WorldWideScience

Sample records for challenge ldrd project

  1. A Case Study in Competitive Technical and Market Intelligence Support and Lessons Learned for the uChemLab LDRD Grand Challenge Project; TOPICAL

    International Nuclear Information System (INIS)

    SOUTHWELL, EDWIN T.; GARCIA, MARIE L.; MEYERS, CHARLES E.

    2001-01-01

    The(mu)ChemLab(trademark) Laboratory Directed Research and Development (LDRD) Grand Challenge project began in October 1996 and ended in September 2000. The technical managers of the(mu)ChemLab(trademark) project and the LDRD office, with the support of a consultant, conducted a competitive technical and market demand intelligence analysis of the(mu)ChemLab(trademark). The managers used this knowledge to make project decisions and course adjustments. CTI/MDI positively impacted the project's technology development, uncovered potential technology partnerships, and supported eventual industry partner contacts. CTI/MDI analysis is now seen as due diligence and the(mu)ChemLab(trademark) project is now the model for other Sandia LDRD Grand Challenge undertakings. This document describes the CTI/MDI analysis and captures the more important ''lessons learned'' of this Grand Challenge project, as reported by the project's management team

  2. Selected Examples of LDRD Projects Supporting Test Ban Treaty Verification and Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walter, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-23

    The Laboratory Directed Research and Development (LDRD) Program at the DOE National Laboratories was established to ensure the scientific and technical vitality of these institutions and to enhance the their ability to respond to evolving missions and anticipate national needs. LDRD allows the Laboratory directors to invest a percentage of their total annual budget in cutting-edge research and development projects within their mission areas. We highlight a selected set of LDRD-funded projects, in chronological order, that have helped provide capabilities, people and infrastructure that contributed greatly to our ability to respond to technical challenges in support of test ban treaty verification and nonproliferation.

  3. LDRD FY2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, K. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’s success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle

  4. LDRD Annual Report FY2006

    International Nuclear Information System (INIS)

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  5. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  6. LDRD FY 2014 Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  7. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. FY 2014 LDRD Annual Report Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Tomchak, Dena [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  9. THz transceiver characterization : LDRD project 139363 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  10. FY2014 LBNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  11. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  12. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  13. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  14. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  15. Terahertz spectral signatures :measurement and detection LDRD project 86361 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Brener, Igal; Lee, Mark

    2005-11-01

    LDRD Project 86361 provided support to upgrade the chemical and material spectral signature measurement and detection capabilities of Sandia National Laboratories using the terahertz (THz) portion of the electromagnetic spectrum, which includes frequencies between 0.1 to 10 THz. Under this project, a THz time-domain spectrometer was completed. This instrument measures sample absorption spectra coherently, obtaining both magnitude and phase of the absorption signal, and has shown an operating signal-to-noise ratio of 10{sub 4}. Additionally, various gas cells and a reflectometer were added to an existing high-resolution THz Fourier transform spectrometer, which greatly extend the functionality of this spectrometer. Finally, preliminary efforts to design an integrated THz transceiver based on a quantum cascade laser were begun.

  16. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, W. Philip, Jr.

    2010-11-01

    This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

  17. LDRD 149045 final report distinguishing documents.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A.

    2010-09-01

    This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the Computational Topology CSRF project, and the some of the leveraged work is described here. We proposed a sentence mining technique that exploited both the distribution and the order of parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be able to discover 'call-to-action' framing documents hidden within a corpus of mostly expository documents, even if the documents were all on the same topic and used the same vocabulary. Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis that English follows a dynamical system and the POS are trajectories from one state to another. We analyzed the sequences of POS using support vector machines and the cycles of POS using computational homology. We discovered that the POS were a very weak signal and did not support our hypothesis well. Our original goal appeared to be unobtainable with our original approach. We turned our attention to study an aspect of a more traditional approach to distinguishing documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into mixture-model points. A distance function is used to cluster groups of points to discover relatedness between documents. We performed a geometric and algebraic analysis of the most popular distance functions and made some significant and surprising discoveries, described in a separate technical report.

  18. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  19. Final report on LDRD project ''proliferation-resistant fuel cycles''

    International Nuclear Information System (INIS)

    Brown, N W; Hassberger, J A.

    1999-01-01

    This report provides a summary of LDRD work completed during 1997 and 1998 to develop the ideas and concepts that lead to the Secure, Transportable, Autonomous Reactor (STAR) program proposals to the DOE Nuclear Energy Research Initiative (NERI). The STAR program consists of a team of three national laboratories (LLNL, ANL, and LANL), three universities, (UC Berkeley, TAMU, and MIT) and the Westinghouse Research Center. Based on the LLNL work and their own efforts on related work this team prepared and integrated a package of twelve proposals that will carry the LDRD work outlined here into the next phase of development. We are proposing to develop a new nuclear system that meets stringent requirements for a high degree of safety and proliferation resistance, and also deals directly with the related nuclear waste and spent fuel management issues

  20. 2007 LDRD ANNUAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    French, T

    2008-12-16

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. The LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.

  1. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  2. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  3. Final report on LDRD project: Simulation/optimization tools for system variability analysis

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Bierbaum; R. F. Billau; J. E. Campbell; K. D. Marx; R. J. Sikorski; B. M. Thompson; S. D. Wix

    1999-10-01

    >This work was conducted during FY98 (Proposal Number 98-0036) and FY99 (Proposal Number 99-0818) under the auspices of the Sandia National Laboratories Laboratory-Directed Research and Development (LDRD) program. Electrical simulation typically treats a single data point in the very large input space of component properties. For electrical simulation to reach its full potential as a design tool, it must be able to address the unavoidable variability and uncertainty in component properties. Component viability is strongly related to the design margin (and reliability) of the end product. During the course of this project, both tools and methodologies were developed to enable analysis of variability in the context of electrical simulation tools. Two avenues to link relevant tools were also developed, and the resultant toolset was applied to a major component.

  4. Retrospective on the Seniors' Council Tier 1 LDRD portfolio.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, William Parker

    2012-04-01

    This report describes the Tier 1 LDRD portfolio, administered by the Seniors Council between 2003 and 2011. 73 projects were sponsored over the 9 years of the portfolio at a cost of $10.5 million which includes $1.9M of a special effort in directed innovation targeted at climate change and cyber security. Two of these Tier 1 efforts were the seeds for the Grand Challenge LDRDs in Quantum Computing and Next Generation Photovoltaic conversion. A few LDRDs were terminated early when it appeared clear that the research was not going to succeed. A great many more were successful and led to full Tier 2 LDRDs or direct customer sponsorship. Over a dozen patents are in various stages of prosecution from this work, and one project is being submitted for an R and D 100 award.

  5. Integrated computer control system CORBA-based simulator FY98 LDRD project final summary report

    International Nuclear Information System (INIS)

    Bryant, R M; Holloway, F W; Van Arsdall, P J.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control architecture. The simulator project used a three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. This summary report highlights the findings of the team and provides the architectural context of the study. For the last several years LLNL has been developing the Integrated Computer Control System (ICCS), which is an abstract object-oriented software framework for constructing distributed systems. The framework is capable of implementing large event-driven control systems for mission-critical facilities such as the National Ignition Facility (NIF). Tools developed in this project were applied to the NIF example architecture in order to gain experience with a complex system and derive immediate benefits from this LDRD. The ICCS integrates data acquisition and control hardware with a supervisory system, and reduces the amount of new coding and testing necessary by providing prebuilt components that can be reused and extended to accommodate specific additional requirements. The framework integrates control point hardware with a supervisory system by providing the services needed for distributed control such as database persistence, system start-up and configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. The design is interoperable among computers of different kinds and provides plug-in software connections by leveraging a common object request brokering architecture (CORBA) to transparently distribute software objects across the network of computers. Because object broker distribution applied to control systems is relatively new and its inherent performance is roughly threefold less than traditional point

  6. SRNL LDRD ANNUAL REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    French, T

    2008-12-29

    The Laboratory Director is pleased to have the opportunity to present the 2008 Laboratory Directed Research and Development (LDRD) annual report. This is my first opportunity to do so, and only the second such report that has been issued. As will be obvious, SRNL has built upon the excellent start that was made with the LDRD program last year, and researchers have broken new ground in some important areas. In reviewing the output of this program this year, it is clear that the researchers implemented their ideas with creativity, skill and enthusiasm. It is gratifying to see this level of participation, because the LDRD program remains a key part of meeting SRNL's and DOE's strategic goals, and helps lay a solid scientific foundation for SRNL as the premier applied science laboratory. I also believe that the LDRD program's results this year have demonstrated SRNL's value as the EM Corporate Laboratory, having advanced knowledge in a spectrum of areas, including reduction of the technical risks of cleanup, separations science, packaging and transportation of nuclear materials, and many others. The research in support of Energy Security and National and Homeland Security has been no less notable. SRNL' s researchers have shown again that the nascent LDRD program is a sound investment for DOE that will pay off handsomely for the nation as time goes on.

  7. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  8. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  9. 2013 SRNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McWhorter, S. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation in National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.

  10. RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David; Lee, Mark; Hsu, Julia W. P.; Highstrete, Clark

    2009-09-01

    LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

  11. Final report on LDRD project : coupling strategies for multi-physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.

    2007-11-01

    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

  12. Small space object imaging : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  13. Neurons to algorithms LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Aimone, James Bradley; Warrender, Christina E.; Trumbo, Derek

    2013-09-01

    Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built infrastructure to discover computational structures in the brain. This consists of a modeling language, a tool that enables model development and simulation in that language, and initial connections with the Neuroinformatics community, a group working toward similar goals. The approach of N2A is to express large complex systems like the brain as populations of a discrete part types that have specific structural relationships with each other, along with internal and structural dynamics. Such an evolving mathematical system may be able to capture the essence of neural processing, and ultimately of thought itself. This final report is a cover for the actual products of the project: the N2A Language Specification, the N2A Application, and a journal paper summarizing our methods.

  14. Nanoporous Silica Templated HeteroEpitaxy: Final LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Koleske, Daniel; Rowen, Adam M.; Williams, John Dalton; Fan, Hongyou; Arrington, Christian Lew

    2006-11-01

    This one-year out-of-the-box LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, and the UV curable epoxy, SU-8. Use of SU-8 as a growth mask represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist patterns and pilot work on using SU-8 as a DUV negative resist, another significant potential result. While the late start nature of this project pushed some of the initial research goals out of the time table, significant progress was made. 3 Acknowledgements This work was performed in part at the Nanoscience @ UNM facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765). Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia LDRD program (Project 99405). 4

  15. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rushdi, Ahmad A. [Univ. of Texas, Austin, TX (United States); Abdelkader, Ahmad [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  16. LDRD final report : robust analysis of large-scale combinatorial applications.

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Robert D.; Morrison, Todd (University of Colorado, Denver, CO); Hart, William Eugene; Benavides, Nicolas L. (Santa Clara University, Santa Clara, CA); Greenberg, Harvey J. (University of Colorado, Denver, CO); Watson, Jean-Paul; Phillips, Cynthia Ann

    2007-09-01

    Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

  17. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, Eric C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); von Winckel, Gregory John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardiner, Thomas Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Sean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.

  18. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  19. Final Report for the Virtual Reliability Realization System LDRD

    Energy Technology Data Exchange (ETDEWEB)

    DELLIN, THEODORE A.; HENDERSON, CHRISTOPHER L.; O' TOOLE, EDWARD J.

    2000-12-01

    Current approaches to reliability are not adequate to keep pace with the need for faster, better and cheaper products and systems. This is especially true in high consequence of failure applications. The original proposal for the LDRD was to look at this challenge and see if there was a new paradigm that could make reliability predictions, along with a quantitative estimate of the risk in that prediction, in a way that was faster, better and cheaper. Such an approach would be based on the underlying science models that are the backbone of reliability predictions. The new paradigm would be implemented in two software tools: the Virtual Reliability Realization System (VRRS) and the Reliability Expert System (REX). The three-year LDRD was funded at a reduced level for the first year ($120K vs. $250K) and not renewed. Because of the reduced funding, we concentrated on the initial development of the expertise system. We developed an interactive semiconductor calculation tool needed for reliability analyses. We also were able to generate a basic functional system using Microsoft Siteserver Commerce Edition and Microsoft Sequel Server. The base system has the capability to store Office documents from multiple authors, and has the ability to track and charge for usage. The full outline of the knowledge model has been incorporated as well as examples of various types of content.

  20. Final Report for LDRD Project 02-FS-009 Gigapixel Surveillance Camera

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R E; Bennett, C L

    2010-04-20

    The threats of terrorism and proliferation of weapons of mass destruction add urgency to the development of new techniques for surveillance and intelligence collection. For example, the United States faces a serious and growing threat from adversaries who locate key facilities underground, hide them within other facilities, or otherwise conceal their location and function. Reconnaissance photographs are one of the most important tools for uncovering the capabilities of adversaries. However, current imaging technology provides only infrequent static images of a large area, or occasional video of a small area. We are attempting to add a new dimension to reconnaissance by introducing a capability for large area video surveillance. This capability would enable tracking of all vehicle movements within a very large area. The goal of our project is the development of a gigapixel video surveillance camera for high altitude aircraft or balloon platforms. From very high altitude platforms (20-40 km altitude) it would be possible to track every moving vehicle within an area of roughly 100 km x 100 km, about the size of the San Francisco Bay region, with a gigapixel camera. Reliable tracking of vehicles requires a ground sampling distance (GSD) of 0.5 to 1 m and a framing rate of approximately two frames per second (fps). For a 100 km x 100 km area the corresponding pixel count is 10 gigapixels for a 1-m GSD and 40 gigapixels for a 0.5-m GSD. This is an order of magnitude beyond the 1 gigapixel camera envisioned in our LDRD proposal. We have determined that an instrument of this capacity is feasible.

  1. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    Energy Technology Data Exchange (ETDEWEB)

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  2. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation hardened CMOS devices and circuits - LDRD Project (FY99)

    International Nuclear Information System (INIS)

    Myers, David R.; Jessing, Jeffrey R.; Spahn, Olga B.; Shaneyfelt, Marty R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds

  3. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  4. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    International Nuclear Information System (INIS)

    Anderson, Robert J.

    2014-01-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  5. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  6. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic and Security Systems Dept.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  7. Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall; Allerman, Andrew Alan; Koleske, Daniel David; Lee, Stephen Roger; Coltrin, Michael Elliott

    2005-03-01

    The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

  8. 2014 SRNL LDRD Annual Report, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Mcwhorter, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element in maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.

  9. Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

    International Nuclear Information System (INIS)

    Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.

    1994-01-01

    One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 x speedup over our starting-point Cray2 simulation code's performance

  10. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  11. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  12. Idaho National Laboratory LDRD Annual Report FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2013-03-01

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  13. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  14. LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC.

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevich, Donna D.; Xavier, Patrick Gordon; Brannon, Nathan Gregory; Hart, Brian E.; Hart, Derek H.; Little, Charles Quentin; Oppel, Fred John III; Linebarger, John Michael; Parker, Eric Paul

    2012-01-01

    This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimental study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.

  15. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  16. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  17. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.; Volk, David; Neerathilingam, Muniasamy; Luxon, Bruce A.; Ansari, G. A. Shakeel

    2009-01-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  18. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Electronic and Nanostructured Materials; Alam, Mary Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetics Characterization Dept.; McIntyre, Sarah K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Electronic and Nanostructured Materials; Volk, David [Univ. of Texas, Galveston, TX (United States). Medical Branch; Neerathilingam, Muniasamy [Univ. of Texas, Galveston, TX (United States). Medical Branch; Luxon, Bruce A. [Univ. of Texas, Galveston, TX (United States). Medical Branch; Ansari, G. A. Shakeel [Univ. of Texas, Galveston, TX (United States). Medical Branch

    2009-10-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  19. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  20. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  1. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  2. Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.; Gabert, Kasimir Georg; Edgett, Patrick Garrett; Thai, Tan Q.

    2010-09-01

    This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elastic Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.

  3. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    International Nuclear Information System (INIS)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-01-01

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy and Environment (E and E) and Chemistry and Material Sciences (C and MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E and E and C and MS Directorates co-sponsored this Laboratory Directed Research and Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US

  4. FPGAs in High Perfomance Computing: Results from Two LDRD Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith D; Ulmer, Craig D.; Thompson, David; Hemmert, Karl Scott

    2006-11-01

    Field programmable gate arrays (FPGAs) have been used as alternative computational de-vices for over a decade; however, they have not been used for traditional scientific com-puting due to their perceived lack of floating-point performance. In recent years, there hasbeen a surge of interest in alternatives to traditional microprocessors for high performancecomputing. Sandia National Labs began two projects to determine whether FPGAs wouldbe a suitable alternative to microprocessors for high performance scientific computing and,if so, how they should be integrated into the system. We present results that indicate thatFPGAs could have a significant impact on future systems. FPGAs have thepotentialtohave order of magnitude levels of performance wins on several key algorithms; however,there are serious questions as to whether the system integration challenge can be met. Fur-thermore, there remain challenges in FPGA programming and system level reliability whenusing FPGA devices.4 AcknowledgmentArun Rodrigues provided valuable support and assistance in the use of the Structural Sim-ulation Toolkit within an FPGA context. Curtis Janssen and Steve Plimpton provided valu-able insights into the workings of two Sandia applications (MPQC and LAMMPS, respec-tively).5

  5. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  6. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  7. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  8. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000; FINAL

    International Nuclear Information System (INIS)

    Fisher, Darrell R; Hughes, Pamela J; Pearson, Erik W

    2001-01-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, (a) a director's statement, (b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, (c) a five-year project funding table, and (d) project summaries for each LDRD project

  9. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III (; ); Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale (1722 Micro-Total-Analytical Systems); Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  10. ParaText : scalable solutions for processing and searching very large document collections : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Crossno, Patricia Joyce; Dunlavy, Daniel M.; Stanton, Eric T.; Shead, Timothy M.

    2010-09-01

    This report is a summary of the accomplishments of the 'Scalable Solutions for Processing and Searching Very Large Document Collections' LDRD, which ran from FY08 through FY10. Our goal was to investigate scalable text analysis; specifically, methods for information retrieval and visualization that could scale to extremely large document collections. Towards that end, we designed, implemented, and demonstrated a scalable framework for text analysis - ParaText - as a major project deliverable. Further, we demonstrated the benefits of using visual analysis in text analysis algorithm development, improved performance of heterogeneous ensemble models in data classification problems, and the advantages of information theoretic methods in user analysis and interpretation in cross language information retrieval. The project involved 5 members of the technical staff and 3 summer interns (including one who worked two summers). It resulted in a total of 14 publications, 3 new software libraries (2 open source and 1 internal to Sandia), several new end-user software applications, and over 20 presentations. Several follow-on projects have already begun or will start in FY11, with additional projects currently in proposal.

  11. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  12. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  13. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year

  14. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J. (Los Alamos National Laboratory); Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  15. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    Energy Technology Data Exchange (ETDEWEB)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  16. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  17. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  18. Nurse managers' challenges in project management.

    Science.gov (United States)

    Suhonen, Marjo; Paasivaara, Leena

    2011-11-01

    To analyse the challenges that nurse managers meet in project management. Project management done by nurse managers has a significant role in the success of projects conducted in work units. The data were collected by open interviews (n = 14). The participants were nurse managers, nurses and public health nurses. Data analysis was carried out using qualitative content analysis. The three main challenges nurse managers faced in project management in health-care work units were: (1) apathetic organization and management, (2) paralysed work community and (3) cooperation between individuals being discouraged. Nurse managers' challenges in project management can be viewed from the perspective of the following paradoxes: (1) keeping up projects-ensuring patient care, (2) enthusiastic management-effective management of daily work and (3) supporting the work of a multiprofessional team-leadership of individual employees. It is important for nurse managers to learn to relate these paradoxes to one another in a positive way. Further research is needed, focusing on nurse managers' ability to promote workplace spirituality, nurse managers' emotional intelligence and their enthusiasm in small projects. © 2011 Blackwell Publishing Ltd.

  19. Project management of life-science research projects: project characteristics, challenges and training needs.

    Science.gov (United States)

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Managing Challenges in a Multi Contractor Project

    Science.gov (United States)

    King, Ron

    2011-01-01

    The presentation provides a project description, describes the integrated product team, and review project challenges. The challenges include programmatic, technical, basic drop tests, heavy drop tests, C-17 envelope expansion, and Ares I-X.

  1. LDRD final report: photonic analog-to-digital converter (ADC) technology; TOPICAL

    International Nuclear Information System (INIS)

    Bowers, M; Deri, B; Haigh, R; Lowry, M; Sargis, P; Stafford, R; Tong, T

    1999-01-01

    We report on an LDRD seed program of novel technology development (started by an FY98 Engineering Tech-base project) that will enable extremely high-fidelity analog-to-digital converters for a variety of national security missions. High speed (l0+ GS/s ), high precision (l0+ bits) ADC technology requires extremely short aperture times ((approx)1ps ) with very low jitter requirements (sub 10fs ). These fundamental requirements, along with other technological barriers, are difficult to realize with electronics: However, we outline here, a way to achieve these timing apertures using a novel multi-wavelength optoelectronic short-pulse optical source. Our approach uses an optoelectronic feedback scheme with high optical Q to produce an optical pulse train with ultra-low jitter ( sub 5fs) and high amplitude stability ( and lt;10(sup 10)). This approach requires low power and can be integrated into an optoelectronic integrated circuit to minimize the size. Under this seed program we have demonstrated that the optical feedback mechanism can be used to generate a high Q resonator. This has reduced the technical risk for further development, making it an attractive candidate for outside funding

  2. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  3. Final report for LDRD project 11-0783 : directed robots for increased military manpower effectiveness.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Wagner, John S.; Xavier, Patrick Gordon; Morrow, James Dan

    2011-09-01

    The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier from harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.

  4. Overcoming challenges: The Koeberg simulator project

    International Nuclear Information System (INIS)

    Marin, J: Bruchental, S.; Lagerwall, J.R.

    2006-01-01

    As the nuclear power simulation training industry matures, the needs of the individual training facilities are becoming increasingly diverse. To respond to this trend, simulation vendors must offer a greater level of customization, and as such, are facing increasingly challenging projects. In 2002, CAE embarked on such a project for South Africas Koeberg nuclear power station. This simulator upgrade project, carried out in two phases, served as a unique exercise in product customization. In the first phase, CAE replaced the simulation servers, the software environment, and re-hosted the existing plant models. In the second phase, CAE replaced several of the existing thermal-hydraulics models to improve simulator fidelity. Throughout this project, CAE overcame a series of challenges stemming from project-specific requirements. In fact, the retention of the legacy software maintenance tools, the preservation of the instructor station package, and the interfacing with the existing hardware panel elements presented a number of opportunities for innovation. In the end, CAE overcame the challenges and acquired invaluable experience in doing so. (author)

  5. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger

    2011-12-01

    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  6. Identifying challenges in project consultants engagement practices

    Science.gov (United States)

    Shariffuddin, Nadia Alina Amir; Abidin, Nazirah Zainul

    2017-10-01

    Construction projects, green or conventional, involve multi-faceted disciplines engaged with the goal of delivering products i.e. building, infrastructure etc. at the best quality within stipulated budgets. For green projects, additional attention is added for environmental quality. Due to the various responsibilities and liabilities involved as well as the complexity of the construction process itself, formal engagement of multi-disciplinary professionals i.e. project consultants is required in any construction project. Poor selection of project consultants will lead to a multitude of complications resulting in delay, cost escalation, conflicts and poor quality. This paper explores the challenges that occur during the engagement of project consultants in a green project. As the engagement decision involves developers and architects, these two groups of respondents with green project backgrounds were approached qualitatively using interview technique. The challenges identified are limited experience and knowledge, consultants' fee vs. quality, green complexity, conflicts of interest, clients' extended expectation and less demand in green projects. The construction shifts to green project demands engagement of project consultants with added skills. It is expected that through the identification of challenges, better management and administration can be created which would give impact to the overall process of engagement in green projects.

  7. How the Project Approach Challenges Young Children

    Science.gov (United States)

    Burns, Marcia V.; Lewis, Alisha L.

    2016-01-01

    In this article, educators at University Primary School in Champaign, Illinois, share examples and understandings of the ways The Project Approach challenges young children to think critically about topics of importance in their world. Project investigations that provoke academic and social challenges for individuals and classroom communities of…

  8. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  9. LDRD HPC4Energy Wrapup Report - LDRD 12-ERD-074

    Energy Technology Data Exchange (ETDEWEB)

    Dube, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grosh, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-23

    High-performance computing and simulation has the potential to optimize production, distribution, and conversion of energy. Although a number of concepts have been discussed, a comprehensive research project to establish and quantify the effectiveness of computing and simulation at scale to core energy problems has not been conducted. We propose to perform the basic research to adapt existing high-performance computing tools and simulation approaches to two selected classes of problems common across the energy sector. The first, applying uncertainty quantification and contingency analysis techniques to energy optimization, allows us to assess the effectiveness of LLNL core competencies to problems such as grid optimization and building-system efficiency. The second, applying adaptive meshing and numerical analysis techniques to physical problems at fine scale, could allow immediate impacts in key areas such as efficient combustion and fracture and spallation. By creating an integrated project team with the necessary expertise, we can efficiently address these issues, delivering both near-term results as well as quantifying developments needed to address future energy challenges.

  10. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  11. 50 top IT project management challenges

    CERN Document Server

    Doraiswamy, Premanand

    2012-01-01

    This book offers a focused and concise summary of 50 challenges facing today's IT project manager. The authors draw on years of practical experience (rather than classroom theory) to outline these challenges and offer useful tips and advice on how to deal with them.

  12. Interface physics in microporous media : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Knutson, Chad E.; Noble, David R.; Aragon, Alicia R.; Chen, Ken Shuang; Giordano, Nicholas J. (Purdue University, West Lafayette, IN); Brooks, Carlton, F.; Pyrak-Nolte, Laura J. (Purdue University, West Lafayette, IN); Liu, Yihong (Purdue University, West Lafayette, IN)

    2008-09-01

    This document contains a summary of the work performed under the LDRD project entitled 'Interface Physics in Microporous Media'. The presence of fluid-fluid interfaces, which can carry non-zero stresses, distinguishes multiphase flows from more readily understood single-phase flows. In this work the physics active at these interfaces has been examined via a combined experimental and computational approach. One of the major difficulties of examining true microporous systems of the type found in filters, membranes, geologic media, etc. is the geometric uncertainty. To help facilitate the examination of transport at the pore-scale without this complication, a significant effort has been made in the area of fabrication of both two-dimensional and three-dimensional micromodels. Using these micromodels, multiphase flow experiments have been performed for liquid-liquid and liquid-gas systems. Laser scanning confocal microscopy has been utilized to provide high resolution, three-dimensional reconstructions as well as time resolved, two-dimensional reconstructions. Computational work has focused on extending lattice Boltzmann (LB) and finite element methods for probing the interface physics at the pore scale. A new LB technique has been developed that provides over 100x speed up for steady flows in complex geometries. A new LB model has been developed that allows for arbitrary density ratios, which has been a significant obstacle in applying LB to air-water flows. A new reduced order model has been developed and implemented in finite element code for examining non-equilibrium wetting in microchannel systems. These advances will enhance Sandia's ability to quantitatively probe the rich interfacial physics present in microporous systems.

  13. Main group adducts of carbon dioxide and related chemistry (LDRD 149938).

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Brian M. (University of New Mexico, Albuquerque, NM); Kemp, Richard Alan; Stewart, Constantine A.; Dickie, Diane A. (University of New Mexico, Albuquerque, NM)

    2010-11-01

    This late-start LDRD was broadly focused on the synthetic attempts to prepare novel ligands as complexing agents for main group metals for the sequestration of CO{sub 2}. In prior work we have shown that certain main group (p block elements) metals such as tin and zinc, when ligated to phosphinoamido- ligands, can bind CO{sub 2} in a novel fashion. Rather than simple insertion into the metal-nitrogen bonds to form carbamates, we have seen the highly unusual complexation of CO{sub 2} in a mode that is more similar to a chemical 'adduct' rather than complexation schemes that have been observed previously. The overarching goal in this work is to prepare more of these complexes that can (a) sequester (or bind) CO{sub 2} easily in this adduct form, and (b) be stable to chemical or electrochemical reduction designed to convert the CO{sub 2} to useful fuels or fuel precursors. The currently used phosphinoamido- ligands appear at this point to be less-stable than desired under electrochemical reduction conditions. This instability is believed due to the more delicate, reactive nature of the ligand framework system. In order to successfully capture and convert CO{sub 2} to useful organics, this instability must be addressed and solved. Work described in the late-start LDRD was designed to screen a variety of ligand/metal complexes that a priori are believed to be more stable to polar solvents and possible mild hydrolytic conditions than are the phosphinoamido-ligands. Results from ligand syntheses and metal complexation studies are reported.

  14. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  15. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Miner, Nadine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military & Energy Systems Analysis (6114, M/S 1188); Wilson, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects (6921, M/S 1138); Le, Hai D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Kao, Gio K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Networked System Survivability & Assurance (5629, M/S 0671); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Software Systems R& D (9525, M/S 1188); Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Jr., Robert C. [SAIC, Inc., Albuquerque, NM (United States)

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  16. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  17. The NIOSH Radiation Dose Reconstruction Project: managing technical challenges.

    Science.gov (United States)

    Moeller, Matthew P; Townsend, Ronald D; Dooley, David A

    2008-07-01

    Approximately two years after promulgation of the Energy Employees Occupational Illness Compensation Program Act, the National Institute for Occupational Safety and Health Office of Compensation and Analysis Support selected a contractor team to perform many aspects of the radiation dose reconstruction process. The project scope and schedule necessitated the development of an organization involving a comparatively large number of health physicists. From the initial stages, there were many technical and managerial challenges that required continuous planning, integration, and conflict resolution. This paper identifies those challenges and describes the resolutions and lessons learned. These insights are hopefully useful to managers of similar scientific projects, especially those requiring significant data, technical methods, and calculations. The most complex challenge has been to complete defensible, individualized dose reconstructions that support timely compensation decisions at an acceptable production level. Adherence to applying claimant-favorable and transparent science consistent with the requirements of the Act has been the key to establishing credibility, which is essential to this large and complex project involving tens of thousands of individual stakeholders. The initial challenges included garnering sufficient and capable scientific staff, developing an effective infrastructure, establishing necessary methods and procedures, and integrating activities to ensure consistent, quality products. The continuing challenges include maintaining the project focus on recommending a compensation determination (rather than generating an accurate dose reconstruction), managing the associated very large data and information management challenges, and ensuring quality control and assurance in the presence of an evolving infrastructure. The lessons learned concern project credibility, claimant favorability, project priorities, quality and consistency, and critical

  18. Managing the Challenges of Leadership in ERP Implementations: An Exploratory Study of the Leadership Challenges Encountered by Project Managers Involved in ERP Implementation Projects

    Science.gov (United States)

    Wanjagi, James K.

    2013-01-01

    Increasingly, organizations are conducting more Enterprise Resource Planning (ERP) projects in order to promote organizational efficiencies. Meanwhile, minimal research has been conducted on the leadership challenges faced by project managers during the ERP project implementations and how these challenges are managed. The existing project…

  19. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.; McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.; Davis, Chad Edward

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field tests addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.

