

  15. Expected signal for the TBID and the ionization chambers downstream of the CNGS target station

    CERN Document Server

    Sarchiapone, L; Gschwendtner, E; Lorenzo-Sentis, M

    2006-01-01

    Downstream of the carbon graphite target of the CNGS (CERN Neutrinos to Gran Sasso) facility at CERN a secondary emission monitor called TBID (Target Beam Instrumentation Downstream) is installed to measure the multiplicities and the left/right as well as up/down asymmetries of secondary particles from the target. Calculations show that the titanium windows used to close off the TBID vacuum tank might not withstand the highest beam intensities with small spot sizes expected at CNGS, in case the proton beam accidentally misses the 4-5 mm diameter target rods. Therefore it has been suggested to place two ionisation chambers as a backup for the TBID, located left and right of the TBID monitor. Monte Carlo simulations with the particle transport code FLUKA were performed firstly to obtain the fluence of charged particles in the region of interest and secondly to estimate the induced radioactivity (background signal) in this area. This allows to assess the actual signal/noise situation and thus to determine the op...

  16. Experimental analysis of general ion recombination in a liquid-filled ionization chamber in high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunah; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal General Hospital (L5-113), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Davis, Stephen [Department of Medical Physics, McGill University Health Centre, Montreal General Hospital (L5-112), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada)

    2013-06-15

    Purpose: To study experimentally the general ion recombination effect in a liquid-filled ionization chamber (LIC) in high-energy photon beams. Methods: The general ion recombination effect on the response of a micro liquid ion chamber (microLion) was investigated with a 6 MV photon beam in normal and SRS modes produced from a Varian{sup Registered-Sign} Novalis Tx{sup TM} linear accelerator. Dose rates of the linear accelerator were set to 100, 400, and 1000 MU/min, which correspond to pulse repetition frequencies of 60, 240, and 600 Hz, respectively. Polarization voltages applied to the microLion were +800 and +400 V. The relative collection efficiency of the microLion response as a function of dose per pulse was experimentally measured with changing polarization voltage and pulse repetition frequencies and was compared with the theoretically calculated value. Results: For the 60 Hz pulse repetition frequency, the experimental relative collection efficiency was not different from the theoretical one for a pulsed beam more than 0.3% for both polarization voltages. For a pulsed radiation beam with a higher pulse repetition frequency, the experimental relative collection efficiency converged to the theoretically calculated efficiency for continuous beams. This result indicates that the response of the microLion tends toward the response to a continuous beam with increasing pulse repetition frequency of a pulsed beam because of low ion mobility in the liquid. Conclusions: This work suggests an empirical method to correct for differences in general ion recombination of a LIC between different radiation fields. More work is needed to quantitatively explain the LIC general ion recombination behavior in pulsed beams generated from linear accelerators.

  17. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  18. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests.

    Science.gov (United States)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V; Pardo-Montero, Juan

    2012-08-21

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  19. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  20. Time-of-flight ERD with a 200 mm2 Si3N4 window gas ionization chamber energy detector

    Science.gov (United States)

    Julin, Jaakko; Laitinen, Mikko; Sajavaara, Timo

    2014-08-01

    Low energy heavy ion elastic recoil detection work has been carried out in Jyväskylä since 2009 using home made timing detectors, a silicon energy detector and a timestamping data acquisition setup forming a time-of-flight-energy telescope. In order to improve the mass resolution of the setup a new energy detector was designed to replace the silicon solid state detector, which suffered from radiation damage and had poor resolution for heavy recoils. In this paper the construction and operation of an isobutane filled gas ionization chamber with a 14 × 14 mm2 100 nm thick silicon nitride window are described. In addition to greatly improved energy resolution for heavy ions, the detector is also able to detect hydrogen recoils simultaneously in the energy range of 100-1000 keV. Additionally the detector has position sensitivity by means of timing measurement, which can be performed without compromising the performance of the detector in any other way. The achieved position sensitivity improves the depth resolution near the surface.

  1. On the interpretation of current-voltage curves in ionization chambers using the exact solution of the Thomson problem

    Science.gov (United States)

    Ridenti, M. A.; Pascholati, P. R.; Gonçalves, J. A. C.; Bueno, C. C.

    2015-09-01

    The I - ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci-120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and saturation current were estimated using this new approach. The saturation current was compared with the results of the conventional method based on Boag-Wilson formula. It was verified that differences larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that this new approach is recommended for a more accurate estimate of the saturation current when it is not possible to measure currents satisfying the condition I /Isat > 0.95. From the calibration curve the average value of pairs of carriers created per unit volume was estimated to be equal to η = 8.1 ×10-3cm-3s-1 Bq-1 and from that value it was estimated that ~ 17 pairs were created on average per second for each decay of the source.

  2. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    CERN Document Server

    Courtois, C; Brusasco, C; Colin, J; Cussol, D; Fontbonne, J M; Marchand, B; Mertens, T; De Neuter, S; Peronnel, J

    2013-01-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, the medical application group from the Laboratory of Corpuscular Physics (LPC Caen) developed an Ionization Chamber in collaboration with the company IBA (Ion Beam Applications). This monitoring device called IC2/3 was developed to be used in IBAs universal irradiation head for Pencil Beam Scanning (PBS). The objectives presented in this article are to characterize the IC2/3 monitor in the energy and ux ranges used in protontherapy. The equipment has been tested with an IBAs cyclotronable to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initials speci cations needed for PBS purposes. The detector measures the dose with a relative precision better than 1% in the rang...

  3. A twin axial ionization chamber for studies of multiple intermediate-mass-fragment production in 1 GeV proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronenko, L.N.; Andronenko, M.N.; Kotov, A.A.; Vaishnene, L.A.; Pavlenko, S.A.; Seliverstov, D.M.; Stepanov, V.L.; Yatsura, V.I. (Leningrad Nuclear Physics Inst., Gatchina (USSR)); Neubert, W. (Zentralinstitut fuer Kernforschung Rossendorf, Dresden (Germany))

    1992-02-15

    A twin axial ionization chamber consisting of 16 cm deep parts was constructed. Two anode signals arising from the same particle trace were simultaneously recorded by two Flash ADCs. The on-line data handling procedure allows the determination of energy, energy loss, range and nuclear charge of the fragments. The energy resolution was better than 1.5%. A charge resolution {Delta}Z/Z<2.5% was found for nuclear charges within the range 2{<=}Z{<=}18. Isotopic separation for Li, Be and B is based on the determination of the range and the energy of the fragments as well as on the {Delta}E-E method. The mass resolution for these elements was about 3%. The twin axial ionization chamber was employed as precise detector in an arrangement which warrants large geometric coverage. The data acquisition system allows the simultaneous measurements of inclusive data as well as correlations between intermediate mass fragments from multiple events. (orig.).

