WorldWideScience

Sample records for chamber fission ionization

  1. High efficiency ionization chamber for fission experiments

    International Nuclear Information System (INIS)

    Complete text of publication follows. The width of fission fragment mass distribution indicates the number of di rent fragments which are produced during the fission process from a given excited state. Smaller width means more limited variety of fission fragments which can indicate clusterization effect in hyperdeformed states before fission and also means less amount of nuclear waste. A new gridded ionization chamber was constructed at Atomki to examine the mass distribution of the fission fragments from neutron induced fission of some U and Th isotopes. The design is based on a twin ionization chamber developed by C. Budtz-Jorgensen et al. Our aim was to increase the efficiency of the measurements by applying multiple detector units. This compound detector permits simultaneous measurement of the total kinetic energy and fission fragment emission angle with respect to the detector symmetry axis. The chamber consists of five twin parallel plate ionization chambers with Frisch grids. Assuming that at low counting rates only one target emits fission fragments in one event, the an- odes and the grids were interconnected form- ing two groups (A1-G1, A2-G2). In order to identify which target emitted the fission fragments the signals from each cathodes are also processed. The energy of the fission fragments is determined from the anode pulse heights, while the sum of the grid and anode signals is used to deduce the fragment emission angle θ with respect to the symmetry axis of the chamber: Qsum = -n0e[1 - (X/D)cosθ). The angle dependent energy losses in the tar get can be determined using this angular information. In order to minimize the distance between the targets and the neutron source, smaller distance between the plates and a smaller diameter had to be chosen as in Ref. This arrangement required higher gas pressure, which is necessary to stop the fission fragments before reaching the electrodes. A gas mixture of 90% Ar + 10% CH4 at 2 atm pressure was used. With a

  2. Cold fission studies using a double-ionization chamber

    International Nuclear Information System (INIS)

    An investigation on spontaneous fission of 252Cf is described. Both fission fragments are detected coincidentally with a double ionization chamber as a 4 π detector. Special techniques are demonstrated which allow the determination of nuclear masses and charges for cold fission fragments. Detector properties such as systematic errors and their correction are studied with the help of α particles. (orig.)

  3. Fission fragments spectrometer based on ionization chamber and waveform digitizer

    International Nuclear Information System (INIS)

    The method for fission process investigation which allows to get full information on fission fragments properties is suggested. The method is based on using the fission fragment spectrometer with the twin ionization chamber having the Frisch grid and the waveform digitizer. The new design of the twin ionization chamber is described in details. The main and very important difference is the distances between the cathode and the grid and the anode. These values are 40 and 2 mm correspondingly, so the ratio is equal to 20 instead of 3 - 5 as usual. The diameter of the electrodes is 120 mm. The working gas is the mixture of argon plus 10% of methane under the pressure of 0.65 atm. High voltage of 3.5 kV is applied to the cathode. The scheme of the spectrometer electronic circuit is given. The method of simultaneous measurements of the signal amplitudes from the ionization chamber electrodes is applied, but the shape of the signals is processed by means of the waveform digitizer which gives an opportunity to obtain much more information on the fission fragments properties. It is shown that the described spectrometer can be successfully used for fission fragment energy, mass and charge distribution measurements

  4. Ionization chamber with fast timing properties and good energy resolution for fission fragment detection

    International Nuclear Information System (INIS)

    A twin ionization chamber for fission fragment detection is described. The chamber allows to extract both, fast timing- and energy proportional signals. A time resolution of 1.62 ns FWHM was obtained between two fission fragments detected in the two halves of the chamber. For 241Am α-particles the chamber gave an energy resolution of 1.3 percent. As counting gas methane NTP was used

  5. Investigation of fission layers for precise fission cross-section measurements with a gridded ionization chamber

    International Nuclear Information System (INIS)

    An ionization chamber with a Frisch grid is used to determine both the energy (E) of the charged particles emitted from the source positioned coplanar with the cathode, and the cosine of the emission angle (/sigma phi/) with respect to the normal of the cathode. In the plane determined by the variables cos/sigma phi/ and E, it is possible to identify an area that is unaffected by backscattering and self-absorption. Events belonging to this area show an isotropic angular distribution for alpha particles and also for fragments of fission induced by thermal neutrons, which, extrapolated to 90 deg, yields the absolute number of events. The capabilities of this technique are demonstrated by the investigation of four evaporated 235 UF4 layers and one suspension-sprayed 235U3O8 layer. For the UF4 layers, the alpha-particle source strengths were determined, and agreement was found within 0.3% with values independently measured by low-geometry alpha counting. The same method was also applied to fission events induced by thermal neutrons. The determination of the total number of fission events is determined to an accuracy of better than 0.5%. The longstanding doubts on the magnitudes of fragment absorption and scattering are, in principle, circumvented by the present method, and therefore no assumptions on fragment ranges and scattering cross sections are needed. It is emphasized that the present method, within reasonable limits, is insensitive to source shape and homogeneity in its thickness

  6. Investigation of fission layers for precise fission cross section measurements with a gridded ionization chamber

    International Nuclear Information System (INIS)

    An ionization chamber with Frisch-grid is used to determine both the energy (E) of the charged particles emitted from the source positioned coplanar with the cathode, and the cosine of the emission angle (theta) with respect to the normal of the cathode. In the plane determined by the variables cos theta and E it is possible to identify an area which is unaffected by backscattering and selfabsorption. Events belonging to this area show an isotropic angular distribution for alpha particles and also for fission fragments induced by thermal neutrons, which, extrapolated to 90 deg., yields the absolute number of events. The capabilities of this technique are demonstrated by the investigation of four evaporated 235UF4 layers and one suspension sprayed 235U3O8 layer. For the UF4 layers the alpha particle source strengths were determined, and agreement was found within 0.3% with values independently measured by low geometry alpha counting. The same method was applied also to fission events induced by thermal neutrons. An accuracy for the determination of the total number of fission events of better than 0.5% is reached. The longstanding doubts on the magnitudes of fragment absorption and scattering are in principle circumvented by the present method and therefore no assumptions on fragment ranges and scattering cross-sections are needed. It is also emphasized that the present method, within reasonable limits, is intensive to source shape and thickness homogeneity. (author)

  7. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    Science.gov (United States)

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  8. Design and Simulation of High Radioactivity Fission Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  9. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Science.gov (United States)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  10. Effectiveness in detecting fission fragments with ionization chambers

    International Nuclear Information System (INIS)

    Detection of fission fragments is important in nuclear measurements. When a high detection accuracy is required it is necessary to take in account the detection losses due to the absorption of fragments in the fissionable material. The losses corrections might change the final results in 2-3%. The traditional expression used in the calculation of the detection efficiency does not consider neither the density variation of the fissionable substance with its width, because it depends on the target material. That's why actually in many labs it is being searched new methods that allow to find the efficiency for each target. In this work a new method for determination of absorption efficiency is presented. The obtained results are analyzed

  11. Development of gridded ionization chamber for measuring atomic number of fission fragments

    International Nuclear Information System (INIS)

    In order to investigate the mechanism of asymmetric mass division in low energy fission of actinides, the detector for measuring an atomic number (Z) for fission fragments has been developed. Because the atomic number is closely related to energy losses of fragments, the gridded ionization chamber with divided anode is useful for this purpose. The detector was designed and optical conditions such as the distance and electric potential between electrodes were searched using alpha particles from 252Cf. The total energy and energy losses of fission fragments from 252Cf were measured under the obtained conditions. It was found that fission fragments lost most of the kinetic energy in the beginning of their range. This behavior agrees qualitatively with results of simulation by TRIM code. In the presentation, the results of energy measurements under various conditions will be shown and discussed. (author)

  12. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    Science.gov (United States)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  13. Ionization chamber

    International Nuclear Information System (INIS)

    An ionization chamber X-ray detector is described. It comprises a flat cathode sheet parallel to an anode which has a perforated insulating layer on its surface. An open grid, a thin perforated metal sheet is disposed on the insulating layer - the perforations of the layer and sheet are aligned. There is a detector gas and means for maintaining the grid at an electric potential between that of the anode and cathode and for measuring the current flow from the anode to the cathode. The grid shields the anode from the electric field produced by the positive ions which flow towards the cathode and this permits an independent measurement of the electron current flowing to the anode; even when the X-ray pulse length is not much shorter than the ion drift time. The recovery time of the ionization chamber is thus decreased by several orders of magnitude over previous chambers. The grid will normally be fixed to the anode and by shielding the anode from the cathode electric field, tends to eliminate capacitive microphone currents which would otherwise flow in the anode circuit. (U.K.)

  14. Scintillations in ionization chambers

    International Nuclear Information System (INIS)

    High purity Ar and mixtures of Ar with 1% CH4, 3% CH4, CO2 and N2, respectively, have been applied for fission fragment detection in a gridded ionization chamber. Gas scintillation has been observed simultaneously with a photomultiplier VALVO-XP 2041. Whereas all mixtures work equally well as an ionization gas, only Ar + 3% N2 shows a primary scintillation yield sufficient for fas timing. (orig.)

  15. Assaying of 235U fission layers for nuclear measurements with a gridded ionization chamber

    International Nuclear Information System (INIS)

    An ionization chamber with a Frisch grid is used to determine both the energy (E) of the charged particles emitted from the sample positioned coplanar with the cathode, and the cosine of the emission angle (theta) with respect to the normal of the cathode. Using the combined information on cos theta and E, problems in particle counting due to sample absorption and scattering effects can be circumvented and sample source strengths are readily determined to an accuracy of 0.3%. However, it is emphasized that the source strength can be determined from the particles emitted in a large solid angle close to 2π steradian, which means a considerable higher efficiency than for the conventional low geometry counting techniques. Moreover the present method, within reasonable limits is insensitive to source shape and thickness homogeneity. The technique will be illustrated by measurements of alpha particles and fission fragments emitted from a set of four vacuum evaporated UF4, three electrodeposited and one suspension-sprayed 235U3O8 layers. (author)

  16. Experimental determination of corrections for fission fragment investigations using a Frisch gridded ionization chamber

    International Nuclear Information System (INIS)

    Although the invention of the ionization chamber dates back nearly 50 years the last decade has seen a remarkable revival of this device for charged particle detection. It has become apparent that such a detector has distinct advantages. Not only does the ionization chamber allow measurements of total particle energy with energy resolution far superior to that of surface barrier detectors but also simultaneously the particles' specific ionization density distribution (the socalled Bragg-curve) can be determined. Therefore, besides the particle kinetic energy, mass and angular distribution, also information about the atomic number of the detected ion can be obtained using a double Frisch gridded ionization chamber. This type of detector is in use at CBNM since almost 10 years. It has been substantially improved during this period. The special electronic treatment of the chambers pulses will be described. The necessary corrections to the raw chamber signals will be demonstrated step by step giving typical key-figures and the way they are implemented. An error estimation will be given too. (orig.)

  17. Measurements of the yields of the light fission products from the reaction 233U(nsub(th),f) by a ionization chamber

    International Nuclear Information System (INIS)

    The aim of this thesis was to develop a new measuring apparature and measuring method which allows to study together with the mass separator 'Lohengrin' at the high flux reactor in Grenoble in realizable measurement times detailedly the unknown mass, nuclear charge, and energy distributions of the fission products resulting from the fission of 233U with thermal neutrons. First the yields and the energy distributions of the masses, thereafter the yields and the energy distributions of the isobaric nuclear charges of the light fission products in the mass range 79<=Asub(L)<=106 are measured. The measuring method for the determination of the mass yields consists of a energy measurement of the fission products separated in the mass separator by a ionization chamber. The isobaric nuclear charges and their yields are determined by the nuclear-charge-specific energy-loss method from the residual-energy spectra behind an absorber. (orig./HSI)

  18. Gridded ionization chamber

    International Nuclear Information System (INIS)

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  19. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  20. Development of fission chamber for nuclear reactors controlling

    International Nuclear Information System (INIS)

    Fission Chambers are gas-filled type detectors that operate in the ionization chamber regime, which is without electron multiplication. As the fill-gas is not directly ionized by neutrons, fission chambers are lined with fissile material that through interaction with neutrons fission products are produced, are highly ionizing particles. Pulse type operation of these detectors are used for neutron flux measurements during start up and shut-down reactor conditions in which pulses of high amplitude produced by fission products can be easily discriminated from those produced by alpha radiation from uranium and also from the external gamma field. With current or current fluctuation mode operation (Campbell) the use of these detectors can be extended for the whole range of reactor operation. In this work, it is presented the development and construction of a fission chamber at IPEN-CNEN/SP. Furthermore, the material and techniques used and also the operational characteristics obtained with the first prototype are given. (author)

  1. Multi-chamber ionization detector

    International Nuclear Information System (INIS)

    For the detector a single beta ionization source and a double- or three-chamber set-up is used, the chambers being designed in the shape of a truncated cone and facing each other with their bases. The source can be positioned with respect to the common center or modal electrode, the adjustment of the ionization in each chamber this becoming easier. The center or modal electrode also can be adjusted with respect to the source. (DG)

  2. Subminiature fission chamber with gas tight penetration

    International Nuclear Information System (INIS)

    Fission chambers suffer from gas leaks at electric feed-trough. This micro chamber suppresses that defect thanks to an alumina plug and welded seal of the chamber sleeve. This device is easy to produce at industrial scale with reduced dimensions (1,5 mm diameter, 25 mm length). It can work with 30 m long feeding cables. (D.L.). 3 figs

  3. Measurements of neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi with a multi-section Frisch-gridded ionization chamber

    Science.gov (United States)

    Ryzhov, I. V.; Tutin, G. A.; Mitryukhin, A. G.; Oplavin, V. S.; Soloviev, S. M.; Blomgren, J.; Renberg, P.-U.; Meulders, J. P.; El Masri, Y.; Keutgen, Th.; Prieels, R.; Nolte, R.

    2006-06-01

    Neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi have been measured in the energy range from 30 to 180 MeV. The measurements were performed with quasi-monoenergetic neutron beams using a multi-section Frisch-gridded ionization chamber. The neutron-induced fission cross-sections of 238U were used as reference data. The experimental techniques are described in detail as well as the data processing. The results are compared with existing experimental data.

  4. Measurements of neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi with a multi-section Frisch-gridded ionization chamber

    International Nuclear Information System (INIS)

    Neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi have been measured in the energy range from 30 to 180 MeV. The measurements were performed with quasi-monoenergetic neutron beams using a multi-section Frisch-gridded ionization chamber. The neutron-induced fission cross-sections of 238U were used as reference data. The experimental techniques are described in detail as well as the data processing. The results are compared with existing experimental data

  5. Air ionization wire plane chamber

    International Nuclear Information System (INIS)

    Radiation Measurement for protection level instrumentation requires large number of detectors. Since the number is large, the detector should be cost effective and yet should have good sensitivity. Gas detectors with presently available microelectronics and signal processing capabilities opened a new era in radiation monitoring. Present paper describes the use of air filled multi anode grid planes as detector for alpha detection. Due to multiple anode wire planes, the charge collection efficiency of the air ionization chamber is higher as compared to conventional ionization chamber. The signal from this Wire Plane Chamber (WPC) has a faster and narrower pulse shape as compared to conventional two-electrode chamber of similar dimensions. The reduction in capacitance also improves the signal to noise ratio so that air can be used as the ionization medium without any special cleaning procedure etc and it may be possible to use even engineering plastic as the structural material for the chamber. The paper gives the results obtained so far with this air ionization chamber. (author)

  6. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  7. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    International Nuclear Information System (INIS)

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal

  8. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  9. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  10. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki;

    2010-01-01

    Modern radiotherapy facilities for cancer treatment such as the Heavy Ion Therapy Centre (HIT) in Heidelberg (Germany) enable sub millimetre precision in dose deposition. For the measurement of such dose distributions and  characterization of the particle beams, detectors with high spatial...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  11. Room temperature liquid ionization chambers using tetramethylsilane

    International Nuclear Information System (INIS)

    Ionization pulse signals due to 207Bi conversion electrons were observed in ionization chambers filled with tetramethylsilane which was purified by a simple method. Pulse height spectra and its variation with the electric field were measured. (orig.)

  12. Neutron measurements performed with miniature fission chambers

    International Nuclear Information System (INIS)

    This research aims at proposing solutions regarding instruments to perform neutron flow measurements in nuclear power reactors and to perform measurements of the reaction rates of highly radioactive transuranic fissile elements in experimental reactors. This research is also part of a program aimed at the adjustment of the Cadarache cross section set. The report defines the instrumentation, recalls the operation of fission chambers, discusses the implemented instrumentation, and discusses the obtained measurements

  13. Relative quantifying technique to measure mass of fission plate in a fission chamber

    International Nuclear Information System (INIS)

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  14. Neutron measurements with miniature fission chambers

    International Nuclear Information System (INIS)

    This report analyses the use and qualification of miniature fission chambers for two types of neutron measurements: 1) relative measurements in nuclear power reactors, or nuclear irradiation reactors. We consider the problem of burnable fissile material in detectors, under important neutron exposures and conclude on recommending the use of regenerating neutron detectors. 2) Measurements of integral physical parameters in experimental reactors. This method has been applied to measurements of fission rates in detectors with strong alpha-rays emitter deposits in order to establish standard tables of physical parameters. It has been used in particular for detectors including very radioactive actinium series. After a discussion of the instrumentation choice and data processing, specific to each measurements, we provide results on: 1) the technological and neutron behaviour of regenerating miniature fission chambers, in the swimming pool reactor 'TRITON', under a neutron exposure of 7.1020 n cm-2 and a gamma-rays exposure of 1,5.1011 rads about. The fissile material is 235U and the fertile material 234U. 2) The integral measurements of effective cross sections for 241Am and 238Pu in the experimental reactor 'MINERVE' use for study of problems of fast neutron reactors

  15. Ionization chamber kit for in core dosimetry

    International Nuclear Information System (INIS)

    Sensitivity of a set of ionization walled precise chambers, including chambers with a wall made of a material with different atomic number Z (from 6 to 92), is investigated. It is noted that the considered chambers differ by high radiation stability at slight leakage current on isolators. Using the chambers for determining effective energy of gamma-radiation of the stopped IRT-2000 reactor has shown a good agreement of measuring results with the calculation

  16. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  17. Ionization-chamber smoke detector system

    Science.gov (United States)

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  18. Cylindrical ionization chamber on compressed krypton

    International Nuclear Information System (INIS)

    A cylindrical ionization chamber with a grid is described. The chamber is used in experiments to search for double positron decay and conversion of atom electron into positron in Kr78. The working substance of the chamber is krypton. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. Energy resolution is 2.1% for 1.84 MeV energy (the gamma quantum source is 88Y) when using the chamber filled with Kr+0.2%H2 mixture at pressure of 25 atm

  19. Cylindrical ionization chamber with compressed krypton

    International Nuclear Information System (INIS)

    A cylindrical ionization chamber with a grid is used to search for double positron decay and atomic electron conversion to a positron in 78Kr. Krypton is the working gas material of the chamber. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. The energy resolution is 2.1% for an energy of 1.84 MeV (the source of γ-quanta is 88Y) when the chamber is filled with a mixture of Kr+0.2% H2 under a pressure of 25 atm

  20. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  1. The GODDESS ionization chamber: developing robust windows

    Science.gov (United States)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  2. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  3. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  4. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  5. Properties and detection of ionizing radiation resulting from instantaneous fission and fission product mixture

    International Nuclear Information System (INIS)

    The different types of ionizing radiation accompanying fission and mixtures of fission products, their activity, the determination of the age of fission products and the biological hazard of radiation caused by instantaneous fission are described. The possibility is described of detection, and of the dosimetry of ionizing radiation resulting from instantaneous fission and emitted by a mixture of fission products, the determination of the dose of neutron radiation, surface contamination, internal contamination and the contamination of water and foods. (J.P.)

  6. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  7. Pressurized ionization chamber detectors for industrial use

    International Nuclear Information System (INIS)

    The measurement of the thickness of the sheets made of different materials, e.g. metal, plastic, paper, cellulose, rubber, etc., is one of many industrial applications of nuclear techniques. The ionizing radiation detectors of ionization chamber type are based on measuring the variations in either exposure rate (for gamma radiation) or absorbed dose rate (for beta radiation) occurring in materials of different thickness, placed between the radiation source and the detector. The variations in exposure rate and absorbed dose rate can be traced by using radiation detectors of the ionization chamber type, which convert the exposure rate, X point, or the absorbed dose rate, D point, into a proportional electric current. The more stable the ionization current of the chambers (keeping a constant exposure rate or absorbed dose rate), the slighter the variations that can be detected in either exposure rate or absorbed dose rate, hence in the absorbing material placed between the radiation source and the detector. Based on these facts, several variants of such detectors, including the ionization chamber CIS-P5M-100Kr, CIS-P2M-1000Kr and CIS-P8M-70Kr, have been made. (author)

  8. Development of an α grid ionization chamber

    International Nuclear Information System (INIS)

    The article introduces the parallel grid ionization chamber used to measure the α radioactivity, which has a independent vacuum system. The system is composed of main body of the chamber, gas-filled and electronics system. Energy resolution is 25 keV for 239Pu, background is 4 counts for one hour from 4 MeV to 6 MeV energy range, detect efficiency approach to 50%. The chamber can measure the energy of nuclide, analyze the structure, moreover authenticate both the nuclide and the relative and absolute content. (authors)

  9. Innovative Fission Measurements with a Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, M D; Barnes, P D; Klay, J L

    2005-11-16

    This study explores a pioneering idea to utilize a Time Projection Chamber (TPC) to measure fission cross sections and other fission quantities. The TPC is inherently capable of measuring fragments from fission events, decay alphas, and beam-material scatters. This document explores whether the TPC can improve the precision of the {sup 239}Pu(n,f) cross section and measure other new and significant fission quantities simultaneously. This work shows that the TPC can in fact deliver sub-1% cross section measurements and should provide breakthroughs in both the quality and quantity of information available from neutron-induced fission experiments.

  10. IKAR, a ionization chamber for WA9

    CERN Multimedia

    1976-01-01

    This ionization chamber arrived at CERN from Leningrad for a high precision study of hadron elastic scattering by a CERN-Clermont-Ferrand-Leningrad-Lyon-Uppsala Collaboration in the H3 beam (WA9). G.A. Korolev (third from right) looks at the drawings.

  11. Proportional chamber application to ionization measurements

    International Nuclear Information System (INIS)

    The possibility is investigated to use a proportional chamber measuring ionization particle losses in developing a detector capable of tracking the simultaneous passage of several particles against the background of a large number of single particles. The chamber used, with a 100x100 mm2 working plane, has three high-voltage electrodes and two signal planes spaced at 6 mm. The operating gas is argon + methylal (C3H8O2) at atmospheric pressure. The calculations made with consideration for the resolution obtained in the chamber, i.e., approximately 20% (5.9 keV) indicate that by using four chamber clearances it is possible to obtain the tracking efficiency of three particles over 99%

  12. LET measurements with a liquid ionization chamber

    International Nuclear Information System (INIS)

    Deep-seated tumors can be efficiently treated with heavy charged particles. The characteristic depth dose profile inside the tissue (Bragg peak) allows to deliver a high dose inside the tumor, while sparing the neighboring healthy tissue. As compared to protons, heavy ions like carbon or oxygen produce a higher amount of ionization events along their track (and in particular at the end of the ion beam path), resulting in an irreparable damage to the DNA of the tumor cells. The density of such ionization events is described in terms of Linear Energy Transfer (LET), an important physical quantity, but difficult to be measured directly. The aim of this work is to determine LET of hadrontherapy beams by using Liquid Ionization Chambers (LIC). The ionization signal in LICs is affected by recombination effects that depend on the LET of the incident radiation. Differences in recombination effects in LICs and air-filled ionization chambers can be exploited to obtain the recombination index, which can be related to the LET, calculated by Monte Carlo methods. We thus developed a method to construct a calibration curve, which relates the recombination index with the LET at each depth in water. The result of this work can be used for online monitoring of the ion beam quality.

  13. Liquid-argon cylindrical pulsed ionization chamber

    International Nuclear Information System (INIS)

    A liquid-argon cylindrical ionization chamber with a working volume of 200 cm2 is described. The chamber anode is made of stainless steel in the form of a hollow cylinder 30 mm in diameter and 140 mm in length. A beryllium bronze wire in diameter of 0.1 mm and at a spacing of 1 mm is used for winding the chamber screen grid. The chamber cathode is a brass thin-walled cylinder having an internal diameter of 56 mm and a height of 156 mm. The cathode-grid gap is 10 mm, the cathode-case gap is 2 mm. A 0.5 l cooling bath filled with liquid nitrogen is used to refrigirate the chamber. The chamber is evacuated to about 10-5 mm Hg. The total concentration of electronegative impurities in argon does not exceed 6x10-9. Dependences of the chamber counting and amplitude responses, on the cathode voltage under irradiation with γ-quanta at energies of 0.898 MeV and 1.836 MeV are given. The value of the energy resolution was evaluated by differentiating the high-energy edge of the Compton spectrum. The total width at a peak half-height constitutes 5% for an electron energy of 1.612 MeV. To achieve better resolution of the chamber it is necessary to reduce preamplifier noises by three times, to increase the working gap of the chamber and decrease the grid-anode gap

  14. Alpha particle spectroscopy by gridded ionization chamber

    International Nuclear Information System (INIS)

    A gridded ionization chamber has been constructed with the aim of determining its ultimate energy resolution in alpha spectroscopy, utilizing a cooled FET pre-amplifier of the type normally employed with semiconductor detectors. With suitable mechanical collimation of the alpha particles, their fine structure has been measured with an energy resolution of -11.5 keV (fwhm), achieved using an Ar + 0.75% C2H2 mixture as the filling gas. (orig.)

  15. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  16. Calorimeter tests with liquid ionization chambers

    International Nuclear Information System (INIS)

    Configurations of sampling calorimeters with iron, lead and uranium as absorbers have been investigated using liquid ionization chambers as active elements. As liquid tetramethylsilane has been used. Results of beam tests with electrons, pions and muons in the energy range of 2 to 6 GeV are presented and compared with Monte Carlo simulations. In particular the questions regarding which configuration can compensate and the separation of sampling from intrinsic fluctuations have been studied. (orig.)

  17. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma irradiator

  18. Initial Back-to-Back Fission Chamber Testing in ATRC

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

  19. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm2 was achieved

  20. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  1. Reactor oscillator project - Theoretical study; operation problems; choice of the ionization chamber

    International Nuclear Information System (INIS)

    Theoretical study of the reactor operator covers methods of the danger coefficient and the method based on measuring the phase angle. Operation with the reactor oscillator describes measurement of the cross section and resonance integral, measurement of the fissionable materials properties, measurement of impurities in the graphite sample. A separate chapter is devoted to the choice of the appropriate ionization chamber

  2. Optimization studies on pulse ionization chambers

    International Nuclear Information System (INIS)

    The results are presented of optimization studies on two models of an air-filled, pulse, ionization chamber intended for detecting air impurities. Studies were conducted on the effect of dosage grids, procedure of controlling them, field configuration, type of radioactive source, surface of collecting electrode, and length of dosage pulse. The most critical parameters that have an effect upon the pulse shape, i.t. upon the pulse-amplitude and -length are: procedure of controlling the dosage grid, dosage dosage-pulse length and electric-field intensity. (author)

  3. Characterization of a homemade ionization chamber for radiotherapy beams.

    Science.gov (United States)

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  4. Experimental verification of the gas pumping theory within fission ionisation chambers

    International Nuclear Information System (INIS)

    Experimental verification of a theory for gas loss from in-core ionization chambers is reported. A value of the gas pressure within an irradiated miniature fission chamber was derived indirectly by use of published data on Townsend first coefficient/field across the detector as a function of field/pressure. In practice the voltage corresponding to 10% current multiplication is measured. From the current saturation characteristics measured on the detector during irradiation, the change in gas pressure as a function of fluence was derived and compared to theoretically predicted values. Within the limited accuracy obtainable substantial agreement between measurement and theory is obtained. (O.T.)

  5. Investigation of 234U(n,f) with a Frisch-grid ionization chamber

    OpenAIRE

    Al-Adili, Ali

    2011-01-01

    This work treats three topics. The main topic concerns neutron-induced fission of 234U. The main goal is to investigate the fission-fragments properties  as a function of the incident neutron energy. The study was carried out using a twin Frisch-grid ionization chamber. The first fluctuations on fragment properties are presented, in terms of strong angular anisotropy oscillation. The second part of the work treats the data-acquisition systems in use, particularly for neutron-induced fission e...

  6. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  7. Numerical solutions of differential equations of an ionization chamber

    International Nuclear Information System (INIS)

    A system of reduced differential equations generally valid for plane-parallel, cylindrical, and spherical ionization chambers filled with air, which is appropriate for numerical solution, has been derived. The system has been solved for all three geometries. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO2 were also in good agreement with the experimental data of Moriuchi et al (author)

  8. Compatibility results of some diagnostic ionization chambers

    International Nuclear Information System (INIS)

    The most important task of the National Laboratory for Metrology of the Ionizing Radiations at the Institute for Radiation Protection and Dosimetry - LNMRI/IRD-CNEN/MCT is to realize and maintain the legal units in compliance with the International System of Units - Si and disseminate them, above all within the framework of legal and scientific metrology. The LNMRI/IRD thus is on top of the metrological hierarchy in Brazil. Calibration certificates issued is the document that was result of the calibrations, that is, the instrument was calibrated and now it is traceable to national standards. Groups of a similar model of the ion chambers design specific for using at conventional diagnostic dosimetric, attenuated and no attenuated and dental applications, are placed under similar calibration condition at the LNMRI/IRD. The main objective is to observe how is the compatibilities' measurements obtained through 10 equipment set dedicated for clinical dosimetry, and how are the dispersion conclusion for these. (author)

  9. Development of an optical digital ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new device for optically detecting and imaging the track of a charged particle in a gas. The electrons in the particle track are made to oscillate rapidly by the application of an external, short-duration, high-voltage, RF electric field. The excited electrons produce additional ionization and electronic excitation of the gas molecules in their immediate vicinity, leading to copious light emission (fluorescence) from the selected gas, allowing the location of the electrons along the track to be determined. Two digital cameras simultaneously scan the emitted light across two perpendicular planes outside the chamber containing gas. The information thus obtained for a given track can be used to infer relevant quantities for microdosimetry and dosimetry, e.g., energy deposited, LET, and track structure in the gas. The design of such a device now being constructed and methods of obtaining the dosimetric data from the digital output will be described. 4 refs., 4 figs.

  10. High temperature fission chambers. State-of-the-art

    International Nuclear Information System (INIS)

    In the control and the surveillance of fast breeder reactors, high temperature fission chambers able to operate in extremes of temperature and gamma dose perform two essential functions: in-vessel integrated neutronic control; clad failure detection by integrated detectors. In addition, they can be used for example to: measure the weight of the control rods; monitor the insertion of new sub assemblies (SAs) and withdrawal of irradiated SAs; eventually monitor the neutron flux in Boiling Water Reactors (BWR). Since 1970, a major research development and qualification programme has been undertaken in France. This programme has resulted in the development of: dedicated manufacturing processes for fission chambers to cope with the specific conditions in fast breeder reactors; a complete range of detectors to cover all other possible applications. This paper reviews: the detectors in their dedicated applications; the main problems encountered, studies made and solutions found; the detector qualification status; the performance of the detectors in the French fast breeder reactors. (authors)

  11. Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yu-lai; WANG; Qiang; YANG; Lu

    2013-01-01

    The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with

  12. A grid-ionization chamber and a ΔE-E particle telescope detection set-up

    International Nuclear Information System (INIS)

    A detection set-up, composed of a typical grid-ionization chamber and a ΔE-E particle telescope, was constructed to study the charge distributions of fragments in spontaneous fission of 252Cf. The fission fragment energy and the emission angle corresponding to the symmetrical axis were measured by the grid-ionization chamber, the ΔE-E particle telescope in which a thin grid-ionization chamber was served as the ΔE-section and a surface barrier detector as the E-section was employed to determined the charge of the complementary fragment. Four parameter measurements of 252Cf spontaneous fission were performed by this set-up, the results show that the charge resolution of Z/ΔZ>40:1 can be obtained by this detector system. (authors)

  13. A compact gas ionization chamber for VERA

    International Nuclear Information System (INIS)

    Full text: The increasing demand for measuring long-lived radionuclides with small AMS machines at energies below 1 MeV per nucleon raises the need for compact detectors which still have a decent energy resolution and allow for a clear identification of the incident particles. Based on a design by the AMS group at the ETH Zurich a compact gas ionization chamber was built and installed at the VERA 3 MV AMS facility. Due to its compact design, the detector easily fits into a DN100 cross-piece and can be inserted and retracted without breaking the vacuum. The anode is split into two active regions which allows the simultaneous measurement of ΔE and ERES. An identification of the incident particles is therefore possible via their different stopping powers. For the entrance window silicon nitride foils are used. These foils are remarkably homogeneous and can be obtained pinhole-free with thicknesses down to 50 nm. In this work the setup of the detector together with the results of first measurements of the previously difficult to measure AMS-relevant radionuclides 10Be, 36Cl and 41Ca will be presented. (author)

  14. Monolithic JFET preamplifier for ionization chamber calorimeters

    International Nuclear Information System (INIS)

    A prototype preamplifier circuit is presented for use in SSC ionization chamber calorimeters. It consists of a new type of silicon integrated circuit comprised of very low noise junction FET (JFET) components. Presently, monolithic preamplifier circuits for use in highly segmented detectors are made of implanted channel JFETs or MOS devices. While such circuits solve the density problems, they do not perform to the same level of low noise characteristics as found in discrete JFET components. The JFETs which comprise this new integrated circuit preserve the excellent low noise performance normally found only in discrete JFETs. JFETs also are much more radiation resistant and less prone to damage by electromagnetic discharges than MOS transistors. Two innovative fabrication processes are discussed. They solve the difficult gate-to-gate isolation problem needed to manufacture JFET integrated circuits. Both allow the use of an epitaxially formed channel and a diffused gate, as in standard discrete JFET processing. This, presumably, results in JFETs which exhibit lower noise than those made with implanted channels. 11 refs., 9 figs

  15. Experimental study of columnar recombination in fission chambers

    Science.gov (United States)

    Filliatre, P.; Lamirand, V.; Geslot, B.; Jammes, C.

    2016-05-01

    In this paper, we present experimental saturation curves of a small gap miniature fission chamber obtained in the MINERVE reactor. The chamber is filled with argon at various pressures, and the fissile material can be coated on the anode, cathode, or both. For analyzing the recombination regime, we consider a model of columnar recombination and discuss its applicability to our chamber. By applying this model to the data, it is possible to estimate the ratio between the recombination coefficient k and an effective column radius b, appearing in the model, to be k / b =(2.5 ± 0.9) ×10-6m2 / s for argon. From these results, a routine measurement of the recombination regime is proposed in order to detect gas leakage. This online diagnosis would be beneficial in terms of lifetime and reliability of the neutron instrumentation of nuclear reactors.

  16. Calibration of ionization chambers used in LDR brachytherapy

    International Nuclear Information System (INIS)

    In this work was developed a calibration procedure of well-type ionization chambers used for measurements of I-125, seed type. It was used as a standard an ionization chamber Capintec CRC-15BT, with calibration certificate of the University of Wisconsin. It were calibrated two well-type ionization chambers of Capintec CRC-15R model. A source of I-125 was used in clinical use (18.5 to 7.4 MBq). The results showed that with the application of calibration factors was possible to decrease read deviate from 16% to just 1.0%

  17. A twin grid ion chamber suitable for fission correlation experiment

    International Nuclear Information System (INIS)

    A twin grid ion chamber suitable for fission multi-parameter correlation experiment is designed and developed. Its behaviour is studied using a 252Cf transfer fissile source on a stainless steel backing in the case when Ar(90%)+CH4(10%) mixture gas and pure CH4 gas are selected as working gases. The ratio of the number of counts per channel at the peak of light fragment group to that at the minimum in the valley is about 2.8, this means that the energy resolution of detecting fission fragments is not worse than that of the barrier type detector. The cosθ of the fragment emission angle can be determined with a resolution in cosθ of 0.03. Because of the constant fast rising leading edge, the cathode signals can be used as timing mark in the multi-parameter correlation experiments

  18. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  19. On the Frisch-Grid signal in ionization chambers

    Science.gov (United States)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Pomp, S.; Oberstedt, S.; Zeynalov, Sh.