  20. Architect Critical Challenges as a Project Manager in Construction Projects: A Case Study

    Directory of Open Access Journals (Sweden)

    Mohammadreza Yadollahi

    2014-01-01

    Full Text Available All construction professionals such as civil, mechanical, and electrical engineers, quantity surveyors, and architects have important roles in the construction process. Among these, architects are frequently appointed as a project manager (PM. The role of a PM will drive the success of the projects implementation. Therefore, the capability of an architect as a PM (ArPM is critical in reducing challenges encountered. Accordingly, the identification of these challenges is an important task in selecting an appropriate ArPM. The aim of this study is to identify the most critical challenges faced by an ArPM for construction projects. The data were collected through questionnaires and interviews with architects and professionals in the Malaysian construction industry. Because of the fuzziness and uncertainty of subjective responses, Fuzzy Set Ttheory is applied to identify critical challenges. A total of 65 questionnaires were distributed and 36 questionnaires were returned. The results revealed that the critical challenges faced by an ArPM are “poor planning,” “unfamiliar technology,” “unfamiliarity with green buildings and materials,” “inappropriate scheduling,” and “poor workmanship.” All critical challenges were then categorized into six main groups including technical, managerial, personal skills, contractual, psychological, and financial.

  1. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  2. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  3. Brazil-Bolivia natural gas project challenges and solutions

    International Nuclear Information System (INIS)

    Costa, A.S.C.

    1993-01-01

    PETROBRAS, the Brazilian/International Integrated Oil and Gas Company, is leading US$ 4 billion natural gas project. The goal of this paper is to identify Project challenges and propose solutions. It starts with fundamentals. Natural gas' share in Brazilian primary energy demand is only 2%. Economic aspects and environmental concerns, however, are changing this picture. For the Bolivian economy to be linked to a relatively huge market, in the long-term, is certainly a suitable decision. Besides, this Project will promote regional integration, within and outside Marcosur economies. Reserves, market data and economics give support to a feasible Project Financial structure is the main challenge. INTERGAS, a new subsidiary of PETROBRAS is opened for 49% stock to private sector participation. As an integrated Project, many opportunities will be generated during construction and operation. E ampersand P, pipeline and downstream investments could bring different investors to different sectors

  4. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  5. Challenges of executing heavy oil projects in today's market

    International Nuclear Information System (INIS)

    Brunka, G.

    2001-01-01

    Alberta's industrial project scene from 1981 to 2000 was presented in this power point presentation with particular focus on proposed bitumen recovery projects and heavy oil project challenges. A graph depicting GTG world orders by region (Americas, Asia and Europe) showed that U.S. market continues to drive global growth. Major industrial projects in Alberta were highlighted and employment requirements by sector were outlined. In addition, mitigation measures that are needed to successfully deal with the unique challenges of today's market were described. It was noted that in recent years lower capital expenditure by the industry in general has resulted in corporate downsizing or mergers which in turn have resulted in lower technical and operational knowledge. Some of the current challenges facing the industry are new demands for water treatment expertise and an aging workforce. It was concluded that effective mitigation will require a disciplined approach within a flexible framework.1 tab., 7 figs

  6. Perceptions of Ethical Challenges within the LowInputBreeds Project

    NARCIS (Netherlands)

    Jensen, Karsten Klint; Michalopoulos, T.; Meijboom, F.L.B.; Gjerris, Mickey

    2017-01-01

    This paper reports and analyzes the perceptions of researchers involved in the EU project LowInputBreed on the ethical challenges facing low input livestock production and how these challenges relate to the ambitions of the research project. The study is based on observations of two workshops; one

  7. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  8. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  9. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  10. New Capabilities for Hostile Environments on Z Grand Challenge LDRD - Final Status

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Griffin, P. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balch, D. K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bell, K. S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bierner, J. A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Coverdale, C. A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Flanagan, T. M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hansen, S. B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Slaboszewicz, V. Harper- [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jones, B. M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lamppa, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Martin, W. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); McKenney, J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Moore, N. W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Parma, E. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Peebles, H. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rovang, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Savage, M. E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Tang, R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vesey, R. A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-10-01

    The purpose of this project was to develop new physical simulation capabilities in order to support the science-based qualification of nonnuclear weapon components in hostile radiation environments. The project contributes directly to the goals of maintaining a safe, secure, and effective US nuclear stockpile, maintaining strategic deterrence at lower nuclear force levels, extending the life of the nuclear deterrent capability, and to be ready for technological surprise.

  11. Examining the Challenging Hindrances facing in the Construction Projects: South India’s Perspective

    Science.gov (United States)

    Subramanyam, K.; Haridharan, M. K.

    2017-07-01

    Developing countries like India require a huge infrastructure to facilitate needs of the people. Construction industry provides several opportunities to the individuals. Construction manager work is to supervise and organize the construction activities in construction projects. Now a day construction manager facing challenges. This paper aimed to study the challenges facing by the construction manager in the perception of construction professionals. 39 variables were taken from the literature review which found to be severe impact on construction managers’ performance. Construction manager, project manager and site engineers are the respondents for this survey. Using SPSS, regression analysis was done and recognized significant challenges. These challenges were classified into 5 domains. In management challenges, resource availability and allocation, risks and uncertainties existing in the project onsite, top management support and cost constraints are the most significant variables. In skills requirement of a construction manager challenges, technical skills required to learn and adapt new technology in the project, decision making and planning according to the situation in site are the most significant variables. In performance challenges, implementation of tasks according to the plan is the important variable whereas in onsite challenges, manage project risks, develop project policies and procedures are the most important.

  12. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  13. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  14. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  15. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm

    International Nuclear Information System (INIS)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-01-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  16. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  17. Final Report on Institutional Computing Project s15_hilaserion, “Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators as an Enabling Capability”

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    This proposal sought of order 1M core-hours of Institutional Computing time intended to enable computing by a new LANL Postdoc (David Stark) working under LDRD ER project 20160472ER (PI: Lin Yin) on laser-ion acceleration. The project was “off-cycle,” initiating in June of 2016 with a postdoc hire.

  18. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  19. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  20. Final Report Sustained Spheromak Physics Project FY 1997 - FY 1999

    International Nuclear Information System (INIS)

    Hooper, E.B.; Hill, D.N.

    2000-01-01

    This is the final report on the LDRD SI-funded Sustained Spheromak Physics Project for the years FY1997-FY1999, during which the SSPX spheromak was designed, built, and commissioned for operation at LLNL. The specific LDRD project covered in this report concerns the development, installation, and operation of specialized hardware and diagnostics for use on the SSPX facility in order to study energy confinement in a sustained spheromak plasma configuration. The USDOE Office of Fusion Energy Science funded the construction and routine operation of the SSPX facility. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than external coils, which necessarily thread the vacuum vessel. There main objective of the Sustained Spheromak Physics Project was to test whether sufficient energy confinement could be maintained in a spheromak plasma sustained by DC helicity injection. Achieving central electron temperatures of several hundred eV would indicate this. In addition, we set out to determine how the energy confinement scales with T c and to relate the confinement time to the level of internal magnetic turbulence. Energy confinement and its scaling are the central technical issues for the spheromak as a fusion reactor concept. Pending the outcome of energy confinement studies now under way, the spheromak could be the basis for an attractive fusion reactor because of its compact size, simply-connected magnetic geometry, and potential for steady-state current drive

  1. Uav Photogrammetry: a Practical Solution for Challenging Mapping Projects

    Science.gov (United States)

    Saadatseresht, M.; Hashempour, A. H.; Hasanlou, M.

    2015-12-01

    We have observed huge attentions to application of unmanned aerial vehicle (UAV) in aerial mapping since a decade ago. Though, it has several advantages for handling time/cost/quality issues, there are a dozen of challenges in working with UAVs. In this paper, we; as the Robotic Photogrammetry Research Group (RPRG), will firstly review these challenges then show its advantages in three special practical projects. For each project, we will share our experiences through description of the UAV specifications, flight settings and processing steps. At the end, we will illustrate final result of each project and show how this technology could make unbelievable benefits to clients including 3D city realistic model in decimetre level, ultra high quality map production in several centimetre level, and accessing to a high risk and rough relief area for mapping aims.

  2. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  3. Advances in radiation modeling in ALEGRA :a final report for LDRD-67120, efficient implicit mulitgroup radiation calculations.

    Energy Technology Data Exchange (ETDEWEB)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J. (University of Michigan, Ann Arbor, MI); McClarren, Ryan (University of Michigan, Ann Arbor, MI); Brunner, Thomas A.; Holloway, James Paul (University of Michigan, Ann Arbor, MI)

    2005-11-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation.

  4. Advances in radiation modeling in ALEGRA: a final report for LDRD-67120, efficient implicit multigroup radiation calculations

    International Nuclear Information System (INIS)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J.; McClarren, Ryan; Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation

  5. Managing large energy and mineral resources (EMR) projects in challenging environments

    Science.gov (United States)

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their

  6. The Maui's Dolphin Challenge: Lessons from a School-Based Litter Reduction Project

    Science.gov (United States)

    Townrow, Carly S.; Laurence, Nick; Blythe, Charlotte; Long, Jenny; Harré, Niki

    2016-01-01

    The Maui's Dolphin Challenge was a litter reduction project that was run twice at a secondary school in Aotearoa New Zealand. The project drew on a theoretical framework encompassing four psycho-social principles: values, embodied learning, efficacy, and perceived social norms. It challenged students to reduce the litter at the school by offering…

  7. Perceptions of ethical challenges within the LowInputBreeds project

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Michalopoulos, T.; Mejboom, F.L.B.

    2017-01-01

    This paper reports and analyzes the perceptions of researchers involved in the EU project LowInputBreed on the ethical challenges facing low input livestock production and how these challenges relate to the ambitions of the research project. The study is based on observations of two workshops; one...... of the problems regarding animal welfare that also characterizes intensive production systems. The question thus becomes whether these solutions will meet the consumer concerns that lies behind the choice of paying a premium for local, low input products or whether the quality of these products will disappear...

  8. Hybrid methods for cybersecurity analysis :

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and

  9. New challenges for Life Sciences flight project management

    Science.gov (United States)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  10. Involving the public into HEP through IT challenges and projects

    CERN Document Server

    Adam Bourdarios, Claire; The ATLAS collaboration

    2016-01-01

    The ATLAS collaboration has recently setup three outreach projects and global challenges which have a strong IT component and could not have been envisaged without the growth of general public computing resources and network connectivity. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, and at the same time data scientists have advanced algorithms. The goal of the Higgs Machine Learning (HiggsML) project was to bring the two together by a “challenge”: machine learning experts could compete online to obtain the best Higgs→ττ signal significance on a set of ATLAS fully simulated Monte Carlo signal and background events. The first challenge of this kind ran from May to September 2014, drawing considerable attention, and new projects followed in the context of the CERN open data initiative. Higgs Hunters is the only physics-related project hosted on a web-based citizen science platform called Zooniverse. Volunteers usually contributing to space, natural world and huma...

  11. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  12. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  13. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  14. Evaluating impacts of development and conservation projects using sustainability indicators: Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Agol, Dorice, E-mail: d.agol@uea.a.c.uk [University of East Anglia, School of International Development, Norwich NR4 7TJ (United Kingdom); Latawiec, Agnieszka E., E-mail: a.latawiec@iis-rio.org [International Institute for Sustainability, Estrada Dona Castorina 124, 22460-320 Rio de Janeiro (Brazil); Opole University of Technology, Department of Production Engineering and Logistics, Luboszycka 5, 45-036 Opole (Poland); University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ (United Kingdom); Strassburg, Bernardo B.N., E-mail: b.strassburg@iis-rio.org [International Institute for Sustainability, Estrada Dona Castorina 124, 22460-320 Rio de Janeiro (Brazil); Department of Geography and the Environment, Pontificia Universidade Catolica, 22453-900 Rio de Janeiro (Brazil)

    2014-09-15

    There has been an increased interest in using sustainability indicators for evaluating the impacts of development and conservation projects. Past and recent experiences have shown that sustainability indicators can be powerful tools for measuring the outcomes of various interventions, when used appropriately and adequately. Currently, there is a range of methods for applying sustainability indicators for project impact evaluation at the environment–development interface. At the same time, a number of challenges persist which have implication for impact evaluation processes especially in developing countries. We highlight some key and recurrent challenges, using three cases from Kenya, Indonesia and Brazil. In this study, we have conducted a comparative analysis across multiple projects from the three countries, which aimed to conserve biodiversity and improve livelihoods. The assessments of these projects were designed to evaluate their positive, negative, short-term, long term, direct and indirect impacts. We have identified a set of commonly used sustainability indicators to evaluate the projects and have discussed opportunities and challenges associated with their application. Our analysis shows that impact evaluation processes present good opportunities for applying sustainability indicators. On the other hand, we find that project proponents (e.g. managers, evaluators, donors/funders) face challenges with establishing full impacts of interventions and that these are rooted in monitoring and evaluation processes, lack of evidence-based impacts, difficulties of measuring certain outcomes and concerns over scale of a range of impacts. We outline key lessons learnt from the multiple cases and propose ways to overcome common problems. Results from our analysis demonstrate practical experiences of applying sustainability indicators in developing countries context where there are different prevailing socio-economic, cultural and environmental conditions. The

  15. Evaluating impacts of development and conservation projects using sustainability indicators: Opportunities and challenges

    International Nuclear Information System (INIS)

    Agol, Dorice; Latawiec, Agnieszka E.; Strassburg, Bernardo B.N.

    2014-01-01

    There has been an increased interest in using sustainability indicators for evaluating the impacts of development and conservation projects. Past and recent experiences have shown that sustainability indicators can be powerful tools for measuring the outcomes of various interventions, when used appropriately and adequately. Currently, there is a range of methods for applying sustainability indicators for project impact evaluation at the environment–development interface. At the same time, a number of challenges persist which have implication for impact evaluation processes especially in developing countries. We highlight some key and recurrent challenges, using three cases from Kenya, Indonesia and Brazil. In this study, we have conducted a comparative analysis across multiple projects from the three countries, which aimed to conserve biodiversity and improve livelihoods. The assessments of these projects were designed to evaluate their positive, negative, short-term, long term, direct and indirect impacts. We have identified a set of commonly used sustainability indicators to evaluate the projects and have discussed opportunities and challenges associated with their application. Our analysis shows that impact evaluation processes present good opportunities for applying sustainability indicators. On the other hand, we find that project proponents (e.g. managers, evaluators, donors/funders) face challenges with establishing full impacts of interventions and that these are rooted in monitoring and evaluation processes, lack of evidence-based impacts, difficulties of measuring certain outcomes and concerns over scale of a range of impacts. We outline key lessons learnt from the multiple cases and propose ways to overcome common problems. Results from our analysis demonstrate practical experiences of applying sustainability indicators in developing countries context where there are different prevailing socio-economic, cultural and environmental conditions. The

  16. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  17. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  18. Laboratory Directed Research and Development Program Assessment for FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States); Barkigia, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Giacalone, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    This report provides an overview of the BNL LDRD program and a summary of the management processes, project peer review, a financial overview, and the relation of the portfolio of LDRD projects to BNL's mission, initiatives, and strategic plan. Also included are a summary of success indicators and a self-assessment.

  19. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  20. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  1. Cooperation and communication challenges in small-scale eHealth development projects.

    Science.gov (United States)

    Petersen, Lone Stub; Bertelsen, Pernille; Bjørnes, Charlotte

    2013-12-01

    In eHealth development there is an increasing focus on user participation inspired by the information systems field of practice and research. There are, however, many other challenges in developing information systems that fit healthcare practices. One of these is the challenge of cooperation and communication in development projects that are initiated and managed by clinicians e.g. cooperating with IT professionals in 'bottom up' health informatics projects that have been initiated and are managed by healthcare professional project managers. The analysis and results are drawn from a qualitative case study on a systems development project that was managed by a local, non-technical, healthcare professional and the complex blend and interactions with the IT professionals in the phases of ideas, design, development, implementation, maintenance and distribution. We analyze the challenges of cooperation and communication using perspectives from information systems research and the concepts of 'language-games' and 'shared design spaces', and thereby exploring the boundaries between the different communication, practice and culture of the IT professionals and the healthcare professionals. There is a need to (a) develop a better understanding of the development process from the point of view of the 'user' and (b) tools for making technical knowledge explicit in the development process. Cooperative and communicative methods are needed that support and develop the shared design spaces between IT professionals and the clinical context in order to strengthen small-scale health information systems projects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. CHALLENGING PROJECTS OF TEACHING ACTIVITIES IN SPEAKING CLASS

    Directory of Open Access Journals (Sweden)

    Teguh Sarosa

    2017-04-01

    Full Text Available This paper proposes an alternative way of teaching speaking through challenging classroom activities. The abundant number of teaching techniques in speaking skill designed by linguists and English practitioners make English second-language teachers exultant in searching and designing classroom activities. Since teaching speaking could do with accuracy and fluency, teachers should provide a conducive atmosphere for students’ free will in expressing their thoughts without being afraid of making mistakes as well as a favorable condition for fostering students’ correctness in producing utterances. Designing challenging projects which encompass interactive activities can be used as an alternative model for developing learners’ fluency and repetitive doings can be used for fostering learners’ accuracy. Interactive activities involving information gap demand the second-language learners’ critical thinking in organizing the logical relationships among ideas, the soundness of evidence, and the differences between fact and opinion in order to keep the communication flows. Whereas the repetitive doings help second-language learners in producing appropriate utterances. Besides, the project upshots contribute contentments to students in appreciating theirs collaborative efforts.

  3. Analyst-to-Analyst Variability in Simulation-Based Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This report describes findings from the culminating experiment of the LDRD project entitled, "Analyst-to-Analyst Variability in Simulation-Based Prediction". For this experiment, volunteer participants solving a given test problem in engineering and statistics were interviewed at different points in their solution process. These interviews are used to trace differing solutions to differing solution processes, and differing processes to differences in reasoning, assumptions, and judgments. The issue that the experiment was designed to illuminate -- our paucity of understanding of the ways in which humans themselves have an impact on predictions derived from complex computational simulations -- is a challenging and open one. Although solution of the test problem by analyst participants in this experiment has taken much more time than originally anticipated, and is continuing past the end of this LDRD, this project has provided a rare opportunity to explore analyst-to-analyst variability in significant depth, from which we derive evidence-based insights to guide further explorations in this important area.

  4. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  5. Project management - challenges in dealing with academic and non-academic partners

    Science.gov (United States)

    Henkel, Daniela; Eisenhauer, Anton; Drossou-Berendes, Alexandra

    2016-04-01

    Modern research projects on national, European and international level are challenged by an increasing requirement of inter and trans-disciplinarily, societal relevance and educational outreach as well as market oriented applications. In particular, to be successful in European research in the frame of HORIZON 2020, the EU Framework Programme for Research and Innovation, it is crucial that relatively large international research consortia involve academic and non-academic partners, NGOs, private and non-private institutions as well as industrial companies. For the management and organisation of such consortia coordinators have to deal with significant differences between multi-national and multi-sectorial administrations and research environments, in order to secure a successful implementation of the project. This often costs research and non-academic partners tremendous efforts, not to say excessive demands. Based on the experiences made in the frame of an Innovative Training Network (ITN) project within the HORIZON 2020 Marie Skłodowska-Curie Actions, this presentation identifies organisational pitfalls and major challenges of the project management for European funded research involving multi-national academic and non-academic research partners. Possible strategies are discussed to circumvent and avoid conflicts already at the beginning of the project.

  6. JPL's Approach for Helping Flight Project Managers Meet Today's Management Challenges

    Science.gov (United States)

    Leising, Charles J.

    2004-01-01

    All across NASA project managers are facing tough new challenges. NASA has imposed increased oversight and the number of projects at Centers such as JPL has exploded from a handful of large projects to a much greater number of smaller ones. Experienced personnel are retiring at increasing rates and younger, less experienced managers are being rapidly promoted up the ladder. Budgets are capped, competition among NASA Centers and Federally Funded Research and Development Centers (FFRDCs) has increased significantly and there is no longer any tolerance to cost overruns. On top of all this, implementation schedules have been reduced by 25 to 50% to reduce run-out costs, making it even more difficult to define requirements, validate heritage assumptions and make accurate cost estimates during the early phases of the life-cycle.JPL's executive management, under the leadership of the Associate Director for Flight Projects and Mission Success, have attempted to meet these challenges by improving operations in five areas: (1) increased standardization, where it is judged to have significant benefit; (2) better balance and more effective partnering between projects and the line management; (3) increased infrastructure support; (4) improved management training; and (5) more effective review and oversight.

  7. Jerneh gas project challenges and implementation performance

    International Nuclear Information System (INIS)

    Perreau, M.E.

    1993-01-01

    The Jerneh gas project is part of Peninsular Malaysia's Gas Utilization Project, a mammoth undertaking to provide gas from the offshore fields off Malaysia's East Coast, to power stations and other industrial users throughout Peninsular Malaysia and Singapore. Prior to 1992, the only customers of the offshore Peninsular Malaysia gas were a local power station, and a steel mill in Terengganu, linked to the Phase 1 pipeline system. The Bekok platform is Esso Production Malaysia Inc. (EPMI)'s gas collection platform for existing associated gas fields. The Duyong and Sotong platforms are gas production/compression platforms operated by PETRONAS. In late 1991, the onshore pipeline system was extended by PETRONAS to cover the west and south coasts of Peninsular Malaysia and Singapore depicted in the map as the Phase 2 system. With the completion of the Jerneh platform and offshore trunklines, Jerneh became the primary source of supply to an increased number of customers in the wider Phase 2 gas network. Jerneh is estimated to have three TCF of non-associated gas. Phase 1 customers were utilizing about 120 MSCFD and the demand is expected to initially step-up to 400 MSCFD in 1992 and progressively increase thereafter. This paper provides an overview of the US$400 M Jerneh project for which detailed design commenced in 1989 and was commissioned in 1992. The paper describes the technical challenges, project execution, safety record and actions to achieve the fast track schedule for this project

  8. The European Project Semester at ISEP: The Challenge of Educating Global Engineers

    Science.gov (United States)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-01-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European…

  9. Project mechanisms challenges

    International Nuclear Information System (INIS)

    Perthuis, Ch. de

    2005-06-01

    The project mechanism complete the quotas systems concerning the carbon dioxide emissions market. The author explains and discusses these mechanisms and provides a panorama of the existing and developing projects. More specially she brings information on the mechanism of clean developments and renewable energies, the coordinated mechanisms, the agricultural projects, the financing of the projects and the exchange systeme of the New south Wales. (A.L.B.)

  10. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  11. Meeting the challenges of developing LED-based projection displays

    Science.gov (United States)

    Geißler, Enrico

    2006-04-01

    The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.

  12. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  13. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  14. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  15. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  17. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  18. Shear dominated failure in the 'hat' specimen from the 2013 Sandia Fracture Challenge.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The objective of this memo is to present a brief report of the progress achieved during FY2016 on the investigation of ductile failure in the 2013 Sandia Fracture Challenge specimen. The experimental investigation was conducted with both the original steel A286 material used in the fracture challenge as well as with Al 7075-T651. The new results include further microscopy work for the steel A286 specimens, failure criterion verification for both materials and the implementation of a finite element model containing `material imperfections' to simulate the limit load in the response of the steel A286 specimens. Funding used to conduct the work presented here was provided by the ASC V&V program on validation of shear failure (Benjamin Reedlunn, PI) and from Sandia's LDRD program.

  19. MUSE: Challenges to integrate the Multi-Disciplinary field of BB access in one project

    NARCIS (Netherlands)

    Fatome, J.; Pitois, S.; Kamagate, A.; Maillotte, H.; Massoubre., D.; González-Herráez, G.-H.; Smedt, A. de; Brink, R. van den

    2006-01-01

    The present paper discusses the managerial challenges of the MUSE integrated project on multi service broadband access. It addresses different aspects such as matrix organisation, project office, consensus process, standardisation, dissemination, and quality control.

  20. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne, CH and P. BRUZZONE / CRPP-EPFL, Zürich, CH The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the...

  1. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne and P. BRUZZONE / CRPP-EPFL, Zürich The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the de...

  2. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research

  3. How Provotypes Challenge Stakeholder Conceptions in Innovation Projects

    DEFF Research Database (Denmark)

    Boer, Laurens

    systems. Based on my participation in a project that involved industries in the field of indoor climate, and that employed ethnographic research to inform and inspire the development of new products or services, I develop the approach with respect to contemporary design research concerns, notably...... the research areas of critical design and participatory innovation. I propose provotypes as ethnographically rooted, technically working, robust artefacts that deliberately challenge stakeholder conceptions by reifying tensions that surround a use context of organizational interest. I show how provotypes can...

  4. Intra-State Challenges to the Nation-State Project in Africa ...

    African Journals Online (AJOL)

    Intra-State Challenges to the Nation-State Project in Africa. Abdul Raufu Mustapha. Abstract. No Abstract Available CODESRIA Bulletin No.2, 3 & 4 2003: 26-34. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and ...

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  6. Challenges of the expansive use of Building Information Modeling (BIM in construction projects

    Directory of Open Access Journals (Sweden)

    Hannele Kerosuo

    2015-06-01

    Full Text Available Building information modeling (BIM is an emerging modeling technology which challenges existing work procedures and practices in the construction industry. In this article we study the challenges, problems and potential expansions of BIM as a tool in the design, construction and operation of buildings. For this purpose the interfaces between different parties are examined in Finnish construction projects. The methodological approach of the study is cultural-historical activity theory, according to which a new artifact becomes a mediating instrument when the participatory subjects reconfigure the entire activity. The implementation of BIM is now spreading from the design activity to other phases of the construction projects, but its use is still limited in the projects' other three interfaces. BIM is an evolving set of software developed for various purposes which is locally 'combined' to fit the circumstances and capabilities of the stakeholders of the construction process.

  7. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  8. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  10. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    Science.gov (United States)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  11. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  12. Noncontact surface thermometry for microsystems: LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Mark (Georgia Institute of Technology, Atlanta, GA); Beecham, Thomas (Georgia Institute of Technology, Atlanta, GA); Graham, Samuel (Georgia Institute of Technology, Atlanta, GA); Kearney, Sean Patrick; Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-10-01

    We describe a Laboratory Directed Research and Development (LDRD) effort to develop and apply laser-based thermometry diagnostics for obtaining spatially resolved temperature maps on working microelectromechanical systems (MEMS). The goal of the effort was to cultivate diagnostic approaches that could adequately resolve the extremely fine MEMS device features, required no modifications to MEMS device design, and which did not perturb the delicate operation of these extremely small devices. Two optical diagnostics were used in this study: microscale Raman spectroscopy and microscale thermoreflectance. Both methods use a low-energy, nonperturbing probe laser beam, whose arbitrary wavelength can be selected for a diffraction-limited focus that meets the need for micron-scale spatial resolution. Raman is exploited most frequently, as this technique provides a simple and unambiguous measure of the absolute device temperature for most any MEMS semiconductor or insulator material under steady state operation. Temperatures are obtained from the spectral position and width of readily isolated peaks in the measured Raman spectra with a maximum uncertainty near {+-}10 K and a spatial resolution of about 1 micron. Application of the Raman technique is demonstrated for V-shaped and flexure-style polycrystalline silicon electrothermal actuators, and for a GaN high-electron-mobility transistor. The potential of the Raman technique for simultaneous measurement of temperature and in-plane stress in silicon MEMS is also demonstrated and future Raman-variant diagnostics for ultra spatio-temporal resolution probing are discussed. Microscale thermoreflectance has been developed as a complement for the primary Raman diagnostic. Thermoreflectance exploits the small-but-measurable temperature dependence of surface optical reflectivity for diagnostic purposes. The temperature-dependent reflectance behavior of bulk silicon, SUMMiT-V polycrystalline silicon films and metal surfaces is

  13. Analysis of Variance of the Effects of a Project’s Location on Key Issues and Challenges in Post-Disaster Reconstruction Projects

    Directory of Open Access Journals (Sweden)

    Dzulkarnaen Ismail

    2017-11-01

    Full Text Available After a disaster, the reconstruction phase is driven by immediate challenges. One of the main challenges in the post-disaster period is the way that reconstruction projects are implemented. Reconstruction cannot move forward until some complex issues are settled. The purposes of this research are to highlight the issues and challenges in post-disaster reconstruction (PDR projects and to determine the significant differences between the issues and challenges in different locations where PDR projects are carried out. The researchers collected data within international non-governmental organisations (INGOs on their experience of working with PDR projects. The findings of this research provide the foundation on which to build strategies for avoiding project failures; this may be useful for PDR project practitioners in the future.

  14. Analysis of Nordic educational projects designed to meet challenges in society

    DEFF Research Database (Denmark)

    Liveng, Anne; Manninen, Jyri; Àrnason, Hróbjartur

    , process or structure identified in the successful projects: 1.Networking: Planning, implementation and development of the programme is based on networking of various - and even unexpected - organizations and players/participants. 2.Process evaluation: Continuous project development, documentation...... and analysis of results is inte-grated in the project, using Process Evaluation or Action Research 3.Flexibility: Programme offers flexible access and participation, individualized content or individualized study methods (ICT) 4.Focus on needs: A programme focuses on authentic regional, sectorial or individual...... learning providers, trade unions and other agencies supporting human development to create learning inter-ventions to address specific crisis, challenges or changes. In view of recent crises experienced by the Nordic countries The Education and Training Service Centre in Ice-land (www.frae.is) proposed...

  15. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    Science.gov (United States)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  16. The Challenge of Integrating OHS into Industrial Project Risk Management: Proposal of a Methodological Approach to Guide Future Research (Case of Mining Projects in Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Adel Badri

    2015-06-01

    Full Text Available Although risk management tools are put to good use in many industrial sectors, some large projects have been met with numerous problems due to failure to take occupational health and safety (OHS into consideration. In spite of the high level of risk and uncertainty associated with many industrial projects, the number of studies of methods for managing all known risks systematically remains small. Under effervescent economic conditions, industries must meet several challenges associated with frequent project start-ups. In highly complex and uncertain environments, rigorous management of risk remains indispensable for avoiding threats to the success of projects. Many businesses seek continually to create and improve integrated approaches to risk management. This article puts into perspective the complexity of the challenge of integrating OHS into industrial project risk management. A conceptual and methodological approach is proposed to guide future research focused on meeting this challenge. The approach is based on applying multi-disciplinary research modes to a complex industrial context in order to identify all scenarios likely to contain threats to humans or the environment. A case study is used to illustrate the potential of the proposed approach for application and its contribution to meeting the challenge of taking OHS into consideration. On-site researchers were able to develop a new approach that helped two mining companies in Quebec (Canada to achieve successful integration of OHS into expansion projects.

  17. Review of issues and challenges for public private partnership (PPP) project performance in Malaysia

    Science.gov (United States)

    Hashim, H.; Che-Ani, A. I.; Ismail, K.

    2017-10-01

    Public Private Partnership (PPP) in Malaysia aims to stimulate economic growth and overcome the weakness of conventional system. Over the years, many critics have been reported along the massive growth of PPP project development. Within that context, this study provides a review of issues and challenges for PPP pertaining to project performance in Malaysia. The study also attempts to investigate four performance measurement models around the globe as a basis for improvement of PPP in Malaysia. A qualitative method was used to analyse literature review from previous published literatures while comparative analysis was carried out within the models to identify their advantages and disadvantages. The findings show that the issues and challenges occurred were related to human, technical and financial factor that could hinder the implementation of PPP project in Malaysia. From the analysis, KPIs, guideline / framework, risk allocation, efficiency & flexibility are perceived as dominant issues. Finally, the findings provide an informed basis on the opportunity areas to be considered for improvement in order to achieved project effectiveness.

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  2. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  3. THE CHALLENGES OF E-GOVERNMENT 2.0 PROJECTS IN ROMANIA: AN INSIGHT

    Directory of Open Access Journals (Sweden)

    DIDRAGA OTNIEL

    2015-08-01

    Full Text Available E-government has developed rapidly and consistently along with the development of ICT. Providing reliable eservices resulting from successful e-government projects means tackling different challenges like transparency and accessibility, technological infrastructure interoperability, end-user adoption, citizen privacy, security and trust, policy updating, and organizational transformation. E-government 2.0 means innovation, transformation, communication, transparency, collaboration and participation, less bureaucracy, and less corruption. Also, investments in egovernment 2.0 projects in Romania must meet the requirements of the strategic lines of development in the National Strategy on Digital Agenda for Romania.