  4. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    CERN Document Server

    Menk, R H; Besch, H J; Walenta, Albert H; Amenitsch, H; Bernstorff, S

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 10 sup 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  5. Calibration methods of plane-parallel ionization chambers used in electron dosimetry; Metodos de calibracao de camaras de ionizacao de placas paralelas para dosimetria de feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Bulla, Roseli Tadeu

    1999-07-01

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of {sup 60} Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  6. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Menk, R.H. E-mail: ralf.menk@elettra.trieste.it; Sarvestani, A. E-mail: sarvestani@alwa02.physik.uni-siegen.de; Besch, H.J.; Walenta, A.H.; Amenitsch, H.; Bernstorff, S

    2000-01-21

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 10{sup 8} and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  7. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    Science.gov (United States)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  8. Identification of hydrogen and helium in elastic recoil detection measurements using a compact ({delta}E - E {sub r}) ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, D. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania)]. E-mail: pantel@ifin.nipne.ro; Isbasescu, A. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania); Negoita, F. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania); Petrascu, H. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania); Petrascu, M. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania); Ionescu, P. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania); Scintee, N. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Magurele (Romania)

    2006-08-15

    Recoil spectrometry with heavy ions has evolved into a rather universal IBA technique. Hydrogen is an important element in a wide variety of thin film materials. In this paper we present the capabilities of a compact {delta}E(gas ionization chamber) - E {sub res}(solid) telescope for simultaneous light and medium heavy element detection. To increase the resolution an integrated preamplifier was mounted close to the ionization chamber. To achieve the simultaneous detection of very light elements (H and He) and of the heavier ones (C, O, Mg, Al) the two outputs from the preamplifier were fed into two main amplifiers, operated with high and low gain, respectively. The calibration procedure for the telescope and the software for the quantitative evaluation of the data are briefly presented. The results obtained in some ERDA measurements using a {sup 63}Cu beam from the FN tandem accelerator of NIPNE are also presented.

  9. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    Science.gov (United States)

    Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.

  10. UF{sub 6} as a detector gas for fission studies

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Enders, Joachim; Freudenberger, Martin; Neumann-Cosel, Peter von [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Goeoek, Alf; Oberstedt, Stephan [Commission of the European Communities, Geel (Belgium). Inst. for Reference Materials and Measurements (IRMM); Oberstedt, Andreas [Akademin foer Naturvetenskap och Teknik, Oerebro Univ. (Sweden); Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Fundamental Fysik

    2013-07-01

    A Frisch-grid ionization chamber has been built to test a mixture of argon with gaseous UF{sub 6} and to study its properties as a counting gas. We present first results using increasing mass fractions of {sup 238}UF{sub 6} mixed into argon. The drift velocity of the electrons increases with the content of {sup 238}UF{sub 6}, while a good signal quality and energy resolution of the ionization chamber is preserved. Using uranium hexafluoride in the detector gas may give access to experiments where extremely high luminosity is required in combination with good angular and energy and/or mass resolution. Examples comprise the investigation of spontaneous fission of {sup 238}U, the study of parity non-conservation in the fission process, or precision measurements of fission fragments with good resolution using tagged photons in the entrance channel.

  11. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, T; Fujitaka, S; Umezawa, M [Hitachi, Ltd., Hitachi Research Laboratory, Hitachi-shi, Ibaraki-ken (Japan); Ito, Y; Nakashima, C; Matsuda, K [Hitachi, Ltd., Hitachi Works, Hitachi-shi, Ibaraki-ken (Japan)

    2014-06-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method.

  12. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    Energy Technology Data Exchange (ETDEWEB)

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  13. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    International Nuclear Information System (INIS)

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  14. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  15. Monte Carlo simulations and benchmark measurements on the response of TE(TE) and Mg(Ar) ionization chambers in photon, electron and neutron beams

    Science.gov (United States)

    Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei

    2015-06-01

    The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7

  16. Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: Machine-specific, plan-class, and clinical fields

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Arias, Araceli; Rodriguez-Romero, Ruth; Sanchez-Rubio, Patricia; Miguel Gonzalez-Castano, Diego; Gomez, Faustino; Nunez, Luis; Palmans, Hugo; Sharpe, Peter; Pardo-Montero, Juan [Departamento de Fisica de Particulas, Facultad de Fisica, Universidad de Santiago de Compostela (Spain); Servicio de Radiofisica, Hospital Universitario Puerta de Hierro, Madrid 28222 (Spain); Departamento de Fisica de Particulas, Facultad de Fisica, Universidad de Santiago de Compostela, 15782 (Spain) and Radiation Physics Laboratory, Universidad de Santiago de Compostela, 15782 (Spain); Servicio de Radiofisica, Hospital Universitario Puerta de Hierro, Madrid, 28222 (Spain); National Physical Laboratory, Teddington, Middx, TW11 OLW (United Kingdom); Departamento de Fisica de Particulas, Facultad de Fisica, Universidad de Santiago de Compostela, 15782 (Spain)

    2012-04-15

    Purpose: Recently, an international working group on nonstandard fields presented a new formalism for ionization chamber reference dosimetry of small and nonstandard fields [Alfonso et al., Med. Phys. 35, 5179-5186 (2008)] which has been adopted by AAPM TG-148. This work presents an experimental determination of the correction factors for reference dosimetry with an Exradin A1SL thimble ionization chamber in a TomoTherapy unit, focusing on: (i) machine-specific reference field, (ii) plan-class-specific reference field, and (iii) two clinical treatments. Methods: Ionization chamber measurements were performed in the TomoTherapy unit for intermediate (machine-specific and plan-class-specific) calibration fields, based on the reference conditions defined by AAPM TG-148, and two clinical treatments (lung and head-and-neck). Alanine reference dosimetry was employed to determine absorbed dose to water at the point of interest for the fields under investigation. The corresponding chamber correction factors were calculated from alanine to ionization chamber measurements ratios. Results: Two different methods of determining the beam quality correction factor k{sub Q,Q{sub 0}} for the A1SL ionization chamber in this TomoTherapy unit, where reference conditions for conventional beam quality determination cannot be met, result in consistent values. The observed values of overall correction factors obtained for intermediate and clinical fields are consistently around 0.98 with a typical expanded relative uncertainty of 2% (k = 2), which when considered make such correction factors compatible with unity. However, all of them are systematically lower than unity, which is shown to be significant when a hypothesis test assuming a t-student distribution is performed (p=1.8x10{sup -2}). Correction factors k{sub Q{sub c{sub l{sub i{sub n,Q{sub p{sub c{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub p}{sub c}{sub s}{sub r}}}}}}}}}} and k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s

  17. [Experimental investigation of the collection efficiency of a PTW Roos ionization chamber irradiated with pulsed beams at high pulse dose with different pulse lengths].

    Science.gov (United States)

    Karsch, Leonhard; Richter, Christian; Pawelke, Jörg

    2011-01-01

    In gas-filled ionization chambers as radiation detectors, the collection of the charge carriers is affected by the recombination effect. In dosimetry this effect must be accounted for by the saturation correction factor k(S). The physical description of the correction factor by Boag, Hochhäuser and Balk for pulsed radiation is well established. However, this description is only accurate when the pulse length is short compared to the collection time of the ionization chamber. In this work experimental investigations of the saturation correction factor have been made for pulses of 4 μ s up to pulse doses of about 230 mGy, and the theory of Boag, Hochhäuser and Balk was again confirmed. For longer pulses, however, the correction factor decreases and at a pulse duration of about 200μs reaches 75% of the value valid for short pulses. This reduced influence of the ion recombination is interpreted by the reaction kinetics of ion recombination as a second-order reaction. This effect is negligible for PTW Roos chambers at clinical linear accelerators with 4 μ s pulse duration for pulse doses up to 120 mGy.

  18. Energy Dependence of Neutron-Induced Fission Product Yields of 235U, 238U and 239Pu Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Tornow, Werner; Tonchev, Anton; Vieira, Dave; Wilhelmy, Jerry; Arnold, Charles; Fowler, Malcolm; Stoyer, Mark

    2014-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements have been performed. The energy dependence of a number of cumulative fission products between 0.5 and 14.8 MeV have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of activation utilizing specially designed dual-fission chambers and γ-ray counting. The dual-fission chambers are back-to-back ionization chambers encasing a target with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the fission rate in the activation target with no reference to the fission cross-section, reducing uncertainties. γ-ray counting was performed on well-shield HPGe detectors over a period of 2 months per activation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 4.6 and 14.8 MeV.