    2012-04-01

    A recent theoretical approach concerning the grid-inefficiency (GI) problem in Twin Frisch-Grid Ionization Chambers was validated experimentally. The experimental verification focused on the induced signal on the anode plate. In this work the investigation was extended by studying the grid signal. The aim was to verify the grid-signal dependency on the grid inefficiency σ. The measurements were made with fission fragments from Cf(sf)252, using two different grids, with 1 and 2 mm wire distances, leading to the GI values: σ=0.031 and σ=0.083, respectively. The theoretical grid signal was confirmed because the detected grid pulse-height distribution was smaller for the larger σ. By applying the additive GI correction approach, the two grid pulse heights were consistent. In the second part of the work, the corrected grid signal was used to deduce emission angles of the fission fragments. It is inconvenient to treat the grid signal by means of conventional analogue electronics, because of its bipolarity. Therefore, the anode and grid signals were summed to create a unipolar, angle-dependent pulse height. Until now the so-called summing method has been the well-established approach to deduce the angle from the grid signal. However, this operation relies strongly on an accurate and stable calibration between the two summed signals. By application of digital-signal processing, the grid signal's bipolarity is no longer an issue. Hence one can bypass the intermediate summation step of the two different pre-amplifier signals, which leads to higher stability. In this work the grid approach was compared to the summing method in three cases: Cf(sf)252, U(n,f)235 and U(n,f)234. By using the grid directly, the angular resolution was found equally good in the first case but gave 7% and 20% improvements, respectively, in the latter cases.

  20. On the Frisch–Grid signal in ionization chambers

    International Nuclear Information System (INIS)

    A recent theoretical approach concerning the grid-inefficiency (GI) problem in Twin Frisch–Grid Ionization Chambers was validated experimentally. The experimental verification focused on the induced signal on the anode plate. In this work the investigation was extended by studying the grid signal. The aim was to verify the grid-signal dependency on the grid inefficiency σ. The measurements were made with fission fragments from 252Cf(sf), using two different grids, with 1 and 2 mm wire distances, leading to the GI values: σ=0.031 and σ=0.083, respectively. The theoretical grid signal was confirmed because the detected grid pulse-height distribution was smaller for the larger σ. By applying the additive GI correction approach, the two grid pulse heights were consistent. In the second part of the work, the corrected grid signal was used to deduce emission angles of the fission fragments. It is inconvenient to treat the grid signal by means of conventional analogue electronics, because of its bipolarity. Therefore, the anode and grid signals were summed to create a unipolar, angle-dependent pulse height. Until now the so-called summing method has been the well-established approach to deduce the angle from the grid signal. However, this operation relies strongly on an accurate and stable calibration between the two summed signals. By application of digital-signal processing, the grid signal's bipolarity is no longer an issue. Hence one can bypass the intermediate summation step of the two different pre-amplifier signals, which leads to higher stability. In this work the grid approach was compared to the summing method in three cases: 252Cf(sf), 235U(n,f) and 234U(n,f). By using the grid directly, the angular resolution was found equally good in the first case but gave 7% and 20% improvements, respectively, in the latter cases.

  1. Development of standard ionization chamber counting system for activity measurements

    CERN Document Server

    Pyun, W B; Lee, H Y; Park, T S

    1998-01-01

    This study is to set up the activity measuring system using a 4 pi gamma ionization chamber as used mainly in national standards laboratories that are responsible for radionuclide metrology. The software for automatic control between the electrometer and personal computer is developed using Microsoft visual basic 4.0 and IEEE488 Interface. The reproducibility of this 4 pi gamma ionization chamber is about 0.02% and the background current is 0.054+-0.024 pA. this 4 pi gamma ionization chamber is calibrated by 6 standard gamma emitting radionuclides from KRISS. According to the result of this study, it is revealed that this 4 pi gamma ionization chamber counting system can be used as a secondary standard instrument for radioactivity measurement.

  2. Performance of ionization chambers in X radiation beams, radioprotection level

    International Nuclear Information System (INIS)

    Narrow beams, radioprotection level, were implanted in an X ray system, based on ISO 4037-1, as recommended by IAEA (SRS 16). Energy dependency tests were carried out and short-term stability in ionization chambers for use in radiation protection of trademark Physikalisch-Technische Werkstaetten (PTW), 32002 and 23361 models. The ionization chambers were studied with regard to short-term stability within the program of quality control of the laboratory, with a 90Sr + 90Y. The results of the short-term stability test were compared with the recommendations of IEC 60731, respect to dosemeters used in radiotherapy, since this standard presents the more restrictive limits with regard to the behaviour of ionization chambers. All cameras showed results within the limits recommended by this standard. With respect to the energy dependency of the response, the model Chamber 32002 presented a maximum dependence of only 2.7%, and the model Chamber 23361, 4.5%

  3. Calibration of working standard ionization chambers and dose standardization

    International Nuclear Information System (INIS)

    Measurements were performed for the calibration of two working standard ionization chambers in the secondary standard dosimetry laboratory of Sudan. 600 cc cylindrical former type and 1800 cc cylindrical radical radiation protection level ionization chambers were calibrated against 1000 cc spherical reference standard ionization chamber. The chamber were calibrated at X-ray narrow spectrum series with beam energies ranged from (33-116 KeV) in addition to 1''3''7''Cs beam with 662 KeV energy. The chambers 0.6 cc and 0.3 cc therapy level ionization were used for dose standardization and beam output calibrations of cobalt-60 radiotherapy machine located at the National Cancer Institute, University of Gazira. Concerning beam output measurements for 6''0''Co radiotherapy machine, dosimetric measurements were performed in accordance with the relevant per IAEA dosimetry protocols TRS-277 and TRS-398. The kinetic energy released per unit mass in air (air kerma) were obtained by multiplying the corrected electrometer reading (nC/min) by the calibration factors (Gy/n C) of the chambers from given in the calibration certificate. The uncertainty of measurements of air kerma were calculated for the all ionization chambers (combined uncertainty) the calibration factors of these ionization chambers then were calculated by comparing the reading of air kerma of secondary standard ionization chambers to than from radical and farmer chambers. The result of calibration working standard ionization chambers showed different calibration factors ranged from 0.99 to 1.52 for different radiation energies and these differences were due to chambers response and specification. The absorbed dose to to water calculated for therapy ionization chamber using two code of practice TRS-277 and TRS-398 as beam output for 6''0''Co radiotherapy machine and it can be used as a reference for future beam output calibration in radiotherapy dosimetry. The measurement of absorbed dose to water showed that the

  4. Development of high-temperature fission counter chambers

    International Nuclear Information System (INIS)

    High-performance and 600 0C heat-resisting fission counter-chambers have been developed in which a fast counting gas is used, and satisfactory results have been obtained. The compatibility of the pulse output performance with the high-temperature resistivity of the chamber was investigated in connection with fast counting gases and structural metals, and the instability problem of the high-performance counter-chamber at high temperature was overcome using the combination of a mixed counting gas of 94 % argon, 5 % nitrogen and 1 % helium and the electrodes and structural metal-components made of a nickel alloy containing about 75 % nickel, 16 % chromium and some iron. The relivant works were performed successfully also in development of heat-resisting components and structures such as a metal-ceramic seal to be able to withstand the temperatures over 750 0C and an electrode supporting structure to enable to keep a narrow spacing between electrodes at high temperatures. Several types of such chambers have been made and tested to confirm their performance and operating stability at high temperatures. The test results showed that these fission counter-chambers operate quite stably at temperature up to 600 0C and have high-performance characteristics such as a very large neutron pulse current, e.g. of 2.6 μA and a short collection time, e.g. of 43 ns. It was also proved through the tests that the chambers have the ability to monitor about 10 decades of reactor operating range as a sensor of the nuclear instrumentation system of the nuclear power plant and withstand at least 6.5 x 1018 n/cm2 of neutron irradiation at 600 0C. Further, the chamber operated stably up to 800 0C in a post-accident monitoring(PAM) condition and withstood a long-term real-time in-reactor operating test at 600 0C for 3.3 years. (author)

  5. Characterisation of an ionization chamber of the radioisotope metrology laboratory

    International Nuclear Information System (INIS)

    The sensitivity as a function of the photon energy up to 1.9 MeV has been studied for a special ionization chamber (50 cm length, stainless steel, high pressure Ar). The response of the chamber to 16 of the most frequently used radionuclides has been also determined. (author)

  6. Modeling of a highly enriched 235U fission chamber for spent fuel assay

    International Nuclear Information System (INIS)

    Highlights: • Accurate fission chamber models require accurate design information. • Fissile mass amount, active layer thickness and structural materials determine the detector sensitivity. • Fission products in fission chambers can be modeled and transported in a Monte Carlo code such as MCNPX. • Fission products transport plays a key role when determining a fission chamber sensitivity. • The model is in good agreement with experimental data. - Abstract: Fission chambers loaded with high enriched uranium are used for spent fuel measurements in the so-called Fork detector. The Fork detector is one of the work-horses used by safeguards inspectors for spent fuel measurements during verification activities in the framework of the Non-Proliferation and Euratom Treaties. Having an accurate and validated model of the measurement equipment is beneficial for the investigation of this type of applications. SCK• CEN is carrying out a significant effort to model the Fork detector with the MCNPX code. However, scarce information is known about the fission chambers. This work describes the impact of the design information of the fission chamber on the calculated detector sensitivity and, consequently, on the overall Fork detector response for neutrons, using Monte Carlo simulations. The heavy ions transport in the active layer of the fission chamber was also studied and the resulting fission product energy spectra were compared with the available experimental data

  7. Contamination of ionization chamber due to tritium exposure

    International Nuclear Information System (INIS)

    The contamination of three ionization chambers (Cu, Ni-plated, and Au-plated chambers) due to exposure to HT or HTO was measured. Considerable contamination took place for all of the chambers due to exposure to HTO. This is caused by the physical adsorption of HTO. The extent of the contamination differed from each other (Ni > Au > Cu), being considered due to difference in their surface roughness. In case of the exposure to HT, the Cu-chamber was contaminated in room air, whereas the Ni-chamber did in dry air atmosphere. This is considered due to the adsorption of HTO (being formed with catalytic exchange reaction between HT and H2O) on the Cuchamber and that of HT on the Ni-chamber. The Au-chamber was not contaminated with the exposure to HT. This is because neither the adsorption of HT nor the catalytic exchange reaction takes place on this surface

  8. Effects of air humidity on ionization chamber response

    International Nuclear Information System (INIS)

    A study of the effect of air humidity on four different ionization chamber cap materials verified earlier studies (Kristensen and Sundbom, 1981; Mijnheer et al., 1983) and extended our understanding of the problem. We found nylon and A-150 plastic caps swell as they absorb water from the air. This accounts for as much as 2.5% increase in ionization response. Graphite chambers readily absorb and desorb water from the air. This creates a problem in maintaining dry air in a wet graphite chamber. Humid air has a different density and W value than dry air (Niatel, 1969, 1975). This decreases the charge collected in a wet graphite chamber. We observe a decrease in response of approximately 2%, a value greater than can be accounted for by these effects alone. Polyethylene chambers are unaffected by humid air. 4 refs., 9 figs

  9. Laboratory implantation for well type ionization chambers calibration

    International Nuclear Information System (INIS)

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  10. Feasibility study of new microscopic fission chambers dedicated for Ads

    International Nuclear Information System (INIS)

    In the frame of the MEGAPIE project we propose to measure the neutron flux inside the molten 1 MW Pb-Bi target at PSI (Switzerland). For this purpose a new type of microscopic fission chambers, developed for on-line measurements of the actinide incineration rates in the high neutron fluxes, will be placed in the central rod of the Pb-Bi target to determine both thermal and fast components of the neutron spectra. In addition to the neutron flux measurements in absolute value, both - time and space dependent variations - of it will be monitored on-line with a precision better than 10%. In this work we show that these measurements are feasible. (author)

  11. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values

  12. A Time Projection Chamber for High Accuracy and Precision Fission Cross Section Measurements

    CERN Document Server

    Heffner, M; Baker, R G; Baker, J; Barrett, S; Brune, C; Bundgaard, J; Burgett, E; Carter, D; Cunningham, M; Deaven, J; Duke, D L; Greife, U; Grimes, S; Hager, U; Hertel, N; Hill, T; Isenhower, D; Jewell, K; King, J; Klay, J L; Kleinrath, V; Kornilov, N; Kudo, R; Laptev, A B; Leonard, M; Loveland, W; Massey, T N; McGrath, C; Meharchand, R; Montoya, L; Pickle, N; Qu, H; Riot, V; Ruz, J; Sangiorgio, S; Seilhan, B; Sharma, S; Snyder, L; Stave, S; Tatishvili, G; Thornton, R T; Tovesson, F; Towell, D; Towell, R S; Watson, S; Wendt, B; Wood, L; Yao, L

    2014-01-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4$\\pi$ acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  13. Development of single gridded liquid xenon ionization drift chamber

    International Nuclear Information System (INIS)

    We have simulated gamma-ray events in single gridded liquid xenon ionization drift chamber by EGS/PRESTA Monte Carlo code to construct data-sets for analyzing the basic performance as ionization chamber from ionization and scintillation signals. The size of effective volume is about 100 cc and a drift length is 42 mm. The collectors are segmented into 20 parallel strips of 2 mm wide with 0.5 mm space. We assumed that the energy resolution is 8.5% at 1.064 MeV. The comparison of the ionization signals between the experimental result and calculated result were similar shape and the each photo-peak was at the same position. Also the number of scintillation photons observed at two photomultipliers was calculated from the data-sets. (author)

  14. Characterization of a free air ionization chamber for low energies

    International Nuclear Information System (INIS)

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition. (author)

  15. Experimental and calculated calibration of ionization chambers with air circulation

    CERN Document Server

    Peetermans, A

    1972-01-01

    The reports describes the method followed in order to calibrate the different ionization chambers with air circulation, used by the 'Health Physics Group'. The calculations agree more precisely with isotopes cited previously (/sup 11/C, /sup 13/N, /sup 15/O, /sup 41 /Ar, /sup 14/O, /sup 38/Cl) as well as for /sup 85/Kr, /sup 133/Xe, /sup 14/C and tritium which are used for the experimental standardisation of different chambers.

  16. Direct experimental determination of Frisch grid inefficiency in ionization chamber

    Science.gov (United States)

    Khriachkov, V. A.; Goverdovski, A. A.; Ketlerov, V. V.; Mitrofanov, V. F.; Semenova, N. N.

    1997-07-01

    The present work describes the method of direct experimental determination of the Frisch grid inefficiency in an ionization chamber. The method is based on analysis of the anode signal after Waveform Digitizer. It is shown that the calculated grid inefficiency value can differ much from the measured ones.

  17. A Bragg curve ionization chamber for acceleration mass spectrometry

    International Nuclear Information System (INIS)

    An ionization chamber based on the Bragg curve spectrometry method to be used as the final detector in a accelerator mass spectrometry system is described. The first tests with a Cl beam give energy resolution of 1% and Z resolving power of 72 at Z=17

  18. Multi-parameter measurement using gridded-ionization chamber

    International Nuclear Information System (INIS)

    The multi-parameter measurement with a gridded-ionization-chamber enables the study of neutron-induced charged-particle emission reactions with very high efficiency and fairly good signal-to-background ratio. This technique will be applicable for various fields in nuclear measurements such as charged-particle spectroscopy and neutronics. (J.P.N.)

  19. Automatic control system for measuring currents produced by ionization chambers

    International Nuclear Information System (INIS)

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for 18F and 153Sm were obtained, making possible to determine activities of these radionuclides. (author)

  20. Direct experimental determination of Frisch grid inefficiency in ionization chamber

    International Nuclear Information System (INIS)

    The present work describes the method of direct experimental determination of the Frisch grid inefficiency in an ionization chamber. The method is based on analysis of the anode signal after waveform digitizer. It is shown that the calculated grid inefficiency value can differ much from the measured ones. (orig.)

  1. HPXe ionization chambers for γ spectrometry at room temperature

    Science.gov (United States)

    Ottini-Hustache, S.; Monsanglant-Louvet, C.; Haan, S.; Dmitrenko, V.; Grachev, V.; Ulin, S.

    2004-01-01

    High pressure xenon (HPXe) ionization chambers exhibit many characteristics which make them particularly suitable for industrial γ spectrometry at room or higher temperature. The use of a gas as detection medium allows one to reach very large effective volumes and makes these chambers relatively insensitive to radiation damage. Further, the high atomic number of xenon ( Z=54) enhances the total absorption of incident photons and provides, combined to high pressure, a good enough detection efficiency with respect to solid state detectors. Furthermore, such ionization chambers with Frisch grid appear to be very stable over wide periods (e.g. a research prototype has been used aboard MIR orbital station for several years) and temperature range (up to 180°), without maintenance. The characteristics of different prototypes are presented. Their detection efficiency and energy resolution are studied as a function of incident γ ray energy. New developments in electronics and signal processing are also investigated to improve their performances.

  2. HPXe ionization chambers for γ spectrometry at room temperature

    International Nuclear Information System (INIS)

    High pressure xenon (HPXe) ionization chambers exhibit many characteristics which make them particularly suitable for industrial γ spectrometry at room or higher temperature. The use of a gas as detection medium allows one to reach very large effective volumes and makes these chambers relatively insensitive to radiation damage. Further, the high atomic number of xenon (Z=54) enhances the total absorption of incident photons and provides, combined to high pressure, a good enough detection efficiency with respect to solid state detectors. Furthermore, such ionization chambers with Frisch grid appear to be very stable over wide periods (e.g. a research prototype has been used aboard MIR orbital station for several years) and temperature range (up to 180 deg. ), without maintenance. The characteristics of different prototypes are presented. Their detection efficiency and energy resolution are studied as a function of incident γ ray energy. New developments in electronics and signal processing are also investigated to improve their performances

  3. A correction to Birks' Law in liquid argon ionization chamber simulations for highly ionizing particles

    International Nuclear Information System (INIS)

    We present a study of the performance of Birks' Law in liquid argon ionization chamber simulations as applied to highly ionizing particles, such as particles with multiple electric charges or with magnetic charge. We used Birks' Law to model recombination effects in a GEANT4 simulation of heavy ions in a liquid argon calorimeter. We then compared the simulation to published heavy-ion data to extract a highly ionizing particle correction to Birks' Law.

  4. Particle emission angle determination in Frisch grid ionization chambers by electron drift-time measurements

    Science.gov (United States)

    Göök, A.; Chernykh, M.; Enders, J.; Oberstedt, A.; Oberstedt, S.

    2010-09-01

    The double kinetic energy measurement of fission fragments with a double-sided Frisch grid ionization chamber allows a careful determination of the emission angle, which is essential in order to apply appropriate energy-loss corrections. We present a drift-time method, which uses the time that free electrons need to drift from the location of their creation, e.g. by a fission fragment in the counting gas, to the grid, before inducing a signal on the anode. Such a measurement leaves energy and angular information fully decoupled. We demonstrate the applicability of the drift-time method for the example of the 234,238U (γ,f) reactions performed at the superconducting Darmstadt electron linear accelerator. The angular resolutions achieved with this method are comparable to those obtained with other methods.

  5. Particle emission angle determination in Frisch grid ionization chambers by electron drift-time measurements

    International Nuclear Information System (INIS)

    The double kinetic energy measurement of fission fragments with a double-sided Frisch grid ionization chamber allows a careful determination of the emission angle, which is essential in order to apply appropriate energy-loss corrections. We present a drift-time method, which uses the time that free electrons need to drift from the location of their creation, e.g. by a fission fragment in the counting gas, to the grid, before inducing a signal on the anode. Such a measurement leaves energy and angular information fully decoupled. We demonstrate the applicability of the drift-time method for the example of the 234,238U (γ,f) reactions performed at the superconducting Darmstadt electron linear accelerator. The angular resolutions achieved with this method are comparable to those obtained with other methods.

  6. Ionization chamber gradient effects in nonstandard beam configurations

    International Nuclear Information System (INIS)

    Purpose: For the purpose of nonstandard beam reference dosimetry, the current concept of reporting absorbed dose at a point in water located at a representative position in the chamber volume is investigated in detail. As new nonstandard beam reference dosimetry protocols are under development, an evaluation of the role played by the definition of point of measurement could lead to conceptual improvements prior to establishing measurement procedures. Methods: The present study uses the current definition of reporting absorbed dose to calculate ionization chamber perturbation factors for two cylindrical chamber models (Exradin A12 and A14) using the Monte Carlo method. The EGSnrc based user-code EGS lowbar chamber is used to calculate chamber dose responses of 14 IMRT beams chosen to cause considerable dose gradients over the chamber volume as previously used by Bouchard and Seuntjens [''Ionization chamber-based reference dosimetry of intensity modulated radiation beams,'' Med. Phys. 31(9), 2454-5465 (2004)]. Results: The study shows conclusively the relative importance of each physical effect involved in the nonstandard beam correction factors of 14 IMRT beams. Of all correction factors involved in the dosimetry of the beams studied, the gradient perturbation correction factor has the highest magnitude, on average, 11% higher compared to reference conditions for the Exradin A12 chamber and about 5% higher for the Extradin A14 chamber. Other perturbation correction factors (i.e., Pwall, Pstem, and Pcel) are, on average, less than 0.8% different from reference conditions for the chambers and beams studied. The current approach of reporting measured absorbed dose at a point in water coinciding with the location of the centroid of the chamber is the main factor responsible for large correction factors in nonstandard beam deliveries (e.g., intensity modulated radiation therapy) reported in literature. Conclusions: To reduce or eliminate the magnitude of perturbation

  7. Design and construction of a radiation monitor with ionization chamber

    International Nuclear Information System (INIS)

    The design and construction of a portable radiation monitor with ionization chamber for gamma and x rays measurements in the range from 40 KeV to 2 MeV are described in detail. The monitor is calibrated to give the exposure rate in Roentgens/hour in three linear ranges: 0-25 mR/h, 0-250 mR/h and 0-2500 mR/h for an ionization chamber with a sensitive volume of 600 cubic centimeters. Two conventional 9 V alkaline batteries are used to energize the monitor. The small current coming from the ionization chamber is measured by an operational amplifier with electrometer characteristics. The high voltage power supply to bias the chamber is made with a blocking oscillator and a ferrite transformer. Starting form a discussion of the desired characteristics of the monitor, the technical specifications are established. The design criteria for every section are shown. The testing procedures used to qualify every block and the results for three units are reported. (Author)

  8. Measurements of the 234U(n,f) Reaction with a Frisch-Grid Ionization Chamber up to En=5 MeV

    OpenAIRE

    Al-Adili, Ali

    2013-01-01

    This study on the neutron-induced fission of 234U was carried out at the 7 MV Van de Graaff accelerator of IRMM in Belgium. A Twin Frisch-Grid Ionization Chamber (TFGIC) was used to study 234U(n,f) between En = 0.2 and 5.0 MeV. The reaction is important for fission modelling of the second-chance fission in 235U(n,f). The fission fragment (FF) angular-, energy and mass distributions were determined using the 2E-method highlighting especially the region of the vibrational resonance at En = 0.77...

  9. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    Science.gov (United States)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-05-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

  10. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

  11. Design of In-vessel neutron monitor using micro fission chambers for ITER

    International Nuclear Information System (INIS)

    A neutron monitor using micro fission chambers to be installed inside the vacuum vessel has been designed for compact ITER (ITER-FEAT). We investigated the responses of the micro fission chambers to find the suitable position of micro fission chambers by a neutron Monte Carlo calculation using MCNP version 4b code. It was found that the averaged output of the micro fission chambers behind blankets at upper outboard and lower outboard is insensitive to the changes in the plasma position and the neutron source profile. A set of 235U micro fission chamber and ''blank'' detector which is a fissile material free detector to identify noise issues such as from γ-rays are installed behind blankets. Employing both pulse counting mode and Campbelling mode in the electronics, the ITER requirement of 107 dynamic range with 1 ms temporal resolution can be accomplished. The in-situ calibration has been simulated by MCNP calculation, where a point source of 14 MeV neutrons is moving on the plasma axis. It was found that the direct calibration is possible by using a neutron generator with an intensity of 1011 n/s. The micro fission chamber system can meet the required 10% accuracy for a fusion power monitor. (author)

  12. Development of a portable gas-filled ionization chamber

    Science.gov (United States)

    Chae, K. Y.; Cha, S. M.; Gwak, M. S.

    2014-02-01

    A new portable gas-filled ionization chamber has been designed and constructed at the Physics Department of Sung Kyun Kwan University. To overcome the maximum count rate of ˜105 particles per second of a conventional ionization chamber, which utilizes a Frisch grid, and to enhance the portability of a detector, we adopted the design of multiple electrodes and modified it from the original designs by Kimura et al. and Chae et al. The new design utilizes a stack of multiple electrodes installed perpendicular to the optical beam axis. This configuration provides a fast response time for the detector, which is essential for high-rate counting. The device has been tested with a 241Am ( t 1/2 = 432.2 years) radioactive α source, which mainly emits 5.486-MeV (branching ratio of 85%) and 5.443-MeV (branching ratio of 13%) α particles. An energy resolution of 6.3% was achieved.

  13. Development of a portable gas-filled ionization chamber

    International Nuclear Information System (INIS)

    A new portable gas-filled ionization chamber has been designed and constructed at the Physics Department of Sung Kyun Kwan University. To overcome the maximum count rate of ∼ 105 particles per second of a conventional ionization chamber, which utilizes a Frisch grid, and to enhance the portability of a detector, we adopted the design of multiple electrodes and modified it from the original designs by Kimura et al. and Chae et al. The new design utilizes a stack of multiple electrodes installed perpendicular to the optical beam axis. This configuration provides a fast response time for the detector, which is essential for high-rate counting. The device has been tested with a 241Am (t1/2 = 432.2 years) radioactive α source, which mainly emits 5.486-MeV (branching ratio of 85%) and 5.443-MeV (branching ratio of 13%) α particles. An energy resolution of 6.3% was achieved.

  14. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author)

  15. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  16. A multiple sampling ionization chamber for the External Target Facility

    International Nuclear Information System (INIS)

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4–0.6 was achieved for nuclear fragments of 18O at 400 AMeV

  17. Development of the VE-12 gridded ionization chamber

    International Nuclear Information System (INIS)

    A VE-12 gridded ionization chamber has been constructed by Northwest Institute of Nuclear Technology and Institute of Electric Vacuum Technology together. it was confirmed as a second grade standard instrument to determine the surface specific emission of alpha surface source by National Scientific Technology and Industry Committee in Dec. 1991. It's total indefinite degree is better than 1%. It has the advantages of low background high efficiency, high accuracy and easy operation

  18. A multi-anode transverse field gas ionization chamber

    International Nuclear Information System (INIS)

    A transverse field gas ionization chamber for particle identification at the Radioactive Ion Beam Line in Lanzhou (RIBLL) is described. It consists of cathode, Frisch grid and 4 anodes (20, 40, 80, 136 mm). The plateau is as long as 700 V and the energy resolution (ΔE/E) is 2.93%, as setting operating gas P10 (10%CH4 + 90%Ar) to 100 mb and Vanode= +225 V, Vcathode= -700 V for 3 components α sources

  19. Imaging with high Dynamic using an Ionization Chamber

    OpenAIRE

    Menk, Ralf-Hendrik; Amenitsch, Heinz; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the describ...

  20. Two-dimensional position sensitive ionization chamber with GEM

    Science.gov (United States)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  1. Development of a multi-anode ionization chamber

    Science.gov (United States)

    Makino, Hiroki; Morikawa, Tsuneyasu; Noro, Tetsuo; Maeda, Toyokazu

    2009-10-01

    A multi-anode ionization chamber with a Frisch grid has been developed. An immediate purpose is the use in accelerator mass spectrometry (AMS), but the system will also be applied to measurements in heavy-ion nuclear physics. In order to identify the incident heavy ions, the anode is divided into 16 sections so that the ionization distribution along the ion trajectory (Bragg curve) can be analyzed. Layout of the electrodes, for field shaping, has been determined based on calculations by using a computer code, Poisson-Superfish. A good discrimination of ^36Cl ions from background ^36S ions has been shown by the Monte Carlo simulation. For the signal readout, an originally designed charge-sensitive preamplifier was newly made by using conventional operational amplifiers so as to integrate the ionization charge and interface the shaped signal to the electronic modules of existing data acquisition system. These developments are still in progress. In the meeting, the overall performance of the ionization-chamber system investigated by using accelerated heavy ion beams will be presented.

  2. Growth Of 222Rn By Using Merlin Gerin, Vinten 271/671 And Centronic Ionization Chambers

    International Nuclear Information System (INIS)

    Growth measurements of exp.222 Rn by using Merlin Gerin, Vinten 271/671 and Centronic 1G 11/A20 ionization chamber have been studied. The aim of this measurement is to determine the optimum growth in the seculer equilibrium of exp.222 Rn by using three ionization chambers. The optimum growth of exp.222 Rn by using merlin Gerin ionization chamber was (19.06 n 0.07) days, by using Vinten 271/671 ionization chamber was (19.20 n 0.01) days and with Centronic 1G 11/A20 ionization chamber was (19.64 n 0.43) days

  3. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Science.gov (United States)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  4. A novel micro liquid ionization chamber for clinical dosimetry

    International Nuclear Information System (INIS)

    Absorbed-dose-based protocols recommend calibration of clinical linear accelerators using airfilled ionization chambers for which an absorbed-dose to water calibration factor has been established in a 60Co beam. The factor kQ in these protocols involves the ratio of the mean restricted collision mass stopping power water-to-air, which is energy dependent. For high-energy clinical photon beams, the stopping power ratio water-to-air varies by up to 4%, whereas for electron beams the variation is even larger. For certain insulating liquids, however, the stopping power ratio water-to-liquid shows very little energy dependence, making a liquid-filled ionization chamber a potentially attractive dosimeter for clinical reference dosimetry. In this work some properties of two liquid-filled ionization chambers are investigated including ion recombination and variation of response as a function of energy for photon beams. In this work we used an Exradin A14P planar microchamber with chamber body and electrodes composed of C552 plastic. This chamber was modified, reducing the gap between the cap and collecting electrode to 0.5 mm. The diameter of the collecting electrode is 1.5 mm and the nominal sensitive volume of 1.12 mm3 was filled with isooctane. This chamber will be referred to as the MicroLIC. The energy response of the MicroLIC was compared to previous results measured using the LIC 9902-mix chamber, developed by G. Wickman of Umea University, Sweden. The sensitive volume of this chamber has a diameter of 2.5 mm, thickness of 0.35 mm and is filled with 60% isooctane, 40% tetramethylsilane by weight. The linear accelerator used was a Varian Clinac 21EX with nominal photon beam energies of 6 and 18 MV. Measurements were done in a 20x20x20 cm3 RMI Solid Water phantom at 10 cm depth with a 10x10 cm2 field at the phantom surface. Absorbed dose was determined using an Exradin A12 chamber with an absorbed-dose to water calibration factor for 60Co established at a primary

  5. Development of Master Chamber Software for Data Acquisition of Ionization Chamber for Indus 2 RRCAT

    Directory of Open Access Journals (Sweden)

    Priyesh Soni

    2013-02-01

    Full Text Available The main goal of this paper was to Develop Master control software for DAQ of ionization chamber for INDUS-2 beam lines for detection of X-ray flux by an Ionization chamber that will remotely control and monitor the ultra low current signal detection analog module precisely. This application will be useful to measure the intensity of X-ray flux through ionization chamber in a beam line of synchrotron radiation source which is mounted in INDUS-2. It is one of new technique of detection. Beam line area is highly restricted because of hazardous radiation, so through this application remote interfacing is provided for the ultra low current signal detection card that can be controlled by Master software. The development of such type arrangement we used software in C#.NET there are many issues like develop code, Design forms, to achieve the specified response from the CPU card, code developed in C# .NET. Initially, I explored and gained the knowledge of C#.NET. I practices some small modular projects as part to learn how the system works. I used programming language C#.NET architecture version 3.5 in Visual Studio 2008

  6. A gridded ionization chamber for measurement of environmental radioactivity

    International Nuclear Information System (INIS)

    In order to detect low level alpha radioactivities in various natural materials, a single gridded ionization chamber was constructed. This chamber of the Frischgrid type has a very large source area of 200 cm2 and provides a resolution of about 79 keV for 5.48 MeV alpha particles of a Americium-241 source. It was attempted to eliminate the background pulses, by making use of cathode pulses. The resultant background counting rate was in the order of 3 counts per hour, which corresponds to a good figure of merit of about 106. As a preliminary measurement, radioactive contamination levels in a sample of aluminum have been measured. It was found that (0.014 +- 0.011) pCi of Radium-226 is contained in 1 gram of the sample. (author)

  7. Development of a cathode strip chamber for minimum ionizing particles

    International Nuclear Information System (INIS)

    A cathode strip chamber (CSC) capable of measuring position information for minimum ionizing particles (MIPS) has been developed. The chamber operates in the proportional or limited proportional region, where the avalanche on the anode wire is localised to a small region around the anode wire. The position of the avalanche can be obtained by the pulse heights induced on the cathode strips which run perpendicular to direction of the anode wire. The pulse height induced on the cathode strips is proportional directly to the strip width and inversely to the distance between the strip centre to the avalanche location. Thus by measuring the pulse heights on at least three cathode strips for every event, one can reconstruct the centroid that would give the location of the avalanche on the anode

  8. Developing a fast ionization chamber for transfer reaction studies

    Science.gov (United States)

    Chae, K. Y.; Bardayan, D. W.; Smith, M. S.; Schmitt, K. T.; Ahn, S. H.; Peters, W. A.; Strauss, S.

    2011-10-01

    Detection of beam and beam like recoils at far forward angles is often critical for radioactive beam measurements in inverse kinematics. Gas-filled ionization chambers are well suited for these applications, since they have moderately good energy resolution and can take prolonged exposure to beam compared to fragile semiconductor detectors. Conventional ion counters using a Frisch grid, however, have slow response times because the ionized electrons must travel long distances to the anodes. To reduce response times, a fast ion counter using a tilted window and tilted electrodes was developed and tested at ORNL's Holifield Radioactive Ion Beam Facility, modified from an original design by Kimura et al.. The maximum counting rate and energy resolution, along with future plans for using the new ion counter, will be presented. This work was sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

  9. Twin ionization chamber for studies of (n, p), (n, α) reactions

    International Nuclear Information System (INIS)

    For investigation of the fast neutron induced (n, p), (n, α) reactions the new twin grid ionization chamber was constructed. The working conditions of the chamber were investigated. Using the ionization chamber, the energy spectra, angular distributions and cross sections of the (n, p), (n, α) reactions were obtained for some nuclei

  10. Development of a portable gas-filled ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Chae, K. Y.; Cha, S. M.; Gwak, M. S. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-02-15

    A new portable gas-filled ionization chamber has been designed and constructed at the Physics Department of Sung Kyun Kwan University. To overcome the maximum count rate of ∼ 10{sup 5} particles per second of a conventional ionization chamber, which utilizes a Frisch grid, and to enhance the portability of a detector, we adopted the design of multiple electrodes and modified it from the original designs by Kimura et al. and Chae et al. The new design utilizes a stack of multiple electrodes installed perpendicular to the optical beam axis. This configuration provides a fast response time for the detector, which is essential for high-rate counting. The device has been tested with a {sup 241}Am (t{sub 1/2} = 432.2 years) radioactive α source, which mainly emits 5.486-MeV (branching ratio of 85%) and 5.443-MeV (branching ratio of 13%) α particles. An energy resolution of 6.3% was achieved.

  11. Imaging with high Dynamic using an Ionization Chamber

    CERN Document Server

    Menk, Ralf-Hendrik; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the described detector is an ionization chamber adapted to fan beam geometry with an active area of 192 cm and a pitch of the anode strips of 150 micrometer. In the vertical direction beams as high as 10 mm can be accepted. Every read-out strip is connected to an analogue integrating electronics channel realized in a custom made VLSI chip. A MicroCAT structure utilized as a shielding grid enables frame rates as high as 10kHz. The high dynamic range observed stems from the fact that the MicroCAT enables active electron amplification ...

  12. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  13. High temperature and sensitivity fission chambers: qualification of the CFUCO7 in reactor

    International Nuclear Information System (INIS)

    We present, in this paper, the whole tests performed both in laboratory and in reactor on the high temperature, wide dynamic fission chamber CFUCO7 and on its associated electronics. Except the long time tests to be realized in the PHENIX reactor, this measurement device, fission chamber and wide range electronic, can be considered as qualified to be used in a large LMFBR. We present also the new improvements on the detector design and the future programme in the reactor SUPER-PHENIX. (authors). 9 figs., 4 tabs., 2 refs., 2 appendix

  14. On the fission chamber pulse charge acquisition and interpretation at MINERVE

    International Nuclear Information System (INIS)

    Fission Chambers (FCs) are widely used as neutron detectors for online flux measurement. The FC current pulse charge is a key observable quantity which depends on specifications such as the filling gas pressure and the FC geometry. In order to study pulse charges, experimental data have been acquired at the Cadarache zero power reactor MINERVE. Two chambers with contrasting specifications have been used. The experimental pulse charge spectrum is interpreted by the mean of a modeling of fission products (FPs) energy deposition within the filling gas.The pulse charge spectrum peaks are found to correspond to FP emitted perpendicularly to the electrodes. (authors)

  15. On the fission chamber pulse charge acquisition and interpretation at MINERVE

    Science.gov (United States)

    Loiseau, P.; Geslot, B.; André, J.

    2013-04-01

    Fission Chambers (FCs) are widely used as neutron detectors for online flux measurement. The FC current pulse charge is a key observable quantity which depends on specifications such as the filling gas pressure and the FC geometry. In order to study pulse charges, experimental data have been acquired at the Cadarache zero power reactor MINERVE. Two chambers with contrasting specifications have been used. The experimental pulse charge spectrum is interpreted by the mean of a modeling of fission products (FPs) energy deposition within the filling gas. The pulse charge spectrum peaks are found to correspond to FP emitted perpendicularly to the electrodes.