  4. Successes and challenges of north-south partnerships - key lessons from the African/Asian Regional Capacity Development projects.

    Science.gov (United States)

    Färnman, Rosanna; Diwan, Vishal; Zwarenstein, Merrick; Atkins, Salla

    2016-01-01

    Increasing efforts are being made globally on capacity building. North-south research partnerships have contributed significantly to enhancing the research capacity in low- and middle-income countries (LMICs) over the past few decades; however, a lack of skilled researchers to inform health policy development persists, particularly in LMICs. The EU FP7 funded African/Asian Regional Capacity Development (ARCADE) projects were multi-partner consortia aimed to develop a new generation of highly trained researchers from universities across the globe, focusing on global health-related subjects: health systems and services research and research on social determinants of health. This article aims to outline the successes, challenges and lessons learned from the life course of the projects, focusing on the key outputs and experiences of developing and implementing these two projects together with sub-Saharan African, Asian and European institution partners. Sixteen participants from 12 partner institutions were interviewed. The data were analysed using thematic content analysis, which resulted in four themes and three sub-categories. These data were complemented by a review of project reports. The results indicated that the ARCADE projects have been successful in developing and delivering courses, and have reached over 920 postgraduate students. Some partners thought the north-south and south-south partnerships that evolved during the project were the main achievement. However, others found there to be a 'north-south divide' in certain aspects. Challenges included technical constraints and quality assurance. Additionally, adapting new teaching and learning methods into current university systems was challenging, combined with not being able to award students with credits for their degrees. The ARCADE projects were introduced as an innovative and ambitious project idea, although not designed appropriately for all partner institutions. Some challenges were underestimated

  5. Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wilton, Donald R. (University of Houston, Houston, TX); Basilio, Lorena I.; Peters, David William; Capolino, F. (University of Houston, Houston, TX)

    2006-10-01

    In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

  6. LDRD Final report

    International Nuclear Information System (INIS)

    Stewart, R.E.; Price, D.; Shepherd, R.; White, W.; Walling, R.; More, R.

    1995-01-01

    The goal of this project is to develop a 100-fs pulse length laser capable of heating solid density plasmas to near-kilovolt temperatures before hydrodynamic decompression of the target can take place, and to experimentally determine the properties of these plasmas with it. The authors have successfully developed the laser for this work and measured plasma production and laser absorption with it. This work has demonstrated the capacity to produce solid-density plasmas. Future experiments are described

  7. ACR-1000TM Project - Licensing Opportunities and Challenges

    International Nuclear Information System (INIS)

    Popov, N.; Doerffer, S.; Ion, R.; Hopwood, J.

    2011-01-01

    Atomic Energy of Canada Limited (AECL) has developed the Advanced CANDU Reactor TM 1 1000 (ACR-1000 TM ) as an evolutionary advancement of the current CANDU 6 reactor. The ACR-1000 design has evolved from AECL's in-depth knowledge of CANDU TM systems, components, and materials, as well as the experience and feedback received from owners and operators of CANDU plants. The ACR design retains the proven strengths and features of CANDU reactors, while incorporating innovations and state-of-the-art technology. It also features major improvements in economics, inherent safety characteristics, and performance, while retaining the proven benefits of the CANDU family of nuclear power plants. To ensure that the ACR design is compliant with Canadian and international requirements, regulatory pre-project reviews of the ACR-1000 (and ACR-700 TM 1 with lower output) were conducted early in the design work. The regulatory feedback from these pre-project regulatory reviews helped AECL to better understand regulatory expectations in Canada, US and the UK, and to make further advancements and improvements in the ACR design to meet the Canadian and international regulatory requirements. This paper provides an overview of the key design features of the ACR-1000 reactor design, and summary of the pre-project reviews by those above-mentioned regulatory bodies, demonstrating opportunities and challenges in licensing process of and pointing to the importance of efficient vendor-regulator interaction. (author)

  8. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670

    International Nuclear Information System (INIS)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-01-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting)

  9. Shear dominated failure in the 'hat' specimen from the 2013 Sandia Fracture Challenge.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The objective of this memo is to present a brief report of the progress achieved during FY2016 on the investigation of ductile failure in the 2013 Sandia Fracture Challenge specimen. It is a follow-up to the results of an experimental investigation presented in [1]. The experi- mental investigation was conducted with both the original steel A286 material used in the fracture challenge as well as with Al 7075-T651. The new results include further microscopy work for the steel A286 specimens, failure criterion veri cation for both materials and the implementation of a nite element model containing `material imperfections' to simulate the limit load in the response of the steel A286 specimens. Funding used to conduct the work presented here was provided by the ASC V&V program on validation of shear failure (Benjamin Reedlunn, PI) and from Sandia's LDRD program. This memo assumes that the reader is familiar with the material in [1].

  10. South African CSP projects under the REIPPP programme - Requirements, challenges and opportunities

    Science.gov (United States)

    Relancio, Javier; Cuellar, Alberto; Walker, Gregg; Ettmayr, Chris

    2016-05-01

    Thus far seven Concentrated Solar Power (CSP) projects have been awarded under the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP), totalling 600MW: one project is in operation, four under construction and two on their way to financial close. This provides an excellent opportunity for analysis of key features of the projects that have contributed to or detracted from the programme's success. The paper draws from Mott MacDonald's involvement as Technical Advisor on the seven CSP projects that have been successful under the REIPPPP to date as well as other global CSP developments. It presents how various programme requirements have affected the implementation of projects, such as the technical requirements, time of day tariff structure, economic development requirements and the renewable energy grid code. The increasingly competitive tariffs offered have encouraged developers to investigate efficiency maximising project configurations and cost saving mechanisms, as well as featuring state of the art technology in their proposals. The paper assesses the role of the project participants (developers, lenders and government) with regards to these innovative technologies and solutions. In our paper we discuss the status of projects and the SA market, analysing the main challenges and opportunities that in turn have influenced various aspects such as technology choice, operational regimes and supply chain arrangements.

  11. Emerging bio-ethanol projects in Nigeria. Their opportunities and challenges

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2010-01-01

    Despite being a major petroleum producing and exporting country, Nigeria has for a long time imported refined petroleum products for domestic consumption. The country has recently made an entrance into the bio-energy sector by seeding the market with imported ethanol until enough capability exists for the domestic production of ethanol. The Nigerian Biofuel Policy was released in 2007 calling for the domestic production of bio-ethanol to meet the national demand of 5.14 billion litres/year. Some investors have responded by investing over $3.86 billion for the construction of 19 ethanol bio-refineries, 10,000 units of mini-refineries and feedstock plantations for the production of over 2.66 billion litres of fuel grade ethanol per annum. Also, another 14 new projects are in the offing. Of the 20 pioneer projects, 4 are at the conception phase, 8 are in the planning phase, and 7 are under construction with only 1 operational. The potential benefits of the emerging bio-ethanol projects include investment in the economy, employment, energy security and boost rural infrastructure, while the major challenge is land take (859,561 ha). This is the first time an attempt is been made to document the emerging bio-ethanol projects in Nigeria. (author)

  12. The GLOFOULING Partnerships project and the anti-fouling systems: challenges for Marine Environment Protection

    Directory of Open Access Journals (Sweden)

    Fabián Ramírez Cabrales

    2018-05-01

    Full Text Available Within the framework of the Agenda 2030 for Sustainable Development, the regulation of international maritime transport is a priority to face the challenges on the Protection of the Marine Environment. However, some states present difficulties in complying with international or normative agreements adopted by the International Maritime Organization (IMO. In particular, we revised the Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species and their linkage with the Glofouling Associations project, including the adverse effects of the use of antifouling systems and the biocides that may contain. As preliminary results, we identified the challenges that this global project entails for States, shipbuilders, ship maintenance and cleaning companies, universities, port authorities, repair facilities, dry docks and ship recycling, manufacturers and suppliers of anti-fouling paints and other stakeholders. We concluded that the challenges for the international maritime community are linked to the ability of States and stakeholders to enhance scientific knowledge, develop research capacity and transfer marine technology to mitigate marine biological contamination of ships.

  13. Opportunities and Challenges of Large Investment Projects in the New Economy: the Port of Ust-Luga

    Directory of Open Access Journals (Sweden)

    Popodko Galina

    2015-09-01

    Full Text Available The aim of this study is to search for a mechanism for implementing large investment projects of crucial economic importance in the modern economic conditions characterized by the sanction policy of foreign states, limited public investment, and a mass exodus of foreign investors. An example of a large-scale investment project is the construction of a multipurpose multimodal complex — the commercial seaport of Ust-Luga. This is one of the most recent large projects in seaport infrastructure development. This article estimates the project’s significance for the development of the Baltic region and presents a competitive analysis of the seaport position in comparison to the largest European ports. The authors analyze the strengths of the seaport construction project, namely, the favorable natural environment and climate, advantageous geographical position, strong political will demonstrated by the federal and regional authorities. The article also considers the challenges the project faces — unfortunate geopolitical situation, growing competition from other seaports, and lack of investment. Based on the analysis of challenges, it is concluded that there are significant risks associated predominantly with lack of investment. In these conditions, a large investment project requires the enhancement of public-private partnership, which will ensure the timely implementation of such projects

  14. Data Management Challenges in a National Scientific Program of 55 Diverse Research Projects

    Science.gov (United States)

    De Bruin, T.

    2016-12-01

    In 2007-2015, the Dutch funding agency NWO funded the National Ocean and Coastal Research Program (in Dutch: ZKO). This program focused on `the scientific analysis of five societal challenges related to a sustainable use of the sea and coastal zones'. These five challenges were safety, economic yield, nature, spatial planning & development and water quality. The ZKO program was `set up to strengthen the cohesion and collaboration within Dutch marine research'. From the start of the program, data management was addressed, to allow data to be shared amongst the, diverse, research projects. The ZKO program was divided in 4 different themes (or regions). The `Carrying Capacity' theme was subdivided into 3 `research lines': Carrying capacity (Wadden Sea) - Policy-relevant Research - Monitoring - Hypothesis-driven Research Oceans North Sea Transnational Wadden Sea Research 56 Projects were funded, ranging from studies on the governance of the Wadden Sea to expeditions studying trace elements in the Atlantic Ocean. One of the first projects to be funded was the data management project. Its objectives were to allow data exchange between projects, to archive all relevant data from all ZKO projects and to make the data and publications publicly available, following the ZKO Data Policy. This project was carried out by the NIOZ Data Management Group. It turned out that the research projects had hardly any interest in sharing data between projects and had good (?) arguments not to share data at all until the end of the projects. A data portal was built, to host and make available all ZKO data and publications. When it came to submitting the data to this portal, most projects obliged willingly, though found it occasionally difficult to find time to do so. However, some projects refused to submit data to an open data portal, despite the rules set up by the funding agency and agreed by all. The take-home message of this presentation is that data sharing is a cultural and

  15. Successes and challenges of north–south partnerships – key lessons from the African/Asian Regional Capacity Development projects

    Science.gov (United States)

    Färnman, Rosanna; Diwan, Vishal; Zwarenstein, Merrick; Atkins, Salla

    2016-01-01

    Introduction Increasing efforts are being made globally on capacity building. North–south research partnerships have contributed significantly to enhancing the research capacity in low- and middle-income countries (LMICs) over the past few decades; however, a lack of skilled researchers to inform health policy development persists, particularly in LMICs. The EU FP7 funded African/Asian Regional Capacity Development (ARCADE) projects were multi-partner consortia aimed to develop a new generation of highly trained researchers from universities across the globe, focusing on global health-related subjects: health systems and services research and research on social determinants of health. This article aims to outline the successes, challenges and lessons learned from the life course of the projects, focusing on the key outputs and experiences of developing and implementing these two projects together with sub-Saharan African, Asian and European institution partners. Design Sixteen participants from 12 partner institutions were interviewed. The data were analysed using thematic content analysis, which resulted in four themes and three sub-categories. These data were complemented by a review of project reports. Results The results indicated that the ARCADE projects have been successful in developing and delivering courses, and have reached over 920 postgraduate students. Some partners thought the north–south and south–south partnerships that evolved during the project were the main achievement. However, others found there to be a ‘north–south divide’ in certain aspects. Challenges included technical constraints and quality assurance. Additionally, adapting new teaching and learning methods into current university systems was challenging, combined with not being able to award students with credits for their degrees. Conclusion The ARCADE projects were introduced as an innovative and ambitious project idea, although not designed appropriately for all partner

  16. Successes and challenges of north–south partnerships – key lessons from the African/Asian Regional Capacity Development projects

    Directory of Open Access Journals (Sweden)

    Rosanna Färnman

    2016-10-01

    Full Text Available Introduction: Increasing efforts are being made globally on capacity building. North–south research partnerships have contributed significantly to enhancing the research capacity in low- and middle-income countries (LMICs over the past few decades; however, a lack of skilled researchers to inform health policy development persists, particularly in LMICs. The EU FP7 funded African/Asian Regional Capacity Development (ARCADE projects were multi-partner consortia aimed to develop a new generation of highly trained researchers from universities across the globe, focusing on global health-related subjects: health systems and services research and research on social determinants of health. This article aims to outline the successes, challenges and lessons learned from the life course of the projects, focusing on the key outputs and experiences of developing and implementing these two projects together with sub-Saharan African, Asian and European institution partners. Design: Sixteen participants from 12 partner institutions were interviewed. The data were analysed using thematic content analysis, which resulted in four themes and three sub-categories. These data were complemented by a review of project reports. Results: The results indicated that the ARCADE projects have been successful in developing and delivering courses, and have reached over 920 postgraduate students. Some partners thought the north–south and south–south partnerships that evolved during the project were the main achievement. However, others found there to be a ‘north–south divide’ in certain aspects. Challenges included technical constraints and quality assurance. Additionally, adapting new teaching and learning methods into current university systems was challenging, combined with not being able to award students with credits for their degrees. Conclusion: The ARCADE projects were introduced as an innovative and ambitious project idea, although not designed

  17. CSCW Challenges in Large-Scale Technical Projects - a case study

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kyng, Morten; Mogensen, Preben Holst

    1992-01-01

    This paper investigates CSCW aspects of large-scale technical projects based on a case study of a specific Danish engineering company and uncovers s challenges to CSCW applications in this setting. The company is responsible for management and supervision of one of the worlds largest tunnel....... The initial qualitative analysis identified a number of bottlenecks in daily work, where support for cooperation is needed. Examples of bottlenecks are: sharing materials, issuing tasks, and keeping track of task status. Grounded in the analysis, cooperative design workshops based on scenarios of future work...

  18. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  19. Multi-project, multi-national, geographically dispersed: Challenges for the Nuclear Renaissance in the United States

    International Nuclear Information System (INIS)

    Mathews, T.A.

    2007-01-01

    The nuclear renaissance in the United States is moving at a rapid pace due to the incentives in the Energy Policy Act of 2005, recognition of the environmental benefits of nuclear energy, and the need for stable, reliable, and diverse sources of energy. The U.S. is looking externally to capitalize on French, German, Japanese, and other worldwide experience. A number of challenges to the resurgence of nuclear power are common worldwide, including project management, workforce and supplier availability and large-project construction management experience. For example, AREVA's new plant project teams are comprised of resources drawn from various U.S. centers of technical expertise and backed up by AREVA's worldwide capabilities. However, the challenge lies in having the information infrastructure in place to integrate that expertise and share information across working groups. In another example, the U.S. regulatory process has changed significantly for the better, but the new streamlined combined license process has not been tested. Reactor vendors and utilities have injected new thinking into the process by pursuing Design Certification, Early Site Permit, and Combined License approval in parallel rather than in series. This paper will discuss these and other challenges to licensing and building new nuclear plants, and the approaches being used by AREVA to lead the Nuclear Renaissance in the United States. (author)

  20. Challenges and opportunities of multi-disciplinary, multi-national and multi-sectoral projects

    Science.gov (United States)

    Reitz, Anja; Hamann, Kristin

    2017-04-01

    Collaborative research projects e.g. funded or supported by the European Commission are by nature multi-national. Often EU calls bring together different scientific communities to jointly tackle challenges that can only be addressed through the convergence of previously separated disciplines in one research consortium. Some work programmes even necessitate to team up as different disciplines as natural sciences, social science, legal science and economic science. Examples for such multi- national, -disciplinary and - sectoral projects are the EU projects ECO2 (FP7, concluded), AtlantOS (H2020) and MiningImpact (JPI Oceans). Project managers of such projects need to develop skills beyond the common technical and management skills namely go into the domain of partners and stakeholders psychology and be able to maintain different perspectives on communication and interaction needs regarding cultural-, discipline- and sectoral background. Accordingly, the project manager has besides his or her technical role as manager at least three further roles: that of a communicator, that of a mediator and that of a person convincing partners of the necessary and selling the project products to the stakeholders. As the typical project manager has not too much power and authority by his or her position he or she has to use the power of smart communication and persuasion to overcome potential dissension between disciplines, national reservation or potential conflicts regarding different sectoral views. Accordingly, the project manager of such complex projects would try to arrange the ideal working environment by considering cultural feel, the cooperation of disciplines, information and the control of resources. The way he or she develops such ideal working environment is by reflection of past, present and future experiences/needs.

  1. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  2. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  3. Beam Diagnostics Challenges in the FAIR Project at GSI

    International Nuclear Information System (INIS)

    Peters, Andreas; Forck, Peter

    2006-01-01

    The planned FAIR (Facility for Antiproton and Ion Research) project consists of two heavy ion synchrotrons and four large storage rings, the existing GSI facility together with a new high-current proton linac will be used as the injector chain. The fast cycling, superconducting synchrotrons are build for high current operation with the aim of secondary ion and antiproton production. A large variety of low current secondary beams as well as the antiprotons are stored and cooled in the four storage rings. A complex operation scheme with multiple use of transport lines is foreseen. This demands an exceptional high dynamic range for the beam instrumentation. Due to the enormous beam power, non-destructive methods are mandatory for high currents as well as for the low current secondary beams due to the low repetition rate. Precise measurements of all beam parameters and automatic steering or feedback capabilities are required due to the necessary exploitation of the full ring acceptances. Moreover, online beam-corrections with short response times are mandatory for the fast ramping super-conducting magnets. An overview of the challenges and projected innovative solutions for various diagnostic installations will be given

  4. Ace Project as a Project Management Tool

    Science.gov (United States)

    Cline, Melinda; Guynes, Carl S.; Simard, Karine

    2010-01-01

    The primary challenge of project management is to achieve the project goals and objectives while adhering to project constraints--usually scope, quality, time and budget. The secondary challenge is to optimize the allocation and integration of resources necessary to meet pre-defined objectives. Project management software provides an active…

  5. Final Report: Sublinear Algorithms for In-situ and In-transit Data Analysis at Exascale.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pinar, Ali [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seshadhri, C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Thompson, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Salloum, Maher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bhagatwala, Ankit [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.

  6. The International Data Sharing Challenge: Realities and Lessons Learned from International Field Projects and Data Analysis Efforts

    Science.gov (United States)

    Williams, S. F.; Moore, J. A.

    2014-12-01

    One of the major challenges facing science in general is how foster trust and cooperation between nations that then allows the free and open exchange of data. The rich data coming from many nations conducting Arctic research must be allowed to be brought together to understand and assess the huge changes now underway in the Arctic regions. The NCAR Earth Observing Laboratory has been supporting a variety of international field process studies and WCRP sponsored international projects that require international data collection and exchange in order to be successful. Some of the programs include the Surface Heat Budget of the Arctic (SHEBA) International Tundra Experiment (ITEX), the Arctic Climate Systems Study (ACSYS), the Distributed Biological Observatory (DBO), and the Coordinated Energy and water-cycle Observations Project (CEOP) to name a few. EOL played a major role in the data management of these projects, but the CEOP effort in particular involved coordinating common site documentation and data formatting across a global network (28 sites). All these unique projects occurred over 25 years but had similar challenges in the international collection, archival, and access to the rich datasets that are their legacy. The Belmont Forum offers as its main challenge to deliver knowledge needed for action to avoid or adapt to environmental change. One of their major themes is related to the study of these changes in the Arctic. The development of capable e-infrastructure (technologies and groups supporting international collaborative environments networks and data centers) to allow access to large diverse data collections is key to meeting this challenge. The reality of meeting this challenge, however, is something much more difficult. The authors will provide several specific examples of successes and failures when trying to meet the needs of an international community of researchers specifically related to Belmont Forum Work Package Themes regarding standards of

  7. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  8. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    International Nuclear Information System (INIS)

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997

  9. Adapting Project Management Practices to Research-Based Projects

    Science.gov (United States)

    Bahr, P.; Baker, T.; Corbin, B.; Keith, L.; Loerch, L.; Mullenax, C.; Myers, R.; Rhodes, B.; Skytland, N.

    2007-01-01

    From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.

  10. Challenges in the Assessment of Medical Devices: The MedtecHTA Project.

    Science.gov (United States)

    Tarricone, Rosanna; Torbica, Aleksandra; Drummond, Michael

    2017-02-01

    Assessing medical devices (MDs) raises challenges which require us to reflect on whether current methods are adequate. Major features of devices are: (i) device-operator interaction can generate learning curve effects; (ii) incremental nature of innovation needs to be addressed by careful identification of the alternatives for comparative and incremental cost-effectiveness analysis; and (iii) broader organizational impact in terms of training and infrastructure, coupled with dynamic pricing, requires a more flexible approach to costing. The objective of the MedtecHTA project was to investigate improvements in HTA methods to allow for more comprehensive evaluation of MDs. It consisted of several work packages concerning (i) the available evidence on the currently adopted approaches for regulation and HTA of medical devices; (ii) the geographical variation in access to MDs; (iii) the development of methodological frameworks for conducting comparative effectiveness research and economic evaluation of MDs; and (iv) the organizational impact of MDs. This introductory paper summarizes the main results of the project and draws out the main overarching themes. This supplement represents a comprehensive report of all the main findings of the MedtecHTA project, and it is intended to be the main source for researchers and policy makers wanting information on the project. © 2017 The Authors. Health Economics published by John Wiley & Sons, Ltd. © 2017 The Authors. Health Economics Published by John Wiley & Sons, Ltd.

  11. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  13. Unique Identification Project Issues and Challenges Unique ...

    Indian Academy of Sciences (India)

    Multiple authentication methods · UID adoption can help improve pro-poor delivery systems · Technology Challenges … Biometric Challenges · Rural Biometric Challenges · Biometric De-Duplication · Architecture Challenges · Network Infrastructure · Security, Fraud Detection · Managing multiple risks · UID goals can be ...

  14. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Cris William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barber, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kober, Edward Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandberg, Richard L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sheffield, Richard L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material performance. An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of time-dependent mesoscale materials science. Those challenges will be outlined, the techniques of coherent diffractive imaging and dynamic polycrystalline diffraction described, and the resulting requirements defined for a coherent x-ray source. The talk concludes with the role of the MaRIE project and science in the future.

  15. Evaluation of Corba for use in distributed control systems

    International Nuclear Information System (INIS)

    Holloway, F.W.; Arsdall, P. van

    1999-01-01

    The Common Object Request Broker Architecture (CORBA)-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about advanced distributed control system architectures. A three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios was used in the LDRD project. This input report describes the first of the three approaches the study of object-oriented distribution tools together with measurements, and predictions of use within the National Ignition Facility (NIF) and some aspects of CORBA which remain to be resolved. For the ICCS, the completeness of suitable functionality, the speed of performance and utilization of machine and network resources, and the developing nature of the commercial CORBA products themselves, presented a certain risk. This LDRD thus evaluated CORBA in general, and a particular implementation, to determine its features, performance, and scaling properties, and to optimize its use within the ICCS. Both UNIX and real-time operating systems were studied

  16. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  17. Optimization strategies for complex engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, M.S.

    1998-02-01

    LDRD research activities have focused on increasing the robustness and efficiency of optimization studies for computationally complex engineering problems. Engineering applications can be characterized by extreme computational expense, lack of gradient information, discrete parameters, non-converging simulations, and nonsmooth, multimodal, and discontinuous response variations. Guided by these challenges, the LDRD research activities have developed application-specific techniques, fundamental optimization algorithms, multilevel hybrid and sequential approximate optimization strategies, parallel processing approaches, and automatic differentiation and adjoint augmentation methods. This report surveys these activities and summarizes the key findings and recommendations.

  18. The Cultural Challenges of Managing Global Project Teams: A Study of Brazilian Multinationals

    Directory of Open Access Journals (Sweden)

    Ivete Rodrigues

    2013-04-01

    Full Text Available The internationalization of Brazilian companies brings a new reality: the need for implementation of global projects that bring, in turn, the challenge of managing multicultural teams. Since this is a recent phenomenon with little theoretical development, this study sought to understand the relationships between cultural characteristics and management teams of global projects in Brazilian multinationals. To carry this discussion forward, we studied six cases of Brazilian multinational companies, with the aim of deepening the understanding of the management of global teams, involving the planning, deployment, development and management of human resources. Among the projects studied, it was found that there is very little concern with the specific issue of multiculturalism and little inter-cultural incentive to the development of team members, which ends up hindering the construction of a global mindset, important for the Brazilian multinational companies to perform successfully abroad. Faced with this situation, each of the managerial processes mentioned were presented with a number of actions to be undertaken by the project manager in three different dimensions: the project itself, the organization and the global environment. The work contributes, thus, to enable Brazilian multinational companies to manage their global teams in order to maximize the advantages of global teams, such as increased creativity and innovative capacity, but avoid the problems that multiculturalism can bring, ranging from conflicts between people to project failure.

  19. LDRD final report on continuous wave intersubband terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Samora, Sally; Mangan, Michael A.; Foltynowicz, Robert J.; Young, Erik W.; Fuller, Charles T.; Stephenson, Larry L.; Reno, John Louis; Wanke, Michael Clement; Hudgens, James J.

    2005-02-01

    There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups

  20. Precision formed micro magnets: LDRD project summary report

    Energy Technology Data Exchange (ETDEWEB)

    CHRISTENSON,TODD R.; GARINO,TERRY J.; VENTURINI,EUGENE L.

    2000-02-01

    A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.

  1. Rapid Response: D-Wave Effort Debrief Welcome, Logistics

    Energy Technology Data Exchange (ETDEWEB)

    Eidenbenz, Stephan Johannes [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-11

    The main objects of this project is to develop a diverse and sizable workforce, community, interest within LANL for D-Wave and Quantum Computing; identify promising application areas/problems for future projects; and complement other D-Wave work at LANL (LDRD DR, ASC).

  2. Girassol I. Girassol development: project challenges and reservoir uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Bancelin, J.P.; Pelleau, R.; Serceau, A. [TotalFinaElf, la Defense 6, 92 - Courbevoie (France)

    2002-10-01

    The Girassol Field is located 210 km northwest of Luanda, the Angolan capital, and about 150 km from shore. Girassol was the first discovery made in the prolific Block 17. This was followed by Dalia, Rosa, Lirio, Jasmim, Cravo, Orchidea, etc. April 1996: Girassol field is discovered on Block 17 in deep waters, offshore Angola. July 1998: The Girassol development project is approved by all parties. December 2001: Less than three and a half years after approval, Girassol comes on-stream. By the end of 2001, daily production is 100000 b/d with the production plateau of 200000 b/d to be reached by April 2002. The reservoir, located in 1,400 m water depth, is large (10 km by 14 km). Estimated oil in place is 1,550 mmbbls with recoverable reserves put at 725 mmbbls. The oil quality of 32 deg API is close to Brent specifications. The Girassol development scheme is based on 39 sub-sea wells - 23 oil producers, 14 water injectors and two gas injectors. The field will be developed in two phases: the first phase, completed in December 2001, includes 11 wells - eight oil producers, two water injectors and one gas injector. The second phase development is ongoing and will be completed mid-2003. The overall investment for the two phases of the Girassol development is US$ 2.8 bn. The Girassol project team had to fulfill three main objectives: first priority was given to technical quality; second priority was to closely monitor the development budget and contain the final cost; third priority was to achieve first oil as early as possible. Describe the Girassol reservoir and explain the main subsurface uncertainties; describe the selected development scheme; explain Girassol's major challenges; describe the contractual strategy information on cost, schedule and the project organisation are given. (authors)

  3. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  4. The challenges of evaluating and comparing projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Hedegaard, Flemming

    2016-01-01

    Project Half Double is an industry-driven initiative with the purpose to develop a new and radical project paradigm to increase the competitiveness of the Danish industry. The research part of Project Half Double will assess the degree to which the new project paradigm is more successful than...... organizations lack the project maturity to take advantage of the frameworks....

  5. Transportation Energy Pathways LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Barter, Garrett. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reichmuth, David. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Westbrook, Jessica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoshimura, Ann S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Meghan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn Kataoka [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guzman, Katherine Dunphy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Edwards, Donna M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hines, Valerie Ann-Peters [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especially when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and

  6. Securing classification and regulatory approval for deepwater projects: management challenges in a global environment

    Energy Technology Data Exchange (ETDEWEB)

    Feijo, Luiz P.; Burton, Gareth C. [American Bureau of Shipping (ABS), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    As the offshore industry continues to develop and move into increasingly deeper waters, technological boundaries are being pushed to new limits. Along with these advances, the design, fabrication and installation of deepwater oil and gas projects has become an increasingly global endeavor. After providing an overview of the history and role of Classification Societies, this paper reviews the challenges of securing classification and regulatory approval in a global environment. Operational, procedural and technological changes which one Classification Society; the American Bureau of Shipping, known as ABS, has implemented to address these challenges are presented. The result of the changes has been a more customized service aiming at faster and more streamlined classification approval process. (author)

  7. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives

  8. Meeting CCS communication challenges head-on: Integrating communications, planning, risk assessment, and project management

    Science.gov (United States)

    Greenberg, S.; Gauvreau, L.; Hnottavange-Telleen, K.; Finley, R.; Marsteller, S.

    2011-01-01

    The Midwest Geological Sequestration Consortium, Schlumberger Carbon Services, and Archer Daniels Midland has implemented a comprehensive communications plan at the Illinois Basin - Decatur Project (IBDP), a one million metric tonne Carbon Capture and Storage project in Decatur, IL, USA funded by the U.S. Department of Energy's National Energy Technology Laboratory. The IBDP Communication Plan includes consortium information, funding and disclaimer citations, description of target audiences, media communications guidelines, paper and presentations guidelines, site visit information, crisis communication, on-site photography regulations, and other components. The creation, development, and implementation processes for the IBDP Communication Plan (the Plan) are shared in this paper. New communications challenges, such as how to address add-on research requests, data sharing and management, scope increase, and contract agreements have arisen since the Plan was completed in January 2009, resulting in development of new policies and procedures by project management. Integrating communications planning, risk assessment, and project management ensured that consistent, factual information was developed and incorporated into project planning, and constitutes the basis of public communications. Successful integration has allowed the IBDP to benefit from early identification and mitigation of the potential project risks, which allows more time to effectively deal with unknown and unidentified risks that may arise. Project risks and risks associated with public perception can be managed through careful planning and integration of communication strategies into project management and risk mitigation. ?? 2011 Published by Elsevier Ltd.

  9. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  10. Nevada Test Site-Directed Research and Development: FY 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2007-08-01

    The Nevada Test Site–Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

  11. The ALICE time projection chamber - a technological challenge in LHC heavy ion physics

    CERN Document Server

    Bächler, J

    2004-01-01

    The Time Projection Chamber is the main tracking detector in the central region of the ALICE experiment. This paper addresses the specific technological challenges for the detector and the solutions adopted to cope with the extreme particle densities in LHC heavy ion collisions. We will present the major components of the detector with an outlook of its expected performance in the LHC heavy ion program, as well as recent results from the comprehensive ALICE TPC test facility. (3 refs).