  19. A simplified analytical approach to estimate the parameters required for strength determination of HDR 192Ir brachytherapy sources using a Farmer-type ionization chamber.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Mayya, Y S

    2012-01-01

    Measuring the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR (192)Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR (192)Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M(s). The seven distance method was followed to record the ionization chamber readings for parameterization of f and M(s). Analytically calculated values of M(s) were used to determine the room scatter correction factor (K(sc)). The Monte Carlo simulations were also carried out to calculate f and K(sc) to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K(sc) were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations.

  20. A simplified analytical approach to estimate the parameters required for strength determination of HDR 192Ir brachytherapy sources using a Farmer-type ionization chamber

    International Nuclear Information System (INIS)

    Measuring the strength of high dose rate (HDR) 192Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR 192Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR 192Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and Ms. The seven distance method was followed to record the ionization chamber readings for parameterization of f and Ms. Analytically calculated values of Ms were used to determine the room scatter correction factor (Ksc). The Monte Carlo simulations were also carried out to calculate f and Ksc to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of Ksc were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations. - Highlights: ► RAKR measurement of a brachytherapy source by 7 distance method requires the evaluation of ‘f’. ► A simplified analytical approach based on least square method to evaluate ‘f’ and ‘Ms’ was developed. ► Parameter ‘f’ calculated by proposed analytical approach was verified using the Monte Carlo method. ► Proposed analytical approach can be adopted for routine use to estimate ‘f’.

  1. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    Science.gov (United States)

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI).

  2. Standardization of 64Cu and 68Ga by the 4π(PC)β-γ coincidence method and calibration of the ionization chamber.

    Science.gov (United States)

    Sahagia, M; Luca, A; Antohe, A; Ivan, C

    2012-09-01

    The paper treats the application of the 4π(PC)β-γ coincidence method for the standardization of the radionuclides (64)Cu and (68)Ga. The general coincidence equations are written. Two types of extrapolation were described and used in measurement: the positron-annihilation coincidence, and the counting of all emitted radiations; both methods are compared with respect to results, advantages and drawbacks. The impurities' content correction was applied. The standardized solutions were used to calibrate the ionization chamber CENTRONIC IG12/20A and to determine the gamma-rays emission intensities.

  3. Testing the absolute beam intensity of the high-energy pulsed electron beam with a double-mode readout ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Q. [IHEP of the Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: gouqb@ihep.ac.cn; Feng, Z. [IHEP of the Chinese Academy of Sciences, Beijing 100049 (China); Yin, S. [IHEP of the Chinese Academy of Sciences, Beijing 100049 (China); Shandong University, Shandong 250100 (China); Shi, F. [IHEP of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.; Dong, J. [IHEP of the Chinese Academy of Sciences, Beijing 100049 (China); Lanzhou University, Gansu 730000 (China); Liao, J. [IHEP of the Chinese Academy of Sciences, Beijing 100049 (China)

    2008-07-21

    We constructed an ionization chamber (IC) to test the absolute intensity of the BEPC-LINAC (Beijing Electron Positron Collider-Linear Accelerator) test beam. The IC was adapted for the 1.89 GeV high-energy electron beam, with pulse time width of 1.2 ns and frequency of 25 Hz, by equipping it with a double-mode readout and choosing the optimum circuit parameters for the readout modes. The measured absolute intensity of the test beam is 7.2x10{sup 9} electron/s, and is consistent with PSPICE simulations.

  4. Analytic And Monte Carlo Study Of The Perturbation Factor kp For A Standard Of Dw Through An Ka Standard Ionization Chamber BEV-CC01

    International Nuclear Information System (INIS)

    To characterize an ionization chamber BEV-CC01 as a standard of absorbed dose to water Dw at SSDL-Mexico, the approach developed by the BIPM for 60Co gamma radiation, has been chosen. This requires the estimation of a factor kp, which stems from the perturbation introduced by the presence of the ionization chamber in the water phantom, and due to finite size of the cavity. This factor is the product of four terms: ψw,c (μen/ρ)w,c (1 + μ'.y-bar)w,c and kcav. Two independent determinations are accomplished using a combination of the Monte Carlo code MCNP4C in ITS mode [2,3] and analytic methods: one kp parallel =1.1626 ± uc=: 0.90% for the chamber axis parallel to the beam axis; and another kp =1.1079± uc=0.89% for the chamber axis perpendicular to the beam axis. The variance reduction techniques: splitting-Russian roulette, source biasing and forced photon collisions are employed in the simulations to improve the calculation efficiency. The energy fluence for the 60Co housing-source Picker C/9 is obtained by realistic Monte Carlo (MC) simulation, it is verified by comparison of MC calculated and measured beam output air kerma factors, and percent depth dose curves in water, PDD. This spectrum is considered as input energy for a point source (74% is from primary photons and the rest 26% is from scattered radiation) in the determination of the kp factors. Details of the calculations are given together with the theoretical basis of the ionometric standard employed

  5. Comparison of calibrations of a well type ionization chamber between the IAEA and the SSDL of Finland

    International Nuclear Information System (INIS)

    Since 1996, the IAEA has maintained standards for Low Dose Rate (LDR) brachytherapy dosimetry. These standards consist of two 137Cs sources, calibrated at the National Institute of Standards and Technology (NIST), USA. As with all calibrations, maintaining our knowledge and confidence in of the standards at the highest possible level is essential. One way of verifying the quality of our calibrations is by means of a comparison with another SSDL. The purpose of this report is to describe such a comparison. A comparison was performed between the IAEA and the SSDL of Finland (STUK). A well type chamber, HDR 1000Plus (Standard Imaging, USA) was calibrated at the IAEA Dosimetry Laboratory and sent to STUK. After calibration by STUK the chamber was returned to the IAEA and a check of the chamber's response was made. This was done in order to verify that the chamber calibration had not been altered as a result of transportation

  6. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr; Mavon, C.; Fromm, M. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex (France); Ounoughi, N. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex (France); Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, B.P. 98 Ouled Aissa, Jijel 18000 (Algeria); Belafrites, A. [Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, B.P. 98 Ouled Aissa, Jijel 18000 (Algeria)

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  7. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    Science.gov (United States)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  8. Characteristics of a miniature parallel-plate free-air ionization chamber for measuring the intensity of synchrotron radiation from an undulator

    Science.gov (United States)

    Nariyama, Nobuteru

    2004-09-01

    In order to develop an absolute intensity monitor for synchrotron radiation from an undulator, the characteristics of a parallel-plate free-air ionization chamber with a plate separation of 4.2 mm, which was considered to be as narrow as possible, were investigated using 8-30 keV monoenergetic photons at SPring-8. Using a Si-PIN photodiode as the reference monitor, saturation was confirmed at 8-30 keV at a photon intensity of an order of 1013 photons/s. The collection efficiency became almost unity at 8 and 10 keV within 3.8% and 1.1%, respectively, which gradually decreased with increasing energy and attained 0.52 at 30 keV because some of the high-energy electrons escaped from the sensitive volume. When the pair of electrodes was transferred from the upper and lower sides to the left and right sides of the beam axis in order to investigate the influence of linear polarization of synchrotron radiation, a decrease in the collection efficiency was observed. Monte Carlo simulations considering linear polarization showed that the plate separation required for no electron loss was 26, 14, and 8 mm for 30, 20, and 15 keV photons, respectively. For 20 keV photons, saturation characteristics were investigated using an ionization chamber with 14 mm plate separation.

  9. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    Science.gov (United States)

    Dusciac, D.; Bordy, J.-M.; Daures, J.; Blideanu, V.