  16. Development of special ionization chambers for a quality control program in mammography

    International Nuclear Information System (INIS)

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  17. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  18. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kleinrath, Verena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  19. Energy resolution in liquid Ar or Xe ionization chamber doped with photo-ionizing molecules

    International Nuclear Information System (INIS)

    The energy resolution for γ-rays and conversion electrons from 207Bi has been studied with a liquid Ar or Xe ionization chamber. As a photoionizing dopant, allene was added to liquid Ar or TEA to liquid Xe. Although the improvement in the resolution was significant at a low electric field by the doping in both cases, it was small at a high electric field in marked contrast to a 'δ-ray combination model'. (orig.)

  20. Gridded Ionization Chambers for Time Resolved X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Common parallel plate ionization chambers are bandwidth limited by the ion drift velocity. Therefore they can severely decrease the effective energy resolution of time resolved EXAFS or XANES spectra. We therefore developed gridded ionization chambers which suppress the ionic component of the ionization current, which results in a substantial improvement of its bandwidth of typically two orders of magnitude. The rise time of these chambers is measured to be less than 5.5 μs. We have investigated the step response of parallel plate and gridded ionization chambers and discuss their influence on QEXAFS spectra.

  1. Characterization tests of a new parallel plate ionization chamber for use in electron beams

    International Nuclear Information System (INIS)

    Linear accelerators with electron beams are used in several Brazilian hospitals. Consequently, there is an increasing demand for parallel-plate ionization chambers, to be utilized for dosimetry of electron beams. In Brazil, the commercial ionization chambers utilized are imported. The ionization chambers have usually a simple construction, using different materials and geometries. A homemade ionization chamber was developed to be used in electron beams of linear accelerator. The ionization chamber body is made of acrylic and the collecting electrode is painted with graphite powder mixed with nail polish. Several tests were applied, and the results showed values better than the limits established by the international recommendations, except for the polarity effect test, but the response of the developed ionization chamber, for this test, is similar in relation to the response of other commercial ionization chambers from the literature. - Highlights: • An ionization chamber was developed to be used in radiotherapy electron beams. • The ionization chamber was submitted to several characterization tests. • The test results showed values within the international standard limits

  2. Testing a ring-shaped ionization chamber in standard beta radiation

    International Nuclear Information System (INIS)

    A ring-shaped ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares, was tested in standard beta radiation fields. This ionization chamber was primarily developed to be used as a monitor chamber in X-ray diagnostic radiology beams. It has a large sensitive volume and parallel-plate aluminium electrode. Its entrance window is made of a thin aluminized polyester foil, which allows the collection of electrons. The ring-shaped monitor chamber was already tested in X radiation beams, showing a good performance. The aim of this work was to verify the applicability of the ionization chamber for beta radiation field dosimetry at calibration distances. (author)

  3. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    CERN Document Server

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  4. Characterization tests and application of special ionization chambers in standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Cristiane J.C.; Caldas, Linda V.E., E-mail: cristianehonda@usp.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Jonas O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Instituto de Fisica

    2015-07-01

    The most used instrument for quality assurance programs in mammography beams is the ionization chamber. At the Calibration Laboratory of IPEN three different ionization chambers were recently designed and assembled for dosimetry in standard mammography beams. These ionization chambers are parallel plate chambers, with different geometries. The objective of this work was to study the performance of all three ionization chambers in relation to a commercial one. The established standard beams at an industrial X-ray system Pantak-Seifert were used for the characterization tests of the ionization chambers as short- and medium-term stability, saturation curves, polarity effect, ion collection efficiency, response linearity and angular dependence. All of the results obtained were within the limits recommended by the international standards IEC 61674 and IEC 60731. (author)

  5. Modification of neutron response of a TE ionization chamber for radiological protection purpose

    International Nuclear Information System (INIS)

    A tissue equivalent ionization chamber is applied in all known methods for measuring dose equivalent in mixed radiation fields. Most of the TE ionization chambers are not fully homogeneous. The deviation of a TE ionization chamber from homogeneity leads to inaccurate neutron dosimetry. It is shown that a controlled inhomogeneity of a TE gas filled cavity in a TE ionization chamber results in suitable modification of the response to neutrons particularly in a set of detectors consisting of a TE ionization chamber and an organic scintillation detector designed to determine dose equivalent index quantities of mixed radiation. The response of a TE chamber having infinite cavity filled with following gas mixtures: TE methane based composition, CH4 + N2 -TE only for hydrogen, CH4 + N2 + 3He -TE only for hydrogen was calculated for neutrons in the energy range from thermal to 1 MeV

  6. Characterization tests and application of special ionization chambers in standard mammography beams

    International Nuclear Information System (INIS)

    The most used instrument for quality assurance programs in mammography beams is the ionization chamber. At the Calibration Laboratory of IPEN three different ionization chambers were recently designed and assembled for dosimetry in standard mammography beams. These ionization chambers are parallel plate chambers, with different geometries. The objective of this work was to study the performance of all three ionization chambers in relation to a commercial one. The established standard beams at an industrial X-ray system Pantak-Seifert were used for the characterization tests of the ionization chambers as short- and medium-term stability, saturation curves, polarity effect, ion collection efficiency, response linearity and angular dependence. All of the results obtained were within the limits recommended by the international standards IEC 61674 and IEC 60731. (author)

  7. Scattering study at free air ionization chamber diaphragm

    International Nuclear Information System (INIS)

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are kRQR-M1=0,9946, kRQR-M2=0,9932, kRQR-M3=0,9978 and kRQR-M4=0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  8. A well-type ionization chamber geometric correction factor

    International Nuclear Information System (INIS)

    To correct for the influence of source configuration on the measured activity of spherical and cylindrical brachytherapy sources, a geometric correction factor was calculated for the Standard Imaging HDR-1000 well-type ionization chamber. A Fortran program modelled each source as a lattice of point sources. Because of the cylindrical symmetry of the well chamber, it could be uniquely modelled by point detectors along the perimeter of the radial plane of the detection volume. Path lengths were calculated and attenuation factors were applied to each source - detector point combination individually. The total dose rate at each detection point was found through a Sievert summation of the point source contributions. For 137Cs sources with identical activities, a correction factor of 0.965±0.005 was calculated, equal to the ratio of the dose rate of the cylindrical source to that of the sphere. Experimental verification using a Nuclear Associates 67-809 series cylindrical source and an Amersham spherical 137Cs source yielded a correction factor of 0.958±0.016. (author)

  9. Effect of fission product internal conversion on degree of their ionization

    International Nuclear Information System (INIS)

    Experimental study of distribution fine structure on ionization degree of a heavy group (A=131-145) separated by mass of 241Pu fission products at three values of kinetic energy, i.e. Ek=67, 70 and 73 MeV. Their structure smoothing and the separation of atomic and nuclear ionization effects of fission products was performed by their additional recharging in t -10 s after fission. It has been shown that the contribution of the nuclear effect of ionization depends on excitation energy of fission products and their nuclear structure attaining ∼ 50% for certain masses. Experimental proofs of the essential role of nuclear transition internal conversion of fission products in the formation of their electron shell have been obtained

  10. Fission Fragment Spectroscopy Using a Frisch-Gridded Chamber in RPI's Lead Slowing-Down Spectrometer

    Science.gov (United States)

    Romano, Catherine

    2006-10-01

    A double sided Frisch-gridded fission chamber for use in RPI's Lead Slowing-Down Spectrometer (LSDS) is being developed at Rensselaer Polytechnic Institute. Placing this fission chamber in the high neutron flux of the LSDS allows measurements of neutron induced fission cross sections, as well as the mass and kinetic energy of the fission fragments of various isotopes. The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is deposited on a thin polyimide film located in the center of the cathode. Samples are made by dissolving small amounts of actinides in solution, placing the solution on the films and allowing the solution to evaporate. The anode signal and the sum of the anode and grid signals are collected by the data acquisition system. These values are used to calculate the angle of emission of the fission fragments which is then used to determine their energies and masses. RPI's LSDS is a 75 ton, 1.8m cube of lead. The RPI 60MeV Linac creates neutrons through a (γ,n) reaction when the electrons interact with a tantalum target inside the lead spectrometer. The resulting neutron flux is about 4 orders of magnitude larger than an equivalent resolution time-of-flight experiment. The high neutron flux allows for the measurement of isotopes that are not available in large quantities (sub-micrograms) or with small fission cross sections (microbarns). In collaboration with Ezekiel Blain, Zack Goldstein, Yaron Danon and Robert Block at Rensselaer Polytechnic Institute. Funded by Stewardship Science Academic Alliance, National Nuclear Security Agency.

  11. A modified design of an experimental ionization chamber for gamma-ray dosimetry of spent fuel

    International Nuclear Information System (INIS)

    The lowest values of the theoretical sensitivities of an ionization chamber filled with argon and xenon gases are 1.42x10/sup 13/ and 6.178x 10/sup 15/ A/cm/sup 3/-R/hr respectively. It has been found that the value of the sensitivity increase in the atomic number of the gas. The effect of attenuation in the wall of the detector has been estimated and found to be the lowest at about 1 MeV. For higher and lower energies the attenuation in the wall increases with a corresponding significant decrease in the sensitivity. The chamber has been tested with fission product gamma-rays from spent fuel elements of Pakistan Atomic Energy Research Reactor (PARR-1). The results indicate that the insertion of an electrode at an intermediate position lowers the operating voltage substantially and also reduces the slope in the plateau region. It has also been observed that in three electrode system the initial (columnar) recombination losses are almost absent and very small volume recombination losses are expected at very high exposure. (author)

  12. Fission chambers designer based on Monte Carlo techniques working in current mode and operated in saturation regime

    Science.gov (United States)

    Antolínez, Alfonso; Rapisarda, David

    2016-07-01

    Fission chambers have become one of the main devices for the measurement of neutron fluxes in nuclear facilities; including fission reactors, future fusion ones, spallation sources, etc. The main goal of a fission chamber is to estimate the neutron flux inside the facility, as well as instantaneous changes in the irradiation conditions. A Monte Carlo Fission Chamber Designer (MCFCD) has been developed in order to assist engineers in the complete design cycle of the fission chambers. So far MCFCD focuses on the most important neutron reactions taking place in a thermal nuclear reactor. A theoretical model describing the most important outcomes in fission chambers design has been developed, including the expected electrical signals (current intensity and drop in potential) and, current-polarization voltage characteristics (sensitivity and saturation plateau); the saturation plateau is the zone of the saturation curve where the output current is proportional to fission rate; fission chambers work in this region. Data provided by MCFCD are in good agreement with measurements available.

  13. Search for impurities of counting gases in ionization chambers

    International Nuclear Information System (INIS)

    In order to reach for the gas detectors applied at the ALADIN spectrometer of the GSI an as good as possible and timely remaining gas purity, a study on the kind and effects of impurities in different counting gases was performed. The gas purity was observed via the signal height of an α source after a drift path of the electrons of 50 cm. A steady decrease of the α-signals was measures, the steepness of which decreases slowly as function of the time. The half-life lies in the range of weeks, which lets conclude on a slow outgassing from the materials of the arrangement. By a gas chromatography and mass spectroscopy these impurities could be determined. Beside impurities by polar molecules as water and oxygen from the atmosphere, which are deposed in microscopical capillaries of the chamber materials and then outgassed in the samples after several days so-called softeners could be observed. Because these impurities in the arrangement at the ALADIN spectrometer cannot be avoided, a purification system in the flow-through operation was constructed and its effect tested. The gas quality can by this over several days be kept in the mean constant. In this dynamical process the fluctuations of the signal heights lie at ±0.7%. A ionization chamber as monitor for the gas purity was constructed and tested with different gas mixtures concerning observables like signal height and drift time. By this calibrated monitor in the experiment at the ALADIN spectrometer the gas quality can be independently determined. (orig.)

  14. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation.

    Science.gov (United States)

    Butler, D J; Stevenson, A W; Wright, T E; Harty, P D; Lehmann, J; Livingstone, J; Crosbie, J C

    2015-11-21

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. PMID:26510214

  15. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    International Nuclear Information System (INIS)

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. (paper)

  16. Characterization tests of a homemade ionization chamber in mammography standard radiation beams

    International Nuclear Information System (INIS)

    A mammography homemade ionization chamber was developed to be applied for mammography energy range dosimetry. This chamber has a sensitive volume of 6 cm3 and is made of a Lucite body and graphite coated collecting electrode. Characteristics such as saturation, ion collection efficiency, linearity of chamber response versus air kerma rate and energy dependence were determined. The results obtained with the mammography homemade ionization chamber are within the limits stated in international recommendations. This chamber can be used in quality control programs in the diagnostic radiology area. All measurements were carried out at the Calibration Laboratory of IPEN. - Highlights: • We constructed a mammography homemade ionization chamber. It was submitted to standard mammography X-rays beam qualities. • The results obtained showed good agreement with international standards. • This chamber can be used in quality control programs of diagnostic radiology area

  17. A Monte Carlo simulation of the fission chambers neutron-induced pulse shape using the GARFIELD suite

    Science.gov (United States)

    Filliatre, P.; Jammes, C.; Geslot, B.; Veenhof, R.

    2012-06-01

    A computation route that simulates the neutron-induced charge spectrum and pulse shape of a fission chamber is presented. It is based on the GARFIELD suite, and makes use of the MAGBOLTZ and SRIM codes. It allows the simulation of the signal in the current and Campbelling modes. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the scarce experimental data available to date. After a further experimental qualification, this route will improve the design of fission chambers by assessing its overall sensitivity.

  18. A new mini gas ionization chamber for IBA applications

    International Nuclear Information System (INIS)

    Novel prototypes of high resolution gas ionization chambers (GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3–1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis (IBA) and accelerator mass spectrometry (AMS). Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy (STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 1015 protons per cm2 while the performance of the Si detector clearly started to degrade at 1012 particles per cm2.

  19. Coplanar anode implementation in compressed xenon ionization chambers

    Science.gov (United States)

    Kiff, Scott Douglas

    This dissertation examines the problem of microphonic degradation of high-pressure xenon ionization chambers' energy spectra. A detector design that utilizes coplanar anodes is proposed to mitigate this problem, and an optimization study finds the best geometry given some constraints on the system. A radial position-sensing method is developed from theory and implemented in experiments, demonstrating usefulness in the areas of hardware diagnostics and energy spectrum enhancement. Detailed simulations quantify the effects of various physical processes on the measured energy spectrum; the processes that degrade the photopeak most severely also show promise for improvement via design and operational changes. Simulations show multiple-site events are undesirable due to resolution degradation. A hydrogen cooling admixture is implemented to improve energy resolution after detailed simulations predict advantageous performance changes. The detector linearity is shown to be quite good over the range tested, 80-1330 keV. The best measured energy resolution is 4.2% FWHM at 662 keV, which is near the range that would be considered competitive with the less-rugged detectors employing Frisch grids.

  20. A new mini gas ionization chamber for IBA applications

    Science.gov (United States)

    Müller, A. M.; Cassimi, A.; Döbeli, M.; Mallepell, M.; Monnet, I.; Simon, M. J.; Suter, M.; Synal, H.-A.

    2011-12-01

    Novel prototypes of high resolution gas ionization chambers ( GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis ( IBA) and accelerator mass spectrometry ( AMS) . Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy ( STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10 15 protons per cm 2 while the performance of the Si detector clearly started to degrade at 10 12 particles per cm 2.

  1. Simulation studies on a prototype ionization chamber for measurement of personal dose equivalent, Hp(10)

    International Nuclear Information System (INIS)

    Full text: The Metrological Laboratory of lonizing Radiation and Radioactivity (LMRIR) of Nuclear and Technological Institute (ITN) has designed and constructed a prototype ionization chamber for direct measurement of the personal dose equivalent, Hp(10), similar to the developed by the Physikalisch-Technische Bundesanstalt (PTB) and now commercialized by PTW. Tests already performed had shown that the behaviour of this chamber is very close to the PTB chamber, namely the energy dependence for the x-ray radiation qualities of the ISO 4037-1 narrow series N-30, N-40, N-60, N-80, N-100 and N-120 and also for gamma radiation of 137Cs and 60Co. However, the results obtained also show a high dependence on the energy for some incident radiation angles and a low magnitude of the electrical response of the ionization chamber. In order to try to optimize the performance of the chamber, namely to decrease the energy dependence and to improve the magnitude of the electrical response of the ionization chamber, the LMRIR initiated numerical simulation of this ionization chamber using a Monte-Carlo method for simulation of radiation transport using, in a first step, the MCNPX code. So, simulation studies of some physical parameters are been performed in order to optimize the response of the ionization chamber, namely the diameter of the central electrode of the ionization chamber, the thickness of the front wall of the ionization chamber, among others. Preliminary results show that probably the actual geometry of the ionization chamber is not yet the optimized configuration. The simulation study will carry on in order to find the optimum geometry. (author)

  2. Research on fission chamber signal simulation of wide-range nuclear instrument system

    International Nuclear Information System (INIS)

    To establish an input signal to debug a digital wide-range nuclear instrument system (NIS) prototype, the research of fission chamber signal simulation was covered in this paper, which was composed of the simulation study of a pulse signal and a fluctuating current with pulse pile-up, and the signal output of the simulation results. The research is the first step to design and develop the algorithm of wide-range NIS prototype. (authors)

  3. Radiation dosimetry with plane-parallel ionization chambers: An international (IAEA) code of practice

    International Nuclear Information System (INIS)

    Research on plane-parallel ionization chambers since the IAEA Code of Practice (TRS-277) was published in 1987 has expanded our knowledge on perturbation and other correction factors in ionization chamber dosimeter, and also constructional details of these chambers have been shown to be important. Different national organizations have published, or are in the process of publishing, recommendations on detailed procedures for the calibration and use of plane-parallel ionization chambers. An international working group was formed under the auspices of the IAEA, first to assess the status and validity of IAEA TRS-277, and second to develop an international Code of Practice for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams. The purpose of this work is to describe the forthcoming Code of Practice. (author). 39 refs, 3 figs, 2 tabs

  4. A calibration method of an ionization chamber for measuring 222Rn concentration

    International Nuclear Information System (INIS)

    When 222Rn concentration is measured with an ionization chamber, the conversion factor of ionization current to 222Rn concentration has been decided in individual case. A flow-type ionization chamber (the effective volume; 18 l) was used for measuring 222Rn concentration in this work. The conversion factor of this ionization chamber was obtained 1.11 (Bq/m3/fA) by the use of RaDEF standard source. From the results of three other literatures and this work, the following formula to calculate the conversion factor (a) was obtained as a function of the effective volume V (m3) of ionization chamber; a = (1.036 x 102-1) / [V·(log V + 6.908)] (Bq/m3/fA). (author)

  5. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  6. Practical electron dosimetry: a comparison of different types of ionization chambers

    International Nuclear Information System (INIS)

    Since Markus chambers are no longer recommended in the 1997 DIN 6800-2 version there are uncertainties as to the use of alternative chamber types for electron dosimetry. Therefore, we performed a comparison between different types of ionization chambers. In particular, the widespread Farmer and Roos chambers were compared with the Markus chamber for polarity effect, chamber-to-chamber variation, and deviations of the measured absorbed dose relative to the value obtained with the Roos chamber (which is regarded as an ideal Bragg-Gray-chamber). The perturbation correction factor at 60Co radiation was determined experimentally as 1,029 ± 0,5% (Roos chamber) and 1,018 ± 0,5% (Markus chamber) for the investigated plane-parallel chambers. In addition, we could show that the Roos chambers do not have a larger chamber-to-chamber variation than the Farmer chambers. Likewise, our results suggest that Farmer chambers could be used for electron energies above 6 MeV. (orig.)

  7. LARGE VOLUME IONIZATION CHAMBER USED AS LABORATORY REFERENCE FOR LOW ENERGY X—RAY MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    杨国山; 薛永库; 等

    1994-01-01

    A large volume spherical ionization chamber of 195mm diameter and 0.36mg/cm2 wall thickness made from conducting carbon-fibre epoxy composite material has been developed.The mechanical intensity of the chamber is satisfactory for a good longterm volume stability.Owing to its large volume and thin wall,the chamber is sensitive to low energy photon beams and has excellent energy-response characteristics.This ionization chamber is suitable not only for a laboratory reference but also for measurement of low energy photon beam exposure rates at protection-level.

  8. Stability results of a free air ionization chamber in standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: mxavier@ipen.br, E-mail: vivolo@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Free air ionization chambers are absolute dosimeters, because they can measure basic physical quantities directly without the need of their calibration in a standard radiation beam. They are used for measuring exposure and air kerma in X and gamma radiation beams. The Calibration Laboratory (LCI) of IPEN has a free air ionization chamber of the cylindrical type for low energies. The characterization of this ionization chamber was already performed and reported in a previous study. After a modification in the support of the micrometers used for the movement of the internal cylinder devices, the tests were redone. The objective of this work was to present the new alignment protocol of the free air ionization chamber in low energies of X-ray beams of standard mammography qualities, assuring the positioning reproducibility, and new results of stability tests performed with the application of this protocol will be presented. (author)

  9. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  10. Intercomparison of ionization chamber calibration factors in the IAEA/WHO network of SSDLS

    International Nuclear Information System (INIS)

    In 1995 an intercomparison of ionization chamber calibration factors was performed. It was open to Member laboratories within the IAEA/WHO Network of SSDLs. The aim of this exercise was to test a new quality audit system for these laboratories. The intercomparison has 17 participating laboratories; calibration factors for 24 ionization chambers were checked. The participants were asked to calibrate the ionization chambers both in terms of air kerma and absorbed dose to water. The results show that most of the SSDLs perform air kerma calibration of acceptable quality, while some misunderstandings regarding calibrations in terms of absorbed dose to water were discovered. This type of intercomparison will from now on become a normal service of the Network secretariat in collaboration with the IAEA dosimetry laboratory. It will be expanded to cover all Member laboratories which perform therapy level ionization chamber calibrations as part of their normal service. (author). 6 refs, 3 figs, 1 tab

  11. Improved energy resolution in an ionization chamber through suppression of the electrical field theory distortions

    International Nuclear Information System (INIS)

    In an ionization chamber the entrance window disturbs the electrical field lines. The resolution is thus affected. This effect is made negligible by an appropriate potential distribution on the Mylar window. (orig.)

  12. Influence on measuring ionization chamber's time response speed with charge integration amplifying circuit

    International Nuclear Information System (INIS)

    The time response speed of measuring amplifier directly influences the research on ionization chamber's time response speed. The reasons why the measuring circuit was designed with charge integration amplifier were presented. The mechanism of emerging stepped current signal of ionization chamber unit irradiated by a stable radiation source was analyzed. The method of studying amplifier time response by measuring the changing process of current signal was proposed. The relationship of the amplifier's time response speed with the detector unit interelectrode capacitance, the amplifier's input protecting resistance and its feedback integral capacitance was studied through experiment. It is concluded that the amplifier's time response speed is concerned with the constant time of ionization chamber unit interelectrode capacitance and protecting resistance. And it is not concerned with the feedback integral capacitance. It provides theoretical guidance on designing ionization chamber and measuring circuit. (authors)

  13. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  14. Assaying of targets for nuclear measurements with a gridded ionization chamber

    International Nuclear Information System (INIS)

    An ionization chamber with a Frisch grid is used to determine both the energy (E) of the charged particles emitted from the sample positioned coplanar with the cathode, and the cosine of the emission angle (theta) with respect to the normal of the cathode. Using the combined information on costheta and E, problems in particle counting due to sample absorption and scattering effects can be circumvented and sample source strengths are readily determined to an accuracy of 0.3%. However, it is emphasized that the source strength can be determined from the particles emitted in a large solid angle close to 2 π sr, which means a considerable higher efficiency than for the conventional low geometry counting technique. Moreover the present method, within reasonable limit is intensive to source shape and thickness homogeneity. The technique will be illustrated by measurements of alpha particles and fission fragments emitted from a set of four vacuum evaporated UF4, three electrodeposited and one suspension-sprayed 235U3O8 layers. The energy and angular distributions of alpha particles and of the heavy alpha recoils emitted from a self transferred 224Ra source will be discussed. The low energetic alpha recoils might be useful as probes for the investigation of ultrathin (< 400 A) layers. (orig.)

  15. Assaying of targets for nuclear measurements with a gridded ionization chamber

    Science.gov (United States)

    Budtz-Jørgensen, C.; Knitter, H. H.; Bortels, G.

    1985-06-01

    An ionization chamber with a Frisch grid is used to determine both the energy ( E) of the charge particles emitted from the sample positioned coplanar with the cathode, and the cosine of the emission angle (ϑ) with respect to the normal of the cathode Using the combined information on cosϑ and E, problems in particle counting due to sample absoprtion and scattering effect can be circumvented and sample source strengths are readily determined to an accurary of 0.3%. However, it is emphasized that the source strength can be determined from the particles emitted in a large solid angle close to 2τ sr, which means a considerable higher efficiency than for the conventional low geometry counting techniques. Moreover the present method, within reasonable limits is insensitive to source shape and thickness homogeneity. The technique will be illustrated by measurements of alpha particles and fission fragments emitted from a set of four vacuum evaporated UF 4, three electrodeposited and one suspension-sprayed 235U 3O 8 layers. The energy and angular distributions of alpha particles and of the heavy alpha recoils emitted from a self transferred 224Ra source will be discussed. The low energetic alpha recoils might be useful as probes for the investigation of ultrathin ( < 400 Å) layers.

  16. A study of energy resolution in a gridded ionization chamber filled with tetramethylsilane and tetramethylgermanium

    International Nuclear Information System (INIS)

    The energy resolutions of 976 keV conversion electrons from a 207Bi source are measured in a gridded ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG), and are found to be about 5.7 and 5.5% (rms) for TMS and TMG, respectively. We also deduce a simple method of estimating the electron lifetime using a gridded ionization chamber. The electron lifetime, free ion yield and thermalization length for these liquids are measured by this simple method

  17. Construction of an ionization chamber for the measurement of dose of low energy x-rays

    International Nuclear Information System (INIS)

    We designed and constructed the prototype of an ionization chamber to measure the dose of an X-ray tube with Molybdenum anode. This X-ray tube is located in the Physics department at CINVESTAV and is used for medical physics purposes in the imaging area. The ionization chamber is designed to measure doses on biological samples exposed to X-rays and will be applied in radiation protection studies

  18. Pencil beam proton radiography using a multilayer ionization chamber.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program. PMID:27164479

  19. Pencil beam proton radiography using a multilayer ionization chamber

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  ‑0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (‑1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  20. Cylindrical ionization chamber with a screening grid and xenon under the pressure of 50 atm

    International Nuclear Information System (INIS)

    A design is considered of a cylindrical ionization chamber with a screening grid. The chamber is filled with xenon at 50 atm and has the sensitive volume of 2 l. The main characteristics of the chamber are presented: the energy resolution and detection efficiency for gamma quanta of different energies. It is shown that the chamber energy resolution is 4% for 662 keV at the optimal electric field. The comparative analysis is carried out for this xenon chamber and for the NaI(Tl) standard crystal. 9 refs.; 5 figs

  1. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    Science.gov (United States)

    Coburn, Jonathan; Luker, S. Michael; Parma, Edward J.; DePriest, K. Russell

    2016-02-01

    When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ) or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks) before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR) central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    Directory of Open Access Journals (Sweden)

    Coburn Jonathan

    2016-01-01

    Full Text Available When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time.

  3. Development of fission micro-chambers for nuclear waste incineration studies

    CERN Document Server

    Fadil, M; Christophe, S; Deruelle, O; Fioni, G; Marie, F; Mounier, C; Ridikas, D; Trapp, J P

    2002-01-01

    The Incineration by Accelerator (INCA) project of the Directorate for Science of Matter of the French Atomic Energy Authority (CEA/DSM) aims to outline the ideal physical conditions to transmute minor actinides in a high intensity neutron flux obtained either by hybrid systems or innovative critical reactors. To measure on-line the incineration rates of minor actinides, we are developing an innovative Double Deposit Fission Chamber (DDFC) working in current mode. Our method is based on a comparison between the isotope under study and a reference material whose nuclear parameters are well known, as sup 2 sup 3 sup 5 U and sup 2 sup 3 sup 9 Pu. This new fission chamber will be used in the High Flux Reactor in Grenoble/France in a neutron flux of 1.2x10 sup 1 sup 5 n cm sup - sup 2 s sup - sup 1 for 50 days, the operating cycle of the reactor. These specific experimental conditions require substantial modifications of the existing chambers. The first experiment will be carried out in fall 2000.

  4. Development of fission micro-chambers for nuclear waste incineration studies

    International Nuclear Information System (INIS)

    The incineration of transuranic elements by neutron induced fission is a very promising way to reduce long-term radiotoxicity of nuclear waste. The Mini-Inca aims to outline the ideal physical conditions to transmute minor actinides, mainly 241-243Am, 237Np and 244-245Cm. For some actinides there are large discrepancies of neutron cross sections taken from different evaluated nuclear data libraries. These cross sections play a dominant role in transmutation systems. For instance, a factor 20 was pointed out for the 242gsAm thermal neutron capture cross section from JEF-2.2 (5500 barns) and ENDF-B/VI (250 barns) libraries. Computer simulations can lead to controversial results depending on the nuclear data library that was used. To measure the incineration rate of minor actinides, and to provide an unambiguous experimental reference, fission micro-chambers are of great interest. (author)

  5. Campbelling-type theory of fission chamber signals generated by neutron chains in a multiplying medium

    International Nuclear Information System (INIS)

    The signals of fission chambers are usually evaluated with the help of the co-called Campbelling techniques. These are based on the Campbell theorem, which states that if the primary incoming events, generating the detector pulses, are independent, then relationships exist between the moments of various orders of the signal in the current mode. This gives the possibility to determine the mean value of the intensity of the detection events, which is proportional to the static flux, from the higher moments of the detector current, which has certain advantages. However, the main application area of fission chambers is measurements in power reactors where, as is well known, the individual detection events are not independent, due to the branching character of the neutron chains (neutron multiplication). Therefore it is of interest to extend the Campbelling-type theory for the case of correlated neutron events. Such a theory could address two questions: partly, to investigate the bias when the traditional Campbell techniques are used for correlated incoming events; and partly, to see whether the correlation properties of the detection events, which carry information on the multiplying medium, could be extracted from the measurements. This paper is devoted to the investigation of these questions. The results show that there is a potential possibility to extract the same information from fission chamber signals in the current mode as with the Rossi- or Feynman-alpha methods, or from coincidence and multiplicity measurements, which so far have required detectors working in the pulse mode. It is also shown that application of the standard Campbelling techniques to neutron detection in multiplying systems does not lead to an error for estimating the stationary flux as long as the detector is calibrated in in situ measurements

  6. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  7. Tritium measurement and monitoring in experimental and process systems with ionization chambers

    International Nuclear Information System (INIS)

    Historically, ionization chambers have been used successfully to measure low-level tritium concentrations in air for radiation protection purposes. Problems have been encountered in applying this technique to measure much higher concentrations of tritium in gases other than air, particularly to measure tritium in argon and helium. An experimental program was initiated to investigate the various factors that affect the response of ionization chambers. Carrier gas effects on the measurement of elemental tritium were investigated in the concentration range 0-150 Ci/m3. Higher than theoretical calibration factors were obtained consistently with low-level tritium gas standards in both helium and argon, while with high-level gas standards the experimental calibration factors were close to the theoretical value. Use of a commercial ionization chamber to measure tritiated water vapour in dry air streams resulted in severe contamination of the chamber. Water swamping of the dry air stream reduced the ionization chamber contamination to a negligible level, allowing reliable measurements to be made. The calibration of ionization chambers with representative process gases and operating conditions is necessary to ensure reliable tritium concentration measurements. (Author) (15 refs., 7 figs., 3 tabs.)

  8. Application of a tandem ionization chamber in a quality control program of X-ray beams, radiotherapy level

    International Nuclear Information System (INIS)

    A tandem ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), for X radiation beams, radiotherapy level, was applied into a quality control program of the Calibration Laboratory of IPEN. This ionization chamber is composed by two ionization chambers, with a volume of 0.6 cm3 each one. Its inner plane-parallel electrodes and guard rings are made of different materials: one is made of aluminum and the other is made of graphite. Because of this difference in materials, the ionization chamber forms a tandem system. The relative response of the calibration factors of both sides of the chamber allows an easy verification of the X-ray beam qualities stability. The ionization chamber was submitted to some tests to verify the stability of its response: leakage current before and after exposure, repeatability and reproducibility. The performance of the ionization chamber was satisfactory. (author)

  9. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    Science.gov (United States)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  10. Influence on measurements of pre-irradiation due to differences in ionization chamber shape or frequency in use

    International Nuclear Information System (INIS)

    Ionization chamber measurements in radiation therapy should be repeatedly performed until a stable reading is obtained. Ionization chambers exhibit a response which depends on time elapsed since the previous irradiation. In this study, we investigated the response of a set of two Farmer-style, one Plane parallel, and seven small ionization chambers, which are exposed to 4, 6, 10, and 14 MV. The results show that Farmer-style and Plane parallel ionization chambers settle quickly within 9-20 min. On the other hand, small ionization chambers exhibit settling times of 12-33 min for 6, 10, and 14 MV. It will take longer for a settling time of 4 MV. The settling time showed time dependent irradiation. The first reading was up to 0.76% lower in the Farmer-style and Plane parallel ionization chambers. The small ionization chambers had a 2.60% lower first reading and more gradual response in reaching a stable reading. In this study, individual ionization chambers can vary significantly in their settling behavior. Variation of the responses on ionization chambers were confirmed not only when radiation was not used for a week but also when it was halted for a month. Pre-irradiation of small ionization chambers is clearly warranted for eliminating inadvertent error in the calibration of radiation beams. (author)

  11. Utilization of ionization chambers of parallel plates for X-radiation detection between 25 and 250 Kv

    International Nuclear Information System (INIS)

    An ionization chamber of parallel plates done in Nuclear and Energetic Research institute Brazil, was tested in X-radiation fields of low and medium energy. The results showed that this type of chamber may be used. The calibration factors were compared to the other ionization chambers of secondary standard. (C.G.C.)

  12. Measurement of air kerma rate for Cs-137 using different ionization chambers

    International Nuclear Information System (INIS)

    Due to the importance of radiation doses in medical field quality assurance should be established in order to maintain a reasonable balance between the purpose of application and exposure. This study had been carried out to achieve quality control for protection based on air kerma rate. Measurements were performed by using Cs-137 for the comparison of two working ionization chambers in secondary standard dosimetry laboratory of Sudan. Spherical ionization chamber L S-01 1000 cc S/N 912 and Farmer ionization chamber 2675 A 600 cc S/N 0511, respectively. The results obtained from this study have been represented as mean and their standard deviations shown in most cases remains at 5% uncertainly. Comparison between kinetic energy released per unit mass in air rate (air kerma rate) were obtained by using spherical ionization chamber L S-01 1000 cc S/N 912 and results have been determined using inverse square law. The differences have been represented as means and standard deviations with significant P-value less than 0.05. Spherical ionization chamber gives accurate, reproducible results with acceptable uncertainty which is more suitable for calibration of radiation detectors.(Author)

  13. A new parallel-plate graphite ionization chamber as a 60Co gamma radiation reference instrument

    International Nuclear Information System (INIS)

    The calibration procedure in radiotherapy treatments is very important and a sensitive task due to the high doses delivered to the patients. Generally, the air-kerma cavity standards for 60Co gamma rays are graphite cavity ionization chambers. In this work a new parallel-plate graphite ionization chamber was studied to analyze its potential use as a reference instrument. In order to evaluate its performance in 60Co beams, it was submitted to several characterization tests. Moreover, Monte Carlo simulations were undertaken using the EGSnrc code to study the influence of the chamber components on its response. The results obtained showed that this new ionization chamber presented a satisfactory performance in all evaluated tests. - Highlights: ► A new ionization chamber was characterized as a reference dosimeter for 60Co beams. ► The EGSnrc code was used to determine the influence of the chamber components. ► The characterization test results were within the recommended limits. ► The results showed that this dosimeter may be used as a reference dosimeter

  14. An open-walled ionization chamber appropriate to tritium monitoring for glovebox

    International Nuclear Information System (INIS)

    An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of β particles produced by tritium decay. The minimum detection limit of the chamber is 3.7x105 Bq/m3.