  12. Scientific and computational challenges of the fusion simulation project (FSP)

    International Nuclear Information System (INIS)

    Tang, W M

    2008-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Project (FSP). The primary objective is to develop advanced software designed to use leadership-class computers for carrying out multiscale physics simulations to provide information vital to delivering a realistic integrated fusion simulation model with unprecedented physics fidelity. This multiphysics capability will be unprecedented in that in the current FES applications domain, the largest-scale codes are used to carry out first-principles simulations of mostly individual phenomena in realistic 3D geometry while the integrated models are much smaller-scale, lower-dimensionality codes with significant empirical elements used for modeling and designing experiments. The FSP is expected to be the most up-to-date embodiment of the theoretical and experimental understanding of magnetically confined thermonuclear plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing a reliable ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales. From a computational perspective, the fusion energy science application goal to produce high-fidelity, whole-device modeling capabilities will demand computing resources in the petascale range and beyond, together with the associated multicore algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative device involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics

  13. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    Science.gov (United States)

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  14. DOE Energy Challenge Project

    Energy Technology Data Exchange (ETDEWEB)

    Frank Murray; Michael Schaepe

    2009-04-24

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  15. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  16. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  17. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  18. The Adoption of Mobile Learning in a Traditional Training Environment: The C95-Challenge Project Experience

    Science.gov (United States)

    Catenazzi, Nadia; Sommaruga, Lorenzo; De Angelis, Kylene; Gabbianelli, Giulio

    2016-01-01

    Within the C95-Challenge Erasmus+ project, mobile learning technologies are adopted and tested for bus and truck drivers training according to the EU 2003/59/EC Directive. Different kinds of training contents are developed in the form of interactive slides, hyper-videos, interactive quizzes and delivered on mobile devices. Existing apps and games…

  19. Challenges for investment in renewable electricity in the European Union. Background report in the ADMIRE REBUS project

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Skytte, K.; Meibom, P.; Lescot, D.; Hoffmann, T.; Del Rio, P.

    2003-11-01

    This report serves as a background report of the final main report of the ADMIRE REBUS project. The report focuses on challenges that arise from changes in political support systems, lead time and risk with respect to investment in RES-E technologies. It discusses which tools and strategies that can be used in order to overcome these challenges. The objective of this report is to elaborate further on the above-mentioned discussions compared to the main report. This is mainly done based on illustrative case studies with data taken from questionnaire analyses and data surveys

  20. New power plants in Europe? A challenge for project and quality management

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, M. [RWE Technology GmbH, Essen (Germany)

    2010-07-01

    Against the backdrop of the age structure of the European power plant fleet and the EU's climate protection targets, a significant need for new-build and replacement power plant capacity is becoming apparent. RWE has thus founded RWE Technology in order to achieve its growth targets, but also to implement its ongoing power plant new-build programme in the order of no fewer than 12,000 MW in capacity. This company combines the project management and engineering capacity of the Group in order to meet the challenges posed by the fast-changing energy market. The following article explains the specific steps taken to achieve these objectives. (orig.)

  1. Student-Identified Strengths and Challenges of Using Blackboard for Group Projects in a Social Work Course

    Directory of Open Access Journals (Sweden)

    Melissa B. Littlefield

    2002-05-01

    Full Text Available Blackboard (TM provides social work educators integrated online communication tools that they can employ to facilitate student learning through features such as e-mail, discussion forums, file exchange, virtual classroom, and links to online resources. This study describes students’ experiences using Blackboard (TM to support a group project assignment. The majority of students found it easy to use and useful for the project, and indicated that they would like to use it in other courses. In addition, students gained technical skills as a result of the group project. Students’ group project grades and final course grades were comparable to those in other sections of the same course taught by this investigator. The findings of this study suggest that online technology can be used to facilitate group assignments for MSW students. The benefits include increased efficiency of group functioning and increased accountability of group members. The challenges include technical problems and student resistance to using the technology.

  2. High-Assurance Software: LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hulette, Geoffrey Compton

    2014-06-01

    This report summarizes our work on methods for developing high-assurance digital systems. We present an approach for understanding and evaluating trust issues in digital systems, and for us- ing computer-checked proofs as a means for realizing this approach. We describe the theoretical background for programming with proofs based on the Curry-Howard correspondence, connect- ing the field of logic and proof theory to programs. We then describe a series of case studies, intended to demonstrate how this approach might be adopted in practice. In particular, our stud- ies elucidate some of the challenges that arise with this style of certified programming, including induction principles, generic programming, termination requirements, and reasoning over infinite state spaces.

  3. Integrated NEMS and optoelectronics for sensor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  4. Nuclear targets within the project of solving CHAllenges in Nuclear DAta

    Science.gov (United States)

    Sibbens, Goedele; Moens, André; Vanleeuw, David; Lewis, David; Aregbe, Yetunde

    2017-09-01

    In the frame of the European Commission funded integrated project CHANDA (solving CHAllenges in Nuclear DAta) the importance of nuclear target preparation for the accurateness and reliability of experimental nuclear data is set in a dedicated work package (WP3). The global aim of WP3 is the development of a network for nuclear target preparation and characterization, enabling to coordinate the target production corresponding to the experimental requirements. Therefore, a set of tasks within the work package needs to be followed. Primarily, an inventory of target related facilities and radioisotope providers was created. In the next step a priority list of target requests was made in agreement with the target user considering the technical specification, the scheduled experiments and the availability of the target laboratories. A set of target requests has been assigned to the Target Preparation laboratory of the European Commission - Joint Research Centre - Directorate G (EC-JRC.G.2) in Geel, Belgium. This contribution gives an overview of the nuclear targets that are produced within the CHANDA project. The equipment and techniques available for the preparation and characterization of uranium, plutonium and neptunium layers with an areal density ranging from 60 to 205 μg cm-2 will be emphasized.

  5. Challenges related to methanization - Bibliographical synthesis by France Nature Environnement. Opinion of FNE on methanization: Which challenges and which desirable development? Methascope: assessment support tool for a methanization project

    International Nuclear Information System (INIS)

    Desaunay, Thomas; Mathien, Adeline; Dorioz, Camille; Saint-Aubin, Thibaud; Banaszuk, Agnes; Badereau, Benedicte de; Capiez, Nathalie; Zoffoli, Maxime

    2014-12-01

    A first document proposes a bibliographical synthesis on the various challenges related to methanization. It addresses the following issues: biogas and public policies, methanization as a natural process of transformation of organic matter, different installations for different territories, matters which can be used in methanization, biogas as a renewable and local energy which can be transformed according to needs, properties and uses of digestate, choice between composting and methanization, energetic crops, methanization and nitrates, regulation, potential risks and pollutions, economic profitability of projects. The second document states the FNE's opinion on methanization, its challenges and the associated desirable development. The third document is a guide which aims at providing knowledge on methanization, at easing dialogue between actors of a territory, and at elaborating a position and an opinion with respect to a specific methanization project on a territory

  6. Tackling the work-life balance challenge in Professional Service Firms: the impact of projects, organizing and service characteristics

    NARCIS (Netherlands)

    Noury, L.C.; Gand, Sébastien; Sardas, Jean-Claude

    2017-01-01

    Professional Service Firms (PSFs) are currently under considerable pressure for economic reasons (low growth, pressure on cost), but also from the emergence of individual demands for work-life balance (WLB) from professionals, which challenge traditional ways of organizing both projects and careers.

  7. Are project managers ready for the 21th challenges? A review of problem structuring methods for decision support

    Directory of Open Access Journals (Sweden)

    José Mateo

    2017-01-01

    Full Text Available Numerous contemporary problems that project managers face today can be considered as unstructured decision problems characterized by multiple actors and perspectives, incommensurable and/or conflicting objectives, and important intangibles. This work environment demands that project managers possess not only hard skills but also soft skills with the ability to take a management perspective and, above all, develop real leadership capabilities. In this paper, a family of problem structured methods for decision support aimed at assisting project managers in tackling complex problems are presented. Problem structured methods are a family of soft operations research methods for decision support that assist groups of diverse composition to agree a problem focus and make commitments to consequential action. Project management programs are challenged to implement these methodologies in such a way that it is organized around the key competences that a project manager needs in order to be more effective, work efficiently as members of interdisciplinary teams and successfully execute even a small project.

  8. Final report for the mobile node authentication LDRD project.

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, John T.; Lanzone, Andrew J.

    2005-09-01

    In hostile ad hoc wireless communication environments, such as battlefield networks, end-node authentication is critical. In a wired infrastructure, this authentication service is typically facilitated by a centrally-located ''authentication certificate generator'' such as a Certificate Authority (CA) server. This centralized approach is ill-suited to meet the needs of mobile ad hoc networks, such as those required by military systems, because of the unpredictable connectivity and dynamic routing. There is a need for a secure and robust approach to mobile node authentication. Current mechanisms either assign a pre-shared key (shared by all participating parties) or require that each node retain a collection of individual keys that are used to communicate with other individual nodes. Both of these approaches have scalability issues and allow a single compromised node to jeopardize the entire mobile node community. In this report, we propose replacing the centralized CA with a distributed CA whose responsibilities are shared between a set of select network nodes. To that end, we develop a protocol that relies on threshold cryptography to perform the fundamental CA duties in a distributed fashion. The protocol is meticulously defined and is implemented it in a series of detailed models. Using these models, mobile wireless scenarios were created on a communication simulator to test the protocol in an operational environment and to gather statistics on its scalability and performance.

  9. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ANNUAL REPORT TO THE DEPARTMENT OF ENERGY FOR FISCAL YEAR 1999. THE DEPARTMENT OF ENERGY, DECEMBER 1999.

    Energy Technology Data Exchange (ETDEWEB)

    PAUL,P.; FOX,K.J.

    2000-07-01

    In FY 1999, the BNL LDRD Program funded 33 projects, 25 of which were new starts, at a total cost of $4,525,584. A table is presented which lists all of the FY 1999 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which are given. A total of 29 informal publications (abstracts, presentations, reports and workshop papers) were reported and an additional 23 formal (full length) papers were either published, are in press or being prepared for publication. The investigators on five projects have filed for patents. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. The complete summary of follow-on activities is as follows: Information Publications--29, Formal Papers--23, Grants/Proposals/Follow-on Funding--7. In conclusion, a significant measure of success is already attributable to the FY 1999 LDRD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.

  11. Project Management in Bayelsa: Issue and Challenges | Ogege ...

    African Journals Online (AJOL)

    Project management is believed to be justified as a means of avoiding the ills inherent in the construction and production sectors of the economy and for which reasons most projects fail and or abandoned. The project managers role arises from the need for a technical expert to take charge, control of events on the project ...

  12. Challenges in the delivery of nutrition services to hospital discharged older adults: the community connections demonstration project.

    Science.gov (United States)

    Sahyoun, Nadine R; Akobundu, Ucheoma; Coray, Kevin; Netterville, Linda

    2009-04-01

    The objective of this project was to explore the effort necessary to transform the Older Americans Act Nutrition Program (OAANP) into core programs within an integrated health care delivery system that serves hospital-discharged older adults in order to assist them in reintegrating into the community. Six OAANPs in six states were funded and provided technical assistance to develop coalitions with hospitals and community organizations. Each demonstration site was unique and faced many challenges in reaching out to a hospitalized vulnerable population. This project also provided opportunities to try out new initiatives and examine their sustainability within the community.

  13. Project Success in IT Project Management

    OpenAIRE

    Siddiqui, Farhan Ahmed

    2010-01-01

    The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. The criteria for project success need to be agreed by all parties before the start of the project and constantly reviewed as the project progresses. Assessing critical success factors is another ...

  14. International physical protection self-assessment tool for chemical facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  15. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  16. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  17. Social Licence to Operate through a gender lens : The challenges of including women’s interests in development assistance projects

    NARCIS (Netherlands)

    Jijelava, David; Vanclay, Frank

    2014-01-01

    The paper analyses the concept of social licence to operate from a gender perspective. We examine the challenges associated with obtaining a gender-aware social licence for development assistance organizations working in conservative, traditional rural societies. We argue that during project

  18. Challenges in Mentoring Software Development Projects in the High School: Analysis According to Shulman's Teacher Knowledge Base Model

    Science.gov (United States)

    Meerbaum-Salant, Orni; Hazzan, Orit

    2009-01-01

    This paper focuses on challenges in mentoring software development projects in the high school and analyzes difficulties encountered by Computer Science teachers in the mentoring process according to Shulman's Teacher Knowledge Base Model. The main difficulties that emerged from the data analysis belong to the following knowledge sources of…

  19. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    Science.gov (United States)

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Oil and gas projects in Amazon: an environmental challenge; Projetos de petroleo e gas na Amazonia: um desafio ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Taam, Mauricio [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Cabral, Nelson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Regional Norte SMS ; Cardoso, Vanderlei [TRANSPETRO, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude

    2004-07-01

    In the heart of the Amazon forest, some 600 km from the city of Manaus, the Brazilian Oil Company - PETROBRAS - is developing the 'URUCU PROJECT'. Consisting on 3 oil and gas production fields and 3 natural gas processing plant, 2 huge pipelines crossing the dense Amazon forest and its rivers and going towards COARI - the Fluvial Terminal of Solimoes river. Then, vessels and ferries, loads LGN to the north region and oil to feed the Manaus refinery plant. In a near future natural gas pipelines will connect COARI to Manaus and URUCU to Porto Velho. The whole project will allow energy supply to the less developed and isolated region of Brazil, and brings relief for the local population, but represents one of the biggest challenges for the oil and gas industry in terms of environmental sustainability for projects in very sensitive areas. The paper concludes that it is viable to face such a challenges counting on an Environmental Management System tailored to fit the region peculiarities, including a high level of Preparedness and Response for oil incidents, and last but never least assuming a respectful attitude towards the Amazon and its people. (author)

  1. Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT) final report

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Philip W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunlavy, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    This SAND report summarizes the activities and outcomes of the Network and Ensemble Enabled Entity Extraction in Information Text (NEEEEIT) LDRD project, which addressed improving the accuracy of conditional random fields for named entity recognition through the use of ensemble methods.

  2. Virtual communities, research groups and projects on IMS Learning Design. State of the art, key factors and forthcoming challenges

    NARCIS (Netherlands)

    Burgos, Daniel; Koper, Rob

    2005-01-01

    Burgos, D., Koper, R. (2005) Virtual communities, research groups and projects on IMS Learning Design. State of the art, key factors and forthcoming challenges. In E-Journal of Educational Research, Assessment and Evaluation, vol. 11, issue 2 [www.uv.es/RELIEVE]. Available at

  3. Expansion program is a challenging project

    International Nuclear Information System (INIS)

    Walker, G.L.

    1992-01-01

    This paper reports that construction is set to begin on the $1.5 billion PGT-PG and E Pipeline Expansion Project. It will consist of 691 miles of 42-in pipeline and 110 miles of 36-in. pipeline, to be built over 2 years. The project, which will transport additional supplies of natural gas to US West Coast markets, has its US regulatory approval in hand. On Oct. 16, 1991, the Federal Energy Regulatory Commission authorized Pacific Gas Transmission Co. to construct its Pacific Northwest segment of the expansion. Pacific Gas and Electric Co. received approval to build its California segment in late 1990 from the California Public Utilities Commission

  4. Three domains of project organising

    OpenAIRE

    Winch, Graham M.

    2014-01-01

    It has become axiomatic in research on project organising that projects are temporary organisations. Yet there are a number of challenges to this axiom: research on matrix organisation, the embeddedness of projects in project ecologies, and projectification all emphasise the relationship of the project to permanent organisations. Similarly, research on project-based firms and owner organisations which are relatively permanent challenges this axiom. This paper develops a conceptual framework w...

  5. Research and Development Projects with ICT and students as learning designers in Primary Schools: A methodological challenge

    DEFF Research Database (Denmark)

    Levinsen, Karin Ellen Tweddell; Sørensen, Birgitte Holm; Tosca, Susana

    of how: • ICT supports students learning, • ICT release time for more teaching, and • teachers digital literacy impact on the role of ICT in the educational practice. Further the call required collaboration between universities and university colleges in order to disseminate knowledge and new practices......In this paper we present some methodological challenges that emerged during the process of shaping the research design for the comprehensive and complex research project Children as learning designers in a digital school. The project is the realization of our proposal to a research call from...... the Danish Ministry of Education named Development projects and pilot school experiments (Udviklingsprojekter med demonstrationsskoleforsøg vedr. it i folkeskolen – see Undervisningsministeriet 2013) in the spring 2013. The call was based on a governmental decision to allocate 500 million DKR to increase...

  6. The 'Grand Paris' project: Tools and challenges

    OpenAIRE

    De Palma, André

    2011-01-01

    The purpose of this Round Table is to assess the economic effects of major transport infrastructure projects. The term major projects is used to designate qualitative leaps, be it the mapping out of new road or rail rings to link disparate radial penetration routes or the introduction of more-targeted innovations tackling frequency, speed or automation. (...)

  7. Challenges in the Successful Research Management of a Collaborative EU Project.

    Science.gov (United States)

    Zikos, Dimitrios; Diomidous, Marianna; Mantas, John

    2012-03-01

    Successful research management requirements include; equal teamwork and efficient coordination, in order to increase the impact of the research outcomes and provide added value knowledge. Aim of this paper is to discuss the strategies that have been followed during the RN4CAST study, the largest nursing multi-country research project ever conducted in Europe. The paper focuses on the core research strategies rather than on the administrative activities, which are inevitably also required for the success of a large scale research. This paper is an extension of a conference presentation in the International Conference of the European Federation for Medical Informatics (MIE) 2011 in Oslo, and was subsequently published in the Studies in Health Technology and Informatics book series (IOS Press) under the title "Research management: the case of RN4CAST." Management of a multicountry nursing survey requires the use of common data collection tools, applicable to every context, research protocols supporting the scope of the research, data models for multi-country analyses and global dissemination strategies. Challenges that may be faced during the implementation of the study include the individualized confrontation of obstacles during data collection, the coherence of national procedures (for example permissions for data collection) in European level, and the challenge to gain information of added value for the EU, by aggregating the national survey results through a powerful data analysis model. Communication strategies are also discussed.

  8. Sakhalin 2, phase 2 project : meeting the Arctic challenge in a sub-Arctic environment

    International Nuclear Information System (INIS)

    Reece, A.; Gerges, A.; Efthymiou, M.; Winkler, M.

    2008-01-01

    Sakhalin Energy's objective is to commercially develop, operate and market the hydrocarbon resources and associated infrastructure governed by the Sakhalin 2 licenses for the sustainable benefit of shareholders, the Russian Federation, the Sakhalin Oblast and the wider community. This presentation discussed Sakhalin Energy's holdings including its investment company and hydrocarbon projects in eastern Russia. The Sakhalin area is a remote island that lacks infrastructure, has a low population density, with a rich onshore and offshore wildlife. It is a seismically active area, with seasonal operating windows, drifting pack ice from December to June, waves up to 18 metre maximum height, and frequent fog in spring and summer. The temperature also varies from 28 degrees Celsius to -40 degrees Celsius. The presentation also addressed the rerouting of offshore pipelines to ensure the least possible disturbance to western gray whale migration. Several photographs and illustrations of the phase 1 project were presented. Open water conditions were also illustrated. The phase 2 project was then outlined. This included illustrations of the platform, plant and export terminal, and onshore processing facility. Other photographs that were shown in the presentation included the offshore pipeline installation; a view of the shore approach to the pipeline installation; oil spill response; and escape, evacuation, and response. The design challenges and design philosophy of the project were also identified. The presentation concluded with a discussion of ice loading and platform response. figs

  9. Sakhalin 2, phase 2 project : meeting the Arctic challenge in a sub-Arctic environment

    Energy Technology Data Exchange (ETDEWEB)

    Reece, A.; Gerges, A.; Efthymiou, M.; Winkler, M. [Sakhalin Energy, Moscow (Russian Federation)

    2008-09-15

    Sakhalin Energy's objective is to commercially develop, operate and market the hydrocarbon resources and associated infrastructure governed by the Sakhalin 2 licenses for the sustainable benefit of shareholders, the Russian Federation, the Sakhalin Oblast and the wider community. This presentation discussed Sakhalin Energy's holdings including its investment company and hydrocarbon projects in eastern Russia. The Sakhalin area is a remote island that lacks infrastructure, has a low population density, with a rich onshore and offshore wildlife. It is a seismically active area, with seasonal operating windows, drifting pack ice from December to June, waves up to 18 metre maximum height, and frequent fog in spring and summer. The temperature also varies from 28 degrees Celsius to -40 degrees Celsius. The presentation also addressed the rerouting of offshore pipelines to ensure the least possible disturbance to western gray whale migration. Several photographs and illustrations of the phase 1 project were presented. Open water conditions were also illustrated. The phase 2 project was then outlined. This included illustrations of the platform, plant and export terminal, and onshore processing facility. Other photographs that were shown in the presentation included the offshore pipeline installation; a view of the shore approach to the pipeline installation; oil spill response; and escape, evacuation, and response. The design challenges and design philosophy of the project were also identified. The presentation concluded with a discussion of ice loading and platform response. figs.

  10. Challenges of public procurement in EU funded projects

    Directory of Open Access Journals (Sweden)

    Marko Šostar

    2017-01-01

    Full Text Available Membership in the European Union implies adjustment of EU projects to the rules of Structural Funds, but also adoption of legal regulations, thus influencing the process of implementation of the public procurement in EU funded projects. Each successful applicant who expressed the need for procurement of goods, services and works of a certain value, must respect the principles of public procurement. Irregularities in the procurement process can lead to the failure of returning the EU funds even several years after the end of the project. Therefore, the knowledge and proper implementation of public procurement is the main precondition for the correct implementation of each project. In order to obtain information about the current absorption capacity of the public procurement liable parties, and to identify key obstacles that stakeholders face in procurement procedures, the research was conducted by surveying 30 entities that are subject of public procurement in Croatia. Research results imply the poor quality of public procurement in the implemented projects, which often results in financial corrections, disapproving project reports, etc.

  11. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  12. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  13. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  14. Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    2009-01-01

    This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method

  15. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Will [comp.

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  16. Future challenges for woody biomass projections

    NARCIS (Netherlands)

    Schadauer, K.; Barreiro, Susana; Schelhaas, M.; McRoberts, Ronald E.

    2017-01-01

    Many drivers affect woody biomass projections including forest available for wood supply, market behavior, forest ownership, distributions by age and yield classes, forest typologies resulting from different edaphic, climatic conditions, and last but not least, how these factors are incorporated

  17. Pay For Success And Population Health: Early Results From Eleven Projects Reveal Challenges And Promise.

    Science.gov (United States)

    Lantz, Paula M; Rosenbaum, Sara; Ku, Leighton; Iovan, Samantha

    2016-11-01

    Pay for success (PFS) is a type of social impact investing that uses private capital to finance proven prevention programs that help a government reduce public expenditures or achieve greater value. We conducted an analysis of the first eleven PFS projects in the United States to investigate the potential of PFS as a strategy for financing and disseminating interventions aimed at improving population health and health equity. The PFS approach has significant potential for bringing private-sector resources to interventions regarding social determinants of health. Nonetheless, a number of challenges remain, including structuring PFS initiatives so that optimal prevention benefits can be achieved and ensuring that PFS interventions and evaluation designs are based on rigorous research principles. In addition, increased policy attention regarding key PFS payout issues is needed, including the "wrong pockets" problem and legal barriers to using federal Medicaid funds as an investor payout source. Project HOPE—The People-to-People Health Foundation, Inc.

  18. Evaluation of the South Oxnard Challenge Project 1997-2001

    National Research Council Canada - National Science Library

    Turner, Susan

    2002-01-01

    ... and Accountability Challenge Grants. The first "Challenge Grants" provided approximately 50 million dollars for 14 counties to develop comprehensive, multi-agency plans designed to provide a "continuum" of responses to juvenile delinquency...

  19. Understanding Applications of Project Planning and Scheduling in Construction Projects

    OpenAIRE

    AlNasseri, Hammad Abdullah

    2015-01-01

    Construction project life-cycle processes must be managed in a more effective and predictable way to meet project stakeholders’ needs. However, there is increasing concern about whether know-how effectively improves understanding of underlying theories of project management processes for construction organizations and their project managers. Project planning and scheduling are considered as key and challenging tools in controlling and monitoring project performance, but many worldwide constru...

  20. Real-time individualized training vectors for experiential learning.

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie; Glickman, Matthew R.; Fabian, Nathan

    2011-01-01

    Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD) project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  2. Involving other communities through challenges and cooperation

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2015-01-01

    The ATLAS collaboration has recently setup three projects targeting citizen science or specific communities : The goal of the HiggsML project was to bring particle physicists and data scientists together through a challenge: compete online to obtain the best Higgs to tau tau signal significance on a set of ATLAS fully simulated signal and background. The challenge ran from May to September 2014, drawing considerable attention. In total, there were 1785 teams that participated, making it the most popular challenge at the time on the Kaggle platform. The ATLAS@home project allows volunteers to run simulations of collisions in the ATLAS detector. During the first year the community mostly consisted of software fans, who were attracted by the technical challenge and contributed greatly to the debugging through the message boards on the website. With the start of LHC, the number of people attracted for outreach reasons grew. Higgs Hunters is the first Particle Physics project hosted on the web-based citizen scienc...

  3. Investing in Urban Studies to Ensure Urban Archaeology’s Future: A Response to ‘The Challenges and Opportunities for Mega-infrastructure Projects and Archaeology’

    OpenAIRE

    Linn, Meredith B

    2013-01-01

    In reading J. J. Carver’s excellent suggestions for how to better enable archaeology and large urban infrastructure projects to progress to mutual benefit, I found myself in enthusiastic agreement with his point that ‘professional working relationships are the most important challenge for archaeology in mega projects’ and that we must convince project directors, engineers, and site teams that archaeology ‘can enhance the value of the project they are building’ (4). This is especially crucial ...

  4. A bio-synthetic interface for discovery of viral entry mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Gutzler, Mike; Maar, Dianna; Negrete, Oscar; Hayden, Carl C.; Sasaki, Darryl Yoshio; Stachowiak, Jeanne C.; Wang, Julia

    2010-09-01

    Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in the environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.

  5. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  6. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  7. An exploratory study on the building information modeling adoption in United Arab Emirates municipal projects- current status and challenges

    Directory of Open Access Journals (Sweden)

    Venkatachalam Senthilkumar

    2017-01-01

    Full Text Available Many modern complex building projects in the public and private sectors are characterized by its poor information management which is manifested by time and cost overruns around the world. Building Information Modelling (BIM is currently being adopted around the world with various countries mandated its implementation. In specific, the implementation of BIM is rapidly growing in developed countries such as USA, UK, Singapore and Australia, with government mandate through devising strategies and initiatives to increase the adoption. The implementation of BIM in United Arab Emirates (UAE and other developing countries lags behind due to the existence of numerous implementation barriers. This study explores the current status of BIM implementation in the UAE municipalities, further explores the people, process and technology readiness towards BIM adoption in the UAE building projects. Further the study also explores the current challenges against the BIM adoption. The study adopts a positivists approach by collecting data through questionnaires, a sample of sixty participants across the UAE municipalities from different states were selected randomly to acquire the data. The collected data is statistically analyzed to obtain the findings. The analysis results showed that there are inadequate people and process related readiness towards BIM adoption whereas the technology readiness does exist. The same also was reflected in further analysis on BIM adoption barriers as the challenges. Further the paper also discusses the possible strategies adopted around the world through literature to address the explored challenges in the study

  8. Conference on wind power development in the face of landscape and local project acceptability challenges

    International Nuclear Information System (INIS)

    Victoire Lejzerzon; Sauron, Claire; Villot, Marie; Ratzbor, Guenter; Tausch, Christian; Cagneaux, Bertrand; Jouneau, Agathe; Stemmer, Boris; Huebner, Gundula; Orozco-Souel, Paola; Lhermitte, Charles; Ferus, Elisabeth; Benezech, Philippe; Gunzelmann, Thomas

    2015-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on n wind power development in the face of landscape and local project acceptability challenges. In the framework of this French-German exchange of experience, participants addressed the following points: the conciliation between landscape protection and wind power development, the definition of landscape environmental quality criteria, the needs and usages of the departments in charge of the treatment of landscape studies in France, the socio-psychological approach of the local acceptability of wind farm projects, the re-powering tool for the improvement of the wind farm integration in the landscape, and the conciliation between the monuments maintenance and wind power development. This document brings together the available presentations (slides) made during this event: 1 - Conciliating landscape protection and wind power development goals in France (Marie Villot); 2 - Wind turbines: Conflicts between development goals, landscape and acceptance - Perception and criteria (Guenter Ratzbor); 3 - Bayern's wind power atlas: a planning tool which takes into account the landscape aspects (Christian Tausch); 4 - Landscape assessment in wind farms projects: what and how to do in French administrative procedures? (Bertrand Cagneaux); 5 - Methods for evaluation of landscape for wind farms projects - A French project developer's feedback (Agathe Jouneau); 6 - Landscape Assessment: Methods from German Landscape Practice (Boris Stemmer); 7 - Acceptance of Wind Turbines - Social Psychological Research (Gundula Huebner); 8 - Local consultation: who to involve, when and how? (Paola Orozco-Souel); 9 - Local acceptability: what dialogue concepts and strategies, and how to manage wind energy objection (Charles Lhermitte); 10 - Re-powering and landscape: chances and limits (Elisabeth Ferus); 11 - Wind power and cultural heritage: consultation and dialogue to succeed (Philippe Benezech); 12

  9. Project time boxing and milestones as drivers for open design projects

    DEFF Research Database (Denmark)

    Tollestrup, Christian H. T.

    2015-01-01

    is very positive and that the structure, strict enforcement and rolling project management responsibility in a group work setting really helps them drive the project forward with high motivation. The main challenge lies in the balance between loading the teams with too many challenges and just providing......The Curriculums and programs in Problem Based Learning (PBL) utilizes the project-format in a team based setting for rehearsing the competencies of applying the design-oriented skills and knowledge learned in courses and workshops. If the project period is self-organised, there is a tendency......, because of the facilitated format where ‘disturbances’ are eliminated. If successful the state of creative flow is achieved. So how can we create a sense of urgency in longer project periods, not just workshop format, that would help a team of design students to engage and drive the project from the start...

  10. Development of indigenous irradiator - current progress and challenges

    International Nuclear Information System (INIS)

    Anwar A Rahman; Mohd Arif Hamzah; Muhd Nor Atan; Aznor Hassan; Fadil Ismail; Julia A Karim; Rosli Darmawan

    2009-01-01

    The development of indigenous irradiator is one of Prototype Development Center main project to support Nuclear Malaysia services. Three (3) projects have been identified and currently the status is in final stage of design. There are some issues and challenges encountered, which delayed the project progress. The paper will discuss the current progress of development and challenges faced in designing the irradiator. (Author)

  11. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  12. Improving Project Portfolio Management (PPM) for Improvement Projects

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Jakobsen, Peter M.; Korsaa, Morten

    2017-01-01

    Project Portfolio Management (PPM) focus on the integration and alignment of projects with the business operation in order to achieve most value and cost-efficiency for the investment in projects. PPM is often a challenge and especially so for improvement projects where PPM is considerably...... of evaluating a portfolio of improvement projects and combine this evaluation with the effect they have on the CMMI maturity level. Further, the paper demonstrates how the combination of a strong senior management requirement for improved maturity and the focus on getting the most value out of PPM made...

  13. LDRD Final Report: Advanced Hohlraum Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Ogden S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-08

    Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternate design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO2 or Ta2O5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to

  14. The GREAT3 challenge

    International Nuclear Information System (INIS)

    Miyatake, H; Mandelbaum, R; Rowe, B

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is an image analysis competition that aims to test algorithms to measure weak gravitational lensing from astronomical images. The challenge started in October 2013 and ends 30 April 2014. The challenge focuses on testing the impact on weak lensing measurements of realistically complex galaxy morphologies, realistic point spread function, and combination of multiple different exposures. It includes simulated ground- and space-based data. The details of the challenge are described in [1], and the challenge website and its leader board can be found at http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/, respectively

  15. New power plants in Europe. A challenge for project and quality management; Kraftwerksneubau in Europa. Eine Herausforderung fuer Projekt- und Qualitaetsmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Matthias [RWE Technology GmbH, Essen (Germany)

    2011-07-01

    The challenges faced by power plant engineering in Europe have become more versatile and - above all - more complex. RWE has created the preconditions for setting up a uniform European negotiating basis for dealing with contracting parties, suppliers, building contractors and service providers. In addition, merging employees from our core markets is efficiently promoting the technology and best-practice transfer within the group. In this context, the harmonisation of standards and pooling of project management as well as engineering skills for the implementation of complex investment projects at international level are of decisive importance. (orig.)

  16. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  17. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  18. Challenges in Implementing FP7 Projects in the Public Institutions

    Directory of Open Access Journals (Sweden)

    Viorel VULTURESCU

    2012-06-01

    Full Text Available National Authority for Scientific Research (ANCS and Executive Unit for Higher Education, Research and Development and Innovation Funding (UEFISCDI participate to several projects funded under the Framework Programmes, since 1998. The staff from each the two organisations participating in projects are merely the same, typically from “international cooperation” departments. In each of the two organisations, dedicated teams were set and a distinct specialization emerged. In this respect, dedicated procedures and good practices in project management were developed. Even the Framework Programs had different structures and the focused was different (e.g. knowledge creation, EU problem solving, scientific support for policies and programs, etc., the funding instruments (projects were not radically different from a Framework Program to another, so the staff could gain experience in managing this type of projects. Experience and expertise gained during this long period of time led to definition of a general framework within the two institutions and setting up of a general guideline for participation to this type of projects. The main dimensions of this framework are: project team organization, project management process, managing results and risk, organisational framework, good practices, factors which ensure success in project implementation.The paper presents a specific framework for FP 7 project implementation and how this framework is applied by both organisations, a set of rules and procedures that should be followed by any organisation, in particular governmental ones, participating in FP 7 projects and a set of good practices developed by ANCS and UEFISCDI.

  19. Global nuclear renaissance - today's issues, challenges and differences relative to the first wave of nuclear plant projects

    International Nuclear Information System (INIS)

    Gardner, William N.

    2010-01-01

    The development and negotiation of an Engineering, Procurement and Construction (EPC) contract is a multi-disciplined and time consuming process. Relative to the first wave on new nuclear build projects of the 1950's - 1970's, today's EPC contracts are more complex for a variety of reasons including more demanding regulatory and environmental requirements, global supply chain versus localization issues and different world wide economic considerations. This paper discusses the impacts of some of these challenges on developing an EPC contract in today's Nuclear Renaissance. (authors)

  20. The Difficulty in Following Project Schedule as a Key Project Management Challenge: Family Firm Perspective

    Directory of Open Access Journals (Sweden)

    Joanna SADKOWSKA

    2016-12-01

    Full Text Available The problem of how to manage projects successfully has been gaining growing interest for the last decades. The aforementioned is mainly caused by the fact that project management offers a wide range of methods and tools which, when properly used, can stimulate long-term growth of businesses. As a consequence it offers a particular development opportunity for family enterprises which, due to their specificity, have to overcome many difficulties. The primary objective of this paper is to examine whether family enterprises perceive, and to what extent, the factor of following project schedule as a difficulty in the area of project management. 154 Polish family firms representing different sectors were surveyed. The results of regression analysis show that family firms with global range of business activities, on the contrary to those with local or regional ones, do not find the factor of following project schedule as a difficulty. This results manly from the tools employed and the maturity level they have reached in project management. The findings support the current discussion on the specificity and uniqueness of family businesses in relationship to the knowledge area of project management. It also contributes to filling the gap on understanding the functioning of family firms in the emerging economies of Eastern Europe.

  1. We Scrum Every Day: Using Scrum Project Management Framework for Group Projects

    Science.gov (United States)

    Pope-Ruark, Rebecca

    2012-01-01

    Collaborative group projects have documented learning benefits, yet collaboration is challenging for students because the educational system values individual achievement. This article explores Scrum, an approach to framing, planning, and managing group projects used in Web-software development. Designed for multi-faceted projects, this approach…

  2. Project management at a university

    Science.gov (United States)

    Eaton, Joel A.

    2006-06-01

    Managing instrumentation projects, large or small, involves a number of common challenges-defining what is needed, desiging a system to provide it, producing it in an economical way, and putting it into service expeditiously. Doing these things in a university environoment provides unique challenges and opportunities not obtaining in the environment of large projects at NASA or national labs. I address this topic from the viewpoint of knowledge of two such projects, the development of OAO-2 at the University of Wisconsin and the relocation of Fairborn Observatory to the Patagonia Mountains in Arizona, as well as my own developemnt of the Tennessee State 2-m Automatic Spectroscopic Telescope. For the university environment, I argue for a more traditional management style that relies on more informal techniques than those used in large-scale projects conducted by big bureaucratic institutions. This style identifies what tasks are really necessary and eliminates as much wasteful overhead as possible. I discuss many of the formalities used in project management, such as formal reviews (PDR, CDR, etc.) and Gantt charts, and propose other ways of acheving the same results more effectively. The university environment acutely requires getting the right people to do the project, both in terms of their individual personalities, motivation, and technical skills but also in terms of their ability to get on with one another. Two critical challenges confronting those doing such projects in universities are 1) keeping the contractors on task (the major challenge to anyone doing project management) and 2) dealing with the purchasing systems in such institutions.

  3. IT Project Portfolio Management; Challenges faced by Danish municipalities

    DEFF Research Database (Denmark)

    Hansen, Lars Kristian

    2010-01-01

    Abstract. Increasing the organizational benefits from IT projects is a key concern in most organizations. The use of Project Portfolio Management (PPM) is generally recommended by consultants (e.g. Kaplan 2005) and researchers (e.g. De Reyck et al 2005) as one way of increasing the organizational...... benefits from IT investments. This article reports from an action research project aiming at understanding and improving IT PPM practices in Danish municipalities, thereby contributing to the general body of knowledge concerning PPM of IT projects. Our findings suggest that the participating organizations...... might benefit from a structured approach as suggested by the literature (e.g. Kaplan 2005), but also that the prescriptive PPM literature in some areas is too simplistic when compared to the reality faced by the participating practitioners. Especially, our research suggests that different PPM elements...

  4. Neutrino Physics at Fermilab

    International Nuclear Information System (INIS)

    Federspiel, F.; Garvey, G.; Louis, W.C.; Mills, G.B.; Tayloe, R.; Sandberg, V.; Sapp, B.; White, D.H.

    1999-01-01

    The Liquid Scintillator Neutrino Detector (LSND), located at the LANSCE (formerly LAMPF) linear accelerator at Los Alamos National Laboratory, has seen evidence for the oscillation of neutrinos, and hence neutrino mass. That discovery was the impetus for this LDRD project, begun in 1996. The goal of this project was to define the appropriate technologies to use in a follow up experiment and to set in place the requirements for such an experiment

  5. Exploring and testing the Standard Model and beyond

    International Nuclear Information System (INIS)

    West, G.; Cooper, F.; Ginsparg, P.; Habib, S.; Gupta, R.; Mottola, E.; Nieto, M.; Mattis, M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to extend and develop the predictions of the Standard Model of particle physics in several different directions. This includes various aspects of the strong nuclear interactions in quantum chromodynamics (QCD), electroweak interactions and the origin of baryon asymmetry in the universe, as well as gravitational physics

  6. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  7. Virtual projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Commisso, Trine Hald

    2012-01-01

    that the best practice knowledge has not permeated sufficiently to the practice. Furthermore, the appropriate application of information and communication technology (ICT) remains a big challenge, and finally project managers are not sufficiently trained in organizing and conducting virtual projects....... The overall implications for research and practice are to acknowledge virtual project management as very different to traditional project management and to address this difference.......Virtual projects are common with global competition, market development, and not least the financial crisis forcing organizations to reduce their costs drastically. Organizations therefore have to place high importance on ways to carry out virtual projects and consider appropriate practices...

  8. The ITER project technological challenges

    CERN Multimedia

    CERN. Geneva; Lister, Joseph; Marquina, Miguel A; Todesco, Ezio

    2005-01-01

    The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the designer approach and the available technologies are critically discussed. The fourth lecture is devoted to the issue of performance prediction, from a superconducting wire to a large size conductor. The role of scaling laws, self-field, current distribution, voltage-current characteristic and transposition are...

  9. The PANTHER User Experience

    Energy Technology Data Exchange (ETDEWEB)

    Coram, Jamie L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morrow, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perkins, David Nikolaus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using both geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.

  10. The Mediterranean solar plan: the momentum and challenges of a project of cooperation in politics, industry and energy

    International Nuclear Information System (INIS)

    Lorec, Ph.; Schramm, Ch.

    2009-01-01

    Launched by the French President on 13 July 2008, the Union for the Mediterranean (UfM) seeks to inaugurate an era of cooperation between lands to the north, south and east of the Mediterranean by carrying out concrete projects in response to the challenges that this region must address. The UfM applies, we might say, the 'Monnet method' to the Mediterranean Basin. In this region as in post-war Europe, energy is a major issue that, if left unsettled, might generate major risks but that, if addressed for the sake of a new political and economic partnership, could represent a major opportunity. The Mediterranean Solar Plan has this precise objective. It seeks to activate the de facto solidarity between lands around the Mediterranean and to bring them to cooperate on energy, industrial, economic and social projects. (authors)

  11. Siyazama Entrepreneurial Development Project: Challenges of a ...

    African Journals Online (AJOL)

    Calls for global relevance and accountability are prevalent in private-public partnerships. Current community engagement projects in higher educational institutions reflect this focus. The academic partner can play a boundary spanning (bridge building) role in a community–university partnership. The university partner often ...

  12. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    International Nuclear Information System (INIS)

    Auclair, K. D.

    2002-01-01

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  13. Experiences and Challenges of Community Participation in Urban Renewal Projects: The Case of Johannesburg, South Africa

    Directory of Open Access Journals (Sweden)

    Wellington Didibhuku Thwala

    2009-11-01

    Full Text Available Urban renewal and inner city regeneration have become critical efforts for the South African government, which has invested in several structures to stem the tide of decline in its nine major cities. Commitment to the alleviation of poverty is a focal point of the renewal and regeneration agenda and will remain so in the future. This effort is motivated by the fact that around 24% of the South African population currently lives on less than USD 1.00 per day, below the poverty line defined by the World Bank. The Central Government has made numerous public commitments to development, a part of which concerns extensive infrastructure investment and service delivery. Communities are expected to participate fully in the planning and implementation of these urban renewal projects. To this aim, participation is a process through which stakeholders influence and share control over development initiatives and the decisions and resources which affect them. Community participation should be aimed at empowering people by ensuring the development of skills and the creation of employment opportunities. This paper first explores the concept of community participation, and will then look at relevant past experiences in relation to community participation in urban renewal projects. Furthermore, the paper outlines the challenges and problems of community participation in urban renewal projects in Johannesburg, and finally, close with recommendations for the future.

  14. Academic Mobility Projects Management: Challenges for Ukrainian Professional Education

    Science.gov (United States)

    Zabolotna, Oksana

    2015-01-01

    The article is devoted to the academic mobility projects management on the example of Pavlo Tychyna Uman State Pedagogical University in the Erasmus Mundus Projects, namely, EMINENCE and EMINENCE II. It has been pointed out that modern university is a constantly developing system possessing a hidden potential for innovations. Thus, the…

  15. The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency.

    Science.gov (United States)

    McDonough, Ian M; Haber, Sara; Bischof, Gérard N; Park, Denise C

    2015-01-01

    Correlational and limited experimental evidence suggests that an engaged lifestyle is associated with the maintenance of cognitive vitality in old age. However, the mechanisms underlying these engagement effects are poorly understood. We hypothesized that mental effort underlies engagement effects and used fMRI to examine the impact of high-challenge activities (digital photography and quilting) compared with low-challenge activities (socializing or performing low-challenge cognitive tasks) on neural function at pretest, posttest, and one year after the engagement program. In the scanner, participants performed a semantic-classification task with two levels of difficulty to assess the modulation of brain activity in response to task demands. The High-Challenge group, but not the Low-Challenge group, showed increased modulation of brain activity in medial frontal, lateral temporal, and parietal cortex-regions associated with attention and semantic processing-some of which were maintained a year later. This increased modulation stemmed from decreases in brain activity during the easy condition for the High-Challenge group and was associated with time committed to the program, age, and cognition. Sustained engagement in cognitively demanding activities facilitated cognition by increasing neural efficiency. Mentally-challenging activities may be neuroprotective and an important element to maintaining a healthy brain into late adulthood.

  16. The Role of the Project Management Office on Information Technology Project Success

    Science.gov (United States)

    Stewart, Jacob S.

    2010-01-01

    The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. Assessing critical success factors is another…

  17. Challenges of youth participation in participatory action research

    DEFF Research Database (Denmark)

    Wattar, Laila; Fanous, Sandrine; Berliner, Peter

    2012-01-01

    Paamiut Youth Voice (PYV) is a Participatory Action Research (PAR) project, exploring youth perceptions, experiences, and the promotion of well-being in Paamiut, Greenland. Active youth participation remained a key challenge in the development of the local community through the locally initiated...... community mobilisation programme Paamiut Asasara. The challenges of youth participation in PYV are investigated in order to explore the implications of youth participation in PAR projects. The discussion of challenges is based on a methodological account of experiences from the research process clarifying...

  18. Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119

    International Nuclear Information System (INIS)

    Ferguson Jones, Andrea; Lee, Angela; Palmeter, Tim

    2013-01-01

    The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

  19. Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson Jones, Andrea; Lee, Angela [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada); Palmeter, Tim [Public Works and Government Services Canada, 4900 Yonge Street, Toronto, Ontario, M2N 6A6 (Canada)

    2013-07-01

    The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

  20. Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    2011-09-01

    Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth: (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.

  1. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  2. Status of CSNS project

    International Nuclear Information System (INIS)

    Zhang, J.; Fu, S.N.; Chen, H.S.

    2015-01-01

    The China Spallation Neutron Source (CSNS) accelerator is designed to accelerate proton beam pulses to 1.6 GeV at 25 Hz repetition rate, striking a solid metal target to produce spallation neutrons. The accelerator provides a beam power of 100 kW on the target in the first phase and then 500 kW in the second phase by increasing the average beam intensity 5 times while raising the linac output energy. The project construction has been formally launched in 2011 and it is planned to complete the project in March 2018. It is one of the high intensity proton accelerator projects in the world and it imposes a great challenge to Chinese accelerator community. This presentation will cover the status and challenges of the CSNS project. (author)

  3. Requirements: Towards an understanding on why software projects fail

    Science.gov (United States)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.

    2016-08-01

    Requirement engineering is at the foundation of every successful software project. There are many reasons for software project failures; however, poorly engineered requirements process contributes immensely to the reason why software projects fail. Software project failure is usually costly and risky and could also be life threatening. Projects that undermine requirements engineering suffer or are likely to suffer from failures, challenges and other attending risks. The cost of project failures and overruns when estimated is very huge. Furthermore, software project failures or overruns pose a challenge in today's competitive market environment. It affects the company's image, goodwill, and revenue drive and decreases the perceived satisfaction of customers and clients. In this paper, requirements engineering was discussed. Its role in software projects success was elaborated. The place of software requirements process in relation to software project failure was explored and examined. Also, project success and failure factors were also discussed with emphasis placed on requirements factors as they play a major role in software projects' challenges, successes and failures. The paper relied on secondary data and empirical statistics to explore and examine factors responsible for the successes, challenges and failures of software projects in large, medium and small scaled software companies.

  4. Developing electron beam bunching technology for improving light sources

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source

  5. International Socio-Technical Challenges for Geological Disposal (InSOTEC): Project Aims and Preliminary Results - 12236

    Energy Technology Data Exchange (ETDEWEB)

    Bergmans, Anne; Schroeder, Jantine [University of Antwerp, Faculty of Political and Social Sciences, 2000 Antwerp (Belgium); Simmons, Peter [University of East Anglia, School of Environmental Sciences, NR4 7TJ Norwich (United Kingdom); Barthe, Yannick; Meyer, Morgan [CNRS, Ecole des Mines, 75272 Paris (France); Sundqvist, Goeran [Universitetet i Oslo, Centre for Studies of Technology, Innovation and Culture, 0851 Oslo (Norway); Martell, Merixell [MERIENCE Strategic Thinking, 08734 Olerdola (Spain); Kallenbach-Herbert, Beate [Oeko Institut, 64295 Darmstadt (Germany)

    2012-07-01

    InSOTEC is a social sciences research project which aims to generate a better understanding of the complex interplay between the technical and the social in radioactive waste management and, in particular, in the design and implementation of geological disposal. It currently investigates and analyses the most striking socio-technical challenges to implementing geological disposal of radioactive waste in 14 national programs. A focus is put on situations and issues where the relationship between the technical and social components is still unstable, ambiguous and controversial, and where negotiations are taking place in terms of problem definitions and preferred solutions. Such negotiations can vary from relatively minor contestation, over mild commotion, to strong and open conflicts. Concrete examples of socio-technical challenges are: the question of siting, introducing the notion of reversibility / retrievability into the concept of geological disposal, or monitoring for confidence building. In a second stage the InSOTEC partners aim to develop a fine-grained understanding of how the technical and the social influence, shape, build upon each other in the case of radioactive waste management and the design and implementation of geological disposal. How are socio-technical combinations in this field translated and materialized into the solutions finally adopted? With what kinds of tools and instruments are they being integrated? Complementary to providing better theoretical insight into these socio-technical challenges/combinations, InSOTEC aims to provide concrete suggestions on how to address these within national and international contexts. To this end, InSOTEC will deliver insights into how mechanisms for interaction between the technical community and a broad range of socio-political actors could be developed. (authors)

  6. Post internship student-industry collaborative projects - as vehicle for the realization of challenging parts of the CDIO syllabus

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard

    2014-01-01

    Architectural engineering the 5 month internship period is placed early in the curriculum, after 4 semesters of study. It is obviously more challenging to find industry internships for students that are at an early stage in their studies because they need more supervision. However the investment is worth...... the trouble because the post internship curriculum is provided with pedagogical means to address parts of the syllabus that are on an advanced level in the learning taxonomy. The interface between the internship period and post internship student-industry collaborative projects is an important point of focus...

  7. Behavior-aware decision support systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.; Homer, Jack (Homer Consulting); Chenoweth, Brooke N.; Backus, George A.; Strip, David R.

    2007-11-01

    As Sandia National Laboratories serves its mission to provide support for the security-related interests of the United States, it is faced with considering the behavioral responses that drive problems, mitigate interventions, or lead to unintended consequences. The effort described here expands earlier works in using healthcare simulation to develop behavior-aware decision support systems. This report focuses on using qualitative choice techniques and enhancing two analysis models developed in a sister project.

  8. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  10. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  11. Nation state and the challenge of globalization: Project draft

    Directory of Open Access Journals (Sweden)

    Obrenović Zoran G.

    2002-01-01

    Full Text Available This project draft discusses the issues facing a nation state in the dynamic processes of globalization. First, the term globalization is tentatively defined as a decentralized process of condensation and homogenization of space and time. Then, the ambivalent structure of the globalization discourse, i.e. its semantic and pragmatic dimensions, are shown. The neo-liberal viewpoint is explored of the erosion and weakening of the nation state within the global capitalist power, both in terms of its (state's traditional functions, and in terms of its internal and external sovereignty. Against the neo-liberal thesis about the decline of the nation state many empirical arguments have been offered. Some of these are presented in this text. The main point of this argumentation consists in a general view that the decline of the nation state is strongly linked with the process of globalization. In view of the critical argumentation included in the paper, it is argued that in the environment of global processes only the societies which have a strong state behind them have a chance to succeed. Politics, not economy, still dominates international relations. Emphasis on state politics opens a new perspective in discussing the process of globalization. Current globalization processes cannot be judged accurately unless geopolitical interests and the changing balance of world power are understood. Finally, the paper points to the ideological nature of the neo-liberal discourse of globalization, questioning another basic assumption of the latter, namely, the idea that the process of globalization is at the same time a process of emancipation. By challenging the positing of a necessary link between globalization and emancipation we formulate a position that allows for a normative critique of current processes.

  12. The climate of the Eastern Seaboard of Australia: A challenging entity now and for future projections

    International Nuclear Information System (INIS)

    Timbal, Bertrand

    2010-01-01

    The Eastern SeaBoard (ESB) of Australia has long been recognised as a separate climate entity. Using the latest gridded observations from the Bureau of Meteorology, a definition of the spatial extent of the ESB is proposed. It appears that, while this area has recorded below average rainfall over the last 12 years, the ongoing deficiency is not record breaking in historic terms. This contrasts with record breaking droughts across large parts of inland, eastern Australia. The lesser severity of ongoing rainfall deficiencies in the ESB, compared to the rest of the region, is linked to the different impact of observed changes in regional surface pressure and, in particular, changes in the position of the sub-tropical ridge. It is also observed that while tropical modes of variability in the Pacific and Indian oceans are known to influence the climate of eastern Australia, that influence appears very weak and not statistically significant across the ESB. Finally, some issues relevant to future rainfall projections for the ESB are discussed. It is argued that providing reliable climate projections across this climatic region is a difficult challenge.

  13. Project-Management Tools for Libraries: A Planning and Implementation Model Using Microsoft Project 2000

    OpenAIRE

    Ying Zhang; Corinne Bishop

    2005-01-01

    This paper discusses how Microsoft Project 2000 was utilized at the University of Central Florida Libraries to manage an e-reference implementation project. As libraries today adopt more information technologies, efficiently managing projects can be challenging. The authors’ experience in the implementation of QuestionPoint e-reference software in October 2003 is described. Their conclusion illustrates that project-management tools, such as Microsoft Project 2000, offer practical workflow-man...

  14. Neutron metrology for SBSS

    International Nuclear Information System (INIS)

    Morris, C.L.; Anaya, J.M.; Armijo, V.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this work is to develop new detector technologies for Science-Based Stockpile Stewardship (SBSS) at the Los Alamos Neutron Scattering Center (LANSCE) using existing expertise and infrastructure from the nuclear and particle physics programs at LANL

  15. Laboratory Directed Research and Development Annual Report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  16. Automated visual direction : LDRD 38623 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2005-01-01

    Mobile manipulator systems used by emergency response operators consist of an articulated robot arm, a remotely driven base, a collection of cameras, and a remote communications link. Typically the system is completely teleoperated, with the operator using live video feedback to monitor and assess the environment, plan task activities, and to conduct the operations via remote control input devices. The capabilities of these systems are limited, and operators rarely attempt sophisticated operations such as retrieving and utilizing tools, deploying sensors, or building up world models. This project has focused on methods to utilize this video information to enable monitored autonomous behaviors for the mobile manipulator system, with the goal of improving the overall effectiveness of the human/robot system. Work includes visual servoing, visual targeting, utilization of embedded video in 3-D models, and improved methods of camera utilization and calibration.

  17. Climate projections FAQ

    Science.gov (United States)

    A.E. Daniels; J.F. Morrison; L.A. Joyce; N.L. Crookston; S.C. Chen; S.G. McNulty

    2012-01-01

    Climate scenarios offer one way to identify and examine the land management challenges posed by climate change. Selecting projections, however, requires careful consideration of the natural resources under study, and where and how they are sensitive to climate. Selection also depends on the robustness of different projections for the resources and geographic area of...

  18. Ethical challenges and innovations in the dissemination of genomic data: the experience of the PERSPECTIVE project

    Directory of Open Access Journals (Sweden)

    Lévesque E

    2015-08-01

    Full Text Available Emmanuelle Lévesque,1 Bartha Maria Knoppers,1 Jacques Simard,2 1Department of Human Genetics, Centre for Genomics and Policy, McGill University, Montréal, 2Genomics Centre, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec City, QC, Canada Abstract: The importance of making genomic data available for future research is now widely recognized among the scientific community and policymakers. In this era of shared responsibility for data dissemination, improved patient care through research depends on the development of powerful and secure data-sharing systems. As part of the concerted effort to share research resources, the project entitled Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE makes effective data sharing through the development of a data-sharing framework, one of its goals. The secondary uses of data from PERSPECTIVE for future research promise to enhance our knowledge of breast cancer etiologies without duplicating data-gathering efforts. Despite its benefit for research, we recognize the ethical challenges of data sharing on the local, national, and international levels. The effective management of ethical approvals for projects spanning across jurisdictions, the return of results to research participants, and research incentives and recognition for data production, are but a few pressing issues that need to be properly addressed. We discuss how we managed these issues and suggest how ongoing innovations might help to facilitate data sharing in future genomic research projects. Keywords: data sharing, research ethics, cancer

  19. How Provotypes Challenge Stakeholder Conceptions in Innovation Projects

    DEFF Research Database (Denmark)

    Boer, Laurens

    In the context of industrial innovation projects, ethnographic research is often employed to inform and inspire the development of a new product or service which fits the intended use context. However, user conceptions that are revealed through ethnographic research are often at odds...... to the foreground, by demonstrating what these tensions might mean in light of new product or service development. In this dissertation, I rekindle the provotyping approach from the 1990’s systems design community, as this approach argued to expose discrepancies in practice in order to devise qualitatively new...... systems. Based on my participation in a project that involved industries in the field of indoor climate, and that employed ethnographic research to inform and inspire the development of new products or services, I develop the approach with respect to contemporary design research concerns, notably...

  20. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  1. eHEALTH SERVICES AND TECHNOLOGY: CHALLENGES FOR CO-DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Hannele Hyppönen

    2007-01-01

    Full Text Available The promises of ICT have been poorly redeemed in health care; many projects have failed. This article conceptualizes the co-construction of services and technologies in order to help future practitioners in the field to understand and find solutions to the challenges in ICT-enhanced service change. The conceptualization is created by structuring the findings of a case study with the help of theoretical concepts. The conceptualization then is implemented in another case to study its potential for finding challenges and suggesting solutions. Both cases demonstrate challenges for codevelopment that contributed to poor project outcomes. Participants in eHealth projects need a better understanding of development as the parallel shaping of multiple objects. They need better skills in managing the change process and a better understanding of methods for collaboration throughout the development. The projects would benefit from networking with actors who have adequate understanding of the process as a whole and of methods of codevelopment.

  2. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  3. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  4. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  5. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  7. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  8. Grand societal challenges in information systems research and education

    CERN Document Server

    vom Brocke, Jan; Hofmann, Sara; Tumbas, Sanja

    2015-01-01

    This book examines how information systems research and education can play a major role in contributing to solutions to the Societal Grand Challenges formulated in "The Millennium Project" (millenium-project.org). Individual chapters focus on specific challenges, review existing approaches and contributions towards solutions in information systems research and outline a research agenda for these challenges. The topics considered in this volume range from climate change, population growth, global ICT availability, breakthroughs in science and technology and energy demand to ethical decision-making, policymaking, gender status and transnational crime prevention. It is the first book to present ideas on how the Information Systems discipline can contribute to the solution on this wide spectrum of grand societal challenges.

  9. A new approach to cost effective projects: High performance project teams

    International Nuclear Information System (INIS)

    Chambers, N.C.

    1994-01-01

    In low oil price environment in which environmental conditions are more challenging, reservoir characteristics less favourable and political risk increasing, successful projects are required in such cases. The present paper deals with the visionary process of establishing high performance project teams. According to the author, such project teams embody dynamic recognition of holism. Holism is achieved as an output from the process of establishing the drivers and enablers for success on a project. They are given birth during the unfolding of the operators development plans and contracting strategy. The paper discusses the main drivers of project teams comprising purpose and performance goals, selection, common approach, commitment and accountability, and financial alignment

  10. A new approach to cost effective projects: High performance project teams

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, N.C. [Brown and Root Energy Services (United Kingdom)

    1994-12-31

    In low oil price environment in which environmental conditions are more challenging, reservoir characteristics less favourable and political risk increasing, successful projects are required in such cases. The present paper deals with the visionary process of establishing high performance project teams. According to the author, such project teams embody dynamic recognition of holism. Holism is achieved as an output from the process of establishing the drivers and enablers for success on a project. They are given birth during the unfolding of the operators development plans and contracting strategy. The paper discusses the main drivers of project teams comprising purpose and performance goals, selection, common approach, commitment and accountability, and financial alignment

  11. A different challenge: the directional drilled crossing for the Yacuiba - Rio Grande Gas Line Project - GASYRG

    Energy Technology Data Exchange (ETDEWEB)

    Green, Wayne; Garcia, Francisco [Bolinter Ltda., Santa Cruz (Bolivia); Montano, Ruben [Transierra, Santa Cruz (Bolivia)

    2003-07-01

    The Rio Grande River's directional drilling, 2002 m. long and 25 m. deep was a great challenge for Transierra - Owner - as well as Laney - Bolinter - Contractor - to accomplish a feat yet to be done in the entire world. The dedication of the people involved showed their degree of professionalism that these companies have obtained and the determination in doing the job overcoming unforeseen obstacles and still being able to finish on time, mitigating environmental impacts and leaving a first class crossing. This document presents a description of the technical, logistic and construction factors that were involved in the project and which allowed to perform 7 directional drillings, including Rio Grande River, which during the pull got the last 60 m. of pipe stuck, being freed only after using a pneumatic hammer. (author)

  12. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    International Nuclear Information System (INIS)

    Bowman, P.

    2016-01-01

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has been considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.

  13. Operational challenges in conducting a community-based technology-enabled mental health services delivery model for rural India: Experiences from the SMART Mental Health Project.

    Science.gov (United States)

    Maulik, Pallab K; Kallakuri, Sudha; Devarapalli, Siddhardha

    2018-01-01

    Background: There are large gaps in the delivery of mental health care in low- and middle-income countries such as India, and the problems are even more acute in rural settings due to lack of resources, remoteness, and lack of infrastructure, amongst other factors. The Systematic Medical Appraisal Referral and Treatment (SMART) Mental Health Project was conceived as a mental health services delivery model using technology-based solutions for rural India. This paper reports on the operational strategies used to facilitate the implementation of the intervention. Method: Key components of the SMART Mental Health Project included delivering an anti-stigma campaign, training of primary health workers in screening, diagnosing and managing stress, depression and increased suicide risk and task sharing of responsibilities in delivering care; and using mobile technology based electronic decision support systems to support delivery of algorithm based care for such disorders. The intervention was conducted in 42 villages across two sites in the state of Andhra Pradesh in south India. A pre-post mixed methods evaluation was done, and in this paper operational challenges are reported. Results: Both quantitative and qualitative results from the evaluation from one site covering about 5000 adults showed that the intervention was feasible and acceptable, and initial results indicated that it was beneficial in increasing access to mental health care and reducing depression and anxiety symptoms. A number of strategies were initiated in response to operational challenges to ensure smoother conduct of the project and facilitated the project to be delivered as envisaged. Conclusions: The operational strategies initiated for this project were successful in ensuring the delivery of the intervention. Those, coupled with other more systematic processes have informed the researchers to understand key processes that need to be in place to develop a more robust study, that could eventually be

  14. Homeland Security. Management Challenges Facing Federal Leadership

    Science.gov (United States)

    2002-12-01

    Security Management Challenges Facing Federal Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...including attention to management practices and key success factors. HOMELAND SECURITY Management Challenges Facing Federal Leadership www.gao.gov/cgi...significant management and coordination challenges if it is to provide this leadership and be successful in preventing and responding to any future

  15. RadWorks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The RadWorks project's overarching objective is the maturation and demonstration of affordable, enabling solutions to the radiation-related challenges presented to...

  16. The Challenges and Enhancing Opportunities of Global Project Management: Evidence from Chinese and Dutch Cross-Cultural Project Management

    OpenAIRE

    Zhang, Ying; Marquis, Christopher G; Filippov, Sergey; Haasnoot, Henk-Jan; van der Steen, Martijn

    2015-01-01

    This study investigates the role of national and organisational culture in day-to-day activities of multinational project teams, specifically focusing on differences between Chinese and Dutch project managers. We rely on fieldwork observation and interviews with representatives from a diverse set of organizations in China and the Netherlands. Analyses focus on the impact of cultural differences on five project management processes – (1) project planning, (2) cost and quality management, (3) r...

  17. 'Motor challenge' pilot programme; Motor Challenge Pilotprogramm. Schweizer Teilnahme im SAVE-Programm: pilot actions for motor systems industrial energy use challenge

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a pilot project associated with the Motor Challenge Programme (MCP) initiated by the European Commission (Transport and Energy Committee). The programme is briefly described, which aims to improve the efficiency of electrical motors used in industrial compressed-air, pump and ventilator systems as well as in comprehensive motor driven systems. Switzerland's participation in this pilot project is examined, which was concluded after a period of two years when the Motor Challenge Programme itself was launched in February 2003. The mechanisms of the programme are described, whereby companies may become involved in the programme either as partners (users of drive systems) or as endorsers (suppliers, planners, etc., of such systems). Experience gained with two companies in Switzerland - a food processing group and a major chemical pulp producer - who participated in the programme is presented. Efficiency potentials of around 3 GWh/a were identified; these represent a high proportion of the estimated total of 18 GWh/a in the overall programme. A follow-up project is proposed that is to provide detailed information and initiate further efficiency projects in order to encourage other companies to participate in the MCP programme.

  18. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  19. Comparative International Communication Projects: Overcoming the Challenges

    Directory of Open Access Journals (Sweden)

    Frank Esser

    2007-12-01

    Full Text Available Over the last 10-20 years, comparative research in the feld of communication has almost become fashionable. Many factors are responsible for this, for example: an increased awareness of globalisation as a communication-driven process; an awareness of increased transnational conglomerization of media organizations; and the increasing use of the Internet which facilitates easier access to information around the world. But the big question is how to organize collaborative international communication research efectively? Which models of cooperation are available to us, and what are their advantages and disadvantages? In this article, I analyze fve ways of doing collaborative researches and their respective challenges.

  20. Project management and Enterprise systems

    DEFF Research Database (Denmark)

    Koch, Christian; Buhl, Henrik

    2006-01-01

    Implementing and Operating integrated Enterprise Systems are a multidimensional effort. It seriously challenges the IT supplier as well as the professional service provider client. The paper discuss these issues in a project management perspective. A framework for supporting project management...

  1. Regulatory Oversight for New Projects - Challenges and Improvement in Regulation

    International Nuclear Information System (INIS)

    Lall, F.

    2016-01-01

    From inception, there has been rise in number of Nuclear Power Plants (NPP) even though very few accidents / events led to intermittent setbacks. However these accidents / events have posed challenges towards enhancement of safety and scope of regulation in all phases of NPP such as siting, design, construction, commissioning and decommissioning. It is essential to ensure compliance to these enhanced safety requirements during all phases of NPP. New and evolutionary reactors are under threshold for regulatory consideration world over. The variety of technologies and genres by themselves pose challenges to regulatory bodies. These challenges are to be addressed through systematic enhancement of the regulation including updating of regulatory documents. The paper touches upon some key elements to be considered towards such enhancement of regulation during all stages of NPP. These being; ensuring quality assurance, regulatory oversight especially over supply chain and contractors, counterfeit material specifically in case of international dealings, emergency handling in case of multi-unit site, feedback and associated enhancements from international events, construction experience database and feedback for safety enhancement, qualification and acceptance of first of a kind systems, regulatory enforcement specifically in case of imported reactors and maintaining interface between safety and security. Regulation in present context has become dynamic and Regulatory bodies need to continue enhancement of its current regulation taking into account the technological developments, feedback from construction, operation and accidents in the current fleet of plants. The paper touches upon some of these elements and highlights the challenges and improvements in regulation. (author)

  2. So many developers, so many projects: toward a motivation-based theory of project selection

    NARCIS (Netherlands)

    van Osch, W.; Adelaar, T.; Pith, M.

    2011-01-01

    Studies into open source software (OSS) development projects have hitherto focused on the question of why people aremotivated to contribute to these projects, thereby assuming that motivational factors are the same across all types of OSSprojects. In this study we challenge this assumption by

  3. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  4. Energy storage. The actual challenge for tomorrow

    International Nuclear Information System (INIS)

    Combe, Matthieu; Danielo, Olivier

    2016-09-01

    As methods of energy production are now diversified and efficient, the challenge is now their integration into the grid, and their storage. Thus, this publication first proposes a set of articles which address perspectives and realisations (or projects) related to energy storage: the challenge of modernisation of Pump Storage Power plants (PSP), the possibilities provided by power-to-gas technology to store electricity, the possibilities provided by coupling of CO 2 storage and geothermal energy. Other aspects concern electric power storage at the back end of the supply chain: the Corri-door project of 200 terminals for fast electric charging (for electric vehicles), the emergence of the domestic battery as storage mean in different counties. More prospective projects are also evoked: the use of hot water in Hawaii to store photovoltaic solar electricity and inspired projects by ENGIE and EDF, the perspective of energy storage on miniaturised chips, and a three-wheel light vehicle (Moe) using solar energy and developed by the Evovelo startup

  5. IS-ENES project management - lessons learnt

    Science.gov (United States)

    Parinet, Marie; Guglielmo, Francesca; Joussaume, Sylvie

    2017-04-01

    IS-ENES is the distributed e-infrastructure of models, model data and metadata of the European Network for Earth System Modelling (ENES). It has benefitted from two EC FP7 grants and aims towards further European and national funding to achieve sustainability. We highlight here several challenges related to project management that have risen in the course of these two project-phases spanning 8 years. Some challenges are related to the heterogeneity of the activities within IS-ENES, with different groups working on very diverse activities, not necessarily strictly interdependent. An immediate consequence is the need of implementing and setting up in early phases of the project efficient collection and circulation of information to preserve and reinforce the systemic view of the infrastructure as a whole and the pursuit of common goals, including coordinated provision of services. Toward and beyond such common goals, managing IS-ENES, covering both scientific and more strictly management-related aspects, implies a double-paced approach: besides setting up efficient project workflow, there is the need of setting up longer term objectives. This implies, within the project lifetime, to elaborate and implement a coherent organizational (consistent with scientific goals, funding schemes, research and technology landscape) strategy to pursue these goals beyond the project itself. Furthermore, a series of more generic project management challenges will also be listed and can be gathered around 3 main objectives: ease the internal processes in order to optimize the work, anticipate delays and budget issues, and motivate the project teams by ensuring an efficient internal and external communication.

  6. Project financing knits parts of costly LNG supply chain

    International Nuclear Information System (INIS)

    Minyard, R.J.; Strode, M.O.

    1997-01-01

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects

  7. Accelerator Physics Challenges for the NSLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  8. OpenCities Project

    Data.gov (United States)

    US Agency for International Development — The Open Cities Project aims to catalyze the creation, management and use of open data to produce innovative solutions for urban planning and resilience challenges...

  9. Trends and EIE higher education response to the current global technical challenges

    DEFF Research Database (Denmark)

    Poboroniuc, Marian; Livint, Gheorghe; Friesel, Anna

    2014-01-01

    Education Institutions (SALEIE), an EU supported project, gathers together a global team aiming to provide higher education models in the EIE disciplines that can respond to the key global technical challenges. This paper deals with findings within the SALEIE project's work package WP3 (Global Challenges......), namely: state-of-the-art in implementation of the Bologna recommendation for Bachelor and Master, technical challenges that the EIE higher education faces nowadays, and existing models in EIE higher education and their degree of response to key global technical challenges....

  10. Project Career: A qualitative examination of five college students with traumatic brain injuries.

    Science.gov (United States)

    Nardone, Amanda; Sampson, Elaine; Stauffer, Callista; Leopold, Anne; Jacobs, Karen; Hendricks, Deborah J; Elias, Eileen; Chen, Hui; Rumrill, Phillip

    2015-01-01

    Project Career is an interprofessional five-year development project designed to improve the employment success of undergraduate college and university students with traumatic brain injury (TBI). The case study information was collected and synthesized by the project's Technology and Employment Coordinators (TECs) at each of the project's three university sites. The project's evaluation is occurring independently through JBS International, Inc. Five case studies are presented to provide an understanding of student participants' experiences within Project Career. Each case study includes background on the student, engagement with technology, vocational supports, and interactions with his/her respective TEC. A qualitative analysis from the student's case notes is provided within each case study, along with a discussion of the overall qualitative analysis. Across all five students, the theme Positive Outcomes was mentioned most often in the case notes. Of all the different type of challenges, Cognitive Challenges were most often mentioned during meetings with the TECs, followed by Psychological Challenges, Physical Challenges, Other Challenges, and Academic Challenges, respectively. Project Career is providing academic enrichment and career enhancement that may substantially improve the unsatisfactory employment outcomes that presently await students with TBI following graduation.

  11. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  12. Challenge Problem Development and Evaluation Management

    National Research Council Canada - National Science Library

    Schrag, Robert

    2001-01-01

    This final report describes work performed by Information Extraction & Transport (IET), Inc. on Challenge Problem Development and Evaluation Management for the Defense Advanced Research Projects Agency's...

  13. Response to Challenges and Opportunities for Mega-Infrastructure Projects and Archaeology

    Directory of Open Access Journals (Sweden)

    Amanda Sutphin

    2013-10-01

    Full Text Available This is a very helpful and informative essay written by someone who is clearly very experienced with the complexity of urban archaeology. I would like to offer a perspective about these issues from New York City as although there are no projects that are truly analogous in both the scale and scope of the archaeology of the Crossrail Project, we do have similar projects from a construction standpoint (see New York City Department of Environment 2013 and MTA 2013.

  14. New Accelerator Projects

    International Nuclear Information System (INIS)

    Delahaye, J.P.

    2010-01-01

    There is large number of ambitious accelerator projects with promising performances in the near (and short term) future which aims at exploring energy and/or luminosity frontiers and Complementary aspects of various particles species. High Energy Physics requirements are extremely demanding with challenging parameters: entering into the new territories of the tera-scale data, high Energy or/and High (Integrated) Luminosity, high performance, high availability, long lifetime, luminosity leveling etc.. New projects are more and more challenging: larger, more powerful, more expensive, technology above present standard. Innovative ideas and breakthrough on novel technologies are key for HEP adventure. Aggressive R and D is imperative on beam and Technology related, on cost and power consumption mitigation.. There is ambitious Test Facilities to address feasibility. More and more time and (M and P) resources are required from first ideas to project proposal: it is of prime importance to launch R and D early, explore all possible options of schemes and technologies (anticipating future Physics requests), make realistic status and schedule estimates (preserve credibility and make reasonable plans). Global Collaboration is mandatory from the R and D phase to the construction and operation in order to make best use of limited resources and available expertise as inspired from successful collaborations on Detectors. The global strategy of new accelerator projects in truly world-wide collaboration aims at: - defining all various Projects and Technology options worth exploring, - taking advantage of global teams made of world-wide experts, and of synergies to address common issues (generic R and D) of various projects, - preparing together plethora of project proposals to cover Physics Landscape (ready for window opportunity), - developing Collaborative/Competition (Experts in Collaboration, Technology and Projects options in Competition), - Joining resources on (few) selected

  15. SHORTENING THE PROJECT LIFE CYCLE IN INFORMATION TECHNOLOGY AND TELECOMUNICATION PROJECTS

    OpenAIRE

    Florian Buitrago, Armando Alejandro

    2013-01-01

    The motivation for this thesis is based on the fact that telecommunications projects have increased their complexity; nowadays, customers claim for the implementation of large solutions including multiple vendors, software and hardware with highly customizable features and short deadlines that continuously challenge project managers and telecommunications practitioners to create value for their customers.This thesis focuses on the description of current practices in the telecommunications i...

  16. Final report for LDRD Project 93633 : new hash function for data protection.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Dautenhahn, Nathan; Schroeppel, Richard Crabtree; Tolk, Keith Michael; Orman, Hilarie (PurpleStreak, Inc.); Walker, Andrea Mae; Malone, Sean; Lee, Eric; Neumann, William Douglas; Cordwell, William R.; Torgerson, Mark Dolan; Anderson, Eric; Lanzone, Andrew J.; Collins, Michael Joseph; McDonald, Timothy Scott; Caskey, Susan Adele

    2009-03-01

    The security of the widely-used cryptographic hash function SHA1 has been impugned. We have developed two replacement hash functions. The first, SHA1X, is a drop-in replacement for SHA1. The second, SANDstorm, has been submitted as a candidate to the NIST-sponsored SHA3 Hash Function competition.

  17. Two dimensional point of use fuel cell : a final LDRD project report.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Hickner, Michael A. (Pennsylvania State University, University Park, PA); Gross, Matthew L. (Pennsylvania State University, University Park, PA)

    2011-03-01

    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  18. A multi-level code for metallurgical effects in metal-forming processes

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.; Silling, S.A. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics and Mechanics Dept.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L. [Sandia National Labs., Livermore, CA (United States)

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  19. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges.

    Science.gov (United States)

    Cai, Binghuang; Li, Biao; Kiga, Nikki; Thusberg, Janita; Bergquist, Timothy; Chen, Yun-Ching; Niknafs, Noushin; Carter, Hannah; Tokheim, Collin; Beleva-Guthrie, Violeta; Douville, Christopher; Bhattacharya, Rohit; Yeo, Hui Ting Grace; Fan, Jean; Sengupta, Sohini; Kim, Dewey; Cline, Melissa; Turner, Tychele; Diekhans, Mark; Zaucha, Jan; Pal, Lipika R; Cao, Chen; Yu, Chen-Hsin; Yin, Yizhou; Carraro, Marco; Giollo, Manuel; Ferrari, Carlo; Leonardi, Emanuela; Tosatto, Silvio C E; Bobe, Jason; Ball, Madeleine; Hoskins, Roger A; Repo, Susanna; Church, George; Brenner, Steven E; Moult, John; Gough, Julian; Stanke, Mario; Karchin, Rachel; Mooney, Sean D

    2017-09-01

    The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features. © 2017 Wiley Periodicals, Inc.

  20. Using facilitative skills in project management

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne; Jacobsen, Peter

    2013-01-01

    Project management can be seen as a profession, discipline and conceptual framework. It has been developed from different fields, including military engineering, mechanical engineering, social sciences and construction. During recent decades, there has been a number of challenges as to its efficacy...... cooperation, mediated by interconnected and diversified systems, is becoming more and more common. These relatively new forms of interaction imply new demands on skills and methods facilitating project cooperation within and among various organizations. Given the pervasiveness of these demands, project...... managers are frequently finding themselves in situations where using facilitating skills is not an option, but a requirement. Facilitation is to be viewed as a process of ‘obstetric’ aid to meet the challenges of coping with the changing conditions for project management described briefly above...

  1. The Moon Challenge

    Science.gov (United States)

    Fitzsimmons, Pat; Leddy, Diana; Johnson, Lindy; Biggam, Sue; Locke, Suzan

    2013-01-01

    This article describes a first-grade research project that incorporates trade books and challenges misconceptions. Educators see the power of their students' wonder at work in their classrooms on a daily basis. This wonder must be nourished by students' own experiences--observing the moon on a crystal clear night--as well as by having…

  2. Globalization, Adjustment and the Challenge of Inclusive Growth ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Globalization, Adjustment and the Challenge of Inclusive Growth (Indonesia, Philippines and Viet Nam). This project seeks to better understand the challenge of inclusive growth in the context of ... the productivity-business cycle interaction. Dossiers. Industry churning, the labor market and workers' welfare. Dossiers.

  3. Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors. Report of the collaborative project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-05-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO aims at helping to ensure that nuclear energy is available in the twenty-first century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to jointly consider actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. One of the aims of INPRO is to develop options for enhanced sustainability through promotion of technical and institutional innovations in nuclear energy technology through collaborative projects among IAEA Member States. Collaboration among INPRO members is fostered on selected innovative nuclear technologies to bridge technology gaps. Collaborative projects have been selected so that they complement other national and international R and D activities. The INPRO Collaborative Project COOL on Investigation of Technological Challenges Related to the Removal of Heat by Liquid Metal and Molten Salt Coolants from Reactor Cores Operating at High Temperatures investigated the technological challenges of cooling reactor cores that operate at high temperatures in advanced fast reactors, high temperature reactors and accelerator driven systems by using liquid metals and molten salts as coolants. The project was initiated in 2008 and was led by India; experts from Brazil, China, Germany, India, Italy and the Republic of Korea participated and provided chapters of this report. The INPRO Collaborative Project COOL addressed the following fields of research regarding liquid metal and molten salt coolants: (i) survey of thermophysical properties; (ii) experimental investigations and computational fluid dynamics studies on thermohydraulics, specifically pressure drop and heat transfer under different operating conditions; (iii) monitoring and control of coolant

  4. Activities to Address Challenges in Digital Innovation

    OpenAIRE

    Lund , Jesper

    2014-01-01

    Part 3: Structures and Networks; International audience; Based on a literature review, this paper identifies four socio-technical challenges relating to innovation actor’s interactions in digital innovation. Furthermore, the paper explores how these challenges can be addressed. The challenges are investigated in a case study of digital innovation. The study is based on a two year long research and development project where an e-newspaper concept and a demonstrator based on e-paper technology ...

  5. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    Science.gov (United States)

    Gill, Tracy R.; Gattuso, Kelly J.

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility of be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  6. Procuring complex performance:case: public infrastructure projects

    OpenAIRE

    Leppänen, T. (Tero)

    2015-01-01

    Abstract This research studies procuring complex performance (PCP) in the case of public infrastructure projects. Focus of the research is on the interface between public clients and private sector contractors. Purpose of this research is to find out what are the main challenges of different project delivery methods according to literature (RQ1) and what are the practical challenges of public procurement (RQ2). As an end re...

  7. Investment and Project Economics: Contemporary Lessons for ...

    African Journals Online (AJOL)

    Toshiba

    contemporary challenge to sensitize and synergize instructional, ... project financial outcomes as underscored in this work. ... Balance of payments. .... Problem diagnosis/solutions. **. *** .... Money, Work, Sex, Kids, and Life's Other Challenges.

  8. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    This paper presents an on-going research project “Management principles and safety culture in complex projects” (MAPS), supported by the Finnish Research Programme on Nuclear Power Plant Safety 2015-2018. The project aims at enhancing safety culture and nuclear safety by supporting high quality execution of complex projects in the nuclear industry. Safety-critical industries are facing new challenges, related to increased outsourcing and complexity in technology, work tasks and organizational structures (Milch and Laumann, 2016). In the nuclear industry, new build projects, as well as modernisation projects are temporary undertakings often carried out by networks of companies. Some companies may have little experience in the nuclear industry practices or consideration of specific national regulatory requirements. In large multinational subcontractor networks, the challenge for assuring nuclear safety arises partly from the need to ensure that safety and quality requirements are adequately understood and fulfilled by each partner. Deficient project management practices and unsatisfactory nuclear safety culture in project networks have been recognised as contributing factors to these challenges (INPO, 2010). Prior evidence indicated that many recent major projects have experienced schedule, quality and financial challenges both in the nuclear industry (STUK, 2011) and in the non-nuclear domain (Ahola et al., 2014; Brady and Davies, 2010). Since project delays and quality issues have been perceived mainly as economic problems, project management issues remain largely understudied in safety research. However, safety cannot be separated from other performance aspects if a systemic view is applied. Schedule and quality challenges may reflect deficiencies in coordination, knowledge and competence, distribution of roles and responsibilities or attitudes among the project participants. It is increasingly understood that the performance of the project network in all

  9. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  10. Education export:challenges from the product, place and process perspectives in the case of Finland

    OpenAIRE

    Zheng, Q. (Qiongfang)

    2015-01-01

    Abstract This thesis aims to map out the challenges in exporting Finnish education from three dimensions: 1) challenges in maintaining Finnish education quality and reputation; 2) challenges in adapting the Finnish education to another culture context; and 3) challenges in managing the export as an international project business. Qualitative content analysis is used as the research method. The EPA project between Finland an...

  11. Overcoming Dietary Assessment Challenges in Low-Income Countries: Technological Solutions Proposed by the International Dietary Data Expansion (INDDEX) Project

    Science.gov (United States)

    Coates, Jennifer C.; Colaiezzi, Brooke A.; Bell, Winnie; Charrondiere, U. Ruth; Leclercq, Catherine

    2017-01-01

    An increasing number of low-income countries (LICs) exhibit high rates of malnutrition coincident with rising rates of overweight and obesity. Individual-level dietary data are needed to inform effective responses, yet dietary data from large-scale surveys conducted in LICs remain extremely limited. This discussion paper first seeks to highlight the barriers to collection and use of individual-level dietary data in LICs. Second, it introduces readers to new technological developments and research initiatives to remedy this situation, led by the International Dietary Data Expansion (INDDEX) Project. Constraints to conducting large-scale dietary assessments include significant costs, time burden, technical complexity, and limited investment in dietary research infrastructure, including the necessary tools and databases required to collect individual-level dietary data in large surveys. To address existing bottlenecks, the INDDEX Project is developing a dietary assessment platform for LICs, called INDDEX24, consisting of a mobile application integrated with a web database application, which is expected to facilitate seamless data collection and processing. These tools will be subject to rigorous testing including feasibility, validation, and cost studies. To scale up dietary data collection and use in LICs, the INDDEX Project will also invest in food composition databases, an individual-level dietary data dissemination platform, and capacity development activities. Although the INDDEX Project activities are expected to improve the ability of researchers and policymakers in low-income countries to collect, process, and use dietary data, the global nutrition community is urged to commit further significant investments in order to adequately address the range and scope of challenges described in this paper. PMID:28300759

  12. The challenge of making architecture in housing projects

    DEFF Research Database (Denmark)

    Eskemose Andersen, Jørgen; Andreasen, Jørgen

    2013-01-01

    For the architect is is a constant challeng to deliver architeture and not just buildings. In a foreign context and essential in the developing world housing the urban poor is more about shelter than architecture as such. However even under server economic constraints good design in housing can m...... make a difference. The international organisation Archtecture Sans Frontieres, Denmark has for years been operating in very poor contexts and still in some cases have succeeded to deliver decent and sustainable architecture....

  13. How is it going? Peformance assessment in major projects

    DEFF Research Database (Denmark)

    Maylor, Harvey; Johnson, Mark; Turner, Neil

    2017-01-01

    an enhanced service performance model. This was then tested using a survey and a structural equation model derived. Development of this yielded new classifications but most importantly, provided a more meaningful method for measuring the performance of operational transformation projects. Specifically......Determining the performance of a major project is a challenge for both practitioners and scholars. In the context of operational change projects the challenge is exacerbated by the service-intensive nature of the transformation, temporal disconnects between contracting and delivery and lack...... management in major projects from an OM perspective....

  14. Applications of the 3-D Deterministic Transport Attila(regsign) for Core Safety Analysis

    International Nuclear Information System (INIS)

    Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.

    2004-01-01

    An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila(reg s ign)) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future

  15. The Challenges of a Complex and Innovative Telehealth Project: A Qualitative Evaluation of the Eastern Quebec Telepathology Network.

    Science.gov (United States)

    Alami, Hassane; Fortin, Jean-Paul; Gagnon, Marie-Pierre; Pollender, Hugo; Têtu, Bernard; Tanguay, France

    2017-09-13

    The Eastern Quebec Telepathology Network (EQTN) has been implemented in the province of Quebec (Canada) to support pathology and surgery practices in hospitals that are lack of pathologists, especially in rural and remote areas. This network includes 22 hospitals and serves a population of 1.7 million inhabitants spread over a vast territory. An evaluation of this network was conducted in order to identify and analyze the factors and issues associated with its implementation and deployment, as well as those related to its sustainability and expansion. Qualitative evaluative research based on a case study using: (1) historical analysis of the project documentation (newsletters, minutes of meetings, articles, ministerial documents, etc); (2) participation in meetings of the committee in charge of telehealth programs and the project; and (3) interviews, focus groups, and discussions with different stakeholders, including decision-makers, clinical and administrative project managers, clinicians (pathologists and surgeons), and technologists. Data from all these sources were cross-checked and synthesized through an integrative and interpretative process. The evaluation revealed numerous socio-political, regulatory, organizational, governance, clinical, professional, economic, legal and technological challenges related to the emergence and implementation of the project. In addition to technical considerations, the development of this network was associated with major changes and transformations of production procedures, delivery and organization of services, clinical practices, working methods, and clinicaladministrative processes and cultures (professional/organizational). The EQTN reflects the complex, structuring, and innovative projects that organizations and health systems are required to implement today. Future works should be more sensitive to the complexity associated with the emergence of telehealth networks and no longer reduce them to technological

  16. Integrating Industry in Project Organized Problem Based Learning for Engineering Educations

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.

    2006-01-01

    This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated......This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated...

  17. Challenges and opportunities

    International Nuclear Information System (INIS)

    Morgan, G.

    1998-01-01

    Challenges and opportunities facing the Canadian natural gas industry were discussed. The greatest opportunity is that the industry will become part of a fully functioning continental gas market for the first time in history. The challenge will be to ensure that the access to continental markets, which the Alliance project would provide, moves forward in a timely way, especially if the proposed merger between Canada's two dominant natural gas pipelines occurs. The second challenge is to find ways to deal with global warming in a more sensible and knowledgeable way. In the view of this author, the implications of the Kyoto greenhouse gas emission protocol could be potentially devastating to the competitiveness of the North American economy. According to the author, the emission stabilization policy will save the Earth only 0.05 degree C of warming in 2025 based on projected planetary temperature rise from 1990 to 2050. By 2050, the stabilization of emissions will have resulted in savings of only 0.10 degrees C, still a negligible amount. The impact of the Canadian Kyoto obligation was analyzed using federal Department of the Environment data. It was noted that in order for Canada to meet its commitment of reducing greenhouse gas emissions to 1990 levels by 6 per cent by 2008-2012, actual annual reduction in emission would have to amount to 20-25 per cent. To achieve that would require unimaginably drastic measures. 1 tab., 1 fig

  18. Autonomous intelligent assembly systems LDRD 105746 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.

  19. High-End Computing Challenges in Aerospace Design and Engineering

    Science.gov (United States)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  20. New challenges for public services social dialogue

    DEFF Research Database (Denmark)

    Hansen, Nana Wesley; Mailand, Mikkel

    2015-01-01

    This is the national report on Denmark to the country comparative project New Challenges for Public Services: Integrating Service User and Workforce In-volvement to Support Responsive Public Services in Tough Times. The project examines service user involvement and how it is related to tradi-tion......-tional forms of social dialogue in five European countries. Furthermore, the project examines how employers and trade unions are responding to recent de-velopments in the countries....

  1. Intelum project: tackling the calorimetry challenge for future high-energy colliders

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Intelum is one of the CERN-coordinated projects funded under H2020. It aims to develop low-cost, radiation-hard scintillating and Cherenkov crystal and glass fibres for the next generation of calorimeter detectors for future high-energy experiments. This new technology could also have important applications in the medical imaging field.     Intelum project partners at the kick-off meeting held on 11 March at CERN.   Intelum is an H2020 Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) project coordinated by CERN. This project was initiated by the Crystal Clear Collaboration (CERN’s RD18 experiment), which has been developing inorganic scintillation materials for novel ionising-radiation detectors for 25 years. Intelum is an international consortium including fifteen institutes and companies from across western and eastern Europe, Japan and the USA, all of which are experts in crystal growth, scintillating mechanisms, radiation damage and dete...

  2. Seeds of Innovation: Three Years of the Technology Innovation Challenge Grant Program.

    Science.gov (United States)

    Harris, Larry A.

    This publication describes the 62 projects that received 5-year Technology Innovation Challenge Grants beginning in 1995, 1996, and 1997, with reviews of the projects occurring in late 1999 and early 2000. Part 1 of the report describes the Technology Innovation Challenge Grant (TICG) program and its importance. Part 2 contains the project…

  3. The water, energy and food (WEF) nexus project: A basis for strategic planning for natural resources sustainability-Challenges for application in the MENA region.

    Science.gov (United States)

    Mohtar, Rabi; Daher, Bassel; Mekki, Insaf; Chaibi, Thameur; Zitouna Chebbi, Rim; Salaymeh, Ahmed Al

    2014-05-01

    Water, energy, and food (WEF) are viewed as main systems forming a nexus, which itself is threatened by defined external factors mainly characterized by growing population, changing economies, governance, climate change, and international trade. Integrative thinking in strategic planning for natural resources comes through recognizing the intimate level of interconnectedness between these systems and the entities that govern them. Providing sustainable solutions to overcome present challenges pose the need to study the existent inter-linkages and tradeoffs between resources. In this context, the present communication is to present the WEF-nexus project, a Tunisian - Jordanian - Qatari - USA project which is funded by the USAID - FABRI PR&D Grants program. WEF-nexus project seeks to explore the inextricable link between water resources and food security in both its geophysical and socio-economic dimensions. The project proposes to design, implement and test integrated resource management tool based on the water-energy-food nexus framework that i) includes the evaluation of the tool over a wide range of climatic and socio-economic zones represented by different countries in the MENA region, and ii) develop scenarios with variations of resources, demands, constraints, and management strategies for the chosen countries, which would be used as a foundation for guiding decision making. The approach is implemented and tested within Tunisia, Jordan, and Qatar. Beyond the obtaining of significant advances in the aforementioned methodological domains, and the understanding of the problems and challenges related to water and food that societies are experiencing or will experience in the future, outcomes are expected to :i) engage decision makers in the process of improving current policies, and strengthening relevant public- private collaboration through the use of the proposed tool, and ii) help in revisiting former recommendations at the levels of resource governance, and

  4. Health impact assessment in China: Emergence, progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zheng, E-mail: huangzhg@mails.tjmu.edu.cn

    2012-01-15

    The values, concepts and approaches of health impact assessment (HIA) were outlined in the Gothenburg consensus paper and some industrialized countries have implemented HIA for many years. HIA has played an important role in environmental protection in China, however, the emergence, progress and challenges of HIA in China have not been well described. In this paper, the evolution of HIA in China was analyzed and the challenges of HIA were presented based on the author's experiences. HIA contributed to decision-making for large capital construction projects, such as the Three Gorges Dam project, in its emergence stage. Increasing attention has been given to HIA in recent years due to supportive policies underpinning development of the draft HIA guidelines in 2008. However enormous challenges lie ahead in ensuring the institutionalization of HIA into project, program and policy decision-making process due to limited scope, immature tools and insufficient professionals in HIA practice. HIA should broaden its horizons by encompassing physical, chemical, biological and socio-economic aspects and constant attempts should be made to integrate HIA into the decision-making process, not only for projects and programs but also for policies as well.

  5. Ethical research on the implementation of DRGs in Switzerland--a challenging project.

    Science.gov (United States)

    Wild, Verina; Pfister, Eliane; Biller-Andorno, Nikola

    2012-08-09

    Diagnosis Related Groups (DRGs) are currently being introduced on a national scale as a prospective reimbursement scheme in Swiss in-patient hospital care, replacing any remaining retrospective day-rate arrangements. DRGs are expected to promote transparency and efficiency while helping to contain health care costs. The governmental decision to introduce DRGs has caused considerable controversy among different stakeholders, due to diverging appraisals of what will happen when DRGs are introduced as an economic management tool in Switzerland. The controversial discourse on DRGs is particularly interesting from an ethical point of view, since all arguments inevitably contain ethical considerations. In this paper we summarise the results of our exploratory ethical studies that have led to a larger research project funded by the Swiss National Science Foundation: "Impact of Diagnosis-Related Groups (DRGs) on patient care and professional practice" (IDoC). In section 1: 'Developing an understanding of the ethical issues at stake' we briefly explain how DRGs work, what the intended effects are, what the public is concerned about and what the scientific research tells us so far. In section 2: 'Developing an ethical framework for research on DRGs in Switzerland' we summarise the ethical issues and explain the ethical framework we will use in order to perform research on the complex issue of DRGs in Switzerland. Only once a profound understanding of the challenges exists can research on the ethical implications of DRGs be successful.

  6. PROJECT MANAGEMENT CONSIDERED IN A 2014 PERSPECTIVE

    OpenAIRE

    GRAPA ADELINA-ROXANA; SOARE ALICE-MAGDALENA

    2014-01-01

    Project Management has come of age, yet multiple surveys and reports confirm the fact that the majority of projects are challenged. Given the more demanding and strict financial constraints associated with the current fiscal climate, project management is regarded as a tool that can deliver more with less. The literature on Project Management shows that, in spite of advancement in Project Management processes, tools and systems, project success has not significantly improved. T...

  7. DTUsat the Ideal CDIO project

    DEFF Research Database (Denmark)

    Fléron, René

    2016-01-01

    -disciplinary collaboration and all the devils buried in the details of realizing any theoretical project is barely touched upon. The CDIO approach aims to simulate this and thereby prepare the students to meet the challenges of an engineering job. Whereas the standard student project at DTU involves one to three students...

  8. Managing Distributed Software Projects

    DEFF Research Database (Denmark)

    Persson, John Stouby

    Increasingly, software projects are becoming geographically distributed, with limited face-toface interaction between participants. These projects face particular challenges that need careful managerial attention. This PhD study reports on how we can understand and support the management...... of distributed software projects, based on a literature study and a case study. The main emphasis of the literature study was on how to support the management of distributed software projects, but also contributed to an understanding of these projects. The main emphasis of the case study was on how to understand...... the management of distributed software projects, but also contributed to supporting the management of these projects. The literature study integrates what we know about risks and risk-resolution techniques, into a framework for managing risks in distributed contexts. This framework was developed iteratively...

  9. Restaurant challenge offers healthful meal options and builds diabetes awareness.

    Science.gov (United States)

    Blair, Angela M; Drass, Janice A; Stone, Marylou; Rhoades, Deborah; Baldwin, Susan A; Russ, Kelsey M

    2011-01-01

    The Frederick Restaurant Challenge is an innovative project based on a collaborative effort among community organizations and partners designed to offer delicious healthful meal options at local restaurants during the month of November for American Diabetes Month. Local restaurants were challenged to participate and submitted recipes for healthful meals to the Frederick County Diabetes Coalition for review by registered dietitians. Diners voted on meals to determine the challenge winner(s), and were eligible to win prizes as well. Publicity prior to and during the month was effective in creating positive news about healthful meals when eating out, raised awareness about diabetes, and provided restaurants with desirable advertising opportunities. Feedback from restaurants and diners was overwhelmingly positive. The purpose of this article is to describe this successful low-budget project to encourage its replication in local communities. The Frederick Restaurant Challenge proved to be a very successful, innovative, low-budget project that met its intended goals: to develop healthful meal options for people with diabetes (or for anyone wishing to eat healthier); to demonstrate that healthful food can taste delicious; and to encourage restaurants to continue offering healthful options on their menus beyond the challenge month. Community interventions such as the Frederick Restaurant Challenge offer unique and important strategies for affecting change and raising awareness not only for people with diabetes but also for the entire community.

  10. Data Management challenges in Astronomy and Astroparticle Physics

    Science.gov (United States)

    Lamanna, Giovanni

    2015-12-01

    Astronomy and Astroparticle Physics domains are experiencing a deluge of data with the next generation of facilities prioritised in the European Strategy Forum on Research Infrastructures (ESFRI), such as SKA, CTA, KM3Net and with other world-class projects, namely LSST, EUCLID, EGO, etc. The new ASTERICS-H2020 project brings together the concerned scientific communities in Europe to work together to find common solutions to their Big Data challenges, their interoperability, and their data access. The presentation will highlight these new challenges and the work being undertaken also in cooperation with e-infrastructures in Europe.

  11. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  12. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led...

  13. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  14. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  15. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  16. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  17. Dark clouds in co-creation, and their silver linings practical challenges we faced in a participatory project in a resource-constrained community in India, and how we overcame (some of) them.

    Science.gov (United States)

    Sushama, Preeti; Ghergu, Cristian; Meershoek, Agnes; de Witte, Luc P; van Schayck, Onno C P; Krumeich, Anja

    2018-01-01

    While any type of field-based research is challenging, building action-oriented, participatory research in resource-constrained settings can be even more so. In this article, we aim to examine and provide insights into some of the practical challenges that were faced during the course of a participatory project based in two non-notified slums in Bangalore, India, aiming to build solutions to indoor air pollution from cooking on traditional cook stoves. The article draws upon experiences of the authors as field researchers engaged in a community-based project that adopted an exploratory, iterative design to its planning and implementation, which involved community visits, semi-structured interviews, prioritization workshops, community forums, photo voice activities, chulha-building sessions and cooking trials. The main obstacles to field work were linked to fostering open, continued dialogue with the community, aimed at bridging the gap between the 'scientific' and the 'local' worlds. Language and cultural barriers led to a reliance on interpreters, which affected both the quality of the interaction as well as the relationship between the researchers and the community that was built out of that interaction. The transience in housing and location of members of the community also led to difficulties in following up on incomplete information. Furthermore, facilitating meaningful participation from the people within the context of restricted resources, differing priorities, and socio-cultural diversity was particularly challenging. These were further compounded by the constraints of time and finances brought on by the embeddedness of the project within institutional frameworks and conventional research requirements of a fixed, pre-planned and externally determined focus, timeline, activities and benchmarks for the project. This article calls for revisiting of scientific conventions and funding prerequisites, in order to create spaces that support flexible, emergent and

  18. THORP and after - challenging state decisions

    International Nuclear Information System (INIS)

    Bowden, P.; Lawrence, J.

    1994-01-01

    This article looks at an increasing trend for European Community law to be used by those seeking to challenge decisions taken at a national level which effect the environment. The debate over the future operation of British Nuclear Fuels Ltd's Thermal Oxide Reprocessing Plant at the Sellafield site (THORP) is used as an example of this trend. The United Kingdom government's energy policy authorised the construction and operation of the THORP plant. The decision to continue with the project has been challenged by Greenpeace and Lancashire County Council acting cooperatively. Their challenge was based on Community law and legislation. (UK)

  19. Implementing novel models of posttreatment care for cancer survivors: Enablers, challenges and recommendations.

    Science.gov (United States)

    Jefford, Michael; Kinnane, Nicole; Howell, Paula; Nolte, Linda; Galetakis, Spiridoula; Bruce Mann, Gregory; Naccarella, Lucio; Lai-Kwon, Julia; Simons, Katherine; Avery, Sharon; Thompson, Kate; Ashley, David; Haskett, Martin; Davies, Elise; Whitfield, Kathryn

    2015-12-01

    The American Society of Clinical Oncology and US Institute of Medicine emphasize the need to trial novel models of posttreatment care, and disseminate findings. In 2011, the Victorian State Government (Australia) established the Victorian Cancer Survivorship Program (VCSP), funding six 2-year demonstration projects, targeting end of initial cancer treatment. Projects considered various models, enrolling people of differing cancer types, age and residential areas. We sought to determine common enablers of success, as well as challenges/barriers. Throughout the duration of the projects, a formal "community of practice" met regularly to share experiences. Projects provided regular formal progress reports. An analysis framework was developed to synthesize key themes and identify critical enablers and challenges. Two external reviewers examined final project reports. Discussion with project teams clarified content. Survivors reported interventions to be acceptable, appropriate and effective. Strong clinical leadership was identified as a critical success factor. Workforce education was recognized as important. Partnerships with consumers, primary care and community organizations; risk stratified pathways with rapid re-access to specialist care; and early preparation for survivorship, self-management and shared care models supported positive project outcomes. Tailoring care to individual needs and predicted risks was supported. Challenges included: lack of valid assessment and prediction tools; limited evidence to support novel care models; workforce redesign; and effective engagement with community-based care and issues around survivorship terminology. The VCSP project outcomes have added to growing evidence around posttreatment care. Future projects should consider the identified enablers and challenges when designing and implementing survivorship care. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Project risk management for development of non-utility power generators (NUGs)

    International Nuclear Information System (INIS)

    Lau, T.

    1990-01-01

    The growing Non-Utility Generation (NUG) industry has brought new opportunities and challenges for the insurance industry. There can be unique engineering and financial risks involved in the development of Non-Utility Power Generation projects. The use of new technologies to meet stringent environmental regulations and to improve project performance and efficiency presents new challenges to the project developers and designers. The lack of funding, resources and experience of some of these projects may create unusual risks that could result in failure or deficiency in the performance of the projects

  1. Approach to the E-ELT dome and main structure challenges

    Science.gov (United States)

    Bilbao, Armando; Murga, Gaizka; Gómez, Celia; Llarena, Javier

    2014-07-01

    The E-ELT as a whole could be classified as an extremely challenging project. More precisely, it should be defined as an array of many different sub-challenges, which comprise technical, logistical and managerial matters. This paper reviews some of these critical challenges, in particular those related to the Dome and the Main Structure, suggesting ways to face them in the most pragmatic way possible. Technical challenges for the Dome and the Main Structure are mainly related to the need to upscale current design standards to an order of magnitude larger design. Trying a direct design escalation is not feasible; it would not work. A design effort is needed to cross hybridize current design standards with technologies coming from other different applications. Innovative design is therefore not a wish but a must. And innovative design comes along with design risk. Design risk needs to be tackled from two angles: on the one hand through thorough design validation analysis and on the other hand through extensive pre-assembly and testing. And, once again, full scale integrated pre-assembly and testing of extremely large subsystems is not always possible. Therefore, defining a comprehensive test plan for critical components, critical subsystems and critical subassemblies becomes essential. Logistical challenges are linked to the erection site. Cerro Armazones is a remote site and this needs to be considered when evaluating transport and erection requirements. But it is not only the remoteness of the site that needs to be considered. The size of both Dome and Main Structure require large construction cranes and a well defined erection plan taking into account pre-assembly strategies, limited plan area utilization, erection sequence, erection stability during intermediate stages and, very specifically, efficient coordination between the Dome and the Main Structure erection processes. Managerial issues pose another set of challenges in this project. Both the size of the

  2. Politics in Schooling: Linguistic Challenge to African Philosophy

    African Journals Online (AJOL)

    Administrator

    The Original project of the politics in schooling is becoming a critical challenge to African ... Such a linguistic challenge ends in .... xviii to take this principle in the logic course. I think this by itself is restriction and .... empires that dominated the world scene in recent centuries. ... a psychological penetration of colonialism.

  3. Clean air and project financing

    International Nuclear Information System (INIS)

    Zimmer, M.J.

    1992-01-01

    This article examines how environmental requirements are challenging the developers ability to secure financing for independent energy projects. The topics addressed in the article include a review of the US Environmental Protection Agency auction rules for acid rain emission allowances, short term and long term market demand, project financing issues, credit value and matching interests

  4. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  5. Neutron structural biology

    International Nuclear Information System (INIS)

    Schoenborn, B.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories

  6. Challenge Based Innovation gala

    CERN Multimedia

    CERN. Geneva; Utriainen, Tuuli Maria; Toivonen, Harri; Nordberg, Markus

    2014-01-01

    Challenge Based Innovation gala   There’s a new experiment starting in CERN called IdeaLab where we work together with detector R&D researchers to help them to bridge their knowledge into a more human, societally oriented context. Currently we are located in B153, but will move our activities to a new facility next to the Globe in May 2014. One of our first pilot projects is a 5 month course CBI (Challenge Based Innovation) where two multidisciplinary student teams join forces with Edusafe & TALENT projects at CERN. Their goal is to discover what kind of tools for learning could be created in collaboration with the two groups. After months of user interviews and low resolution prototyping they are ready to share the results with us in the form of an afternoon gala. We warmly welcome you to join us to see the students' results and experience the prototypes they have conceived. The event is in three parts, you are welcome to visit all of them,...

  7. Meeting the challenge of BNFL's decommissioning programme

    International Nuclear Information System (INIS)

    Sheil, A.E.

    1997-01-01

    The paper reviews the co-ordinated and integrated programme, adopted by BNFL, in the decommissioning of its radioactive plants. It examines BNFL's approach to the challenges posed by the eventual decommissioning of its 120 plants, its overall strategies, the constraints and the progress achieved to date, drawing on real experience from the 22 completed projects and the 24 projects currently underway. (author)

  8. Solar Car, Solar Boat: Model Classroom Projects. Seattle Tech Prep.

    Science.gov (United States)

    Seattle Community Coll. District, Washington.

    This booklet shows how teachers at Ingraham High School and Madison Middle School in Seattle (Washington) challenged their students to tackle demanding technical projects. It also shows how well the students responded to that challenge. The booklet begins with the background of the project, the framework for which would be a university-sponsored…

  9. Collaborative efforts are needed to ensure proper knowledge dissemination of telemedicine projects

    DEFF Research Database (Denmark)

    Jakobsen, Neel Kolthoff; Jensen, Lena Sundby; Kayser, Lars

    2014-01-01

    documented and disseminated. MATERIAL AND METHODS: Public and private funds were contacted for information about telemedicine studies focusing on people residing in their homes. After an initial screening of titles and abstracts, 19 projects were identified. The managers of the projects were contacted......INTRODUCTION: Telemedicine is often seen as the solution to the challenge of providing health care for an increasing number of people with chronic conditions. Projects are often organised locally and based on the involvement of stakeholders with a wide range of backgrounds. It can be challenging...... to ensure that projects are based on previous experience and that they do not repeat previous studies. To better understand these challenges and current practice, we examined telemedicine projects funded in the 2008-2010 period to explore where, how and to what extent results from the projects were...

  10. Construction Project Leadership from the Perspective of Islam

    OpenAIRE

    MUHAMAD ROSDI SENAM; KHAIRUDDIN ABDUL RASHID; AZILA AHMAD SARKAWI; RAPIAH MOHD. ZAINI

    2014-01-01

    Construction industry is continuously being accused with common issues such as low performance, corruptions, spillages, bad practices in addition to common project failures despite advances in project management tools and techniques. This further adds to the existing and increasing complex and multi-facets business environment in construction projects that has resulted in the increasing pressure and challenges faced by project leaders and project managers today. Researchers in project managem...

  11. Overcoming the challenges of the skilled labour shortage through energy industry cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Massitti, P. [Baker Hughes INTEQ, Calgary, AB (Canada); Goodman, G. [Goodman McDougall and Associates Ltd., Calgary, AB (Canada); Dalik, A.; Richardson, S. [RainTree Consulting, Calgary, AB (Canada); Gurevitch, J. [Halliburton, Calgary, AB (Canada)

    2004-07-01

    This presentation described the unique workforce planning and recruitment challenges currently facing the petroleum services industry, and how they are being managed. It offered suggestions as to how energy companies can work more effectively with petroleum industry service providers to ensure that projects have the necessary human resources to staff projects. In particular, the paper referred to the challenge and feasibility of smoothing out drilling cycles throughout the year. The challenge facing the service and supply industry in planning and managing a workforce for Arctic development was also discussed.

  12. Project evaluation: one framework - four approaches

    DEFF Research Database (Denmark)

    Rode, Anna Le Gerstrøm; Svejvig, Per

    . Introducing a framework that can help structure such evaluations, the aim of this paper is to contribute to project theory and practice by inspiring project researchers and aiding project workers in their efforts to open up the black box of projects and deliver relevant and valuable results......There are many theoretical and practical reasons for evaluating projects – including explorative arguments focusing on expanding descriptive knowledge on projects as well as normative arguments focusing on developing prescriptive knowledge of project management. Despite the need for effective...... project management and research methods that can assess effective project management methodologies, extant literature on evaluation procedures or guidelines on how to evaluate projects and/or project management is scarce. To address this challenge, this paper introduces an evaluation framework consisting...

  13. Development of a gamma ray spectroscopy capability at LANSCE

    International Nuclear Information System (INIS)

    Nelson, R.O.; Strottman, D.D.; Sterbenz, S.M.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to explore an upgrade to the GEANIE high-resolution gamma-ray spectrometer at the Los Alamos Neutron Science Center (LANSCE) to help build additional experimental capabilities. The improvements identified have significantly added to the capabilities of GEANIE and made the facility more attractive for studies supporting the core national security mission as well as for use by outside collaborators. These benefits apply to both basic and applied studies

  14. Current issues in nuclear power projects decision making

    International Nuclear Information System (INIS)

    Yanev, Y.; Rogner, H.

    2011-01-01

    Concluding Comments: Firm government commitment and support - imminent; New financing approaches/models are emerging, repackaging existing methods and combination of project finance/co-operative mode; Global financial crisis will make financing for investors very challenging, especially for large scale infrastructure projects like NNP –financial regulators to impose tougher rules (Basel III, UK bank levy, US Financial Regulatory Bill, etc; Pure project finance is still challenging for nuclear projects - the availability of finance for new NPPs will depend on the initial government support. This presentation presents a “free market” view on investment in nuclear power projects; If the public sector (governments) wishes to invest in nuclear power as part of its socioeconomic development priorities, finance is not a real obstacle; It becomes an issue in the presence of other equally important development needs and private sector participation is sought

  15. Stakeholder approach for evaluating organizational change projects.

    Science.gov (United States)

    Peltokorpi, Antti; Alho, Antti; Kujala, Jaakko; Aitamurto, Johanna; Parvinen, Petri

    2008-01-01

    This paper aims to create a model for evaluating organizational change initiatives from a stakeholder resistance viewpoint. The paper presents a model to evaluate change projects and their expected benefits. Factors affecting the challenge to implement change were defined based on stakeholder theory literature. The authors test the model's practical validity for screening change initiatives to improve operating room productivity. Change initiatives can be evaluated using six factors: the effect of the planned intervention on stakeholders' actions and position; stakeholders' capability to influence the project's implementation; motivation to participate; capability to change; change complexity; and management capability. The presented model's generalizability should be explored by filtering presented factors through a larger number of historical cases operating in different healthcare contexts. The link between stakeholders, the change challenge and the outcomes of change projects needs to be empirically tested. The proposed model can be used to prioritize change projects, manage stakeholder resistance and establish a better organizational and professional competence for managing healthcare organization change projects. New insights into existing stakeholder-related understanding of change project successes are provided.

  16. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    Science.gov (United States)

    Kidd, Luanne; Morris, Kenneth B.; Self, Tim

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.

  17. LDRD Final Report: Capabilities for Uncertainty in Predictive Science.

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Eric Todd; Eldred, Michael S; Salinger, Andrew G.; Webster, Clayton G.

    2008-10-01

    Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-ponents promises to help solve many problems of scientific and national interest. Howeverpredictive simulation of such systems is extremely challenging due to the coupling of adiverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure togain computational efficiency. The traditional layering of uncertainty quantification aroundnonlinear solution processes is inverted to allow for heterogeneous uncertainty quantificationmethods to be applied to each component in a coupled system. Moreover this approachallows stochastic dimension reduction techniques to be applied at each coupling interface.The mathematical feasibility of these ideas is investigated in this report, and mathematicalformulations for the resulting stochastically coupled nonlinear systems are developed.3

  18. Challenge Accepted : Aplicación móvil para activar la capacidad creativa

    OpenAIRE

    Ocaña Tallón, Jorge Juan

    2016-01-01

    This project talks about creativity and how to activate creativity skills which all people have, but making it in a funny and easy way creating a challenge for the users. At the same time, this challenges will be a boost and a call to use this app, which is the final aim of the project. Competences related with graphic design, sculpture, writing, painting, photography, recycling, architecture will be trained through weekly challenges proposed but the app to users. Moreover, a system of gamifi...

  19. Project of the Year Submittal SY-101 Surface Level Rise Remediation Project

    International Nuclear Information System (INIS)

    BAUER, R.E.

    2001-01-01

    CH2M HILL Hanford Group is pleased to nominate the SY-101 Surface Level Rise Remediation Project (SLRRP) for the Project Management Institute's consideration as International Project of the Year for 2001. We selected this project as being our best recent example of effective project management, having achieved and exceeded our client's expectations in resolving urgent safety issues related to the storage of high level nuclear waste. In reflection, we consider the SY-101 SLRRP to be a prime example of safe and effective project delivery. The pages that follow present the tools and techniques employed to manage this complex and technically challenging project. Our objective in submitting this nomination is twofold--to share the lessons we have learned with other organizations, and to honor the men and women who contributed to this endeavor. It was by their diligent effort that the successes we relate here were accomplished 10 months ahead of schedule and one million dollars below the authorized budget

  20. Earned value project management

    CERN Document Server

    Fleming, Quentin W

    2010-01-01

    Organizations that follow the principles of good Earned Value Management (EVM) create an environment that allows teams to successfully operate and thrive ? even in the face of challenges that could negatively impact their projects. Earned Value Project Management (EVPM) is a methodology used to measure and communicate the real physical progress of a project taking into account the work completed, the time taken and the costs incurred to complete that work. As a result, EVPM allows more educated and effective management decision-making, which helps evaluate and control project risk by measuring project progress in monetary terms. In the first two editions of Earned Value Project Management, Quentin W. Fleming and Joel M. Koppelman provided guidance for project management practitioners already familiar with EVPM, was well as those who were new to the use of this technique. The third edition expanded the information available on of EVPM for medium and smaller projects while still being relevant for larger projec...

  1. How Provotypes Challenge Stakeholder Conceptions in Innovation Projects

    DEFF Research Database (Denmark)

    Boer, Laurens

    is put on the market and mismatches use context), but on the other hand, it creates an opportunity for reflection on these conceptions when revealed at the front end of innovation projects. Design researchers can play an important role in bringing conceptual tensions between stakeholders...... to the foreground, by demonstrating what these tensions might mean in light of new product or service development. In this dissertation, I rekindle the provotyping approach from the 1990’s systems design community, as this approach argued to expose discrepancies in practice in order to devise qualitatively new...

  2. The HL-LHC accelerator physics challenges

    CERN Document Server

    Fartoukh, S

    2014-01-01

    We review the conceptual baseline of the HL-LHC project, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  3. The HL-LHC Accelerator Physics Challenges

    Science.gov (United States)

    Fartoukh, S.; Zimmermann, F.

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  4. The HL-LHC accelerator physics challenges

    CERN Document Server

    Fartoukh, S

    2015-01-01

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  5. Dissemination and Exploitation: Project Goals beyond Science

    Science.gov (United States)

    Hamann, Kristin; Reitz, Anja

    2017-04-01

    Dissemination and Exploitation are essential parts of public funded projects. In Horizon 2020 a plan for the exploitation and dissemination of results (PEDR) is a requirement. The plan should contain a clear vision on the objectives of the project in relation to actions for dissemination and potential exploitation of the project results. The actions follow the basic idea to spread the knowledge and results gathered within the project and face the challenge of how to bring the results into potentially relevant policy circle and how they impact the market. The plan follows the purpose to assess the impact of the project and to address various target groups who are interested in the project results. Simply put, dissemination concentrates on the transfer of knowledge and exploitation on the commercialization of the project. Beyond the question of the measurability of project`s impact, strategies within science marketing can serve purposes beyond internal and external communication. Accordingly, project managers are facing the challenge to implement a dissemination and exploitation strategy that ideally supports the identification of all partners with the project and matches the current discourse of the project`s content within the society, politics and economy. A consolidated plan might unite all projects partners under a central idea and supports the identification with the project beyond the individual research questions. Which applications, strategies and methods can be used to bring forward a PEDR that accompanies a project successfully and allows a comprehensive assessment of the project afterwards? Which hurdles might project managers experience in the dissemination process and which tasks should be fulfilled by the project manager?

  6. Supporting Project Work with Information Technology

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2015-01-01

    University problem-oriented project work is based. However, in implementing and integrating the new technologies in academic practices, a number of challenges have had to be addressed. This chapter discusses four of these challenges. The first is to provide a physical and virtual framework for learning......Like so many other institutions, Roskilde University has had to adapt to the new realities brought about by the rapid developments in information and communication technology (ICT). On the whole, ICT tools have proven to be helpful in supporting and developing the work forms on which Roskilde...... activities. The second is to direct student use of ICT in terms of making systems available and teaching academic computing. The third challenge is to supervise and conduct project work online and in blended learning environments. Finally, one must find a way to exploit the potentials of ICT in problem...

  7. Supporting Project Work with Information Technology

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2015-01-01

    University problem-oriented project work is based. However, in implementing and integrating the new technologies in academic practices, a number of challenges have had to be addressed. This chapter discusses four of these challenges. The first is to provide a physical and virtual framework for learning...... activities. The second is to direct student use of ICT in terms of making systems available and teaching academic computing. The third challenge is to supervise and conduct project work online and in blended learning environments. Finally, one must find a way to exploit the potentials of ICT in problem......Like so many other institutions, Roskilde University has had to adapt to the new realities brought about by the rapid developments in information and communication technology (ICT). On the whole, ICT tools have proven to be helpful in supporting and developing the work forms on which Roskilde...

  8. Planning and Managing Drupal Projects

    CERN Document Server

    Nordin, Dani

    2011-01-01

    If you're a solo website designer or part of a small team itching to build interesting projects with Drupal, this concise guide will get you started. Drupal's learning curve has thrown off many experienced designers, particularly the way it handles design challenges. This book shows you the lifecycle of a typical Drupal project, with emphasis on the early stages of site planning. Learn how to efficiently estimate and set up your own project, so you can focus on ways to make your vision a reality, rather than let project management details constantly distract you. Plan and estimate your projec

  9. Transnational learning in Creative City Challenge

    NARCIS (Netherlands)

    Romein, A.; Trip, J.J.; Zonneveld, W.A.M.

    2012-01-01

    Report written in the context of the INTERREG IVB project Creative City Challenge. Based on a series of international expert meetings the report discusses various themes in relation to creative city policy, and analyses the process of transnational learning itself.

  10. Access. Challenge for Change/Societe Nouvelle Number Twelve.

    Science.gov (United States)

    Prinn, Elizabeth, Ed.; Henaut, Dorothy Todd, Ed.

    This issue of Access, the journal issued periodically by Challenge for Change/Societe Nouvelle, contains two groups of articles. The first focuses upon the Skyriver Project, relating how a project was developed which used film and video tape as a means of helping Alaskan communities to assess their own needs and to advocate for themselves the…

  11. Research Project Evaluation-Learnings from the PATHWAYS Project Experience.

    Science.gov (United States)

    Galas, Aleksander; Pilat, Aleksandra; Leonardi, Matilde; Tobiasz-Adamczyk, Beata

    2018-05-25

    Every research project faces challenges regarding how to achieve its goals in a timely and effective manner. The purpose of this paper is to present a project evaluation methodology gathered during the implementation of the Participation to Healthy Workplaces and Inclusive Strategies in the Work Sector (the EU PATHWAYS Project). The PATHWAYS project involved multiple countries and multi-cultural aspects of re/integrating chronically ill patients into labor markets in different countries. This paper describes key project's evaluation issues including: (1) purposes, (2) advisability, (3) tools, (4) implementation, and (5) possible benefits and presents the advantages of a continuous monitoring. Project evaluation tool to assess structure and resources, process, management and communication, achievements, and outcomes. The project used a mixed evaluation approach and included Strengths (S), Weaknesses (W), Opportunities (O), and Threats (SWOT) analysis. A methodology for longitudinal EU projects' evaluation is described. The evaluation process allowed to highlight strengths and weaknesses and highlighted good coordination and communication between project partners as well as some key issues such as: the need for a shared glossary covering areas investigated by the project, problematic issues related to the involvement of stakeholders from outside the project, and issues with timing. Numerical SWOT analysis showed improvement in project performance over time. The proportion of participating project partners in the evaluation varied from 100% to 83.3%. There is a need for the implementation of a structured evaluation process in multidisciplinary projects involving different stakeholders in diverse socio-environmental and political conditions. Based on the PATHWAYS experience, a clear monitoring methodology is suggested as essential in every multidisciplinary research projects.

  12. LNG project - contractual aspects

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Bruno Almeida

    2008-07-01

    This paper intends to provide from the legal point of view an outline of the main challenges of a LNG project in the upstream, regulatory aspects, liquefaction, financing and midstream through a basic checklist; an overview of the contractual complexity of a LNG project; some basic discussion of particular LNG contract clauses; and a comparative analysis between the classic clauses of a Gas Transportation Agreement (GTA) through a gas pipeline and LNG logistic. (author)

  13. Integration of Radiation-Hard Magnetic Random Access Memory with CMOS ICs

    CERN Document Server

    Cerjan, C J

    2000-01-01

    The research undertaken in this LDRD-funded project addressed the joint development of magnetic material-based nonvolatile, radiation-hard memory cells with Sandia National Laboratory. Specifically, the goal of this project was to demonstrate the intrinsic radiation-hardness of Giant Magneto-Resistive (GMR) materials by depositing representative alloy combinations upon radiation-hardened silicon-based integrated circuits. All of the stated goals of the project were achieved successfully. The necessary films were successfully deposited upon typical integrated circuits; the materials retained their magnetic field response at the highest radiation doses; and a patterning approach was developed that did not degrade the as-fabricated properties of the underlying circuitry. These results establish the feasibility of building radiation-hard magnetic memory cells.

  14. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  15. Making energy projects happen

    International Nuclear Information System (INIS)

    Gilliland, S.F.; Utt, W.P.; Neff, N.T.

    1988-01-01

    In today's business environment, control of energy cost is a major challenge for businesses, institutions, and governmental agencies. New technologies are available to reduce energy costs through cogeneration, cheaper fuels, or other means. Often it is not possible for a Plant Owner to undertake such a project, regardless of how desirable it may be. The authors of this paper show that by applying the principles of Project Structuring and developing a comprehensive project team, the desired reduction in energy costs can be achieved. Various examples are cited, and guidelines are given for an Owner to use

  16. Challenging makerspaces

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Thestrup, Klaus

    This paper takes its departure in the EU-project MakEY - Makerspaces in the early years – enhancing digital literacy and creativity that is part of a H2020 RISE-program and is running January 2017 - June 2019. Here digital literacy and creative skills of young children between the age of 3......-8 will be developed through participation in creative activities in specially-designed spaces termed ‘makerspaces’. This paper discusses, develops and challenges this term in relation to Danish pedagogical traditions, to expanding makerspaces onto the internet and on how to combine narratives and construction....... The Danish part of the project will be undertaken by a small network of partners: DOKK1, a public library and open urban space in Aarhus, that is experimenting with different kind of makerspaces, spaces and encounters between people, The LEGO-LAB situated at Computer Science, Aarhus University, that has...

  17. A European Project on Vacuum Tube Amplifiers for THz Amplification

    DEFF Research Database (Denmark)

    Paoloni, Claudio; Di Carlo, Aldo; Brunetti, Francesca

    2012-01-01

    The OPTHER (Optically Driven THz amplifier) project supported by the European Commission within the Seventh Framework Program (FP7) represents the first joint European attempt to realize vacuum electron devices in THz range. The target of the project was to design and realize the first 1 THz vacuum...... tube amplifier. The challenges of the presented task and the innovative solutions adopted established a new level of knowledge in the field. The main aspects of the OPTHER project are described, focusing on challenges and adopted innovative solutions....

  18. Ranking the Project Management Success Factors for Construction Project in South India

    Science.gov (United States)

    Aneesha, K.; Haridharan, M. K.

    2017-07-01

    In Today’s construction industry, to achieve a greater advantage over the firms, success of each project and efficiency is required. Effective Project Management overcomes these types of challenges. This study identifies the success factors which are important for project management in construction project success. From the literature review, 26 factors were found to be critical. Project managers, construction managers, civil engineers, contractors and site engineers were the respondents. After analyzing the data in SPSS software, the dominant factors from the regression analysis are top management support, competent project team, abilities to solve problems, realistic cost and time estimates, information/communication, competency of the project manager are the 6 factors out of 12 in 26 factors. Effective communication between stakeholders got highest priority and client involvement, good leadership, clarity of project goals got second priority. Informal communication gives better results compared to formal communications like written formats. To remove communication barrier with the stakeholders, informal communication like speaking face-to-face with the language this fits for the stakeholders.

  19. Investment and Project Economics: Contemporary Lessons for ...

    African Journals Online (AJOL)

    Taking up the contemporary challenge to sensitize and synergize instructional, industrial and governmental functionaries along this line are leading global faculties such as the Academy of Project Management (APM), Project Management Institute (PMI), and Business Analyst (BA) Times, amongst others. This work is ...

  20. The impact of sustainability on project management

    NARCIS (Netherlands)

    Adri Köhler; Gilbert Gilbert Silvius; Jasper van den Brink

    2011-01-01

    Chapter 11 in The Project as a Social System: Asia-Pacific Perspectives on Project Management. Sustainability is one of the most important challenges of our time. How can we develop prosperity without compromising the life of future generations? Companies are integrating ideas of sustainability in

  1. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Challenge Based Innovation (CBI) is a six-month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 10.12. will introduce the proof-of concept prototypes the four student teams have developed to answer a wide range of societal challenges, inspired by people and research at CERN.   Dress code: a suit / dress  is not required - come as you are! Register for live attendance & CERN access for external visitors. Webcast and/or recorded presentations will be available here in the Indico page for anyone interested.  The space is limited to 50 participants, so act quickly! &...

  2. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Note - presentation location has been changed to the council chamber (503-1-001) due to the large amount of signups. External participants are guided from the main reception (building 33), more information over email on Wednesday. Prototype presentations are still at IdeaSquare (3179) 18.00 - 19.30, guided walking from the presentations.  Challenge Based Innovation (CBI) is a four month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 1.12. will introduce the proof-of concept prototypes the five student teams have developed to answer a wide range of societal challenges, inspired by people and r...

  3. A theoretical description of inhomogeneous turbulence

    International Nuclear Information System (INIS)

    Turner, L.

    2000-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In this LDRD, we have developed a highly compact and descriptive formalism that allows us to broach the theoretically formidable morass of inhomogeneous turbulence. Our formalism has two novel aspects: (a) an adaptation of helicity basis functions to represent an arbitrary incompressible channel flow and (b) the invocation of a hypothesis of random phase. A result of this compact formalism is that the mathematical description of inhomogeneous turbulence looks much like that of homogeneous turbulence--at the moment, the most rigorously explored terrain in turbulence research. As a result, we can explore the effect of boundaries on such important quantities as the gradients of mean flow, mean pressure, triple-velocity correlations and pressure velocity correlations, all of which vanish under the conventional, but artificial, assumption that the turbulence is statistically spatially uniform. Under suitable conditions, we have predicted that a mean flow gradient can develop even when none is initially present

  4. They rose to the challenge!

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    The Challenge-Based Innovation programme is a Masters-level initiative developed at CERN in collaboration with many universities around the world. The first programme saw 45 students take part, and their final results were presented at an official "gala" held on 26 February.   On 26 February, after their official presentations, the six CBI teams presented their prototypes to the public in the IdeaSquare building.   As part of the IdeaSquare project, the Challenge-Based Innovation (CBI) programme is based on a very pragmatic question: can the tools and results produced by basic research (like that being carried out at CERN) be used to solve societal problems? If so, how? To answer this question, 45 students from very different professional and cultural backgrounds formed six teams, each with a specific societal challenge to solve (see here). Over a six-month period – from September 2014 to February 2015 – the six teams worked on the challenge in o...

  5. Using The Obser-view In Qualitative Research: Benefits And Challenges

    DEFF Research Database (Denmark)

    Kragelund, Linda; Moser, Albine; van Zadelhoff, Ezra

    2015-01-01

    The obser-view is a method to generate data and a learning space for both researcher and participants in qualitative research. It includes reflection between researcher and participant just after the researcher has observed the participant. Developed during a project about student nurses' learning...... processes in interaction with psychiatric patients, it can and has been used in several disparate research projects. The aim of this article is to reveal the benefits and challenges encountered when using the obser-view in two very different qualitative research projects. In a Dutch project where the aim....... A challenge of the obser-view is for the researcher to get the best opportunity to reflect with the participants, which is more likely to be successful if the two of them have had time to develop a trusting relationship. Even though the obser-view is still a novel method to generate data in qualitative...

  6. Brazilian Microbiome Project: revealing the unexplored microbial diversity--challenges and prospects.

    Science.gov (United States)

    Pylro, Victor Satler; Roesch, Luiz Fernando Wurdig; Ortega, José Miguel; do Amaral, Alexandre Morais; Tótola, Marcos Rogério; Hirsch, Penny Ruth; Rosado, Alexandre Soares; Góes-Neto, Aristóteles; da Costa da Silva, Artur Luiz; Rosa, Carlos Augusto; Morais, Daniel Kumazawa; Andreote, Fernando Dini; Duarte, Gabriela Frois; de Melo, Itamar Soares; Seldin, Lucy; Lambais, Márcio Rodrigues; Hungria, Mariangela; Peixoto, Raquel Silva; Kruger, Ricardo Henrique; Tsai, Siu Mui; Azevedo, Vasco

    2014-02-01

    The Brazilian Microbiome Project (BMP) aims to assemble a Brazilian Metagenomic Consortium/Database. At present, many metagenomic projects underway in Brazil are widely known. Our goal in this initiative is to co-ordinate and standardize these together with new projects to come. It is estimated that Brazil hosts approximately 20 % of the entire world's macroorganism biological diversity. It is 1 of the 17 countries that share nearly 70 % of the world's catalogued animal and plant species, and is recognized as one of the most megadiverse countries. At the end of 2012, Brazil has joined GBIF (Global Biodiversity Information Facility), as associated member, to improve the access to the Brazilian biodiversity data in a free and open way. This was an important step toward increasing international collaboration and clearly shows the commitment of the Brazilian government in directing national policies toward sustainable development. Despite its importance, the Brazilian microbial diversity is still considered to be largely unknown, and it is clear that to maintain ecosystem dynamics and to sustainably manage land use, it is crucial to understand the biological and functional diversity of the system. This is the first attempt to collect and collate information about Brazilian microbial genetic and functional diversity in a systematic and holistic manner. The success of the BMP depends on a massive collaborative effort of both the Brazilian and international scientific communities, and therefore, we invite all colleagues to participate in this project.

  7. Research Project Evaluation—Learnings from the PATHWAYS Project Experience

    Directory of Open Access Journals (Sweden)

    Aleksander Galas

    2018-05-01

    Full Text Available Background: Every research project faces challenges regarding how to achieve its goals in a timely and effective manner. The purpose of this paper is to present a project evaluation methodology gathered during the implementation of the Participation to Healthy Workplaces and Inclusive Strategies in the Work Sector (the EU PATHWAYS Project. The PATHWAYS project involved multiple countries and multi-cultural aspects of re/integrating chronically ill patients into labor markets in different countries. This paper describes key project’s evaluation issues including: (1 purposes, (2 advisability, (3 tools, (4 implementation, and (5 possible benefits and presents the advantages of a continuous monitoring. Methods: Project evaluation tool to assess structure and resources, process, management and communication, achievements, and outcomes. The project used a mixed evaluation approach and included Strengths (S, Weaknesses (W, Opportunities (O, and Threats (SWOT analysis. Results: A methodology for longitudinal EU projects’ evaluation is described. The evaluation process allowed to highlight strengths and weaknesses and highlighted good coordination and communication between project partners as well as some key issues such as: the need for a shared glossary covering areas investigated by the project, problematic issues related to the involvement of stakeholders from outside the project, and issues with timing. Numerical SWOT analysis showed improvement in project performance over time. The proportion of participating project partners in the evaluation varied from 100% to 83.3%. Conclusions: There is a need for the implementation of a structured evaluation process in multidisciplinary projects involving different stakeholders in diverse socio-environmental and political conditions. Based on the PATHWAYS experience, a clear monitoring methodology is suggested as essential in every multidisciplinary research projects.

  8. Health care networks implementation and regional governance challenges in the Legal Amazon Region: an analysis of the QualiSUS-Rede Project.

    Science.gov (United States)

    Casanova, Angela Oliveira; Cruz, Marly Marques; Giovanella, Ligia; Alves, Glaydes Dos Reis; Cardoso, Gisela Cordeiro Pereira

    2017-04-01

    This paper aims to analyze the potential, limits and challenges of regional governance in the implementation process of health care networks in three Brazilian regions: Alto Solimões (Amazonas), Belém (Pará) and an interstate region comprising Tocantins, Pará and Maranhão states (Topama). The study is based on the evaluation study on the implementation of the Quality Health Care Network Development and Improvement Project (QualiSUS-Rede). This is a qualitative multiple case study with the analysis of official documents and use of semi-structured interviews with key stakeholders conducted from July to December 2014. Governance review encompassed three components: stakeholders involved, especially local steering groups and their regional coordination capacity; strategies used for strengthening regional governance, anchored on the intervention's modeling; and implementation of local health care networks. Results point that the regional managing commissions were the main governance strategy and that the QualiSUS-Rede Project strengthened regional governance and integration differently in every case, depending on stakeholders' administration and consensus capacity on regional and political priorities.

  9. Skate Genome Project: Cyber-Enabled Bioinformatics Collaboration

    Science.gov (United States)

    Vincent, J.

    2011-01-01

    The Skate Genome Project, a pilot project of the North East Cyber infrastructure Consortium, aims to produce a draft genome sequence of Leucoraja erinacea, the Little Skate. The pilot project was designed to also develop expertise in large scale collaborations across the NECC region. An overview of the bioinformatics and infrastructure challenges faced during the first year of the project will be presented. Results to date and lessons learned from the perspective of a bioinformatics core will be highlighted.

  10. V&V of Fault Management: Challenges and Successes

    Science.gov (United States)

    Fesq, Lorraine M.; Costello, Ken; Ohi, Don; Lu, Tiffany; Newhouse, Marilyn

    2013-01-01

    This paper describes the results of a special breakout session of the NASA Independent Verification and Validation (IV&V) Workshop held in the fall of 2012 entitled "V&V of Fault Management: Challenges and Successes." The NASA IV&V Program is in a unique position to interact with projects across all of the NASA development domains. Using this unique opportunity, the IV&V program convened a breakout session to enable IV&V teams to share their challenges and successes with respect to the V&V of Fault Management (FM) architectures and software. The presentations and discussions provided practical examples of pitfalls encountered while performing V&V of FM including the lack of consistent designs for implementing faults monitors and the fact that FM information is not centralized but scattered among many diverse project artifacts. The discussions also solidified the need for an early commitment to developing FM in parallel with the spacecraft systems as well as clearly defining FM terminology within a project.

  11. Challenges and Solutions for Mapping Innovation in a Large Emerging Economy

    DEFF Research Database (Denmark)

    Rai, Sudhanshu

    this paper is an outcome of my experience as a team member of the Euro-India Innovation mapping project. The project set out to map India’s IT Innovativeness over two years from January 2008-to December 2009. Here I bring to the fore the different methodologies that we reviewed in order...... to implement the innovation mapping project and our realization that each methodology in itself though useful may not be sufficient to address the complexity of the subject matter due to the vastness of India and its emerging nature. I outline some of the challenges faced by us when designing a methodology...... for mapping innovation in a large emerging economy. I discuss some solutions and report on how we solved the problem only to be faced with newer challenges. A methodological design is a challenging endeavor in the normal of time, when it comes to doing the same in a large emerging economy the problems becomes...

  12. The impact of sustainability on project management

    NARCIS (Netherlands)

    Adri Köhler; Jasper van den Brink; Gilbert Gilbert Silvius

    2012-01-01

    Full text via link Chapter 11 in The Project as a Social System: Asia-Pacific Perspectives on Project Management Sustainability is one of the most important challenges of our time. How can we develop prosperity without compromising the life of future generations? Companies are integrating ideas of

  13. The European Donor Health Care Project: fulfilling needs and challenges for the future

    Directory of Open Access Journals (Sweden)

    P.J.M. van den Burg

    2014-05-01

    Full Text Available The Donor Health Care project is a EU granted project to develop a learning programme for professionals working in the field of Donor Health Care. The innovation of this curriculum is the focus on all donors, irrespective of whether they donate blood, cells, tissues or organs. This article describes the background of the project and the current possibilities and limitations of European accreditation, distance learning and Master degrees.

  14. Scheduling of resource-constrained projects

    CERN Document Server

    Klein, Robert

    2000-01-01

    Project management has become a widespread instrument enabling organizations to efficiently master the challenges of steadily shortening product life cycles, global markets and decreasing profit margins. With projects increasing in size and complexity, their planning and control represents one of the most crucial management tasks. This is especially true for scheduling, which is concerned with establishing execution dates for the sub-activities to be performed in order to complete the project. The ability to manage projects where resources must be allocated between concurrent projects or even sub-activities of a single project requires the use of commercial project management software packages. However, the results yielded by the solution procedures included are often rather unsatisfactory. Scheduling of Resource-Constrained Projects develops more efficient procedures, which can easily be integrated into software packages by incorporated programming languages, and thus should be of great interest for practiti...

  15. The Lifestyle Project: Challenging Students to Redefine their Approach to Resource Use (Invited)

    Science.gov (United States)

    Kirk, K.

    2009-12-01

    The Lifestyle Project is a way for students to learn about environmental impacts by changing their own lifestyles. It is a three-week exercise during which students reduce their energy use, waste output and water use by changing the way they live from day to day. The project has fairly rigid parameters, allowing students to achieve a gradual but definitive change in their everyday habits. Students begin by taking baseline measurements of their resource use, and then they select three different areas in which they are interested in reducing their environmental impact. Within each area there are clearly defined rules that provide a structured means for achieving significant changes. Each week the project becomes more rigorous, because students will have to meet the requirements more frequently. They write about their experiences in journals, which are incredibly insightful and illustrate just how profoundly the project affects them. The Lifestyle Project has been used across several campuses and in many educational settings such as traditional courses, online courses and in informal settings. Its strength lies in allowing students to quantify and modify their own use of resources, then compare their personal reductions to what could be applied in a larger population. This helps them apply and personalize many of the concepts addressed in courses about environmental geology, climate change, or energy resources. The incremental nature of the project allows students several opportunities to practice new behaviors, so that they become adept at using far fewer resources than they thought would be possible. Results from the Lifestyle Project indicate that students save significant amounts of energy, on the order of 1 to 2 million BTUs per day. Journal reflections illustrate a corresponding shift in students’ personal awareness of their use of resources and the repercussions of their daily decisions. Although many students find the project frustrating at first, after

  16. R&D for computational cognitive and social models : foundations for model evaluation through verification and validation (final LDRD report).

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander; Mitchell, Scott A.; Backus, George A.; McNamara, Laura A.; Trucano, Timothy Guy

    2008-09-01

    Sandia National Laboratories is investing in projects that aim to develop computational modeling and simulation applications that explore human cognitive and social phenomena. While some of these modeling and simulation projects are explicitly research oriented, others are intended to support or provide insight for people involved in high consequence decision-making. This raises the issue of how to evaluate computational modeling and simulation applications in both research and applied settings where human behavior is the focus of the model: when is a simulation 'good enough' for the goals its designers want to achieve? In this report, we discuss two years' worth of review and assessment of the ASC program's approach to computational model verification and validation, uncertainty quantification, and decision making. We present a framework that extends the principles of the ASC approach into the area of computational social and cognitive modeling and simulation. In doing so, we argue that the potential for evaluation is a function of how the modeling and simulation software will be used in a particular setting. In making this argument, we move from strict, engineering and physics oriented approaches to V&V to a broader project of model evaluation, which asserts that the systematic, rigorous, and transparent accumulation of evidence about a model's performance under conditions of uncertainty is a reasonable and necessary goal for model evaluation, regardless of discipline. How to achieve the accumulation of evidence in areas outside physics and engineering is a significant research challenge, but one that requires addressing as modeling and simulation tools move out of research laboratories and into the hands of decision makers. This report provides an assessment of our thinking on ASC Verification and Validation, and argues for further extending V&V research in the physical and engineering sciences toward a broader program of model

  17. Lessons learnt from a primary care asthma improvement project.

    Science.gov (United States)

    Lenney, Warren; Clayton, Sadie; Gilchrist, Francis J; Price, David; Small, Iain; Smith, Judy; Sutton, Emma J

    2016-01-07

    Asthma is a very common disease that can occur at any age. In the UK and in many other countries it is mainly managed in primary care. The published evidence suggests that the key to improving diagnosis and management lies in better training and education rather than in the discovery of new medications. An asthma improvement project managed through the British Lung Foundation is attempting to do this. The project has three pilot sites: two in England supported by the Department of Health and one in Scotland supported by the Scottish Government. If the project is successful it will be rolled out to other health areas within the UK. The results of this project are not yet available. This article highlights the challenges encountered in setting up the project and may well be applicable to other areas in the UK and to other countries where similar healthcare systems exist. The encountered challenges reflect the complex nature of healthcare systems and electronic data capture in primary care. We discuss the differences between general practices in their ability and willingness to support the project, the training and education of their staff on asthma management, governance issues in relation to information technology systems, and the quality of data capture. Virtually all the challenges have now been overcome, but discussing them should ensure that others become aware of them at an early stage should they wish to undertake similar projects in the future.

  18. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Barry Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-29

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patterns are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.

  19. Challenges in Doctoral Research Project Management: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Reuven Katz

    2016-03-01

    Full Text Available This paper presents quantitative results of a comparative study evaluating the management skills of doctoral candidates working toward a PhD and additional information related to their lifestyles. We conducted a survey among enrolled doctoral candidates at five universities in Israel and three technological universities in Western Europe. 1013 Israeli candidates and 457 Western European candidates replied to our survey. In our analysis, we compared the answers of Israeli Science and Engineering candidates to those of Social Sciences and Humanities candidates; in addition, we compared the answers of Israeli Science and Engineering students to their Western European peers. Our analysis focused on finding significant patterns by comparing these groups of students. In order to identify such patterns, we analyzed each question using the Pearson chi-square test. The current study’s main finding is that the majority of candidates, regardless of their chosen academic field or the region where they study, have no training or expertise in managing a doctoral research project. Based on these findings, we suggest that all doctoral candidates be taught basic research-project management. We believe that such training will provide them with a powerful tool for better managing their research as they advance towards successful completion of their doctorate.

  20. Implementing information systems with project teams using ethnographic-action research

    NARCIS (Netherlands)

    Hartmann, Timo; Fischer, Martin; Haymaker, John

    2009-01-01

    Architecture, engineering, and construction (AEC) projects are characterized by a large variation in requirements and work routines. Therefore, it is difficult to develop and implement information systems to support projects. To address these challenges, this paper presents a project-centric

  1. Optic issues in ongoing ERL projects

    International Nuclear Information System (INIS)

    Smith, S.L.; Muratori, B.D.; Owen, H.L.; Hoffstaetter, G.H.; Litvinenko, V.N.; Ben-Zvi, I.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Calaga, R.; Fischer, W.; Chang, X.Y.; Kayran, D.; Kewisch, J.; MacKay, W.W.; Montag, C.; Parker, B.; Ptitsyn, V.; Roser, T.; Ruggiero, A.; Satogata, T.; Surrow, B.; Tepikian, S.; Trbojevic, D.; Yakimenko, V.; Zhang, S.Y.; Piot, Ph.

    2006-01-01

    A wide range of optics issues for energy recovery linac (ERL)-based projects are illustrated through the presentation of ongoing projects covering both light sources, at Cornell and Daresbury and high energy and nuclear physics accelerators at the Brookhaven National Laboratory. This presented range of projects demonstrates how the different designs teams see the challenges of studying and solving optics issues for their particular project's ERLs, with studies appropriate to the stage of maturity of the project. Finally, as an illustration of the complexity and detail behind a single aspect of ERL optics design we present an overview of the highly important generic topic of longitudinal phase space evolution in ERLs

  2. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  3. Sensemaking in Enterprise Resource Planning Project Deescalation: An Empirical Study

    Science.gov (United States)

    Battleson, Douglas Aloys

    2013-01-01

    Enterprise resource planning (ERP) projects, a type of complex information technology project, are very challenging and expensive to implement. Past research recognizes that escalation, defined as the commitment to a failing course of action, is common in such projects. While the factors that contribute to escalation (e.g., project conditions,…

  4. Desafios iminentes para projetos de formação de profissionais para educação infantil Child education professionals: imminent challenges for training projects

    Directory of Open Access Journals (Sweden)

    Maria Lucia de A. Machado

    2000-07-01

    Full Text Available O propósito deste texto é o de apontar desafios iminentes para formuladores e implementadores de projetos de formação de profissionais para educação infantil a partir de duas das várias vertentes que os subsidiam. Aborda-se inicialmente um conjunto de fatores que configura o contexto atual brasileiro no qual os projetos se realizam. Em seguida, trata-se da concepção de crescimento e desenvolvimento infantil da qual decorre o desafio de integrar o enfoque cuidar/educar à ênfase numa pedagogia calcada nas interações de crianças e adultos, resultando em temas específicos de formação. Sabendo da força com que um modelo de escolarização caricato vem se difundindo nas instituições de atendimento a crianças de 0 a 6 anos, outro dos desafios que se coloca aos projetos de formação é o de formar profissionais aptos a integrarem-se aos sistemas educacionais e, simultaneamente, atuarem em modalidades de atendimento sustentados em aportes teóricos fundamentados de modo consistente nas necessidades e características de crescimento e desenvolvimento de bebês e crianças pequenas.The premise of this text is to point out the imminent challenges for those who formulate and implement training projects for child education professionals, based on two of the several currents which support them. The first includes the group of factors that make up the present Brazilian context in which projects are undertaken. The second, treats the conception of growth and child development from which comes the challenge to integrate the focus care/education, emphasizing a pedagogy based in child adult interaction, resulting in specific training themes. Knowing of the force with which a caricatured model of schooling has been disseminated in the institutions that care for children from birth to 6 years of age, another challenge put to training projects is to form professionals able to integrate themselves into the educational systems and simultaneously to

  5. NOA at the Calaveras Dam Replacement Project (CDRP) - Challenges and Solutions

    Science.gov (United States)

    Erskine, B.

    2012-12-01

    The San Francisco Public Utilities Commission is one year into construction of the Calaveras Dam Replacement Project (CDRP), a new earthen dam east of Sunol designed to withstand an M 7.1 earthquake on the nearby active Calaveras fault. The zoned earthen dam will be constructed primarily of on-site materials, many of which contain NOA. The upstream shell will be composed of Franciscan complex blueschist which contains crocidolite. This material will be blasted and processed at an on-site quarry. The impermeable core of the dam will be constructed of clay-rich alluvium that contains asbestos derived from Franciscan rocks. This material will be excavated from the south end of the reservoir and transported several miles to the dam. Currently, approximately 3 million yards of Franciscan complex material is being excavated and disposed of within permitted on-site engineered landfills. NOA-bearing rocks that include serpentinite, greenschist, blueschist, and eclogite contain variable amounts and assemblages of chrysotile, actinolite, crocidolite, tremolite, and winchite-class amphiboles. All of these are detected in air samples collected within a sophisticated air monitoring array and analyzed by TEM. The CDRP represents the largest construction project involving NOA in the country. As such, applying regulations that were designed for building materials and routine construction sites, and controlling airborne emissions on such a massive scale, is a major challenge requiring innovative solutions. Because construction occurs simultaneously at distinct and distant parts of the site, and the rugged topography of the site induces complex meteorological conditions, it is sometimes difficult to ascertain the driving activity and location of a source that caused a trigger level exceedance at a perimeter monitoring station. One helpful tool is forensic correlation of source material and air test data using speciation of amphiboles. At the CDRP, we are developing the ability to

  6. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  7. Integrative research on environmental and landscape change: PhD students' motivations and challenges.

    Science.gov (United States)

    Tress, Bärbel; Tress, Gunther; Fry, Gary

    2009-07-01

    The growing demand for integrative (interdisciplinary or transdisciplinary) approaches in the field of environmental and landscape change has increased the number of PhD students working in this area. Yet, the motivations to join integrative projects and the challenges for PhD students have so far not been investigated. The aims of this paper were to identify the understanding of PhD students with regard to integrative research, their motivations to join integrative projects, their expectations in terms of integration and results, and to reveal the challenges they face in integrative projects. We collected data by a questionnaire survey of 104 PhD students attending five PhD Master Classes held from 2003 to 2006. We used manual content analysis to analyse the free-text answers. The results revealed that students lack a differentiated understanding of integrative approaches. The main motivations to join integrative projects were the dissertation subject, the practical relevance of the project, the intellectual stimulation of working with different disciplines, and the belief that integrative research is more innovative. Expectations in terms of integration were high. Core challenges for integration included intellectual and external challenges such as lack of knowledge of other disciplines, knowledge transfer, reaching depth, supervision, lack of exchange with other students and time demands. To improve the situation for PhD students, we suggest improving knowledge on integrative approaches, balancing practical applicability with theoretical advancement, providing formal introductions to other fields of research, and enhancing institutional support for integrative PhD projects.

  8. EDMS implementation challenge.

    Science.gov (United States)

    De La Torre, Marta

    2002-08-01

    The challenges faced by facilities wishing to implement an electronic medical record system are complex and overwhelming. Issues such as customer acceptance, basic computer skills, and a thorough understanding of how the new system will impact work processes must be considered and acted upon. Acceptance and active support are necessary from Senior Administration and key departments to enable this project to achieve measurable success. This article details one hospital's "journey" through design and successful implementation of an electronic medical record system.

  9. Successful Control of Major Project Budgets

    Directory of Open Access Journals (Sweden)

    Steen Lichtenberg

    2016-07-01

    Full Text Available This paper differs from scientific papers describing current research. In line with the theme of this special issue, it challenges conventional risk management practice against the background of former research results successfully finished decades ago. It is well-known that conventional practice frequently results in budget overruns of large projects. International reviews document that. Severe delays of schedules are also well-known. This paper describes successful research results from almost three decades ago, which successfully challenges this severe problem and has led to new practices. The research involved is an unusual mix: Scandinavian researchers from psychology, statistical theory and engineering economy. The resulting procedure has been widely used since around 1990 and challenges conventional procedures. The procedure is documented to be able to yield statistically correct prognoses, when the “rules of the game” have been correctly followed. After a short summary of the basic situation, this paper summarizes the research, followed by some resulting experiences, focusing on two recent studies each of 40 infrastructures and other major projects. In both sets, the actual final cost largely equaled the expected project cost. This result is a marked change from international past and present experience. Finally, the need for further research and progress is discussed.

  10. Operational challenges in conducting a community-based technology-enabled mental health services delivery model for rural India: Experiences from the SMART Mental Health Project [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Pallab K. Maulik

    2018-04-01

    Full Text Available Background: There are large gaps in the delivery of mental health care in low- and middle-income countries such as India, and the problems are even more acute in rural settings due to lack of resources, remoteness, and lack of infrastructure, amongst other factors. The Systematic Medical Appraisal Referral and Treatment (SMART Mental Health Project was conceived as a mental health services delivery model using technology-based solutions for rural India. This paper reports on the operational strategies used to facilitate the implementation of the intervention. Method: Key components of the SMART Mental Health Project included delivering an anti-stigma campaign, training of primary health workers in screening, diagnosing and managing stress, depression and increased suicide risk and task sharing of responsibilities in delivering care; and using mobile technology based electronic decision support systems to support delivery of algorithm based care for such disorders. The intervention was conducted in 42 villages across two sites in the state of Andhra Pradesh in south India. A pre-post mixed methods evaluation was done, and in this paper operational challenges are reported. Results: Both quantitative and qualitative results from the evaluation from one site covering about 5000 adults showed that the intervention was feasible and acceptable, and initial results indicated that it was beneficial in increasing access to mental health care and reducing depression and anxiety symptoms. A number of strategies were initiated in response to operational challenges to ensure smoother conduct of the project and facilitated the project to be delivered as envisaged. Conclusions: The operational strategies initiated for this project were successful in ensuring the delivery of the intervention. Those, coupled with other more systematic processes have informed the researchers to understand key processes that need to be in place to develop a more robust study, that

  11. Challenges to the Transdisciplinarity of Climate Services: A Coffee Farming Case from Jamaica's Blue Mountains

    Science.gov (United States)

    Guido, Z.

    2017-12-01

    Climate information is heralded as helping to build adaptive capacity, improve resource management, and contribute to more effective risk management. However, decision makers often find it challenging to use climate information for reasons attributed to a disconnect between technical experts who produce the information and end users. Consequently, many climate service projects are now applying an end-to-end approach that links information users and producers in the design, development, and delivery of services. This collaboration confronts obstacles that can undermine the objectives of the project. Despite this, few studies in the burgeoning field of climate services have assessed the challenges. To address this gap, I provide a reflective account and analysis of the collaborative challenges experienced in an ongoing, complex four-year project developing climate services for small-scale coffee producers in Jamaica. The project has involved diverse activities, including social data collection, research and development of information tools, periodic engagement with coffee sector representatives, and community-based trainings. Contributions to the project were made routinely by 18 individuals who represent 9 institutions located in three countries. These individuals work for academic and governmental organizations and bring expertise in anthropology, plant pathology, and climatology, among others. In spanning diverse disciplines, large geographic distances, and different cultures, the project team has navigated challenges in communication, problem framing, organizational agendas, disciplinary integration, and project management. I contextualize these experiences within research on transdisciplinary and team science, and share some perspectives on strategies to lessen their impact.

  12. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  13. US Cyber Challenge Research

    Science.gov (United States)

    2017-02-01

    tactics to prevent future attacks. This project will develop, test, evaluate and assess alternative methods for identifying computer security talent ...RESPONSIBLE PERSON FRANCES ROSE a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code ) N/A Standard Form 298 (Rev. 8...is ever increasing. Meeting the demand for top technical cybersecurity talent is one of the continuing challenges facing military and civilian

  14. Use of Multi-Disciplinary Projects To Develop Competence.

    Science.gov (United States)

    Trotman-Dickenson, Danusia

    1992-01-01

    Undergraduate technology and business students at the Polytechnic of Wales (United Kingdom) participated in multi-disciplinary team projects to experience real life business challenges and develop competences that employers expect in professionals. Lists characteristics of successful multi-disciplinary projects, discusses cost and industry…

  15. High-magnetic-field research collaborations

    International Nuclear Information System (INIS)

    Goettee, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop collaborations with the academic community to exploit scientific research potential of the pulsed magnetic fields that might be possible with electrically pulsed devices, as well as magneto-cumulative generators. The author started with a campaign of experiments using high-explosive-driven flux compression generators. The campaign's objective was to explore completely novel ideas in condensed-matter physics and chemistry. The initiative was very successful in pulling together top researchers from around the world

  16. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  17. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  18. Laboratory Directed Research and Development Annual Report for 2009

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2010-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  19. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  20. Laboratory Directed Research and Development Annual Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.