    2016-09-01

    In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists' demands for high-energy (6 - 9 MeV) photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors) are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes), a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV) has been built for radiation protection purposes. Due to the specific design of the target, this "realistic" radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  10. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels; Intercomparacao de camaras de ionizacao em feixes padroes de raios X, niveis radioterapia, radiodiagnostico e radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, Ana Carolina Moreira de

    2006-07-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were intercompared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: {sup 67}Ga, {sup 201}Tl and {sup 99m}Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  11. Limit to the measurement of feeble activities using ionization chambers; Limite des possibilites de mesure de faibles activites au moyen de chambres d'ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Briere, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The present account based on experience acquired in the Biology Service, in measuring feeble activities of tritium and carbon-14 has been prepared for the benefit hose who have to carry out measurements of feeble activities using ionization chambers. Precision are given on the behaviour and actual performance of vibrating condenser electrometers, based on approximately two years operating experience. It is shown that the possibilities of utilisation are not limited as is generally believed by insufficient sensitivity and stability of the electronic equipment, but by the existence of various parasitic phenomena coming from the ionization chamber itself, which make very difficult the measurement of ionization currents which are less than 10{sup -14} A. (author)Fren. [French] Le present compte rendu, base sur l'experience acquise au Service de Biologie dans la mesure de faibles activites de tritium et de carbone-14, est redige a l'intention des personnes ayant a effectuer des mesures de tres faibles activites au moyen de chambres d'ionisation. Il donne des precisions sur le comportement et les performances reelles des electrometres a condensateur vibrant, basees sur environ deux ans d'utilisation, et demontre que les possibilites de mesure ne sont pas limitees - comme on le croit generalement - par l'insuffisance de sensibilite et de stabilite de l'appareillage electronique, mais par l'existence de divers phenomenes parasites dont la chambre d'ionisation est le siege et qui rendent tres difficiles la mesure de courants d'ionisation inferieurs a 10{sup -14} A. (auteur)

  12. Intercomparison study of inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry and fission track analysis of μBq quantities of 239Pu in synthetic urine

    International Nuclear Information System (INIS)

    Even today, some Marshall Islanders are looking forward to permanently resettling their islands after five decades. The U.S. Department of Energy and the resettled residents require reasonable but cost-prudent assurance that the doses to resident from residual 239Pu will not exceed recognized international standards or recommendations, as estimated from the excretion of 239Pu in urine. The goal of this study was to evaluate the bias, uncertainty and sensitivity of analytical techniques that measure 3-56 μBq 239Pu in synthetic urine. The analytical techniques studied in this work included inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry and fission track analysis. The results of the intercomparison demonstrated that all three techniques were capable of marking the measurements, although not with equal degree of bias and uncertainty. The estimated minimum detectable activity was 1 μBq of 239Pu per synthetic urine sample. This exercise is also the first effort to certify test materials of plutonium in the nBqxg-1 range. (author)

  13. Monte Carlo simulations and benchmark measurements on the response of TE(TE) and Mg(Ar) ionization chambers in photon, electron and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Chun [Health Physics Division, Institute of Nuclear Energy Research, Taoyuan County, Taiwan (China); Huang, Tseng-Te, E-mail: huangtt@iner.gov.tw [Health Physics Division, Institute of Nuclear Energy Research, Taoyuan County, Taiwan (China); Liu, Yuan-Hao [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu City, Taiwan (China); Chen, Wei-Lin [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu City, Taiwan (China); Chen, Yen-Fu [Atomic Energy Council, New Taipei City, Taiwan (China); Wu, Shu-Wei [Dept. of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Nievaart, Sander [Institute for Energy, Joint Research Centre, European Commission, Petten (Netherlands); Jiang, Shiang-Huei [Dept. of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China)

    2015-06-01

    The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary {sup 60}Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the {sup 60}Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations

  14. A simplified analytical approach to estimate the parameters required for strength determination of HDR {sup 192}Ir brachytherapy sources using a Farmer-type ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sudhir [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India); Srinivasan, P. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, S.D., E-mail: sdsharma_barc@rediffmail.com [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India); Mayya, Y.S. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India)

    2012-01-15

    Measuring the strength of high dose rate (HDR) {sup 192}Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR {sup 192}Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR {sup 192}Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M{sub s}. The seven distance method was followed to record the ionization chamber readings for parameterization of f and M{sub s}. Analytically calculated values of M{sub s} were used to determine the room scatter correction factor (K{sub sc}). The Monte Carlo simulations were also carried out to calculate f and K{sub sc} to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K{sub sc} were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations. - Highlights: Black-Right-Pointing-Pointer RAKR measurement of a brachytherapy source by 7 distance method requires the evaluation of 'f'. Black-Right-Pointing-Pointer A simplified analytical approach based on least square method to evaluate 'f' and 'M{sub s}' was developed. Black-Right-Pointing-Pointer Parameter 'f' calculated by proposed analytical

  15. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    Directory of Open Access Journals (Sweden)

    Vorwerk Hilke

    2011-02-01

    Full Text Available Abstract Purpose To verify the dose distribution and number of monitor units (MU for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany. Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany. Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99

  16. [Influence of position of ionization chamber and leaf-end on verification value in IMRT verification for prostate cancer].

    Science.gov (United States)

    Hashimoto, Harumitsu; Nagano, Hisato; Katou, Masahiro; Nakanishi, Masanori; Watanabe, Motoi; Shimo, Takahiro; Ichinose, Tsukasa; Agawa, Mutsumi; Tashima, Yasuhiro

    2009-10-20

    In IMRT for prostate cancer, MU verification is performed by the actual measurement. We have experienced a remarkable improvement in results, once succeeding in finding out the more suitable and optimal evaluation dose point in some cases even though the deviation between a designed MU score and our actual record gained at the iso-center was more than 3%. In this study, we tried to demonstrate how much influence would be given to the point dose verification by the 3D arrangement between an ion chamber and tips of the MLC. The five cases in which the bias between each actual datum and planed MU score showed that about 3% were picked up and through these MLC configurations, 8 leaf-ends around the chamber were highlighted as the influential ones. After each distance from 4 pairs, a total of 8 leaves to the axis (the mid-line) of our ion chamber were mapped. The indexes (PlanLeafScores) were computed through these distances and segmental MU scores. The ratio of these scores and results obtained at the 12 sites within 1 cm from the iso-center were carried out by single regression analysis. In all cases the ratios of planed MU values to the actual ones tended to go down in inverse proportion to the increase in PlanLeafScores (r<-0.77, p<0.002). As the dimensional arrangement between the ion chamber and the edges of the MLC were thought to determine the result of the verification. PlanLeafScores will enable us to determine the optimal evaluation of the dose point.

  17. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    Science.gov (United States)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  18. Dependence of charge collection distributions and dose on the gas type filling the ionization chamber for a p(66)Be(49) clinical neutron beam

    International Nuclear Information System (INIS)

    Measurements of central axis depth charge distributions (CADCD) in a p(66)Be(49) clinical neutron beam using A-150 TE plastic ionization chambers (IC) have shown that these distributions are dependent on the gas type filling the ICs. IC volumes from 0.1 to 8 cm3 and nine different gases were investigated. Off axis ratios and build-up measurements do not seem to be as sensitive to gas type. The gas dosimetry constants given in the AAPM Protocol for Neutron Beam Dosimetry for air and methane based TE gases were tested for consistency in water and in TE solution filled phantoms at depths of 10 cm, when used in conjunction with an IC having 5 mm thick walls of A-150. 29 refs., 7 figs., 1 tab

  19. Comparison of dosimeter response: ionization chamber, TLD, and Gafchromic EBT2 film in 3D-CRT, IMRT, and SBRT techniques for lung cancer

    Science.gov (United States)

    Fitriandini, A.; Wibowo, W. E.; Pawiro, S. A.