  15. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    Science.gov (United States)

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  16. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    Science.gov (United States)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  17. Photon quality correction factors for ionization chambers in an epithermal neutron beam

    International Nuclear Information System (INIS)

    The radiation field of a neutron beam optimized for boron neutron capture therapy constitutes of a mixture of a photon and a neutron component. The photon and neutron absorbed dose to tissue have different biological effectiveness, suggesting that they should be determined separately. The thermal neutron absorbed dose component can be determined in phantom materials using activation probes. The photon and the fast neutron component can be determined using ionization chambers. The response of ionization chambers in different photon beams has recently been reported for conventional radiation therapy. Thus far, the beam quality correction factors kQ-factors) for photons for ionization chambers in epithermal neutron beams have been assumed equal to unity or estimated through measurements in accelerator produced photon beams. In the present study the kQγ- factors have been determined for two commercially available detectors in an epithermal neutron beam optimized for BNCT using the Monte Carlo method

  18. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    CERN Document Server

    Datte, P S; Haguenauer, Maurice; Manfredi, P F; Manghisoni, M; Millaud, J E; Placidi, Massimo; Ratti, L; Riot, V J; Schmickler, Hermann; Speziali, V; Traversi, G; Turner, W C

    2003-01-01

    A novel segmented multigap pressurized gas ionization chamber is being developed for optimization of the luminosity of the Large Hadron Collider (LHC). The ionization chambers are to be installed in the front quadrupole and 0 degrees neutral particle absorbers in the high luminosity interaction regions (IRs) and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast pulse-shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper, we report the initial results of our second test of this instrumentation in a super proton synchrotron (SPS) external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentation to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated. (10 refs) .

  19. Virtual Frisch-grid ionization chambers filled with high-pressure Xe

    Science.gov (United States)

    Bolotnikov, Aleksey E.; Austin, Robert; Bolozdynya, Alexander; Richards, John D.

    2004-10-01

    New approaches to the design of high-pressure Xe (HPXe) ionization chambers are described. HPXe ionization chambers represent a well-known technique for detecting gamma rays in the energy range between 50 keV and 3 MeV. Since the HPXe detector is an electron-only carrier device, its commonly accepted design includes a Frisch-grid-a metal mesh employed for the electrostatic shielding from the immobile positive ions. The grid is a key element of the device"s design which provides good energy resolution of the detector, typically 2-3% FWHM at 662 keV. However, the grid makes the design more complex and less rugged, especially for field applications. Recently, we developed several designs of HPXe ionization chambers without shielding grids. The results obtained from the testing of these devices are presented here.

  20. Response and Monte Carlo evaluation of a reference ionization chamber for radioprotection level at calibration laboratories

    International Nuclear Information System (INIS)

    A special parallel plate ionization chamber, inserted in a slab phantom for the personal dose equivalent Hp(10) determination, was developed and characterized in this work. This ionization chamber has collecting electrodes and window made of graphite, and the walls and phantom made of PMMA. The tests comprise experimental evaluation following international standards and Monte Carlo simulations, employing the PENELOPE code to evaluate the design of this new dosimeter. The experimental tests were conducted employing the radioprotection level quality N-60 established at the IPEN, and all results were within the recommended standards. - Highlights: • A special ionization chamber, inserted in a slab phantom, was designed and evaluated. • This dosimeter was utilized for the Hp(10) determination. • The evaluation of this dosimeter followed international standards. • The PENELOPE Monte Carlo code was used to evaluate the design of this dosimeter. • The tests indicated that this dosimeter may be used as a reference dosimeter

  1. Measurement of ion and electron drift velocity and electronic attachment in air for ionization chambers

    CERN Document Server

    Boissonnat, Guillaume; Colin, Jean; Remadi, Aurelien; Salvador, Samuel

    2016-01-01

    Air-ionization chambers have been used in radiotherapy and particle therapy for decades. However, fundamental parameters in action in the detector responses are sparsely studied. In this work we aimed to measure the electronic attachment, electrons and ions mobilities of an ionization chamber (IC) in air. The main idea is to extract these from the actual response of the IC to a single ionizing particle in order to insure that they were measured in the same condition they are to be used while neglecting undesired phenomena: recombination and space charge effect. The non-standard signal shape analysis performed here were also confronted to a more standard drift chamber measurements using time-of-flight. It was found that both detectors displayed compatible results concerning positive and negative ions drift velocities where literature data is well spread out. In the same time, electron attachment measurements sit in the middle of known measurements while electron drift velocities seemed to show an offset compar...

  2. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  3. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  4. Some studies on the fission of uranium with the help of a self-controlled wilson chamber

    International Nuclear Information System (INIS)

    The authors applied the method of Wilson's chamber self intern control to the survey of the uranium fission with neutrons of the core. This method allowed them: 1) - to establish a distribution of the courses of the fission fragments in argon on a big number of events. 2) - to search for the probability of production of tri-partitions to third fragment of short course. The authors succeed to the conclusion that in relation to ordinary fission, this, probability is lower to (1 ± 3)/1000, what permits to doubt the existence of the phenomenon. (author)

  5. Design and preliminary test of a free-air ionization chamber for low-energy X-ray

    Institute of Scientific and Technical Information of China (English)

    WU Jin-Jie; YANG Yuan-Di; WANG Pei-Wei; CHEN Jing; LIU Jia-Cheng

    2011-01-01

    A free-air ionization chamber in low-energy X-ray has been designed and manufactured at theNational Institute of Metrology (NIM, China) according to the defination of alr-kerma. The results of a preliminary test show that the leakage current of ionization chamber is around 2×10A, and the correction factor of ion recombination for the ionization chamber is also obtained. The free-air ionization chamber is suitable for the primary standard in low-energy X-rays.

  6. Measurement of dose rate components of the BNCT beam at THOR using paired ionization chambers

    International Nuclear Information System (INIS)

    Paired ionization chambers were used in this work to measure the neutron and gamma-ray dose rates of the BNCT epithermal neutron beam at THOR along the beam axis free-in-air and in the water phantom. The position dependent and kerma rate weighted neutron sensitivities of the TE(TE) chamber were adopted in the measurements. Monte Carlo calculations of the neutron fluence rates and neutron kerma rates using the MCNP4C code were used to support the measurements and compare with the measured results. It concludes that the relative neutron sensitivity of the Mg(Ar) chamber warrants a detailed investigation to improve the accuracy of the dose rate measurement using paired ionization chambers in a mixed field. (author)

  7. The characterization of the Advanced Markus ionization chamber for use in reference electron dosimetry in the UK

    International Nuclear Information System (INIS)

    The IPEM Code of Practice (IPEM 2003) for electron dosimetry for radiotherapy beams recommends design requirements for parallel-plate ionization chambers used to determine absorbed dose to water in an electron beam. The Classic Markus design has been found not to meet these requirements. The Advanced Markus ionization chamber has been designed to rectify the problems associated with the Classic Markus ionization chamber. The response of three Advanced Markus ionization chambers was investigated and compared to the designated chamber types. Absorbed dose to water calibration factors were derived at the National Physical Laboratory (NPL) for each ionization chamber at seven electron energies in the range nominally 4-19 MeV. Investigations were carried out into chamber settling, polarity effects, ion recombination and the chamber perturbation. The response of the ionization chambers in a clinical beam was also investigated. In general all three Advanced Markus ionization chambers showed the same energy response. The magnitude of the polarity effect was typically 5% at a nominal energy of 4 MeV. There was discrepancy between the polarity measurements made at the NPL and in the clinic. The recommendation of this study is that this chamber type is not suitable for reference dosimetry in electron beams

  8. Gridded ionization chamber and dual parameter measurement system for fast neutron-induced charged particles emission reaction

    International Nuclear Information System (INIS)

    A twin ionization chamber with a common cathode and grids is described for (n,α), (n,p) studies. The chamber is used to determine the energy spectra and angular distribution of the charged particles emitted from the sample positioned on the cathode by dual parameter measurements of coinciding pulses from the anode and cathode of the ionization chamber. Pu α source is used to test the property of the chamber, an isotropic angular distribution is basically showed and the energy resolution is about 2%. This ionization chamber has already been applied to the studies of the 40Ca(n,α) and 64Zn(n,α) reactions

  9. Performance of three pencil-type ionization chambers (10 cm) in computed tomography standard beams

    Science.gov (United States)

    de Castro, Maysa C.; Xavier, Marcos; Caldas, Linda V. E.

    2016-07-01

    The use of computed tomography (CT) has increased over the years, thus generating a concern about the doses received by patients undergoing this procedure. Therefore, it is necessary to perform routinely beam dosimetry with the use of a pencil-type ionization chamber. This detector is the most utilized in the procedures of quality control tests on this kind of equipment. The objective of this work was to perform some characterization tests in standard CT beams, as the saturation curve, polarity effect, ion collection efficiency and linearity of response, using three ionization chambers, one commercial and two developed at the IPEN.

  10. New look at displacement factor and point of measurement corrections in ionization chamber dosimetry

    International Nuclear Information System (INIS)

    A new technique is presented for determination of the effective point of measurement when cavity ionization chambers are used to measure the absorbed dose due to ionizing radiation in a dense medium. An algorithm is derived relating the effective point of measurement to the displacement correction factor. This algorithm relates variations of the displacement factor to the radiation field gradient. The technique is applied to derive the magnitudes of the corrections for several chambers in a p(66)Be(49) neutron therapy beam. 30 references, 4 figures, 1 table

  11. Comparison of the half-value layer: ionization chambers vs solid-state meters

    International Nuclear Information System (INIS)

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  12. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    International Nuclear Information System (INIS)

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (equation of state) TPC and other EOS collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI. (orig.)

  13. Experimental data on collection efficiency of ionization chamber in pulsed-swept beam

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, G.; Milano, F.; Moscati, M.; Renzi, R.

    1991-12-31

    The correction factor accounting for recombination losses of ionization in a chamber becomes quite significant when the instantaneous dose-rate present in the beam is very high, as happens in linear accelerators used for radiation therapy. This is particularly the case of pulsed-swept linacs, where the field homogeneity is obtained by scanning the whole area with a relatively small electron beam. This contribution describes some methods for taking into account recombination effects and presents some experimental results obtained on a pulsed-swept electron beam by using both an ionization chamber and other detectors which are dose-rate independent, such as Fricke solution and thermoluminescent dosemeters (TLD).

  14. Use of a large gridded ionization chamber for identification of alpha emitters samples

    International Nuclear Information System (INIS)

    This paper refers to a large magnitude gridded ionization chamber with high resolution used in the identification of alpha radioactive samples. Several values of α energy were found which matched perfectly well adjustment curve of the chamber. Many other additional measures using different kinds of adjusted detectors were successfully obtained in order to confirm the results gotten in the experiments, thus leading to the identification of some elements of the 233 U radioactive series. (author). 10 refs., 4 figs., 1 tab

  15. High pressure xenon (HPXe) ionization chamber for γ-ray spectrometry at room temperature

    International Nuclear Information System (INIS)

    High pressure xenon ionization chambers with Frisch grid are promising devices for γ ray spectrometry at room temperature and above because of their good performances (particularly their energy resolution). In this work, the characteristics and typical performances of these detectors are presented. Some improvements of electronics and signal processing are also investigated in the aim of making these chambers even more versatile and performing. (authors)

  16. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    International Nuclear Information System (INIS)

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the γ-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is about 1.3x10-17 A

  17. Pulse mode readout techniques for use with non-gridded industrial ionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir E. [JLAB; Degtiarenko, Pavel V. [JLAB

    2011-10-01

    Highly sensitive readout technique for precision long-term radiation measurements has been developed and tested in the Radiation Control Department at Jefferson Lab. The new electronics design is used to retrieve ionization data in a pulse mode. The dedicated data acquisition system works with M=Audio Audiophile 192 High-Definition 24-bit/192 kHz audio cards, taking data in continuous waveform recording mode. The on-line data processing algorithms extract signals of the ionization events from the data flow and measure the ionization value for each event. Two different ion chambers are evaluated. The first is a Reuter-Stokes Argon-filled (at 25 atm) High Pressure Ionization Chamber (HPIC), commonly used as a detector part in many GE Reuter-Stokes instruments of the RSS series. The second is a VacuTec Model 70181, 5 atm Xenon-filled ionization chamber. Results for both chambers indicate that the techniques allow using industrial ICs for high sensitivity and precision long-term radiation measurements, while at the same time providing information about spectral characteristics of the radiation fields.

  18. A ΔE-E Telescope with Ionization Chamber Used in Excitation Function Measurement

    Institute of Scientific and Technical Information of China (English)

    LiSonglin; WangQi; DongYuchuan; XuHuagen; ChenRuofu

    2003-01-01

    A thorough study of excitation function in dissipative heavy ion collision requires the identification of the nuclear charge number Z of the reaction products. For this purpose, a special designed ΔE-E telescope is employed, which consists of a gas filled ionization chamber to detect the energy loss and a position sensitive semiconductor Si detector (300μm in thickness and 8 mm×45 mm in active area) as the residual energy detector. The ionization chamber with a sensitive length of about 60 mm, is divided into two parts of ΔE1 and ΔE2, each with length of 30 mm. The trajectory of the incident particles is parallel to the direction of the electric field in the ionization chamber. The anodes of ΔE1 and ΔE2 are realized through the rectangular empty metallic frames. In order to collect ionized charge produced by the incident particle inside the ionization chamber effectively, two equipotential frame-shape electrodes were placed on both sides of each anode, to form a strong electric focused field toward the anode. The advantages of this type of the detector arc as follows: (1)lower energy detection threshold; (2) wide dynamical range both for the light particles and the heavy fragments;(3) larger solid angle coverage with a relatively smaller detector size based on the position information from the Si detector.

  19. Ionization Chambers for Monitoring in High-Intensity Charged Particle Beams

    OpenAIRE

    McDonald, J.; Naples, D.; Velissaris, C.; Erwin, A.; Ping, H.; Viren, B.; Diwan, M.

    2002-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  20. Digital mammography with multi-electrode ionization chamber

    CERN Document Server

    Groshev, V R; Nifontov, V I; Pishenuok, S M; Samsonov, A A; Shekhtman, L I; Telnov, V I

    2000-01-01

    For viewing micro-calcifications smaller than 100 mu m investigation of image formation in mammography shows that a significant dose to the patient is imperative. We propose a novel one-dimensional Multi- electrode Ionisation Chamber (MIC), with high spatial resolution, and lowered doses. In this work, first results from a prototype are presented. High spatial resolution is demonstrated working with Xe mixture at high pressure. An addition of a Gas Electron Multiplier (GEM) allowed an improvement in sensitivity up to almost single- photon level. (8 refs).

  1. Assessment of small volume ionization chambers as reference dosimeters in high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Le Roy, M; De Carlan, L; Delaunay, F; Donois, M; Fournier, P; Ostrowsky, A; Vouillaume, A; Bordy, J M, E-mail: loic.decarlan@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette CEDEX (France)

    2011-09-07

    LNE-LNHB is involved in a European project aiming at establishing absorbed dose-to-water standards for photon-radiation fields down to 2 x 2 cm{sup 2}. This requires the calibration of reference ionization chambers of small volume. Twenty-four ionization chambers of eight different types with volume ranging from 0.007 to 0.057 cm{sup 3} were tested in a {sup 60}Co beam. For each chamber, two major characteristics were investigated: (1) the stability of the measured current as a function of the irradiation time under continuous irradiation. At LNE-LNHB, the variation of the current should be less than {+-}0.1% in comparison with its first value (over a 16 h irradiation time); (2) the variation of the ionization current with the applied polarizing voltage and polarity. Leakage currents were also measured. Results show that (1) every tested PTW (31015, 31016 and 31014) and Exradin A1SL chambers demonstrate a satisfying stability under irradiation. Other types of chambers have a stability complying with the stability criterion for some or none of them. (2) IBA CC01, IBA CC04 and Exradin A1SL show a proper response as a function of applied voltage for both polarities. PTW, Exradin A14SL and Exradin A16 do not. Only three types of chambers were deemed suitable as reference chambers according to LNE-LNHB requirements and specifications from McEwen (2010 Med. Phys. 37 2179-93): Exradin A1SL chambers (3/3), IBA CC04 (2/3) and IBA CC01 (1/3). The Exradin A1SL type with an applied polarizing voltage of 150 V was chosen as an LNE-LNHB reference chamber type in 2 x 2 cm{sup 2} radiation fields.

  2. Experimental techniques for fission data measurements

    International Nuclear Information System (INIS)

    Progresses in the development of experimental techniques or fission data measurements are reviewed briefly. This review comprises techniques for the preparation of special compound nuclei leading to fission (fission entrance) as well as experimental techniques which permit the measurement of the diversified characteristics of the emitted radiations in fission (fission exit). The latter developments are only considered when also other parameters than yield, mass, and energy of fission fragments are determined. Ionization chambers developed at CBNM are described in more detail. A simple ionization chamber with Frisch grid was used to determine fission layer characteristics, e.g. the number of fissile nuclei of a sample with an accuracy of smaller than 0.3 %. A twin ionization chamber is described which has an advantageous 2 x 2π solid angle for fission fragment detection, a timing jitter of less than 0.7 ns, an energy resolution of smaller than 500 keV for fission fragments, and an angular resolution of ΔcosΘ < 0.005. Also the nuclear charge distribution of the fragments can be determined. A pulse pile-up rejection circuit was developed, which reduces pulse pile-up by more than a factor 30. This detector is well suited for correlation measurements between fission fragment parameters, like mass and total kinetic energy, and the characteristics of the different radiations emitted from the fragments. This type of ionization chamber was successfully used in several experiments and some results are shown to demonstrate its capabilities. (author)

  3. A design study for a 'spiral staircase' ionization chamber for the quality control of electron beams

    International Nuclear Information System (INIS)

    In order to verify that the energies of electron beams used for external beam therapy remain constant, IPEM 81 recommends a constancy check based on the ratio of ionization chamber measurements at two depths along the central axis. Such measurements for a range of electron energies can be a time consuming process. The purpose of this study was to design a device that would use several ion chambers simultaneously to measure electron depth dose curves, and hence the electron energy. A design was developed for a device consisting of ten independent ionization chambers, shaped and arranged in a solid phantom like the steps of a spiral staircase, the axis of the staircase being coincident with the axis of the electron beam. Measurements were carried out to test the design of individual chambers and to optimize the radius of the spiral and both the depth intervals and the lateral spacing between adjacent chambers. For ranges of electron energy from 6-12 MeV and 12-20 MeV the radii of the spirals needed were found to be 36.5 mm and 30.9 mm, the angular separations between edges of the chambers were 52 deg. and 30 deg. and chamber depths were found to be 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 mm and 20, 40, 45, 50, 55, 60, 65, 70, 75, 80 mm, respectively. (note)

  4. Comparative study of ionization chambers of two different sensitive volumes for dose quality control of IMRT

    International Nuclear Information System (INIS)

    The aim of this work is to make a comparative study of ionization chambers with sensitive volume of 0.01 cm3 and 0.13 cm3 to evaluate the dose assurance for IMRT treatment. To perform this study, 20 IMRT planning were selected with small field size, and dose measurements have been performed in a low dose gradient region with both ionization chambers. These measurements were compared with data provided by the planning software. The analysis of measurements showed that both chambers can be used for IMRT quality control, because the variations found not exceed 4,5% of expected value and the chamber with a volume of 0.13 cm3 had better results. In this work, one can conclude that the chamber with sensitive volume of 0.13cm3 despite to have a larger volume, this chamber is more favorable for quality control of absolute dosimetry of IMRT, but no excluding the use of chamber with sensitive volume of 0.01cm3 which obtained satisfactory results. (author)

  5. Results from a continuos control of the stability of standard ionization chambers

    International Nuclear Information System (INIS)

    The results from regular checks of measuring assembly performance constancy carried out in the period 1981-2000 for five Secondary Standard Chambers are presented. The test procedure consisted of 10 consecutive measurements of collected electrical charge for a time of 200 s each. For all chambers the percentage deviations are into the range of ± 1.5 %. For the whole period the average values of deviations are between 0.15 % and 0.14 %. The results for two chambers (2505/A SN 598 and NPL 2651 SN 096) in chronological succession are graph shown. The histograms of deviations for two other chambers (NE 2571 No. 238 and NE 2575 No. 118 are given. The deviations have a random character and due to dominant influence of some of the affecting quantities on given data. According to the international documents, the performance stability of the Secondary Standard ionization chambers is quite satisfactory

  6. Use of well-type ionization chambers in radioactive metrology

    International Nuclear Information System (INIS)

    A summary is given of the results of our observations and experiments gathered together over a period of 10 years in the Radioelement Measurements Laboratory, concerning the use of well-type chambers in refined metrology. The optimum conditions for obtaining good reproducibility are defined; this is indispensable if improved sensitivity and accuracy are required. For this, we consider, and measure, the effects of: the nature and the shape of the sources and of the containers; the random form of the response and its statistical treatment; the non-linearity and the show drift of the installation. A sound knowledge of the causes of error, the application of adequate correction methods and an exact calculation of the error, all make it possible to carry out measurements under the best conditions for obtaining a good reproducibility. The accuracy can attain 1.5 per cent. (author)

  7. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  8. A dual type gridded ionization chamber as liquid argon purity monitor II

    International Nuclear Information System (INIS)

    The attenuation lengths of electrons in liquid argon purified by molecular sieves, a Ti-Ba getter and an Oxysorb filter was measured by using a dual type gridded ionization chamber. From the electric field dependence of the attenuation length, it is concluded that the type of remaining impurity is not an oxygen type, but N2O type. (author)

  9. Future development of the demands on therapy dosemeters with ionization chambers

    International Nuclear Information System (INIS)

    Only little will change with the introduction of the European internal market with regard to the demands on ionization chamber dosemeters used in radiotherapy, provided that the harmonized standard is aligned with IEC publication 731. Type licences for domestic calibration will be replaced by European Communities licences. (orig.)

  10. ΔE-E telescope with high energy resolution large sensitive area ionization chamber

    International Nuclear Information System (INIS)

    The construction and the performances of ΔE-E telescope with active thick 11 cm and window area 1600 mm2 are described. ΔE detector is a Frisch ionization chamber. The performances of ΔE detector utilizing 239Pu-α source is tested. The optimum ΔE resolution obtained is 4.6%

  11. Determination of 238U nucleus number using grid ionization chamber method and small solid angle method

    International Nuclear Information System (INIS)

    Using the grid ionization chamber method and small solid angle method, the number of 238U nucleus in the highly pure U3O8 sample is determined. Although the ratio of efficiency for the two methods is as high as 484, the results are in good agreement

  12. Current saturation in free-air ionization chambers with chopped synchrotron radiation

    International Nuclear Information System (INIS)

    An expression for ion recombination in free-air ionization chambers irradiated by chopped X-rays is presented. The expression is validated by comparison with experiments using synchrotron radiation. Saturation curves for free-air ionization chambers with electrode gap widths of 4.2, 8.4 and 18 mm were obtained for 10 and 15 keV undulator synchrotron radiation thinned with a 230 Hz rotating-disk chopper. Ion recombination in free-air ionization chambers was found to be inversely proportional to the applied electric field, and an expression that satisfactorily reproduced the ion-recombination rate is determined. A comparison of the expressions for continuous and pulsed X-rays revealed that chopped high-intensity X-rays require a higher voltage to attain saturation when the product of the pulse width and electric field exceeds a value that depends on the X-ray energy. This behaviour was observed explicitly for 10 keV X-rays in measurements with the ionization chamber placed before and after the chopper

  13. Calculational-theoretical studies of the system of local automated regulators and lateral ionization chambers

    International Nuclear Information System (INIS)

    Methods of engineering synthesis of the systems for nuclear reactor local automated power regulation and radial-azimuthal energy distribution stabilization operating according to lateral ionization chamber signals are described. Results of calculational-theoretical investigations into the system efficiency and peculiarities of its reaction to some perturbations typical of the RBMK type reactors are considered

  14. Dosimetric application of a special pencil ionization chamber in radiotherapy X-ray beams

    International Nuclear Information System (INIS)

    The aim of this work was to study the performance of a pencil ionization chamber with a sensitive volume of only 1.06 cm3 and a length of 3.0 cm, developed at the Calibration Laboratory of the IPEN, in very low-energy radiotherapy X-ray beams. These beams are still used for certain skin cancer treatments due to their rapid attenuation in tissue. The dosimeter performance was evaluated in some tests proposed by the IEC 60731 standard: short- and long-term stability and linearity of response. For a complete analysis of the dosimeter response, the EGSnrc Monte Carlo simulation was utilized to investigate the influence of its different parts on the ionization chamber response. All results of the tests were in accordance with the recommended limits, and this work shows that it is possible to extend the application of this pencil-type ionization chamber developed at the LCI. - Highlights: ► A special pencil-type ionization chamber was characterized for radiotherapy X-ray beams. ► The results of the characterization tests were within the recommended limits. ► The EGSnrc code was employed to evaluate the components of the dosimeter. ► The simulations showed that this novel configuration is suitable for this application. ► This dosimeter may be used for quality control programs at laboratories and clinics

  15. High-resolution ion pulse ionization chamber with air filling for the Rn-222 decays detection

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Etezov, R A; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register alpha-particles from the $^{222}$Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  16. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    Science.gov (United States)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  17. Intercomparison of ionization chamber calibration factors in the IAEA/WHO network of SSDLs

    International Nuclear Information System (INIS)

    An intercomparison of ionization chamber calibration factors was conducted in 1995 which included 17 participants. The results were published in the SSDL Newsletter No. 35. In 1997, a second intercomparison was carried out involving 21 participants. The calibration factors of 24 ionization chambers were checked. For all chambers, mean ratios of SSDL to IAEA measured factors of 1.002 (standard deviation of 1.3%) and 1.004 (standard deviation of 1.3%) were obtained for the air-kerma and absorbed dose to water calibration factors, respectively. Four SSDLs had large deviations and three of them took immediate corrective actions. One deviation has not yet been resolved. The results of the intercomparison are presented and discussed in this report. (author)

  18. Electronic system for the automation of current measurements produced by ionization chambers

    International Nuclear Information System (INIS)

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology in the determination of radionuclide activity. For this purpose measurements of very low ionization currents, in the range of 10-8 to 10-14 A, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. In the present work, an automation system, developed for current integration measurements at the Laboratorio de Metrologia Nuclear (LMN) of Instituto de Pesquisas Energeticas e Nucleares (IPEN), is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card CAD12/32 (LYNX Tecnologia Eletronica Ltda.). Measurements, using an electrometer Keithley 616 (Keithley Instruments, Inc) and an ionization chamber IG12/A20 (20th Century Electronics Ltd.), were performed in order to check the system and for validating the project. (author)

  19. Automation of the reading of an ionization chamber: study and design of a data transfer system

    International Nuclear Information System (INIS)

    Management of information obtained through ionization chamber, type of detector the most employed in centers or institutions using ionizing radiation machines and radioactive sources, is done manually because data are fed into computers from keyboard. This procedure presents hazards of loss and bad transcription of information. A more practical way of getting over this handicap is the setting up of a system that transfers data from ionization chamber into computer. Thereafter, it will be easier for the user to adjust his data processing software to the system underconsideration. This system, even though not directly designed to process data, that being a specific task of each user, is constituted of an electronic aspect which plays the interface part between them. It takes account parameters having relevance to the quality and the quantity of information put out by the detector

  20. Calibration of Pencil Type Ionization Chambers at Various Irradiation Lengths and Beam Qualities

    International Nuclear Information System (INIS)

    Pencil type ionization chambers are being used in several diagnostic radiology applications, for the measurement of the air kerma length product, PKL. This work investigates several aspects of the pencil chamber calibration. The air kerma behind the apertures that are used for the partial irradiation of the pencil chambers depends on the irradiation set-up and equals to the air kerma free in air only under 'good geometry' irradiation conditions. Appropriate correction factors, kw, may be needed for this. The residual signal of four pencil chamber models was measured using various apertures widths. The residual signal should be subtracted from chamber signal in order to improve accuracy. Twenty-three commercial pencil type chambers were calibrated at RQT radiation qualities. The variation of performance between chambers of the same model and between different models is discussed, while the energy dependence of their response is presented. Finally, a comparison of the two calibration methods (total and partial irradiation of chamber) showed that both methods deduce similar calibration coefficients. The uncertainties of the measurements are assessed and discussed. (author)

  1. Determination of ion recombination correction factors for a liquid ionization chamber in megavoltage photon beams

    Science.gov (United States)

    Choi, Sang Hyoun; Kim, Kum-Bae; Ji, Young Hoon; Kim, Chan Hyeong; Kim, Seonghoon; Huh, Hyun Do

    2015-05-01

    The aim of this study is to determine the ion recombination correction factor for a liquid ionization chamber in a high energy photon beam by using our experimental method. The ion recombination correction factors were determined by using our experimental method and were compared with theoretical and experimental methods proposed by using the theoretical method (Greening, Johansson) and the two-dose rate method in a cobalt beam and a high energy photon beam. In order to apply the liquid ionization chamber in a reference and small field dosimetry, we acquired the absorbed dose to water correction coefficient, the beam quality correction factor, and the influence quantities for the microLion chamber according to the TRS-398 protocol and applied the results to a high energy photon beam used in clinical fields. As a result, our experimental method for ion recombination in a cobalt beam agreed with the results from the heoretical method (Greening theory) better than it did with the results from the two-dose rate method. For high energy photon beams, the two-dose rate and our experimental methods were in good agreement, less than 2% deviation, while the theoretical general collection efficiency (Johansson et al.) deviated greatly from the experimental values. When we applied the factors for the absorbed dose to water measurement, the absorbed dose to water for the microLion chamber was in good agreement, within 1%, compared with the values for the PTW 30013 chamber in 6 and 10 MV Clinac iX and 6 and 15 MV Oncor impression. With these results, not only can the microLion ionization chamber be used to measure the absorbed dose to water in a reference condition, it can also be used to a the chamber for small, non-standard field dosimetry.

  2. Evaluation of linearity of response and angular dependence of an ionization chamber for dosimetry in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P.; Neves, Lucio P.; Xavier, Marcos; Caldas, Linda V.E., E-mail: mxavier@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    In this paper a pencil-type ionization chamber designed and manufactured at Instituto de Pesquisas Energeticas e Nucleares was evaluated for dosimetric applications in computed tomography beams. To evaluate the performance of this chamber two tests were undertaken: linearity of response and angular dependence. The results obtained in these tests showed good results, within the international recommendations. Moreover, this homemade ionization chamber is easy to manufacture, of low cost and efficient. (author)

  3. An ionization chamber for (n,z) reaction cross section measurements on gaseous targets

    CERN Document Server

    Machrafi, R; Son, D; Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P; Gledenov, Yu.M.

    2002-01-01

    An ionization chamber with gaseous samples has been designed. It has been tested on the beam of the pulsed reactor IBR-30 of FLNP, JINR-Dubna. The experiment has been carried out with resonance neutrons. The exposed gas volume serves as a target for neutron beam. We have compared the chamber to samples on substrates, the background component due to Li and B microimpurities in this case is totally absent. It has been tested also the recovery capability of the chamber after the reactor power pulse using the protons from the 3He(n,p)3H reaction, alpha-particles from a U-source and a pulsed precision generator. Moreover the energy resolution of the chamber with its equipment has been carried out.

  4. A special ionization chamber performance for the quality control in radiotherapy

    International Nuclear Information System (INIS)

    A special double-faced plane parallel ionization chamber, with inner electrodes of different materials was developed. Its use will be in quality control programs of X-rays equipment, radiotherapy level. This chamber was tested and calibrated in accordance with international recommendations, and it showed a satisfactory level of performance, mainly with regard to its use: the formation of a Tandem system for confirmation of half-value layers and effective energies in X-radiation beams, previously determined by the conventional method. In this developed system absorbers or any special set-ups are not necessary. The main advantages of this type of chamber are simple and quick measurements, that enable higher frequency of quality control tests. Moreover, the Tandem chamber presents low cost, and can be used with any commercial available electrometer. (author)

  5. Development of calibration procedures for the electron beam calibration of plane parallel ionization chambers

    International Nuclear Information System (INIS)

    In Finland, plane parallel (pp) ionization chambers have been used more than ten years for absolute dose measurements in electron beams of radiation therapy accelerators, for energies below 15 MeV. Before 1997 all pp chambers were calibrated in a 60Co gamma beam at the Finnish SSDL (STUK) for air kerma. Since 1999 all pp chambers have been calibrated by STUK in accelerator electron beams. The local absolute dose measurements (beam calibrations) at hospitals are verified every second year by independent comparative dose measurements by STUK, carried out by ionization chambers during a site visit. All absolute dose measurements are done in a water phantom. The acceptable conditions of the beam for the calibration are always verified by the measurement of beam profiles and depth doses. In regular site visits at the time of 60Co beam calibrations, discrepancies larger than 3% in comparative dose measurements between STUK and the hospitals were constantly observed with some of the hospitals' chambers, despite the chambers had had recalibrations at a 60Co beam. Based on further studies and preliminary electron beam calibrations of those problematic chambers, it became clear that pp chambers had individual characteristics as for the 60Co beam calibration. Therefore, it was decided to introduce an electron beam calibration as the routine method for the pp chambers. By the help of the electron beam calibrations, discrepancies in the comparative dose measurements between STUK and hospitals generally diminished to less than 1 %. The first electron beam calibrations were made by manual construction and it was not sure if repeatability was good enough. Therefore, a high precision jig for pp chamber calibration was constructed. In the precision jig, all chambers are in fixed positions and the only movement in the calibration process is to slide a sledge to change the reference cylindrical chamber (0,6 cm3) to the pp chamber to be calibrated. The depths of the chambers in water

  6. Long Term Stability Of Farmer Type Ionization Chamber Calibration Coefficient belonging To Local Radiotherapy Centres In Malaysia

    International Nuclear Information System (INIS)

    The accuracy of the ionization chambers calibration coefficient is one of the factors that would contribute to efficient radiotherapy treatment. The IAEA therefore has recommended that an ionization chamber be calibrated every year, with a condition that the deviations between the previous and new calibration coefficients ND,w should not differ by ±1.5 %. It has been identified that Farmer type ionization chambers is the most popular ionization chamber among the radiotherapy centres in Malaysia. For this reason, the purpose of this work is to evaluate the calibration coefficients long term stability of the Farmer type ionization chambers. A total of 33 Farmer type ionization chambers were studied and the mean μ of the ND,w deviation together with its standard error SE were calculated. This μ ±SE will be used to measure stability of ND,w. Our results showed that most chambers have μ ±SE lies within the ±1.5 %. It is thus concluded that most of the Farmer type ionization chamber were stable in their ND,w and safe to be used for radiotherapy treatment. (author)

  7. A dual type gridded ionization chamber as purity monitor of liquid argon

    International Nuclear Information System (INIS)

    The liquid argon time projection chamber (LATPC) is currently developed for detecting solar neutrons or proton decays. A dual type gripped ionization chamber with different drift distances of liberated electrons is constructed to measure the purity of liquid argon. A purification system of gaseous argon for LATPC with a drift space of about 150 cm is also constructed. The performances of both the dual type gripped ionization chamber and the purifier are tested seeking to develop a large scale LATPC. It is demonstrated that the attenuation length of electrons and also the impurity level in liquid argon can be well determined in the dual type gripped ionization chamber. In the case of the purifier, there still remains unknown low-level impurities in purified liquid argon. The results are compared with UCI data which were obtained with liquid argon mixed with water vapor. the same tendency is found in the attenuation length of their data as in the present results. This seems to suggest the dominant impurity remaining in the purifier is still water. The present apparatus was previously tested with liquid argon purified by other purification system of Ti-Ba getters. The attenuation length obtained by those tests was almost 100 cm. (N.K.)

  8. The effect of waterproofing sleeves on the response of FARMER like ionization chambers

    International Nuclear Information System (INIS)

    According to most recent dosimetry protocols, the determination of the absorbed dose to water for photon and electron beams should be performed with non-water-proof ionization chamber along with plastic waterproofing sleeves whose thickness should be less than 1 mm. In these protocols, the correction for the waterproofing sleeve is incorporated in the equation of the perturbation factor pwall. Many SSDLs and hospitals were previously provided with thicker sleeves and are probably still using them for routine calibrations. The objective of the work presented in this paper is to investigate the effect of the waterproofing sleeves on the response of a WELLHOFER IC 70 ionization chambers in a 60Co and two high energy X-ray beams, 6MV and 18 MV. This chamber is inherently waterproof, thus, the ionisation current obtained with sleeves of different thickness is compared to the current obtained without sleeve. The results are improved by performing, for each thickness, at least two series of measurements with and without sleeve. The results show that with 60Co, the ionization response increases from 0.08% to 0.47% for sleeves from 0.75 mm to 1.75 mm. For 6 MV and 18 MV X-rays, the signal decreases respectively by 0.8% and 1%. When taking into account the perturbation correction factor including the waterproofing sleeve component, the ratio R/Ro , where R is the product of the chamber signal and the perturbation factor (the subscript is for the response without sleeve) is increasing from 0.14% to 0.55% for 60Co. For X-rays, this ratio decreases up to 0.75% and 0.59% respectively for 6 MV and for 18 MV. Similar results are obtained with FARMER like ionization chambers

  9. Pre-irradiation effects on ionization chambers used in radiation therapy

    International Nuclear Information System (INIS)

    Dosimetry protocols recommend that ionization chambers used in radiation therapy be pre-irradiated until they 'settle', i.e., until a stable reading is obtained. Previous reports have claimed that a lack of pre-irradiation could result in errors up to several per cent. Recently, data collected for a large number of commonly used ion chambers at the Institute for National Measurement Standards, NRC, Canada, have been collated and analysed, with additional data contributed by the National Physical Laboratory, UK. With this data set, it was possible to relate patterns of ion chamber behaviour to design parameters. While several mechanisms seem to contribute to this behaviour, the most obvious correlations implicate the type of insulator surrounding the central collector electrode, the extent of collector electrode shielding and possibly the area of the insulator exposed at the base of the active air volume. The results show that ion chambers with electrode connections guarded up to the active air volume settle quickly (∼9 min) and the change in response is small (less than ∼0.2%). For ion chambers where the guard connection surrounding the central collector does not extend up to the active air volume, settling times of 15-20 min and an associated change in response of up to 1% are typical. For some models of ion chambers, the irradiation rate may also play a role in settling behaviour. Settling times for the ion chambers studied here were found to be independent of beam quality. (note)

  10. Development of an active 238uranium(VI)-fluoride detector chamber for precision experiments in photon-induced fission at the S-DALINAC

    International Nuclear Information System (INIS)

    The polarized injector SPIN at the S-DALINAC provides spin polarized electrons for circularly polarized bremsstrahlung with a high degree of polarization near the endpoint energy of the spectrum, enabling the search for forward-backward asymmetries of the light and heavy fission fragment originating from parity non-conservation in the photon-induced fission process of 238U. An active 238uranium(VI)-fluoride gas target has been developed along the lines of a simple Frisch grid ionization chamber to raise the luminosity and to study the properties of an 238uranium(VI)-fluoride/argon gas mixture. The active 238uranium(VI)-fluoride gas target has been filled with argon and 238uranium(VI)-fluoride using mass flow controllers. At different settings data has been acquired and interpreted. Instantly after filling the chamber with some 238uranium(VI)-fluoride the anode and cathode signal are severely lowered and gain only slowly. Apparently the 238uranium(VI)-fluoride acts as a very efficient electron collector because of its complexity and the high amount of fluorine and its electronegativity. Over time, the amount of gaseous 238uranium(VI)-fluoride is reduced and different processes are possible to explain this effect. In the present configuration of the active 238uranium(VI)-fluoride gas target no sound quantitative information on the properties of an 238uranium(VI)-fluoride/argon gas mixture can be given. Raising the luminosity for precision experiments in photon-induced fission at the S-DALINAC with an active 238uranium(VI)-fluoride gas target appears to be impossible.

  11. Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine

    International Nuclear Information System (INIS)

    In this paper we present the results of a dosimetric evaluation of a 2D ionization chamber array with the objective of its implementation for quality assurance in clinical routine. The pixel ionization chamber MatriXX (Scanditronix Wellhofer, Germany) consists of 32 x 32 chambers with a distance of 7.6 mm between chamber centres. The effective depth of measurement under the surface of the detector was determined. The dose and energy dependence, the behaviour of the device during its initial phase and its time stability as well as the lateral response of a single chamber of the detector in cross-plane and diagonal directions were analysed. It could be shown, that the detector's response is linear with dose and energy independent. Taking the lateral response into account, two different dose profiles, for a pyramidal and an IMRT dose distribution, were applied to compare the data generated by a treatment planning system with measurements. From these investigations it can be concluded that the detector is a suitable device for quality assurance and 2D dose verifications

  12. Characterization of a 2D ionization chamber array for IMRT plan verification

    International Nuclear Information System (INIS)

    A commercialized array of 2D pixel ionization chambers MatriXX from Scanditronix Wellhoefer was evaluated with the objective to implement for quality assurance in IMRT treatment plan verification. The device consists of 1020 chambers arranged in a 32x32 grid. The distance between the chamber centres is 7.6 mm and the volume of the chamber is 0.08 cm3. The effective point measurement of the MatriXX was verified and it agreed with the MatriXX's manual specifications. The start-up behaviour, and the short- and long-term reproducibilities of the array detector were tested. Dose linearity and energy independence were also analyzed. The results showed that the dose was linear within the range 9-800 cGy and the response of the 2D array was independent of energy for 6 and 10 MV photon beams. The MatriXX was independent of dose rate ranging from 183 to 483 cGy/min. For field sizes 3x3 cm2 and above the output factors of the 2D agreed within 1% with those obtained using the FC65-G ionization chamber. But at field size 2x2 cm2 the percentage difference was 5%. However, there was a poor correlation with differences greater than 1 mm in the penumbra region. The preliminary investigations indicate that the detector is suitable for IMRT plan verifications but corrections have to be applied in regions of high dose gradient.

  13. Improved free-air ionization chamber for the measurement of X-rays

    International Nuclear Information System (INIS)

    Based on an original design by F. H. Attix, an improved free-air ionization chamber was constructed at the National Radiation Standard Laboratory of the Institute of Nuclear Energy Research (INER, Taiwan), as the primary standard for x-ray generated at energy levels between 50 keV and 300 keV. Various improvements were made to the Attix design, including modifications of the chamber structure and the measurement technique. The changes include: a three-section design with fixed central cylinder; thickening of the shielding box; a circuitous mechanism for the operational handle, to avoid unwanted scattering; a ruler mechanism to provide fine position control; and increased thickness of the aluminium wall of the chamber. After initial experimental verification, a comparison with the National Institute of Standards and Technology (NIST, USA) using a transfer standard chamber yielded differences in calibration factors of less than 1 %. In addition, the overall uncertainty for the x-ray measurement in terms of air kerma is less than 1 % at the 95 % confidence level. These results indicate that the improved free-air ionization chamber can serve as a primary standard at the NRSL. (authors)

  14. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    CERN Document Server

    Poujade, O; Poujade, Olivier; Lebrun, Alain

    1999-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-voltage characteristics (sensitivity and saturation plateau) of a fission chamber whose geometrical features are given, taking into account the neutron flux to be measured (spectrum and intensity). The proposed theoretical model describes electric field distortion resulting from charge collection effect. A computer code has been developed on this model basis. Its application to 3 kinds of fission chambers indicates excellent agreement between theoretical model and measured characteristics.

  15. Gridded ionization chamber for detection of x-ray wave activity in tokamak plasmas

    International Nuclear Information System (INIS)

    In order to carry out x-ray observations of magnetohydrodynamic wave activity of the plasma during DD and DT (deuterium-beam-heated deuterium and tritium plasmas, respectively) operation of the Tokamak Fusion Test Reactor (TFTR), we will need detectors not susceptible to nuclear radiation damage. We have investigated the use of gridded ionization chambers as fast nondamageable x-ray detectors. A prototype chamber is described which was tested on the PDX tokamak. These tests and laboratory tests with a pulsed x-ray source suggest that the detector has sufficient sensitivity and speed for the required measurements

  16. Gridded ionization chamber for detecion of x-ray wave activity in tokamak plasmas

    International Nuclear Information System (INIS)

    In order to carry out X-ray observations of magnetohydrodynamic wave activity of the plasma during DD and DT (deuterium-beam-heated deuterium and tritium plasmas, respectively) operation of the Tokamak Fusion Test Reactor (TFTR), we will need detectors not susceptible to nuclear radiation damage. We have investigated the use of gridded ionization chambers as fast nondamageable X-ray detectors. A prototype chamber is described, which was tested on the PDX tokamak. These tests and laboratory tests with a pulsed X-ray source suggest that the detector has sufficient sensitivity and speed for the required measurements

  17. Set-up on the basis of multiwire proportional and ionization chambers for radioactive beam experiments

    International Nuclear Information System (INIS)

    A large-aperture set-up designed for nuclear physics experiments on beams of radioactive nuclei is described. The set-up includes Multiwire Proportional Chamber (MWPC) for measuring the beam profile, MWPC for measuring reaction product angular distributions, a CsI (Tl)-crystal detector and a longitudinal drift ionization chamber for identifying scattered particles and measuring their energy. The results of tests of coordinate MWPCs, particle identification on photon and ion beams, and preliminary measurements of the elastic scattering and the charge exchange reaction of 170 MeV 6He on a CH2 target are presented

  18. Design, construction and tests of well type ionization chamber for beta and gamma radiation detection

    International Nuclear Information System (INIS)

    This paper describes the design, construction and tests of well type ionization chamber, with parallel plate electrodes, which is used in the measurements of radiopharmacous activities, by means of beta and/or gamma radiations detection. Its response was studied utilizing Tc-99, I-131, Co-60, Am-241 and Sr-90 sources. The results obtained show that, due to to the very low leakage current from the chamber and the linearity of response, its possible to measure activities in the range from 20KBq up to 10GBq, whith a precision better than 1%. (author)

  19. Insertion effects of the aluminium on the sensitive volume of a parallel plates ionization chamber

    International Nuclear Information System (INIS)

    In this work one searched to analyze the influence of the materials of the walls of a chamber of ionization in its energy dependence and capacity in collecting electrons. For in such a way it varied constitution of the walls of the chamber, with different ratios in area, of polycarbonate and aluminum, respectively with thickness of 0.25 and 0.01 mm. The energy dependence, in the band of energy used in radiodiagnostic, can be reduced of 10 for 5% when an aluminum leaf is added with 8 cm 2 of area, on a window of polycarbonate with 24 cm2 of area. (author)

  20. A study of the response of ionization chambers to mammography beams

    International Nuclear Information System (INIS)

    Some simulated mammography radiation beams have been established at the BIPM using a low-energy x-ray tube with a tungsten anode and molybdenum as a filter. The response of two ionization chambers of different types to these beams is compared with that obtained in mammography beams at the PTB and the NMi which were produced with x-ray tubes with molybdenum anodes and molybdenum filters. The relative differences between the chamber responses to these two different types of beams were less than 7 x 10-3 which implies the uncertainty for the transfer of a calibration from one type of beam to the other. (authors)

  1. PTRAC file utilization for calculation of free-air ionization chamber correction factors by MCNPX

    International Nuclear Information System (INIS)

    A free-air ionization chamber is used as a standard of photon air-kerma. Several correction factors are applied to the air-kerma value. Correction factors for electron loss: k(loss) and for additional ionization current caused by photon scatter: k(sc), photon fluorescence: k(fl), photon transmission through diaphragm edge k(dtr), and photon scatter from the surface of the diaphragm aperture k(dsc) were determined by the MCNPX code utilizing information stored in Particle Track (PTRAC) output files. Individual steps of the procedure are described and the calculated values of the correction factors are presented. The values are in agreement with the correction factors published in the literature for similar free-air chambers and low-energy photons. (authors)

  2. Calibration methods of plane-parallel ionization chambers used in electron dosimetry

    International Nuclear Information System (INIS)

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of 60 Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  3. Application of LabVIEW on Ionization Chamber to Measurement Radiation

    International Nuclear Information System (INIS)

    The purpose of this research was to apply LabVIEW program to control an ionization chamber. LabVIEW was used to compose a block diagram and front panel. The block diagram was programmed to be controlled by the front panel. Radiation dose of Cs -137 at 1.00, 1.50, 2.00, 2.50, 3.00 and 4.00 meter were compared from LabViEW and manual system. The results show that the different percentages of Pb filter of thickness 0, 20 and 39 mm are 0.68, 0.68 and 0.48, respectively. This experiment results indicated that the LabVIEW can be used in assisting radiation measurement. Furthermore, by controlling the ionization chamber by LabVIEW, the radiation dose received by operator is reduced.

  4. Simulations of ^12C Break Up In A Twin Ionization Chamber

    Science.gov (United States)

    Segal, C. B.; Patel, N. R.; Greife, U.; Rehm, K. E.; Deibel, C. M.; Greene, J.; Henderson, D.; Jiang, C. L.; Kay, B. P.; Lee, H. Y.; Pardo, R.; Notani, M.; Marley, S. T.; Tang, X. D.

    2008-10-01

    In stellar explosions the triple α decay process is key to forming the life-giving ^12C . This experiment is to further investigate the energy region in ^12C around 10 MeV where a theoretically predicted 2^+ state has yet to be observed. The motivation for studying this is to better understand the ^12C nucleosynthesis process that occurs in red giant stars where the short lived ^8Be interacts with alphas at extreme temperature and pressure scenarios which then in turn creates ^12C. We study the particle-unbound states by implanting ^12B into a twin Frisch grid ionization chamber and following the decay into ^12C and subsequently into three α particles. The response of this ionization chamber to the detection of multiple α particles was studied using various simulation programs. Results of these simulations and limits for the predicted 2^+ state will be presented.

  5. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    Science.gov (United States)

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  6. Development of a 300 cm2 parallel plate α grid ionization chamber

    International Nuclear Information System (INIS)

    The structure and characteristics of a parallel plate α grid ionization chamber with a cathode area of 300cm2 are presented in this paper. The counting gas mixture of the ionization chamber is P-10 gas (90%Ar + 10%CH4) with a pressure of 1.8 x 105 Pa. It can ensure long time (48h) stable work when the gas flow rate is more than 25 mL/min. Its main specifications are: energy resolution is 36 keV for Φ239Pu electrodeposition sources; background count rate 12.6 counts/h in the range of 4 to 6 MeV; minimal detectable limit 2 x 10-4Bq (3σ,27h); detection efficiency 44% for 232Th source with a diameter of 190 mm

  7. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    International Nuclear Information System (INIS)

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper

  8. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Müller, O., E-mail: o.mueller@uni-wuppertal.de; Lützenkirchen-Hecht, D.; Frahm, R. [Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal 42119 (Germany)

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  9. Characterization of Tandem systems of commercial ionization chambers for radiation dosimetry (radiotherapy level)

    CERN Document Server

    Galhardo, E P

    1998-01-01

    The use of X rays for radiotherapy purposes is of great importance for Medicine, and it is necessary to control periodically the performance of the ionization chambers and the radiation beams in order to obtain the best results. The verification of the beam characteristics is made by using standard dosimetry procedures which include the determination of the half-value layers and the exposure rates or the absorbed dose rates in air. Several Tandem systems were set up and tested, using commercial ionization chambers in the energy interval from 14 up to 130 KeV at the Instrumentation Calibration Laboratory of IPEN and at other three institutions, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The obtained results show the usefulness of these Tandem system for the routine dosimetric procedures of radiotherapy X radiation beams.

  10. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  11. Evaluation of a transfer system for calibration of kVp meters and ionization chambers

    International Nuclear Information System (INIS)

    The assessment and control of the performance characteristics of X-ray generators and tubes is an essential part of a quality assurance programme, because the use of the X-rays in medicine for diagnosis of injuries and diseases represents the largest man-made source of public exposure to ionizing radiation. Others authors have suggested methods to determine the correct X-ray tube voltage to complete the characterization of standard radiation qualities. A method by spectrometry to calibrate ionization chambers and kVp meters used for quality control tests in diagnostic radiology has been applied at the Calibration Laboratory at IPEN. A transfer system for diagnostic radiology calibration was developed at IPEN as an alternative to calibrate those instruments that measure kVp and air kerma values. It consists of a pair of identical ionization chambers in form, but differing only by the electrode material: one is made of aluminum, and the other is made of graphite. It was calibrated using a spectrometer and a standard ionization chamber traceable to the German Primary Laboratory (Physikalisch-Technische Bundesanstalt - PTB). In this study the behaviour of the transfer system was analysed in the standard beams of two X-ray equipment of the Calibration Laboratory. The low energy X-ray generating system consists of a Rigaku Denki generator, model Geigerflex, coupled to a Philips tube model PW/2184/00 (Tungsten target and Beryllium window). Measurements were taken from 30 to 50 kV. The diagnostic radiology X-ray generating system consists of a Medicor Moevek Roentgengyara X-ray generator, model Neo-Diagnomax (125 kV). Measurements were taken from 50 to 90 kV. The established qualities are listed. As reference to the air kerma rate determination, a 1.0 cm3 parallel plate ionization chamber, Physikalisch-Technische Werkstaetten (PTW), model 77334, traceable to PTB, Germany, was utilized in this work. The transfer system was placed in the X-ray beams, using a Lucite holder is

  12. Calculation of the energy dependent efficiency of gridded 3He fast neutron ionization chambers

    International Nuclear Information System (INIS)

    The relative efficiency function for total energy events in a 3He fast neutron ionization chamber has been calculated with a Monte Carlo approach. It is shown that the efficiency function applicable to a point isotropic source located near the surface of the spectrometer differs significantly from that obtained in standard calibration procedures using neutrons from the 7Li(p,n)7Be reaction for Esub(n) > 1.5 MeV. (orig.)

  13. A cylindrical xenon ionization chamber detector for high resolution, room temperature gamma radiation spectroscopy

    International Nuclear Information System (INIS)

    A 0.75 l gridded cylindrical ionization chamber gamma radiation detector using highly purified xenon near the critical point as the detection medium is described. The detector operates at room temperature with a noise subtracted intrinsic energy resolution of 1.8% at 662 keV. The detector design and performance variables are discussed in comparison to previous planar and cylindrical xenon detectors. (orig.)

  14. High efficiency charged-particle spectrometer using gridded ionization chamber for fast-neutron induced reactions

    International Nuclear Information System (INIS)

    A high efficiency charged particle spectrometer for fast neutron induced reactions has been developed using a gridded-ionization chamber taking advantage of its large solid angle and capability of energy-angle determination. It is characterized by high stopping-power and low background to be applicable for alpha-particles emitted by 15 MeV neutrons and protons for MeV incident neutrons. The spectrometer has been applied successfully for (n, alpha) and (n, p) reactions. (orig.)

  15. Measurement of atom numbers of compound α source by using a gridded ionization chamber

    International Nuclear Information System (INIS)

    Atom numbers of the isotopes of a compound α source are measured by using a gridded ionization chamber (GIC). Make full use of the characteristics of the GIC, the self-absorption and scattering effects are corrected, and the precise results are derived. The study establishes the basis of the further experiment of the light nuclei (n, α) reaction. The method can also be used in measuring the weak α source. (authors)

  16. Application of the Shockley-Ramo theorem on the grid inefficiency of Frisch grid ionization chambers

    Science.gov (United States)

    Göök, A.; Hambsch, F.-J.; Oberstedt, A.; Oberstedt, S.

    2012-02-01

    The concept of grid inefficiency in Frisch grid ionization chambers and its influence on the anode pulse shape is explained in terms of the Shockley-Ramo theorem for induced charges. The grid inefficiency correction is deduced from numerically calculated weighting potentials. A method to determine the correction factor experimentally is also presented. Experimental and calculated values of the correction factor are shown to be in good agreement.

  17. A high dynamic Micro Strips Ionization Chamber featuring Embedded Multi DSP Processing

    OpenAIRE

    Voltolina, Francesco; Menk, Ralf H.; Carrato, Sergio

    2010-01-01

    An X-ray detector will be presented that is the combination of a segmented ionization chamber featuring one-dimensional spatial resolution integrated with an intelligent ADC front-end, multi DSP processing and embedded PC platform. This detector is optimized to fan beam geometry with an active area of 192 mm (horizontal) and a vertical acceptance of 6 mm. Spatial resolution is obtained by subdividing the anode into readout strips, having pitch of 150 micrometers, which are connected to 20 cus...

  18. Fabrication process of ionization chamber multidetector and multidetector got by this process

    International Nuclear Information System (INIS)

    The multidetector ionization chamber walls are fixed one related to the others and carried together with a tool above a resin bath to polymerize. After resin hardening, the detector includes resin basis. To contain the resin bath, the realization of a mould cut in a massive resin block are been provided for. This allows for its manutention all along the process without any deterioration risk

  19. Application of the Shockley-Ramo theorem on the grid inefficiency of Frisch grid ionization chambers

    International Nuclear Information System (INIS)

    The concept of grid inefficiency in Frisch grid ionization chambers and its influence on the anode pulse shape is explained in terms of the Shockley-Ramo theorem for induced charges. The grid inefficiency correction is deduced from numerically calculated weighting potentials. A method to determine the correction factor experimentally is also presented. Experimental and calculated values of the correction factor are shown to be in good agreement.

  20. Determination of correction factor ksat for recombination losses in ionization chambers using dual-voltage method

    International Nuclear Information System (INIS)

    A review is presented of determining the saturation correction factor ksat of ionization chambers using a dual-voltage method. Basic relations are listed for the calculation of the correction factor for continuous, pulsed, and pulsed swept radiation, and the methods are presented of solving the relations. The computer code, graphs and tables are listed for determination of the saturation factor on the basis of measurements. The feasibility of the method for practical measurements is discussed. (author). 3 figs., 2 tabs., 10 refs

  1. A study of the response of a gas ionization chamber to different sources of ionizing radiation

    International Nuclear Information System (INIS)

    The response of the TAMU Forward Hadron Calorimeter Chambers to neutrons from a 239Pu-Be source was investigated in hope of developing a strategy to reduce the effects of the background events called /open quotes/Texas towers/close quotes/ in the CDF trigger for the next run. The response to a standard (55Fe γ-ray) energy source was also studied and found to be similar to that of the chambers installed at CDF. In addition, the effects of different sampling gases and intermediate absorbers on the rate of large energy pulses were investigated. The neutron data were compared with the energy spectrum measured in CDF and that simulated using Monte Carlo techniques. It was found that the large energy pulse frequency can be reduced by as much as 50% if a non-hydrogenous sampling gas is used in conjunction with a neutron moderator

  2. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    International Nuclear Information System (INIS)

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm2 measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor kNR for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1% over the

  3. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    Energy Technology Data Exchange (ETDEWEB)

    Stelljes, T. S., E-mail: tenzin.s.stelljes@uni-oldenburg.de; Looe, H. K.; Chofor, N.; Poppe, B. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129 (Germany); Harmeyer, A.; Reuter, J. [WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129 (Germany); Harder, D. [Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen 37073 (Germany)

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  4. Operating characteristics of a double ionization chamber and on-line tritium production rate measurement in a fusion blanket

    International Nuclear Information System (INIS)

    A double ionization chamber supporting a layer of 6LiF on a central cathod, is fabricated for on-line measurement of the tritium production in fusion blankets. The charged particles accompanying the 6Li(n,α)t reaction are detected by two separate tiny parallel plate ionization chambers held on either side of the common central cathod. The operating characteristics, tritium production measured with a double ionization chamber and comparison with the results obtained by LSM are presented in this paper. (author)

  5. Rapid measurement of 210Po in seafood with large area grid ionization chamber α spectrometry

    Institute of Scientific and Technical Information of China (English)

    Li Yucheng; Yin Liangliang; Chen Fei; Shao Xianzhang; Shen Baoming; Kong Xiangyin; Ji Yanqin

    2015-01-01

    Objective To develop a rapid and reliable method for determination of 210Po using large-area grid ionization chamber α spectrometry.Methods Samples were digested using a microwave digestion system.After preparation of sample source,the concentration of 210Po in clam was detected by large-area grid ionization chamber (φ 25 cm).209Po tracer was used to obtain the recovery.Results Large-area grid ionization chamber could achieve better counting and α spectrum resolution when the optimized thickness was 250 μg/cm2.By spiking 209Po tracer in clam,the minimum detectable activity was 9.870 × 10 4 Bq and the recovery of 210Po was 98%.Conclusions Compared with the traditional method,the developed method can avoid separation process,using less quantity of sample (0.2-0.5 g dry) and simplify the measurement process.This method may be has broad application prospects.

  6. Development and characterization of a new graphite ionization chamber for dosimetry of 60Co beams

    International Nuclear Information System (INIS)

    Ionization chambers are the most employed dosimeters for precise measurements, as those required in radiotherapy. In this work, a new graphite ionization chamber was developed and characterized in order to compose a primary standard system for the beam dosimetry of the 60Co sources. This dosimeter is a cylindrical type ionization chamber, with walls and collecting electrode made of high-purity graphite, and the insulators and stem made of Teflon®. The walls are 3.0 mm thick, and it has a sensitive volume of 1.40 cm3. The characterization was divided in two steps: experimental and Monte Carlo evaluations. This new dosimeter was evaluated in relation to its saturation curve, ion collection efficiency, polarity effect, short- and medium-term stabilities, leakage current, stabilization time, linearity of response and angular dependence. All results presented values within the established limits. The second part of the characterization process involved the determination of the correction factors, obtained by Monte Carlo simulations. Comparing these correction factors values with those from other primary standard laboratories, the highest differences were those for the wall and stem correction factors. The air-kerma rate of the 60Co source was determined with this new dosimeter and with the IPEN standard system, presenting a difference of 1.7%. These results indicate that this new dosimeter may be used as a primary standard system for 60Co gamma beams. (author)

  7. Development of high temperature fission counter-chamber(FC)S for a top entry loop type fast breeder reactor

    International Nuclear Information System (INIS)

    Prototype high temperature fission counter-chambers have been made as neutron detectors for installation in the reactor vessel of the 600MWe-class top entry loop type fast breeder reactor. Using these prototypes as samples, a high-temperature endurance test has been conducted. The validity of the prototypes has been established by the test results, which show that the prototypes nearly satisfy the design performance. (author)

  8. Alpha spectrometric ionization chamber with 2 m2 working area and its application

    International Nuclear Information System (INIS)

    A grid ionization chamber with cylindrical configuration was constructed for the measurement of the alpha spectra of very low level samples, which makes possible the measurement of radiation sources with an area of up to 2 m2. The chamber has a volume of 400 l and is filled with technical argon with 5% addition of methane. Energy resolution of the detection system is 85 keV at 5.5 MeV, detection efficiency is 37% and the background at a range of 200 keV at 5.5 MeV is 10 cph. The detection limit is 1 mBq. The chamber may be used for measuring half-life of alpha-emitting rare earths, for dating sediments using the 210Pb-210Po method and geological samples using the U-Th method, for determining the composition and concentration of natural and technogenic alpha sources in natural samples. (J.P.)

  9. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Science.gov (United States)

    Elter, Zs.; Jammes, C.; Pázsit, I.; Pál, L.; Filliatre, P.

    2015-02-01

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  10. Development of a High Sensitive Fission Chamber%一种高灵敏度裂变室的研制

    Institute of Scientific and Technical Information of China (English)

    杨波

    2012-01-01

    It describes the development of a high - sensitivity fission chamber of its design, manufacturing processes and performance. The fission chamber sensitive district wide, high thermal neutron sensitivity, the a-bility of anti - γ. Detector can be used as reactor heap outside the neutron fluence rate measurement, the power monitoring signal can be given in the startup of the reactor and different power operation. The fission chamber through the test of LOCA conditions, can be used for accident monitoring.%介绍了一种高灵敏度裂变室的研制,探讨了其设计方案、制造工艺和性能.这种裂变室灵敏区较宽、热中子灵敏度较高、抗γ能力较强,可作为核反应堆堆外中子注量率测量探测器,可在反应堆启动和不同功率运行时给出功率监测的信号.该裂变室通过了LOCA工况试验测试,可用于事故后监测.

  11. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    International Nuclear Information System (INIS)

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions

  12. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Energy Technology Data Exchange (ETDEWEB)

    Elter, Zs. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Jammes, C., E-mail: christian.jammes@cea.fr [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pázsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49 (Hungary); Filliatre, P. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-02-21

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  13. Theoretical study of Jesse effect in tritium measurements using ionization chambers

    Science.gov (United States)

    Chen, Zhilin; Peng, Shuming; Lu, Hanghang; Tan, Zhaoyi; Wang, Heyi; Long, Xingui; Masao, Matsuyama

    2016-01-01

    Jesse effect caused by impurities in helium might enhance the output signal significantly in tritium measurements with ionization chamber, which will lead to overestimation of tritium concentration in experiments. A theoretical method was proposed to evaluate Jesse effect quantitatively. Results indicate that besides Penning ionization, sub-excitation electrons also place very important influence on ionization enhancement by Jesse effect. An experiential expression about the relationship between enhancement factor and impurity concentration was established, in which second order of it fits experimental results very well. Theoretical calculation method in this paper is also applicable to evaluate Jesse effect in other kinds of mixtures besides hydrogen as impurities in helium. In addition, Jesse effects about tritium molecules as impurities have also been investigated.

  14. A numerical model of initial recombination for high-LET irradiation: Application to liquid-filled ionization chambers

    Science.gov (United States)

    Aguiar, P.; Pardo-Montero, J.

    2016-02-01

    In this paper we present a numerical model of initial recombination in media irradiated with high linear energy transfer (LET) ions, which relies on an amorphous track model of ionization of high LET particles, and diffusion, drift and recombination of ionized charge carriers. The model has fundamental applications for the study of recombination in non-polar liquids, as well as practical ones, like in modelling hadrontherapy dosimetry with ionization chambers. We have used it to study the response of liquid-filled ionization chambers to hadrontherapy beams: dependence of initial recombination on ion species, energy and applied external electric field.

  15. Establishment of a new calibration method of pencil ionization chamber for dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Pencil ionization chambers are used for beam dosimetry in computed tomography equipment (CT). In this study, a new calibration methodology was established, in order to make the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (LCI) suitable to international metrological standards, dealing with specific procedures for calibration of these chambers used in CT. Firstly, the setup for the new RQT radiation qualities was mounted, in agreement with IEC61267 from the International Electrotechnical Commission (IEC). After the establishment of these radiation qualities, a specific calibration methodology for pencil ionization chambers was set, according to Technical Report Series No. 457, from the International Atomic Energy Agency (IAEA), which describes particularities of the procedure to be followed by the Secondary Standard Dosimetry Laboratories (SSDL's), concerning to collimation and positioning related to the radiation beam. Initially, PPV (kV) measurements and the determination of copper additional filtrations were carried out, measuring the half value layers (HVL) recommended by the IEC 61267 standard, after that the RQT 8, RQT 9 and RQT 10 radiation quality references were established. For additional filters, aluminum and copper of high purity (around 99.9%) were used. RQT's in thickness of copper filters equivalent to the set 'RQR (Al) + Additional Filtration (Cu)' was directly found by an alternative methodology used to determine additional filtrations, which is a good option when RQR's have not the possibility of be setting up. With the establishment of this new methodology for the ionization pencil chambers calibration, the LCI is ready to calibrate these instruments according to the most recent international standards. Therefore, an improvement in calibration traceability, as well as in metrological services offered by IPEN to all Brazil is achieved. (author)

  16. Ionization chamber intended to use in a system of a valuation of patient exposition on ionizing radiation during X-ray diagnostic examinations

    International Nuclear Information System (INIS)

    The construction of the air ionization chamber intended to use in a system of a valuation of patient exposition on ionizing radiation during X-ray diagnostic examinations is described. A collaboration system with X-ray limiter is discussed and a measuring method is presented. The results of testing a model of the chamber obtained in conditions of its collaboration with the X-ray limiter and X-ray generator are presented and discussed. An analysis of the experimental results is made. In a recapitulation the different possibilities of a wide application of the chamber are presented. (author)

  17. Micro Plate Fission Chamber Development%小型平板铀裂变电离室研制

    Institute of Scientific and Technical Information of China (English)

    王玫; 温中伟; 林菊芳; 蒋励; 刘荣; 王大伦; 朱通华

    2014-01-01

    为了测量特定实验条件下狭小空间内中子注量率分布,研制了小型平板浓缩铀裂变电离室,该裂变室具有体积小、结构材料少等优点。论文叙述了裂变电离室的结构和制作工艺,通过测量自发衰变α粒子谱、裂变碎片谱对裂变电离室的性能进行了测试和评定,并标定了裂变电离室测量裂变碎片的探测效率。从指标上看,裂变电离室能达到设计要求和目的,可用于中子注量率的测量。%To accurately measure neutron flux at several positions of small space inside assemblies in integral neutron experiments ,a micro plate fission chamber was designed and fabricated .Smaller volume and less struc-ture material were taken into consideration in the development of the detector .In this paper , the structure of fission chamber and process of fabrication were introduced and performance were tested and evaluated by meas -uring alpha spectrum from self -decay and fission spectrum .The detection efficiency of the detector was cali-brated and it is 91 .7%.The performance test results indicate that , the fission chamber has achieved the aimed parameter and goal , can be used in measurement of neutron flux .

  18. Monte Carlo simulation for correction of cavity ionization chamber wall effects

    International Nuclear Information System (INIS)

    The 2 graphite cylindrical ionization chambers are used at AIST to measure absolute air-kerma in 60Co and 137Cs gamma ray fields. They differ in size: one having an ionization volume 40 mm in diameter and 50 mm long and the other 20 mm in diameter and 19.3 mm long. They are placed at 45 degrees angle from the direction of gamma ray beams so that gamma ray attenuation does not increase at the end or side walls. Correction factors for wall induced attenuation and scatter were determined by measuring the variation in chamber response as a function of wall thickness in the full build-up region, extrapolating to infer the response at zero wall thickness, and applying a correction factor to account for the center of electron production. These values are not logically valid, however, so we plan to use correction factors obtained by Monte Carlo calculation for primary standards of air kerma for 60Co and 137Cs gamma rays. In January 2001, we brought our ionization chambers to BIPM and measured air kerma in 60Co and 137Cs gamma ray fields for key comparisons, obtaining values for chamber wall correction factors by both measurement and Monte Carlo calculation. Correction factor kwall, corresponding to kat x ksc x kCEP, for points 1 m from gamma ray sources are shown. knu obtained by Monte Carlo calculation is also shown. Experimental values are noted as 1 because the nonuniformity effect has been neglected at AIST before. Table 3 shows kwall x knu. Differences between values obtained by Monte Carlo and experiments are small for both 60Co and 137Cs gamma rays and also for both ionization chambers. We reported to BIPM the values of air-kerma rate on August 22. BIPM replied that, for the first interpretation, our result was 1.0056 for the key comparison of air kerma in 60Co gamma rays with standard uncertainty of the comparison of 0.0023. After sending the previous report, we recalculated correction factors for wall effect and non-uniformity. Differences between new and previous

  19. Test of a dual-type gridded ionization chamber using liquid xenon

    International Nuclear Information System (INIS)

    A liquid xenon dual-type gridded ionization chamber designed as a gamma-ray spectrometer was constructed and some tests for gamma-rays were made by using highly purified xenon gas. The energy resolution of 8.6% at fwhm was obtained for collimated gamma-rays of 662 keV. The resolutions at fwhm for non-collimated gamma-rays were (9.6 +- 0.4)% at 662 keV, (6.5 +- 0.3)% at 1332 keV and (4.5 +- 0.3)% at 2614 keV. These results show that, for gamma-ray energies above 1600 keV, the energy resolution for the liquid xenon ionization chamber is better than that for a conventionally available 1 3/4'' diameter x 2'' NaI(Tl) crystal. This characteristic of the chamber was kept nearly constant for more than 24 h. The resolution obtained experimentally were compared with the theoretical values and the causes of the differences between them are discussed. (orig.)