    2016-03-01

    This research was conducted by measuring point dose in the target area (lungs), heart, and spine using four dosimeters (PTW N30013, Exradin A16, TLD, and the Gafchromic EBT2 film). The measurement was performed in CIRS 002LFC thorax phantom. The main objective of this study was to compare the dosimetry of those different systems. Dose measurements performed only in a single fraction of irradiation. The measurements result shown that TLD has the least accuracy and precision. As the effect of volume averaging, ionization chamber reaches the discrepancy value up to -13.30% in the target area. EBT2 film has discrepancy value of <1% in the 3D-CRT and IMRT techniques. This dosimeter is proposed to be an appropriate alternative dosimeter to be used at point dose verification.

  20. The FiR 1 photon beam model adjustment according to in-air spectrum measurements with the Mg(Ar) ionization chamber.

    Science.gov (United States)

    Koivunoro, H; Schmitz, T; Hippeläinen, E; Liu, Y-H; Serén, T; Kotiluoto, P; Auterinen, I; Savolainen, S

    2014-06-01

    The mixed neutron-photon beam of FiR 1 reactor is used for boron-neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple build-up caps of different thickness to adjust the calculated photon spectrum of a FiR 1 beam model.

  1. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    Science.gov (United States)

    Aragón-Martínez, Nestor; Gómez-Muñoz, Arnulfo; Massillon-JL, Guerda

    2014-11-01

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism1. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  2. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Aragón-Martínez, Nestor, E-mail: nestoraragon@fisica.unam.mx; Massillon-JL, Guerda, E-mail: massillon@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, D.F (Mexico); Gómez-Muñoz, Arnulfo [Hospital de Oncología, Centro Médico Nacional Siglo XXI, D.F (Mexico)

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  3. Detection of gamma-rays with a 3.5 l liquid xenon ionization chamber triggered by the primary scintillation light

    CERN Document Server

    Aprile, E; Chen Dan Li; Muhkerjee, R; Xu Fan

    2002-01-01

    A gridded ionization chamber with a drift length of 4.5 cm and a total volume of 3.5 l, was operated with high-purity liquid xenon and extensively tested with gamma-rays from sup 1 sup 3 sup 7 Cs, sup 2 sup 2 Na and sup 6 sup 0 Co radioactive sources. An electron lifetime in excess of 1 ms was inferred from two independent measurements. The electric field dependence of the collected charge and energy resolution was studied in the range 0.1-4 kV/cm, for different gamma-ray energies. With an electric field of 4 kV/cm, the spectral performance of the detector is consistent with an energy resolution of 5.9% at 1 MeV, scaling with energy as E sup - sup 0 sup . sup 5. The chamber was also used to detect the primary scintillation light produced by gamma-ray interactions in liquid xenon. The light signal was successfully used to trigger the acquisition of the charge signal with a FADC readout. A trigger efficiency of approx 85% was measured at 662 keV.

  4. Surface and buildup region dose measurements with Markus parallel-plate ionization chamber, Gafchromic EBT3 film and MOSFET detector for high energy photon beams

    CERN Document Server

    Akbas, Ugur; Koksal, Canan; Bilge, Hatice

    2016-01-01

    The aim of the study was to investigate surface and buildup region doses for 6 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV photon beams at 100 cm source-detector distance (SDD) for 5x5, 10x10 and 20x20 cm2 field sizes and 0, 30, 60, 80 and 90 beam angles. The surface doses for 10x10 cm2 field size were found to be 20.33%, 18.80% and 25.48% for Markus chamber, EBT3 film and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary, thus the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry, and must be taken into account.

  5. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    Science.gov (United States)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  6. Surface and Buildup Region Dose Measurements with Markus Parallel-Plate Ionization Chamber, GafChromic EBT3 Film, and MOSFET Detector for High-Energy Photon Beams

    Directory of Open Access Journals (Sweden)

    Ugur Akbas

    2016-01-01

    Full Text Available The aim of the study was to investigate surface and buildup region doses for 6 MV and 15 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film, and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV and 15 MV photon beams at 100 cm source-detector distance for 5 × 5, 10 × 10, and 20 × 20 cm2 field sizes and 0°, 30°, 60°, and 80° beam angles. The surface doses using 6 MV photon beams for 10 × 10 cm2 field size were found to be 20.3%, 18.8%, and 25.5% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface doses using 15 MV photon beams for 10 × 10 cm2 field size were found to be 14.9%, 13.4%, and 16.4% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary; thus, the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry and must be taken into account.

  7. Development of an experimental device based on the digitalization of the signal and dedicated to the characterization of fission fragments and prompt neutrons; Developpement d'un dispositif experimental base sur la digitalisation des signaux et dedie a la caracterisation des fragments de fission et des neutrons prompts emis

    Energy Technology Data Exchange (ETDEWEB)

    Varapai, N

    2006-12-15

    The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from {sup 252}Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given.

  8. Assaying multiple 125I seeds with the well-ionization chamber SourceCheck4π 33005 and a new insert

    Science.gov (United States)

    Ballester, Facundo; Perez-Calatayud, Jose; Vijande, Javier

    2015-01-01

    Purpose To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck4π 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten 125I seeds with one single measurement instead of measuring each seed individually. Material and methods The material required is: a) the SourceCheck4π 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds. The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S K. The proposed method is validated by comparing the mean S K of the ten seeds obtained from the new insert with the individual measurement of S K of each seed, evaluated with the PTW insert. Results The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck4π 33005 is 1.135 ± 0.007 (k = 1). The mean S K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S K of each seed. Conclusions The new insert and procedure allow evaluating the mean S K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S K of each seed. PMID:26816507

  9. Ionization current measurements using and extrapolation chamber for the determination of the absorbed dose from β emitters

    International Nuclear Information System (INIS)

    In order to obtain the beta response of survey instruments, the working group no.5 of the C.E.A. Radiation Offices has studied an extrapolation chamber as reference apparatus. The value of the different correcting factors which modify the number of ions pairs collected per mass of air, in other words, the absorbed dose in the air of the cavity is reported. Then, the physical constants (transmission, back-scattering...) which are necessary to pass from the absorbed dose in the air of the cavity, to the absorbed dose in the tissue for a semi-infinite medium below a thickness of 7.5mg/cm2 are given. The absorbed dose in tissue, to within an error of about 4%, can be estimated

  10. Monte Carlo study of conversion factors for ionization chamber dosimetry in solid slab phantoms for MV photon beams

    Science.gov (United States)

    Park, Dong-wook; Lee, Jai-ki

    2016-08-01

    For high energy photon beams, solid phantom to water dose conversion factors were calculated by using a Monte Carlo method, and the result were compared with measurements and published data. Based on the absorbed dose to water dosimetry protocol, the conversion factor was theoretically divided into stopping powers ratios, perturbation factors and ratios of absorbed dose to water and that to solid phantom. Data for a Farmer-type chamber and a solid phantom based on polystyrene which is one of the most common material were applied to calculate the conversion factors for 6 MV and 15 MV photon beams. All measurements were conducted after 10 Gy pre-irradiation and thermal equilibrium had been established with solid slabs in a treatment room. The calculated and the measured conversion factors were in good agreement and could be used to confirm the feasibility of the solid phantom as a substitute for water for high energy photon beam.

  11. Characteristics of A-150 plastic-equivalent gas in A-150 plastic ionization chambers for p(66)Be(49) neutrons

    International Nuclear Information System (INIS)

    The evaluation of a gas mixture having an atomic composition similar to that of A-150 TE-plastic has been extended to a high energy neutron therapy beam. A-150 gas, air and methane-based TE gas were each flowed through A-150 plastic-walled ion chambers of different sizes and irradiated with p(66)Be(49) neutrons. A tentative value for anti W(A-150) of 27.3 +- 0.5 J C-1 was derived for this beam. The anti W value of the A-150 gas mixture is compared to those of methane-based TE gas and of air for the p(66)Be(49) neutron beam as well as to corresponding values found in similar experiments using 14.8 MeV monoenergetic neutrons. 17 references, 3 figures, 3 tables

  12. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  13. Automatic control system for measuring currents produced by ionization chambers; Automatizacao de um sistema de medidas de correntes produzidas por camaras de ionizacao e aplicacao na calibracao do {sup 18}F e {sup 153}Sm

    Energy Technology Data Exchange (ETDEWEB)

    Brancaccio, Franco

    2002-07-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for {sup 18}F and {sup 153}Sm were obtained, making possible to determine activities of these radionuclides. (author)

  14. Implementation of a laboratory for manufacture, repair and electric calibration of dosemeters based in ionization chambers utilized in radiotherapy; Implementacao de um laboratorio para manutencao, reparo e calibracao eletrica de dosimetros baseados em camaras de ionizacao, utilizados em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Becker, P.H.B.; Peres, M.A.L.; Moreira, A.J.C.; Nette, H.P. [Instituto de Radioprotecao e Dosimetria. Av. Salvador Allende S/N. Barra de Tijuca CEP: 22780-160. Caixa Postal: 37750 Rio de Janeiro-RJ (Brazil)

    1998-12-31

    Manufacturers of ionization chamber dosimeters for radiotherapy maintain only sales representatives in Brazil with no servicing capability causing difficulties to customers/users to get broken equipment back into operation. Aiming to partially solve this problem, a laboratory for maintenance, repair and electrical calibration was started in 1995 with the support of a two year IAEA Technical Assistance Project (BRA/1/031). (Author)

  15. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method; Simulacion Monte Carlo de la Interaccion de Rays X con el Gas de una Camara de Ionizacion

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Garcia Gomez-Tejedor, G.

    2001-07-01

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs.

  16. Combined application of alpha-track and fission-track techniques for detection of plutonium particles in environmental samples prior to isotopic measurement using thermo-ionization mass spectrometry.

    Science.gov (United States)

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Kimura, Takaumi

    2011-07-15

    The fission track technique is a sensitive detection method for particles which contain radio-nuclides like (235)U or (239)Pu. However, when the sample is a mixture of plutonium and uranium, discrimination between uranium particles and plutonium particles is difficult using this technique. In this study, we developed a method for detecting plutonium particles in a sample mixture of plutonium and uranium particles using alpha track and fission track techniques. The specific radioactivity (Bq/g) for alpha decay of plutonium is several orders of magnitude higher than that of uranium, indicating that the formation of the alpha track due to alpha decay of uranium can be disregarded under suitable conditions. While alpha tracks in addition to fission tracks were detected in a plutonium particle, only fission tracks were detected in a uranium particle, thereby making the alpha tracks an indicator for detecting particles containing plutonium. In addition, it was confirmed that there is a linear relationship between the numbers of alpha tracks produced by plutonium particles made of plutonium certified standard material and the ion intensities of the various plutonium isotopes measured by thermo-ionization mass spectrometry. Using this correlation, the accuracy in isotope ratios, signal intensity and measurement errors is presumable from the number of alpha tracks prior to the isotope ratio measurements by thermal ionization mass spectrometry. It is expected that this method will become an effective tool for plutonium particle analysis. The particles used in this study had sizes between 0.3 and 2.0 μm.

  17. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  18. Extrapolation Ionization Chamber Dosimetry of Fluorescent X-Ray Energies from 4.5 to 19.6 keV.

    Science.gov (United States)

    Rakowski, Joseph T; Tucker, Mark A; Snyder, Michael G; Makar, Simon P; Yudele, Mark; Burmeister, Jay; Joiner, Michael C

    2016-09-01

    Characteristic X rays of energies less than approximately 20 keV are of interest in radiobiology and radiation oncology. There is evidence that these low-energy photons produce higher relative biological effectiveness (RBE) and lower oxygen enhancement ratio (OER) relative to higher energies. Lower energy X rays also offer the advantage of healthy tissue sparing beyond the target treatment depth. Electronic brachytherapy systems that can deliver characteristic and bremsstrahlung X rays of varying energy are in clinical use as well as under development. We performed low-energy extrapolation ionization chamber dosimetry using two methods: 1. the exposure-to-dose method; and 2. the Burlin theory method combined with the extrapolation chamber method of Klevenhagen. We investigated fluorescent X rays emitted from seven metals: titanium (Ti, Z = 22); chromium (Cr, Z = 24); iron (Fe, Z = 26); cobalt (Co, Z = 27); copper (Cu, Z = 29); zinc (Zn, Z = 30); and molybdenum (Mo, Z = 42). X rays were produced by irradiation of the metals with a 55 kVp, 45 mA silver anode spectrum. The data obtained were air kerma rate (cGy/min), and radiation dose rate (cGy/min) in phosphate-buffered saline (PBS) solution and water. Air kerma rates ranged from 3.55 ± 0.10 to 14.36 ± 0.39 cGy/min. Dose rates ranged from 3.85 ± 0.10 to 16.96 ± 0.46 cGy/min in PBS and 3.59 ± 0.10 to 16.06 ± 0.43 cGy/min in water. Dose-rate energy dependence of both models was examined by taking a ratio of measured to Monte Carlo calculated dose rates. Dosimetry method 1 exhibited a linear relationship across all energies with a slope of 0.0127 keV(-1) and R(2) of 0.9276. Method 2 exhibited a linear relationship across all energies with a slope of 0.0467 keV(-1) and R(2) of 0.9933. Method 1 or 2 may be used as a relative dosimetry system to derive dose rates to water by using a second reference ion chamber with a NIST-traceable calibration for the molybdenum spectrum.

  19. Extrapolation Ionization Chamber Dosimetry of Fluorescent X-Ray Energies from 4.5 to 19.6 keV.

    Science.gov (United States)

    Rakowski, Joseph T; Tucker, Mark A; Snyder, Michael G; Makar, Simon P; Yudele, Mark; Burmeister, Jay; Joiner, Michael C

    2016-09-01

    Characteristic X rays of energies less than approximately 20 keV are of interest in radiobiology and radiation oncology. There is evidence that these low-energy photons produce higher relative biological effectiveness (RBE) and lower oxygen enhancement ratio (OER) relative to higher energies. Lower energy X rays also offer the advantage of healthy tissue sparing beyond the target treatment depth. Electronic brachytherapy systems that can deliver characteristic and bremsstrahlung X rays of varying energy are in clinical use as well as under development. We performed low-energy extrapolation ionization chamber dosimetry using two methods: 1. the exposure-to-dose method; and 2. the Burlin theory method combined with the extrapolation chamber method of Klevenhagen. We investigated fluorescent X rays emitted from seven metals: titanium (Ti, Z = 22); chromium (Cr, Z = 24); iron (Fe, Z = 26); cobalt (Co, Z = 27); copper (Cu, Z = 29); zinc (Zn, Z = 30); and molybdenum (Mo, Z = 42). X rays were produced by irradiation of the metals with a 55 kVp, 45 mA silver anode spectrum. The data obtained were air kerma rate (cGy/min), and radiation dose rate (cGy/min) in phosphate-buffered saline (PBS) solution and water. Air kerma rates ranged from 3.55 ± 0.10 to 14.36 ± 0.39 cGy/min. Dose rates ranged from 3.85 ± 0.10 to 16.96 ± 0.46 cGy/min in PBS and 3.59 ± 0.10 to 16.06 ± 0.43 cGy/min in water. Dose-rate energy dependence of both models was examined by taking a ratio of measured to Monte Carlo calculated dose rates. Dosimetry method 1 exhibited a linear relationship across all energies with a slope of 0.0127 keV(-1) and R(2) of 0.9276. Method 2 exhibited a linear relationship across all energies with a slope of 0.0467 keV(-1) and R(2) of 0.9933. Method 1 or 2 may be used as a relative dosimetry system to derive dose rates to water by using a second reference ion chamber with a NIST-traceable calibration for the molybdenum spectrum. PMID:27548518

  20. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber; Determinacao da atenuacao do ar e perda eletronica para a camara de ionizacao de ar livre de cilindros concentricos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hebert Pinto Silveira de

    2010-07-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k{sub e}) and air attenuation (k{sub a}). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  1. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  2. Evaluation of relative transmitted dose for a step and shoot head and neck intensity modulated radiation therapy using a scanning liquid ionization chamber electronic portal imaging device.

    Science.gov (United States)

    Mohammadi, Mohammad; Bezak, Eva

    2012-01-01

    The dose delivery verification for a head and neck static intensity modulated radiation therapy (IMRT) case using a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID) was investigated. Acquired electronic portal images were firstly converted into transmitted dose maps using an in-house developed method. The dose distributions were then compared with those calculated in a virtual EPID using the Pinnacle(3) treatment planning system (TPS). Using gamma evaluation with the ΔD(max) and DTA criteria of 3%/2.54 mm, an excellent agreement was observed between transmitted dose measured using SLIC-EPID and that calculated by TPS (gamma score approximately 95%) for large MLC fields. In contrast, for several small subfields, due to SLIC-EPID image blurring, significant disagreement was found in the gamma results. Differences between EPID and TPS dose maps were also observed for several parts of the radiation subfields, when the radiation beam passed through air on the outside of tissue. The transmitted dose distributions measured using portal imagers such as SLIC-EPID can be used to verify the dose delivery to a patient. However, several aspects such as accurate calibration procedure and imager response under different conditions should be taken into the consideration. In addition, SLIC-EPID image blurring is another important issue, which should be considered if the SLIC-EPID is used for clinical dosimetry verification.

  3. Time-of-flight ERD with a 200 mm{sup 2} Si{sub 3}N{sub 4} window gas ionization chamber energy detector

    Energy Technology Data Exchange (ETDEWEB)

    Julin, Jaakko, E-mail: jaakko.julin@jyu.fi; Laitinen, Mikko; Sajavaara, Timo

    2014-08-01

    Low energy heavy ion elastic recoil detection work has been carried out in Jyväskylä since 2009 using home made timing detectors, a silicon energy detector and a timestamping data acquisition setup forming a time-of-flight–energy telescope. In order to improve the mass resolution of the setup a new energy detector was designed to replace the silicon solid state detector, which suffered from radiation damage and had poor resolution for heavy recoils. In this paper the construction and operation of an isobutane filled gas ionization chamber with a 14 × 14 mm{sup 2} 100 nm thick silicon nitride window are described. In addition to greatly improved energy resolution for heavy ions, the detector is also able to detect hydrogen recoils simultaneously in the energy range of 100–1000 keV. Additionally the detector has position sensitivity by means of timing measurement, which can be performed without compromising the performance of the detector in any other way. The achieved position sensitivity improves the depth resolution near the surface.

  4. Evaluation of relative transmitted dose for a step and shoot head and neck intensity modulated radiation therapy using a scanning liquid ionization chamber electronic portal imaging device

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadi

    2012-01-01

    Full Text Available The dose delivery verification for a head and neck static intensity modulated radiation therapy (IMRT case using a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID was investigated. Acquired electronic portal images were firstly converted into transmitted dose maps using an in-house developed method. The dose distributions were then compared with those calculated in a virtual EPID using the Pinnacle3 treatment planning system (TPS. Using gamma evaluation with the DDmax and DTA criteria of 3%/2.54 mm, an excellent agreement was observed between transmitted dose measured using SLIC-EPID and that calculated by TPS (gamma score approximately 95% for large MLC fields. In contrast, for several small subfields, due to SLIC-EPID image blurring, significant disagreement was found in the gamma results. Differences between EPID and TPS dose maps were also observed for several parts of the radiation subfields, when the radiation beam passed through air on the outside of tissue. The transmitted dose distributions measured using portal imagers such as SLIC-EPID can be used to verify the dose delivery to a patient. However, several aspects such as accurate calibration procedure and imager response under different conditions should be taken into the consideration. In addition, SLIC-EPID image blurring is another important issue, which should be considered if the SLIC-EPID is used for clinical dosimetry verification.

  5. The estimation of lung dose from mid-perineum ionization chamber measurements in total body irradiations: A quality control check on dose delivery

    International Nuclear Information System (INIS)

    A series of patients (eleven males and eight females) receiving total body irradiation prior to bone marrow transplantation was monitored during treatment by recording the dose from an ionization chamber placed between the thighs in the mid-perineal region. The treatment was delivered by opposed lateral 6 MV photon beams. The patient was encompassed by the radiation field with the maximum collimator opening at a distance of 3.49 m from the X-ray focus to the patient mid-line. An analysis was made of the measured dose and the calculated percentage average lung dose for each patient in the series to seek a correlation between measured doses and patients' anatomical data so that estimates of delivered lung doses could be made. Whilst a global factor can be applied to measured dose to predict lung dose, it is concluded that perineal dose measurements distal to the region where dose is prescribed (mean lung dose) are sub-optimal for checks on target dose delivery. Entrance and exit dose measurements at the level of dose prescription (in the thorax) are preferable for more accurate predictions and quality control checks. 6 refs., 1 tab., 2 figs

  6. The estimation of lung dose from mid-perineum ionization chamber measurements in total body irradiations: A quality control check on dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P. [Saint Vincent`s Hospital, Darlinghurst, NSW (Australia)

    1995-11-01

    A series of patients (eleven males and eight females) receiving total body irradiation prior to bone marrow transplantation was monitored during treatment by recording the dose from an ionization chamber placed between the thighs in the mid-perineal region. The treatment was delivered by opposed lateral 6 MV photon beams. The patient was encompassed by the radiation field with the maximum collimator opening at a distance of 3.49 m from the X-ray focus to the patient mid-line. An analysis was made of the measured dose and the calculated percentage average lung dose for each patient in the series to seek a correlation between measured doses and patients` anatomical data so that estimates of delivered lung doses could be made. Whilst a global factor can be applied to measured dose to predict lung dose, it is concluded that perineal dose measurements distal to the region where dose is prescribed (mean lung dose) are sub-optimal for checks on target dose delivery. Entrance and exit dose measurements at the level of dose prescription (in the thorax) are preferable for more accurate predictions and quality control checks. 6 refs., 1 tab., 2 figs.

  7. Development and modelling of fission chambers designed for high neutron fluxes: applications at the HFR reactor (ILL) and the MEGAPIE target (PSI); Developpement et modelisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI)

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, S

    2006-11-15

    The international project MEGAPIE (MEGAwatt PIlot Experiment) at the Paul Scherrer Institute aims to build and operate the first 1 MW liquid lead-bismuth spallation target. This work is dedicated to the characterization of the neutron flux and the actinide incineration potential of the target. This mission has required the development of an innovating neutron detector (DNM) made of 8 micro fission chambers, installed inside the central rod of the MEGAPIE target. The combination of uranium chambers with chambers without deposit allows an efficient compensation of the gamma radiation background. The optimisation and development work on the MEGAPIE chambers have enabled us to measure the {sigma}{sub f} * {phi} product at each level of the DNM with an uncertainty of less than 3 per cent. We have inferred from these data the value of the epithermal neutron flux (E > 1 eV) at 37 cm away from the window: 3.4*10{sup 13} n.cm{sup -2}.s{sup -1}, and the values of the neutron flux at 50, 60 and 74 cm: 1.2*10{sup 13}, 7.9*10{sup 12} and 3.9*10{sup 12} n.cm{sup -2}.s{sup -1} respectively. All these values are notably less important than those obtained from MCNPX simulations. Thermocouples installed in DMN have enabled us to know the temperature distribution inside the target. For a beam intensity of 1.2 mA, the temperature ranges from 360 to 420 Celsius degrees in the low part of the central rod. The thermal inertia of the system composed of the central rod and DNM has been assessed for brutal changes of the beam intensity and is worth about 60 s. (A.C.)

  8. Evaluation of a new pencil-type ionization chamber for dosimetry in computerized tomography beams; Avaliacao de uma nova camara de ionizacao tipo lapis para dosimetria em feixes de tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C. de; Neves, Lucio P.; Silva, Natalia F. da; Santos, William de S.; Caldas, Linda V.E., E-mail: maysadecastro@gmail.com, E-mail: lpneves@ipen.br, E-mail: na.fiorini@gmail.com, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    For performing dosimetry in computed tomography beams (CT), use is made of a pencil-type ionization chamber, since this has a uniform response to this type of beam. The common commercial chambers in Brazil have a sensitive volume length of 10 cm. Several studies of prototypes of this type of ionization chamber have been conducted, using different materials and geometric configurations, in the Calibration Laboratory Instruments of the Institute of Nuclear and Energy Research (LCI) and these showed results within internationally acceptable limits. These ion chambers of 10 cm are widely used nowadays, however studies have revealed that they have underestimated the dose values. In order to solve this problem, we developed a chamber with sensitive volume length of 30 cm. As these are not yet very common and no study has yet been performed on LCI conditions on their behavior, is important that the characteristics of these dosemeters are known, and the influence of its various components. For your review, we will use the Monte Carlo code Penelope, freely distributed by the IAEA. This method has revealed results consistent with other codes. The results for this new prototype can be used in dosimetry of the CT of the hospitals and calibration laboratories as the LCI.

  9. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Taylor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  10. Determination of Fission Product Yields of 235U, 238U and 239Pu for Neutron Energies from 0.5 to 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Becker, John; Bhatia, Chitra; Bhike, Megha; Fowler, Malcolm; Howell, Calvin; Kelley, John; Stoyer, Mark; Tonchev, Anton; Tornow, Werner; Vieira, Dave; Wilhelmy, Jerry

    2014-03-01

    A joint TUNL-LANL-LLNL collaboration has been formed to study the issue of possible energy dependences for certain fission product isotopes. Work has been carried out at the TUNL 10 MV Tandem accelerator which produces nearly mono-energetic neutrons via either 2H(d,n)3He,3H(d,n)4He,or3H(p,n)3He reactions. Three dual fission ionization chambers dedicated to 235U, 238U and 239Pu thick target foils and thin monitor foils respectively, were exposed to the neutron beams. After irradiation, thick target foils were gamma counted over a period of 1-2 months and characteristic gamma rays from fission products were recorded using HPGe detectors at TUNL's low background counting area. Using the dual fission chambers, relative fission product yield were determined at a high precision of 2-3 % as well as absolute fission product yields at a lower precision of 5-6 %. Preliminary results will be presented for a number of fission product isotopes over the incident neutron energy range of 0.5 to 14.8 MeV.

  11. Relative dosimetry of photon beam of 6 MV with a liquid ionization chamber; Dosimetria relativa de un haz de fotones de 6 MV con una camara de ionizacion liquida

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Villegas, E. M.; Casado Villalon, F. J.; Martin-Cueto, J. A.; Caudepon Moreno, F.; Garcia Pareja, S.; Galan Montenegro, P.

    2011-07-01

    The increasing use of reduced size fields in the special techniques of treatment generates regions with high dose gradients. It therefore requires the use of detectors that present high spatial resolution. The aim of this study is to compare the dosimetric measurements obtained with a liquid ionization chamber PTW MicroLion recently acquired with other commonly used detectors for a photon beam of 6 MV linear electron accelerator Varian 600DBX.

  12. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R. [Univ. of New Mexico, Albuquerque, NM (United States); Hong-Nian Jow [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  13. Fission mode analysis of the reaction {sup 237}Np(n,f) - possibilities and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Siegler, P. [Joint Research Centre, Geel (Belgium). Geel Establishment

    1996-03-01

    Fission fragment properties for the reaction {sup 237}Np(n,f) have been measured at the Van de Graaff Laboratory of the IRMM. Using a double gridded ionization chamber the mass, kinetic energy and the angular distribution for both fission fragments could be determined simultaneously for an incident neutron energy range from E{sub n}=0.3 MeV upto E{sub n}=5.5 MeV. Complete datasets have been acquired for 13 different neutron energies covering sub barrier fission as well as fission in the plateau region. A detailed analysis of the fragment distributions and the respective momenta has been carried out, checking the coherence against the excitation energy of the compound nucleus. The consideration of multi-modal fission offers an improved possibility for the description of the fragment distributions backed up by theoretical calculations on the basis of the multi-model random-neck rupture model of Brosa, Grossmann and Mueller. The changes of the fission fragment properties under investigation are completely described and an interpretation of the findings is presented. (author)

  14. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM chamber as measured by acetate chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    P. S. Chhabra

    2014-07-01

    Full Text Available Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition and fragmentation (carbon loss as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.

  15. Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX--a feasibility study.

    Science.gov (United States)

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-21

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10 degrees were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  16. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    Science.gov (United States)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm-3 s, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.

  17. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki;

    2010-01-01

    Modern radiotherapy facilities for cancer treatment such as the Heavy Ion Therapy Centre (HIT) in Heidelberg (Germany) enable sub millimetre precision in dose deposition. For the measurement of such dose distributions and  characterization of the particle beams, detectors with high spatial resolu...

  18. Measurement of Fission Cross-Sections for Neutrons of Energies in the Range 40-500 keV

    International Nuclear Information System (INIS)

    Measurements have been made of the fission cross-section of U233, U234 , U236, Np237, Pu239 and Pu241 at several neutron energies between 40 keV and 500 keV. Measurements in this energy range are of importance in reactor calculations especially in fast dilute systems where the neutron flux is high in the 10- 100-keV energy range. Recent measurements at this laboratory of the U235 fission cross-section gave absolute values slightly lower than previous data. The present series of measurements are made relative to the new values of the U235 fission cross-section using back-to-back ionization chambers. The fissile foils were assayed by α-assay, direct weighing and coulometry. Good agreement was obtained between these assays. The fission measurements have an estimated accuracy of between 1 % and.2% and,combined with the, error on the U235 fission cross-section,give a final error of about 3% in the fission cross-sections. The present results together with those of previous measurements are given, and the corrections for fission- fragment absorption, backgrounds and scattering are discussed. (author)

  19. Spontaneous fission

    International Nuclear Information System (INIS)

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  20. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.