  20. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    Science.gov (United States)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  1. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  2. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  3. Adjustment of high-pressure twin gridded ionization chamber and preliminary measurement of 58Ni(n,p) reaction

    International Nuclear Information System (INIS)

    A high-pressure twin gridded ionization chamber is introduced. After some adjustments, the chamber was used to measure the 58Ni(n,p) reaction. The results show that the current system and method are suitable for the research of (n,p) reactions

  4. Clinical applications of a high speed matrix ionization chamber portal imaging system

    International Nuclear Information System (INIS)

    A main disadvantage of the present matrix ionization chamber system for electronic portal imaging is its relatively slow image acquisition of 6 s at full resolution. We have solved this problem by modifying the read-out electronics in two ways: First, faster high voltage switches are applied which work with a higher voltage; Second, faster read-out amplifiers are applied which have reduced cross-talk. With these improvements circuit noise is no longer dominant at typical radiotherapy dose rates. Because the quantum noise level in the matrix ionization chamber system is purely determined by signal integration in the liquid medium, the image scan can now be reduced to as short as 0.55 s with little loss of image quality. However, there is some loss of resolution at readout speed faster than 1.5 s due to speed limitations of the read-out amplifiers. One of the applications of the new device is double exposures for larynx fields. At a reduced dose rate of 125 MU/min, only about 5 MUs are required for a single frame on a 4 MV ABB Dynaray accelerator. Other applications which benefit from the reduced image scan time are time lapse movies. Typically 15 frames per field are made during one fraction. The movies offer both information on patient motion and improved image quality by averaging the frames. Finally, on-line analysis of the images can be performed more easily and has been included in the software package. In can be concluded that the higher speed of the new matrix ionization chamber system is an important improvement for several clinical applications

  5. A multiplication ionization chamber survey meter for low level X and gamma ray monitoring

    International Nuclear Information System (INIS)

    A survey meter utilizing a sealed 35 cm3 polythene-walled multiplication ionization chamber with air at atmospheric pressure is described. The electronic measuring system comprises a high stability EHT supply (3.3 kV) a micropower MOSFET-input operational amplifier and a battery voltage regulator. Three ranges of tissue dose rates, 0.20 μGy. hr-1, 0-200 μGy. hr-1, and 0-2 mGy. hr-1 are provided with a facility to measure dose rates up to 2 Gy. hr-1, by operating in the usual ion chamber mode. This instrument is not affected by environmental conditions and operates on flashlight cells. Further extensions of the survey meter using other gases to monitor mixed fields are also outlined. (author)

  6. Development of gamma compensated boron lined ionization chamber with intermediate range monitor for reactor applications

    International Nuclear Information System (INIS)

    Gamma compensated boron lined ionization chamber with indigenously developed 40.5% enriched boron-10 and polyetheretherketone insulating spacers has been developed. The detector has an overall diameter of 85 mm and overall length of 315 mm. Tests on the chamber with intermediate range monitor have been conducted in both gamma and neutron fields. The detector has good saturation characteristics, adequate neutron sensitivity and required gamma compensation. The linearity of response of the detector at various reactor power levels was also found to be within the required limits. The Log P signal output variation due to change in amplifier temperature of IRM, was found to be within limits for temperature variations from 25℃ to 30.13℃ thus indicating stable output against changes in temperature of IRM amplifier at steady reactor power operation. (author)

  7. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  8. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier

  9. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Science.gov (United States)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  10. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    Science.gov (United States)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  11. A method to measure the activity of sealed gamma sources by means of ionization chambers

    International Nuclear Information System (INIS)

    The paper contains a recommendation concerning the propagation of the activity unit for sealed gamma sources from the normals of the national metrological authorities of the USSR (VNIM) and the GDR (ASMW) to normals of lower order. Propagation of the activity unit is provided by comparative measurements with ionization chambers. The recommendation implies cases in which the source contains impurities as well as cases in which the design of the sources to be compared is different. Furthermore, the recommendation includes the method of error evaluation. (author)

  12. Attachment of membrane separator for removal of radon to ionization chamber installed for tritium stack monitor

    International Nuclear Information System (INIS)

    The effect of background counts induced by α-particles mainly from Rn in air was removed by the attachment of a water-permselective membrane separator to a tritium stack monitor equipped previously. Water vapor, after permeating the membrane selectively, was carried by N2 gas into an ionization chamber where the activity of tritium was measured. The consumption of N2 gas for carrier was reduced by recycling the gas through dehumidification processes; (1) condensation by pressure, (2) condensation by refrigeration and (3) adsorption (by adsorbents), so that there is no added daily work arising from the attachment for maintenance of the tritium monitor. (author)

  13. Application of patent BR102013018500-0 in well type ionization chambers

    International Nuclear Information System (INIS)

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeter helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U = 0.2276 and 0.2677 % (k = 2) 95.45%. (author)

  14. Measurement of neutron-induced charged-particle-emission reaction cross section using gridded ionization chamber

    International Nuclear Information System (INIS)

    A gridded ionization chamber (GIC) having large geometrical efficiency, ∼2π, has been developed for measurements of neutron-induced charged-particle emission cross sections. Test experiments proved the proper operation of GIC with complete charge collection even if the gas pressure was over 10 atm.. GIC was applied successfully to proton and α emission cross section measurements for nickel at the several MeV and 15 MeV incident neutron energies with the results in good agreement with the previous data and evaluations. The construction of GIC and the experimental technique are presented in this paper. (author)

  15. (n,α) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    International Nuclear Information System (INIS)

    We are developing a method of (n,α) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the 12C(n,α0)9Be measurement. We applied this method to the 16O(n,α)13C cross section around 14.1 MeV. (author)

  16. (n, α) Cross-section measurement using a gaseous sample and a gridded ionization chamber

    International Nuclear Information System (INIS)

    We developed a method of (n, α) cross-section measurement using a gaseous sample in a gridded ionization chamber (GIC). This method enables us to measure the cross section of gaseous samples, such as C, O and N, with very large solid angle close to 4π without distortion due to energy loss in the sample. The detection efficiency, which is difficult to estimate for gaseous samples, was estimated by using GIC signals and tight neutron collimation. This method was verified through the 12C(n, α0)9Be cross-section measurement for 14.1 MeV neutrons

  17. Electrode-emission effects on the saturation current in free-air ionization chamber

    International Nuclear Information System (INIS)

    The saturation current Isub(s) in a free-air parallel grid-plate ionization chamber is found to differ for positive and negative ion-collection at the plate. The difference deltaIsub(s)=(Isub(s)+-Isub(s)-) is sensitive to the metallic nature of the collector and is explained by the electron-emission due to the impact of positive ions on the electrode's metal surface. These results can be of practical interest in radiation exposure measurements and the study of electrode emission effects from the metal surfaces. (Auth.)

  18. (n, α) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    International Nuclear Information System (INIS)

    We have developed a measuring method of (n, α) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the 12C(n, α0) and the 16O(n, α0), (n, α123) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the 12C(n, xα) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the 12C(n, n'3α). (author)

  19. Laboratory of routine alpha-spectrometry based on gridded ionization chambers

    International Nuclear Information System (INIS)

    A laboratory of routine alpha spectrometry based on gridded ionization chambers (80 cm2, 500 cm2 and 20,000 cm2 of source area) was built for direct measurement of samples with low specific activity. They allow direct spectrometry of as low as 6.7 mBq.g-1, 2.5 mBq.g-1, and 0.18 mBq.g-1, respectively. Simple quantitative physical methods of large-area source preparation are described. The system was used to measure the concentration of alpha emitters in environmental samples. (author). 3 figs., 1 tab., 7 refs

  20. Circuitry for monitoring a high direct current voltage supply for an ionization chamber

    International Nuclear Information System (INIS)

    An arrangement to measure the voltage of the supply and a switching means controlled by this is described. The voltage measurer consists of first and second signal coupling means, the input of the second (connected to the voltage supply) is connected in series with the output of the first. An ionization chamber with this circuitry may be used to monitor the radiation output of a particle accelerator more accurately. Faulty measurements of the dose output, caused by voltages in the earth circuit, are avoided. (U.K.)

  1. Study and application of dual parameter spectrometer based on a gridded ionization chamber

    International Nuclear Information System (INIS)

    A dual parameter spectrometer is developed with which the anode and cathode signals of the gridded ionization chamber are recorded simultaneously, a computer program is designed to collect, display and store the two dimensional spectra. Alpha sources are measured with the spectrometer and the angle distribution of alpha particles are calculated. It is discussed how to correct the effects of back scattering and self absorption in the measurement of activity with the angle distribution and it is pointed out that the resolution of the energy spectra can be improved by using the angle distribution as well

  2. Study of 241 Am alpha spectra resolution using a ionization chamber with different grid types

    International Nuclear Information System (INIS)

    This paper describes some techniques used in the design of high resolution gridded ionization chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire were studied. The experimental spectra obtained with an 241 Am source using 90% Ar and 10% C H4 as a flow gas show a total resolution of 39 KeV in very good agreement with best results available in the literature. (author). 17 refs., 2 figs., 3 tabs

  3. Verification of traceability and backscattering in surface entrance air kerma measurements with detector type ionizing chamber

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.J.; Peixoto, J.G.P., E-mail: guilherm@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Measurements of doses in radiology services by ionizing chambers are easier than those made by TLD, however the protocols for measurements differ regarding the calibration. The objectives were to verify the traceability in the measures of ESAK corrected by the inverse square law, due to the difference in position between the source and IC and the influence of the backscattered radiation in bringing the detector to the table. Was defined a procedure practiced by the radiological services and designed experimental arrangements for the same technique. Was noted that the approximation of the detector to the table generated a significant backscattered. (author)

  4. Signal processing system for parallel plate ionization chamber at test beam of BEPC II

    International Nuclear Information System (INIS)

    A signal processing system has been designed in order to read out the electrode signals of 2D parallel plate ionization chamber at test beam facility of BEPC II. The system mainly includes that charge sensitive pre-amplifier, main-amplifier, analog to digital convertor and personal computer. Digital signals were recorded and displayed real time in histograms using data acquirement program based on Linux operating system. This signal processing system can be operated easily and has lower electronic noise and stable performance. (authors)

  5. New assembly of ionization chambers for the RBMK reactor control systems

    International Nuclear Information System (INIS)

    A new assembly consisting of ionization chambers (IC) and cables is developed for the RBMK reactor control systems (RCS). The assembly together with the channel of RCS ensures reliable power control in the range from 10-10 to 1.5 nominal power and measuring the neutron flux density in the reactor core height. The design of the assembly with IC is presented. Tests showed that the new IC assembly provides high sensitivity of measurements and RCS channel noise immunity in all range of reactor power variation

  6. Investigation of power distribution nonuniformity effect on readings of out-of-pile ionization chambers

    International Nuclear Information System (INIS)

    Taking as an example South-Ukrainian WWER-1000 type NPP the problems related to the possibility of obtaining integral characteristics of power distribution by readings of out of-pile ionization chambers (IC) are considered. The regression dependence of IC readings on axial offset (AO)-characteristic of peak- power distribution along the core length is investigated. This dependence proved to be linear. For power evaluation linear combination of IC readings is used. Simultaneously by the readings of two IC located at different core length the evaluation of AO values can be performed

  7. (n, {alpha}) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Yamazaki, Tetsuro; Sato, Jun; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    We have developed a measuring method of (n, {alpha}) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the {sup 12}C(n, {alpha}{sub 0}) and the {sup 16}O(n, {alpha}{sub 0}), (n, {alpha}{sub 123}) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the {sup 12}C(n, x{alpha}) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the {sup 12}C(n, n`3{alpha}). (author)

  8. Application of patent BR102013018500-0 in well type ionization chambers

    Science.gov (United States)

    Sousa, C. H. S.; Peixoto, J. G. P.

    2016-07-01

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeters helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U =2276 and 0.2677% (k = 2) 95.45%.

  9. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  10. Development and characterization of a graphite-walled ionization chamber as a reference dosimeter for 60Co beams

    International Nuclear Information System (INIS)

    A graphite-walled ionization chamber with a sensitive volume of 6.4 cm3 was developed at the Calibration Laboratory of IPEN (LCI) to determine the air kerma rate of a 60Co source. This new prototype was developed to be a simple chamber, without significant nongraphite components and with a simple set-up, which allows the determination of its various required correction factors by Monte Carlo simulations. This new ionization chamber was characterized according to the IEC 60731 standard, and all results were obtained within its limits. Furthermore, Monte Carlo simulations were undertaken to obtain the correction factors involved with the air kerma determination. The air kerma rate obtained with the graphite-walled ionization chamber was compared with that from the reference dosimeter at the LCI, a PTW ionization chamber (model TN30002). The results obtained showed good agreement within the statistical uncertainties. - Author-Highlights: • A graphite ionization chamber was assembled and characterized as a reference dosimeter. • The characterization test results were within recommended limits. • Monte Carlo simulations were undertaken to obtain the correction factors. • The air kerma rate of a 60Co source was obtained with satisfactory results

  11. A prototype of an ionization chamber for gamma radiation beams of 60Co: Experimental and Monte Carlo preliminary results

    International Nuclear Information System (INIS)

    Ionization chambers are the most widely used instruments for dosimetry in radiotherapy. With the aim to test new configurations and materials using low-cost and easily-available components, verify the possibility of its application in the gamma radiation field of 60Co and fulfill the need of a chamber for scientific metrological purposes, in this paper the prototype of a plane-parallel ionization chamber has been designed and built, and its performance has been studied at the SSDL of KARAJ. The front wall and back wall of the chamber were made of graphite and Plexiglas respectively, as opposed to the one type of material in commercially available chambers. The collecting electrode has a diameter of 20 mm. The sensitive volume is 0.63 cm3. It was found that the Leakage current, the short-term stability and the polarity effect were within the international recommendations. The results were compared with those of a reference cylindrical chamber. The maximum difference observed in this comparison was 1.1%. The relative uncertainty was below 0.2%. Moreover, Monte Carlo simulation was undertaken using MCNP4C code and the relative difference of 1.9% was observed compared to the experiment. As a result the chamber presented a satisfactory performance in all evaluated tests in Gamma radiation field of 60Co. -- Highlights: • The prototype of a plane-parallel Ionization Chamber was designed. • Its performance was studied in Gamma radiation field of 60Co. • The response of the chamber was measured and compared with that of the cylindrical ionization chamber. • The chamber was simulated using the MCNP4C Monte Carlo code. • The Leakage current, the short-term stability and the polarity effect were within the international recommendations

  12. Radiation induced currents in parallel plate ionization chambers: Measurement and Monte Carlo simulation for megavoltage photon and electron beams

    International Nuclear Information System (INIS)

    Polarity effects in ionization chambers are caused by a radiation induced current, also known as Compton current, which arises as a charge imbalance due to charge deposition in electrodes of ionization chambers. We used a phantom-embedded extrapolation chamber (PEEC) for measurements of Compton current in megavoltage photon and electron beams. Electron contamination of photon beams and photon contamination of electron beams have a negligible effect on the measured Compton current. To allow for a theoretical understanding of the Compton current produced in the PEEC effect we carried out Monte Carlo calculations with a modified user code, the COMPTON/EGSnrc. The Monte Carlo calculated COMPTON currents agree well with measured data for both photon and electron beams; the calculated polarity correction factors, on the other hand, do not agree with measurement results. The conclusions reached for the PEEC can be extended to parallel-plate ionization chambers in general

  13. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    OpenAIRE

    Poujade, Olivier; LEBRUN Alain

    2002-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-vol...

  14. Theoretical investigations of a double ionization chamber for on-line monitoring of tritium production in fusion blankets

    International Nuclear Information System (INIS)

    This paper reports that a double ionization chamber employing a thin coating of enriched 6LiF radiating material offers an effective means of identifying a 6Li(n, α)t reaction. The concept is based on the detection of ionization caused by alpha particles and tritons. The charged particles emitted in opposite directions can be detected by a double parallel plate ionization chamber configuration. This method can therefore be employed to directly measure tritium breeding rates inside the fusion blankets. Complete details of the parameters that govern the response of such a detector system are described. A Monte Carlo scheme is developed to determine the direction and energy lost by the particles in traversing various media, and the detector response is calculated from the energy deposited in the ionization region of each chamber. The calculations are performed for the entire energy range of neutrons available in the fusion blankets

  15. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

    International Nuclear Information System (INIS)

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, pQ, has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate pwall, pcav and pQ perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth zref and the depth where the dose has decreased to 50% of the maximum dose, R50. pwall was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at zref. For higher energy electron beams pwall decreased to a value of about 1%. Combined with a pcav about 1% below unity for all energies at zref, this was found to cause pQ to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber

  16. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse.

    Science.gov (United States)

    Laitano, R F; Guerra, A S; Pimpinella, M; Caporali, C; Petrucci, A

    2006-12-21

    The correction for charge recombination was determined for different plane-parallel ionization chambers exposed to clinical electron beams with low and high dose per pulse, respectively. The electron energy was nearly the same (about 7 and 9 MeV) for any of the beams used. Boag's two-voltage analysis (TVA) was used to determine the correction for ion losses, k(s), relevant to each chamber considered. The presence of free electrons in the air of the chamber cavity was accounted for in determining k(s) by TVA. The determination of k(s) was made on the basis of the models for ion recombination proposed in past years by Boag, Hochhäuser and Balk to account for the presence of free electrons. The absorbed dose measurements in both low-dose-per-pulse (less than 0.3 mGy per pulse) and high-dose-per-pulse (20-120 mGy per pulse range) electron beams were compared with ferrous sulphate chemical dosimetry, a method independent of the dose per pulse. The results of the comparison support the conclusion that one of the models is more adequate to correct for ion recombination, even in high-dose-per-pulse conditions, provided that the fraction of free electrons is properly assessed. In this respect the drift velocity and the time constant for attachment of electrons in the air of the chamber cavity are rather critical parameters because of their dependence on chamber dimensions and operational conditions. Finally, a determination of the factor k(s) was also made by zero extrapolation of the 1/Q versus 1/V saturation curves, leading to the conclusion that this method does not provide consistent results in high-dose-per-pulse beams. PMID:17148826

  17. New primary ionization chambers at LNE-LNHB for determining the air kerma in a cobalt-60 beam

    International Nuclear Information System (INIS)

    For radioprotection, the reference quantity is air kerma. For an cobalt-60 beam, the reference dosimeter is a cavity ionization chamber whose volume is measured. The new LNE-LNHB reference is based on six different chambers instead of one as was done previously. Although every new ionization chamber was treated as much as possible in the same way (manufacturing, measurements of volumes, wall effect calculations, current corrections), a maximum discrepancy of 0.2% was observed between the final measurement results from each chamber. The final value of the air kerma rate in reference conditions was determined as the mean value of the measurement results from all six chambers. Among the different factors whose determination is necessary to calculate the air kerma rate, some are considered independent of or common to all the graphite-walled ionization chambers (for example, mean energy expended by an electron to produce an ion pair in dry air), while others vary for each chamber (for example, air cavity ionic collection volume). Considering that the uncertainties of the individual ionization chamber measurement results seem slightly underestimated, the uncertainty on the mean of the six chamber-dependent factors products was taken equal to the standard deviation of the sample composed of the six chamber-dependent factors products (0.08%). Compared to the previous standard, the air kerma rate of the 60Co photon beam would then increase by 0.09% and the air kerma rate uncertainty would drop from 0.38% to 0.31%. This article describes the procedure used to establish the primary standard in terms of absorbed dose to tissue of LNE-LNHB. (authors)

  18. High-rate axial-field ionization chamber for particle identification of radioactive beams

    CERN Document Server

    Vadas, J; Visser, G; Alexander, A; Hudan, S; Huston, J; Wiggins, B B; Chbihi, A; Famiano, M; Bischak, M M; deSouza, R T

    2016-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV/A) the detector presents only three 0.5 $\\mu$m/cm$^2$ foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate. Tests with an $\\alpha$ source establish the detector energy resolution as $\\sim$8 $\\%$ for an energy deposit of $\\sim$3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A $^{39}$K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3 x 10$^5$ ions/s the energy resolution has degraded to 14% with a pileup of 12%. The go...

  19. Proton energy determination using activated yttrium foils and ionization chambers for activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Edificio de Investigacion P.B, Cd. Universitaria, Circ. Interior, C.P. 04510 Mexico D.F. (Mexico)], E-mail: avilarod@uwalumni.com; Rajander, J.; Lill, J.-O. [Turku PET Centre, Abo Akademi University, Porthansg 3, 20500 Turku (Finland); Gagnon, K. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 (Canada); Schlesinger, J. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland); Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 (Canada); Solin, O. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland)

    2009-05-15

    Excitation functions of the {sup 89}Y(p, xn) nuclear reactions were measured up to 18 MeV by the conventional activation method using the stacked-foil technique, and the irradiation of single foils. Activity assays of the irradiated foils were performed via ionization chamber and gamma spectroscopy methods. Activity ratios of the activation products were measured in two different facilities and evaluated for use as a practical and simple method for proton energy determinations. Cross section values measured in this work were compared with published data and with theoretical values as determined by the nuclear reaction model code EMPIRE II. In general, there was a good agreement between the experimental and theoretical values of the cross section data. Activity ratios of the isomeric and ground state of {sup 89}Zr measured via ionization chamber were found to be useful for proton energy determinations in the energy range from 7 to 15 MeV. Proton energies above 13 MeV were accurately determined using the {sup 89g}Zr/{sup 88}Zr and {sup 89g}Zr/{sup 88}Y activity ratios measured via gamma spectroscopy.

  20. α spectrometer of parallel plate grid ionization chamber of high energy resolution and applied

    International Nuclear Information System (INIS)

    Parallel plate Grid ionization chamber with cathode area of 300 cm2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10-4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of afterprocessing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm2

  1. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Parallel plate grid ionization chamber with cathode area of 300 cm2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10-4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm2

  2. Performance, at ambient temperature, of ionization chambers filled with a liquid dielectric

    International Nuclear Information System (INIS)

    The authors describe the performance characteristics of ionization chambers filled with carefully purified normal hexane. A detailed study of the background of a detector of this type enabled them to define the conditions in which it is possible to stabilize this background and to reduce it to about 10-14 A/cm2, for a uniform electric field of 8000 V/cm. Under irradiation with alpha or gamma rays, and at laboratory temperature, the current which passes through the chamber is a linear function of the applied electric field, up to a critical field value which is a function of the degree of purity of the liquid. Above that critical value, a process of ion-multiplication takes place, somewhat, similar to that which takes place in gases. The change in the ionization current then becomes exponential. In that area of multiplication the authors detected impulses created by the passage of individual alpha particles. The low mobility of the ions in the hexane and their extensive recombination considerably limits the amplitude of the impulses, which can easily be confused with the amplifier's background if a certain number of precautions are not taken. Impulses were recorded with amplitudes varying between 2.5 x 10-5 and 25 x 10-5 V, and with growth-times between 2 and 20 μs in electric fields of 21600 to 65600 V/cm. A number of preliminary results for other liquid fillings are given. (author)

  3. The standard facility for nuclide activity measurement by 4πγ high pressure ionization chamber

    International Nuclear Information System (INIS)

    The standard consists of 4πγ pressurized ionization chambers (IC/2C(1.0 MPa) and IG12/A20(2.0 MPa), small current measurement system, standard bottles, one set of long-live reference sources (226Ra), and lead shields. It has the following advantages: 1) long-term stability less than 0.1% per year; 2) fast speed for activity measurement; 3) Do allowing the direct measurement activity of solutions in ampoules; 4) permit measurement over a long range of activity (104-1010 Bq). For short-live nuclides, it is necessary to know the efficiency of the ionization chamber. The calibration factors can be calculated according to the efficiency curve and the probability of γ-ray emission. The calibration factors of some nuclides are calculated and the deviation of the calculation factors from experiment is less than +-3%. The half-life of 99Tcm is measured, the result is 6.0053 +- 0.0018 h

  4. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Yuya, E-mail: yuya.sugama@gmail.com [Proton Therapy Center, Aizawa Hospital, Nagano 390-0821, Japan and Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 (Japan); Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551 (Japan); Onishi, Hiroshi [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 (Japan)

    2015-07-15

    Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods: In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.

  5. Development of electrometer and DAS for ionization chamber for Indus-2, RRCAT

    International Nuclear Information System (INIS)

    Ionization Chambers (ICs) are widely used for the measurement of the ionizing radiations in the Synchrotron Radiation Source (SRS) beam lines. Its output current depends on the chamber design, radiation dose and applied voltage. Commercially available electrometers have some restriction in tailor-made applications. To overcome these limitations in measurement of ionization current or charge in the range of few pA to μA, we have indigenously developed an electrometer and associated Data Acquisition system for Indus-2 applications. To make uniform interface and portability across ICs of various size and geometry, a universal DAS is developed which consists of an embedded controller and internal programmable HV supply (0 - 2.0 kV) to bias IC, which caters the dynamic range of 120 dB for current measurement. To handle large dynamic range, two independent channels of amplifiers are interfaced which are controlled by micro controller. Channel one uses gated integrator based charge amplifier for low current signal i.e. 10 pA-100 nA and channel two is used as trans-impedance amplifier for 100 nA to 10 μA range. Micro controller selects the modes, the programmable gains (1, 10 and 100), integration time from 1-1000 ms and HV from 0-2.0 kV. Micro controller also digitizes the analog signal. The unit can be used as standalone mode or remotely with optical fiber based serial communications for data logging and networking. The developed unit was calibrated using keithley source 6220 and is further rigorously tested with laboratory based PW 3830 X-ray generator source. The developed system has leakage current of <10 pA. Further an indigenously developed IC was also used to test the developed electrometer at the saturation voltage of 990 V. The linearity of the electrometer is better than 1%. (author)

  6. Development of special ionization chambers for a quality control program in mammography; Desenvolvimento de camaras de ionizacao especiais para controle de qualidade em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas Oliveira da

    2013-07-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  7. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were intercompared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67Ga, 201Tl and 99mTc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  8. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  9. Calculation of Electric Field Distortion Rate due to Potential Difference between Guard Electrode and Collection Electrode using Simulator in Parallel Plate Ionization Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Kang, Sang Mook; Ha, Jang Ho; Chung, Jong Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Ionization chamber is still widely used in radiation detection field because that gives absolute dose, hardness for radiation damage and simplicity of operation in somewhat. Parallel plate ionization chamber for proton beam calibration was designed and fabricated in KAERI. Fabricated ionization chamber includes guard electrode that may cause distortion of electric field due to potential difference between guard electrode and collection electrode. To calculate this distortion rate Maxwell and Garfield simulator was incorporated.

  10. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    Science.gov (United States)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  11. Setup and characterization of a Frisch grid ionization chamber for the spectroscopy of low specific activities

    International Nuclear Information System (INIS)

    The realization of this work was the usage of a Frisch grid ionization chamber for measuring the lowest specific alpha activity. In the practical case the detector should be used to remeasure the half life of 144Nd. Only very thin targets can be used, due to the extreme long half life and the very short range of alpha particles in matter. The area of the samples must be big enough to get the required activity. In comparison gridded ionization chambers are the most practical devices. The chamber was realized in that way, that two gridded chambers shares a common anode. This could be used to minimize the detector background. The charge, which was induced in the detector electrodes, is acquired by an analog to digital converter. The full analysis of the data is done after the measurement. With the pulse form analysis it is possible to extract information about every event occurring in the detector. It is also possible to correct the grid inefficiency and the correlated angle dependence of the pulse height. This improves the energy resolution. A resolution of 0.86 % at 5.1 MeV is possible. The characterization of the events is also used for the suppression of the detector background. Due to different conditions for an assumed alpha event the majority of the events which disturbs the measurement could be removed. So it is possible to suppress the background in the range between 1 MeV to 2.2 MeV of 435 events per day without the characterization to 21.6 events per day with characterization, which is a factor of roughly 20. The detection efficiency is not noticeably effected. For sufficiently long measurements a lowest limit of detection of 10 counts per day is expectable. For a target geometry which can be used with this setup, about 50 alpha decays of 144Nd per day will occur. With a detection efficiency a bit below 50 % the measurement on 144Nd should be possible.

  12. Prompt fission neutron emission in resonance fission of 239Pu

    International Nuclear Information System (INIS)

    The prompt fission neutron emission probability was investigated at the time-of-flight facility GELINA at the IRMM. A double Frisch-gridded ionization chamber was used as a fission fragment detector. For the data acquisition of both fission fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection large volume liquid scintillation detectors from the DEMON collaboration were used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data

  13. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Brett [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  14. Measurements of double-differential α-particle production cross sections of Fe and Ni using gridded ionization chamber

    International Nuclear Information System (INIS)

    Double-differential α-particle production cross sections of Fe and Ni were measured for neutron energy region between 4 and 14 MeV using a gridded ionization chamber. The method applied in this work enables us to measure the double-differential cross sections at various incident neutron energies because of the high efficiency and background suppression capability of the gridded ionization chamber. The double-differential cross sections, the energy-differential cross sections and the excitation functions were obtained for the (n,xα) reactions of Fe and Ni and are compared with the previous experiments and evaluated data. (author)

  15. Range-Energy Relations for Heavy Charged Particles in Gases Using the Double-Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    The application of the double-gridded pulse ionization chamber to measuring the range-energy relations for alpha particles, protons, and heavy recoils is discussed. Range-energy values for recoil protons and alpha particles in a gas mixture of Argon plus 10% Methane are presented to confirm the method. The chamber described has been designed primarily for the measurement of proton ranges in a tissue equivalent gas mixture of CO2 , CH4 and N, and for fast neutron spectroscopy. (author)

  16. Monte Carlo Simulation in the Optimization of a Free-Air Ionization Chamber for Dosimetric Control in Medical Digital Radiography

    International Nuclear Information System (INIS)

    During the earliest tests of a free-air ionization chamber a poor response to the X-rays emitted by several sources was observed. Then, the Monte Carlo simulation of X-rays transport in matter was employed in order to evaluate chamber behavior as X-rays detector. The photons energy deposition dependence with depth and its integral value in all active volume were calculated. The obtained results reveal that the designed device geometry is feasible to be optimized

  17. The mass dependence of the signal peak height of a Bragg-curve ionization chamber

    International Nuclear Information System (INIS)

    The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required. (orig.)

  18. The mass dependence of the signal peak height of a Bragg-curve ionization chamber

    Science.gov (United States)

    Shenhav, N. J.; Stelzer, H.

    1985-01-01

    The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required.

  19. On the neutron spatial distribution in ionization chamber channels of the WWER type reactors

    International Nuclear Information System (INIS)

    Results of experimental and calculational studies permitting to estimate the neutron flux spatial distribution in ionization chamber channels of the commercial WWER-1000 and WWER-440 reactors and also of the WWER-440 reactor with water biological shield are presented. The integral neutron flux density distribution along the channel cross section approximately at height of the core middle and the corresponding thermal and fast neutron flux density distributions are measured by the activation detectors. It is shown that the difference in fast neutron flux density exceeds that of thermal neutrons. The commercial WWER-1000 type reactor the fast neutron flux density is decreased by the factor of 1.7, and thermal neutron flux density - by the factor of 1.2, for the commercial WWER-440 reactor these values are 1.37 and 1.18, and for the WWER-440 one with water shield - 1.5 and 1.18

  20. Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber

    CERN Document Server

    Ni, K; Day, D; Giboni, K L; Lopes, J A M; Majewski, P; Yamashita, M

    2005-01-01

    Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.

  1. A comparison of different experimental methods for general recombination correction for liquid ionization chambers

    DEFF Research Database (Denmark)

    Andersson, Jonas; Kaiser, Franz-Joachim; Gomez, Faustino;

    2012-01-01

    experimental methods for general recombination correction for LICs are compared and investigated for both pulsed and continuous beams. The experimental methods are all based on one of two approaches: either measurements at two different dose rates (two-dose-rate methods), or measurements at three different LIC...... recommended by the manufacturer of the LICs used, the agreement between the different methods is generally within the experimental uncertainties. For pulsed beams, the agreement between the methods is poor. The inaccuracies found in the results from the three-voltage methods are associated with numerical...... of the charge carriers, as compared to using air as the sensitive medium has to be corrected for. Due to the presence of initial recombination in LICs, the correction for general recombination losses is more complicated than for air-filled ionization chambers. In the present work, recently published...

  2. Ionization chamber array for patient specific VMAT, Tomotherapy and IMRT QA

    International Nuclear Information System (INIS)

    The evaluation between measured and calculated dose is essential in the patient specific quality assurance procedures for intensity modulated radiation therapy. The high complexity of volumetric arc radiotherapy, Tomotherpay and intensity modulated radiation therapy deliveries attributed to the dynamic and synchronization requirements of such techniques require new methods and potentially new tools for the quality assurance of such techniques. Studies evaluating the dosimetric performance of EDR2 film and a 2D ionization chamber array quality assurance device have been performed in our institution. Our results showed that differences between the detector systems are small. The respective gamma index histograms showed that when 3% dose difference and 3mm distance to agreement are used, more than 90% of the evaluated points were within the tolerance criteria

  3. Energy resolution of gas ionization chamber for high-energy heavy ions

    Science.gov (United States)

    Sato, Yuki; Taketani, Atsushi; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Nishimura, Daiki; Fukuda, Mitsunori; Inabe, Naohito; Murakami, Hiroyuki; Yoshida, Koichi; Kubo, Toshiyuki

    2014-01-01

    The energy resolution is reported for high-energy heavy ions with energies of nearly 340 MeV/nucleon and was measured using a gas ionization chamber filled with a 90%Ar/10%CH4 gas mixture. We observed that the energy resolution is proportional to the inverse of the atomic number of incident ions and to the inverse-square-root of the gas thickness. These results are consistent with the Bethe-Bloch formula for the energy loss of charged particles and the Bohr expression for heavy ion energy straggling. In addition, the influence of high-energy δ-rays generated in the detector on the energy deposition is discussed.

  4. Quality assurance of proton beams using a multilayer ionization chamber system

    International Nuclear Information System (INIS)

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF

  5. Simulation study of the photon quality correction factors of ionization chambers for FiR 1 epithermal neutron beam

    International Nuclear Information System (INIS)

    At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (kQγ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the kQγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The kqγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the kQγ factors published previously. (author)

  6. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    International Nuclear Information System (INIS)

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of 125I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for 125I selectSeedTM brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the

  7. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain); Perez-Calatayud, Jose [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain); Simancas, Fernando; Lallena, Antonio M. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Gazdic-Santic, Maja [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  8. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  9. Rapid determination of atmospheric alpha contamination by using the Frisch grid ionization chamber

    International Nuclear Information System (INIS)

    In a radiation emergency situation, the majority of radionuclides is dispersed in the form of aerosols and can be captured on aerosol filters. Alpha-spectrometric analysis is necessary for alpha radionuclides emitting no gamma radiation. A Frisch grid ionization chamber has been tested for this purpose. Three types of filters were tested: Millipore membrane filters, Synpor membrane filters, and glass-fiber Whatman filters. Aerosols from the radon chamber were deposited on the filter by means of an aerosol sampler, the alpha-spectrum was measured and its quality was evaluated. For the next tests, the glass-fiber Whatman filter was chosen. The aim of the experiments that followed was to determine the limits of detection (LDs) for some radionuclides. Outdoor air samples were prepared using filters 10 cm in diameter. The interval between the end of sampling and the start of counting was different for each sample, owing to which the time dependence of the LD levels. The average LD shortly after sampling was about 1.1 Bq/filter and decreased to about 0.5 Bq/filter in 3 hours. (orig.)

  10. Alpha spectroscopy with ionization chamber to determine uranium and thorium in environmental samples

    International Nuclear Information System (INIS)

    A high-resolution, parallel Frisch ionization chamber with an efficient area of 320 cm2 was developed and applied as an alpha spectrometer. The resolution of the spectrum is approximatelly 40 KeV fwhm (full width half maximum) for 233U point source. The spectrum is recorded by a 1024 channels pulse-height analyser. The counting gas is commercial available mixture of argon and methane. The counting efficiency for 233U energy-window selected is in order of 42% for a calibration source placed on the cathode axis. No radial dependence of this efficiency was observed. The chamber was used for counting the activity of uranium and thorium isotopes on large area stainless steel planchets. The large area thin sources were prepared extracting the uranium and thorium isotopes from 1M HNO3- aqueous solution with polymeric membranes containing tri-n-octyl-phosphine oxide adhered on the surface of the 314 cm2 planchet. The integral back-ground is typically 7 counts/min between 4 and 6 MeV. The sensitivity of the procedure used ofr 238U is about 30 Bq/1 based on 3S of back-ground, 1 liter sample volume and 30 min counting time. (Author)

  11. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    International Nuclear Information System (INIS)

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon 40Ar and 0.30e fwhm for 1.08 GeV/nucleon 139La and 139La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with σ≅100 μm. (orig.)

  12. The properties of the ultramicrocylindrical ionization chamber for small field used in stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Accurate dosimetry of small-field photon beams tends to be difficult to perform due to the presence of lateral electronic disequilibrium and steep dose gradients. In stereotactic radiosurgery (SRS), small fields of 6-30 mm in diameter are used. Generally thermoluminescence dosimetry chips, Farmer, Thimble ion chamber, and film dosimetry are not adequate to measure dose in SRS beams. These techniques generally do not provide the required precision due to their energy dependence and/or poor resolution. It is necessary to construct a small, accurate detector with high spatial resolution for the small fields used in SRS. The ultramicrocylindrical ionization chamber (UCIC) with a gold wall of 2.2 mm in diameter and 4.0 mm in length has dual sensitive volumes of air (8.0 mm3) and borosilicate (2.6 mm3) cavity. Reproducibility, linearity, and radiation damage with respect to absorbed dose, beam profile of small beam, and independence of dose rate of the UCIC are tested by the dose measurements in high energy photon (5, 15 MV) and electron (9 MeV) beams. The UCIC with a unique supporting system in the polystyrene phantom is demonstrated to be a suitable detector for the dose measurements in a small beam size

  13. A gridded ionization chamber with a movable cathode for precise measurements of W-values in highly purified rare gases

    International Nuclear Information System (INIS)

    A single gridded ionization chamber with a movable cathode was constructed in order to measure W-values in highly purified rare gases without ambiguity. The chamber gases were continuously purified with a purifier filled with many pellets of titanium-barium getter. The purifier proved to be so powerful as to reduce impurities in rare gases to the level of 1 ppb or less. Performance tests of the chamber were made by measurements of W-values of argon-methane mixtures relative to that of argon. The measurements were made with a precision of ±0.14%. (orig.)

  14. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Sempau, Josep [Technical University of Catalonia (Spain)

    2010-07-01

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  15. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  16. A new approach to the determination of air kerma using primary-standard cavity ionization chambers

    International Nuclear Information System (INIS)

    A consistent formalism is presented using Monte Carlo calculations to determine the reference air kerma from the measured energy deposition in a primary-standard cavity ionization chamber. A global approach avoiding the use of cavity ionization theory is discussed and its limitations shown in relation to the use of the recommended value for W. The role of charged-particle equilibrium is outlined and the consequent requirements placed on the calculations are detailed. Values for correction factors are presented for the BIPM air-kerma standard for 60Co, making use of the Monte Carlo code PENELOPE, a detailed geometrical model of the BIPM 60Co source and event-by-event electron transport. While the wall correction factor kwall = 1.0012(2) is somewhat lower than the existing value, the axial non-uniformity correction kan = 1.0027(3) is significantly higher. The use of a point source in the evaluation of kan is discussed. A comparison is made of the calculated dose ratio with the Bragg-Gray and Spencer-Attix stopping-power ratios, the results indicating a preference for the Bragg-Gray approach in this particular case. A change to the recommended value for W of up to 2 parts in 103 is discussed. The uncertainties arising from the geometrical models, the use of phase-space files, the radiation transport algorithms and the underlying radiation interaction coefficients are estimated

  17. Verification of the absorbed dose values determined with plane parallel ionization chambers in therapeutic electron beams using ferrous sulfate dosimetry

    International Nuclear Information System (INIS)

    Absolute and relative dosimetry measurements in clinical electron beams using different detectors were performed at a Philips SL18 accelerator. For absolute dosimetry, ionization chamber measurements with the PTW Markus and PTW Roos plane parallel chambers were performed in water following the recommendations of the TRS-381 Code of Practice, using different options for chamber calibration. The dose results obtained with these ionization chambers using the electron beam calibration method were compared with the dose response of the ferrous sulphate (Fricke) chemical dosimeter. The influence of the choice of detector type on the determination of physical quantities necessary for absolute dose determination was investigated and discussed. Results for dmax, R50 and Rp were in agreement within statistical uncertainties when using a diode, diamond or plane parallel chamber. The effective point of measurement for the Markus chamber is found to be shifted 0.5 mm from the front surface of the cavity. Fluence correction factors, hm, for dose determination in electron beams using a PMMA phantom were determined experimentally for both plane parallel chamber types. (author)

  18. A convolution model for obtaining the response of an ionization chamber in static non standard fields

    International Nuclear Information System (INIS)

    Purpose: This work contains an alternative methodology for obtaining correction factors for ionization chamber (IC) dosimetry of small fields and composite fields such as IMRT. The method is based on the convolution/superposition (C/S) of an IC response function (RF) with the dose distribution in a certain plane which includes chamber position. This method is an alternative to the full Monte Carlo (MC) approach that has been used previously by many authors for the same objective. Methods: The readout of an IC at a point inside a phantom irradiated by a certain beam can be obtained as the convolution of the dose spatial distribution caused by the beam and the IC two-dimensional RF. The proposed methodology has been applied successfully to predict the response of a PTW 30013 IC when measuring different nonreference fields, namely: output factors of 6 MV small fields, beam profiles of cobalt 60 narrow fields and 6 MV radiosurgery segments. The two-dimensional RF of a PTW 30013 IC was obtained by MC simulation of the absorbed dose to cavity air when the IC was scanned by a 0.6 x 0.6 mm2 cross section parallel pencil beam at low depth in a water phantom. For each of the cases studied, the results of the IC direct measurement were compared with the corresponding obtained by the C/S method. Results: For all of the cases studied, the agreement between the IC direct measurement and the IC calculated response was excellent (better than 1.5%). Conclusions: This method could be implemented in TPS in order to calculate dosimetry correction factors when an experimental IMRT treatment verification with in-phantom ionization chamber is performed. The miss-response of the IC due to the nonreference conditions could be quickly corrected by this method rather than employing MC derived correction factors. This method can be considered as an alternative to the plan-class associated correction factors proposed recently as part of an IAEA work group on nonstandard field dosimetry.

  19. Angular distribution and cross section measurements for the reaction 40Ca(n,α)37Ar using gridded ionization chamber

    International Nuclear Information System (INIS)

    A new-type double gridded ionization chamber (GIC) with a multi-parameters data acquisition and processing system has been established for the study of fast-neutron-induced (n,p) and (n,α) reactions. The system has been applied to measurements of angular distribution, energy spectra and differential cross section of the 40Ca(n,α)37Ar reaction

  20. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers

    International Nuclear Information System (INIS)

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  1. Design and preliminary test of a free-air ionization chamber for low-energy X-ray

    Institute of Scientific and Technical Information of China (English)

    吴金杰; 杨元第; 王培玮; 陈靖; 柳加成

    2011-01-01

    A free-air ionization chamber in low-energy X-ray has been designed and manufactured at the National Institute of Metrology (NIM, China) according to the defination of air-kerma. The results of a preliminary test show that the leakage current of ionizatio

  2. Testing the Accuracy of Electron Transport in the Monte Carlo Code FLUKA for Calculation of Ionization Chamber Wall Perturbation Factors

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the Monte Carlo (MC) code FLUKA, regarding its ability to accurately simulate electron transport at density inhomogeneities and in ionization chamber geometries. In order to evaluate the accuracy of FLUKA's electron transport algorithm and the implementation of the condensed history technique, a Fano test was used. This test allows the comparison of calculated and theoretically expected results. The ratio of the two results is ideally equal to unity, and a deviation usually indicates artifacts in the treatment of density interfaces. As a more practical problem, wall perturbation factors pwall of a plane parallel chamber in electron beams were calculated and compared with results based on the EGSnrc MC code. Additionally, the impact of wall material and thickness on calculated cavity dose was investigated for two different thimble chambers irradiated by 60Co. The correct choice of parameters within FLUKA's electron transport algorithm ensured passing the Fano test within ∼0.7% and a good agreement for practical examples within 0.4% compared to results of the EGSnrc MC code. The latter is known to allow an artifact free simulation of ionization chamber response in photon and electron beams. Based on these results, the electron transport accuracy within the FLUKA code can generally be regarded as much better than 1% for typical ionization chamber dosimetry problems. (author)

  3. Fission chambers as the best suited detector family for in vessel neutron instrumentation of the sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    The sodium-cooled fast reactor (SFR) is one of the main options as a next generation reactor. Its in-vessel instrumentation is required to detect any abnormal situation at a sufficiently early stage, and thus to deliver measurements that are reliable and easy to interpret over several reactor cycles. In this paper we pick up the detector family that is the best suited for the in-vessel SFR instrumentation with respect to this requirement. Three types of detectors that are widely used for in-core neutron measurements are reviewed: fission chambers, boron-lined proportional counters and self-powered neutron detectors. We use as an input data neutron and gamma spectra that have been computed for a preliminary design of the SFR in different locations. We compute for each detector family the expected signal, to assess whether its level is sufficient. The evolution of the signal due to the depletion of the active part of the detectors is also addressed, to examine whether it is compatible with long term measurements. The issue of leakage current and irradiation damages is examined. Fission chambers appear to be the best suited detector family for in vessel neutron instrumentation of the SFR, able to deliver an interpretable signal for a wide dynamic of reactor power and for three or more operating cycles. This conclusion is supported by three key assets: the possibility to choose the fissile deposit according to the location in the reactor, the excellent rejection of the gamma events by using the Campbelling mode, and the intrinsic wide dynamic of those detectors when combining pulse mode and Campbelling mode. The Campbelling mode is also a convenient way to deal with the leakage current. In contrast, the two other types are shown to be inadequate for SFR measurements. (authors)

  4. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.

    Science.gov (United States)

    Verhaegen, F; Zakikhani, R; Dusautoy, A; Palmans, H; Bostock, G; Shipley, D; Seuntjens, J

    2006-03-01

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p(Q), has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p(wall), p(cav) and p(Q) perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z(ref) and the depth where the dose has decreased to 50% of the maximum dose, R50. p(wall) was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z(ref). For higher energy electron beams p(wall) decreased to a value of about 1%. Combined with a p(cav) about 1% below unity for all energies at z(ref), this was found to cause p(Q) to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber. PMID:16481689

  5. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, F [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada); Zakikhani, R [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada); DuSautoy, A [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Palmans, H [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Bostock, G [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Shipley, D [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Seuntjens, J [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada)

    2006-03-07

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p{sub Q}, has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p{sub wall}, p{sub cav} and p{sub Q} perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z{sub ref} and the depth where the dose has decreased to 50% of the maximum dose, R{sub 50}. p{sub wall} was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z{sub ref}. For higher energy electron beams p{sub wall} decreased to a value of about 1%. Combined with a p{sub cav} about 1% below unity for all energies at z{sub ref}, this was found to cause p{sub Q} to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber.

  6. Modeling of a double fission chamber using MCNPX for power calibration at the zero-power teaching reactor CROCUS

    International Nuclear Information System (INIS)

    MCNPX-2.5 simulations and experiments were performed to improve the power prediction of the zero-power teaching reactor CROCUS at the Ecole Polytechnique Federale de Lausanne (EPFL) using a calibrated double fission chamber (DFC). The CROCUS facility is a zero-power critical reactor used for educational purposes. Traditionally, the core power is determined by irradiating thin gold foils placed along the core centre and by measuring the 411 keV γ-rays on HPGe detectors. The average 197Au(n,γ) self-shielded macroscopic cross-section obtained with the deterministic BOXER code (1σ - 10%) is employed to determine the flux and the reactor power. To benchmark the BOXER calculations, a DFC containing known amounts of enriched 235U and 239Pu deposits was installed within the reflector core and simulated with MCNPX-2.5/JEF-2.2. Particular care was taken to model the fissile deposits allowing to reduce the power uncertainty to 2% compared to the gold foil technique. A code-to-code comparison (BOXER vs. MCNPX) was performed and the results have shown a good agreement (2 to 5%) for most of the quantities calculated (flux, reaction rates). However, the normalization factor differed by 17% (flux-to-power ratio). Consequently, the core power was overestimated by 17% until now. Finally, the current investigations lead to an improved fission power determination and contribute to better core safety standard. (author)

  7. Design and performance of a heavy ion detector using a gridded ionization chamber with helical position-sensitive proportional counter

    International Nuclear Information System (INIS)

    A counter specifically designed for heavy ions and low-energy helium ions has been constructed for use in the focal plane of a Q3D spectrometer. The counter utilizes a gridded ionization chamber to measure energy loss and total energy of the particles incident on the detector and a helical proportional chamber to establish the position and hence the momentum along the focal plane. The ionization chamber information is used to establish the mass and charge of the incident particle with high precision and under low background conditions. The helix provides excellent spatial resolution along with high counting rate performance and a resolution independent of the angle at which the particles enter the detector

  8. Identification and spectrometry of low-energy charged particles by means of ionization chamber with two grids

    International Nuclear Information System (INIS)

    The method of using an ionization chamber with two grids for identification and spectrometry of low-energy charged particles with the close energy, but different product of their mass and charge is described. The method enables to carry out multidimensional measurements of coincident pulses from the cathode and anode of ionization chamber. The selection circuit provides for relizble identification of different sorts of charged particles with close energy and essentially improves the raio of the effect and background at low energy resolution due to a radioactive target in the chamber. The method was used in investigation of reactions (n,p) on slow neutrons for radioactive targets 7Be, 36Cl, 88Y

  9. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method

    International Nuclear Information System (INIS)

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs

  10. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  11. Fusion cross sections of carbon isotopes obtained with an ionization chamber in active target mode

    International Nuclear Information System (INIS)

    Carbon fusion has provided questions to both physicists and astronomers for at least the last 50 years. From fundamental nuclear structure to recent discoveries in stellar phenomena there are still open topics. Fusion in the 12C + 12C system show oscillations that are not present in neighboring systems and are yet not completely understood. Unexplained behavior in the threshold between 1p and 2s1d shells is seen as fusion cross sections show significant changes in systems which differ by only a nucleon. A new type of stellar explosions, called super bursts, in X-ray binaries were recently observed and are thought to require fusion of radioactive carbon isotopes for an explanation, opening new paths for stellar nucleosynthesis. These are a few interesting examples that motivated the development of a new measurement technique, which comprises a Multi Sampling Ionization Chamber (Music) operated in active target mode, with methane gas (C H4) as both counting gas and reaction target. This offers a high efficiency detection method where excitation functions can be sampled, using a single beam energy, in a range determined by the ionization gas pressure. This is a great advantage since it drastically reduces the measurement time and the data are automatically normalized. The high efficiency of the detector makes it ideal for experiments where the reaction cross section and/or the beam intensity are low, i.e. for processes involving radioactive nuclei. Using the Music, fusion cross sections in systems with carbon isotopes of mass numbers A = 10, 12, 13, 14, 15 impinging on a carbon-12 target have been measured. Beam energies of about 3 MeV/A were used for obtaining fusion excitation functions in the center of mass energy range between 10 and 20 MeV. In this contribution, the operation principle of the Music is discussed. Then, the experimental excitation functions are presented and compared with previous data (3when available) and different theoretical models

  12. Distribution of Prompt Neutron Emission Probability for Fission Fragments in Spontaneous Fission of 252Cf and 244,248Cm

    Science.gov (United States)

    Vorobyev, A. S.; Dushin, V. N.; Hambsch, F.-J.; Jakovlev, V. A.; Kalinin, V. A.; Laptev, A. B.; Petrov, B. F.; Shcherbakov, O. A.

    2005-05-01

    Neutrons emitted in fission events were measured separately for each complementary fragment in correlation with fission fragment energies. Two high-efficiency Gd-loaded liquid scintillator tanks were used for neutron registration. Fission fragment energies were measured using a twin Frisch gridded ionization chamber with a pinhole collimator. The neutron multiplicity distributions were obtained for each value of the fission fragment mass and energy and corrected for neutron registration efficiency, background, and pile-up. The dependency of these distributions on fragment mass and energy for different energy and mass bins as well as mass and energy distribution of fission fragments are presented and discussed.

  13. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  14. Construction of an ionization chamber for buildup measurements in megavoltage X-ray beams

    International Nuclear Information System (INIS)

    The design and construction of a simple homemade ion chamber for brildup measurements in megavoltage beams is described. Tests indicate that the performance of the chamber is superior in some respects to a commercially available chamber. Results obtained using the chamber in a 6 MV beam are presented. (Author)

  15. Patient specific IMRT quality assurance with film, ionization chamber and detector arrays: Our institutional experience

    International Nuclear Information System (INIS)

    -value>0.05). Conclusions: Among the TPSs, Tomoplan and Corvus had the best agreement with the point dose measurement. Based on anatomical location of treatment site, head and neck cancers had the lowest gamma value for the patients treated and brain sites had the highest gamma value. However, the values are not significantly different. TomoTherapy machines continue to have the best overall gamma values as compared to CLINAC machines. - Highlights: • IMRT QA methods performed at our institution were analyzed retrospectively. • IMRT QA using film & ionization chamber was compared with 2D array of ion chambers. • Dosimetric measurements were compared against the plan based on multiple criteria. • Criteria included TPS, anatomic site, Linac type, number of control points, arcs or beams. • Average dose differences and Gamma analysis were estimated to exceed passing criteria

  16. Design and building of an extrapolation ionization chamber for beta dosimetry

    International Nuclear Information System (INIS)

    An extrapolation chamber was designed and built to be used in beta dosimetry. The basic characteristics of an extrapolation chamber are discussed, together with fundamental principle of the dosimetric method used. Details of the chamber's design and properties of materials employed are presented. A full evaluation of extrapolation chamber under irradiation from two 90Sr + 90Y beta sources is done. The geometric parameters of the chamber, leakage current and ion collection efficiency are determined. (Author)

  17. The control system of the multi-strip ionization chamber for the HIMM

    International Nuclear Information System (INIS)

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer–consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector

  18. Measurement of differential (n,xα) cross section using 4π gridded ionization chamber

    International Nuclear Information System (INIS)

    We carried out the measurements of high resolution α emission spectra of 58Ni and natNi between 4.5 and 6.5 MeV, and 12C(n,xα) cross section using a 4π gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus (55Fe). These results were compared with another direct measurement and statistical model calculations. In 12C measurement, GIC was applied for (n,xα) reactions of light nuclei. This application is difficult to (n,xα) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to 12C(n,xα) reaction at En=14.1 MeV. In our experiment, the 12C(n,α0)9Be angular differential cross section and 12C(n,n'3α) cross section were obtained. (author)

  19. Annual change in calibration constant of ionization chamber used in diagnostic radiology

    International Nuclear Information System (INIS)

    Committee on Radiological Protection of Japan Radiological Society (JRS) is making a database on patient doses for typical radiographies for introducing the guidance levels in Japan. The Committee reported necessity of a protocol on dosimetry in diagnostic radiology for introducing the guidance levels. Although a protocol on dosimetry in radiation therapy is established, there is no protocol on dosimetry in diagnostic radiology in Japan. Then, as a first step to establish a protocol on dosimetry in diagnostic radiology, annual changes in a calibration constant of an ionization chamber as a practical standard dosimeter has been investigated for 4 years. Changes in calibration constants for 4 years are within 2% for X-rays with effective energies than 32 keV. From these results, practical frequencies of calibrations for practical standard dosimeters are discussed for maintain of their precision. If an accuracy of practical standard dosimeters is 5% for diagnostic radiology, frequencies of their calibrations may be once in a year or two years. (author)

  20. Testing an ionization chamber with gaseous samples and measurements of the (n, alpha) reaction cross sections

    CERN Document Server

    Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P

    1999-01-01

    A new ionization chamber with gaseous samples (GIC) has been designed and tested on the thermal and resonance neutron beams of FLNP's neutron sources. The exposed gas volume serves as a target for neutrons. The obtained thermal cross sections for the sup 1 sup 7 O(n, alpha) sup 1 sup 4 C, sup 2 sup 1 Ne(n, alpha) sup 1 sup 8 O and sup 3 sup 6 Ar(n, alpha) sup 3 sup 3 S reactions are (233+-12) mb, (0.18+-0.09) mb and (5.43+-0.27) mb, respectively. These measurements have been performed on a pure beam of thermal neutrons from the high flux reactor IBR-2; and they demonstrated high efficiency and reliability of the method. Compared to samples on substrates, the application of gaseous samples makes the beam background essentially lower, and what is more important, the background component is totally absent due to the absence of Li and B microimpurities in gaseous samples while they do present in the samples on substrates. The method is also applicable to measurements with resonance neutrons. The recovery capabili...

  1. A high dynamic Micro Strips Ionization Chamber featuring Embedded Multi DSP Processing

    CERN Document Server

    Voltolina, Francesco; Carrato, Sergio; 10.1109/NSSMIC.2004.1466924

    2010-01-01

    An X-ray detector will be presented that is the combination of a segmented ionization chamber featuring one-dimensional spatial resolution integrated with an intelligent ADC front-end, multi DSP processing and embedded PC platform. This detector is optimized to fan beam geometry with an active area of 192 mm (horizontal) and a vertical acceptance of 6 mm. Spatial resolution is obtained by subdividing the anode into readout strips, having pitch of 150 micrometers, which are connected to 20 custom made integrating VLSI chips (each capable of 64-channel read-out and multiplexing) and read out by 14 bits 10 MHz ADCs and fast adaptive PGAs into DSP boards. A bandwidth reaching 3.2Gbit/s of raw data, generated from the real time sampling of the 1280 micro strips, is cascaded processed with FPGA and DSP to allow data compression resulting in several days of uninterrupted acquisition capability. Fast acquisition rates reaching 10 kHz are allowed due to the MicroCAT structure utilized not only as a shielding grid in i...

  2. Detecting MLC errors in stereotactic radiotherapy plans with a liquid filled ionization chamber array.

    Science.gov (United States)

    O'Connor, Patrick; Seshadri, Venkatakrisnan; Charles, Paul

    2016-03-01

    Quality assurance of stereotactic radiotherapy demands the use of equipment with the highest resolution and sensitivity available. This study examines the sensitivity of a commercially available liquid-filled ionization chamber array-the Octavius 1000 SRS (PTW, Frieburg, Germany) for detecting small (sub-millimetre) multi-leaf collimator (MLC) alignment errors in static square fields (side length 16-40 mm). Furthermore, the effectiveness of detecting small MLC errors in clinical stereotactic radiotherapy patient plans using the device was also evaluated. The commonly used gamma pass rate metric (of the measurements compared with treatment planning system generated results) was used. The gamma pass rates were then evaluated as a function of MLC position error (MLC error size 0.1-2.5 mm). The detector array exhibited a drop in pass rate between plans without error and those which had MLC errors induced. For example a drop in pass rate of 4.5 % (gamma criteria 3 %, 1 mm) was observed when a 0.8 mm error was introduced into a 16 mm square field. Furthermore the drop in pass rate increased as the MLC position error increased. This study showed that the Octavius 1000 SRS array could be a useful tool for applications requiring the detection of small geometric delivery uncertainties. PMID:26979835

  3. The control system of the multi-strip ionization chamber for the HIMM

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min, E-mail: limin@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Mao, R.S., E-mail: Maorsh@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Xu, Z.G.; Li, Peng; Zhao, T.C.; Zhao, Z.L. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Zhang, Nong [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-03-11

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer–consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  4. The control system of the multi-strip ionization chamber for the HIMM

    Science.gov (United States)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  5. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  6. Feasibility study for the development of a Dose Calibrator with a well ionization chamber

    International Nuclear Information System (INIS)

    Dose calibrators are intended for the metrological assurance of medical diagnostic studies in which radiopharmaceuticals are used. It is the final link in the national system of standards to ensure quality control and the radiation safety of the dose administered to patients while using these nuclear techniques. The wide utilization of radiopharmaceuticals in our country in several modules of nuclear medicine and other laboratories where radio-isotopic preparations are used, as well as the existence of the National Center of Isotopes to produce them determine the necessity of national production of dose calibration equipment. In this paper, it is presented the result of a feasibility study to develop a dose calibrator with a well-type ionization chamber for nuclear medicine services of the National Health System with gamma camera. It is specifically intended to contribute to monitor and control the activity of the prepared samples to be administered to patients under studies with gamma cameras to ensure compliance with the current requirements of quality and radiation safety. (Author)

  7. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  8. Alpha-spectrometric determination of low activities of Th, U, and Pu with semiconductor and grid ionization chamber

    International Nuclear Information System (INIS)

    The direct preparation of alpha-containing counter layers from TOPO extracts by vaporization on the counter planchet is described. For a typical surface density of 2 μl/cm2 the half-widths of the peaks in the semiconductor and grid ionization chamber (GIK) are mostly in the range of 50 keV. However, 20 times more material can be prepared on the large surface of the GIK counter planchets than in the semiconductor chamber. Alpha emitters of a few mBq can be detected in the GIK within a measuring time of 1 d, depending on their position in the spectrum. (orig.)

  9. Determination of the recombination correction for the BIPM parallel-plate ionization chamber type in a pulsed photon beam

    International Nuclear Information System (INIS)

    The correction factor for recombination losses ks has been determined for the BIPM parallel-plate ionization chamber type in the pulsed photon beam of a clinical linear accelerator. Initial recombination is in agreement with that obtained for the same chamber type in a continuous beam, while linearity in the volume recombination loss is confirmed at dose rates up to 80 pC per pulse, which corresponds to about 0.33 mGy per pulse (or around 2 Gy min-1 at 100 Hz)

  10. The use of plane parallel ionization chambers in high energy electron and photon beams. An international code of practice for dosimetry

    International Nuclear Information System (INIS)

    Research on plane-parallel ionization chambers since the IAEA code of practice (TRS-277) was published in 1987 has explained our knowledge on perturbation and other correction factors in ionization chamber, and also constructional details of these chambers have been shown to be important. Different countries have published, or are in the process of publishing, dosimetry recommendations which include specific procedures for the use of plan parallel ionization chambers. An international working group was formed under the auspieces of the IAEA, first to review the status and the actual validity of the code of practice and second to develop an international code of practice of the use of plane parallel ionization chambers in high energy electron and photon beams used in radiotherapy. This document fulfills the second taste. 153 refs, 21 figs, 18 tabs

  11. A charged particle telescope with a gas ionization chamber ΔE detector with axial charge collection

    International Nuclear Information System (INIS)

    A charged particle telescope with a gas ionization in which no frisch grid is used has been set-up. The three basic parts of this telescope are: (1) the window assembly, (2) the gas cell and (3) the E detctor assembly. These parts are described. The active length of the ionization chamber can be changed easily according to the need. The field configuration is axial. Using a gas mixture of 90 per cent argon and 10 per cent methane, and alpha-sources 241Am and 239Pu, the performance of the detector was tested in a vacuum chamber at various pressures and various anode voltages for gas length of 3 cm. It is observed that energy resolution is 185 keV at 1.2 kg/cm2 gas pressure and the suitable range of operating anode voltage is 300 to 600 v. (M.G.B)

  12. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Majumdar Bishnu

    2006-01-01

    Full Text Available The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory.

  13. Some studies on the fission of uranium with the help of a self-controlled wilson chamber; Quelques etudes sur la fission de l'uranium a l'aide d'une chambre de wilson autocommandee

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H. de; Tzara, C.; Olkowsky, J. [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The authors applied the method of Wilson's chamber self intern control to the survey of the uranium fission with neutrons of the core. This method allowed them: 1) - to establish a distribution of the courses of the fission fragments in argon on a big number of events. 2) - to search for the probability of production of tri-partitions to third fragment of short course. The authors succeed to the conclusion that in relation to ordinary fission, this, probability is lower to (1 {+-} 3)/1000, what permits to doubt the existence of the phenomenon. (author) [French] Les auteurs ont applique la methode de la chambre de Wilson a autocommande interne a l'etude de la fission de l'uranium par neutrons de pile. Cette methode leur a permis: 1) - d'etablir une distribution des parcours des fragments de fission dans l'argon portant sur un grand nombre d'evenements. 2) - de rechercher la probabilite de production de tripartitions a troisieme fragment de court parcours. Les auteurs aboutissent a la conclusion que par rapport a la fission ordinaire, cette probabilite est inferieure a (1 {+-} 3)/1000, ce qui permet de douter de l'existence du phenomene. (auteur)

  14. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams; Projeto, construcao e caracterizacao de camaras de ionizacao para utilizacao como sistemas padroes em feixes de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula

    2013-07-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  15. Discovery of multiple, ionization-created CS2 anions and a new mode of operation for drift chambers

    International Nuclear Information System (INIS)

    This paper focuses on the surprising discovery of multiple species of ionization-created CS2 anions in gas mixtures containing electronegative CS2 and O2, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented

  16. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    International Nuclear Information System (INIS)

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  17. Automated system with LabVIEW for the obtention of voltage plateau, graphic of sensitivity and operation voltage in an ionization chamber

    International Nuclear Information System (INIS)

    The work developed for the Laguna Verde Nuclear Power Central allows to obtain the voltage plateau, graphic of sensitivity and operation voltage of three types of ionization chambers which are used in their monitoring systems of process radiation. The automated system is based in a personal computer (Pc) for controlling and acquiring data from the different instruments used, its programming was realized with virtual instruments (LabVIEW, National Instruments software). The system also realizes a diagnosis of the ionization chamber and determine whether the parameters obtained are inside of the manufacturer specifications, that is to say, it determines when the ionization chamber must be replaced. (Author)

  18. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes

    International Nuclear Information System (INIS)

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%±1.5% (1 SD), and -0.6%±1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program

  19. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2012-03-15

    Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  20. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams

    International Nuclear Information System (INIS)

    Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and kQ factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate kQ factors. Systematic uncertainties in Monte Carlo calculated kQ factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although kQ factors were consistent on average within 0.17%. Chamber-to-chamber variations in kQ factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated kQ factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated kQ factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated kQ factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  1. A fission fragment detector for correlated fission output studies

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  2. A fission fragment detector for correlated fission output studies

    International Nuclear Information System (INIS)

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup

  3. Neutron induced fission of 234U

    OpenAIRE

    Pomp S.; Al-Adili A.; Oberstedt S.; Hambsch F.-J.

    2012-01-01

    The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission o...

  4. Fission fragment properties and the problem of the pulse height defect

    International Nuclear Information System (INIS)

    The pulse height defect (PHD) has been investigated for three different counting gases commonly used in ionization chambers. The PHD introduces an underestimation of the kinetic energy of a charged particle detected with an ionization chamber. Thus, in some cases it is of crucial importance to correct for this effect, e.g. when studying fission fragment properties. A new method was used, applying a waveform digitizer, to study the PHD. The fission fragment properties from spontaneous fission of 252Cf where determined using different counting gases and different ways of correcting for the PHD were evaluated. (author)

  5. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm3 sensitive volume. The detector was characterized in a plastic phantom with 60 Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm2, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm2, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this technology will be

  6. Ionization detector

    International Nuclear Information System (INIS)

    The objects of the invention are, first, to provide an ionization detector having a three chamber structure characterised by a built-in feedback path that regeneratively stabilizes the operating point of the detector. Secondly, to provide a specially designed chamber construction including electrodes shaped so as to enhance the efficiency of the chamber and reduce ion recombination. The ionization chamber described has a chamber structure with a first closed chamber and a second chamber able to receive gases from outside. These two chambers have a common boundary including a common electrode. One electrode associated with the second chamber, and one within the first chamber, define a third chamber within the first chamber allowing an ionization path between. A radioactive source provides ionizing radiation for all three chambers and establishes an ionization current. There is a detector coupled to the common electrode for detecting changes in this current. (U.K.)

  7. A charged particle telescope with a gas ionization chamber ΔE detector with axial charge collection

    International Nuclear Information System (INIS)

    An ionization chamber as ΔE detector with axial field configuration has been set up. No frisch grid is required. The detector is backed by a surface barrier E detector. The thin aluminized mylar entrance window acts as anode on which positive voltage is applied. A charged particle telescope with the above ionization chamber has been fabricated. It consists of three parts, the window assembly, the gas cell and the E detector assembly. These are described. The performance of the detector was tested in a vacuum chamber using 241Am and 239Pu α-sources at various pressures and anode voltages using a gas length of 3 cm. The gas mixture used was 90 per cent argon and 10 per cent methane. The measurements showed that operating anode voltage in the range of 300 to 600V and the pressure range from 0.1 to 0.9 kg/cm2 were suitable for heavy ions. (M.G.B.)

  8. Influence of size of the ionization chamber in determination of the quality of an X-ray field of references

    International Nuclear Information System (INIS)

    The quality of an X-ray field of reference can be evaluated with the determination of the values of the first and second half-value layer - 1st and 2nd CSR, from measurements carried out with appropriate ionisation chambers. The acceptance criteria of ISO 4037-1 states that the values of 1st and 2nd CSR may not differ by more than -5% of the reference values. Procedures have been developed on X-ray equipment PANTAK, model HF160, adjusted to produce a field of 48 keV X-ray, to investigate the determination of the values of 1st and 2nd CSR with the use of different ionization chambers of varying volumes. The initial results indicate that the values of 1st and 2nd CSR are influenced by the size of the ionization chamber used, which suggests the determination of algorithm for the determination of a single value of 1st and 2nd CSR

  9. Use of an Ionization Chamber and Tritiated Oil for Continuous Measurement of the Oil Consumption of an Internal Combustion Engine

    International Nuclear Information System (INIS)

    By adding tritiated squalene to the lubricating oil and passing some of the exhaust gases through an ionization chamber kept at 150°C to avoid water vapour condensation, it was possible to carry out continuous measurement of the oil consumption of an internal combustion engine. The sensitivity of the chamber is of the order of 0.015 μCi of tritiated water per litre of exhaust gas. The specific activities used were of the order of 0.3 Ci per litre of oil; this value is considerably higher than that used when measuring the samples by liquid scintillation, but this disadvangage is largely offset by the continuity of the measurements. Owing to the intense ionization of the exhaust gases, it was necessary to placc an ion trap before the chamber. The method has been used on an engine test bench for two years and has now reached a stage suiiable for practical development. By making further improvements, which have not yet been tackled, it seems likely that this method can be applied to a vehicle in normal operation. (author)

  10. A study of the linear behaviour of a three electrode ionization chamber for N-16 gamma-rays

    International Nuclear Information System (INIS)

    The (I,V) characteristics of a locally designed three electrode ionization chamber filled with argon gas at 180 psi and Xe at 95 psi have been studied for high energy gamma rays from /sup 16/N produced in a Pakistan Research Reactor-1 (PARR-1). The reactor was operated at four different power levels i.e. 1 MW, 3 MW, 6 Mw and 9 MW. It is observed that the measured ionization current increase linearly with reactor power for both gases. The plateau region is reached above 1 kV for all the rector powers used in this work. The detector operating voltage is found to be 2 kV. It is observed that in the plateau region the slope increases with an increase in the exposure rate. The (1/I,1/V) and (I,1/V/sup 2/) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses. Both these losses is slightly greater than that of the initial recombination losses. The linearity behavior of the chamber is also observed. It is also observed that in case of Xe, ionization current is about three time greater than for the case of Ar. (author)

  11. Power measurement in the 7A2 configuration of the RP-0 reactor using the neutron noise technique connected to a compensated ionized chamber

    International Nuclear Information System (INIS)

    Results of the neutron noise measurements carried out in the 7A2 configuration of the RP-0 reactor using the BC3 rod to reach criticality are presented. These measurements were carried out using a compensated ionized chamber (CIC) located at E2 position. Finally, potential calibration of the march chamber 4 from the reactor instrumentation is presented

  12. Calibration of a 4π-γ well-type ionization chamber system for measuring of the radionuclides activity

    International Nuclear Information System (INIS)

    The calibration of a 4π well-type ionization Chamber System installed at the Laboratorio de Metrologia Nuclear, of the Instituto de Energia Atomica of Sao Paulo used for of the activity determination of radioactive solutions is descrided. The determination can be performed by two methods: 1) Direct Method, comparing the ionization Chamber response for solutions of unknown activity against that obtained with a solution which is standardized by the Absolute 4πβγ Coincidence Method. By this method the following radionuclides are standardized: 241Am, 139Ce, 198Au, 22Na, 134Cs, 54Mn, 60Co, 42K, 24Na. In this case, the accuracy achieved is about 0.2 to 0,4%. 2) Indirect Method, by means of curves of relative beta or gama efficiency, which were determined in this work. This method can be applied for those radionuclides not included in the direct method. In this case, the accuracy depends on the gama energy range of the curves and on the accuracy of the absolute gama intensities, taken from the literature. In general the uncertainty is greater than the direct method, but values of 0,2% can be achieved in favourable cases. The upper and lower limits of Activity that can be measured depend on the radionuclide. These limits are from a few micro-curies to many mili-curies, which are satisfactory for most purposes. The sample preparation is simple and the time spent in the measurement is, in general, restricted to a few minutes. These are some of the advantages of this ionization Chamber System in comparison with other systems

  13. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography

    International Nuclear Information System (INIS)

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  14. Description of the XXXIV ARCAL Project Repairing and calibration of electrometers and ionization chambers used in radiotherapy

    International Nuclear Information System (INIS)

    The technological tools from what the humanity has for the illnesses diagnosis and the cancer treatment, are based in great extent in the use of ionizing radiations. This situation worries to the International Atomic Energy Agency (IAEA), which has implemented technical cooperation programs for protecting the human health. In Latin America the ARCAL program (Regional Agreement of Cooperation for Promotion of Nuclear Science and Technology in Latina America and the Caribbean was created. The Project ARCAL XXXIV has as objective to establish three regional centers of repairing, maintenance and electric calibration of clinical dosemeters, equipment made up for an ionization chamber and an electrometer which is used in radiotherapy to generate calibration procedures, personnel training, establishment of an intercomparison net for the electrometers control used as standards and designing current intensity sources which serve as work standards for each one of the participant countries, Mexico is one of them. (Author)

  15. Measurements of neutron-induced proton and α-particle production cross sections using gridded ionization chamber

    International Nuclear Information System (INIS)

    A gridded ionization chamber for measurements of the neutron induced charged-particle production cross sections has been developed and applied to the measurements of (n,p) and (n,α) cross sections for Ni and Cu at incident neutron energies of 4.3 ∼ 6.5 MeV and 14.1 MeV. This technique is very effective owing to its large geometrical efficiency. The energy- and angular-differential cross sections and reaction cross sections were deduced and compared with previous experimental and evaluated data. (author)

  16. Study on the realization of a minimum ionizing particle detector: development of a PPAC (Parallel-plate Avalanche Chamber)

    International Nuclear Information System (INIS)

    Parallel-Plate Avalanche Chamber (PPAC) detectors are used currently to observe nuclear disintegrations in nuclear physics. The work that has been done here shows PPAC can be used in high energy physics under certain conditions to detect minimum ionizing particles. Their advantage is to join good time resolution with low matter density. A PPAC prototype has been made with 90% efficiency, 3 NS jitter, 2 NS rise time, 20 mg/cm2 mass, 1.5 mm spatial accuracy. The parameters studied were electrodes design, choice of gas filling, electronics and anode strips. The detector is to be used as a hodoscope with high flux of particles

  17. Development Of A Digital Technique For The Determination Of Fission Fragments And Emitted Prompt Neutron Characteristics

    Science.gov (United States)

    Varapai, N.; Hambsch, F.-J.; Oberstedt, S.; Serot, O.; Barreau, G.; Kornilov, N.; Zeinalov, Sh.

    2005-11-01

    The present work demonstrates the application of the digital technique for nuclear measurements. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from 252Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. The experimental set-up is installed at the Institute for Reference Materials and Measurements. Preliminary results are presented.

  18. Methodology of a study of correlations between neutron multiplicity, mass and kinetic energy of fission fragments

    International Nuclear Information System (INIS)

    The description of an experimental set-up for the study of the excitation energy distribution of fission fragments by means of coincident measurement of fission neutrons is presented. For every fission event the kinetic energy and mass of both fragments are registered simultaneously with the number of prompt neutrons emitted by each of the complementary fission fragments. With this set-up, the fission fragments are detected by a twin ionization chamber and the neutrons - by two large Gd-loaded liquid scintillator tanks. (author)

  19. Prompt Neutron Emission from Fragments in Spontaneous Fission of 244, 248Cm and 252Cf

    Science.gov (United States)

    Vorobyev, A. S.; Dushin, V. N.; Hambsch, F.-J.; Jakovlev, V. A.; Kalinin, V. A.; Laptev, A. B.; Petrov, B. F.; Shcherbakov, O. A.

    2005-11-01

    Neutrons emitted in fission were measured separately for each complementary fragment in correlation with fission fragment energies. Two high efficient Gd-loaded liquid scintillator tanks were used for neutron registration. Fission fragment energies were measured using a twin Frisch gridded ionization chamber with a pin-hole collimator. The neutron multiplicity distributions were obtained for each value of the fission fragment mass and energy and corrected for neutron registration efficiency, background and pile-up. The dependencies of these distributions on fragment mass and energy for different energy and mass bins, as well as the mass and energy distribution of the fission fragments are presented and discussed.

  20. Prompt Fission Neutron Emission in Resonance Fission of 239Pu

    Science.gov (United States)

    Hambsch, Franz-Josef; Varapai, Natallia; Zeinalov, Shakir; Oberstedt, Stephan; Serot, Olivier

    2005-05-01

    The prompt neutron emission probability from neutron-induced fission in the resonance region is being investigated at the time-of-flight facility GELINA of the IRMM. A double Frisch-gridded ionization chamber is used as a fission-fragment detector. For the data acquisition of both the fission-fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection, large-volume liquid scintillation detectors from the DEMON collaboration are used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data. Neutron multiplicity investigations for actinides, especially in resonance neutron-induced fission, are rather scarce. They are, however, important for reactor control and safety issues as well as for understanding the basic physics of the fission process. Fission yield measurements on both 235U and 239Pu without prompt neutron emission coincidence have shown that fluctuation of the fission-fragment mass distribution exists from resonance to resonance, larger in the case of 235U. To possibly explain these observations, the question now is whether the prompt neutron multiplicity shows similar fluctuations with resonance energy.

  1. Multiple sampling ionization chamber (MUSIC) for investigation of fusion induced by halo nuclei

    International Nuclear Information System (INIS)

    A high resolution MUSIC for low and medium energy ions up to ∼ 20 AMeV, for investigation of fusion processes induced by halo nuclei, has been achieved. The chamber was used in the first experiments, aiming at investigating fusion processes induced by 9,11 Li with light targets. In these experiments MUSIC was used for the identification of the inclusive evaporation residues produced in the Si detector target, mounted inside the chamber. By using MUSIC it was possible to separate the inclusive spectra corresponding to the fusion processes, from the background due to the energy degraded beam particles. In principle such a chamber could be also used for investigation of particular fusion channels produced in the entrance window. In this case one could obtain the fusion product trajectory angle with the horizontal plane, by coupling each anode pad to a TDC. The chamber was also provided by a position grid, mounted between the Frisch grid and the anode pads. The energy loss distribution widths were measured using α particles. The chamber was filled with P-10 gas at pressures between 200 and 300 torr. The obtained resolution corresponding to a single pad, is close to the limit derived from the theory of Badhwar. (authors)

  2. Beta-efficiency of a typical gas-flow ionization chamber using GEANT4 Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hussain Abid

    2011-01-01

    Full Text Available GEANT4 based Monte Carlo simulations have been carried out for the determination of efficiency and conversion factors of a gas-flow ionization chamber for beta particles emitted by 86 different radioisotopes covering the average-b energy range of 5.69 keV-2.061 MeV. Good agreements were found between the GEANT4 predicted values and corresponding experimental data, as well as with EGS4 based calculations. For the reported set of b-emitters, the values of the conversion factor have been established in the range of 0.5×1013-2.5×1013 Bqcm-3/A. The computed xenon-to-air conversion factor ratios have attained the minimum value of 0.2 in the range of 0.1-1 MeV. As the radius and/or volume of the ion chamber increases, conversion factors approach a flat energy response. These simulations show a small, but significant dependence of ionization efficiency on the type of wall material.

  3. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber

    International Nuclear Information System (INIS)

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium

  4. Design and Development of Ionization Chamber for Detection of X-Ray Beam AT INDUS-2 RRCAT

    Directory of Open Access Journals (Sweden)

    Nawaz Ali Sayed

    2013-02-01

    Full Text Available The goal of this paper was to design and develop a Microcontroller based data acquisition unit for detection of X-ray flux through Ionization chamber that will remotely control and monitor the ultra-low current signal detection analog module precisely. This application will be useful to measure the intensity of x-ray flux through the ionization chamber in a beam line of synchrotron radiation source which is mounted in INDUS-2. The beam line area is highly restricted because of hazardous radiation, so through this application remote interfacing provides for the ultra-low current signal detection card that can be controlled by personal computer. To design a perfect embedded system there are many issues like designing a proper PCB, to achieve the specified resolution of the ADC used in chip, code developed using any compiler should be within the limit of the memory of the microcontroller system and integrity of the devices used in the circuit. Initially explore and gain the knowledge of embedded systems by doing a small project and writing the code for the same, and gain a knowledge how the system works. Programming has done in assembly language 8051, for schematic design PCB design tool ORCAD (VERSION 9.0 use

  5. Experimental study on the influence of the central electrode in Farmer-type ionization chambers

    International Nuclear Information System (INIS)

    In the IAEA TRS-381 protocol, kcel and pcel account for the central electrode perturbation during the air kerma chamber calibration and the in-phantom measurements. The values of these correction factors are based mainly on Monte Carlo simulations. In the present work experimental data on kcel and pcel for the NE-2571 chamber is provided, relative to a graphite electrode. In addition, the relative influence of the 3 mm diameter A-150 central electrode of the NE-2581 chamber is studied. The experimentally determined value of kcel for a 1 mm aluminium electrode is 1.008±0.2%, and of pcel in photon and electron beams 0.993±0.2% and 0.997±0.2% respectively. The experimental data and the Monte Carlo simulations agree to within 0.2%. No significant influence of the A-150 central electrode diameter on the absorbed dose determination is shown. (author)

  6. 用铀裂变室研究反射中子测量技术%Study on technique for measuring reflection neutrons byuranium fission chamber

    Institute of Scientific and Technical Information of China (English)

    刘荣; 林理彬; 王大伦; 励义俊; 蒋励; 王玫; 刘成龙; 杨可

    2000-01-01

    In a cement shielding designed by ourselves, technique for measuring reflection neutrons was studied by using the depleted and enriched uranium fission chambers. In different experiment systems, absolute fission reaction rates, derived from reflection neutrons, at different positions of the surface of an iron spherical shell were measured. The experimental error was about 3.5%4.1%%在自行设计的水泥屏蔽体中,用铀裂变室研究了反射中子测量技术。在不同实验系统上,测量了铁球壳表面不同位置上中子引起的绝对裂变反应率分布。实验总误差为3.9%。

  7. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Science.gov (United States)

    Sharifi, B.; Zamani Zeinali, H.; Soltani, J.; Negarestani, A.; Shahvar, A.

    2015-01-01

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  8. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  9. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    International Nuclear Information System (INIS)

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories

  10. DAVID--a translucent multi-wire transmission ionization chamber for in vivo verification of IMRT and conformal irradiation techniques.

    Science.gov (United States)

    Poppe, B; Thieke, C; Beyer, D; Kollhoff, R; Djouguela, A; Rühmann, A; Willborn, K C; Harder, D

    2006-03-01

    Permanent in vivo verification of IMRT photon beam profiles by a radiation detector with spatial resolution, positioned on the radiation entrance side of the patient, has not been clinically available so far. In this work we present the DAVID system, which is able to perform this quality assurance measurement while the patient is treated. The DAVID system is a flat, multi-wire transmission-type ionization chamber, placed in the accessory holder of the linear accelerator and constructed from translucent materials in order not to interfere with the light field. Each detection wire of the chamber is positioned exactly in the projection line of a MLC leaf pair, and the signal of each wire is proportional to the line integral of the ionization density along this wire. Thereby, each measurement channel essentially presents the line integral of the ionization density over the opening width of the associated leaf pair. The sum of all wire signals is a measure of the dose-area product of the transmitted photon beam and of the total radiant energy administered to the patient. After the dosimetric verification of an IMRT plan, the values measured by the DAVID system are stored as reference values. During daily treatment the signals are re-measured and compared to the reference values. A warning is output if there is a deviation beyond a threshold. The error detection capability is a leaf position error of less than 1 mm for an isocentric 1 cm x 1 cm field, and of 1 mm for an isocentric 20 cm x 20 cm field. PMID:16481690

  11. Performance study of the primary standard ionization chamber for deployment of the diagnostic radiology qualities

    International Nuclear Information System (INIS)

    Activities radiotherapy, diagnostic radiology and radiation protection, require knowledge of physical and dosimetric parameters, to be applied safely. Aiming to meet demand in Brazil, the National Laboratory of Metrology of Ionising Radiation - LNMRI - is deploying the primary standard for the calibration of secondary standard chambers, used in quality control in hospitals, clinics and industries. (author)

  12. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R50 < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications

  13. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B R; McEwen, M R [Measurement Science and Standards, National Research Council, Ottawa, ON (Canada)

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  14. Review of some problems encountered with In-Core Fission chambers and Self-Powered Neutron Detectors in PWR's. Tests - Present use - Outlook on the near future

    International Nuclear Information System (INIS)

    The working conditions of in-core detectors are investigated as well as some reliability problems which depend on nuclear environment (such as decrease of sensibility, loss of insulation...). Then we review the long-term irradiation tests in experimental reactor that have been carried out by the CEA these last years, with fission chambers (FC) and Self-Powered Detectors (SPD). The travelling probe system with moveable FC used in the 900 MWe PWR is briefly described. Finally an outlook on future possibilities is given; for instance the use of fixed SPD and a moveable FC in the same thimble, allowing recalibration of the fixed detectors

  15. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zink, K., E-mail: klemens.zink@kmub.thm.de [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390, Germany and Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg D-35043 (Germany); Czarnecki, D.; Voigts-Rhetz, P. von [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390 (Germany); Looe, H. K. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg D-26129, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg D-26129 (Germany); Harder, D. [Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen D-37073 (Germany)

    2014-11-01

    Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known “inscattering effect,” whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the in–out balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the in–out balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the

  16. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    International Nuclear Information System (INIS)

    Highlights: ► We report first time that ionizing radiation induces mitochondrial dynamic changes. ► Radiation-induced mitochondrial fission was caused by Drp1 localization. ► We found that radiation causes delayed ROS from mitochondria. ► Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O2·- production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O2·-. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  17. Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber

    Science.gov (United States)

    Martschini, Martin; Buchriegler, Josef; Collon, Philippe; Kutschera, Walter; Lachner, Johannes; Lu, Wenting; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-10-01

    93Zr with a half-life of 1.6 Ma is produced with high yield in nuclear fission, and thus should be present as a natural or anthropogenic trace isotope in all compartments of the general environment. Sensitive measurements of this isotope would immediately find numerous applications, however, its detection at sufficiently low levels has not yet been achieved. AMS measurements of 93Zr suffer from the interference of the stable isobar 93Nb. At the Vienna Environmental Research Accelerator VERA a new multi-anode ionization chamber was built. It is optimized for isobar separation in the medium mass range and is based on the experience from AMS experiments of 36Cl at our 3-MV tandem accelerator facility. The design provides high flexibility in anode configuration and detector geometry. After validating the excellent energy resolution of the detector with 36S, it was recently used to study iron-nickel and zirconium-niobium-molybdenum isobar separation. To our surprise, the separation of 94Zr (Z = 40) from 94Mo (Z = 42) was found to be much better than that of 58Fe (Z = 26) from 58Ni (Z = 28), despite the significantly larger ΔZ/Z of the latter pair. This clearly contradicts results from SRIM-simulations and suggests that differences in the stopping behavior may unexpectedly favor identification of 93Zr. At 24 MeV particle energy, a 93Nb (Z = 41) suppression factor of 1000 is expected based on a synthetic 93Zr spectrum obtained by interpolation between experimental spectra from the two neighboring stable isotopes 92Zr and 94Zr. Assuming realistic numbers for chemical niobium reduction, a detection level of 93Zr/Zr below 10-9 seems feasible.

  18. Energy dependence of the air kerma response of a liquid ionization chamber at photon energies between 8 keV and 1250 keV

    International Nuclear Information System (INIS)

    Full text: In its recent reports on cardiovascular brachytherapy the DGMP recommends the source strength of brachytherapy sources being characterized in terms of absorbed dose to water at a distance of 2 mm from the central axis of the source. As a consequence, the response of a detector suitable for characterizing such sources with respect to absorbed dose to water should depend only to a small extent on radiation energy. Additionally, the detection volume of the detector has to be sufficiently small for the necessary spatial resolution to be obtained. The liquid ionization chamber as described in seems to be a promising means for this type of measurements. The two components of the ionization liquid (TMS and isooctane) can be mixed in a ratio which ensures that the mass-energy absorption coefficient of the resulting mixture deviates from that of water by less than ±15 % down to photon energies of 10 keV. Due to the high density of the ionization medium, the spacing between the two electrodes of the ionization chamber can be made as small as a few tenths of a millimeter and still the resulting ionization current is sufficiently large. The ionization chamber used in the present investigation is a plane parallel chamber 5 mm in diameter and of 0.3 mm electrode spacing. The ionization medium is a mixture of 40 % TMS and 60 % isooctane. The irradiations were carried out with the ISO wide spectra series with tube voltages between 10 kV and 300 kV and with 137Cs and 60Co γ-radiation. As a first step, the response of the liquid ionization chamber was investigated with respect to air kerma instead of absorbed dose to water. Although the mass-energy absorption coefficient of the liquid deviates from that of air by less than ±10 % over the photon energy range, the measured chamber response varies by a factor of about 3.5. Monte Carlo calculations carried out with EGSnrc show a variation of the chamber response smaller than ±20 %. Measurements of the ion yield of the

  19. Method for determining correction factors induced by irradiation of ionization chamber cables in large radiation field

    International Nuclear Information System (INIS)

    A simple method was developed to be suggested to hospital physicists in order to be followed during large radiation field dosimetry, to evaluate the effects of cables, connectors and extension cables irradiation and to determine correction factors for each system or geometry. All quality control tests were performed according to the International Electrotechnical Commission for three clinical dosimeters. Photon and electron irradiation effects for cables, connectors and extention cables were investigated under different experimental conditions by means of measurements of chamber sensitivity to a standard radiation source of 90Sr. The radiation induced leakage current was also measured for cables, connectors and extension cables irradiated by photons and electrons. All measurements were performed at standard dosimetry conditions. Finally, measurements were performed in large fields. Cable factors and leakage factors were determined by the relation between chamber responses for irradiated and unirradiated cables. (author)

  20. Double ionization chamber as neutron flux monitor and for tritium breeding studies in fusion blanket experiments

    International Nuclear Information System (INIS)

    A new method for direct determination of tritium breeding, specially suited to thermal blankets is presented. The method can provide true tritium events even in the presence of a reasonable fraction of high energy neutrons. There exists no transfer or recovery losses and also the method exhibits good efficiency, in addition to being an on-line one. The detector consist of two identical chambers separated by a common earthing ring which supports a thin nickel foil loaded with Li6F covered with a thin gold layer acting as a conducting electrode. Two nickel discs are held symmetrically on either side of the central electrode as charge collectors. The chambers can be filled with a suitable inert gas. The system response to thermal neutrons was calculated by both analytical as well Monte Carlo method and is in good agreement with experimental results

  1. Multiple sampling ionization chamber (MUSIC) for fusion induced by halo nuclei investigation

    International Nuclear Information System (INIS)

    A high resolution MUSIC, for low and medium energy ion, has been developed. The high pulse height resolution was obtained by coupling the preamplifiers directly to the anode pads. The pulse height measurements were performed by using a 241 Am alpha source. The energy loss distribution widths measured in P-10 gas at pressures between 200 and 300 torr are in agreement with the theory of Badhwar. The achieved resolution of the chamber is closed to the statistical limit. MUSIC was used for fusion investigation by using 11 Li radioactive beam and Si and C targets. It was found to be very useful in eliminating the energy degraded and parasitic beam admixtures. It was expected that this type of chamber could be used also for isotopes of light elements identification, in Accelerator Mass Spectrometry applications. (authors)

  2. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    International Nuclear Information System (INIS)

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  3. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    Science.gov (United States)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  4. Analysis of ionization distributions in a low-pressure cloud chamber

    International Nuclear Information System (INIS)

    A low-pressure cloud chamber has been constructed which can resolve individual ions in the tracks of low-energy electrons. Droplets formed by photoelectrons and Auger electrons from characteristic aluminum x rays have been photographed and their three-dimensional coordinates reconstructed. The accuracy of these coordinates is limited mainly by diffusion in the chamber which is estimated to be equivalent to 4.0 +- 1.5 nm in water at unit density. This paper describes a method of computing and analyzing individual electron tracks from the droplet coordinates. Track-length data have been determined for each type of track. Rossi Y distributions have been calculated for target sizes equivalent to 6, 12, and 24 nm in water at unit density. Histograms of interdroplet distances (T distributions) have been calculated and compared to similar distributions derived from results of Monte Carlo calculations. The cloud chamber has been filled with an approximately tissue-equivalent mixture. Results should be useful for checking the physical basis of target theories of radiation action

  5. About the possibility of the right-left ambiguity resolution in definition of ionizing particle coordinates in a multipole drift chamber

    International Nuclear Information System (INIS)

    The possibility of applying multipole drift chamber (MDC) for measuring the ionization electron drift times and the right-left ambiguity resolution, originating by identification of charged particles coordinates. To accomplish the assigned tasks the number of potential wires was increased. This made it possible to screen the periphery area close to the anode wire so that the ionizing electrons could drift from this area to the remote anode wire. The results on the computer simulation of electric field in the MDC cell depending on the number of potential wires are presented. The modeling results made it possible to optimize the chamber basic parameters. 2 refs., 4 figs

  6. Measurement of differential cross section for the 6Li(n,t)4He reaction by using gridded ionization chamber

    International Nuclear Information System (INIS)

    By using a gridded ionization chamber, the differential cross sections and angle integrated cross sections for the 6Li(n,t)4He reaction were measured at neutron energies of 3.67 and 4.42 MeV. The neutrons were produced through D(d,n)3He reaction by a deuteron gas target. Absolute neutron flux was determined through 238U(n,f) and H(n,p) reactions. At 3.67 MeV the differential cross section for triton is almost 90 degree symmetric but it is obviously forward peaked at 4.42 MeV in the center-of-mass reference system

  7. Beam halo monitoring at J-PARC 3-50 beam transport line using long air ionization chamber

    International Nuclear Information System (INIS)

    3 long-type Air Ionization Chambers (AICs) have been installed along 350BT which is the beam transport from the 3GeV Rapid Cycling Synchrotron (RCS) to the Main Ring synchrotron (MR) to monitor beam losses. 3-50BT collimators are used to remove beam halo components outside the emittance larger than 54[πmm · mrad] for horizontal and 60[πmm · mrad] for vertical plane, at present operations. By measuring the beam loss induced radiations from the 3-50BT collimators, the beam halo components have been monitoring on line. Details of the system, calibration results, and resolution of the system will be described in this paper. (author)

  8. Multi-concentric-ring open-air ionization chamber for high-intensity X-ray beams

    International Nuclear Information System (INIS)

    An ionization chamber with four concentric ring electrodes was used to measure doses of white, 10, 15 and 20 keV synchrotron X-ray beams. The ring-shaped electrodes, which had diameters less than 11.8 mm, collected charges independently only around the beam, excluding strong in-beam charges when the beams passed through a small hole in the electrode centers. As a result, under low saturation voltages, the measured dose rates were confirmed to correlate with the beam intensity when conversion factors calculated with a Monte Carlo code were employed. The influence of the assumed beam sizes and incident positions on the current was almost negligible, with the exception of the incident position dependence at 10 keV

  9. Development for PRESPEC: New front end electronic for multi sampling ionization chambers of the GSI-fragment separator

    International Nuclear Information System (INIS)

    To study detailed structure effects during in-beam gamma spectroscopy experiments at the GSI fragment separator high particles rates are needed at the final focal plane. The use of new position detector (TPC) having higher rate capability than the previous Multi-Wire Proportional Counter put the ionization chambers (MUSICs) used for the δ-E measurement as the limiting factor. The current electronics used for those detector does not allow to sustain rates of up to 100 kHz that the coming experimental program will request. Indeed at those rates the analog electronic is not able to disentangle pile-up events and thus give a wrong Z identification for the incoming nucleus. The ongoing work on new digital electronic and on signal characterization to allow higher rates capability of those detectors is presented.

  10. Characteristics of A-150 plastic equivalent gas in A-150 plastic ionization chambers for p(66)Be(49) neutrons

    International Nuclear Information System (INIS)

    The average energy necessary to produce an electron-ion pair (anti W) of a gas mixture having an atomic composition very close to that of A-150 plastic has been studied through use in different size ionization chambers made of that plastic in a p(66)Be(49) neutron therapy beam. A tentative value for anti W(A-150-gas) of 27.3 +/ -0.5 J C-1 was derived. The anti W value of the A-150 equivalent gas mixture is compared to those of methane-based tissue-equivalent gas and of air for the p(66)Be(49) neutron beam as well as to corresponding values found in similar experiments using 14.8 MeV monoenergetic neutrons

  11. Experimental research of high-pressure tissue equivalent ionization chamber used for detecting in mixed radiation field

    International Nuclear Information System (INIS)

    The design principle of tissue equivalent ionization chamber based on the theory of recombination was described, and the area neutron and gamma dose equivalent instrument was designed. This detection system can indirectly acquire the information of the ambient dose equivalent, the absorbed dose and the quality factor of the mixed radiation field using only one probe. Moreover, the detection system was tested by the accelerator and the standard radiation field. The results indicate that the system has good energy response and sensitivity to the neutron and gamma radiation, especially to the high energy gamma radiation and the neutrons with energy ranging from thermal to dozens of MeV. The uncertainty can be controlled within ±50%, while the dose rate of the radiation is above dozens of μSv/h, so this detection system can serve as the necessary measurement instruments and monitoring technology for the places having the mixed radiation field of neutron and gamma ray. (authors)

  12. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    International Nuclear Information System (INIS)

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  13. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  14. Scattering study at free air ionization chamber diaphragm; Estudo do espalhamento no diafragma da camara de ionizacao de ar livre

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Alexandre Lo Bianco dos

    2011-07-01

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are k{sub RQR-M1}=0,9946, k{sub RQR} {sub -M2}=0,9932, k{sub RQR-M3}=0,9978 and k{sub RQR-M4}=0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  15. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, C. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Boissonnat, G., E-mail: boissonnat@lpccaen.in2p3.fr [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Brusasco, C. [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Colin, J.; Cussol, D.; Fontbonne, J.M. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Marchand, B.; Mertens, T.; Neuter, S. de [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Peronnel, J. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France)

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  16. 240Pu(n,f), 242Pu(n,f), 237Np(n,f), neutron fission cross sections, Esub(n) = 2.5 MeV

    International Nuclear Information System (INIS)

    Measurements of the absolute neutron fission cross section of 240Pu, 242Pu and 237Np have been made at 2.5 MeV using a hybrid detector. The fission events were detected in an ionization chamber (2π) and the neutron flux was determined by a proton recoil telescope and a directional long counter. Our values are compared to previous data

  17. Development of a high-pressure xenon ionization chamber gamma-ray spectrometer for field deployment in cone penetrometers

    International Nuclear Information System (INIS)

    It is sometimes necessary to measure gamma-ray spectra under difficult circumstances such as those encountered during in situ characterization of radioactive soils. For some classes of soil, various measurement instruments can be inserted to depths of 100 feet or more using the cone penetrometer technique. The problems for gamma-ray spectroscopy in this application include size limitations, elevated and/or variable temperature environment, vibration and shock, and remote operation. Measurement of gamma-ray spectra under these conditions has been done using scintillation detectors such as NaI(Tl) or BGO. However, these instruments suffer from poor energy resolution (ca. 8-10%), temperature sensitivity and, in the case of NaI(Tl), activation by neutrons. Sentor Technologies, Inc., working under Department of Energy sponsorship and in conjunction with Virginia Commonwealth University and the University of California, San Diego, has developed a high-pressure xenon ionization chamber spectrometer that is specifically designed for use in cone penetrometers. Key features of the detector design include a 29 mm O.D. cylindrical geometry with concentric cathode, Frisch grid, and anode, and ultra-purified (ca. ppb) xenon pressurized to a density of 0.6 g x cm-3. Utility of high-pressure xenon ionization spectrometers for field use in cone penetrometers or similar applications including borehole logging was demonstrated. (author)

  18. Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of 4 atoms to 105 atoms) for 239-242+244Pu, 233+236U, 241-243Am, 89,90Sr, and 134,135,137Cs, and (le) 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 106 or better using a SEM are reported here. Precisions of RSD ∼ 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

  19. A new method to identify nuclear charges of fission fragments

    International Nuclear Information System (INIS)

    For a mass and velocity selected beam of fission fragments, the elemental components of the beam have been determined by measuring the difference between the time the fragments enter an axial ionization chamber (with the electrical field lines parallel to the particle trajectory) and the time the anode pulse crosses a given level. The nuclear charge resolution achieved for typical fission fragments out of the light mass group in thermal neutron induced fission of 235U is Z/δZ = 43 for a nuclear charge Z = 39. (orig.)

  20. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  1. Comparison of theoretical and experimental determinations of calibration factors for cylindrical and parallel plates ionization chambers

    International Nuclear Information System (INIS)

    The Ionizing Radiation Dosimetry Section of CNEA is the National Laboratory of Dosimeter Reference, having been designated by the National Institute of Industrial Technology (INTI, deposit taker by Law 19,511/72 of the national standards for metrology) for the safekeeping and operation of the national standards for dosimetry (Agreement INTI - CNEA, February 2004). From their creation, the CRRD provides, among other services, the calibration of dosemeters used in radiotherapy, in terms of Kerma in air, and since year 2002 provides calibration in terms of absorbed dose in water. In this work, those elements appear whereupon it counts the laboratory and that they tend to consolidate the securing of the quality of the results obtained in the calibrations of dosemeters. (author)

  2. Estimate of control rods effectiveness of the RP-0 reactor 7A2 core by the rod-drop method using a compensated ionization chamber

    International Nuclear Information System (INIS)

    Value estimate results of the four control rods by the rod-drop method are presented using the 'point reactor model' for the RP-0 reactor 7A2 core employing the inverse kinetics neutronic noise equipment and a compensated ionization chamber located in the E2 core. At every moment, the reactor power was known and it was calibrated with the same equipment

  3. Identification and spectrometry of charged particles from the (n,p) and (n,α) reactions using ionization chamber with two grids

    International Nuclear Information System (INIS)

    A method of identification and spectrometry of the low-energy charged particles on the base of the ionization chamber with two grids is reported. The efficiency in the operation and the main effects of the application of the method are presented

  4. UF6 as a detector gas for fission studies

    International Nuclear Information System (INIS)

    A Frisch-grid ionization chamber has been built to test a mixture of argon with gaseous UF6 and to study its properties as a counting gas. We present first results using increasing mass fractions of 238UF6 mixed into argon. The drift velocity of the electrons increases with the content of 238UF6, while a good signal quality and energy resolution of the ionization chamber is preserved. Using uranium hexafluoride in the detector gas may give access to experiments where extremely high luminosity is required in combination with good angular and energy and/or mass resolution. Examples comprise the investigation of spontaneous fission of 238U, the study of parity non-conservation in the fission process, or precision measurements of fission fragments with good resolution using tagged photons in the entrance channel.

  5. Sensitivity evaluation of well-type ionization chamber: a tool to manage spent radioactive sealed sources

    International Nuclear Information System (INIS)

    Spent radioactive sealed sources (SRSS), after used in medicine, industry and research, are sent as radioactive waste to one of the National Nuclear Energy Commission (CNEN) Institutes. Radioactive Waste Management Laboratory (RWML) of the Nuclear and Energy Research Institute - IPEN-CNEN/SP, among its functions, is responsible for receiving, treating and storing radioactive wastes generated in all research centers of the IPEN/CNEN-SP, as well as from other Brazilians institutions. The process of treatment adopted for SRSS is the withdraw the source from its original shield and transfer it to a standard shield. An important step of this process is the characterization of the radioactive source. Generally, dose calibrators, commonly used in nuclear medicine services (NMS), are used to carry out this task. Considering that the radionuclides and the geometries of the sources to be characterized are different from those used in NMS, it is necessary to evaluate the sensitivity of this equipment for these kinds of SRSS activity measurements. This study was developed using commercial standards sources and sources with known activities under responsibility of the RWML, amongst those, 241Am and 147Pm sources were studied. The results indicate that the sensitivity of the chamber follows typical standard of punctual sources geometry. However, for other sources there are differences due to the effect of the source geometry. In such a way what one can find is the regions of higher sensitivity for those kinds of sources, with acceptable error and confidence level for this end. (author)

  6. Study on the Characteristics of Response Correction Factor of Ionization Chamber in RW3 Solid Phantom for High Energy X-rays

    International Nuclear Information System (INIS)

    The response correction factor (h) is a factor to convert the response of the chamber in solid phantom to the response in water. In RW3 solid phantom, the dependency of beam quality and depth for high energy X-rays are known characteristics, however the dependency of field size, SSD, and chamber type are unknown. In this work we have studied the unknown characteristics on the dependency of response correction factor. The farmer type chamber (FC65G) and small chamber (CC13) were used and two beam qualities of 6 and 15 MV were evaluated. The measured response correction factors at the depth of 5 cm and 10 cm were h = 1.015 and 1.021 for 6 MV X-rays, and h = 1.024 and 1.029 for 15 MV X-rays. In conclusion the response correction factor did not depend on the field size and SSD while depending on the beam quality and depth. In the chambers, there are small differences between the two chambers used in this study but we think additional study for more chambers should be required. The results in this study can be used for analyzing the measured values from ionization chamber dosimetry in RW3.

  7. Comparison of two dose-area-product ionization chambers with different conductive surface coating for over-table and under-table tube configurations

    International Nuclear Information System (INIS)

    A custom-built graphite-coated transmission ionization chamber is compared to the VacuDAP 2001 (VacuTec, Dresden, Germany), which has transparent conductive electrodes. A study was made of the dependence of response on x-ray tube potential for both types of chamber under identical conditions of exposure using over-table and under-table x-ray tubes. Since the calibration factor is the dose-area product of the radiation incident on the patient per chamber reading, it depends on the intrinsic response of the chamber as well as the effect of material in the beam between the x-ray tube and patient. Differences of about 20% were measured between the intrinsic and the over-table calibration factors and between the over-table and the under-table calibration factors for both chambers. The VacuDAP display is specifically calibrated for the over-table condition and would overstate the actual DAP in the under-table case. The intrinsic response of the graphite chamber is nearly independent of tube potential. Although the variation of response with tube potential of the graphite chamber is increased when it is used as an over-table and an under-table patient monitor, it shows less overall variation of response than the VacuDAP. The average deviation of each range of 40 to 140 kVp for both chambers

  8. Study on High Stable Measurement Techniques for Campbell Fission Chambers%坎贝尔裂变室的高稳定性测量技术研究

    Institute of Scientific and Technical Information of China (English)

    毕道伟

    2016-01-01

    由于负电性分子俘获等微观机理影响,坎贝尔裂变室的动态特性在运行期间将发生变化,甚至导致测量输出严重偏离堆芯真实功率。为防止上述因素对核电厂安全造成的不利影响,建立了裂变室时频冲击响应模型,研究了微观过程与频谱特性的映射关系,引入带通滤波方法对传统测量系统进行改进,将坎贝尔测量限制在电子漂移区,实现了复杂变化条件下的高稳定性测量。%Dynamic characteristics of Campbell fission chambers will change while in operation , due to the im-pacts of such microscopic mechanisms as capturing of electrically negative molecules , which could potentially result in measurement outputs significantly deviating from the true reactor power .To avoid the abovementioned negative impacts on reactor safety , time-frequency impulse response models are established for fission cham-bers, and the mapping relationship between microscopic processes and frequency characteristics are well stud -ied.The signal processing method of band -pass filtering is therefore introduced to improve performance of tra-dition measurement systems and limit the Campbell measurement within the range of electron drift zone , thus a-chieving highly stable measurement under complicated changing conditions .

  9. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  10. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber

    Science.gov (United States)

    Gagnebin, Solange; Twerenbold, Damian; Pedroni, Eros; Meer, David; Zenklusen, Silvan; Bula, Christian

    2010-03-01

    The absorbed dose to water is the reference physical quantity for the energy absorbed in tissue when exposed to beams of ionizing radiation in radiotherapy. The SI unit of absorbed dose to water is the gray (Gy = 1 J/kg). Ionization chambers are used as the dosimeters of choice in the clinical environment because they show a high reproducibility and are easy to use. However, ionization chambers have to be calibrated in order to convert the measured electrical charge into absorbed dose to water. In addition, protocols require these conversion factors to be SI traceable to a primary standard of absorbed dose to water. We present experimental results where the ionization chamber used for the dosimetry for the scanned proton beam facility at PSI is compared with the direct determination of absorbed dose to water from the METAS primary standard water calorimeter. The agreement of 3.2% of the dose values measured by the two techniques are within their respective statistical uncertainties.

  11. Time-of-flight ERD with a 200 mm2 Si3N4 window gas ionization chamber energy detector

    International Nuclear Information System (INIS)

    Low energy heavy ion elastic recoil detection work has been carried out in Jyväskylä since 2009 using home made timing detectors, a silicon energy detector and a timestamping data acquisition setup forming a time-of-flight–energy telescope. In order to improve the mass resolution of the setup a new energy detector was designed to replace the silicon solid state detector, which suffered from radiation damage and had poor resolution for heavy recoils. In this paper the construction and operation of an isobutane filled gas ionization chamber with a 14 × 14 mm2 100 nm thick silicon nitride window are described. In addition to greatly improved energy resolution for heavy ions, the detector is also able to detect hydrogen recoils simultaneously in the energy range of 100–1000 keV. Additionally the detector has position sensitivity by means of timing measurement, which can be performed without compromising the performance of the detector in any other way. The achieved position sensitivity improves the depth resolution near the surface

  12. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    CERN Document Server

    Courtois, C; Brusasco, C; Colin, J; Cussol, D; Fontbonne, J M; Marchand, B; Mertens, T; De Neuter, S; Peronnel, J

    2013-01-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, the medical application group from the Laboratory of Corpuscular Physics (LPC Caen) developed an Ionization Chamber in collaboration with the company IBA (Ion Beam Applications). This monitoring device called IC2/3 was developed to be used in IBAs universal irradiation head for Pencil Beam Scanning (PBS). The objectives presented in this article are to characterize the IC2/3 monitor in the energy and ux ranges used in protontherapy. The equipment has been tested with an IBAs cyclotronable to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initials speci cations needed for PBS purposes. The detector measures the dose with a relative precision better than 1% in the rang...

  13. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    International Nuclear Information System (INIS)

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development. (paper)

  14. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests.

    Science.gov (United States)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V; Pardo-Montero, Juan

    2012-08-21

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development. PMID:22850081

  15. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  16. Cross correlation method application to prompt fission neutron investigation

    Science.gov (United States)

    Zeynalova, O. V.; Zeynalov, Sh.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    Do The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying cross correlation method and digital signal processing algorithms. A new mathematical approach for neutron/gamma pulse shape separation was developed and implemented for prompt fission neutron (PFN) time-of-flight measurement. The main goal was development of automated data analysis algorithms and procedures for data analysis with minimum human intervention. Experimental data was taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to well work of C. Budtz-Jorgensen and H.-H. Knitter [1]. About 2*107 fission events were registered with 2*105 neutron/gamma detection in coincidence with fission fragments. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer.

  17. A new approach to prompt fission neutron TOF data treatment

    Science.gov (United States)

    Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.

  18. The performance of the INER improved free-air ionization chamber in the comparison of air kerma calibration coefficients for medium-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.-H. E-mail: jhlee@iner.gov.tw; Kotler, L.H.; Bueermann, Ludwig; Hwang, W.-S.; Chiu, J.-H.; Wang, C.-F

    2005-01-01

    This paper describes modifications to an original design, correction factors and uncertainty evaluations for an improved free-air ionization chamber constructed at the Institute of Nuclear Energy Research (INER, Taiwan). In addition, a comparison of secondary standard air kerma calibration coefficients for 100-250 kV medium-energy X-rays was performed to verify the experimental accuracy and measurement consistency of the improved chamber. The comparison results showed a satisfactory agreement in the measurements which were within the combined expanded uncertainties (k=2)

  19. The performance of the INER improved free-air ionization chamber in the comparison of air kerma calibration coefficients for medium-energy X-rays

    International Nuclear Information System (INIS)

    This paper describes modifications to an original design, correction factors and uncertainty evaluations for an improved free-air ionization chamber constructed at the Institute of Nuclear Energy Research (INER, Taiwan). In addition, a comparison of secondary standard air kerma calibration coefficients for 100-250 kV medium-energy X-rays was performed to verify the experimental accuracy and measurement consistency of the improved chamber. The comparison results showed a satisfactory agreement in the measurements which were within the combined expanded uncertainties (k=2)

  20. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    Science.gov (United States)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2013-12-01

    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC) for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained.