WorldWideScience

Sample records for chains affects yeast

  1. THE UPTAKE OF AROMATIC AND BRANCHED CHAIN HYDROCARBONS BY YEAST

    Science.gov (United States)

    Studies of the hydrocarbon utilizing yeasts, Candida maltosa and C. lipolytica, have shown that both were capable of reducing recoverable amounts of branched chain and aromatic hydrocarbons in a mixture of naphthalene, tetradecane, hexadecane, pristane (tetra-methylpentadecane). ...

  2. Homocysteine thiolactone affects protein ubiquitination in yeast.

    Science.gov (United States)

    Bretes, Ewa; Zimny, Jarosław

    2013-01-01

    The formation of homocysteine thiolactone (HcyTl) from homocysteine occurs in all examined so far organisms including bacteria, yeast, and humans. Protein N-homocysteinylation at the ε-amino group of lysine is an adverse result of HcyTl accumulation. Since tagging of proteins by ubiquitination before their proteasomal degradation takes place at the same residue, we wondered how N-homocysteinylation may affect the ubiquitination of proteins. We used different yeast strains carrying mutations in genes involved in the homocysteine metabolism. We found positive correlation between the concentration of endogenous HcyTl and the concentration of ubiquitinated proteins. This suggests that N-homocysteinylation of proteins apparently does not preclude but rather promotes their decomposition. PMID:24051443

  3. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  4. Parameters affecting methanol utilization by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.S.; El-Masry, H.G.

    1981-01-01

    Screening of 28 yeast cultures, representing 22 species of various yeasts, with respect to their capabilities to assimilate methanol, has shown that this property was mostly found in certain species of the two genera Hansenula and Candida. When methanol was used as a sole carbon source for a methanol-adapted strain of Hansenula polymorpha, a linear yield response could be obtained with increasing alcohol up to 2% concentration. The amount of inoculum proved to be the decisive factor in determining a priori the ability of the organism to grow at 6% methanol as final concentration. The optimum pH values for growth ranged between 4.5-5.5 with no growth at pH 6.5 or higher. A marked growth stimulation was obtained when the medium was supplied with phosphate up to 0.08 M as final concentration. Within the nitrogen sources tested, corn steep liquor concentrate gave the highest yield of cells. The significance of the obtained results are discussed with reference to feasibilities of application.

  5. Characterization of single chain antibody targets through yeast two hybrid

    Directory of Open Access Journals (Sweden)

    Vielemeyer Ole

    2010-08-01

    Full Text Available Abstract Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv, are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID, efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise

  6. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis

  7. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis

  8. Affecting the value chain through supplier kaizen.

    Science.gov (United States)

    Forman, C R; Vargas, D H

    1999-02-01

    In the aerospace industry, typically 60 percent of a product's cost and 70 percent of the lead time are due to purchased material. To affect price and customer responsiveness, improvement initiatives must be extended into the supply chain. Many companies have developed supply base management systems that include long-term agreements with suppliers, partnering with suppliers in risk taking and product design, information sharing, and quality and delivery rating systems. The premise is that suppliers are an extension of the factory. But to take full advantage of customer-supplier relationships, the suppliers must be "developed" in the same manner as a manufacturing unit. Supplier kaizen is a method of bringing suppliers to the same level of operations as the parent company, through training and improvement projects, to ensure superior performance and nurture the trust that is required for strong partnerships. This article describes Sikorsky Aircraft's use of kaizen to improve its supply base management. PMID:10345628

  9. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria

    OpenAIRE

    Schägger, Hermann; Pfeiffer, Kathy

    2000-01-01

    Around 30–40 years after the first isolation of the five complexes of oxidative phosphorylation from mammalian mitochondria, we present data that fundamentally change the paradigm of how the yeast and mammalian system of oxidative phosphorylation is organized. The complexes are not randomly distributed within the inner mitochondrial membrane, but assemble into supramolecular structures. We show that all cytochrome c oxidase (complex IV) of Saccharomyces cerevisiae is bound to cytochrome c red...

  10. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  11. RICE BREAD QUALITY AS AFFECTED BY YEAST AND BRAN

    Science.gov (United States)

    Whole rice bread (WRB) has been developed in our laboratory for people suffering from Celiac disease and other food allergies. The WRB has texture and related qualities comparable with white or whole wheat breads. This paper reports the results of three levels of yeast, defatted rice bran on the t...

  12. Ubiquitin Metabolism Affects Cellular Response to Volatile Anesthetics in Yeast

    OpenAIRE

    Wolfe, Darren; Reiner, Thomas; Keeley, Jessica L.; Pizzini, Mark; Keil, Ralph L.

    1999-01-01

    To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be invo...

  13. Factors Affecting the Execution of Supply Chain Management

    OpenAIRE

    Kotzab, Herbert; Teller, Christoph; Grant, David B

    2011-01-01

    This paper discusses factors affecting the execution of supply chain management and presents a conceptual model and six hypotheses based on such factors identified in the literature. The model was tested in two European country-specific cases using structural equation modelling. Findings in both cases confirm the hypothesized hierarchical order of three proposed antecedents: ‘internal SCM conditions’ affect ‘joint SCM conditions’ which in turn influences collaborative ‘SCM-rela...

  14. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    Science.gov (United States)

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients. PMID:26153503

  15. Two polypeptide chains in yeast transcription factor tau interact with DNA

    International Nuclear Information System (INIS)

    Yeast transcription factor tau interacts with the A and B blocks of the intragenic promoter of tRNA genes. The structure of tau was investigated by identifying the polypeptide chains specifically complexed to the tRNA3Glu gene. Highly purified factor, obtained by an improved purification procedure, contained several polypeptide chains, four of which (Mr = 145,000, 135,000, 100,000 and 65,000) comigrated with tau-DNA complex by polyacrylamide gel electrophoresis. Antibodies raised against the 145- and 100-kDa components altered the migration of tau-DNA complexes in band shift assays and inhibited tRNA synthesis in a reconstituted transcription system. These components are immunologically unrelated proteins. By UV cross-linking to 32P-body-labeled tDNA followed by extensive DNase treatment, two polypeptides of the same size (145 and 100 kDa) were found to be radioactively labeled. Factor tau, therefore, appears to be a multisubunit DNA-binding protein with two distinct polypeptides contributing to DNA recognition. Limited proteolysis of tau generated a protease-resistant tau B (tau B) domain that binds solely to the B block. tau B-tDNA complexes were recognized by anti-145 IgG and contained a 120-kDa polypeptide that could originate from the 145-kDa component by proteolysis. These results strongly suggest that the 145-kDa polypeptide belongs to tau B and is responsible for B block binding

  16. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    SUDHANSHU YADAV; AMIT SONKAR; NAFEES AHAMAD; SHAKIL AHMED

    2016-06-01

    complex removes noncoding introns, while 3'end processing involves in cleavage and addition of poly(A) tails to the nascent transcript. Rna14 protein in budding yeast has been implicated in cleavage and polyadenylation of mRNA in the nucleus but their role in the pre-mRNA splicing has not been studied. Here, we report the isolation of a mutant allele of rna14 in fission yeast,Schizosaccharomyces pombe that exhibits reduction in protein level of Chk1 at the nonpermissive temperature, primarily due to the defects in posttranscriptional processing. Reverse transcriptase-polymerase chain reaction analysis reveals defective splicing of the chk1¹+transcript at the nonpermissive temperature. Apart from chk1¹+, the splicing of some other genes were also found to be defective at the nonpermissive temperature suggesting that Rna14 might be involved in pre-mRNA splicing. Subsequently, genetic interaction of Rna14 with prp1 and physical interactions with Prp28 suggest that the Rna14 might be part of a larger protein complex responsible for the pre-mRNA maturation.

  17. The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast.

    Directory of Open Access Journals (Sweden)

    Emad Darvishi

    Full Text Available Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products.

  18. Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic

    DEFF Research Database (Denmark)

    Dimitrova, Irina; Toby, Garabet G; Tili, Esmerina;

    2004-01-01

    -transferase (BI-GST) leads to aggregation, but not fusion of the mitochondria. In addition, Bax affects the integrity of yeast vacuoles, resulting in the disintegration and eventual loss of the organelles, and the disruption of intracellular protein traffic. While Bcl-2 coexpression only partially corrects...

  19. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast

    International Nuclear Information System (INIS)

    HOT1 is a cis-acting recombination-stimulatory sequence isolated from the rDNA repeat unit of yeast. The ability of HOT1 to stimulate mitotic exchange appears to depend on its ability to promote high levels of RNA polymerase I transcription. A qualitative colony color sectoring assay was developed to screen for trans-acting mutations that alter the activity of HOT1. Both hypo-recombination and hyper-recombination mutants were isolated. Genetic analysis of seven HOT1 recombination mutants (hrm) that decrease HOT1 activity shows that they behave as recessive nuclear mutations and belong to five linkage groups. Three of these mutations, hrm1, hrm2, and hrm3, also decrease rDNA exchange but do not alter recombination in the absence of HOT1. Another mutation, hrm4, decreases HOT1-stimulated recombination but does not affect rDNA recombination or exchange in the absence of HOT1. Two new alleles of RAD52 were also isolated using this screen. With regard to HOT1 activity, rad52 is epistatic to all four hrm mutations indicating that the products of the HRM genes and of RAD52 mediate steps in the same recombination pathway. Finding mutations that decrease both the activity of HOT1 and exchange in the rDNA supports the hypothesis that HOT1 plays a role in rDNA recombination

  20. A conceptual model for factors affecting the relationship between supply chain integration and customer delivery performance

    Directory of Open Access Journals (Sweden)

    Peyman Ghafari Ashtiani

    2013-09-01

    Full Text Available Supply chain is a widely used concept around the world. Nowadays, companies need to integrate their production processes, from the raw materials to the end-user. Supply chain management is a phenomenon that achieves this in a way that ensures customers get reliable and fast service and high quality products at the lowest possible cost. There is very limited and sporadic research on supply chain integration and how it affects supply chain performance. Therefore there is no real understanding of the concept of supply chain integration and how it affects supply chain performance nor is there a holistic model. This paper thus aims to present a model that identifies factors affecting the relationship between supply chain integration and customer delivery performance. After analyzing the collected data on supply chain integration and customer delivery performance, the preliminary model was proposed and completed, and using expert opinion in the Imam Khomeini Oil Refinery the final model and for factors affecting the relationship between supply chain integration and customer delivery performance were presented. To determine how these factors interrelate with each other, the DEMATEL method was then used. The statistical population included the staff at Imam Khomeini Oil Refinery in Shazand. The data, collected through the standard DEMATEL questionnaire, were analyzed using the DEMATEL method and a MATLAB program. The DEMATEL results indicate that intra-organizational factors, institutional norms, technological certainties are causal factors which influence other factors that affect the relationship between supply chain integration and customer delivery performance. Intra-organizational factor have a greater influence also among effect factors, substructures have the greatest influence.

  1. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Science.gov (United States)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  2. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Science.gov (United States)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  3. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin

    OpenAIRE

    Boettner, Douglas R.; Friesen, Helena; Andrews, Brenda; Lemmon, Sandra K.

    2011-01-01

    The role of clathrin light chain (CLC) in clathrin-mediated endocytosis is not completely understood. Previous studies showed that the CLC N-terminus (CLC-NT) binds the Hip1/Hip1R/Sla2 family of membrane/actin–binding factors and that overexpression of the CLC-NT in yeast suppresses endocytic defects of clathrin heavy-chain mutants. To elucidate the mechanistic basis for this suppression, we performed synthetic genetic array analysis with a clathrin CLC-NT deletion mutation (clc1-Δ19-76). clc...

  4. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Ayako; Higa, Mari [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Doi, Akira [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  5. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    International Nuclear Information System (INIS)

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2+ gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2+ gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking

  6. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration.

    OpenAIRE

    Dupont, Sébastien; Beney, Laurent; Ferreira, Thierry; Gervais, Patrick

    2011-01-01

    The plasma membrane (PM) is a main site of injury during osmotic perturbation. Sterols, major lipids of the PM structure in eukaryotes, are thought to play a role in ensuring the stability of the lipid bilayer during physicochemical perturbations. Here, we investigated the relationship between the nature of PM sterols and resistance of the yeast Saccharomyces cerevisiae to hyperosmotic treatment. We compared the responses to osmotic dehydration (viability, sterol quantification, ultrastructur...

  7. Screening the Budding Yeast Genome Reveals Unique Factors Affecting K2 Toxin Susceptibility

    OpenAIRE

    Elena Servienė; Juliana Lukša; Irma Orentaitė; Lafontaine, Denis L. J.; Jaunius Urbonavičius

    2012-01-01

    BACKGROUND: Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion...

  8. Factors affecting the adoption of green supply chain management practices in Brazil

    DEFF Research Database (Denmark)

    de Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Govindan, Kannan;

    2013-01-01

    The aim of this study is to identify and analyse the factors that affect the adoption of Green Supply Chain Management practices based on empirical evidence from the Brazilian electronics sector. Data are collected in a survey of 100 electronics companies and analysed using statistical analysis o...

  9. Generation and characterization of a human single-chain fragment variable (scFv antibody against cytosine deaminase from Yeast

    Directory of Open Access Journals (Sweden)

    Tombesi Marina

    2008-09-01

    Full Text Available Abstract Background The ability of cytosine deaminase (CD to convert the antifungal agent 5-fluorocytosine (5-FC into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT aiming to improve the therapeutic ratio (benefit versus toxic side-effects of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.

  10. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote.

    Science.gov (United States)

    Boumann, Henry A; Gubbens, Jacob; Koorengevel, Martijn C; Oh, Chan-Seok; Martin, Charles E; Heck, Albert J R; Patton-Vogt, Jana; Henry, Susan A; de Kruijff, Ben; de Kroon, Anton I P M

    2006-02-01

    To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC. During PC depletion, the remaining PC was subject to acyl chain remodeling with monounsaturated species replacing diunsaturated species, as shown by mass spectrometry. The remodeling of PC did not require turnover by the SPO14-encoded phospholipase D. The changes in the PC species profile were found to reflect an overall shift in the cellular acyl chain composition that exhibited a 40% increase in the ratio of C16 over C18 acyl chains, and a 10% increase in the degree of saturation. The shift was stronger in the phospholipid than in the neutral lipid fraction and strongest in the species profile of PE. The shortening and increased saturation of the PE acyl chains were shown to decrease the nonbilayer propensity of PE. The results point to a regulatory mechanism in yeast that maintains intrinsic membrane curvature in an optimal range. PMID:16339082

  11. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.

    Directory of Open Access Journals (Sweden)

    Elena Servienė

    Full Text Available BACKGROUND: Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. PRINCIPAL FINDINGS: We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. SIGNIFICANCE: Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.

  12. FACTORS AFFECTING OVERALL BRAND EQUITY: THE CASE OF SHAHRVAND CHAIN STORE

    OpenAIRE

    Shahriar AZIZI; Jamali KAPAK

    2013-01-01

    In recent years the role of chain stores in distribution system of Iran has been paid more attention. Managers of these stores are seeking to increase the stores’ brand equity. This study develops a model of factors affecting overall brand equity in SHAHRVAND chain store as a case study. The Sample of 167 customers in Tehran city using convenience sampling method was selected. Data was gathered by the 44-items questionnaire in self-reporting way. Path analysis was applied using Lisrel 8.80 to...

  13. FACTORS AFFECTING OVERALL BRAND EQUITY: THE CASE OF SHAHRVAND CHAIN STORE

    Directory of Open Access Journals (Sweden)

    Shahriar AZIZI

    2013-06-01

    Full Text Available In recent years the role of chain stores in distribution system of Iran has been paid more attention. Managers of these stores are seeking to increase the stores’ brand equity. This study develops a model of factors affecting overall brand equity in SHAHRVAND chain store as a case study. The Sample of 167 customers in Tehran city using convenience sampling method was selected. Data was gathered by the 44-items questionnaire in self-reporting way. Path analysis was applied using Lisrel 8.80 to test the conceptual model which includes six hypotheses. Results showed that brand-customer personality congruency affects brand identification positively. The positive impact of brand identification on brand loyalty and trust was confirmed. Analysis also revealed that brand trust impact brand loyalty positively. Results also indicated the positive impact of brand loyalty and trust on the overall brand equity.

  14. Identification of the specificity of isolated phage display single-chain antibodies using yeast two-hybrid screens

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Ditzel, Henrik

    2009-01-01

    A method is described for the identification of the antigen recognised by an scFv isolated from an antibody phage display library using selection against a complex mixture of proteins (e.g. intact cells, purified cell surface membranes, and tissue sections). The method takes advantage of a yeast...

  15. Factors Affecting the Adoption of Genetically Modified Animals in the Food and Pharmaceutical Chains

    Directory of Open Access Journals (Sweden)

    Cristina Mora

    2013-03-01

    Full Text Available The production of genetically modified (GM animals is an emerging technique that could potentially impact the livestock and pharmaceutical industries. Currently, food products derived from GM animals have not yet entered the market whilst two pharmaceutical products have. The objective of this paper is twofold: first it aims to explore the socio-economic drivers affecting the use of GM animals and, second, to review the risks and benefits from the point of view of the life sciences. A scoping study was conducted to assess research relevant to understanding the main drivers influencing the adoption of GM applications and their potential risks and benefits. Public and producers’ acceptance, public policies, human health, animal welfare, environmental impact and sustainability are considered as the main factors affecting the application of GM animal techniques in livestock and pharmaceutical chains.

  16. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast.

    Science.gov (United States)

    Norman-Axelsson, Ulrika; Durand-Dubief, Mickaël; Prasad, Punit; Ekwall, Karl

    2013-01-01

    Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1) at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1) occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1) at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1) in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1) nucleosomes. PMID:23516381

  17. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast.

    Directory of Open Access Journals (Sweden)

    Ulrika Norman-Axelsson

    Full Text Available Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1 nucleosomes.

  18. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    Fatty acyl-CoA thioesters are essential intermediates in lipid metabolism. For many years there have been numerous conflicting reports concerning the possibility that these compounds also serve regulatory functions. In this review, we examine the evidence that long-chain acyl-CoA is a regulatory ...

  19. Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog.

    OpenAIRE

    Lambert, M.; Blanchin-Roland, S; Le Louedec, F; Lepingle, A; Gaillardin, C.

    1997-01-01

    Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes both an acidic proteinase and an alkaline proteinase, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Recessive mutations at four unlinked loci, named PAL1 to PAL4, were isolated which prevent alkaline proteinase derepression under conditions of carbon and nitrogen limitation at pH 6.8. These mutations markedly affect ma...

  20. Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis

    OpenAIRE

    Boretsky, Yuriy R.; Pynyaha, Yuriy V.; Boretsky, Volodymyr Y.; Fedorovych, Dariya V.; Fayura, Lyubov R.; Protchenko, Olha; Philpott, Caroline C.; Andriy A Sibirny

    2011-01-01

    Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and F...

  1. How Much Willingness to Share Inmormation Affects Social Exchange Factors in Supply Chains

    OpenAIRE

    Nadia Zaheer; Peter Trkman

    2014-01-01

    Information sharing is crucial for supply chains to collaborate, improve their performance, and achieve competitive advantage. Some of this sharing is done automatically but normally it involves humans and their individual willingness to share information plays an important role. Currently, the application of sociological theories like social exchange theory (SET) is limited in the behavioral supply chain field. The purpose is to study the effect of willingness to share quality information by...

  2. 发酵生产木糖醇的影响因素%Affecting Factors of Xylitol Production by Yeast Fermentation Process

    Institute of Scientific and Technical Information of China (English)

    冯婕; 张利平; 黄雪松

    2001-01-01

    系统介绍了影响发酵法生产木糖醇的几个因素,并对研究的发展方向进行了预测。%Xylitol as a good anticarious sweetener are attracting growing attention. However,the xylitol produced by chemical means is expensive. In order to make it cheaper, the research on bio-producing xylitol has become a focus in world. In this article, factors that affect the production of xylitol by yeast are introduced and the trend is predicted.

  3. The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase.

    OpenAIRE

    Stepien, P P; Margossian, S P; Landsman, D.; Butow, R A

    1992-01-01

    Mitochondrial gene expression is controlled largely through the action of products of the nuclear genome. The yeast nuclear gene suv3 has been implicated in a variety of mitochondrial posttranscriptional processes and in translation and, thus, represents a key control element in nuclear-mitochondrial interactions. We have exploited a property of a mutant allele of suv3, SUV3-1, that causes, among other effects, a massive increase in the abundance of excised group I introns to clone the wild-t...

  4. Sorption of volatile phenols by yeast cell walls

    OpenAIRE

    Nerea Jiménez-Moreno; Carmen Ancín-Azpilicueta

    2009-01-01

    Nerea Jiménez-Moreno, Carmen Ancín-AzpilicuetaDepartment of Applied Chemistry, Universidad Pública de Navarra, Pamplona, SpainAbstract: Yeast walls can retain different wine compounds and so its use is interesting in order to eliminate harmful substances from the must which affect alcoholic fermentation (medium chain fatty acids) or which affect wine quality in a negative way (ethyl phenols, ochratoxin A). The aim of this study was to examine the capacity of c...

  5. Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an "aggregation timeline". This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.

  6. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl maltos...

  7. Access Factors Affecting Supply Chain Efficiency of Medical Supplies in public Health Centres in kenya: A Case Study of Public Health Centres in Elgeyo Marakwet Count

    OpenAIRE

    Mark Kemboi Kanda; Mike Amuhaya Iravo

    2015-01-01

    The purpose of this study was to determine factors affecting efficiency of supply chain of pharmaceutical products (drugs) to Public Health facilities in 47 Counties of Kenya. The study precisely sought to establish whether: procurement processes, ICT infrastructure, distribution channels and competency of medical staff in supply chain, are factors affecting efficiency of supply chain of pharmaceutical products to Health Centres in Kenya. A population size of 120 employees was targeted in 15 ...

  8. Urbanization affects water and nitrogen use in the food chain in China

    OpenAIRE

    Qin, W; Ma, L.(School of Physics, Shandong University, Shandong, China); Zhang, F.S.; Oenema, O.

    2012-01-01

    ABSTRACT Urbanization and agriculture are highly coupled. However, the impacts of urbanization(e.g. transformation in urban and rural population and change in diet) on water and nitrogen (N) use remain poorly understood. The objectives of this study are to quantify water flows in the food chain of China, to analyze the complex relationship between urbanization and water and N use efficiency, and to project water and N demand in China via various scenarios, using a combination of water footpri...

  9. Study of the new manumycin-type metabolite biosynthesis – novel factors affecting carbon chain lengths

    Czech Academy of Sciences Publication Activity Database

    Petříčková, Kateřina; Pospíšil, Stanislav; Tylová, Tereza; Jágr, Michal; Tomek, P.; Kolek, Jan; Chroňáková, Alica; Stříž, I.; Krištůfek, Václav; Petříček, Miroslav

    Cancun : Instituto de Investigaciones Biomédicos UNAM, 2013. [GIM 2013 - International Symposium on the Genetics of Industrial Microorganisms /12./. 23.06.2013-28.06.2013, Cancun] R&D Projects: GA MŠk LH12191 Grant ostatní: GA MZd(CZ) NT/13012 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : manumycin metabolites * biosynthesis * carbon chain lengths Subject RIV: EE - Microbiology, Virology

  10. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study

    Science.gov (United States)

    Ami, Diletta; Lavatelli, Francesca; Rognoni, Paola; Palladini, Giovanni; Raimondi, Sara; Giorgetti, Sofia; Monti, Luca; Doglia, Silvia Maria; Natalello, Antonino; Merlini, Giampaolo

    2016-01-01

    Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo. PMID:27373200

  11. Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis.

    Science.gov (United States)

    Boretsky, Yuriy R; Pynyaha, Yuriy V; Boretsky, Volodymyr Y; Fedorovych, Dariya V; Fayura, Lyubov R; Protchenko, Olha; Philpott, Caroline C; Sibirny, Andriy A

    2011-05-01

    Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast. PMID:21261808

  12. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time.

    Science.gov (United States)

    Wu, Li; Wang, Bujun

    2016-07-01

    We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. PMID:26920279

  13. Market oriented new product development: How can a means-end chain approach affect the process?

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted

    Few disagree on the advantage of market oriented product development. However, can a well-known theory on consumer behaviour be used as a catalyst for achieving it? This paper describes a case study where means-end chain (MEC) approach was introduced to a cross-functional development team at two...... different stages of the development process. Results show that MEC data is perceived as a good way of gaining knowledge about consumers; that the information serves well as the basis of discussions and for keeping project goals fixed. The results also indicate that MEC data are most valuable to the team in...... the early stages of development process....

  14. Factors Affecting the Adoption of Genetically Modified Animals in the Food and Pharmaceutical Chains

    OpenAIRE

    Cristina Mora; Davide Menozzi; Gijs Kleter; Aramyan, Lusine H.; Valeeva, Natasha I.; Karin l. Zimmermann; Giddalury Pakki Reddy

    2013-01-01

    The production of genetically modified (GM) animals is an emerging technique that could potentially impact the livestock and pharmaceutical industries. Currently, food products derived from GM animals have not yet entered the market whilst two pharmaceutical products have. The objective of this paper is twofold: first it aims to explore the socio-economic drivers affecting the use of GM animals and, second, to review the risks and benefits from the point of view of the life sciences. A scopin...

  15. Factors affecting the adoption of genetically modified animals in the food and pharmaceutical chains

    OpenAIRE

    Mora, C.; Menozzi, D.; Kleter, G.A.; Aramyan, L.H.; Valeeva, N.I.; Zimmermann, K.L.; Pakky Reddy, G.

    2012-01-01

    The production of genetically modified (GM) animals is an emerging technique that could potentially impact the livestock and pharmaceutical industries. Currently, food products derived from GM animals have not yet entered the market whilst two pharmaceutical products have. The objective of this paper is twofold: first it aims to explore the socio-economic drivers affecting the use of GM animals and, second, to review the risks and benefits from the point of view of the life sciences. A scopin...

  16. Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10 in fission yeast

    Directory of Open Access Journals (Sweden)

    Gregan Juraj

    2005-06-01

    Full Text Available Abstract Background Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. Results Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase α-primase and the GINS (Sld5-Psf1-Psf2-Psf3 complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1 is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase α-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. Conclusion An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase α-primase to chromatin.

  17. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1989-01-01

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize (U-{sup 14}C)acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of ({sup 14}C)palmitate to {sup 14}CO{sub 2} in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for {beta}-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test.

  18. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    International Nuclear Information System (INIS)

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize [U-14C]acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of [14C]palmitate to 14CO2 in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for β-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test

  19. Performance evaluation of corrosion-affected reinforced concrete bridge girders using Markov chains with fuzzy states

    Indian Academy of Sciences (India)

    M B ANOOP; K BALAJI RAO

    2016-08-01

    A methodology for performance evaluation of reinforced concrete bridge girders in corrosive environments is proposed. The methodology uses the concept of performability and considers both serviceability- and ultimate-limit states. The serviceability limit states are defined based on the degree of cracking (characterized by crack width) in the girder due to chloride induced corrosion of reinforcement, and the ultimate limit states are defined based on the flexural load carrying capacity of the girder (characterized in terms of rating factor using the load and resistance factor rating method). The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states. Generally, the classification of condition states is linguistic, while the condition states are considered to be mutually exclusive and collectivelyexhaustive. In the present study, the condition states of the bridge girder are also represented by fuzzy sets to consider the ambiguities arising due to the linguistic classification of condition states. A non-homogeneous Markov chain (MC) model is used for modeling the condition state evolution of the bridge girder with time. The usefulness of the proposed methodology is demonstrated through a case study of a severely distressed beam of the Rocky Point Viaduct. The results obtained using the proposed approach are compared with those obtained using conventional MC model. It is noted that the use of MC with fuzzy states leads to conservative decision making for the problem considered in the case study.

  20. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.

    Science.gov (United States)

    Jiang, Su; Chen, Yinguang; Zhou, Qi; Gu, Guowei

    2007-07-01

    Short-chain fatty acids (SCFAs), the preferred carbon sources for biological nutrient removal, are the important intermediate products in sludge anaerobic fermentation. Sodium dodecylbenzene sulfonate (SDBS) is a widespread used surfactant, which can be easily found in waste-activated sludge (WAS). In this investigation, the effect of SDBS on SCFAs production from WAS was investigated, and the potential of using fermentative SCFAs to promote enhanced biological phosphorus removal (EBPR) was tested. Results showed that the total SCFAs production increased significantly in the presence of SDBS at room temperature. At fermentation time of 6 days, the maximum SCFAs was 2599.1mg chemical oxygen demand (COD)/L in the presence of SDBS 0.02g/g, whereas it was only 339.1mg (COD)/L in the absence of SDBS. The SCFAs produced in the case of SDBS 0.02g/g and fermentation time 6 days consisted of acetic acid (27.1%), propionic acid (22.8%), iso-valeric acid (20.1%), iso-butyric acid (11.9%), n-butyric acid (10.4%) and n-valeric acid (7.7%). It was found that during sludge anaerobic fermentation, the solubilization of sludge particulate organic-carbon and hydrolysis of solubilized substrate as well as acidification of hydrolyzed products were all increased in the presence of SDBS, while the methane formation was decreased, the SCFAs production was therefore remarkably improved. Further investigation showed that the production of SCFAs enhanced by SDBS was caused mainly by biological effects, rather than by chemical effects and SDBS decomposition. With the fermentative SCFAs as the main carbon source, the EBPR maintained high phosphorus removal efficiency ( approximately 97%). PMID:17499838

  1. The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides.

    Science.gov (United States)

    Szwej, Emilia; Devocelle, Marc; Kenny, Shane; Guzik, Maciej; O'Connor, Stephen; Nikodinovic-Runic, Jasmina; Radivojevic, Jelena; Maslak, Veselin; Byrne, Annete T; Gallagher, William M; Zulian, Qun Ren; Zinn, Manfred; O'Connor, Kevin E

    2015-06-20

    Conjugation of DP18L peptide with (R)-3-hydroxydecanoic acid, derived from the biopolymer polyhydroxyalkanoate, enhances its anti-cancer activity (O'Connor et al., 2013. Biomaterials 34, 2710-2718). However, it is unknown if other (R)-3-hydroxyalkanoic acids (R3HAs) can enhance peptide activity, if chain length affects enhancement, and what effect R3HAs have on peptide structure. Here we show that the degree of enhancement of peptide (DP18L) anti-cancer activity by R3HAs is carbon chain length dependent. In all but one example the R3HA conjugated peptides were more active against cancer cells than the unconjugated peptides. However, R3HAs with 9 and 10 carbons were most effective at improving DP18L activity. DP18L peptide variant DP17L, missing a hydrophobic amino acid (leucine residue 4) exhibited lower efficacy against MiaPaCa cells. Circular dichroism analysis showed DP17L had a lower alpha helix content and the conjugation of any R3HA ((R)-3-hydroxyhexanoic acid to (R)-3-hydroxydodecanoic acid) to DP17L returned the helix content back to levels of DP18L. However (R)-3-hydroxyhexanoic did not enhance the anti-cancer activity of DP17L and at least 7 carbons were needed in the R3HA to enhance activity of D17L. DP17L needs a longer chain R3HA to achieve the same activity as DP18L conjugated to an R3HA. As a first step to assess the synthetic potential of polyhydroxyalkanoate derived R3HAs, (R)-3-hydroxydecanoic acid was synthetically converted to (±)3-chlorodecanoic acid, which when conjugated to DP18L improved its antiproliferative activity against MiaPaCa cells. PMID:25820126

  2. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H;

    1995-01-01

    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs...... tryptophan ingestion caused a 7- to 20-fold increase. Exercise time to exhaustion was not different between treatments (122 +/- 3 min). 3. The data suggest that manipulation of tryptophan supply to the brain either has no additional effect upon serotoninergic activity during prolonged exhaustive exercise......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1...

  3. In vitro Detection of Yeast-Like and Mycelial Colonies of Ustilago scitaminea in Tissue-Cultured Plantlets of Sugarcane Using Polymerase Chain Reaction

    Science.gov (United States)

    Moosawi-Jorf, S. Ali; Izadi, Mahin B.

    Plantlets of sugarcane cultivars NCO-310 (susceptible) and CP73-21 (resistant) were generated using in vitro apical meristem tissue culture method of leaf and culturing of the callous. Yeast-like and dikaryotic mycelial colonies were isolated and purified. The plantlets were inoculated with two types of yeast-like and dikaryotic mycelial colonies. Results of the PCR assay in plantlets inoculated with the two types of colonies indicated the detection of bE mating-type gene of sugarcane smut in all treated plantlets at all different times after inoculation. Whereas, the disease symptoms were seen in cuttings inoculated only with dikaryotic mycelia or mixed mating types of sporidia, 6 month after transplanting in pots.

  4. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity.

    Directory of Open Access Journals (Sweden)

    Marcela Torres

    Full Text Available Mouse-human chimeric antibodies composed of murine variable (V and human (C chains are useful therapeutic reagents. Consequently, we investigated whether heterologous C-regions from mice and humans affected specificity and affinity, and determined the contribution of C(H glycosylation to antigen binding. The interaction of a 12-mer peptide mimetic with monoclonal antibody (mAb 18B7 to Cryptococcus neoformans glucuronoxylomannan, and its chimeric (ch and deglycosylated forms were studied by surface plasmon resonance. The equilibrium and rate association constants for the chAb were higher than for mAb 18B7. V region affinity was not affected by C(H region glycosylation whereas heterologous C region of the same isotype altered the Ab binding affinity and the specificity for self-antigens. Structural models displayed local differences that implied changes on the connectivity of residues. These findings suggest that V region conformational changes can be dictated by the C(H domains through an allosteric effect involving networks of highly connected amino acids.

  5. Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii.

    Science.gov (United States)

    Boretsky, Yuriy R; Protchenko, Olga V; Prokopiv, Tetiana M; Mukalov, Igor O; Fedorovych, Daria V; Sibirny, Andriy A

    2007-10-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. However, the mechanisms of such regulation are not known. We found that mutations causing riboflavin overproduction and iron hyperaccumulation (rib80, rib81 and hit1), as well as cobalt excess or iron deficiency all provoke oxidative stress in the Pichia guilliermondii yeast. Iron content in the cells, production both of riboflavin and malondialdehyde by P. guilliermondii wild type and hit1 mutant strains depend on a type of carbon source used in cultivation media. The data suggest that the regulation of riboflavin biosynthesis and iron assimilation in P. guilliermondii are linked with cellular oxidative state. PMID:17910100

  6. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the cap protein of porcine circovirus type 2 (PCV2.

    Directory of Open Access Journals (Sweden)

    Xiangjing Fu

    Full Text Available Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VHH yeast two-hybrid (Y2H library according to the Clontech Mate & Plate library construction system. The transformation efficiency and titer of the VHH Y2H library were 7.26×10(6 cfu/3 µg and 2×10(9 cfu/ml, which met the demand for Y2H library screening. Using as an example the porcine circovirus type 2 (PCV2 Cap protein as bait, we screened 21 positive Cap-specific VHH sequences. Among these sequences, 7 of 9 randomly selected clones were strongly positive as indicated by enzyme-linked immunosorbent assay, either using PCV2 viral lysis or purified Cap protein as coated antigen. Additionally, the immunocytochemistry results further indicated that the screened VHHs could specifically detected PCV2 in the infected cells. All this suggests the feasibility of in vivo VHH throughput screening based on Y2H strategy.

  7. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the cap protein of porcine circovirus type 2 (PCV2).

    Science.gov (United States)

    Fu, Xiangjing; Gao, Xiaolong; He, Shengfang; Huang, Di; Zhang, Peng; Wang, Xinglong; Zhang, Shuxia; Dang, Ruyi; Yin, Shuanghui; Du, Enqi; Yang, Zengqi

    2013-01-01

    Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs) are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VHH yeast two-hybrid (Y2H) library according to the Clontech Mate & Plate library construction system. The transformation efficiency and titer of the VHH Y2H library were 7.26×10(6) cfu/3 µg and 2×10(9) cfu/ml, which met the demand for Y2H library screening. Using as an example the porcine circovirus type 2 (PCV2) Cap protein as bait, we screened 21 positive Cap-specific VHH sequences. Among these sequences, 7 of 9 randomly selected clones were strongly positive as indicated by enzyme-linked immunosorbent assay, either using PCV2 viral lysis or purified Cap protein as coated antigen. Additionally, the immunocytochemistry results further indicated that the screened VHHs could specifically detected PCV2 in the infected cells. All this suggests the feasibility of in vivo VHH throughput screening based on Y2H strategy. PMID:23469171

  8. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids.

    Science.gov (United States)

    Jansen, Michael; Veurink, Janine H; Euverink, Gert-Jan W; Dijkhuizen, Lubbert

    2003-05-01

    Zygosaccharomyces rouxii, a salt-tolerant yeast isolated from the soy sauce process, produces fusel alcohols (isoamyl alcohol, active amyl alcohol and isobutyl alcohol) from branched-chain amino acids (leucine, isoleucine and valine, respectively) via the Ehrlich pathway. Using a high-throughput screening approach in microtiter plates, we have studied the effects of pH, temperature and salt concentration on growth of Z. rouxii and formation of fusel alcohols from branched-chain amino acids. Application of minor variations in pH (range 3-7) and NaCl concentrations (range 0-20%) per microtiter plate well allowed a rapid and detailed evaluation of fermentation conditions for optimal growth and metabolite production. Conditions yielding the highest cell densities were not optimal for fusel alcohol production. Maximal fusel alcohol production occurred at low pH (3.0-4.0) and low NaCl concentrations (0-4%) at 25 degrees C. At pH 4.0-6.0 and 0-18% NaCl, considerable amounts of alpha-keto acids, the deaminated products from the branched-chain amino acids, accumulated extracellularly. The highest cell densities were obtained in plates incubated at 30 degrees C. The results obtained under various incubation conditions with (deep-well) microtiter plates were validated in Erlenmeyer shake-flask cultures. PMID:12689638

  9. Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis

    Directory of Open Access Journals (Sweden)

    Eroukova Veronika

    2008-12-01

    Full Text Available Abstract Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134 with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45, cellular component biogenesis and organization (28, DNA maintenance (21, transport (20, others (38 and unknown (39. These may represent minor cellular target sites (side-effects for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s.

  10. Factors Affecting RFId Adoption in a Vertical Supply Chain: The Case of the Silk Industry in Italy

    OpenAIRE

    Quetti, Cristina; Pigni, Federico

    2010-01-01

    International audience RFId adoption process is receiving a lot of attention in literature; studies assessing its potentials in supply chains are now well documented. Despite this rising interest, the diffusion pattern of RFId systems in the vertical supply chains has been only scarcely addressed and theoretical contributions explaining dynamics and drivers are still missing. This study shows that the Diffusion of Innovation Theory can be effectively used to explore these questions in a ve...

  11. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions

    Czech Academy of Sciences Publication Activity Database

    Navarrete, C.; Petrezsélyová, Silvia; Barreto, L.; Martínez, J. L.; Zahrádka, Jaromír; Ariňo, J.; Sychrová, Hana; Ramos, J.

    2010-01-01

    Roč. 10, č. 5 (2010), s. 508-517. ISSN 1567-1356 R&D Projects: GA MŠk(CZ) LC531; GA ČR(CZ) GA204/08/0354 Institutional research plan: CEZ:AV0Z50110509 Keywords : potassium homeostasis * yeast * Trk transporters Subject RIV: EE - Microbiology, Virology Impact factor: 2.279, year: 2010

  12. SCREENING OF SELECTED OLEAGINOUS YEASTS FOR LIPID PRODUCTION FROM GLYCEROL AND SOME FACTORS WHICH AFFECT LIPID PRODUCTION BY YARROWIA LIPOLYTICA STRAINS

    Directory of Open Access Journals (Sweden)

    Salinee Sriwongchai

    2013-04-01

    Full Text Available The ability of eight yeast strains to utilize glycerol as a sole carbon source and accumulate lipids in a chemically defined medium was screened. Among the yeasts, Yarrowia lipolytica strains DSM 70561 and JDC 335 grew to high cell densities on glycerol. These strains were further tested for lipid accumulation under varying nutritional conditions in Erlenmeyer flasks. The results showed that strains DSM 70561 and JDC 335 accumulated lipids up to 37.1 % and 54.4 % of total cell dry weight, respectively, when the defined medium was supplemented with 1 g/L urea and 2 g/L yeast extract. The lipids accumulated by the two yeasts contained a high proportion of C16:0, C18:1, C18:2 and C18:0 fatty acids. The results suggest that Y. lipolytica strains DSM 70561 and JDC 335 have the potential for converting crude glycerol into fatty acids which can in turn be utilized as substrate for biodiesel production.

  13. Assessing "First Mile" Supply Chain Factors Affecting Timeliness of School-Based Deworming Interventions: Supply and Logistics Performance Indicators.

    OpenAIRE

    Koporc, Kimberly M.; Eric Strunz; Cassandra Holloway; David G Addiss; William Lin

    2015-01-01

    Background Between 2007 and 2012, Children Without Worms (CWW) oversaw the Johnson & Johnson (J&J) donation of Vermox (mebendazole) for treatment of school-age children to control soil-transmitted helminthiasis (STH). To identify factors associated with on-time, delayed, or missed mass drug administration (MDA) interventions, and explore possible indicators for supply chain performance for drug donation programs, we reviewed program data for the 14 STH-endemic countries CWW supported during 2...

  14. Initiation-mediated mRNA decay in yeast affects heat-shock mRNAs, and works through decapping and 5′-to-3′ hydrolysis

    OpenAIRE

    Heikkinen, Heather L.; Llewellyn, Sara A.; Barnes, Christine A.

    2003-01-01

    The degradation of mRNA in the yeast Saccharomyces cerevisiae takes place through several related pathways. In the most general mRNA-decay pathway, that of poly(A)-dependent decay, the normal shortening of the poly(A) tail on an mRNA molecule by deadenylation triggers mRNA decapping by the enzyme Dcp1p, followed by exonucleolytic digestion by Xrn1p. A specialized mRNA-decay pathway, termed nonsense-mediated decay, comes into play for mRNAs that contain an early nonsense codon. This pathway op...

  15. Assessing "First Mile" Supply Chain Factors Affecting Timeliness of School-Based Deworming Interventions: Supply and Logistics Performance Indicators.

    Directory of Open Access Journals (Sweden)

    Kimberly M Koporc

    2015-12-01

    Full Text Available Between 2007 and 2012, Children Without Worms (CWW oversaw the Johnson & Johnson (J&J donation of Vermox (mebendazole for treatment of school-age children to control soil-transmitted helminthiasis (STH. To identify factors associated with on-time, delayed, or missed mass drug administration (MDA interventions, and explore possible indicators for supply chain performance for drug donation programs, we reviewed program data for the 14 STH-endemic countries CWW supported during 2007-2012.Data from drug applications, shipping records, and annual treatment reports were tracked using Microsoft Excel. Qualitative data from interviews with key personnel were used to provide additional context on the causes of delayed or missed MDAs. Four possible contributory factors to delayed or missed MDAs were considered: production, shipping, customs clearance, and miscellaneous in-country issues. Coverage rates were calculated by dividing the number of treatments administered by the number of children targeted during the MDA.Of the approved requests for 78 MDAs, 54 MDAs (69% were successfully implemented during or before the scheduled month. Ten MDAs (13% were classified as delayed; seven of these were delayed by one month or less. An additional 14 MDAs (18% were classified as missed. For the 64 on-time or delayed MDAs, the mean coverage was approximately 88%.To continue to assess the supply chain processes and identify areas for improvement, we identified four indicators or metrics for supply chain performance that can be applied across all neglected tropical disease (NTD drug donation programs: (1 donor having available inventory to satisfy the country request for donation; (2 donor shipping the approved number of doses; (3 shipment arriving at the Central Medical Stores one month in advance of the scheduled MDA date; and (4 country programs implementing the MDA as scheduled.

  16. A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hap1 activity.

    Science.gov (United States)

    Hon, Thomas; Dodd, Athena; Dirmeier, Reinhard; Gorman, Nadia; Sinclair, Peter R; Zhang, Li; Poyton, Robert O

    2003-12-12

    Heme plays central roles in oxygen sensing and utilization in many living organisms. In yeast, heme mediates the effect of oxygen on the expression of many genes involved in using or detoxifying oxygen. However, a direct link between intracellular heme level and oxygen concentration has not been vigorously established. In this report, we have examined the relationships among oxygen levels, heme levels, Hap1 activity, and HAP1 expression. We found that Hap1 activity is controlled in vivo by heme and not by its precursors and that heme activates Hap1 even in anoxic cells. We also found that Hap1 activity exhibits the same oxygen dose-response curves as Hap1-dependent aerobic genes and that these dose-response curves have a sharp break at approximately 1 microM O2. The results show that the intracellular signaling heme level, reflected as Hap1 activity, is closely correlated with oxygen concentration. Furthermore, we found that bypass of all heme synthetic steps but ferrochelatase by deuteroporphyrin IX does not circumvent the need for oxygen in Hap1 full activation by heme, suggesting that the last step of heme synthesis, catalyzed by ferrochelatase, is also subjected to oxygen control. Our results show that multiple heme synthetic steps can sense oxygen concentration and provide significant insights into the mechanism of oxygen sensing in yeast. PMID:14512429

  17. Effect of Yeast Hulls on Stuck and Sluggish Wine Fermentations: Importance of the Lipid Component

    OpenAIRE

    Munoz, Eeva; Ingledew, W. M.

    1989-01-01

    The effect of yeast hulls (yeast ghosts) on sluggish or stuck white wine fermentations was studied. The enhancing effect on yeast growth and fermentation rate displayed by the hulls was shown to be similar to the effect provided by lipid extract from the same hulls. Unsaturated fatty acids and sterols were incorporated into the yeast from lipid extracts during fermentation carried out under oxygen-limited conditions. Adsorption of toxic medium-chain fatty acid (decanoic acid) onto the yeast h...

  18. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  19. Market-oriented new product development: How can a means-end chain approach affect the process?

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted

    2005-01-01

    Purpose - Aims to ascertain whether a well-known theory within consumer research - a means-end chain (MEC) - can be used as a catalyst to achieve market oriented product development. Design/methodology/approach - Describes a case study, involving a Danish food manufacturer, where a MEC approach was...... resukts also indicate that MEC data are most valuable to the team in the early stages of the development process and that lack of a learning orientation may inhibit the effects of a MEC approach. Originality/value - The MEC approach shows clear advantages for market oriented product development....... introduced to a cross-functional development team at two different stages of the development process. Findings - Results show that MEC data is perceived as a good way of gaining knowledge about consumers; that the information serves well as the basis of discussions and for keeping project goals fixed. The...

  20. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security

    OpenAIRE

    John N. Kittinger; Teneva, Lida T.; Koike, Haruko; Kostantinos A Stamoulis; Kittinger, Daniela S; Oleson, Kirsten L. L.; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M.

    2015-01-01

    Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our r...

  1. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system.

    Science.gov (United States)

    Negro, M; Giardina, S; Marzani, B; Marzatico, F

    2008-09-01

    Since the 1980's there has been high interest in branched-chain amino acids (BCAA) by sports nutrition scientists. The metabolism of BCAA is involved in some specific biochemical muscle processes and many studies have been carried out to understand whether sports performance can be enhanced by a BCAA supplementation. However, many of these researches have failed to confirm this hypothesis. Thus, in recent years investigators have changed their research target and focused on the effects of BCAA on the muscle protein matrix and the immune system. Data show that BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis. Muscle damage develops delayed onset muscle soreness: a syndrome that occurs 24-48 h after intensive physical activity that can inhibit athletic performance. Other recent works indicate that BCAA supplementation recovers peripheral blood mononuclear cell proliferation in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The BCAA also modifies the pattern of exercise-related cytokine production, leading to a diversion of the lymphocyte immune response towards a Th1 type. According to these findings, it is possible to consider the BCAA as a useful supplement for muscle recovery and immune regulation for sports events. PMID:18974721

  2. The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region

    DEFF Research Database (Denmark)

    Nielsen, Inga Sig; Nielsen, Olaf; Murray, Johanne M; Thon, Geneviève

    2002-01-01

    Genes transcribed by RNA polymerase II are silenced when introduced near the mat2 or mat3 mating-type loci of the fission yeast Schizosaccharomyces pombe. Silencing is mediated by a number of gene products and cis-acting elements. We report here the finding of novel trans-acting factors identified...... in a screen for high-copy-number disruptors of silencing. Expression of cDNAs encoding the putative E2 ubiquitin-conjugating enzymes UbcP3, Ubc15 (ubiquitin-conjugating enzyme), or Rhp6 (Rad homolog pombe) from the strong nmt1 promoter derepressed the silent mating-type loci mat2 and mat3 and...... reporter genes inserted nearby. Deletion of rhp6 slightly derepressed an ade6 reporter gene placed in the mating-type region, whereas disruption of ubcP3 or ubc15 had no obvious effect on silencing. Rhp18 is the S. pombe homolog of Saccharomyces cerevisiae Rad18p, a DNA-binding protein that physically...

  3. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis.

    Science.gov (United States)

    Talkish, Jason; Biedka, Stephanie; Jakovljevic, Jelena; Zhang, Jingyu; Tang, Lan; Strahler, John R; Andrews, Philip C; Maddock, Janine R; Woolford, John L

    2016-06-01

    In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events. PMID:27036125

  4. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

    Directory of Open Access Journals (Sweden)

    John N Kittinger

    Full Text Available Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1 (mean ± SE of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery, and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

  5. Polymorphisms of the T cell receptor CD3delta and CD3varepsilon chains affect anti-CD3 antibody binding and T cell activation

    DEFF Research Database (Denmark)

    Boding, Lasse; Nielsen, Martin Weiss; Bonefeld, Charlotte Menné;

    2010-01-01

    suitable embryonic stem (ES) cell lines. Traditionally, ES cell lines from the 129 mouse strains have been used followed by backcrossing to the C57BL/6 strain. In the present study, we demonstrate the existence of polymorphisms in the CD3 genes from mice of the 129 and C57BL/6 strains. These polymorphisms...... CD3delta and varepsilon ectodomains exist in mice, and that some of these polymorphisms lead to amino acid substitutions which cause structural changes and affect anti-CD3 antibody binding. Thus, functional T cell studies should be interpreted with caution when anti-CD3 antibodies are used for......T cell receptor (TCR) structure and function have been thoroughly studied for decades. Production and analyses of knock-out and knock-in mice with mutations in the CD3 chains have contributed significantly to these studies. The generation of such gene-modified mice relies on the availability of...

  6. Yeasts associated with Vienna sausage packaging.

    Science.gov (United States)

    Viljoen, B C; Dykes, G A; Callis, M; von Holy, A

    1993-03-01

    A total of 123 representative yeast isolates from a previous study of a Vienna sausage processing plant were identified according to conventional methods and long-chain fatty acid analyses. The most prevalent isolates belonged to the genera Candida and Debaryomyces. Other genera encountered were Rhodotorula, Yarrowia, Pichia, Galactomyces, Cryptococcus, Trichosporon and Torulaspora. PMID:8466813

  7. Yeast Infection (Candidiasis)

    Science.gov (United States)

    ... rash and rashes clinical tools newsletter | contact Share | Yeast Infection (Candidiasis) Information for adults A A A This is a candida (yeast) infection of the skin folds of the abdomen. Overview ...

  8. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  9. Prions in Yeast

    OpenAIRE

    Liebman, Susan W; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in unde...

  10. Regulatory aspects of methanol metabolism in yeasts

    International Nuclear Information System (INIS)

    Formaldehyde is the first and key intermediate in the metabolism of methylotrophic yeasts since it stands at a branch point of pathways for methanol oxidation and assimilation. Methanol and, formaldehyde are toxic compounds which severely affect the growth rate, yield coefficient, etc., of yeasts. Two questions arise when considering regulation of methanol metabolism in yeasts how a nontoxic level of formaldehyde is maintained in the cell and how the formaldehyde flow is distributed into oxidation and assimilation. To answer these questions we studied the role of GSH, which spontaneously binds formaldehyde, yielding S-hydroxymethylglutathione; in vivo rates of formaldehyde dissimilation and assimilation by using [14C]methanol; profiles of enzymes responsible for production and utilization of formaldehyde; and levels of metabolites affecting dissimilation and assimilation of formaldehyde. All of the experiments were carried out with the methylotrophic yeast Candida boidinii KD1. 19 refs., 4 figs., 1 tab

  11. Determination of tritium in wine yeast samples

    International Nuclear Information System (INIS)

    Analytical procedures were developed to determine tritium in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractioning distillation for wine samples and azeotropic distillation/fractional distillation for wine yeast samples. Finally, the water samples were normally distilled with K MO4. The established procedures were successfully applied for wine and wine samples from Murfatlar harvests of the years 1995 and 1996. (authors)

  12. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  13. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    Science.gov (United States)

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (affecting VLCFA profiles in seed storage lipids by genotyping and phenotyping wildtype x low erucic acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  14. Design and Selection of a Camelid Single-Chain Antibody Yeast Two-Hybrid Library Produced De Novo for the Cap Protein of Porcine Circovirus Type 2 (PCV2)

    OpenAIRE

    Xiangjing Fu; Xiaolong Gao; Shengfang He; Di Huang; Peng Zhang; Xinglong Wang; Shuxia Zhang; Ruyi Dang; Shuanghui Yin; Enqi Du; Zengqi Yang

    2013-01-01

    Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs) are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VH...

  15. Physiological adaptations of yeasts living in cold environments and their potential applications.

    Science.gov (United States)

    Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2015-10-01

    Yeasts, widely distributed across the Earth, have successfully colonized cold environments despite their adverse conditions for life. Lower eukaryotes play important ecological roles, contributing to nutrient recycling and organic matter mineralization. Yeasts have developed physiological adaptations to optimize their metabolism in low-temperature environments, which affect the rates of biochemical reactions and membrane fluidity. Decreased saturation of fatty acids helps maintain membrane fluidity at low temperatures and the production of compounds that inhibit ice crystallization, such as antifreeze proteins, helps microorganisms survive at temperatures around the freezing point of water. Furthermore, the production of hydrolytic extracellular enzymes active at low temperatures allows consumption of available carbon sources. Beyond their ecological importance, interest in psychrophilic yeasts has increased because of their biotechnological potential and industrial uses. Long-chain polyunsaturated fatty acids have beneficial effects on human health, and antifreeze proteins are attractive for food industries to maintain texture in food preserved at low temperatures. Furthermore, extracellular cold-active enzymes display unusual substrate specificities with higher catalytic efficiency at low temperatures than their mesophilic counterparts, making them attractive for industrial processes requiring high enzymatic activity at low temperatures. In this minireview, we describe the physiological adaptations of several psychrophilic yeasts and their possible biotechnological applications. PMID:26160010

  16. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  17. Monomeric Yeast Frataxin is an Iron Binding Protein†

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.; Bencze, K; Jankovic, A; Crater, A; Busch, C; Bradley, P; Stemmler, A; Spaller, M; Stemmler, T

    2009-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.

  18. Monomeric Yeast Frataxin is an Iron-Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Cook,J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.

  19. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  20. Dietary glucose regulates yeast consumption in adult Drosophila males

    OpenAIRE

    Sebastien eLebreton; Peter eWitzgall; Marie eOlsson; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies ...

  1. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Tina Zavašnik-Bergant

    Full Text Available Dendritic cells (DC play a pivotal role as antigen presenting cells (APC and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70 during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.

  2. Pexophagy in yeasts.

    Science.gov (United States)

    Oku, Masahide; Sakai, Yasuyoshi

    2016-05-01

    Pexophagy, selective degradation of peroxisomes via autophagy, is the main system for reducing organelle abundance. Elucidation of the molecular machinery of pexophagy has been pioneered in studies of the budding yeast Saccharomyces cerevisiae and the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Recent analyses using these yeasts have elucidated the molecular machineries of pexophagy, especially in terms of the interactions and modifications of the so-called adaptor proteins required for guiding autophagic membrane biogenesis on the organelle surface. Based on the recent findings, functional relevance of pexophagy and another autophagic pathway, mitophagy (selective autophagy of mitochondria), is discussed. We also discuss the physiological importance of pexophagy in these yeast systems. PMID:26409485

  3. Planification stratégique d'une Supply chain sous contraintes d'incertitude : affectation de la production et dimensionnement des ressources

    OpenAIRE

    Pernot, Pierre-Alban

    2013-01-01

    Works made during this PhD deal with a problem arising from the Europe Tourism Supply Chain of the firm Michelin. They are formulated as a Strategic Production Allocation, Resource sizing and Flexibility design problem of a Supply Chain Manufacturing System in an uncertain context. Because of it's specificities, this problem can't be solved using existing methods. Consequently, a dedicated linear program and a metaheuristic have been defined. This metaheuristic corresponds to a dedicated " Gr...

  4. Yeast Model Uncovers Dual Roles of Mitochondria in the Action of Artemisinin.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Artemisinins, derived from the wormwood herb Artemisia annua, are the most potent antimalarial drugs currently available. Despite extensive research, the exact mode of action of artemisinins has not been established. Here we use yeast, Saccharamyces cerevisiae, to probe the core working mechanism of this class of antimalarial agents. We demonstrate that artemisinin's inhibitory effect is mediated by disrupting the normal function of mitochondria through depolarizing their membrane potential. Moreover, in a genetic study, we identify the electron transport chain as an important player in artemisinin's action: Deletion of NDE1 or NDI1, which encode mitochondrial NADH dehydrogenases, confers resistance to artemisinin, whereas overexpression of NDE1 or NDI1 dramatically increases sensitivity to artemisinin. Mutations or environmental conditions that affect electron transport also alter host's sensitivity to artemisinin. Sensitivity is partially restored when the Plasmodium falciparum NDI1 ortholog is expressed in yeast ndi1 strain. Finally, we showed that artemisinin's inhibitory effect is mediated by reactive oxygen species. Our results demonstrate that artemisinin's effect is primarily mediated through disruption of membrane potential by its interaction with the electron transport chain, resulting in dysfunctional mitochondria. We propose a dual role of mitochondria played during the action of artemisinin: the electron transport chain stimulates artemisinin's effect, most likely by activating it, and the mitochondria are subsequently damaged by the locally generated free radicals.

  5. Metabolic regulation of yeast

    Science.gov (United States)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  6. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase.

    Science.gov (United States)

    Levchenko, Maria; Wuttke, Jan-Moritz; Römpler, Katharina; Schmidt, Bernhard; Neifer, Klaus; Juris, Lisa; Wissel, Mirjam; Rehling, Peter; Deckers, Markus

    2016-07-01

    The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization. PMID:27083394

  7. Evaluation of Fermentation Efficiency of Yeast Strains and their Effect on Quality of Young Wines

    OpenAIRE

    Sharma, A. K.; Singh, Pranay Nath; S. D. Sawant

    2011-01-01

    The yeast has important role in fermentation of wine grapes and wine quality. The fermentation of wine grapes affect by efficiency of particular yeast strain, sugar content, pH, available temperature, etc. To evaluate the efficiency of yeast strains (Premier Cuvee, RS-1, RS-2, RS-3 and natural), present study was conducted on two wine grape varieties viz.; Sauvignon Blanc (White) and Cabernet Sauvignon (Red). Efficiency of yeast strains was evaluated in terms of conversion rate of sugar into ...

  8. Analyses of Disrupted Supply Chains by the Great East Japan Earthquake and Reconstruction of the Disaster-affected Region by the Cluster of the Automotive Industry: Utilizing the regional CGE model (Japanese)

    OpenAIRE

    Tokunaga, Suminori; Okiyama, Mitsuru; Akune, Yuko

    2013-01-01

    The purpose of this paper is first to analyze a negative supply shock due to "disrupted supply chains" caused by the earthquake and, secondly, to examine which of the policies to reconstruct the disaster-affected region is the most advisable way to proceed with the accumulation of the automotive industry. Using the two-regional computable general equilibrium (CGE) model, we initially found that had the alternative production at other plants been very easy, even if the production volume of mot...

  9. An enhanced approach for engineering thermally stable proteins using yeast display

    OpenAIRE

    Pavoor, Tej V.; Wheasler, Jean A.; Kamat, Viraj; Shusta, Eric V.

    2012-01-01

    Many biotechnology applications require the evolution of enhanced protein stability. Using polymerase chain reaction-based recovery of engineered clones during the screen enrichment phase, we describe a yeast display method capable of yielding engineered proteins having thermal stability that substantially exceeds the viability threshold of the yeast host. To this end, yeast-enhanced green fluorescent protein destabilized by dual-loop insertion was engineered to possess a substantially enhanc...

  10. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin

    2012-09-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  11. Recognition of yeast by murine macrophages requires mannan but not glucan.

    Science.gov (United States)

    Keppler-Ross, Sabine; Douglas, Lois; Konopka, James B; Dean, Neta

    2010-11-01

    The first barrier against infection by Candida albicans involves fungal recognition and destruction by phagocytic cells of the innate immune system. It is well established that interactions between different phagocyte receptors and components of the fungal cell wall trigger phagocytosis and subsequent immune responses, but the fungal ligands mediating the initial stage of recognition have not been identified. Here, we describe a novel assay for fungal recognition and uptake by macrophages which monitors this early recognition step independently of other downstream events of phagocytosis. To analyze infection in live macrophages, we validated the neutrality of a codon-optimized red fluorescent protein (yEmRFP) biomarker in C. albicans; growth, hyphal formation, and virulence in infected mice and macrophages were unaffected by yEmRFP production. This permitted a new approach for studying phagocytosis by carrying out competition assays between red and green fluorescent yeast cells to measure the efficiency of yeast uptake by murine macrophages as a function of dimorphism or cell wall defects. These competition experiments demonstrate that, given a choice, macrophages display strong preferences for phagocytosis based on genus, species, and morphology. Candida glabrata and Saccharomyces cerevisiae are taken up by J774 macrophage cells more rapidly than C. albicans, and C. albicans yeast cells are favored over hyphal cells. Significantly, these preferences are mannan dependent. Mutations that affect mannan, but not those that affect glucan or chitin, reduce the uptake of yeast challenged with wild-type competitors by both J774 and primary murine macrophages. These results suggest that mannose side chains or mannosylated proteins are the ligands recognized by murine macrophages prior to fungal uptake. PMID:20833894

  12. Backbone and side-chain ¹H, ¹⁵N, and ¹³C resonance assignments of the microtubule-binding domain of yeast cytoplasmic dynein in the high and low-affinity states.

    Science.gov (United States)

    Takarada, Osamu; Nishida, Noritaka; Kikkawa, Masahide; Shimada, Ichio

    2014-10-01

    Cytoplasmic dynein is a motor protein that walks toward the minus end of microtubules (MTs) by utilizing the energy of ATP hydrolysis. The heavy chain of cytoplasmic dynein contains the microtubule-binding domain (MTBD). Switching of MTBD between high and low affinity states for MTs is crucial for processive movement of cytoplasmic dynein. Previous biochemical studies demonstrated that the affinity of MTBD is regulated by the AAA+ family ATPase domain, which is separated by 15 nm long coiled-coil helix. In order to elucidate the structural basis of the affinity switching mechanism of MTBD, we designed two MTBD constructs, termed MTBD-High and MTBD-Low, which are locked in high and low affinity state for MTs, respectively, by introducing a disulfide bond between the coiled-coil helix. Here, we established the backbone and side-chain assignments of MTBD-High and MTBD-Low for further structural analyses. PMID:23975349

  13. Vaginal Yeast Infection

    Science.gov (United States)

    ... Centers for Diseases Control and Prevention. Micrograph showing Candida albicans from a patient with vaginal candidiasis, also known ... caused by an overgrowth of a fungus called Candida albicans in the vagina. Candida is yeast, which is ...

  14. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  15. Meiosis in haploid yeast

    OpenAIRE

    Wagstaff, Joseph E.; Klapholz, Sue; Esposito, Rochelle Easton

    1982-01-01

    Haploid yeast cells normally contain either the MATa or MATα mating-type allele and cannot undergo meiosis and spore formation. If both mating-type alleles are present as a consequence of chromosome III disomy (MATa/MATα), haploids initiate meiosis but do not successfully form spores, probably because the haploid chromosome complement is irregularly partitioned during meiotic nuclear division. We have demonstrated that the ochre-suppressible mutation spo13-1 enables haploid yeast cells disomi...

  16. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  17. Factors affecting the concentration in seven-spotted ladybirds (Coccinella septempunctata L.) of Cd and Zn transferred through the food chain

    Energy Technology Data Exchange (ETDEWEB)

    Green, I.D., E-mail: igreen@bournemouth.ac.u [Centre for Conservation Ecology and Environmental Change, School of Conservation Sciences, Bournemouth University, Talbot Campus, Poole, Dorset BH12 5BB (United Kingdom); Diaz, A., E-mail: adiaz@bournemouth.ac.u [Centre for Conservation Ecology and Environmental Change, School of Conservation Sciences, Bournemouth University, Talbot Campus, Poole, Dorset BH12 5BB (United Kingdom); Tibbett, M., E-mail: mark.tibbett@uwa.edu.a [Centre for Land Rehabilitation, School of Earth and Environment, Faculty of Natural and Agricultural Sciences, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2010-01-15

    The transfer of Cd and Zn from soils amended with sewage sludge was followed through a food chain consisting of wheat, aphids and the predator Coccinella septempunctata. Multiple regression models were generated to predict the concentrations of Cd and Zn in C. septempunctata. No significant model could be generated for Cd, indicting that the concentration of this metal was maintained within relatively narrow limits. A model predicting 64% of the variability in the Zn concentration of C. septempunctata was generated from of the concentration of Zn in the diet, time and rate of Zn consumption. The results suggest that decreasing the rate of food consumption is an effective mechanism to prevent the accumulation of Zn and that the availability of Zn in the aphid prey increased with the concentration in the aphids. The results emphasise the importance of using ecologically relevant food chains and exposure pathways during ecotoxicological studies. - Arthropod predators can regulate trace metal body burden through physiological and behavioural mechanisms.

  18. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Science.gov (United States)

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  19. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2-2H]DOPS) or at the 11-position of the acyl chains ([11,11-2H2]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2-2H]DOPS and [11,11-2H2]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine)100, which were included for reasons of comparison, reveal increased Δvq values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  20. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    Energy Technology Data Exchange (ETDEWEB)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  1. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  2. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells. PMID:25033548

  3. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  4. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process.

    Science.gov (United States)

    Basílio, A C M; de Araújo, P R L; de Morais, J O F; da Silva Filho, E A; de Morais, M A; Simões, D A

    2008-04-01

    Monitoring for wild yeast contaminants is an essential component of the management of the industrial fuel ethanol manufacturing process. Here we describe the isolation and molecular identification of 24 yeast species present in bioethanol distilleries in northeast Brazil that use sugar cane juice or cane molasses as feeding substrate. Most of the yeast species could be identified readily from their unique amplification-specific polymerase chain reaction (PCR) fingerprint. Yeast of the species Dekkera bruxellensis, Candida tropicalis, Pichia galeiformis, as well as a species of Candida that belongs to the C. intermedia clade, were found to be involved in acute contamination episodes; the remaining 20 species were classified as adventitious. Additional physiologic data confirmed that the presence of these major contaminants cause decreased bioethanol yield. We conclude that PCR fingerprinting can be used in an industrial setting to monitor yeast population dynamics to early identify the presence of the most important contaminant yeasts. PMID:18188645

  5. Technology and economics of conversion of cellulose (wood) and corn starch to sugars, alcohol and yeast. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolnak, B.

    1978-08-01

    The present status of the technology and economics for the production of glucose, alcohol, and yeast from cellulose (wood), corn starch, and molasses is analyzed. The basic processes for producing glucose and the factors affecting the economics of its production are reviewed. The costs of producing ethanol and yeast from the glucose are derived. Market availability of glucose, ethanol, and yeast is surveyed. (JSR)

  6. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;

    2003-01-01

    and transcription. Considering this variety of cell biological processes, it is puzzling that until recently only very few proteins were known to possess the ability to interact specifically with ubiquitin chains. However, several ubiquitin binding proteins have now been identified and the binding domains have been...... characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  7. Yeast fluorescence microscopy

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jiří

    New Jersey : Humana Press, 2005, s. 85-96. ISBN 1-59259-958-3 R&D Projects: GA AV ČR IAA5020102; GA ČR GA204/02/1424 Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast * fluorescence microscopy * immunofluorescence Subject RIV: EE - Microbiology, Virology

  8. Polysome Profile Analysis - Yeast

    Czech Academy of Sciences Publication Activity Database

    Pospíšek, M.; Valášek, Leoš

    2013-01-01

    Roč. 530, č. 2013 (2013), s. 173-181. ISSN 0076-6879 Institutional support: RVO:61388971 Keywords : grow yeast cultures * polysome profile analysis * sucrose density gradient centrifugation Subject RIV: CE - Biochemistry Impact factor: 2.194, year: 2013

  9. Opportunistic Pathogenic Yeasts

    Science.gov (United States)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  10. The 2 micron plasmid purloins the yeast cohesin complex

    OpenAIRE

    Mehta, Shwetal; Yang, Xian Mei; Chan, Clarence S.; Dobson, Melanie J.; Jayaram, Makkuni; Velmurugan, Soundarapandian

    2002-01-01

    The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locu...

  11. L-arabinose fermenting yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  12. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  13. Fast and sensitive detection of genetically modified yeasts in wine.

    Science.gov (United States)

    León, Carlos; García-Cañas, Virginia; González, Ramón; Morales, Pilar; Cifuentes, Alejandro

    2011-10-21

    In this work, a novel screening methodology based on the combined use of multiplex polymerase chain reaction (PCR) and capillary gel electrophoresis with laser induced fluorescence (CGE-LIF) is developed for the fast and sensitive detection of genetically modified yeasts in wine. As model, a recombinant EKD-13 Saccaromyces cerevisiae strain was selected and different wines were prepared using either recombinant or conventional yeasts. Special emphasis is put on the yeast DNA extraction step, exploring different commercial and non-commercial methods, in order to overcome the important difficulty of obtaining amplifiable DNA from wine samples. To unequivocally detect the transgenic yeast, two specific segments of the transgenic construction were amplified. In addition, a third primer pair was used as amplification control to confirm the quality of the yeast DNA obtained from the extraction step. CGE-LIF provides high sensitivity, good analysis speed and impressive resolution of DNA fragments, making this technique very convenient to optimize multiplex PCR parameters and to analyze the amplified DNA fragments. Thus, the CGE-LIF method provided %RSD values for DNA migration times lower than 0.82% (n=10) with the same capillary and lower than 1.92% (n=15) with three different capillaries, allowing the adequate size determination of the PCR products with an error lower than 4% compared to the theoretically expected. The whole method developed in this work requires less than one working day and grants the sensitive detection of transgenic yeasts in wine samples. PMID:21296357

  14. Isolation and identification of Mycoplasma agalactiae by culture and polymerase chain reaction (PCR from affected sheep to Contagious agalactia of Khuzestan province, Iran

    Directory of Open Access Journals (Sweden)

    Pooladgar, A.R.

    2015-04-01

    Full Text Available Mycoplasma agalactiae (M. agalactiae is one of the main causes of contagious agalactia, an infectious syndrome of sheep and goats in Khuzestan province –southwest of Iran that is characterized by mastitis and subsequent failure of milk production, arthritis, abortion and keratoconjunctivitis. This study was carried out to isolation and identification of M. agalactiae with culture and polymerase chain reaction (PCR method from sheep in Khuzestan province, Iran. A total of 91 samples were collected from milk secretion, eye, ear, nose and joint exudates of sheep. All samples were cultured in PPLO broth supplemented for isolation of M. agalaciae. Extraction of the DNA of bacteria was done by phenol/chloroform method and the PCR assay was applied for detection of Mycoplasma genus in 163bp fragment of 16S rRNA gene and M. agalactiae in 375bp fragment of lipoprotein gene from culture as same as in clinical samples. Out of the 91 samples, 34(37.36% cultures were shown positive and typical Mycoplasma colonies in PPLO agar culture diagnostic method and 47(51.65% were scored positive by Mycoplasma genus PCR, 8(8.79% of the samples were scored positive by using M. agalactiae PCR as diagnostic method. Out of the 91 samples, 26 samples were shown both positive in the culture and PCR, 5 samples were shown both positive in the culture, MPCR and MAPCR. 15 samples were negative in the culture and positive in PCR whereas only 3 samples were positive in culture and negative in PCR. The results showed that the more isolations of M. agalactiae were taken from eye and less in ear and nose samples. M. agalactiae was one of the main factors of contagious agalactia that was detected for the first time from sheep in Khuzestan province.

  15. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection.

    Science.gov (United States)

    Leroux, Louis-Philippe; Nishi, Manami; El-Hage, Sandy; Fox, Barbara A; Bzik, David J; Dzierszinski, Florence S

    2015-10-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4(+) T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4(+) T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  16. Mutant glycyl-tRNA synthetase (Gars ameliorates SOD1(G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice.

    Directory of Open Access Journals (Sweden)

    Gareth T Banks

    Full Text Available BACKGROUND: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. METHODOLOGY/PRINCIPAL FINDINGS: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+ mice to two other mutants: the TgSOD1(G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+;Gars(C201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R mutation significantly delayed disease onset in the SOD1(G93A;Gars(C201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. CONCLUSIONS/SIGNIFICANCE: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.

  17. Stress-induced radiation resistance in yeast

    International Nuclear Information System (INIS)

    Cells have evolved biological defense mechanisms that can protect them against a variety of harmful environmental stress including ionizing radiation exposure. The authors have demonstrated that many stresses will induce radiation resistance in yeast. Recently it has become apparent that radiation resistance may be associated with the highly conserved 'stress response' mechanism that confers cellular resistance to a multitude of agents. A universal response to stress is the synthesis of a distinctive set of new proteins, although the function of many of these specific stress proteins is still unknown. One stress protein known to affect thermal tolerance in yeast is HSP104. This report has assessed involvement of HSP104 in the mechanism of radiation resistance by utilizing a yeast strain lacking HSP104 protein (a deletion mutant). It is previously demonstrated that radiation itself will induce yeast cells to develop radiation resistance and that the signal for the response is DNA damage. The nature of the DNA damage signal is important and it is reported that, per unit dose, low linear energy transfer (LET) 60Co gamma-rays induce a greater resistance response compared to high LET neutrons. Here is tested whether the dose rate also influences the signalling efficiency of a radiation inducing dose. (author). 4 refs., 2 figs

  18. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women.

    Science.gov (United States)

    Slevin, Mary M; Allsopp, Philip J; Magee, Pamela J; Bonham, Maxine P; Naughton, Violetta R; Strain, J J; Duffy, Maresa E; Wallace, Julie M; Mc Sorley, Emeir M

    2014-03-01

    This 24-mo randomized, double-blind, controlled trial aimed to examine whether supplementation with a natural marine-derived multi-mineral supplement rich in calcium (Ca) taken alone and in conjunction with short-chain fructo-oligosaccharide (scFOSs) has a beneficial effect on bone mineral density (BMD) and bone turnover markers (BTMs) in postmenopausal women. A total of 300 non-osteoporotic postmenopausal women were randomly assigned to daily supplements of 800 mg of Ca, 800 mg of Ca with 3.6 g of scFOS (CaFOS), or 9 g of maltodextrin. BMD was measured before and after intervention along with BTMs, which were also measured at 12 mo. Intention-to-treat ANCOVA identified that the change in BMD in the Ca and CaFOS groups did not differ from that in the maltodextrin group. Secondary analysis of changes to BTMs over time identified a greater decline in osteocalcin and C-telopeptide of type I collagen (CTX) in the Ca group compared with the maltodextrin group at 12 mo. A greater decline in CTX was observed at 12 mo and a greater decline in osteocalcin was observed at 24 mo in the CaFOS group compared with the maltodextrin group. In exploratory subanalyses of each treatment group against the maltodextrin group, women classified with osteopenia and taking CaFOS had a smaller decline in total-body (P = 0.03) and spinal (P = 0.03) BMD compared with the maltodextrin group, although this effect was restricted to those with higher total-body and mean spinal BMD at baseline, respectively. Although the change in BMD observed did not differ between the groups, the greater decline in BTMs in the Ca and CaFOS groups compared with the maltodextrin group suggests a more favorable bone health profile after supplementation with Ca and CaFOS. Supplementation with CaFOS slowed the rate of total-body and spinal bone loss in postmenopausal women with osteopenia-an effect that warrants additional investigation. This trial was registered at www.controlled-trials.com as ISRCTN63118444. PMID

  19. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    Science.gov (United States)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  20. Iron toxicity in yeast.

    Science.gov (United States)

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  1. Ultrastructure of methanotrophic yeasts.

    OpenAIRE

    Wolf, H. J.; Christiansen, M.; Hanson, R. S.

    1980-01-01

    The cellular structure of two yeast strains capable of growth on methane was investigated by electron microscopy. Microbodies were observed in cells of Sporobolomyces roseus strain Y and Rhodotorula glutinis strain CY when grown on methane but rarely when grown on glucose. The size of the microbodies and the number observed per cell in a thin section did not increase with culture age. No crystalline organization was observed within these organelles. Similar microbodies were also observed in c...

  2. Conserved-residue mutations in Wzy affect O-antigen polymerization and Wzz-mediated chain-length regulation in Pseudomonas aeruginosa PAO1

    Science.gov (United States)

    Islam, Salim T.; Huszczynski, Steven M.; Nugent, Timothy; Gold, Alexander C.; Lam, Joseph S.

    2013-12-01

    O antigen (O-Ag) in many bacteria is synthesized via the Wzx/Wzy-dependent pathway in which Wzy polymerizes lipid-linked O-Ag subunits to modal lengths regulated by Wzz. Characterization of 83 site-directed mutants of Wzy from Pseudomonas aeruginosa PAO1 (WzyPa) in topologically-mapped periplasmic (PL) and cytoplasmic loops (CL) verified the functional importance of PL3 and PL5, with the former shown to require overall cationic properties. Essential Arg residues in the RX10G motifs of PL3 and PL5 were found to be conserved in putative homologues of WzyPa, as was the overall sequence homology between these two periplasmic loops in each protein. Amino acid substitutions in CL6 were found to alter Wzz-mediated O-antigen modality, with evidence suggesting that these changes may perturb the C-terminal WzyPa tertiary structure. Together, these data suggest that the catch-and-release mechanism of O-Ag polymerization is widespread among bacteria and that regulation of polymer length is affected by interaction of Wzz with Wzy.

  3. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    Science.gov (United States)

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. PMID:25098489

  4. Long-term feeding of Atlantic salmon in seawater with low dietary long-chain n-3 fatty acids affects tissue status of the brain, retina and erythrocytes.

    Science.gov (United States)

    Sissener, N H; Torstensen, B E; Stubhaug, I; Rosenlund, G

    2016-06-01

    In two long-term feeding trials in seawater, Atlantic salmon were fed EPA+DHA in graded levels, from 1·3 to 7·4 % of fatty acids (FA, 4-24 g/kg feed) combined with approximately 10 % 18 : 3n-3, at 6 and 12°C. Dietary EPA appeared to be sufficient in all diet groups, as no differences were seen in polar lipid tissue concentrations of either the brain, retina or erythrocytes. For DHA, a reduction in tissue levels was observed with low dietary supply. Effects on brain DHA at ≤1·4 % EPA+DHA of dietary FA and retina DHA at ≤2·7 % EPA+DHA of dietary FA were only observed in fish reared at 6°C, suggesting an effect of temperature, whereas tissue levels of n-6 FA increased as a response to increased dietary n-6 FA in both the brain and the retina at both temperatures. DHA levels in erythrocytes were affected by ≤2·7 % EPA+DHA at both temperatures. Therefore, DHA appears to be the limiting n-3 FA in diets where EPA and DHA are present in the ratios found in fishmeal and fish oil. To assess the physiological significance of FA differences in erythrocytes, the osmotic resistance was tested, but it did not vary between dietary groups. In conclusion, ≤2·7 % EPA+DHA of FA (≤9 g/kg feed) is not sufficient to maintain tissue DHA status in important tissues of Atlantic salmon throughout the seawater production cycle despite the presence of dietary 18 : 3n-3, and effects may be more severe at low water temperatures. PMID:27044510

  5. Determination of tritium in wine and wine yeast samples

    International Nuclear Information System (INIS)

    A sensitive method for evaluating the tritium content in wine and wine yeast was applied to estimate tritium impact on the environment in the surrounding area of nuclear power plant Cernavoda, where the vineyards are part of representative agricultural ecosystem. Analytical procedures were developed to determine HTO in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractionating distillation for wine samples and azeotropic distillation followed by fractional distillation for wine yeast samples. Finally, the water samples obtained after fractional distillation were normally distilled with KMO4. The established procedures were successfully applied for wine and wine yeast samples from Mulfatlar harvests of the years 1995 and 1996. (authors)

  6. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)

    2012-05-15

    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  7. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D;

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  8. Flavour-active wine yeasts

    OpenAIRE

    Cordente, Antonio G.; Curtin, Christopher D.; Varela, Cristian; Pretorius, Isak S.

    2012-01-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can infl...

  9. Information flow in the pharmaceutical supply chain

    OpenAIRE

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, man...

  10. Genomics and the making of yeast biodiversity

    Science.gov (United States)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  11. Modulation and elimination of yeast prions by protein chaperones and co-chaperones

    OpenAIRE

    Reidy, Michael; Masison, Daniel C.

    2011-01-01

    The yeast system has provided considerable insight into the biology of amyloid and prions. Here we focus on how alterations in abundance or function of protein chaperones and co-chaperones affect propagation of yeast prions. In spite of a considerable amount of information, a clear understanding of the molecular mechanisms underlying these effects remains wanting.

  12. The uptake of different iron salts by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gaensly, Fernanda; Picheth, Geraldo; Brand, Debora; Bonfim, Tania M B

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended. PMID:25242932

  13. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2014-06-01

    Full Text Available Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.

  14. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    OpenAIRE

    Fernanda Gaensly; Geraldo Picheth; Debora Brand; Tania M. B. Bonfim

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.

  15. Ethanol Production by Fermentation of Various Sweet-Stalk Sorghum Juices Using Various Yeast Strains

    OpenAIRE

    Donny Widianto; Akbar Arofatullah; Triwibowo Yuwono; Irfan Dwidya Prijambada

    2015-01-01

    The ethanol production by fermentation of sweet-stalk sorghum juice is affected by the juice composition and the capability of the yeast strain to ferment it. Eight yeast strains were tested on their growth and ethanol fermentation abilities in sweet-stalk sorghum juices extracted from three cultivars of sweet sorghum. The best specific growth rate of the yeast strains grown aerobically in the yeast extract peptone dextrose (YEPD) broth and the sweet-stalk sorghum juices of KCS105, FS501, and...

  16. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  17. Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast.

    Science.gov (United States)

    Reinhold, Robert; Bareth, Bettina; Balleininger, Martina; Wissel, Mirjam; Rehling, Peter; Mick, David U

    2011-06-15

    Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1. PMID:21470975

  18. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts duri

  19. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    Science.gov (United States)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  20. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    Science.gov (United States)

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  1. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    Science.gov (United States)

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  2. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  3. Eighteen new oleaginous yeast species.

    Science.gov (United States)

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes. PMID:27072563

  4. Chain Teleportation

    OpenAIRE

    Lee, Chien-er

    2004-01-01

    By means of the idea of measurements on the crossed space-time nonlocal observables, we extend the mechanism for the two-way quantum teleportation to the chain teleportation among N spatially separated spin-1/2 systems. Since in the process only the local interactions are used, the microcausality is automatically satisfied.

  5. Multipurpose Transposon-Insertion Libraries in Yeast.

    Science.gov (United States)

    Kumar, Anuj

    2016-01-01

    Libraries of transposon-insertion alleles constitute powerful and versatile tools for large-scale analysis of yeast gene function. Transposon-insertion libraries are constructed most simply through mutagenesis of a plasmid-based genomic DNA library; modification of the mutagenizing transposon by incorporation of yeast selectable markers, recombination sites, and an epitope tag enables the application of insertion alleles for phenotypic screening and protein localization. In particular, yeast genomic DNA libraries have been mutagenized with modified bacterial transposons carrying the URA3 marker, lox recombination sites, and sequence encoding multiple copies of the hemagglutinin (HA) epitope. Mutagenesis with these transposons has yielded a large resource of insertion alleles affecting nearly 4000 yeast genes in total. Through well-established protocols, these insertion libraries can be introduced into the desired strain backgrounds and the resulting insertional mutants can be screened or systematically analyzed. Relative to alternative methods of UV irradiation or chemical mutagenesis, transposon-insertion alleles can be easily identified by PCR-based approaches or high-throughput sequencing. Transposon-insertion libraries also provide a cost-effective alternative to targeted deletion approaches, although, in contrast to start-codon to stop-codon deletions, insertion alleles might not represent true null-mutants. For protein-localization studies, transposon-insertion alleles can provide encoded epitope tags in-frame with internal codons; in many cases, these transposon-encoded epitope tags can provide a more accurate localization for proteins in which terminal sequences are crucial for intracellular targeting. Thus, overall, transposon-insertion libraries can be used quickly and economically and have a particular utility in screening for desired phenotypes and localization patterns in nonstandard genetic backgrounds. PMID:27250950

  6. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice.

    Science.gov (United States)

    Sevilla, L M; Richter, S S; Miller, J

    2001-06-15

    MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed. PMID:11520080

  7. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  8. Yeasts: from genetics to biotechnology.

    Science.gov (United States)

    Russo, S; Berkovitz Siman-Tov, R; Poli, G

    1995-01-01

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the "biotechnological revolution" by virtue of both their features and their very long and safe use in human nutrition and industry. PMID:9003692

  9. Yeasts: From genetics to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Russo, S.; Poli, G. [Univ. of Milan (Italy); Siman-Tov, R.B. [Univ. of Jerusalem, Rehovot (Israel)

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  10. Genetic study on yeast

    International Nuclear Information System (INIS)

    Research during the past year has moved ahead on several fronts. A major compilation of all the genetic mapping data for the yeast Saccharomyces cerevisiae has been completed. The map describes the location of over 300 genes on 17 chromosomes. A report on this work will appear in Microbiological Reviews in December 1980. Recombinant DNA procedures have been introduced into the experiments and RAD52 (one of the genes involved in recombination and repair damage), has been successfully cloned. This clone will be used to determine the gene product. Diploid cells homozygous for RAD52 have exceptionally high frequencies of mitotic loss of chromosomes. This loss is stimulated by ionizing radiation. This effect is a very significant finding. The effect has also been seen with certain other RAD mutants

  11. Research on Factors Affecting Green Technology Collaboration of Companies: Viewed from Supply Chain%企业间绿色技术合作的影响因素:基于供应链角度

    Institute of Scientific and Technical Information of China (English)

    宿丽霞; 杨忠敏; 张斌; 王兆华

    2013-01-01

    基于对国内主要制造行业供应链上下游企业间绿色技术合作的数据调查,综合运用扎根理论和验证性因子分析方法探讨影响我国供应链上企业间绿色技术合作的主要因素及其之间的关系.研究显示:企业本身的绿色技术行为对于供应链上企业间绿色技术合作的解释系数较大,为0.90;绿色技术本身的成本、难度对于供应链上企业间的绿色技术合作解释系数为0.87;外部技术环境压力的解释系数为0.85;供应链上下游企业间的依赖关系的解释系数为0.82;政府对于供应链上企业间绿色技术合作的相关政策对于供应链上企业间的绿色技术合作的解释系数为0.71.表明企业本身的绿色技术行为、绿色技术的特征、企业外部环境压力、供应链上下游企业间的依赖关系对供应链上下游企业间的绿色技术合作具有较大影响,这与现有多数研究结果基本一致.文章结论部分分别从策略行为理论、交易成本理论和资源依赖理论等不同角度对该结果进行了分析.与以往研究不同的是,实证结果表明,与其它影响因素相比,政府制定的相关政策对于供应链上企业间绿色技术合作的影响较小,这充分说明政府政策对于推动供应链上下游企业间的绿色技术合作尚未发挥实质作用.建议政府应加大政策支持和资金投入力度,通过补贴、税收等措施鼓励企业及企业间绿色技术开发,真正发挥政府在企业绿色技术开发和合作行为的引导作用.%The paper explores the main factors affecting the green technology collaboration between companies on the supply chain and the relationship of the factors using a combination means of grounded theory and confirmatory factor analysis (CFA),based on the data survey of green technology cooperation between upstream and downstream companies on the supply chain from the main domestic manufacturing industry.The result shows

  12. Polyphosphates as a source of high energy phosphates in yeast mitochondria

    International Nuclear Information System (INIS)

    Suspensions of purified yeast mitochondria were analyzed under bubbling oxygen by 31P NMR at 161.9 MHz. The recorded spectra indicate that polyphosphates (poly(P)) are present in mitochondrial preparations. These poly(P) further characterized by the NMR study of mitochondrial perchloric acid extracts have an average chain length of 14 ] 1 residues per chain and correspond to 10% of the total content of cellular poly(P) detected by NMR. The stability of mitochondrial poly(P) was increased by the presence of oligomycin, suggesting that this compound may play a role in the energetic metabolism of yeast mitochondria (author). 16 refs.; 3 figs

  13. Catch Chain

    OpenAIRE

    Talbert, Robert

    2010-01-01

    Catch Chain is a book of poems that traces the journey of a Corrections Officer who attempts to combat issues of isolation, inhumane treatment of inmates and societal rejection in jails by embarking upon a cross-country road trip. However, the same issues the officer initially wrestled with begin cropping up in different cities, on various highways and in a multitude of states. The excitement and adventure of the open road runs parallel to the recurring imprisonment of the guard's mind.

  14. ONYCHOMYCOSIS DUE TO YEAST AND YEAST-LIKE FUNGI

    Directory of Open Access Journals (Sweden)

    F. Zaini

    1986-12-01

    Full Text Available Onychomycosis due to the yeast and yeast-like fungi was investigated among the 147 patient who refered to the mycology laboratory of school of public Health during the period of 11 months. The isolated yeasts and yeast-like fungi were examined by API Auxanogram methed. The distribution of isolated microorganisms were C. tropicalis 10(7.4%, C.guillioimondii & (5.9% cases and one case of each of the C.krusei, C.pseudotropicalis, C.rugosa, trichosporon cutaneum, trolopsis maris, Cryptococcus albidus and finaly 3(2.2% cases of candida famata. High incidence of infection was in the patients with 0-15 years of age and most of them were in the groups of 0-4 years. Nail infection among the females were much more frequently than the males and predominant occupation of the women was house duties. The results which obtained from this investigation with the API Auxanogram system is quite satistactory and use of this rapid method for identification of yeasts and yeast-like fungi from the clinical materials of the patients is recommended.

  15. Mapping out starvation responses in yeast by proteomics

    DEFF Research Database (Denmark)

    Rødkær, Steven Vestergaard; Færgeman, Nils J.; Andersen, Jens S.; Bennetzen, Martin; Pultz, Dennis

    2011-01-01

    that are involved in this positive outcome. Based on that, processes like autophagy, lipid turnover and the generation/clearance of reactive oxygen species (ROS) have all been describe to affect life span, either alone, or in a not fully characterized interplay. The baker’s yeast Saccharomyces...... cerevisae is by now the organism with the best characterized proteome and is therefore the organism of choice in many proteomic studies. Additionally, this single-celled organism exhibits many conserved proteins and pathways of higher animals, thus observations in the yeast might reveal important...

  16. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  17. Vaginal Yeast Infections (For Parents)

    Science.gov (United States)

    ... infection caused by a type of fungus called candida albicans . Yeast infections usually happen in warm, moist parts of the ... fungus can grow. Doctors call this candida overgrowth candidiasis (pronounced: can-dih-DYE-uh-sis) Candida can ...

  18. Red Yeast Rice: An Introduction

    Science.gov (United States)

    ... products varies depending on the yeast strains and culture conditions used to manufacture them. The strains and ... supplements should not be used while pregnant or breastfeeding. Lovastatin can interact with a variety of drugs ...

  19. Shuffling Yeast Gene Expression Data

    OpenAIRE

    Bilke, Sven

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent ...

  20. Mucositis Grades and Yeast Species

    OpenAIRE

    Ognjenović, Marina; Milatić, Katja; Parat, Katica; Kovačić, Ivan; Ježina Bušelić, Marina A.; Božić, Joško

    2013-01-01

    Surgically treated patients with oral, head and neck cancer commonly develop mucositis during additional irradiation therapy. Oral mucosa inflammation other than irradiation is mostly caused by Candida albicans, yeast of Candida genus. This study evaluated possible connection between grades of oral mucositis and oral yeast profile in irradiated patients before, during and after irradiation. In 25 examined patients mucosits grades »0« to »2« before irradiation with 20% positive smears and o...

  1. Sociobiology of the budding yeast

    Indian Academy of Sciences (India)

    Dominika M Wloch-Salamon

    2014-04-01

    Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.

  2. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  3. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  4. The study of biological activity by natural extract from black yeast (P4257). Enhancement of immunoactivity, radioprotection and hyperthermia

    International Nuclear Information System (INIS)

    Natural extracts from yeast and lactobacillus can function biologically as sugar chains. We observed the biological activity of extracts (ACFAgMax: AC) from Aureobasidium Pullulans (P4257) using C3H/HeJ mice bearing SCC-VII tumor. AC was administered orally daily. Whole body radiation was performed at 7 Gy and local irradiation was done at 18 Gy. Hyperthermia was conducted using temperature controlled water bath at 43degC for 20 minutes. AC was shown to have anti-tumor effect on tumor bearing mice and protected normal tissue from the effects of radiation. We noted also that AC enhanced the effects of hyperthermia and radiotherapy without any noticeable side effects. Our team also found that, AC can affect the immunological activity of cytokines. These results suggest that AC could be useful for maintaining the health of cancer patients and the weak elderly without side effects. (author)

  5. A study on immobilized ethanol yeast cells by radiation technique

    International Nuclear Information System (INIS)

    Hydrophilic monomer 2-hydroxyethyl acrylate (HEA) and a series of polyethylene glycol dimethacrylate monomers were copolymerized by radiation technique at low temperature (-78 degree C) and hydrophilic hydrogels were obtained. The immobilization of yeast cells with these copolymer carriers led to a higher ethanol productivity than free cells. Of all copolymer carriers, the ethanol yield with poly (HEA-14 G) was the highest, about 2.45 times as high as that of free yeast cells. In addition, the ethanol productivity of 12 batch repeated reactions with poly (HEA-14G) carrier was all higher than that of free yeast cells. The ethanol productivity of immobilized yeast cells was dependent on the proportion of hydrophilic monomer to other monomers in copolymer systems, the chain length of the bifunctional monomer, the degree of hydration of copolymer carriers, the structure of copolymer carriers and porosity in the internal structure of carriers. The ethanol yield of immobilized cells depended on swelling ability and porosity of copolymer carriers

  6. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. PMID:25238077

  7. Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast

    OpenAIRE

    Gamero-Sandemetrio, Esther; Torrellas, Max; Rábena, María Teresa; Gómez-Pastor, Rocío; Aranda, Agustín; Matallana, Emilia

    2015-01-01

    The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed t...

  8. Synthetic Yeast Cooperation

    Science.gov (United States)

    Shou, Wenying; Burton, Justin

    2010-03-01

    Cooperation is wide-spread and has been postulated to drive major transitions in evolution. However, Darwinian selection favors ``cheaters'' that consume benefits without paying a fair cost. How did cooperation evolve against the threat of cheaters? To investigate the evolutionary trajectories of cooperation, we created a genetically tractable system that can be observed as it evolves from inception. The system consists of two engineered yeast strains -- a red-fluorescent strain that requires adenine and releases lysine and a yellow-fluorescent strain that requires lysine and releases adenine. Cells that consume but not supply metabolites would be cheaters. From the properties of two cooperating strains, we calculated and experimentally verified the minimal initial cell densities required for the viability of the cooperative system in the absence of exogenously added adenine and lysine. Strikingly, evolved cooperative systems were viable at 100-fold lower initial cell densities than their ancestors. We are investigating the nature and diversity of pro-cooperation changes, the dynamics of cooperator-cheater cocultures, and the effects of spatial environment on cooperation and cheating.

  9. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  10. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  11. Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat.

    Science.gov (United States)

    Ghasemifard, Samaneh; Hermon, Karen; Turchini, Giovanni M; Sinclair, Andrew J

    2015-09-14

    The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague-Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82-83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism). PMID:26234617

  12. Food Chain Security and Vulnerability

    Science.gov (United States)

    Brunet, Sébastien; Delvenne, Pierre; Claisse, Frédéric

    In our contemporary societies, the food chain could be defined as a macro-technical system, which depends on a wide variety of actors and risks analysis methods. In this contribution, risks related to the food chain are defined in terms of "modern risks" (Beck 1992). The whole national economic sector of food production/distribution is vulnerable to a local accident, which can affect the functioning of food chain, the export programs and even the political system. Such a complex socio-technical environment is undoubtedly vulnerable to intentional act such as terrorism.

  13. Regulation of Yeast Nutrient Permease Endocytosis by ATP-binding Cassette Transporters and a Seven-transmembrane Protein, RSB1*

    OpenAIRE

    Johnson, Soraya S.; Hanson, Pamela K.; Manoharlal, Raman; Brice, Sarah E.; Cowart, L. Ashley; Moye-Rowley, W. Scott

    2010-01-01

    Ceramide is produced by the condensation of a long chain base with a very long chain fatty acid. In Saccharomyces cerevisiae, one of the two major long chain bases is called phytosphingosine (PHS). PHS has been shown to cause toxicity in tryptophan auxotrophic strains of yeast because this bioactive ceramide precursor causes diversion of the high affinity tryptophan permease Tat2 to the vacuole rather than the plasma membrane. Loss of the integral membrane protein Rsb1 increased PHS sensitivi...

  14. The contribution of glutathione to the destabilizing effect of yeast on wheat dough.

    Science.gov (United States)

    Verheyen, C; Albrecht, A; Herrmann, J; Strobl, M; Jekle, M; Becker, T

    2015-04-15

    Any factor which impairs the development of the gluten network affects the gas retention capacity and the overall baking performance. This study aimed to examine why rising yeast concentrations (Saccharomyces cerevisiae) decrease the dough elasticity in an asymptotic manner. Since in 27 commercial fresh and dry yeasts up to 81 mg glutathione (GSH) per 1g dry sample were found. Through the addition of reduced GSH in dough without yeast, the extent of dough weakening was analysed. Indeed rheological measurements confirmed that yeast-equivalent levels of GSH had a softening effect and during 3h fermentation the weakening coefficient increased from 0.3% to 20.4% in a Rheofermentometer. The present results indicate that free -SH compounds, as represented by GSH, considerably contribute to the softening of dough through dead yeast cells. PMID:25466019

  15. Targeting the Mitochondrial Respiratory Chain of Cryptococcus through Antifungal Chemosensitization: A Model for Control of Non-Fermentative Pathogens

    Directory of Open Access Journals (Sweden)

    Kathleen L. Chan

    2013-07-01

    Full Text Available Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain (MRC inhibition compared to species of Candida. This higher sensitivity results from the inability of Cryptococcus to generate cellular energy through fermentation. To heighten disruption of cellular MRC, octyl gallate (OG or 2,3-dihydroxybenzaldehyde (2,3-DHBA, phenolic compounds inhibiting mitochondrial functions, were selected as chemosensitizers to pyraclostrobin (PCS; an inhibitor of complex III of MRC. The cryptococci were more susceptible to the chemosensitization (i.e., PCS + OG or 2,3-DHBA than the Candida with all Cryptococcus strains tested being sensitive to this chemosensitization. Alternatively, only few of the Candida strains showed sensitivity. OG possessed higher chemosensitizing potency than 2,3-DHBA, where the concentration of OG required with the drug to achieve chemosensitizing synergism was much lower than that required of 2,3-DHBA. Bioassays with gene deletion mutants of the model yeast Saccharomyces cerevisiae showed that OG or 2,3-DHBA affect different cellular targets. These assays revealed mitochondrial superoxide dismutase or glutathione homeostasis plays a relatively greater role in fungal tolerance to 2,3-DHBA or OG, respectively. These findings show that application of chemosensitizing compounds that augment MRC debilitation is a promising strategy to antifungal control against yeast pathogens.

  16. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    Science.gov (United States)

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications. PMID:27041690

  17. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Science.gov (United States)

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil. PMID:27116959

  18. The Rise and Fall of a Yeast Community, An Environmental Investigation into the Dynamics of Population Growth.

    Science.gov (United States)

    Minnesota Environmental Sciences Foundation, Inc., Minneapolis.

    In this unit students study populations by observing some of the activities that go on in one particular population. Specifically, yeast plants are examined and some of the effects which various environmental factors have on yeast plant populations are investigated. A population curve is developed showing how easily it is affected by the…

  19. Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast.

    Science.gov (United States)

    Baile, Matthew G; Sathappa, Murugappan; Lu, Ya-Wen; Pryce, Erin; Whited, Kevin; McCaffery, J Michael; Han, Xianlin; Alder, Nathan N; Claypool, Steven M

    2014-01-17

    After biosynthesis, an evolutionarily conserved acyl chain remodeling process generates a final highly homogeneous and yet tissue-specific molecular form of the mitochondrial lipid cardiolipin. Hence, cardiolipin molecules in different organisms, and even different tissues within the same organism, contain a distinct collection of attached acyl chains. This observation is the basis for the widely accepted paradigm that the acyl chain composition of cardiolipin is matched to the unique mitochondrial demands of a tissue. For this hypothesis to be correct, cardiolipin molecules with different acyl chain compositions should have distinct functional capacities, and cardiolipin that has been remodeled should promote cardiolipin-dependent mitochondrial processes better than its unremodeled form. However, functional disparities between different molecular forms of cardiolipin have never been established. Here, we interrogate this simple but crucial prediction utilizing the best available model to do so, Saccharomyces cerevisiae. Specifically, we compare the ability of unremodeled and remodeled cardiolipin, which differ markedly in their acyl chain composition, to support mitochondrial activities known to require cardiolipin. Surprisingly, defined changes in the acyl chain composition of cardiolipin do not alter either mitochondrial morphology or oxidative phosphorylation. Importantly, preventing cardiolipin remodeling initiation in yeast lacking TAZ1, an ortholog of the causative gene in Barth syndrome, ameliorates mitochondrial dysfunction. Thus, our data do not support the prevailing hypothesis that unremodeled cardiolipin is functionally distinct from remodeled cardiolipin, at least for the functions examined, suggesting alternative physiological roles for this conserved pathway. PMID:24285538

  20. Information flow in the pharmaceutical supply chain.

    Science.gov (United States)

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  1. Chain reaction

    International Nuclear Information System (INIS)

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  2. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  3. Yeast strains as potential aroma enhancers in dry fermented sausages.

    Science.gov (United States)

    Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela

    2015-11-01

    Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages. PMID:25765533

  4. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  5. Crater Chains

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  6. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  7. Comparison of the yeast microbiota of different varieties of cool-climate grapes by PCR-RAPD

    Directory of Open Access Journals (Sweden)

    Iwona Drożdż

    2015-08-01

    on the surface of grape fruits is very important for the process of winemaking. Yeasts influence the course of alcoholic fermentation, the flavor, aroma, and thus the quality of the produced wine. To a large extent their presence depends on the condition of the surface of the fruit. Many researchers reported significant differences between yeast microflora in grapes of Mediterranean and cool-climate vineyards. As they are expected to affect the final wine properties precise researching of the microflora of cool-climate grapes may lead to the isolation of new species of yeasts and thus the wines with unique characteristics can be obtained.

  8. Depolarization affects lateral microdomain structure of yeast plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Herman, P.; Večeř, J.; Opekarová, Miroslava; Veselá, Petra; Jančíková, I.; Zahumenský, J.; Malínský, Jan

    2015-01-01

    Roč. 282, č. 3 (2015), s. 419-434. ISSN 1742-464X R&D Projects: GA ČR GAP205/12/0720 Institutional support: RVO:68378041 Keywords : gel microdomains * lipid order * transmembrane potential Subject RIV: EA - Cell Biology Impact factor: 4.001, year: 2014

  9. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    Science.gov (United States)

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  10. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  11. Black yeasts in cold habitats

    NARCIS (Netherlands)

    L. Selbmann; G.S. de Hoog; L. Zucconi; D. Isola; S. Onofri

    2014-01-01

    Black yeasts have already been known since the end of the nineteenth century, but for a number of reasons, only few workers were familiar with them. That was since recently, until the wealth of biodiversity, stunning ecologies and potential applications have become apparent. Some remote and extreme

  12. Graphs: Associated Markov Chains

    OpenAIRE

    Murthy, Garimella Rama

    2012-01-01

    In this research paper, weighted / unweighted, directed / undirected graphs are associated with interesting Discrete Time Markov Chains (DTMCs) as well as Continuous Time Markov Chains (CTMCs). The equilibrium / transient behaviour of such Markov chains is studied. Also entropy dynamics (Shannon entropy) of certain structured Markov chains is investigated. Finally certain structured graphs and the associated Markov chains are studied.

  13. A Monitor for Bud Emergence in the Yeast Morphogenesis Checkpoint

    OpenAIRE

    Theesfeld, Chandra L.; Zyla, Trevin R.; Bardes, Elaine G.S.; Lew, Daniel J.

    2003-01-01

    Cell cycle transitions are subject to regulation by both external signals and internal checkpoints that monitor satisfactory progression of key cell cycle events. In budding yeast, the morphogenesis checkpoint arrests the cell cycle in response to perturbations that affect the actin cytoskeleton and bud formation. Herein, we identify a step in this checkpoint pathway that seems to be directly responsive to bud emergence. Activation of the kinase Hsl1p is dependent upon...

  14. Studies on Single Chain Structure of Konjac Glucomannan

    Institute of Scientific and Technical Information of China (English)

    PANG Jie; SUN Yu-Jing; SUN Yuan-Ming

    2006-01-01

    The simulation is carried out by employing the method of molecular dynamics with the single chain of konjac glucomannan (KGM) in vacuum as the structural model to discuss the factors that affect the single chain structure, the dynamic structure of the chain and the acting forces that maintain the chain structure. The results show that the shape and stability of the chain are affected by the degree of polymerization. As for the KGM with high degree of polymerization, its chain presents random coiling state and its stability declines. Both before and after deacetylation in the process of dynamic motion, the chain of KGM presents random coiling state with periodic variation of extension and coil and demonstrates favorable flexibility, indicating acetyl is not the main factor that affects the shape of chain, whereas dihedral angle and static actions are respectively the key bonding and nonbonding acting forces that influence the single chain conformations in vacuum.

  15. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    Science.gov (United States)

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  16. Consumo de aminoácidos de cadeia ramificada não afeta o desempenho de endurance Branched-chain amino acids ingestion does not affect endurance performance

    Directory of Open Access Journals (Sweden)

    Marco Carlos Uchida

    2008-02-01

    Full Text Available A suplementação com aminoácidos de cadeia ramificada (BCAA é uma das manipulações dietéticas mais populares entre atletas engajados em atividades de endurance. Entretanto, o papel ergogênico destes aminoácidos ainda não está totalmente estabelecido. Portanto, o objetivo do presente trabalho foi avaliar o efeito do consumo de BCAA sobre o exercício de endurance realizado até a exaustão. A fim de provocar redução do estoque de glicogênio muscular e, por conseguinte, maximizar a utilização dos BCAA, os sujeitos (n=17 foram submetidos a uma sessão prévia de exercício (corrida realizada a 75% do VO2max por 40 min seguida por 2 tiros a 90% do VO2max por 10 min cada um. Subseqüentemente, após o consumo aleatório de BCAA (77 mg.kg-1 ou placebo, seguindo modelo duplo cego cruzado, os participantes executaram um teste para determinação da capacidade de endurance (corrida a 90% do Limiar anaeróbio até a exaustão. Ambos os experimentos, BCAA e placebo, foram separados por uma semana. Com relação ao tempo até a exaustão e a distância percorrida, nenhuma diferença foi detectada entre as condições experimentais. (Placebo: 50,1±8,9 vs BCAA: 52,4±4,5 min, respectivamente (Placebo: 8,8±1,3 vs BCAA: 9,1±0,6 km, respectivamente. Além disto, também não foi evidenciada diferença na concentração plasmática de glicose, de lactato e de amônia entre ambas condições experimentais. Em conclusão, a suplementação de BCAA não afetou o desempenho de endurance em um teste de corrida até a exaustão.Branched-chain amino acids (BCAA supplementation is one of the most popular dietary manipulations used by endurance athletes. However, the ergogenic role of these amino acids in endurance exercise is not well established yet. Therefore, the aim of this study was to evaluate the effect of BCAA supplementation upon endurance exercise performed until exhaustion. In order to induce glycogen supply reduction, and thus maximize BCAA

  17. Construction and Screening of Antigen Targeted Immune Yeast Surface Display Antibody Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith D.; Pefaur, Noah B.; Baird, Cheryl L.

    2008-07-01

    These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks resulting in a panel of scFvs specific for the target antigen.

  18. Construction and Screening of Antigen Targeted Immune Yeast Surface Display Antibody Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith D.; Pefaur, Noah B.; Baird, Cheryl L.

    2009-08-02

    These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magneticactivated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks, resulting in a panel of scFvs specific for the target antigen.

  19. Nectar yeasts in the tall Larkspur Delphinium barbeyi (Ranunculaceae and effects on components of pollinator foraging behavior.

    Directory of Open Access Journals (Sweden)

    Robert N Schaeffer

    Full Text Available Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54-77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness.

  20. Facile synthesis of hydroxyapatite/yeast biomass composites and their adsorption behaviors for lead (II).

    Science.gov (United States)

    Zhang, Wei; Wang, Feihu; Wang, Peilu; Lin, Li; Zhao, Yu; Zou, Ping; Zhao, Maojun; Chen, Hui; Liu, Yong; Zhang, Yunsong

    2016-09-01

    For the first time, the hydroxyapatite (HAp)/yeast biomass composites were successfully synthesized through a facile alkaline ultrasound cavitation method, and used as a novel sorbent for removal of Pb(2+) from aqueous solution. The obtained HAp/yeast biomass composites were characterized by various techniques, including SEM, EDX, XRD, TGA, FTIR, XPS and fluorescence detection, respectively. It was found that the yeast cells were wrapped by the well-dispersed HAp, and more functional groups (such as carboxyl, hydroxyl and amino) on yeast surface were exposed. Also, varying factors that may affect the adsorption efficiency of HAp/yeast biomass composites, such as solution pH, reaction temperature and time, have been carefully investigated respectively. Remarkably, more than 99% of Pb(2+) can be removed by the HAp/yeast biomass composites. Evidence from FTIR and XPS analysis revealed that the higher removal efficiency should be ascribed to the synergetic effect of synthesized HAp and more functional groups exposed on yeast surface. PMID:27267041

  1. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    Science.gov (United States)

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. PMID:26568202

  2. Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast

    Science.gov (United States)

    Jara, Carla; Laurie, V. Felipe; Mas, Albert; Romero, Jaime

    2016-01-01

    In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30°S and 36°S was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule, and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape–berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma, and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product. PMID:27242693

  3. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here. PMID:25682759

  4. Combinatorial pathway assembly in yeast

    Directory of Open Access Journals (Sweden)

    Khalil Essani

    2015-10-01

    Full Text Available With the emergence of synthetic biology and the vast knowledge about individual biocatalytic reactions, the challenge nowadays is to implement whole natural or synthetic pathways into microorganisms. For this purpose balanced enzyme activities throughout the pathway need to be achieved in addition to simple functional gene expression to avoid bottlenecks and to obtain high titers of the desired product. As the optimization of pathways in a specific biological context is often hard to achieve by rational design, combinatorial approaches have been developed to address this issue. Here, current strategies and proof of concepts for combinatorial pathway assembly in yeasts are reviewed. By exploiting its ability to join multiple DNA fragments in a very efficient and easy manner, the yeast Saccharomyces cerevisiae does not only constitute an attractive host for heterologous pathway expression, but also for assembling pathways by recombination in vivo.

  5. MANAGING RISK IN SUPPLY CHAIN

    OpenAIRE

    Karppinen, Sami

    2015-01-01

    In this master thesis the focus was to study risk management in supply chain management. During the work different types of risks were studied and how they affect purchasing in industry. The purpose of the work was also to enhance the writer’s ability to do his own daily work and to bring new views to his employer for managing a supply chain. In this work different techniques which have been introduced in the industry were reviewed. During the work, an interview survey was made among the ...

  6. Nuclear Import of Yeast Proteasomes

    Directory of Open Access Journals (Sweden)

    Julianne Burcoglu

    2015-08-01

    Full Text Available Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence.

  7. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  8. Health supply chain management.

    Science.gov (United States)

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors. PMID:20407173

  9. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof and...

  10. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-01-01

    BACKGROUND: It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by...... ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. RESULTS: Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same...... alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time...

  11. Yeast effects on Pinot noir wine phenolics, color, and tannin composition.

    Science.gov (United States)

    Carew, Anna L; Smith, Paul; Close, Dugald C; Curtin, Chris; Dambergs, Robert G

    2013-10-16

    Extraction and stabilization of wine phenolics can be challenging for wine makers. This study examined how yeast choice affected phenolic outcomes in Pinot noir wine. Five yeast treatments were applied in replicated microvinification, and wines were analyzed by UV-visible spectrophotometry. At bottling, yeast treatment Saccharomyces cerevisiae RC212 wine had significantly higher concentrations of total pigment, free anthocyanin, nonbleachable pigment, and total tannin and showed high color density. Some phenolic effects were retained at 6 months' bottle age, and RC212 and S. cerevisae EC1118 wines showed increased mean nonbleachable pigment concentrations. Wine tannin composition analysis showed three treatments were associated with a higher percentage of trihydroxylated subunits (skin tannin indicator). A high degree of tannin polymerization was observed in wines made with RC212 and Torulaspora delbruekii , whereas tannin size by gel permeation chromatography was higher only in the RC212 wines. The results emphasize the importance of yeast strain choice for optimizing Pinot noir wine phenolics. PMID:24011384

  12. Yeast cell mortality related to a high-pressure shift: occurrence of cell membrane permeabilization.

    Science.gov (United States)

    Perrier-Cornet, J M; Hayert, M; Gervais, P

    1999-07-01

    The shrinkage of yeast cells caused by high-pressure treatment (250 MPa, 15 min) was investigated using direct microscopic observation. A viable staining method after treatment allowed the volume variation of two populations to be distinguished: an irreversible volume decrease (about 35% of the initial volume) of pressure-inactivated cells during pressure holding time, and viable cells, which were less affected. A mass transfer was then induced during high-pressure treatment. Causes of this transfer seem to be related to a pressure-induced membrane permeabilization, allowing a subsequent leakage of internal solutes, where three ions (Na+, K+ and Ca2+), plus endogenous glycerol, were verified. This glycerol leakage was found to occur after yeast pressurization in a medium having low water activity, although the yeast was not inactivated. All these observations lead to the hypothesis that pressure-induced cell permeabilization could be the cause of yeast inactivation under pressure. PMID:10432582

  13. QUALITY OF MILK FATTY ACID DURING LATE LACTATION IN DAIRY GOAT FED ON PUFA-DIET SUPPLEMENTED WITH YEAST AND

    Directory of Open Access Journals (Sweden)

    E. Sulistyowati

    2014-10-01

    Full Text Available Yeast and curcumin of C. xanthorrhiza Roxb could be added into concentrate containingpolyunsaturated fatty acid (PUFA to improve milk fatty acid quality of dairy goat. There were fivetreatments (PD0: PUFA- diet with no additive; PDA: PUFA- diet with 3 Asifit tablets; PDY: PUFA- dietwith 5 g yeast; PDC: PUFA- diet with 20 g curcuma powder; and PDM: PUFA- diet with a mixture of 5g yeast and 20 g curcuma powder applied onto 20 dairy goats during late lactation (4.6 ± 0.55 monthsof lactation. The treatments were allocated according to a completely completely randomized blockdesign. Results demonstrated that diet containing PUFA supplemented with 5 g yeast and 20 g curcumawere high in total fatty acid, medium chain fatty acid (MCFA, and long chain fatty acid (LCFA. Milkof goats with this treatment showed high in mono unsaturated fatty acid (MUFA and MUFA; while itwas low in short chain fatty acid (SCFA, n6/n3 ratio, and atherogenicity index. These qualities wereoptimally considered good in terms of healthier product. Therefore, the PUFA- diet with 5 g yeast and20 g curcuma was a reasonable choice to be applied for dairy goat.

  14. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  15. Yeast Interacting Proteins Database: YEL005C, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available endosome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with th...protein localizes to the endosome; identified as a transcriptional activator in a high-throughput yeast one-

  16. Two-dimensional gel electrophoresis of selenized yeast and autoradiography of 75Se-containing proteins

    International Nuclear Information System (INIS)

    Two-dimensional high-resolution gel electrophoresis (2DE) has been applied to the fractionation of 75Se-containing proteins in yeast, grown in 75Se-containing medium, and autoradiography was used for detection of the 75Se-containing proteins. Gel filtration and ultrafiltration were used to check whether the selenium side-chains were stable in the presence of the chemicals used for lysis and 2DE. The mass distribution of the selenium-containing proteins was estimated by use of gel filtration and the results were compared with the distribution obtained by 2DE. A 2DE map of selenium-containing proteins in yeast is presented, and compared with a total protein map of yeast. (orig.)

  17. Revaluation of Waste Yeast from Beer Production

    OpenAIRE

    Nicoleta Suruceanu; Sonia Socaci; Teodora Coldea; Elena Mudura

    2013-01-01

    Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, ident...

  18. The Application of Enzyme and Yeast

    OpenAIRE

    Zhao, Qing

    2012-01-01

    This bachelor’s thesis concerns the application of enzymes and yeasts for bio-industry. The purpose of this work is to understand the basic knowledge about enzyme and yeast, and meanwhile, to find out their different applications. Through comprehensive study, the knowledge was accumulated which brought a clear understanding for the enzyme structure and yeast microorganism, together with their working principles for the bioprocess. For wood-based industry, the different enzymes used in bi...

  19. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    OpenAIRE

    Stamps, Judy A.; Yang, Louie H; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast densit...

  20. OPTIMIZATION OF YEAST FOR ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Taghizadeh Ghassem

    2012-02-01

    Full Text Available The production of pure ethanol apparently begins in the 12-14th century. Improvements in the distillation process with the condensation of vapors of lower boiling liquids. Ethanol is produced commercially by chemical synthesis or biosynthesis. High ethanol producing yeast exhibits rapid metabolic activity and a high fermentation rate with high product output in less time.Yeasts were isolated from Corn, Curd, Grapes, Water 1, Water 2, and Paneer. Isolation was done on MGYP (Malt Extract Glucose Yeast extract Peptone media. Contamination was less in selected media. Grape sample yeast was observed as high in producing ethanol after optimization in jaggery broth. Curd yeast gives 4.6% alcohol by volume alcohol (a.b.v after fermentation .Paneer yeast gives 2.88% alcohol by volume alcohol (a.b.v after fermentation. Corn yeast gives 5.25% (a.b.v alcohol after fermentation Water-1 yeast gives 5.51% (a.b.v alcohol after fermentation.Water-2 yeast gives 4.98% (a.b.v alcohol after fermentation.

  1. Construction of Killer Wine Yeast Strain

    OpenAIRE

    Seki, Tetsuji; Choi, Eon-Ho; Ryu, Dewey

    1985-01-01

    A double-stranded RNA plasmid which confers the superkiller phenotype was transferred into a wine yeast (Montrachet strain 522) and its leucine-requiring derivative (strain 694) by cytoduction, using the protoplast fusion technique. The killer wine yeast constructed completely suppressed the growth of killer-sensitive strains of Saccharomyces cerevisiae in yeast extract-peptone-glucose medium at pH 4.5, whereas the killer effect was somewhat decreased at pH 3.5. The wine yeast harboring the k...

  2. 神经质与生活满意度的关系:情绪和自尊的链式中介作用%The Relation Between Neuroticism and Life Satisfaction: The Chain Mediating Effects of Affect and Self-Esteem

    Institute of Scientific and Technical Information of China (English)

    刘亚

    2012-01-01

    Rosenberg Self-esteem Scale which comprises ten statements. The participants rated the extent to which they agreed with each statement on a 4 - point Likert scale. Life satisfaction was evaluated with the Satisfaction with Life Scale which consists of five statements. The respondents rated the extent to which they agreed with each statement on a 7 - point Likert scale. The results showed: ( 1 ) Neuroticism is positively related to negative affect, but negatively correlated with positive affect, self-es- teem and life satisfaction. (2) Positive and negative affects mediated the relation between neureticism and self-esteem. Furthermore, self-esteem was found to mediate the relationships between positive and negative affect and life satisfaction. (3) Neureticism didnt have a significantly direct effect on individuals'life satisfaction, but indirectly affected life satisfaction via two mediational chains, the positive affect-self-esteem mediational chain and the negative affect-self-esteem mediational chain. Both absolute and incremental fit indices in- dicated that the chain mediational model had a good fit to the data. And all latent variable variances and factor loadings were highly sig- nificant. These findings highlight the complex nature of association between neuroticism and life satisfaction. Neuroticism indirectly affects life satisfaction through the positive affect-self-esteem mediational chain and the negative affect-self-esteem mediational chain, but cant directly affect life satisfaction. This study provides new and further evidence that neuroticism is associated with a number of negative life outcomes, including less positive mood, more aversive mood, poor self-esteem, low levels of life satisfaction.

  3. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    :0), myristic acid (C14:0), or palmitic acid (C16:0), an effect of fatty acid length was also evident, and data indicated that short-chain fatty acids (C4C6) are immediately converted, whereas mediumlong-chain fatty acids (C1216) are incorporated into triglycerides and deposited in the cells. In conclusion, the......In the present study the metabolic response to various fatty acids was investigated in HepG2 cells by using a 1HNMRbased approach. To elucidate the effect of cis/trans configuration, the cells were exposed to either oleic acid (C18:1 cis-9), elaidic acid (C18:1 trans-9), vaccenic acid (C18:1 trans......-11), linoleic acid (C18:2), or palmitic acid (C16:0), and multivariate data analysis revealed a strong effect of fatty acid on the lipophilic metabolite fraction. Inspection of the spectra revealed that the difference between the observed responses could be ascribed to the appearance of resonances...

  4. Simple and reliable procedure for PCR amplification of genomic DNA from yeast cells using short sequencing primers

    DEFF Research Database (Denmark)

    Haaning, J; Oxvig, C; Overgaard, Michael Toft;

    1997-01-01

    means of PCR without any prior DNA purification steps. This method involves a simple boiling step of whole yeast cells in the presence of detergent, and subsequent amplification of genomic DNA using short sequencing primers in a polymerase chain reaction assay with a decreasing annealing temperature...

  5. YMDB: the Yeast Metabolome Database.

    Science.gov (United States)

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated 'metabolomic' database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  6. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species.

    Science.gov (United States)

    Kolouchová, Irena; Schreiberová, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2015-11-01

    The possibility of utilizing volatile fatty acids (VFA)-containing waste substrates from biotechnological and industrial processes was investigated by cultivating both oleaginous (Candida sp., Rhodotorula glutinis, Trichosporon cutaneum, Yarrowia lipolytica) and non-oleaginous (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulaspora delbrueckii) yeast species on acetic acid, propionic acid and a combination of either acid with glucose as carbon and energy sources. Both oleaginous and non-oleaginous yeasts grew on VFA. Oleaginous yeasts accumulated lipids to 15-48% of dry cell weight, non-oleaginous yeasts also grew on VFA and showed comparable biomass yields but the lipid content was only 2-5%. Biomass and lipid yield increased in cultivations on VFA plus glucose. The lipid composition was comparable to plant-derived oils and therefore might be exploitable in biodiesel production; nearly all species, when cultured on propionate, showed a high content of the desirable odd-chain unsaturated FA, especially 17:1 acid. This study points at the wide array of possible applications of many yeasts, even non-oleaginous strains, for biovalorization of industrial wastes. Despite their low lipid content these species are useful because they can readily utilize VFA from waste products and, since they are not biologically hazardous, their biomass can be afterwards used, e.g. as livestock fodder. PMID:26323601

  7. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26647111

  8. Hydrogen Peroxide Metabolism in Yeasts

    OpenAIRE

    Verduyn, C; Giuseppin, M L; Scheffers, W A; van Dijken, J P

    1988-01-01

    A catalase-negative mutant of the yeast Hansenula polymorpha consumed methanol in the presence of glucose when the organism was grown in carbon-limited chemostat cultures. The organism was apparently able to decompose the H2O2 generated in the oxidation of methanol by alcohol oxidase. Not only H2O2 generated intracellularly but also H2O2 added extracellularly was effectively destroyed by the catalase-negative mutant. From the rate of H2O2 consumption during growth in chemostat cultures on mix...

  9. Fatty acid profiling: a feasible typing system to trace yeast contamination in wine bottling plants.

    Science.gov (United States)

    Malfeito-Ferreira, M; Tareco, M; Loureiro, V

    1997-09-16

    The long-chain fatty acid composition of yeast strains was determined for several species associated with the wine industry. The Saccharomyces cerevisiae, Zygosaccharomyces bailii, Saccharomycodes ludwigii, Schizosaccharomyces pombe, Brettanomyces/Dekkera spp., Pichia anomala, Pichia membranaefaciens and Lodderomyces elongisporus species presented distinct fatty acid profiles after multivariate statistical analysis. The Zygosaccharomyces rouxii species showed profiles similar to Zygosaccharomyces bailii. The use of fatty acid profiling in wine bottling plants and wines makes it possible to trace the origin of the strains responsible for spoiling the final product. In one case the origin was found at the outlet of the finishing filter and identified as Zygosaccharomyces bailii. In the other case the source of contamination was discovered in the heads of the filling machine and assigned to the Pichia membranaefaciens species. The results point out the discriminating power and the industrial applicability of the technique described in this work to analyse yeast long-chain fatty acid compositions. PMID:9506280

  10. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.; Blom, Nikolaj

    2007-01-01

    We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast-an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation...... sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...... in yeast....

  11. Needed: a strategic approach to supply chain management.

    Science.gov (United States)

    Kowalski, Jamie C

    2009-06-01

    When devising a supply chain strategic plan, consider these points: Frame the supply chain broadly to include all possible components and expenses. Recognize how each part of the supply chain affects other parts. Engage all parties and customers in strategic discussions. Educate all involved. Objectively assess the current state. Visualize an unencumbered future state. Quantify quality, productivity, and financial goals. PMID:19526824

  12. Relations Between Extraversion and Satisfaction with Life:Chain Mediating Effect of Affect and Self-Esteem%大学生外倾性与生活满意度的关系:情绪和自尊的链式中介作用

    Institute of Scientific and Technical Information of China (English)

    刘亚; 王振宏; 马娟; 霍静萍

    2011-01-01

    Objective: To explore the relations among extraversion, positive affect, negative affect, self-esteem, and satisfaction with life in college students. Methods: 348 college students were investigated with Extraversion Scale of Neo-FFI-R, Positive and Negative Affect Schedule, Rosenberg Self-Esteem Scale, and Satisfaction with Life Scale. Results:① Correlation analysis showed that, extraversion, positive affect, self-esteem and satisfaction with life correlated significantly with each other, while extraversion, self-esteem and satisfaction with life negatively correlated with negative affect.② Structural equation modeling showed that, extraversion could exert effects on satisfaction with life directly, also through the mediating effect of self-esteem and the chain mediating effects of positive affect-self-esteem and negative affect-self-esteem. Conclusion: Extraversion could affect satisfaction with life, not only through the direct path, but also through the indirect path of mediation of self-esteem and mediational chains of affect and self-esteem.%目的:探讨大学生外倾性、积极情绪、消极情绪、自尊和生活满意度之间的关系.方法:采用简式大五人格量表的外倾性分量表、积极和消极情感量表、Rosenberg自尊量表和生活满意度量表对348名大学生进行调查.结果:①相关分析显示,外倾性、积极情绪、自尊和生活满意度两两显著正相关;外倾性、自尊和生活满意度与消极情绪显著负相关.②结构方程模型分析表明,外倾性不仅直接影响个体的生活满意度,而且还通过自尊的中介作用与积极情绪-自尊中介链和消极情绪-自尊中介链的中介作用对生活满意度产生间接效应.结论:外倾性既通过直接路径,也通过自尊的中介作用和情绪-自尊的链式中介作用等间接路径影响个体的生活满意度.

  13. Biological repair of Pichia Pinus yeasts

    International Nuclear Information System (INIS)

    The effectiveness of liquid-holding recovery of Pichia pinus yeast after γ- and α-irradiation was determined. Haploid cells are not capable of recovery involved. Nonreparable component of diploid yeast recovery is 0.7 after γ-irradiation and 0.8 after α-irradiation

  14. Basis for Half-Site Ligand Binding in Yeast NAD+-Specific Isocitrate Dehydrogenase†

    OpenAIRE

    Lin, An-Ping; McAlister-Henn, Lee

    2011-01-01

    Yeast NAD+-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four heterodimers of a catalytic IDH2 subunit and a regulatory IDH1 subunit. Despite structural predictions that the enzyme would contain eight isocitrate binding sites, four NAD+ binding sites, and four AMP binding sites, only half of the sites for each ligand are measurable in binding assays. Based on a potential interaction between side chains of Cys-150 residues in IDH2 subunits in eac...

  15. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    OpenAIRE

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked ...

  16. Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties – review

    Directory of Open Access Journals (Sweden)

    Iwona Gientka

    2015-12-01

    Full Text Available The yeast exopolysaccharides (EPS are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show anti- tumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioac- tive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates forming EPS.

  17. The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts.

    Science.gov (United States)

    Abbott, D A; Ingledew, W M

    2005-11-01

    Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of > or =20 ml air l(-1) mash min(-1) showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts. PMID:15782293

  18. COFFEE COMMODITY CHAIN

    OpenAIRE

    Tine Olsen; Brett Inder

    2008-01-01

    To explain the value added along the coffee commodity chain we propose and estimate a theoretical model of the coffee commodity chain. The theoretical model consists of four markets and five agents in the coffee commodity chain and predicts that prices in the coffee commodity chain move together but are also influenced by income, technology and production. A vector error correction model is used to test the theoretical predictions. In addition to the theoretical conclusions the empirical mode...

  19. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  20. The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains.

    Science.gov (United States)

    Casu, Francesca; Pinu, Farhana R; Fedrizzi, Bruno; Greenwood, David R; Villas-Boas, Silas G

    2016-08-01

    The level of linoleic acid in the Sauvignon blanc (SB) grape juice affects the development of different aroma compounds during fermentation by Saccharomyces cerevisiae EC1118, including key varietal thiols such as 3-mercaptohexanol (3MH) and 3-mercaptohexyl acetate (3MHA). However, it is still unknown if linoleic acid would affect in a similar way other commonly used S. cerevisiae wine strains. Here we investigated the effect of grape juice linoleic acid on the development of aroma compounds and other metabolites of SB wines using different wine yeast strains: EC1118, AWRI796 and VIN13. Linoleic acid clearly affected the levels of acetylated aroma compounds, several amino acids, and antioxidant molecules, independent of yeast strain, but the production of 3MH was affected by linoleic acid in a strain-specific manner. Moreover, the supplementation of deuterium-labelled 3MH also affected the production of varietal thiols in a strain-specific way. Linoleic acid reduced the acetylation process probably by inhibiting an acetyltransferase, an effect that was independent of the yeast strain. However, regulation of the 3MH biosynthesis is strain-specific, which suggests a mindful consideration not only towards the wine yeast but also to the linoleic acid concentration in the grape juice in order to obtain the desired wine aroma characteristics. PMID:27364827

  1. Molecular Genetic Tools and Techniques in Fission Yeast.

    Science.gov (United States)

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-01-01

    The molecular genetic tools used in fission yeast have generally been adapted from methods and approaches developed for use in the budding yeast, Saccharomyces cerevisiae Initially, the molecular genetics of Schizosaccharomyces pombe was developed to aid gene identification, but it is now applied extensively to the analysis of gene function and the manipulation of noncoding sequences that affect chromosome dynamics. Much current research using fission yeast thus relies on the basic processes of introducing DNA into the organism and the extraction of DNA for subsequent analysis. Targeted integration into specific genomic loci is often used to create site-specific mutants or changes to noncoding regulatory elements for subsequent phenotypic analysis. It is also regularly used to introduce additional sequences that generate tagged proteins or to create strains in which the levels of wild-type protein can be manipulated through transcriptional regulation and/or protein degradation. Here, we draw together a collection of core molecular genetic techniques that underpin much of modern research using S. pombe We summarize the most useful methods that are routinely used and provide guidance, learned from experience, for the successful application of these methods. PMID:27140925

  2. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    Science.gov (United States)

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed. PMID:24384752

  3. Constraints management and value chain performance for sustainable development

    OpenAIRE

    Richard Bitange Nyaoga; Peterson Obara Magutu

    2016-01-01

    Managers are ever seeking for better ways of managing their constraints to improve their company’s value chain performance and competitiveness. Although previous literature explored constraint management, it was inconclusive as to how constraint management could affect the value chain performance in tea processing chains. The purpose of this study is to determine the relationship between constraint management and firm value chain performance of tea processing firms. This study undertook an em...

  4. Risk Migration In Supply Chain Inventory Financing Service

    OpenAIRE

    Zheng Qin; Xiaochao Ding

    2011-01-01

    Inventory financing affects the risks of both for banks and supply chain companies. Traditionally, supply chain research focus more on material flow than financial. We construct a supply chain financing risk-information migration model (RMM). In this model, we discussed the preconditions to adopt inventory financing when the enterprises are facing cash constraints. And we simulated the whole operate of supply chain and bank behavior with Matlab. The simulation result shows if loan conditions ...

  5. Chain-Chain Based Routing Protocol

    Directory of Open Access Journals (Sweden)

    Samia A Ali

    2011-05-01

    Full Text Available Wireless sensor network (WSN is an emerging technology for monitoring physical world. WSNs consist of large numbers of sensor nodes operated by battery mostly in harsh environment. Thus energy conservation is a primary issue for organization of these sensor nodes. Another crucial issue is the data delivery time by sensor nodes to the sink node, especially in Military, medical fields, and security monitoring systems where minimum delay is desirable. Number of protocols has been proposed in the literature for routing. One of such protocols is the cluster based routing protocol LEACH (low energy adaptive clustering hierarchy. LEACH protocol organizes WSN into a set of clusters and a periodic voting for cluster head is performed in order to be evenly distributed among all the sensors of the WSN. This periodical cluster head voting in LEACH, however, consumes an amount of non-negligible energy and other resources. For energy conservation, PEGASIS (power efficient gathering in sensor information systems a near optimal chain-based protocol has been proposed, however, it is faced with the challenge of long delay for the transmitted data. Another routing protocol called CCM (Chain-Cluster based Mixed routing, which is mainly a hybrid of LEACH and PEGASIS is proposed, the consumed energy increases as network size increases. In this paper, we propose an efficient routing protocol called CCBRP (Chain-Chain based routing protocol, it achieves both minimum energy consumption and minimum delay. The CCBRP protocol mainly divides a WSN into a number of chains (Greedy algorithm is used to form each chain as in PEGSIS protocol and runs in two phases. In the first phase, sensor nodes in each chain transmit data to their chain leader nodes in parallel. In the second phase, all chain leader nodes form a chain (also, using Greedy algorithm and choose randomly a leader node then all chain leader nodes send their data to this chosen leader node. This chosen leader node

  6. Mechanical feedback stabilizes budding yeast morphogenesis

    Science.gov (United States)

    Banavar, Samhita; Trogdon, Michael; Petzold, Linda; Campas, Otger

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres. This requires a tight and simultaneous regulation of cell wall assembly and mechanochemistry, but the underlying mechanisms by which this is achieved remain unclear. Using the growth of mating projections in budding yeast (S. cerevisiae) as a motivating example, we have developed a theoretical description that couples the mechanics of cell wall expansion and assembly via a mechanical feedback. In the absence of a mechanical feedback, cell morphogenesis is inherently unstable. The presence of a mechanical feedback stabilizes changes in cell shape and growth, and provides a mechanism to prevent cell lysis in a wide range of conditions. We solve for the dynamics of the system and obtain the different dynamical regimes. In particular, we show that several parameters affect the stability of growth, including the strength of mechanical feedback in the system. Finally, we compare our results to existing experimental data.

  7. SIMULATING THE SUPPLY DISRUPTION FOR THE COORDINATED SUPPLY CHAIN

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are many disruptive accidents in the supply chain operations system and achieving the coordination of supply chain is main objective for supply chain research. While disruptive accidents have increasingly influenced the coordinated operation of the supply chain, existing research literature on the supply chain coordination is setting in a stationary environment. The answer for how the disruptive accidents affect the coordinated supply chain is given in this paper. Based on the benchmark supply chain which is coordinated by the negative incentive mechanism, we study the impacts of supply disruption on the supply chain system by using simulation approach in which two different distribution function of random variable are used to express the supply disruption. Comparison between these two simulation results and possible coordination mechanism under the supply disruption are proposed. From the perspective of supply chain risk management, we provide the inspiration for the manager.

  8. The Fitness Advantage of Commercial Wine Yeasts in Relation to the Nitrogen Concentration, Temperature, and Ethanol Content under Microvinification Conditions

    OpenAIRE

    García Ríos, Estéfani; Gutiérrez, Alicia; Salvadó, Zoel; Arroyo López, Francisco Noé; Guillamón, José Manuel

    2014-01-01

    The effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control ...

  9. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    interacting partners, yeast two hybrid screen was conducted by using commercially synthesized cDNA library for Euglena gracilis. For both protein kinase and calmodulin some putative interacting partners were found. These plausible candidates are subjected for further validation studies, to verify the protein-protein interaction. In addition, some differential expression studies are also performed for these proteins to evaluate their expression levels under conditions which are known to affect gravitaxis in Euglena gracilis. Taken together, these data are in good agreement with some of already predicted studies for protein localization, but at the same time provides new insights for further studies.

  10. Discrete Quantum Markov Chains

    CERN Document Server

    Faigle, Ulrich

    2010-01-01

    A framework for finite-dimensional quantum Markov chains on Hilbert spaces is introduced. Quantum Markov chains generalize both classical Markov chains with possibly hidden states and existing models of quantum walks on finite graphs. Quantum Markov chains are based on Markov operations that may be applied to quantum systems and include quantum measurements, for example. It is proved that quantum Markov chains are asymptotically stationary and hence possess ergodic and entropic properties. With a quantum Markov chain one may associate a quantum Markov process, which is a stochastic process in the classical sense. Generalized Markov chains allow a representation with respect to a generalized Markov source model with definite (but possibly hidden) states relative to which observables give rise to classical stochastic processes. It is demonstrated that this model allows for observables to violate Bell's inequality.

  11. Gushing metal chain

    Science.gov (United States)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  12. Sales Rebate Contracts in Fashion Supply Chains

    Directory of Open Access Journals (Sweden)

    Chun-Hung Chiu

    2012-01-01

    Full Text Available We explore in this paper the performance of sales rebate contracts in fashion supply chains. We conduct both analytical and numerical analyses via a mean-variance framework with reference to real empirical data. To be specific, we evaluate the expected profits and variance of profits (risk of the fashion supply chains, fashion retailers, and manufacturers under (1 the currently implemented sales rebate practices, (2 the case without sales rebate, and (3 the theoretical coordination situation (if target sales rebate is adopted. In addition, we analyze how sales effort affects the performances of the supply chain and its agents. Our analysis indicates that the rebate contracts may hurt the retailer and the manufacturer of a fashion supply chain when it is inappropriately set. Moreover, a properly designed sales rebate contract not only can coordinate the supply chain (with retail sales effort but can also improve expected profits and lower the levels of risk for both the manufacturer and the retailer.

  13. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  14. Valorization of olive mill wastewater by the yeast Yarrowia lipolytica.

    OpenAIRE

    Araújo, C; Aguedo, Mario; Gomes, N.; Teixeira, J. A.; Belo, I.

    2005-01-01

    The aim of this work was to study the ability of two different strains of the yeast Yarrowia lipolytica to grow on Olive Mill Wastewater (OMW) and their potential to produce high-value products such as lipases. Factors affecting cellular growth and OMW degradation were studied, such as nitrogen supplementation, cells concentration and surfactant addition. Both strains used were able to grow in an OMW with a COD of 19 g/L and total phenols concentration of around 800 mg/L. The strain W29 prese...

  15. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  16. Yeast prion architecture explains how proteins can be genes

    Science.gov (United States)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  17. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  18. Overview of fission yeast septation.

    Science.gov (United States)

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  19. Modeling competition between yeast strains

    Science.gov (United States)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  20. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence. PMID:25700743

  1. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  2. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  3. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  4. Species diversity of yeast-like fungi in some eutrophic lakes in Olsztyn

    Directory of Open Access Journals (Sweden)

    Anna Biedunkiewicz

    2013-12-01

    Full Text Available The study is part of hydromycological investigations of man-affected water bodies in Olsztyn. Our results show that yeast-like fungi are permanent components in three selected lakes (lakes Tursko, Długie and Skanda. Their abundance and species composition depend on the trophic state of each lake.

  5. Crater chains on Mercury

    Science.gov (United States)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  6. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam;

    2014-01-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used...... adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol...

  7. Yeast Exocytic v-SNAREs Confer Endocytosis

    OpenAIRE

    Gurunathan, Sangiliyandi; Chapman-Shimshoni, Daphne; Trajkovic, Selena; Gerst, Jeffrey E.

    2000-01-01

    In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1 (SNC1ala43), are deficient in the endocytic uptake of components from the cell surface. We found that both SNC and temperature-shifted SNC1ala43 yeast are d...

  8. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has also...... been engineered to make chemicals at industrial scale (e.g., succinic acid, lactic acid, resveratrol) and advanced biofuels (e.g., isobutanol) (1). On page 1095 of this issue, Galanie et al. (2) demonstrate that yeast can now be engineered to produce opioids (2), a major class of compounds used for...

  9. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

    DEFF Research Database (Denmark)

    Wilkinson, C R; Seeger, M; Hartmann-Petersen, R; Stone, M; Wallace, M; Semple, C; Gordon, C

    2001-01-01

    The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin-proteasome system. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA do...

  10. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    Full Text Available Samples from different industrial grape cultivars were collected during the vintage season from the vineyard of the winery (the «Shabo» winery Company, located in the Odesa region, Ukraine. The following industrial cultivars of grapes were selected for the research: Chardonnay, Cabernet Sauvignon, Merlot, Sauvignon, Riesling Rhenish, Aligote, Rkatsiteli, Bastardo, Traminer, Telti Kuruk, Grinosh. The grape cultivars were cultivated on the sandy soils in the district located between the Black Sea and the Dnestrovsky estuary. Grape must derived from different grape cultivars was placed into sterile glass flasks to half of the 450ml flask volume. Each flask was carefully closed with a rubber stopper with an injection needle in it. During the fermentation process, it was necessary to remove carbon dioxide, which was present as a result of active anaerobic fermentation processes in the grape must. At the end of grape must fermentation, pure yeast cultures were isolated using traditional microbiological methods by consistent inoculation of a sample into a Petri dish with a few modifications of nutrient selective agar for yeast isolation and cultivation. Primary yeast isolation was carried out using Inhibitory Mold Agar medium (Becton Dickinson Company, USA. The yeast culture morphological properties were analyzed after the primary yeast culture isolation. Yeasts were identified by polymerase chain reaction (PCR using universal yeast primers. After yeast culture identification, the next step in yeast cultivation was carried out on Wort Agar medium (Becton Dickinson Company, USA. Each isolated, and identified yeast culture was deposited in the Genebank of Japan, MAFF culture Collection, Tsukuba, Ibaraki, Japan and (NCYC - Yeast Culture Collection (National Collection of Yeast Cultures, Institute of Food Research, Norwich, United Kingdom. Each yeast culture was tested for technological characteristics such as growth resistance to high temperature (+42

  11. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  12. Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Consuelo GAJATE; Li-ping YU; Yun-xiang FANG; Faustino MOLLINEDO

    2007-01-01

    Aim: To investigate whether a similar process mediates cytotoxicity of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET- 18-OCH3, edelfosine) in both yeasts and human tumor cells.Methods: A modified version of a previously described assay for the intracellular conversion of nitro blue tetrazolium to formazan by superoxide anion was used to measure the generation of reactive oxygen spe-cies (ROS). Apoptotic yeast cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. DNA fragmenta-tion and the generation of ROS were measured by cytofluorimetric analysis in Jurkat cells.Results: Edelfosine induced apoptosis in Saccharomyces cerevisiae,as assessed by TUNEL assay. Meanwhile, edelfosine induced a time- and con-centration-dependent generation of ROS in yeasts. Rotenone, an inhibitor of the mitochondrial electron transport chain, prevented ROS generation and apoptosis in response to edelfosine in S cerevisiae, α-Tocopherol abrogated the edelfosine-induced generation of intracellular ROS and apoptosis. Edelfosine also induced an increase of ROS in human leukemic cells that preceded apoptosis. The overexpression of Bcl-2 by gene transfer abrogated both ROS generation and apoptosis induced by edelfosine in leukemic cells. Changes in the relative mito-chondrial membrane potential were detected in both yeasts and Jurkat cells.Conclusion: These results indicate that edelfosine induces apoptosis in yeasts in addition to human tumor cells, and this apoptotic process involves mitochondria,likely through mitochondrial-derived ROS. These data also suggest that yeasts can be used as a suitable cell model in elucidating the antitumor mechanism of action of edelfosine.

  13. YeastWeb: a workset-centric web resource for gene family analysis in yeast

    Directory of Open Access Journals (Sweden)

    Bao Haihua

    2010-07-01

    Full Text Available Abstract Background Currently, a number of yeast genomes with different physiological features have been sequenced and annotated, which provides invaluable information to investigate yeast genetics, evolutionary mechanism, structure and function of gene families. Description YeastWeb is a novel database created to provide access to gene families derived from the available yeast genomes by assigning the genes into putative families. It has many useful features that complement existing databases, such as SGD, CYGD and Génolevures: 1 Detailed computational annotation was conducted with each entry with InterProScan, EMBOSS and functional/pathway databases, such as GO, COG and KEGG; 2 A well established user-friendly environment was created to allow users to retrieve the annotated genes and gene families using functional classification browser, keyword search or similarity-based search; 3 Workset offers users many powerful functions to manage the retrieved data efficiently, associate the individual items easily and save the intermediate results conveniently; 4 A series of comparative genomics and molecular evolution analysis tools are neatly implemented to allow users to view multiple sequence alignments and phylogenetic tree of gene families. At present, YeastWeb holds the gene families clustered from various MCL inflation values from a total of 13 available yeast genomes. Conclusions Given the great interest in yeast research, YeastWeb has the potential to become a useful resource for the scientific community of yeast biologists and related researchers investigating the evolutionary relationship of yeast gene families. YeastWeb is available at http://centre.bioinformatics.zj.cn/Yeast/.

  14. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    OpenAIRE

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast...

  15. Integrated decision making for the optimal bioethanol supply chain

    International Nuclear Information System (INIS)

    Highlights: • Optimal allocation, design and production planning of integrated ethanol plants is considered. • Mixed Integer Programming model is presented for solving the integration problem. • Different tradeoffs can be assessed and analyzed. • The modeling framework represents an useful tool for guiding decision making. - Abstract: Bioethanol production poses different challenges that require an integrated approach. Usually previous works have focused on specific perspectives of the global problem. On the contrary, bioethanol, in particular, and biofuels, in general, requires an integrated decision making framework that takes into account the needs and concerns of the different members involved in its supply chain. In this work, a Mixed Integer Linear Programming (MILP) model for the optimal allocation, design and production planning of integrated ethanol/yeast plants is considered. The proposed formulation addresses the relations between different aspects of the bioethanol supply chain and provides an efficient tool to assess the global operation of the supply chain taking into account different points of view. The model proposed in this work simultaneously determines the structure of a three-echelon supply chain (raw material sites, production facilities and customer zones), the design of each installed plant and operational considerations through production campaigns. Yeast production is considered in order to reduce the negative environmental impact caused by bioethanol residues. Several cases are presented in order to assess the approach capabilities and to evaluate the tradeoffs among all the decisions

  16. Supply Chain Management og Supply Chain costing

    DEFF Research Database (Denmark)

    Nielsen, Steen; Mortensen, Ole

    2002-01-01

    Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed for at...

  17. Cytochrome C oxidase Ⅲ interacts with hepatitis B virus X protein in vivo by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Dan Li; Xiao-Zhong Wang; Jie-Ping Yu; Zhi-Xin Chen; Yue-Hong Huang; Qi-Min Tao

    2004-01-01

    AIM: To screen and identify the proteins which interact with hepatitis B virus (HBV) X protein in hepatocytes by yeast two-hybrid system and to explore the effects of X protein in the development of hepatocellular carcinoma (HCC).METHODS: With HBV X gene amplified by polymerase chain reaction (PCR), HBV X bait plasmid, named pAS2-1-X, was constructed by yeast-two hybridization system3 and verified by auto-sequencing assay. pAS2-1-X was transformed into the yeast AH109, and X-BD fusion protein expressed in the yeast cells was detected by Western blotting. The yeast cells cotransformed with pAS2-1-X and normal human liver cDNA library were grown in selective SC/-trp-leu-his-ade medium. The second screen was performed with β-gal activity detection, and false positive clones were eliminated by segregation analysis, true positive clones were amplified,sequenced and analyzed with bioinformatics. Mating experiment was peformed to confirm the binding of putative proteins to X protein in the yeast cells.RESULTS: Bait plasmid pAS2-1-X was successfully constructed and pAS2-1-X correctly expressed BD-X fusion protein in yeast AH109. One hundred and three clones grew in the selective SC/-trp-leu-his-ade medium, and only one clone passed through β-gal activity detection and segregation analysis. The inserted cDNA fragment showed high homology with Homo sapiens cytochrome C oxidase Ⅲ(COXIII). Furthermore, mating experiment identified that the binding of COXIII to X protein was specific.CONCLUSION: COXIII protein is a novel protein that can interact with X protein in vivo by yeast two-hybrid system,and may contribute to the development of HCC through the interaction with X protein.

  18. Enzyme contribution of non-Saccharomyces yeasts to wine production

    OpenAIRE

    Maicas i Prieto, Sergi; Mateo Tolosa, José Juan

    2015-01-01

    The fermentation of grape must to produce wine is a biologically complex process, carried on by yeasts and malolactic bacteria. The yeasts present in spontaneous fermentation may be divided into two groups, the Saccharomyces yeasts, particularly S. cerevisiae, and the non-Saccharomyces yeasts which include members of the genera Rhodotorula, Pichia, Candida, Debaryomyces, Metschtnikowia, Hansenula and Hanseniaspora. S. cerevisiae yeasts are able to convert sugar into ethanol and CO2 via fermen...

  19. Production Of Extracellular Enzymes By Some Soil Yeasts

    OpenAIRE

    Falih, A. M. [عبد الله مساعد خلف الفالح

    1997-01-01

    This study investigated the ability of soil yeasts, Geotrichum candidum, Geotrichum capitatum and Williopsis californica to produce extracellular enzymes (amylase, cellulase and protease) in vitro compared with that of a laboratory strain of Saccharomyces cerevisiae. It appears that the soil yeasts studied here were less amylolytic yeasts except the yeast G. candidum, which was highly effective at extracellular amylase production. The soil yeast W. californica was an average producer of cellu...

  20. DETERMINATION OF KILLER CHARACTER OF WINE YEAST ISOLATED FROM ISTRA

    OpenAIRE

    Sandi ORLIC; POGAČIĆ, Martina; Ana JEROMEL; Marko KAROGLAN; Kozina, Bernard; IACUMIN, Lucilla; Redžepović, Sulejman

    2008-01-01

    Wild wine yeasts with killer phenotype are widespread in many wine regions of the world. The presence of killer yeasts may become particularly important in wine fermentations conducted by inoculation with selected strains of Saccharomyces cerevisiae. Wild killer yeasts may suppress selected sensitive yeasts inoculated into the must during the fermentation. The goal of this investigation was to identify killer yeast in Istra region using physiological and molecular methods. In total 50 S.cerev...

  1. Food supply chains

    OpenAIRE

    Zhou, Qian

    2011-01-01

    The dissertation analyses food waste in global supply chain. From the related managerial literature, the process of supply chain operation, from agriculture, manufacturing, warehouses, retailers to customers are explained clearly. Then the reasons and characteristics of food wastes in any point of food supply chain are analyzed. From some case studies and questionnaire investigation, some corresponding methods to reduce food waste are put forward in the following. Lastly, in terms of method s...

  2. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.

    2011-01-01

    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  3. Supply Chain Collaboration

    OpenAIRE

    Meca, Ana; Timmer, Judith

    2008-01-01

    In this chaper, we have reviewed and surveyed the literature on supply chain collaboration. As mentioned above, the game theory models that include cooperative behaviour among retailers seem to be a natural framework to model cooperation (collaboration) in supply chains that consist of a supplier and a finite number of retailers. Various researchers in this area have already adopted several cooperative models dealing with supply chain coordination, and it is expected to see many more in the n...

  4. Supply chain components

    OpenAIRE

    Vieraşu, T.; Bălăşescu, M.

    2011-01-01

    In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  5. Sustainable Supply Chain Management

    OpenAIRE

    Geentjens, Marlies

    2013-01-01

    This project investigates the phenomena Sustainable Supply Chain Management. The point of departure is Supply Chain Management, which we analyse in order to lock into an understanding of the development that occur when implementing sustainability. In the quest for higher understanding of the interlocking mechanisms of supply chain management, we combine a theoretical approach to the developmnent of sustainability with some relevant case-examples (mainly depicting IKEA). This focal point g...

  6. Economy, market and chain

    OpenAIRE

    Sukkel, W.; Hommes, M.

    2009-01-01

    In their pursuit of growth and professionalisation, the Dutch organic sector focuses primarily on market development. But how do you stimulate the market for organic foods? This is the subject of many research projects concerning market, consumer preferences and the supply chain. These projects focus specifically at consumer purchasing behaviour, product development, supply chain formation and minimising cost price. As a rule, this research takes place in close cooperation with chain actors

  7. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    Science.gov (United States)

    Xin, Lu Zhao; Carenza, Mario; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78°C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizing mixture.

  8. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78oC of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizating mixture. (author)

  9. ENGINEERING THE BIOSYNTHESIS OF STYRENE IN YEAST

    Science.gov (United States)

    The strategy pursued was to insert genes for phenylalanine ammonia lysase (pal) and phenolic acid decarboxylase (pad) into the yeast that would convert phenylalanine to styrene through a cinnamic acid intermediate. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall...... causing significant DNA damage was 20 μM for H2O2 and 200 mg/l for acrylamide. Tertiary-treated wastewater from the outlets of three municipal wastewater-treatment plants was tested, but did not cause DNA damage. Even though it is possible to produce comets with tetraploid yeast cells, the amount of DNA...

  10. Adenosine triphosphate inhibition of yeast trehalase.

    Science.gov (United States)

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  11. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  12. Value Chain Engineering

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Slepniov, Dmitrij

    2015-01-01

    This workbook is recommended for the attention of students of and managers in Danish small and medium sized enterprises (SMEs). Danish SMEs are currently facing a number of key challenges related to their position in global value chains. This book provides an insight into value chain management...... that may help these SMEs to occupy and sustain a competitive position in the value chain. It addresses this objective by introducing and discussing: • The concept of global value chains and its founding principles • The buyer-supplier relationships • Various SMEs operations configurations • Ideas for...

  13. Physiological and environmental control of yeast prions

    OpenAIRE

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2013-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion ...

  14. Production of biopharmaceutical proteins by yeast

    OpenAIRE

    Nielsen, Jens

    2012-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for production of several large volume products. Insulin and insulin analogs are by far the dominating biopharmaceuticals produced by yeast, and this will increase as the global insulin market is expected ...

  15. Mapping the functional yeast ABC transporter interactome

    OpenAIRE

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R.; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D.; Luis, Bryan-Joseph San

    2013-01-01

    ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID databa...

  16. OPTIMIZATION OF YEAST FOR ETHANOL PRODUCTION

    OpenAIRE

    Taghizadeh Ghassem; Delbari Azam Sadat; Kulkarni D. K.

    2012-01-01

    The production of pure ethanol apparently begins in the 12-14th century. Improvements in the distillation process with the condensation of vapors of lower boiling liquids. Ethanol is produced commercially by chemical synthesis or biosynthesis. High ethanol producing yeast exhibits rapid metabolic activity and a high fermentation rate with high product output in less time.Yeasts were isolated from Corn, Curd, Grapes, Water 1, Water 2, and Paneer. Isolation was done on MGYP (Malt Extract Glucos...

  17. Stationary phase in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Werner-Washburne, M; Braun, E.; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant c...

  18. Principles of chromosomal organization: lessons from yeast

    OpenAIRE

    Zimmer, Christophe; Fabre, Emmanuelle

    2011-01-01

    The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physica...

  19. Multidrug resistant yeasts in synanthropic wild birds

    Directory of Open Access Journals (Sweden)

    Somanath Sushela

    2010-03-01

    Full Text Available Abstract Background The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur. Methods Species characterisations of yeast isolates and determinations of antimycotic susceptibility profiles were undertaken using the commercial characterization kit, Integral System Yeasts Plus (Liofilchem, Italy. Results Fourteen species of yeasts were detected in the bird faecal samples.Candida albicans was present in 28.89% of bird faecal samples, Candida krusei (13.33%, Candida tropicalis (4.44%, Candida glabrata (4.44%, Candida parapsilosis (2.22%, Candida lambica (2.22%, Candida stellatoidea (2.22%, Candida rugosa (2.22% and Candida lusitaniae (2.22%. Amongst the non-candidal yeast isolates, Cryptococcus laurentii was present in 6.67% of bird faecal samples, Cryptococcus uniguttulatus (4.44%, Saccharomyces cerevisiae (4.44%, Trichosporon pullulans (2.22%, Trichosporon pullulans/Cryptococcus albidus (8.89% and Rhodotorula rubra/Rhodotorula glutinis (4.44%. Of the isolated yeasts, 18.1% (or 26/144 were found to be resistant to all 11 antimycotic agents they were tested against i.e. Nystatin, Amphotericin B, Flucytosine, Econazole, Ketoconazole, Clotrimazole, Miconazole, Itraconazole, Voriconazole, Fluconazole 16 and Fluconazole 64. 45.8% (or 66/144 of the bird faecal yeast isolates were resistant to four or more of the 11 antimycotic agents they were tested against. Conclusions This finding is of public health significance as these synanthropic wild birds may be reservoirs for transmission of drug resistant yeast infections to humans.

  1. Laboratory evolution of copper tolerant yeast strains

    OpenAIRE

    Adamo Giusy; Brocca Stefania; Passolunghi Simone; Salvato Benedetto; Lotti Marina

    2012-01-01

    Abstract Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in ...

  2. Uniform yeast cell assembly via microfluidics

    OpenAIRE

    Chang, Ya-Wen; He, Peng; Marquez, Samantha M.; Cheng, Zhengdong

    2012-01-01

    This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via sur...

  3. EXPLORING BIODIVERSITY POTENTIAL OF WINE ASSOCIATED YEASTS

    OpenAIRE

    Dashko, Sofia

    2015-01-01

    Human exploitation of yeast fermentation dates back to the Neolithic. S. cerevisiae has been the most important yeast used for numerous fermentations of biotechnological interest, including grape fermentation for wine production. Despite its abundant use, the molecular mechanisms controlling alcoholic fermentation are rather unclear and the choice of S. cerevisiae as an inoculum is often the consequence of a mere habit, rather than the result of rational analyses. In this work we focused o...

  4. Featured Organism: Schizosaccharomyces pombe, The Fission Yeast

    OpenAIRE

    Jo Wixon

    2002-01-01

    Schizosaccharomyces pombe, the fission yeast, has long been a crucial model for the study of the eukaryote cell cycle. We take a look at this important yeast, whose genome has recently been completed, featuring comments from Valerie Wood, Jürg Bähler, Ramsay McFarlane, Susan Forsburg, Iain Hagan and Paul Nurse on the implications of having the complete sequence and future prospects for pombe genomics.

  5. The wine and beer yeast Dekkera bruxellensis

    OpenAIRE

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P.; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beer...

  6. Non-conventional Yeast Species for Lowering Ethanol Content of Wines

    Science.gov (United States)

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A.; Oro, Lucia; Rodrigues, Alda J.; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  7. Non-conventional Yeast Species for Lowering Ethanol Content of Wines.

    Science.gov (United States)

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A; Oro, Lucia; Rodrigues, Alda J; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  8. Flor Yeast: New Perspectives Beyond Wine Aging.

    Science.gov (United States)

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C; Mannazzu, Ilaria; Coi, Anna L; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air-liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  9. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  10. Flor Yeast: New Perspectives Beyond Wine Aging

    Science.gov (United States)

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  11. Using Yeast Transposon-Insertion Libraries for Phenotypic Screening and Protein Localization.

    Science.gov (United States)

    Kumar, Anuj

    2016-01-01

    This protocol details how to use a transposon-insertion library for phenotypic screening and protein localization. The insertion library was generated by mutagenesis of a plasmid-based yeast genomic DNA library by using a multipurpose transposon; the transposon produces gene disruptions, and, by Cre-mediated recombination at lox sites incorporated within the transposon, alleles with an in-frame insertion can be truncated to a residual transposon encoding multiple copies of the hemagglutinin epitope. Insertions are generated in yeast by shuttle mutagenesis. Yeast genomic DNA containing a transposon insertion is released from the library, and the mutagenized DNA sequences are introduced into a desired strain of yeast, where the insertion alleles replace native loci by homologous recombination. The insertion mutants can be screened for phenotypes, and the site of transposon insertion can subsequently be identified in selected mutants by inverse polymerase chain reaction (PCR). In-frame insertions within genes of interest can be truncated to an epitope-tagged allele by Cre-lox recombination, and the subcellular localization of the encoded protein product can be identified by standard methods of indirect immunofluorescence. In summary, the transposon-insertion libraries represent an informative resource for large-scale mutagenesis, presenting a straightforward alternative to labor-intensive targeted approaches for the construction of deletion alleles and fluorescent protein fusions. PMID:27250939

  12. Assembly of long DNA sequences using a new synthetic Escherichia coli-yeast shuttle vector.

    Science.gov (United States)

    Hou, Zheng; Zhou, Zheng; Wang, Zonglin; Xiao, Gengfu

    2016-04-01

    Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named pGF (plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid pCC1BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome (YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction (PCR) from the plasmid pBS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination (TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using pGF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction. PMID:27113243

  13. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  14. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products. PMID:26471666

  15. Independent sets in chain cacti

    CERN Document Server

    Sedlar, Jelena

    2011-01-01

    In this paper chain cacti are considered. First, for two specific classes of chain cacti (orto-chains and meta-chains of cycles with h vertices) the recurrence relation for independence polynomial is derived. That recurrence relation is then used in deriving explicit expressions for independence number and number of maximum independent sets for such chains. Also, the recurrence relation for total number of independent sets for such graphs is derived. Finaly, the proof is provided that orto-chains and meta-chains are the only extremal chain cacti with respect to total number of independent sets (orto-chains minimal and meta-chains maximal).

  16. Spermidine cures yeast of prions

    Directory of Open Access Journals (Sweden)

    Shaun H. Speldewinde

    2015-12-01

    Full Text Available Prions are self-perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals. The molecular basis underlying their conversion from a normally soluble protein into the prion form remains largely unknown. Studies aimed at uncovering these mechanism(s are therefore essential if we are to develop effective therapeutic strategies to counteract these disease-causing entities. Autophagy is a cellular degradation system which has predominantly been considered as a non-selective bulk degradation process which recycles macromolecules in response to starvation conditions. We now know that autophagy also serves as a protein quality control mechanism which selectively degrades protein aggregates and damaged organelles. These are commonly accumulated in various neurodegenerative disorders including prion diseases. In our recent study [Speldewinde et al. Mol. Biol. Cell. (2015] we used the well-established yeast [PSI+]/Sup35 and [PIN­+]/Rnq1 prion models to show that autophagy prevents sporadic prion formation. Importantly, we found that spermidine, a polyamine that has been used to increase autophagic flux, acts as a protective agent which prevents spontaneous prion formation.

  17. Fields From Markov Chains

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2005-01-01

    A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly.......A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly....

  18. Sustainable Supply Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy

    design for TBL sustainability. These are located in catastrophe-ridden Haiti and supported by the Germany-based investor company Yunus Social Business. Three supply chain archetypes combining physical and support chains are presented that focus on TBL sustainable outputs and outcomes. For SSCM research...

  19. Chain Reaction Polymerization.

    Science.gov (United States)

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  20. Genome-wide expression analyses of the stationary phase model of ageing in yeast.

    Science.gov (United States)

    Wanichthanarak, Kwanjeera; Wongtosrad, Nutvadee; Petranovic, Dina

    2015-07-01

    Ageing processes involved in replicative lifespan (RLS) and chronological lifespan (CLS) have been found to be conserved among many organisms, including in unicellular Eukarya such as yeast Saccharomyces cerevisiae. Here we performed an integrated approach of genome wide expression profiles of yeast at different time points, during growth and starvation. The aim of the study was to identify transcriptional changes in those conditions by using several different computational analyses in order to propose transcription factors, biological networks and metabolic pathways that seem to be relevant during the process of chronological ageing in yeast. Specifically, we performed differential gene expression analysis, gene-set enrichment analysis and network-based analysis, and we identified pathways affected in the stationary phase and specific transcription factors driving transcriptional adaptations. The results indicate signal propagation from G protein-coupled receptors through signaling pathway components and other stress and nutrient-induced transcription factors resulting in adaptation of yeast cells to the lack of nutrients by activating metabolism associated with aerobic metabolism of carbon sources such as ethanol, glycerol and fatty acids. In addition, we found STE12, XBP1 and TOS8 as highly connected nodes in the subnetworks of ageing yeast. PMID:26079307

  1. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast.

    Science.gov (United States)

    Pointer, Benjamin R; Schmidt, Martin

    2016-07-01

    Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations. The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast. PMID:27190149

  2. Physical Interactions between Yeast Pichia guilliermondii and Post-Harvest Fruit Pathogen Penicillium expansum

    Directory of Open Access Journals (Sweden)

    SRI WIDYASTUTI

    2008-03-01

    Full Text Available Attachment of yeast cells or bacteria on fungal hyphae have been observed in various antagonisms between microorganisms. Physical interactions between yeast Pichia guilliermondii and postharvest fruit pathogen Penicillium expansum in culture were studied in detail using light and transmission electron microscope to give better understanding on their mode of antagonism. Both organisms were co-cultured for 24-hr on potato dextrose agar. Light microscopy observations on the co-culture showed that the yeast cells attached firmly on the fungal hyphae. This attachment was inhibited by several substances such as enzymes degrading protein (protease or trypsin, a respiration inhibitor (sodium azide, an acid (hydrochloric acid or an alkali (sodium hydroxide. Although autoclaved hyphae did not affect the attachment, but boiled enzymes and autoclaved yeast cells totally abolished the attachment. These evidences suggested that the attachment might be an active process mediated by certain protein from live yeast cells. Transmission electron micrographs on the ultrastructure of the co-culture revealed that the hyphae showed abnormalities in their structure and organelles, and a degree of obvious damage. Physical interactions observed in this study could be contributed to the mechanism of antagonism between P. guilliermondii and P. expansum.

  3. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  4. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast.

    Directory of Open Access Journals (Sweden)

    Elke Ericson

    Full Text Available To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac interfered with establishment of cell polarity, cyproheptadine (Periactin targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol and pimozide (Orap. Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes.

  5. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2013-05-01

    Full Text Available The aim of this study was to investigate the effect of live yeast culture (Saccharomyces cerevisiae Sc 47 on milk yield, milk composition and some blood parameters of dairy cows during their early lactation on farm conditions. The live yeast culture was given in the diet of heifers and cows (5 g day-1 solid Actisaf for 14 days before calving and exclusively for the treated cows 12 g day-1 dissolved in 500 ml of water, during 14 days after calving. The experiment took until 100th day of lactation on farm conditions. Yeast culture supplementation was the most effective for the performance of primiparous cows: It was advantageous for blod plasma parameters: decreased the beta-hydroxy butyrate (BHB content and free fatty acids (FFA which indicated the protection of the animals against ketosis or other metabolic disorders. Increased the daily milk production and the lactose /glucose content of the milk. The live yeast culture increased the lactose content of the milk and decreased the somatic cell count of multiparous cows. The listed parameters were not significant (P<0.05 compare to the results of positive control groups. The applied live yeast culture supplementation did not significant affect for other performance of the cows.

  6. Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. : pABA is a precursor of yeast coenzyme Q

    OpenAIRE

    Pierrel, Fabien; Hamelin, Olivier; Douki, Thierry; Kieffer-Jaquinod, Sylvie; Mühlenhoff, Ulrich; Ozeir, Mohammad; Lill, Roland; Fontecave, Marc

    2010-01-01

    Yeast ubiquinone or coenzyme Q(6) (Q(6)) is a redox active lipid that plays a crucial role in the mitochondrial electron transport chain. At least nine proteins (Coq1p-9p) participate in Q(6) biosynthesis from 4-hydroxybenzoate (4-HB). We now show that the mitochondrial ferredoxin Yah1p and the ferredoxin reductase Arh1p are required for Q(6) biosynthesis, probably for the first hydroxylation of the pathway. Conditional Gal-YAH1 and Gal-ARH1 mutants accumulate 3-hexaprenyl-4-hydroxyphenol and...

  7. Engineering Yarrowia lipolytica for production of medium-chain fatty acids.

    Science.gov (United States)

    Rutter, Charles D; Zhang, Shuyan; Rao, Christopher V

    2015-09-01

    Lipids are naturally derived products that offer an attractive, renewable alternative to petroleum-based hydrocarbons. While naturally produced long-chain fatty acids can replace some petroleum analogs, medium-chain fatty acid would more closely match the desired physical and chemical properties of currently employed petroleum products. In this study, we engineered Yarrowia lipolytica, an oleaginous yeast that naturally produces lipids at high titers, to produce medium-chain fatty acids. Five different acyl-acyl carrier protein (ACP) thioesterases with specificity for medium-chain acyl-ACP molecules were expressed in Y. lipolytica, resulting in formation of either decanoic or octanoic acid. These novel fatty acid products were found to comprise up to 40 % of the total cell lipids. Furthermore, the reduction in chain length resulted in a twofold increase in specific lipid productivity in these engineered strains. The medium-chain fatty acids were found to be incorporated into all lipid classes. PMID:26129951

  8. The yeasts and yeast-like microorganisms in the denitrification unit biocenosis

    Directory of Open Access Journals (Sweden)

    Alena Sláviková

    2014-08-01

    Full Text Available Taxonomic studies of the yeasts and yeast-like microorganisms in the denitrification unit biocenosis were carried out. A set of 13 strains of these microorganisms were examined for their morphological and physiological characters. Considering their special features and some relation to the known species, the isolated microorganisms were classified to the 3 genera: Candida, Geotrichium and Hansenula.

  9. Taxonomical study of yeasts and yeast-like microorganisms isolated from the denitrification unit biocenosis

    Directory of Open Access Journals (Sweden)

    Elena Sláviková

    2014-08-01

    Full Text Available A set of 8 strains of yeasts and yeast-like microorganisms was isolated from the denitrification unit biocenosis fed with a synthetic medium containing methanol as a carbon source. These strains were identified as Candida boidinii, C. maltosa, Rhodotorula rubra and Trichosporon cutaneum.

  10. Taxonomical study of yeasts and yeast-like microorganisms isolated from the denitrification unit biocenosis

    OpenAIRE

    Elena Sláviková; Anna Grabińska-Łoniewska

    2014-01-01

    A set of 8 strains of yeasts and yeast-like microorganisms was isolated from the denitrification unit biocenosis fed with a synthetic medium containing methanol as a carbon source. These strains were identified as Candida boidinii, C. maltosa, Rhodotorula rubra and Trichosporon cutaneum.

  11. Boolean model of Yeast Apoptosis as a tool to study yeast and human apoptotic regulations

    Directory of Open Access Journals (Sweden)

    MarijaCvijovic

    2012-12-01

    Full Text Available Programmed cell death (PCD is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modelling is becoming promising approach to capture qualitative behaviour and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP are included in the model. We showed that accumulation of Bax in in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behaviour. Extended model of humanized yeast gives new insights of how complex human disease like neurodegenration can initially be tested.

  12. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  13. Yeast Interacting Proteins Database: YGR013W, YKL012W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGR013W SNU71 Component of U1 snRNP required for mRNA splicing via spliceosome; yeast ... specific, ... snRNP required for mRNA splicing via spliceosome; yeast ... specific, no metazoan counterpart Rows with this b ...

  14. Yeast Interacting Proteins Database: YMR294W, YPL174C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YMR294W JNM1 Component of the yeast ... dynactin complex, consisting of Nip100p, Jnm1p, and Arp1p; r ... t gene name JNM1 Bait description Component of the yeast ... dynactin complex, consisting of Nip100p, Jnm1p, an ...

  15. Integrated supply chain risk management

    OpenAIRE

    Riaan Bredell; Jackie Walters

    2007-01-01

    Integrated supply chain risk management (ISCRM) has become indispensable to the theory and practice of supply chain management. The economic and political realities of the modern world require not only a different approach to supply chain management, but also bold steps to secure supply chain performance and sustainable wealth creation. Integrated supply chain risk management provides supply chain organisations with a level of insight into their supply chains yet to be achieved. If correctly ...

  16. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Science.gov (United States)

    Sun, Xuepeng; Wang, Zhe; Guo, Xiaoxian; Li, Hongye; Gu, Zhenglong

    2016-01-01

    Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC) was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations. PMID:27077367

  17. Supply Chain Connectivity: Enhancing Participation in the Global Supply Chain

    OpenAIRE

    Patalinghug, Epictetus E.

    2015-01-01

    Supply chain connectivity is vital for the efficient flow of trade among APEC economies. This paper reviews the literature and supply chain management, describes the barriers to enhancing participation in global supply chain, analyzes the various measures of supply chain performance, and suggests steps for the Philippines to fully reap the benefits of the global value chain.

  18. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  19. IMPLEMENTING SUSTAINABILITY INTO SUPPLY CHAIN OPERATIONS

    DEFF Research Database (Denmark)

    Jørsfeldt, Lilyana Makarowa

    2016-01-01

    becomes even more crucial. Professional literature acknowledges that complex and dispersed supply chain structures present organizational challenges when companies strive to translate their strategic sustainability intentions into ongoing supply chain operations. Despite the recognized challenges, few...... empirical studies have investigated in detail how sustainability agendas are implemented or how they affect supply chain operations. These studies have mostly investigated the impact of implementation, explored the relationship between strategy formulation and performance, or provided descriptions...... by bottom-up, day-to-day experiences of supply chain operations is scarce. The contingency approach, which includes the contextual conditions under which the implementation occurs, is also scarce. Moreover, there is a lack of theoretical frameworks based on empirical studies that can support the application...

  20. Understanding the supply chain

    Directory of Open Access Journals (Sweden)

    Aćimović Slobodan

    2006-01-01

    Full Text Available Supply chain management represents new business philosophy and includes strategically positioned and much wider scope of activity in comparison with its "older brother" - management of logistics. Philosophy of the concept of supply chain is directed to more coordination of key business functions of every link in distribution chain in the process of organization of the flow of both goods and information, while logistic managing instruments are focused on internal optimum of flows of goods and information within one company. Applying the concept of integrated supply chain among several companies makes the importance of operative logistics activity even greater on the level of one company, thus advancing processes of optimum and coordination within and between different companies and confirms the importance of logistics performances for the company’s profitability. Besides the fact that the borders between companies are being deleted, this concept of supply chain in one distribution channel influences increasing of importance of functional, i.e. traditional business managing approaches but instead it points out the importance of process managing approaches. Although the author is aware that "there is nothing harder, more dangerous and with uncertain success, but to find a way for introducing some novelties (Machiavelli, it would be even his additional stimulation for trying to bring closer the concept and goals of supply chain implementation that are identified in key, relevant, modern, theoretical and consulting approaches in order to achieve better understanding of the subject and faster implementation of the concept of supply chain management by domestic companies.

  1. SUMO chains: polymeric signals.

    Science.gov (United States)

    Vertegaal, Alfred C O

    2010-02-01

    Ubiquitin and ubiquitin-like proteins are conjugated to a wide variety of target proteins that play roles in all biological processes. Target proteins are conjugated to ubiquitin monomers or to ubiquitin polymers that form via all seven internal lysine residues of ubiquitin. The fate of these target proteins is controlled in a chain architecture-dependent manner. SUMO (small ubiquitin-related modifier) shares the ability of ubiquitin to form chains via internal SUMOylation sites. Interestingly, a SUMO-binding site in Ubc9 is important for SUMO chain synthesis. Similar to ubiquitin-polymer cleavage by USPs (ubiquitin-specific proteases), SUMO chain formation is reversible. SUMO polymers are cleaved by the SUMO proteases SENP6 [SUMO/sentrin/SMT3 (suppressor of mif two 3)-specific peptidase 6], SENP7 and Ulp2 (ubiquitin-like protease 2). SUMO chain-binding proteins including ZIP1, SLX5/8 (synthetic lethal of unknown function 5/8), RNF4 (RING finger protein 4) and CENP-E (centromere-associated protein E) have been identified that interact non-covalently with SUMO chains, thereby regulating target proteins that are conjugated to SUMO multimers. SUMO chains play roles in replication, in the turnover of SUMO targets by the proteasome and during mitosis and meiosis. Thus signalling via polymers is an exciting feature of the SUMO family. PMID:20074033

  2. IMPLEMENTING SUSTAINABILITY INTO SUPPLY CHAIN OPERATIONS

    DEFF Research Database (Denmark)

    Jørsfeldt, Lilyana Makarowa

    2016-01-01

    empirical studies have investigated in detail how sustainability agendas are implemented or how they affect supply chain operations. These studies have mostly investigated the impact of implementation, explored the relationship between strategy formulation and performance, or provided descriptions of...... drivers of sustainable behavior. However, a process perspective on what happens when sustainability is implemented in ongoing supply chain operations remains underrepresented in the research. In particular, research on how top-down sustainability strategy is translated into, aligned with, and affected by...... different levels of the business system and present a simplified model to explore the complexity of the phenomenon. (2) Means for the deployment (i.e., successful implementation) of a sustainability agenda in supply chain practices are identified. The discussion of means provides some explanations for...

  3. Project Decision Chain

    DEFF Research Database (Denmark)

    Rolstadås, Asbjørn; Pinto, Jeffrey K.; Falster, Peter;

    2015-01-01

    To add value to project performance and help obtain project success, a new framework for decision making in projects is defined. It introduces the project decision chain inspired by the supply chain thinking in the manufacturing sector and uses three types of decisions: authorization, selection......, and plan decision. A primitive decision element is defined where all the three decision types can be accommodated. Each task in the primitive element can in itself contain subtasks that in turn will comprise new primitive elements. The primitive elements are nested together in a project decision chain....

  4. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  5. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation.

    Science.gov (United States)

    Ludlow, Catherine L; Cromie, Gareth A; Garmendia-Torres, Cecilia; Sirr, Amy; Hays, Michelle; Field, Colburn; Jeffery, Eric W; Fay, Justin C; Dudley, Aimée M

    2016-04-01

    Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate. PMID:27020745

  6. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  7. Production of alpha-amylase by yeast

    Energy Technology Data Exchange (ETDEWEB)

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  8. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [35S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  9. Determining Annealing Temperatures for Polymerase Chain Reaction

    Science.gov (United States)

    Porta, Angela R.; Enners, Edward

    2012-01-01

    The polymerase chain reaction (PCR) is a common technique used in high school and undergraduate science teaching. Students often do not fully comprehend the underlying principles of the technique and how optimization of the protocol affects the outcome and analysis. In this molecular biology laboratory, students learn the steps of PCR with an…

  10. Yeast Interacting Proteins Database: YOR171C, YOR034C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOR171C LCB4 Sphingoid long-chain base kinase, responsible for synthesis ... of long-chain base phos ... , which function as signaling molecules, regulates synthesis ... of ceramide from exogenous long-chain bases, local ... Sphingoid long-chain base kinase, responsible for synthesis ... of long-chain base phosphates, which function as s ...

  11. Effect of inactive dry yeast from sugar cane as protein source on rumen fermentation in Saanen goats

    Directory of Open Access Journals (Sweden)

    L.S. Lima

    2012-02-01

    Full Text Available Five castrated and ruminally cannulated Saanen goats (±48.19kg were used to evaluate intake, digestibility and rumen fermentation parameters of diets with inactive dry yeast as a soybean meal substitute (0, 25, 50, 75 and 100%. Goats were randomly assigned to a 5×5 (five levels of dry yeast x five periods Latin square design. Diets were composed of corn silage (40%, ground corn, soybean meal and/or dry yeast and mineral supplement. The intake and digestibility of DM, OM, CP, NDF and TC were not influenced by the treatments. However, EE intake showed negative linear effect. The TDN content did not change with the inclusion of dry yeast in the diets. The pH, N-NH3 concentration and rumen short-chain fatty acids content did not differ among diets. Rumen content scanning electron microscopy observations did not suggest microbial colonization and degradation changes. Dry yeast from sugar cane can replace soybean meal in diets for Saanen goats without changing the rumen fermentation pattern, intake and digestibility.

  12. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.;

    2009-01-01

    Information on extracellular signals and conditions is often transduced by biological systems using cascades of protein phosphorylation that affect the activity of enzymes, the localization of proteins and gene expression. A model to study signal transduction is the response of the yeast Saccharo......Information on extracellular signals and conditions is often transduced by biological systems using cascades of protein phosphorylation that affect the activity of enzymes, the localization of proteins and gene expression. A model to study signal transduction is the response of the yeast...... a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline...

  13. Supply chain risk management

    Directory of Open Access Journals (Sweden)

    Christian Hollstein

    2013-03-01

    Full Text Available Background: Supply chain risk management increasingly gains prominence in many international industries. In order to strengthen supply chain structures, processes, and networks, adequate potentials for risk management need to be built (focus on effective logistics and to be utilized (focus on efficient logistics. Natural-based disasters, such as the case of Fukushima, illustrate how crucial risk management is. Method: By aligning a theoretical-conceptual framework with empirical-inductive findings, it may be hypothesized that logistical systems do have a positive effect on supply chain risk management activities.  Result/conclusion:  Flexibility and capacity, as well as redundancy and standardization, are often viewed as being conflictionary. It shows, however, that in the light of supply chain risk management, those factors may yield a common benefit if proper logistics systems are applied.  

  14. Editorial: Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Aidonis, D.

    2012-01-01

    Full Text Available This special issue has followed up the 2nd Olympus International Conference on Supply Chains held on October 5-6, 2012, in Katerini, Greece. The Conference was organized by the Department of Logistics of Alexander Technological Educational Institution (ATEI of Thessaloniki, in collaboration with the Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH. During the 2-Days Conference more than 50 research papers were presented covering the following thematic areas: (i Business Logistics, (ii Transportation, Telematics and Distribution Networks, (iii Green Logistics, (iv Information and Communication Technologies in Supply Chain Management, and (v Services and Quality. Three keynote invited speakers addressed interesting issues for the Humanitarian Logistics, Green Supply Chains of the Agrifood Sector and the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.

  15. Environmental Retail Supply Chains

    DEFF Research Database (Denmark)

    Kotzab, Herbert; Munch, Hilde; de Faultrier, Birgitte;

    2011-01-01

    Purpose – The purpose of this paper is to develop a scale that evaluates the environmental elements in retail supply chains and to examine the environmental supply chain management initiatives of the world's largest 100 retailing companies. Design/methodology/approach – The empirical evaluation has...... which were grouped into eight categories; they refer to “fundamental environmental attitude”, “use of energy”, “use of input material”, “product”, “packaging”, “transport”, “consumption” and “waste”. The level of environmental supply chain management can be characterised as very operational and very...... short-term oriented (green operations). Long-term oriented green design initiatives were hardly observed. Furthermore, the specific environmental activities of three retailers from Denmark, France and the UK were compared. Research limitations/implications – The empirical study investigates supply chain...

  16. Supply Chain Collaboration

    OpenAIRE

    Guy Rodrigue Ghomsi 1982

    2015-01-01

    Companies are now progressively looking beyond themselves to come up with ways to improve revenue and profit margins. This has resulted in a heightened focus on the efficiency of the supply chains. Inefficient supply chains are being perceived as cavities that can deprive the firm from its cash flows when inventory is not required and sales revenue when product is not available at the point of sales. This has stimulated development of business models that intend to leverage and enhance the su...

  17. Variance bounding Markov chains

    OpenAIRE

    Roberts, Gareth O.; Jeffrey S. Rosenthal

    2008-01-01

    We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L2 functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Peskun order. We close with some applications to Metropolis–Hastings algorithms.

  18. Supply chain risk management

    OpenAIRE

    Christian Hollstein; Frank Himpel

    2013-01-01

    Background: Supply chain risk management increasingly gains prominence in many international industries. In order to strengthen supply chain structures, processes, and networks, adequate potentials for risk management need to be built (focus on effective logistics) and to be utilized (focus on efficient logistics). Natural-based disasters, such as the case of Fukushima, illustrate how crucial risk management is. Method: By aligning a theoretical-conceptual framework with empirical-induct...

  19. Editorial: Supply Chain Management

    OpenAIRE

    Aidonis, D.; Folinas, D.; Triantafillou, D.

    2012-01-01

    This special issue has followed up the 2nd Olympus International Conference on Supply Chains held on October 5-6, 2012, in Katerini, Greece. The Conference was organized by the Department of Logistics of Alexander Technological Educational Institution (ATEI) of Thessaloniki, in collaboration with the Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH). During the 2-Days Conference m...

  20. Sustainable and Resilient Supply Chain Network Design under Disruption Risks

    OpenAIRE

    Sonia Irshad Mari; Young Hae Lee; Muhammad Saad Memon

    2014-01-01

    Sustainable supply chain network design is a rich area for academic research that is still in its infancy and has potential to affect supply chain performance. Increasing regulations for carbon and waste management are forcing firms to consider their supply chains from ecological and social objectives, but in reality, however, facilities and the links connecting them are disrupted from time to time, due to poor weather, natural or manmade disasters or a combination of any other factors. Suppl...

  1. LOGISTICS SUPPLY CHAIN AND SUCCESS IN THE MARKET

    OpenAIRE

    Anna Brzozowska

    2009-01-01

    The essence of management in enterprises is changing. It is typically associated with efforts towards moving and storage of goods within a particular supply chain. The essence of logistics is management of its supply chains i.e. the method of analysing and management of logistics networks. Main goal of supply chain management is to reduce costs and to improve customer service. This affects efficiency and performance of enterprises. Consequently, it impacts on achievement of better competitive...

  2. INFORMATION TECHNOLOGY IN AGRI-FOOD SUPPLY CHAINS

    OpenAIRE

    Salin, Victoria

    1998-01-01

    High-tech information systems can offer competitive advantages to agri-food firms when the systems support a supply chain strategy that suits the demand for the product. This article discusses differences between supply chains for functional versus innovative products and the relevance for managers in agri-food firms. Unique characteristics of agriculture and food products and economic concentration in food industries affect the appropriate supply chain approach.

  3. Supply chain collaboration: information sharing in a tactical operating environment

    OpenAIRE

    Bordetsky, Alex; Ascef, Rogers

    2013-01-01

    The operational availability of any equipment depends on its supply chain. in a tactical environment, logistics are complex and dynamic. If the elements of a supply chain are poorly integrated and collaborated on, supply can by unstable and inefficient. This study uses system theory to understand how collaboration on logistics information affects the supply chains among companies and military organizations in a tactical operating environment. The paper reviews the literature and designs a...

  4. Managing risks in next generation supply chains: a systems approach

    OpenAIRE

    Ghadge, Abhijeet; Dani, Samir; Kalawsky, Roy

    2010-01-01

    Supply chain risk management follows three basic processes to manage supply chain risks: Identify, Assess and Mitigate. This paper considers a systems perspective towards managing these risks. It presents variables that may affect Next Generation Supply Chains and applies a System dynamics modelling approach (Oehmen, et. al. 2009) towards depicting the causal linkages of these variables with future supply disruptions. To understand the interdependencies within these factors and the risk propa...

  5. Yeast Interactions in Inoculated Wine Fermentation.

    Science.gov (United States)

    Ciani, Maurizio; Capece, Angela; Comitini, Francesca; Canonico, Laura; Siesto, Gabriella; Romano, Patrizia

    2016-01-01

    The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process. PMID:27148235

  6. Degradation of 5-hydroxymethylfurfural during yeast fermentation.

    Science.gov (United States)

    Akıllıoglu, Halise Gül; Mogol, Burçe Ataç; Gökmen, Vural

    2011-12-01

    5-Hydroxymethyl furfural (HMF) may occur in malt in high quantities depending on roasting conditions. However, the HMF content of different types of beers is relatively low, indicating its potential for degradation during fermentation. This study investigates the degradation kinetics of HMF in wort during fermentation by Saccharomyces cerevisiae. The results indicated that HMF decreased exponentially as fermentation progressed. The first-order degradation rate of HMF was 0.693 × 10(-2) and 1.397 × 10(-2)min(-1) for wort and sweet wort, respectively, indicating that sugar enhances the activity of yeasts. In wort, HMF was converted into hydroxymethyl furfuryl alcohol by yeasts with a high yield (79-84% conversion). Glucose and fructose were utilised more rapidly by the yeasts in dark roasted malt than in pale malt (pyeast cells, and presence of sugars in the fermentation medium increases this activity. PMID:22010851

  7. Yeast Interactions in Inoculated Wine Fermentation

    Science.gov (United States)

    Ciani, Maurizio; Capece, Angela; Comitini, Francesca; Canonico, Laura; Siesto, Gabriella; Romano, Patrizia

    2016-01-01

    The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process. PMID:27148235

  8. Yeast interactions in inoculated wine fermentation

    Directory of Open Access Journals (Sweden)

    Maurizio eCiani

    2016-04-01

    Full Text Available The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process.

  9. Drug for Yeast Infections May Raise Miscarriage Risk, FDA Warns

    Science.gov (United States)

    ... gov/medlineplus/news/fullstory_158503.html Drug for Yeast Infections May Raise Miscarriage Risk, FDA Warns Agency ... brand name Diflucan) is used to treat vaginal yeast infections. "Patients who are pregnant or actively trying ...

  10. Issues on Supply Chain Management

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Although supply chain is regarded as an integrated pr ocess, actually, researchers and practitioners have primarily investigated the v arious processes of the supply chain individually. The competitive field in most markets requires well-designed integrated supply chain instead of individual o perations. In this paper, some traditional thinking of supply chain is given fir st, then SCM (Supply Chain Management) is introduced, which views the entire sup ply chain as a whole rather than individual process a...

  11. A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants.

    Science.gov (United States)

    Fukuoka, Tokuma; Kawamura, Mayo; Morita, Tomotake; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-11-24

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties, but also versatile biochemical actions. During a survey of new MEL producers, we found that a basidiomycetous yeast, Pseudozyma crassa, extracellularly produces three glycolipids. When glucose and oleic acid were used as the carbon source, the total amount of glycolipids reached approximately 4.6g/L in the culture medium. The structures of these glycolipids were similar to those of well-known MEL-A, -B, and -C, respectively. Very interestingly, in all the present glycolipids, the configuration of the erythritol moiety was entirely opposite to that of conventional MELs. The present glycolipids were identified to have the carbohydrate structure of 4-O-beta-D-mannopyranosyl-(2R,3S)-erythritol, stereochemically different from 4-O-beta-D-mannopyranosyl-(2S,3R)-erythritol of conventional MELs. Furthermore, these new glycolipids possessed both short-chain acids (C(2) or C(4)) and long-chain acids (C(14), C(16), or C(18)) on the mannose moiety. The major component of the present glycolipids clearly showed different interfacial and biological properties, compared to conventional MELs comprising two medium-chain acids on the mannose moiety. Accordingly, the novel MEL diastereomers produced by P. crassa should provide us with different glycolipid functions, and facilitate a broad range of applications of MELs. PMID:18805521

  12. The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth.

    OpenAIRE

    Yoko-o, T; Matsui, Y; Yagisawa, H; Nojima, H; Uno, I; Toh-E, A

    1993-01-01

    Using the polymerase chain reaction technique, we have isolated a gene that encodes a putative phosphoinositide-specific phospholipase C (PLC) in the yeast Saccharomyces cerevisiae. The nucleotide sequence indicates that the gene encodes a polypeptide of 869 amino acid residues with a calculated molecular mass of 101 kDa. This polypeptide has both the X and Y regions conserved among mammalian PLC-beta, -gamma, and -delta, and the structure is most similar to that of mammalian PLC-delta. This ...

  13. Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris

    OpenAIRE

    Keizer-Gunnink, [No Value; Vuorela, A; Myllyharju, J; Pihlajaniemi, T.; Kivirikko, KI; Veenhuis, M; Keizer-Gunnink, Ineke; Kivirikko, Kari I.

    2000-01-01

    It was recently reported that co-expression of the proal(III) chain of human type III procollagen with the subunits of human prolyl 4-hydroxylase in Pichia pastoris produces fully hydroxylated and properly folded recombinant type III procollagen molecules (Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., Kivirikko, K.I., 1997. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with col...

  14. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat Dawid; Weber Christian; Lorenzen Wolfram; Bode Helge B; Boles Eckhard

    2012-01-01

    Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobut...

  15. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat, Dawid; Weber, Christian; Lorenzen, Wolfram; Bode, Helge Björn; Boles, Eckhard

    2012-01-01

    Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. ...

  16. Vascular homeostasis regulators, Edn1 and Agpt2, are upregulated as a protective effect of heat-treated zinc yeast in irradiated murine bone marrow

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the mechanism underlying the in vivo radioprotection activity by Zn-containing, heat-treated Saccharomyces cerevisiae yeast (Zn-yeast). Zn-yeast suspension was administered into C3H/He mice immediately after whole body irradiation (WBI) at 7.5 Gy. Bone marrow was extracted from the mice 6 hours after irradiation and analyzed on a microarray. Expression changes in the candidate responsive genes differentially expressed in treated mice were re-examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The bone marrow was also examined pathologically at 6 h, 3, 7, and 14 days postirradiation. Thirty-six genes, including Edn1 and Agpt2, were identified as candidate responsive genes in irradiated mouse bone marrow treated with Zn-yeast by showing a greater than three-fold change compared with control (no irradiation and no Zn-yeast) mice. The expressions of Cdkn1a, Bax, and Ccng, which are well known as radioresponsive genes, were upregulated in WBI mice and Zn-yeast treated WBI mice. Pathological examination showed the newly formed microvessels lined with endothelial cells, and small round hematopoietic cells around vessels in bone marrow matrix of mice administered with Zn-yeast after WBI, while whole-body irradiated mice developed fatty bone marrow within 2 weeks after irradiation. This study identified a possible mechanism for the postirradiation protection conferred by Zn-yeast. The protective effect of Zn-yeast against WBI is related to maintaining the bone marrow microenvironment, including targeting endothelial cells and cytokine release. (author)

  17. Kinetochore and heterochromatin domains of the fission yeast centromere.

    Science.gov (United States)

    Pidoux, Alison L; Allshire, Robin C

    2004-01-01

    Fission yeast centromeres are composed of two distinctive chromatin domains. The central domain nucleosomes contain the histone H3-like protein CENP-A(Cnp1). In contrast, the flanking repeats are coated with silent chromatin in which Swi6 (HP1) binds histone H3 methylated on lysine 9 that is induced by the action of the RNA interference pathway on non-coding centromeric transcripts. The overall structure is similar to that of metazoan centromeres where the kinetochore is embedded in surrounding heterochromatin. Kinetochore specific proteins associate with the central domain and affect silencing in that region. The flanking heterochromatin is required to recruit cohesin and mediate tight physical cohesion between sister centromeres. The loss of silencing that accompanies defects in heterochromatin has been invaluable as a tool in the investigation of centromere function. Both the heterochromatin and kinetochore regions are required for the de novo assembly of a functional centromere on DNA constructs, suggesting that heterochromatin may provide an environment that promotes kinetochore assembly within the central domain. The process is clearly epigenetically regulated. Fission yeast kinetochores associate with 2-4 microtubules, and flanking heterochromatin may be required to promote the orientation of multiple microtubule binding sites on one kinetochore towards the same pole and thus prevent merotelic orientation. PMID:15289660

  18. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic....... Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended...

  19. Multiple Functions of Sterols in Yeast Endocytosis

    OpenAIRE

    Heese-Peck, Antje; Pichler, Harald; Zanolari, Bettina; Watanabe, Reika; Daum, Günther; Riezman, Howard

    2002-01-01

    Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergΔ mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Δerg6Δ and erg3Δerg6Δ cells exhibit a strong internalization defect of the α-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. Th...

  20. Overwintering of vineyard yeasts: survival of interacting yeast communities in grapes mummified on vines

    Directory of Open Access Journals (Sweden)

    Matthias eSipiczki

    2016-02-01

    Full Text Available The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae and S. uvarum were recovered from 13 % of the samples. No Candida zemplinina was found. The isolates with Aureobasidium

  1. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  2. Newly identified prions in budding yeast, and their possible functions

    OpenAIRE

    Crow, Emily T.; Li, Liming

    2011-01-01

    Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we sum...

  3. Rapid isolation of yeast genomic DNA: Bust n' Grab

    OpenAIRE

    Peterson Kenneth R; Fedosyuk Halyna; Harju Susanna

    2004-01-01

    Abstract Background Mutagenesis of yeast artificial chromosomes (YACs) often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods fo...

  4. Improving industrial yeast strains: exploiting natural and artificial diversity

    OpenAIRE

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J.

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food ferment...

  5. Assessing the potential of wild yeasts for bioethanol production

    OpenAIRE

    Ruyters, Stefan; Mukherjee, Vaskar; Verstrepen, Kevin; Thevelein, Johan; Willems, Kris; Lievens, Bart

    2015-01-01

    Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wicke...

  6. A new methodology to obtain wine yeast strains overproducing mannoproteins

    OpenAIRE

    Quirós Asensio, Manuel; González Ramos, Daniel; Tabera Moreno, Laura; González García, Ramón

    2010-01-01

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the β-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefor...

  7. Linking Supply Chain Strength to Sustainable Development and Innovation: A Country-Level Analysis

    OpenAIRE

    Lin, Pei-Jung

    2009-01-01

    The study ascertained the presence of association between supply chain efficiency and sustainable development together with innovation within a country. This study determined as well the link that bonds supply chain efficiency with environmental performance. The study clarified that supply chain efficiency affects corporate environmental processes by any means. Lastly, the study evaluated how supply chain efficiency affects social sustainability and sustainable development. The main task for ...

  8. Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains

    NARCIS (Netherlands)

    Klokkenburg, M.; Erne, B.H.; Mendelev, V.; Ivanov, A.O.

    2008-01-01

    Theories and simulations have demonstrated that field-induced dipolar chains affect the static magnetic properties of ferrofluids. Experimental verification, however, has been complicated by the high polydispersity of the available ferrofluids, and the morphology of the dipolar chains was left to th

  9. Factors Affecting Methylmercury Accumulation in the Food Chain

    OpenAIRE

    Luengen, Allison

    2012-01-01

    The common scientific wisdom is that dissolved organic debris (from rotting dead plant material, for example) reduces the biological activity, and hence toxicity, of heavy metals such as mercury. Prior to the start of this project, however, a study showed that organic debris could also sometimes enhance build up of the toxic form of mercury in phytoplankton. This toxic form is called methylmercury (MeHg). It is produced in the aquatic environment by sulfur-reducing bacteria and biomagnifies t...

  10. Simultaneous and successive inoculations of yeasts and lactic acid bacteria on the fermentation of an unsulfited Tannat grape must

    Directory of Open Access Journals (Sweden)

    Viviana Muñoz

    2014-01-01

    Full Text Available Interactions between yeasts and lactic acid bacteria are strain specific, and their outcome is expected to change in simultaneous alcoholic -malolactic fermentations from the pattern observed in successive fermentations. One Oenococcus oeni strain Lalvin VP41TM was inoculated with two Saccharomyces cerevisiae strains either simultaneously, three days after the yeast inoculation, or when alcoholic fermentation was close to finish. Early bacterial inoculations with each yeast strain allowed for the growth of the bacterial populations, and the length of malolactic fermentation was reduced to six days. Alcoholic fermentation by Lalvin ICV D80® yeast strain left the highest residual sugar, suggesting a negative effect of the bacterial growth and malolactic activity on its performance. In sequential inoculations the bacterial populations did not show actual growth with either yeast strain. In this strategy, both yeast strains finished the alcoholic fermentations, and malolactic fermentations took longer to finish. Lalvin ICV D80® allowed for higher viability and activity of the bacterial strain than Fermicru UY4® under the three inoculation strategies. This was beneficial for the sequential completion of both fermentations, but negatively affected the completion of alcoholic fermentation by Lalvin ICV D80® in the early bacteria additions. Conversely, Fermicru UY4®, which was rather inhibitory towards the bacteria, favored the timely completion of both fermentations simultaneously. As bacteria in early inoculations with low or no SO2 addition can be expected to multiply and interact with fermenting yeasts, not only are the yeast-bacterium strains combination and time point of the inoculation to be considered, but also the amount of bacteria inoculated.

  11. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... Saccharomyces cereviseae, Saccharomyces fragilis, or Candida utilis) using the sprout portion of malt barley as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt...

  12. Isolation and Identification of Yeasts from Tibet Kefir

    OpenAIRE

    Yun Li; Tongjie Liu; Guoqing He

    2015-01-01

    The occurrence and distribution of yeasts in Tibet kefir were investigated in this study. Five samples of Tibetan kefir from Tibet and surrounding areas were collected for yeast isolation. Based on physiological, biochemical characteristics and molecular identification results, eight species of yeast were isolated and identified from Tibet kefir, including Saccharomyces cerevisiae, Pichia fermentans, Debaryomyces hansenii, Rhodotorula mucilaginosa, Candida zeylanoide, Candida parapsilosis, Kl...

  13. Adhesive interactions between medically important yeasts and bacteria

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention al body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple macroscop

  14. Antiretroviral procurement and supply chain management.

    Science.gov (United States)

    Ripin, David J; Jamieson, David; Meyers, Amy; Warty, Umesh; Dain, Mary; Khamsi, Cyril

    2014-01-01

    Procurement, the country-level process of ordering antiretrovirals (ARVs), and supply chain management, the mechanism by which they are delivered to health-care facilities, are critical processes required to move ARVs from manufacturers to patients. To provide a glimpse into the ARV procurement and supply chain, the following pages provide an overview of the primary stakeholders, principal operating models, and policies and regulations involved in ARV procurement. Also presented are key challenges that need to be addressed to ensure that the supply chain is not a barrier to the goal of universal coverage. This article will cover the steps necessary to order and distribute ARVs, including different models of delivery, key stakeholders involved, strategic considerations that vary depending on context and policies affecting them. The single drug examples given illustrate the complications inherent in fragmented supply and demand-driven models of procurement and supply chain management, and suggest tools for navigating these hurdles that will ultimately result in more secure and reliable ARV provision. Understanding the dynamics of ARV supply chain is important for the global health community, both to ensure full and efficient treatment of persons living with HIV as well as to inform the supply chain decisions for other public health products. PMID:25310145

  15. Phasic Triplet Markov Chains.

    Science.gov (United States)

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  16. Yeast Interacting Proteins Database: YDR357C, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available izes to the endosome; identified as a transcriptional activator in a high-throughput...ome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with this pr

  17. Yeast Interacting Proteins Database: YFR015C, YLR258W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into statio

  18. Yeast Interacting Proteins Database: YFR015C, YJL137C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...pression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary

  19. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M; Wallace, Mairi; Samejima, Itaru; Taylor, Martin S; Gordon, Colin

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also foun...

  20. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Science.gov (United States)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  1. Inhibition of Alcoholic Fermentation of Grape Must by Fatty Acids Produced by Yeasts and Their Elimination by Yeast Ghosts

    OpenAIRE

    Lafon-Lafourcade, S.; Geneix, C.; Ribéreau-Gayon, P.

    1984-01-01

    In a complete nutritive medium rich in sugar, such as grape must, the inhibition of alcoholic fermentation is caused by substances produced by the yeast which, acting synergistically with ethanol, are toxic to the yeasts themselves. Among these are decanoic and octanoic acids and their corresponding ethyl esters. Their adsorption by yeast ghosts permits the prevention and treatment of fermentation stoppages.

  2. Arachidonic acid metabolites in pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Ells Ruan

    2012-08-01

    Full Text Available Abstract Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

  3. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  4. Yeast improves resistance to environmental challenges

    Science.gov (United States)

    Alphamune™, a yeast extract antibiotic alternative, was added at either 1 lb/ton or 2 lb/ton to a turkey starter diet. Two trials were conducted to evaluate the effects of Alphamune™ on gut maturation of 7 and 21 day old poults. Sections from the mid-point of the duodenum, jejunum and ileum of each ...

  5. DNA sequence of the yeast transketolase gene.

    Science.gov (United States)

    Fletcher, T S; Kwee, I L; Nakada, T; Largman, C; Martin, B M

    1992-02-18

    Transketolase (EC 2.2.1.1) is the enzyme that, together with aldolase, forms a reversible link between the glycolytic and pentose phosphate pathways. We have cloned and sequenced the transketolase gene from yeast (Saccharomyces cerevisiae). This is the first transketolase gene of the pentose phosphate shunt to be sequenced from any source. The molecular mass of the proposed translated protein is 73,976 daltons, in good agreement with the observed molecular mass of about 75,000 daltons. The 5'-nontranslated region of the gene is similar to other yeast genes. There is no evidence of 5'-splice junctions or branch points in the sequence. The 3'-nontranslated region contains the polyadenylation signal (AATAAA), 80 base pairs downstream from the termination codon. A high degree of homology is found between yeast transketolase and dihydroxyacetone synthase (formaldehyde transketolase) from the yeast Hansenula polymorpha. The overall sequence identity between these two proteins is 37%, with four regions of much greater similarity. The regions from amino acid residues 98-131, 157-182, 410-433, and 474-489 have sequence identities of 74%, 66%, 83%, and 82%, respectively. One of these regions (157-182) includes a possible thiamin pyrophosphate (TPP) binding domain, and another (410-433) may contain the catalytic domain. PMID:1737042

  6. Radiation-sensitive mutants of yeast

    International Nuclear Information System (INIS)

    Nomenclature for various radiosensitive mutants of Saccharomyces cerevisiae is briefly discussed. Tables are presented to show results of allelism tests of most of the radiosensitive mutants isolated by various investigators together with a standardized rad locus designation and map positions of a number of rad loci in yeast

  7. Engineering yeast tolerance to inhibitory lignocellulosic biomass

    OpenAIRE

    Cunha, Joana Filipa Torres Pinheiro; Aguiar, Tatiana Quinta; D. Mendes; Pereira, Francisco B.; Domingues, Lucília

    2013-01-01

    In recent years the necessity for biotechnological manufacturing based on lignocellulosic feedstocks has become evident. However, the pre-treatment step in the production of lignocellulosic bioethanol leads to the accumulation of inhibitory byproducts. Robust second generation bioethanol processes require microorganisms able to ferment these inhibitory lignocellulosic hydrolysates. Significant progress has been made in the understanding of the determinants of yeast tolerance to lignocellulose...

  8. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  9. Raman microspectroscopy of the yeast vacuoles

    Czech Academy of Sciences Publication Activity Database

    Bednárová, Lucie; Palacký, J.; Bauerová, Václava; Hrušková-Heidingsfeldová, Olga; Pichová, Iva; Mojzeš, P.

    Amsterdam: IOS Press, 2013 - (Marques, M.; Batista de Carvalho, L.; Haris, P.), s. 73-77. (Spectroscopy of Biological Molecules. 7). ISBN 978-1-61499-183-0 Institutional research plan: CEZ:AV0Z40550506 Keywords : Candida albicans * chemical composition * living cell * polyphosphate * Raman microspectroscopy * vacuole * yeast Subject RIV: CE - Biochemistry

  10. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R.

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  11. Regulations of sugar transporters: insights from yeast

    Czech Academy of Sciences Publication Activity Database

    Horák, Jaroslav

    2013-01-01

    Roč. 59, 1-2 (2013), s. 1-31. ISSN 0172-8083 R&D Projects: GA ČR(CZ) GAP503/10/0307 Institutional support: RVO:67985823 Keywords : sugar transporter * yeast * glucose signaling * sensing Subject RIV: EE - Microbiology, Virology Impact factor: 1.712, year: 2013

  12. Killer yeasts as biocontrol agents of spoilage yeasts and bacteria isolated from wine

    Directory of Open Access Journals (Sweden)

    Fernández de Ullivarri Miguel

    2014-01-01

    Full Text Available During the winemaking process Saccharomyces cerevisiae is the main yeast species but other yeasts called non-Saccharomyces as well as different species of lactic acid bacteria (LAB are also present. Then, one strategy to prevent or reduce microbial contamination during the winemaking process is the use of killer yeasts. The aim of this study was to evaluate the killer activity (KA of autochthonous yeasts from Northwest region of Argentine (S. cerevisiae Cf8 and Wickerhamomyces anomalus Cf20 on spoilage yeasts and in LAB of the wine. The KA was evaluated using cell-free supernatants obtained from pure and mixed cultures of strains Cf8-Cf20. S. cerevisiae Cf8 showed a growth reduction between 7 and 48% on D. anomala BDa15, P. membranifaciens BPm481 and Z. bailii Bzb317 while W. anomalus Cf20 exhibited KA of 20, 61, 91 and 92% against B. bruxellensis Ld1, D. anomala BDa15, P. membranifaciens BPm481 and P. guilliermondii Cd6, respectively. Killer mixed supernatants showed growth inhibition similar to strain Cf20. Screening against LAB showed that both killer toxins were able to inhibit the growth of L. hilgardii 5w as well as to reduce a 16–31% histamine production by this LAB strain. These results confirm the potential of autochthonous killer yeasts as biocontrol agents in winemaking process. The mixed culture S. cerevisiae Cf8-W. anomalus Cf20 presented a wide range of KA on spoilage yeasts as well as on L. hilgardii. Therefore, the use of killer yeasts as starter cultures would allow producing wines with controlled quality.

  13. Rescue of end fragments of yeast artificial chromosomes by homologous recombination in yeast.

    OpenAIRE

    Hermanson, G G; Hoekstra, M F; McElligott, D. L.; Evans, G A

    1991-01-01

    Yeast artificial chromosomes (YACs) provide a powerful tool for the isolation and mapping of large regions of mammalian chromosomes. We developed a rapid and efficient method for the isolation of DNA fragments representing the extreme ends of YAC clones by the insertion of a rescue plasmid into the YAC vector by homologous recombination. Two rescue vectors were constructed containing a yeast LYS2 selectable gene, a bacterial origin of replication, an antibiotic resistance gene, a polylinker c...

  14. Yeast Interacting Proteins Database: YBR288C, YGR261C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR288C APM3 Mu3-like subunit of the clathrin associated protein complex (AP-3); functions in tr ... as prey (0) YGR261C APL6 Beta3-like subunit of the yeast ... AP-3 complex; functions in transport of alkaline p ... me APL6 Prey description Beta3-like subunit of the yeast ... AP-3 complex; functions in transport of alkaline p ...

  15. Yeast Interacting Proteins Database: YOL069W, YMR294W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOL069W NUF2 Component of the evolutionarily conserved kinetochore-associated Ndc80 complex (Ndc ... his bait as prey (0) YMR294W JNM1 Component of the yeast ... dynactin complex, consisting of Nip100p, Jnm1p, an ... y gene name JNM1 Prey description Component of the yeast ... dynactin complex, consisting of Nip100p, Jnm1p, an ...

  16. Yeast Interacting Proteins Database: YDR311W, YMR294W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR311W TFB1 Subunit of TFIIH and nucleotide excision repair factor 3 complexes, required for nu ... his bait as prey (0) YMR294W JNM1 Component of the yeast ... dynactin complex, consisting of Nip100p, Jnm1p, an ... y gene name JNM1 Prey description Component of the yeast ... dynactin complex, consisting of Nip100p, Jnm1p, an ...

  17. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    OpenAIRE

    Gulbiniene, Gintare; Kondratiene, Laima; Jokantaite, Tautvile; Serviene, Elena; Melvydas, Vytautas; Petkuniene, Giedre

    2004-01-01

    Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. To...

  18. Nonaffine chain and primitive path deformation in crosslinked polymers

    Science.gov (United States)

    Davidson, J. D.; Goulbourne, N. C.

    2016-08-01

    Chains in a polymer network deform nonaffinely at small length scales due to the ability for extensive microscopic rearrangement. Classically, the conformations of an individual chain can be described solely by an end-to-end length. This picture neglects interchain interactions and therefore does not represent the behavior of a real polymer network. The primitive path concept provides the additional detail to represent interchain entanglements, and techniques have recently been developed to identify the network of primitive paths in a polymer simulation. We use coarse-grained molecular dynamics (MD) to track both chain end-to-end and primitive path deformation in crosslinked polymer networks. The range of simulated materials includes short chain unentangled networks to long, entangled chain networks. Both chain end-to-end and primitive path length are found to be linear functions of the applied deformation, and a simple relationship describes the behavior of a network in response to large stretch uniaxial, pure shear, and equi-biaxial deformations. As expected, end-to-end chain length deformation is nonaffine for short chain networks, and becomes closer to affine for networks of long, entangled chains. However, primitive path deformation is found to always be nonaffine, even for long, entangled chains. We demonstrate how the microscopic constraints of crosslinks and entanglements affect nonaffine chain deformation as well as the simulated elastic behavior of the different networks.

  19. Supply chain quality management

    Directory of Open Access Journals (Sweden)

    Hannan Amoozad Mahdiraji

    2012-10-01

    Full Text Available In recent years, there are several methods introduced for the improvement of operational performances. Total quality management and supply chain management are two methods recommended for this purpose. These two approaches have been studied in most researches separately, while they have objectives in common, and this makes them a strategic means, which can be used, simultaneously. Total quality management and supply chain management play significant roles to increase the organizational competitiveness power. Moreover, they have only one purpose that is customer satisfaction, and they are different only on their approaches to reach their objectives. In this research, we aim to study both approaches of quality management and supply chain, their positive increasing effects that may be generated after their integration. For this purpose, the concept and definitions of each approach is studied, independently, their similarities and differences are recognized, and finally, the advantages of their integration are introduced.

  20. Virulence markers of opportunistic black yeast in Exophiala.

    Science.gov (United States)

    Sav, Hafize; Ozakkas, Fatma; Altınbas, Rabiye; Kiraz, Nuri; Tümgör, Ayşegül; Gümral, Ramazan; Döğen, Aylin; Ilkit, Macit; de Hoog, G Sybren

    2016-06-01

    The black yeast genus Exophiala is known to cause a wide variety of diseases in severely ill individuals but can also affect immunocompetent individuals. Virulence markers and other physiological parameters were tested in eight clinical and 218 environmental strains, with a specific focus on human-dominated habitats for the latter. Urease and catalase were consistently present in all samples; four strains expressed proteinase and three strains expressed DNase, whereas none of the strains showed phospholipase, haemolysis, or co-haemolysis activities. Biofilm formation was identified in 30 (13.8%) of the environmental isolates, particularly in strains from dishwashers, and was noted in only two (25%) of the clinical strains. These results indicate that virulence factors are inconsistently present in the investigated Exophiala species, suggesting opportunism rather than pathogenicity. PMID:26857806

  1. Oxidative damage mediated by herbicides on yeast cells.

    Science.gov (United States)

    Braconi, Daniela; Possenti, Silvia; Laschi, Marcella; Geminiani, Michela; Lusini, Paola; Bernardini, Giulia; Santucci, Annalisa

    2008-05-28

    Agricultural herbicides are among the most commonly used pesticides worldwide, posing serious concerns for both humans, exposed to these chemicals through many routes, and the environment. To clarify the effects of three herbicides as commercial formulations (namely, Pointer, Silglif, and Proper Energy), parameters related to oxidative issues were investigated on an autochthonous wine yeast strain. It was demonstrated that herbicides were able to affect the enzymatic activities of catalase and superoxide dismutase, as well as to induce carbonylation and thiol oxidation as post-translational modifications of proteins. Saccharomyces cerevisiae is an optimal model system to study responses to xenobiotics and oxidative stress. Thus, the results obtained could further the understanding of mechanisms underlying the toxicity of herbicides. PMID:18442254

  2. New yeast-based approaches in production of palmitoleic acid.

    Science.gov (United States)

    Kolouchová, Irena; Sigler, Karel; Schreiberová, Olga; Masák, Jan; Řezanka, Tomáš

    2015-09-01

    Palmitoleic acid is found in certain dairy products and has broad applications in medicine and cosmetics. We tried to find a suitable producer of this acid among traditional biotechnological yeast species (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) characterized by high biomass yield and Candida krusei, Yarrowia lipolytica and Trichosporon cutaneum accumulating large amounts of lipids. The main factor affecting the content of palmitoleic acid was found to be the C/N ratio in the culture medium, with ammonium sulfate as an optimum nitrogen source leading to highest biomass yield with concomitantly increased lipid accumulation, and an increased content of ω6-linoleic acid, the precursor of prostaglandins, leukotrienes, and thromboxanes. We found that C. krusei can be conveniently used for the purpose, albeit only under certain cultivation conditions, whereas S. cerevisiae can produce high and stable amounts of palmitoleic acid in a broad range of cultivation conditions ranging from conventional to nutrient limitations. PMID:26101962

  3. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K+ uptake and Na+ transport in yeast

    International Nuclear Information System (INIS)

    Highlights: → The AtCCX5 protein coding a putative cation calcium exchanger was characterized. → AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. → AtCCX5 protein did not show the same transport properties as the CAXs. → AtCCX5 protein involves in mediating high-affinity K+ uptake in yeast. → AtCCX5 protein also involves in Na+ transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.

  4. Essentials of supply chain management

    CERN Document Server

    Hugos, Michael H

    2011-01-01

    The latest thinking, strategies, developments, and technologies to stay current in supply chain management Presenting the core concepts and techniques of supply chain management in a clear, concise and easily readable style, the Third Edition of Essentials of Supply Chain Management outlines the most crucial tenets and concepts of supply chain management.

  5. Building the resilient supply chain.

    OpenAIRE

    Christopher, Martin; Peck, Helen

    2004-01-01

    In today’s uncertain and turbulent markets, supply chain vulnerability has become an issue of significance for many companies. As supply chains become more complex as a result of global sourcing and the continued trend to ‘leaning-down’, supply chain risk increases. The challenge to business today is to manage and mitigate that risk through creating more resilient supply chains.

  6. Supply-Chain Optimization Template

    Science.gov (United States)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  7. Fuzzy Markov chains: uncertain probabilities

    OpenAIRE

    James J. Buckley; Eslami, Esfandiar

    2002-01-01

    We consider finite Markov chains where there are uncertainties in some of the transition probabilities. These uncertainties are modeled by fuzzy numbers. Using a restricted fuzzy matrix multiplication we investigate the properties of regular, and absorbing, fuzzy Markov chains and show that the basic properties of these classical Markov chains generalize to fuzzy Markov chains.

  8. Simultaneous in vivo truncation of pectic side chains

    DEFF Research Database (Denmark)

    Øbro, Jens; Borkhardt, Bernhard; Harholt, Jesper;

    2009-01-01

    . These modifications often prevent gelation, which has been a major functional requirement of commercial pectins until recently. We have previously shown that modification of pectin is possible through heterologous expression of pectin degrading enzymes in planta. To test the effect of simultaneous...... modification of the two main neutral pectic side chains in pectic rhamnogalacturonan I (RGI), we constitutively expressed two different enzymes in Arabidopsis thaliana that would either modify the galactan or the arabinan side chains, or both side chains simultaneously. Our analysis showed that the...... simultaneous truncation of arabinan and galactan side chains is achievable and does not severely affect the growth of Arabidopsis thaliana....

  9. Integrated supply chain risk management

    Directory of Open Access Journals (Sweden)

    Riaan Bredell

    2007-11-01

    Full Text Available Integrated supply chain risk management (ISCRM has become indispensable to the theory and practice of supply chain management. The economic and political realities of the modern world require not only a different approach to supply chain management, but also bold steps to secure supply chain performance and sustainable wealth creation. Integrated supply chain risk management provides supply chain organisations with a level of insight into their supply chains yet to be achieved. If correctly applied, this process may optimise management decision-making and assist in the protection and enhancement of shareholder value.

  10. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs

    OpenAIRE

    Almeida, M. J.; Pais, Célia

    1996-01-01

    Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, the...

  11. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Slater, M R; Craig, E A

    1987-01-01

    The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the ...

  12. Influence of yeast, probiotics and enzymes in rations on dairy cows performances during transition

    OpenAIRE

    Sretenović Ljiljana; Petrović Milan P.; Aleksić S.; Pantelić Vlada; Katić V.; Bogdanović V.; Beskorovajni R.

    2008-01-01

    The main goal of this paper was to investigate the influence of some additives included into high yielding dairy cows rations to overcome the problems in early lactation. These substances directly affect the productive performances of dairy cows as well as udder health. The commercial name of investigated preparation is 'YEASTURE' and it is composed of live yeast cultures selected from three strains Saccharomyces cerevisisiae in combination with probiotic bacteria an...

  13. Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production

    DEFF Research Database (Denmark)

    Trikka, Fotini A; Nikolaidis, Alexandros; Athanasakoglou, Anastasia;

    2015-01-01

    advantage of existing knowledge of the sterol biosynthetic pathway, while many additional factors may affect the output of the engineered system. RESULTS: Aiming to develop a yeast strain that can support high titers of sclareol, a diterpene of great importance for the perfume industry, we sought to....... Applying the same approach using a different starting point could yield alternative sets of deletions with similar or improved outcome....

  14. Continuous fermentation of alcohol-free beer : bioreactor hydrodynamics and yeast physiology

    OpenAIRE

    Mota, André

    2012-01-01

    Tese de doutoramento em Biological and Chemical Engineering In this study, the continuous product ion with immobilized cells of beer without alcohol was investigated. Apart from the evaluation of the various parameters affecting the quality of the continuous product ion of alcohol- free beer, a detailed study on the hydrodynamics of three phase bioreactors was also done. One of the major costs associated with continuous fermentations is the carrier cost where the yeast is immobilized. T...

  15. Affect Regulation

    DEFF Research Database (Denmark)

    Pedersen, Signe Holm; Poulsen, Stig Bernt; Lunn, Susanne

    2014-01-01

    Gergely and colleagues’ state that their Social Biofeedback Theory of Parental Affect Mirroring” can be seen as a kind of operationalization of the classical psychoanalytic concepts of holding, containing and mirroring. This article examines to what extent the social biofeedback theory of parenta...

  16. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates.

    Science.gov (United States)

    Lilly, M; Lambrechts, M G; Pretorius, I S

    2000-02-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  17. ADA1 and NET1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial $\\rho^{-}$ Mutagenesis

    CERN Document Server

    Koltovaya, N A; Tchekhouta, I A; Devin, A B

    2002-01-01

    An increase in the mitochondrial (mt) rho^- mutagenesis is a well-known respose of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho^- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho^- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well as on ce...

  18. ADA1 and NET1 genes of yeast mediate both chromosome maintenance and mitochondrial rho- mutagenesis

    International Nuclear Information System (INIS)

    An increase in the mitochondrial (mt) rho- mutagenesis is a well-known response of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well on cell sensitivity to ionizing radiation are also described. (author)

  19. Reinforcement of the radiative and thermic stresses of the grapevine. Repercussions on yeast surface microflora

    International Nuclear Information System (INIS)

    All along the ripening period, the radiative and thermic stresses of the grapevine may be reinforced by the use of a reflective soil cover (aluminized film). Such a treatment leads to repercussions on the berries, on the must composition and finally on the wine quality. During such a preliminary experiment, we demonstrated that the temperature increase and/or the reinforcement of the reflected ultraviolet radiations (measured at 254 nm) at the level of grape berries severely impaired the development of yeast cells at their surfaces. By means of an artificial inoculation of grapes at the beginning of the ripening period with a mixture of four different yeast genera (Saccharomyces cerevisiae, Hanseniaspora uvarum, Pichia fermentans and Schizosaccharomyces pombe), we demonstrated that the repartition of yeast genera amongst this population was affected by the treatment of stocks with the aluminized film: during the experiment presented in this paper, the Saccharomyces genus was favoured. One may consider by extension similar effects resulting from the reflective properties of some natural soils. Such effects may considerably influence the distribution of wild yeast flora during the spontaneous fermentation of musts. If such an hypothesis is confirmed at a local or regional level, it will represent a first significant piece of the definition of one of the aspects of the ''terroir'' effect on the characteristics of wines

  20. Alternative branch points are selected during splicing of a yeast pre-mRNA in mammalian and yeast extracts.

    OpenAIRE

    Ruskin, B; Pikielny, C W; Rosbash, M; Green, M R

    1986-01-01

    Pre-mRNA splicing in yeast and higher eukaryotes proceeds by similar pathways, in which a probable splicing intermediate and the excised intron are in a lariat configuration. To compare the pre-mRNA splicing mechanisms in yeast and higher eukaryotes, we have analyzed the RNA products resulting from in vitro processing of a yeast intron-containing pre-mRNA in HeLa cell and yeast extracts. In yeast, the RNA branch (2'-5' phosphodiester bond) of the RNA lariat forms at the third adenosine of the...

  1. Interaction of hTCF4 by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the interaction of hTCF4, the yeast two-hybrid system has been used for testing the interaction of mutants of hTCF4 with themselves. Mutants of hTCF4 (hTCF4Ⅰ) and hTCF4Ⅱ) have been obtained by polymerase chain reaction (PCR). Bait (hTCF4Ⅰ-pDBLeu and hTCF4Ⅱ-pDBLeu) and prey (hTCF4Ⅰ-pPC86 and hTCF4Ⅱ-pPC86) have been constructed by DNA recombination for yeast two-hybrid. Interaction of hTCF4Ⅱ with itself is found in the reverse yeast two-hybrid system (GIBCOBRL Co.). However, no interactions are found in hTCF4Ⅱ with hTCF4Ⅰand in hTCF4Ⅰ with hTCF4Ⅰ. These results suggest that hTCF4 could interact with itself to form homodimer or homocopolymer and perform the transcriptional activating function through LZ or HLH motifs in nucleus of renal cell carcinoma.

  2. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport.

    Science.gov (United States)

    Costaguta, G; Stefan, C J; Bensen, E S; Emr, S D; Payne, G S

    2001-06-01

    Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the "ear" domain of the clathrin adaptor AP-1 gamma subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Delta), the major Gga protein, accentuates growth and alpha-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Delta or a deletion of the AP-1 beta subunit gene (apl2Delta) alone are phenotypically normal, but cells carrying both gga2Delta and apl2Delta are defective in growth, alpha-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes. PMID:11408593

  3. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast

    Science.gov (United States)

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4+ and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast. PMID:26892493

  4. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract

    Science.gov (United States)

    Silva, S.Q.; Silva, D.C.; Lanna, M.C.S.; Baeta, B.E.L.; Aquino, S.F.

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal. PMID:25763018

  5. Evidence that the synthesis of glucosylphosphodolichol in yeast involves a 35-kDa membrane protein

    International Nuclear Information System (INIS)

    In an effort to identify the polypeptide chain of glucosylphosphodolichol synthase, yeast microsomal membranes were allowed to react with 5-azido[β-32P]UDPGlc, a photoactive analogue of UDPGlc, which is a substrate for this enzyme. Upon photolysis the 32P-labeled probe was shown to link covalently to a 35-kDa protein present in microsomal membranes prepared from several wild-type yeast strains. Binding was either reduced or absent in the microsomal membranes from two yeast mutants (alg5 and dpg1) that are known to be defective in the synthesis of glucosylphosphodolichol. The microsomes isolated from a heterozygous diploid strain alg5::dpg1 generated from these two mutants exhibited partial restoration of both the ability to photolabel the 35-kDa protein and the ability to catalyze the synthesis of glucosylphosphodolichol. Microsomal membranes from a mutant strain that synthesized glucosylphosphodolichol but lacked the ability to transfer the glucosyl residue to the growing lipid-linked oligosaccharide (alg6) exhibited labeling with 5-azido[β-32P]UDPGlc comparable to that found in microsomes from the wild-type strain. In all cases photoinsertion of the probe into the 35-kDa protein correlated with the level of synthase assayed in the microsomal membranes. These results strongly support the conclusion that the 35-kDa protein labeled in these experiments is a component of glucosylphosphodolichol synthase

  6. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin;

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  7. Innovation in Supply Chains

    DEFF Research Database (Denmark)

    Maier, Maximilian; Korbel, Jakob; Brem, Alexander

    2015-01-01

    . Moreover, along with the fourth industrial revolution – industry 4.0 – new technologies such as cyber physical systems are fast gaining popularity. Hence, based on the analysis of relevant literature, we further develop the supply chain committee model, developed by Kaluza et al. (2003) to demonstrate how...

  8. Heavy chain only antibodies

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud;

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen...

  9. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    - heat flux related measurement, e.g. a temperature gradient, are used to give local values of friction velocity and Monin-Obukhov length plus an estimate of the mixing height. The METRODOS meteorological preprocessor chain is an integral part of the RODOS - Real Time On Line Decision Support - program...

  10. Supply chain reliability modelling

    Directory of Open Access Journals (Sweden)

    Eugen Zaitsev

    2012-03-01

    Full Text Available Background: Today it is virtually impossible to operate alone on the international level in the logistics business. This promotes the establishment and development of new integrated business entities - logistic operators. However, such cooperation within a supply chain creates also many problems related to the supply chain reliability as well as the optimization of the supplies planning. The aim of this paper was to develop and formulate the mathematical model and algorithms to find the optimum plan of supplies by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Methods: The mathematical model and algorithms to find the optimum plan of supplies were developed and formulated by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Results and conclusions: The problem of ensuring failure-free performance of goods supply channel analyzed in the paper is characteristic of distributed network systems that make active use of business process outsourcing technologies. The complex planning problem occurring in such systems that requires taking into account the consumer's requirements for failure-free performance in terms of supply volumes and correctness can be reduced to a relatively simple linear programming problem through logical analysis of the structures. The sequence of the operations, which should be taken into account during the process of the supply planning with the supplier's functional reliability, was presented.

  11. Shared Value Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy L.

    In Sustainable Supply Chain Management (SSCM) research still the classic economic perspective is the dominating perspective, although the triple bottom line (including economic, social and ecological) is well accepted. The theoretical foundation for the paper is Stakeholder Theory. Case studies o...

  12. Exploration Supply Chain Simulation

    Science.gov (United States)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  13. CHAINE DES ROTISSEUR @ HILTON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The annual gala dinner of Chaine des Rotisseurs was hosted by Hilton Beijing. The “Ballet Dinner” - a great creation for both art and fine dining lovers was taken place in varies places within the hotel, including hotel lobby, 3rd floor and lobby lounge.

  14. Affective Urbanism

    DEFF Research Database (Denmark)

    Samson, Kristine

    , experience and consumption are all strategic design tools applied by planners and architects. Whereas urban design in former modernist planning served merely functional or political means, urban design has increasingly become an aesthetical mediator of ideologies embedded in the urban field of life forces...... capitalism not only changes urban life and its means of production, it specifically influences the way the city is designed and how it unfolds as events (Anderson & Harrison 2010) and affective, emotional production (Pile 2009). Through examples of urban design and events in the Carlsberg City in Copenhagen...... and The High Line in Chelsea, New York, the paper sets out to define and question these affective modes of production. Whether these productions are socio-material practices consisting of ludic designs (Stevens 2007), temporary architecture or art installations or evental practices consisting of...

  15. Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes.

    Science.gov (United States)

    Dirmeier, Reinhard; O'Brien, Kristin M; Engle, Marcella; Dodd, Athena; Spears, Erick; Poyton, Robert O

    2002-09-20

    The mitochondrial respiratory chain is required for the induction of some yeast hypoxic nuclear genes. Because the respiratory chain produces reactive oxygen species (ROS), which can mediate intracellular signal cascades, we addressed the possibility that ROS are involved in hypoxic gene induction. Recent studies with mammalian cells have produced conflicting results concerning this question. These studies have relied almost exclusively on fluorescent dyes to measure ROS levels. Insofar as ROS are very reactive and inherently unstable, a more reliable method for measuring changes in their intracellular levels is to measure their damage (e.g. the accumulation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in DNA, and oxidative protein carbonylation) or to measure the expression of an oxidative stress-induced gene, e.g. SOD1. Here we used these approaches as well as a fluorescent dye, carboxy-H(2)-dichloro-dihydrofluorescein diacetate (carboxy-H(2)-DCFDA), to determine whether ROS levels change in yeast cells exposed to anoxia. These studies reveal that the level of mitochondrial and cytosolic protein carbonylation, the level of 8-OH-dG in mitochondrial and nuclear DNA, and the expression of SOD1 all increase transiently during a shift to anoxia. These studies also reveal that carboxy-H(2)-DCFDA is an unreliable reporter of ROS levels in yeast cells shifted to anoxia. By using two-dimensional electrophoresis and mass spectrometry (matrix-assisted laser desorption ionization time-of-flight), we have found that specific proteins become carbonylated during a shift to anoxia and that some of these proteins are the same proteins that become carbonylated during peroxidative stress. The mitochondrial respiratory chain is responsible for much of this carbonylation. Together, these findings indicate that yeast cells exposed to anoxia experience transient oxidative stress and raise the possibility that this initiates the induction of hypoxic genes. PMID:12089150

  16. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.

    Science.gov (United States)

    Ding, Bao-Jian; Lager, Ida; Bansal, Sunil; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2016-04-01

    Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with Ea DAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to Ea DAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast. PMID:26801935

  17. Laboratory evolution of copper tolerant yeast strains

    Directory of Open Access Journals (Sweden)

    Adamo Giusy

    2012-01-01

    Full Text Available Abstract Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and

  18. Securitization of energy supply chains in China

    International Nuclear Information System (INIS)

    Highlights: • Three sources of energy security risks, namely sovereignty, robustness and resilience, affect China’s energy chains. • Energy security issues in China both have shaped and at the same time were shaped by ideas and institutions. • China remains rigid with equating ‘security’ with ‘national security’ and the notion of “national” is socially constructed. • Powerful actors, such as Chinese NOCs, inclined to interpret the problem so that it fits their preferred solution. • Securitization of any energy supply chains results from their historical roots, system properties and institutional agents. - Abstract: Energy policies in China, the world’s largest energy consumer, are an important factor in shaping the global energy system. While scholars agree that energy security is a major driver of China’s energy policies, there is insufficient understanding of what exactly constitutes China’s energy security from the policy perspective. We apply recent insights from the Global Energy Assessment, particularly the idea of vital energy systems, and the securitization theory to propose a framework for explaining China’s energy security policies in their historic evolution. We pay specific attention to explaining how particular energy supply chains are constructed and securitized. We draw data from over 300 Chinese and over 100 English publications and 30 interviews with energy officials and experts in China. We demonstrate that China’s focus on vulnerabilities of its oil supply chain at the expense of improving the reliability of domestic electricity supply is not accidental. It has its roots in historic events, properties of energy systems, as well as the presence of powerful institutional agents interested in securitizing the oil supply chain but not other vital energy systems. We suggest that this focus on the oil supply chain is likely to be maintained in the future, possibly accompanied by increasing concerns over natural gas

  19. Phosphorylation influences the binding of the yeast RAP1 protein to the upstream activating sequence of the PGK gene.

    OpenAIRE

    Tsang, J S; Henry, Y A; Chambers, A.; Kingsman, A J; Kingsman, S M

    1990-01-01

    Yeast repressor activator protein 1 (RAP1) binds in vitro to specific DNA sequences that are found in diverse genetic elements. Expression of the yeast phosphoglycerate kinase gene (PGK) requires the binding of RAP1 to the activator core sequence within the upstream activating sequence (UAS) of PGK. A DNA fragment Z+ which contains the activator core sequence of the PGK(UAS) has been shown to bind RAP1. Here we report that phosphatase treatment of RAP1 affected its binding to the PGK(UAS) but...

  20. Uji Diagnostik Polymerase Chain Reaction –Restriction Fragment Length Polymorphism Dalam Menegakkan Diagnosis Onikomikosis.

    OpenAIRE

    Lubis, Nova Zairina

    2015-01-01

    Background: Onychomycosis is a fungal infection of one or more units of the nail caused by dermatophytes, or mold and nondermatophytes yeast. Investigations are needed to establish the diagnosis of onychomycosis before starting treatment. Several investigations methods for diagnosing onychomycosis such as microscopic examination with 20% KOH, fungal culture, histopathology examination with PAS staining (Periodic acid Schiff) and PCR (Polymerase Chain Reaction), for culture methods require a l...

  1. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Joanne M Kingsbury

    2015-12-01

    Full Text Available The conserved target of rapamycin complex 1 (TORC1 integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT, which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.

  2. Involvement of a Branched-Chain Aminotransferase in Production of Volatile Sulfur Compounds in Yarrowia lipolytica

    OpenAIRE

    Cernat Bondar, Daniela; Beckerich, Jean-Marie; Bonnarme, Pascal

    2005-01-01

    The enzymatic degradation of l-methionine and the subsequent formation of volatile sulfur compounds (VSCs) are essential for the development of the typical flavor in cheese. In the yeast Yarrowia lipolytica, the degradation of l-methionine was accompanied by the formation of the transamination product 4-methylthio-2-oxobutyric acid. A branched-chain aminotransferase gene (YlBCA1) of Y. lipolytica was amplified, and the l-methionine-degrading activity and the aminotransferase activity were mea...

  3. Accessing spoilage features of osmotolerant yeasts identified from kiwifruit plantation and processing environment in Shaanxi, China.

    Science.gov (United States)

    Niu, Chen; Yuan, Yahong; Hu, Zhongqiu; Wang, Zhouli; Liu, Bin; Wang, Huxuan; Yue, Tianli

    2016-09-01

    Osmotolerant yeasts originating from kiwifruit industrial chain can result in spoilage incidences, while little information is available about their species and spoilage features. This work identified possible spoilage osmotolerant yeasts from orchards and a manufacturer (quick-freeze kiwifruit manufacturer) in main producing areas in Shaanxi, China and further characterized their spoilage features. A total of 86 osmotolerant isolates dispersing over 29 species were identified through 26S rDNA sequencing at the D1/D2 domain, among which Hanseniaspora uvarum occurred most frequently and have intimate relationships with kiwifruit. RAPD analysis indicated a high variability of this species from sampling regions. The correlation of genotypes with origins was established except for isolates from Zhouzhi orchards, and the mobility of H. uvarum from orchard to the manufacturer can be speculated and contributed to spoilage sourcing. The manufacturing environment favored the inhabitance of osmotolerant yeasts more than the orchard by giving high positive sample ratio or osmotolerant yeast ratio. The growth curves under various glucose levels were fitted by Grofit R package and the obtained growth parameters indicated phenotypic diversity in the H. uvarum and the rest species. Wickerhamomyces anomalus (OM14) and Candida glabrata (OZ17) were the most glucose tolerant species and availability of high glucose would assist them to produce more gas. The test osmotolerant species were odor altering in kiwifruit concentrate juice. 3-Methyl-1-butanol, phenylethyl alcohol, phenylethyl acetate, 5-hydroxymethylfurfural (5-HMF) and ethyl acetate were the most altered compound identified by GC/MS in the juice. Particularly, W. anomalus produced 4-vinylguaiacol and M. guilliermondii produced 4-ethylguaiacol that would imperil product acceptance. The study determines the target spoilers as well as offering a detailed spoilage features, which will be instructive in implementing preventative

  4. Innovation Across the Supply Chain

    DEFF Research Database (Denmark)

    Druehl, Cheryl; Carrillo, Janice; Hsuan, Juliana

    Innovation is an integral part of every firm’s ongoing operations. Beyond product innovation, supply chain innovations offer a unique source of competitive advantage. We synthesize recent research on innovation in the supply chain, specifically, innovative supply chain processes such as collabora...... collaborations with customers and suppliers to create new product and process innovations, open innovation, and globally distributed innovation. We conclude with potential areas for future research.......Innovation is an integral part of every firm’s ongoing operations. Beyond product innovation, supply chain innovations offer a unique source of competitive advantage. We synthesize recent research on innovation in the supply chain, specifically, innovative supply chain processes such as...

  5. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg2+, and [γ-32P]ATP. The protein-bound radioactivity was localized in the PDH α subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg2+, and Ca2+. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the α subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg

  6. Mapping the functional yeast ABC transporter interactome.

    Science.gov (United States)

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D; San Luis, Bryan-Joseph; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F; Zhang, Zhaolei; Paumi, Christian M; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-09-01

    ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  7. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and imported to the mitochondrial matrix posttranslationally. In an effort to understand the complex mechanisms underlying control of RNA turnover and surveillance in eukaryotic organisms, we are studying the structure of the mitochondrial degradosome as a model system for the more complex exosomes. Dss1p...

  8. Uniform yeast cell assembly via microfluidics.

    Science.gov (United States)

    Chang, Ya-Wen; He, Peng; Marquez, Samantha M; Cheng, Zhengdong

    2012-06-01

    This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures. PMID:22655026

  9. Stochasticity in the yeast mating pathway

    International Nuclear Information System (INIS)

    We report stochastic simulations of the yeast mating signal transduction pathway. The effects of intrinsic and external noise, the influence of cell-to-cell difference in the pathway capacity, and noise propagation in the pathway have been examined. The stochastic temporal behaviour of the pathway is found to be robust to the influence of inherent fluctuations, and intrinsic noise propagates in the pathway in a uniform pattern when the yeasts are treated with pheromones of different stimulus strengths and of varied fluctuations. In agreement with recent experimental findings, extrinsic noise is found to play a more prominent role than intrinsic noise in the variability of proteins. The occurrence frequency for the reactions in the pathway are also examined and a more compact network is obtained by dropping most of the reactions of least occurrence

  10. Decision-Making for Supply Chain Integration Supply Chain Integration

    CERN Document Server

    Lettice, Fiona; Durowoju, Olatunde

    2012-01-01

    Effective supply chain integration, and the tight co-ordination it creates, is an essential pre-requisite for successful supply chain management.  Decision-Making for Supply Chain Integration is a practical reference on recent research in the area of supply chain integration focusing on distributed decision-making problems. Recent applications of various decision-making tools for integrating supply chains are covered including chapters focusing on: •Supplier selection, pricing strategy and inventory decisions in multi-level supply chains, •RFID-enabled distributed decision-making, •Operational risk issues and time-critical decision-making for sensitive logistics nodes, Modelling end to end processes to improve supply chain integration, and •Integrated systems to improve service delivery and optimize resource use. Decision-Making for Supply Chain Integration provides an insight into the tools and methodologies of this field with support from real-life case studies demonstrating successful application ...

  11. Effect of Yeast : Saccharomyces cerevisiae and Marine Yeast as probiotic supplement on performance of poultry

    Directory of Open Access Journals (Sweden)

    I Putu Kompiang

    2002-03-01

    Full Text Available An experiment had been conducted to evaluate the effect of marine yeast and Saccharomyces cerevisiae (Sc as probiotic supplement on poultry performance. Marine yeast isolated from rotten sea-weed and commercial Saccharomyces cerevisiae were used. Evaluation was conducted by comparing performance of broiler chicken supplemented with marine yeast or Sc, which were given through drinking water (5 ml/l to negative control (feed without antibiotic growth promotor/GPA, positive control (feed with GPA, and reference commercial probiotic. Forty DOC broiler birds were used for each treatment, divided into 4 replicates (10 birds/replicate and raised in wire cages for 5 weeks. Body weight and feed consumption were measured weekly and mortality was recorded during the trial. The results showed that there were no significant difference on the birds performance among marine yeast, Sc, positive control and probiotic reference control treatments. However their effects on bird performance were better (P<0.05 than treatment of negative control. It is concluded that marine yeast or Saccharomyces cerevisiae could replace the function of antibiotic as a growth promotant.

  12. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangjo [Bioinformatics Lab, Healthcare Group, SK Telecom, 9-1, Sunae-dong, Pundang-gu, Sungnam-si, Kyunggi-do 463-784 (Korea, Republic of); Lee, Minho [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Chang, Hyeshik [Department of Biological Science, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul 151-747 (Korea, Republic of); Nam, Miyoung [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Park, Han-Oh [Bioneer Corp., 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon 306-220 (Korea, Republic of); Kwak, Youn-Sig [Department of Applied Biology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ha, Hye-jeong [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Dongsup [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hwang, Sung-Ook [Department of Obstetrics and Gynecology, Inha University Hospital, 7-206 Sinheung-dong, Jung-gu, Incheon 400-711 (Korea, Republic of); Hoe, Kwang-Lae [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Kim, Dong-Uk [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2013-07-12

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)

  13. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    International Nuclear Information System (INIS)

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)

  14. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    Recently, in human geography there has been a considerable attention paid to retheorising maps; less as a product and more as practice. This refers to the notion that rather than reading maps as fixed representations, digital mapping is by nature a dynamic, performative, and participatory practice....... In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology...

  15. [Respiratory system of Pichia guilliermondii yeasts with different levels of flavinogenesis].

    Science.gov (United States)

    Zviagil'skaia, R A; Fedorovich, D V; Shavlovskiĭ, G M

    1978-01-01

    The yeast Pichia guilliermondii was grown on media with different content of iron and its respiration system was studied. When the yeast was cultivated on a complete medium, its respiratory chain operated at the maximum rate in the exponential growth phase, i. e. all the three points of phosphorylation were involved; cytochrome oxidase was the only terminal oxidase. When the growth was decelerated and at the stationary phase, the alternative autooxidable cyanide-resistant pathway inhibited with salicyl hydroxamate partly functioned. Iron deficiency in the medium resulted in a two-three-fold decrease in the content of total and non-hemin iron in the cells, changes in the character and rate of growth, a decrease in the biomass yield, a high rate of flavinogenesis, a slight decrease in the respiration activity, though no drastic changes in the respiration system occurred. This system is represented, as in the case of cells grown on a complete medium, by a typical cytochrome system and an alternative autooxidable pathway. The absence of principal differences in the respiration systems of normal and iron-deficient cells, as well as the operation of the first point of coupling in flavinogenic cells, makes it doubtful that Fenh-proteins of the first segment of the respiratory chain are involved in the regulation of flavinogenesis. PMID:745565

  16. Dissection and design of yeast prions.

    OpenAIRE

    Osherovich, Lev Z; Cox, Brian S; Mick F Tuite; Weissman, Jonathan S

    2004-01-01

    Many proteins can misfold into beta-sheet-rich, self-seeding polymers (amyloids). Prions are exceptional among such aggregates in that they are also infectious. In fungi, prions are not pathogenic but rather act as epigenetic regulators of cell physiology, providing a powerful model for studying the mechanism of prion replication. We used prion-forming domains from two budding yeast proteins (Sup35p and New1p) to examine the requirements for prion formation and inheritance. In both proteins, ...

  17. Telomere behavior in a hybrid yeast

    Institute of Scientific and Technical Information of China (English)

    Ona C Martin; Christopher G De Sevo; Benjamin Z Guo; Douglas E Koshland; Maiterya J Dunham; Yixian Zheng

    2009-01-01

    @@ Dear Editor, Telomeres and the protein/RNA complexes involved in maintaining them are rapidly evolving systems across eukaryotes.Using two Saccharomyces species, among S.cerevisiae and S.bayanus, we provide evidence that the telomere systems of these two closely related yeasts have evolved significantly apart and that the gene in one spe-cies cannot maintain the set-point of telomere length of the other soecies in the hybrid.

  18. Yeast mutants auxotrophic for choline or ethanolamine.

    OpenAIRE

    Atkinson, K D; Jensen, B.; Kolat, A I; Storm, E M; Henry, S. A.; Fogel, S

    1980-01-01

    Three mutants of the yeast Saccharomyces cerevisiae which require exogenous ethanolamine or choline were isolated. The mutants map to a single locus (cho1) on chromosome V. The lipid composition suggests that cho1 mutants do not synthesize phosphatidylserine under any growth conditions. If phosphatidylethanolamine or phosphatidylcholine, which are usually derived from phosphatidylserine, were synthesized from exogenous ethanolamine or choline, the mutants grew and divided relatively normally....

  19. Environmental influences on organotin-yeast interactions

    OpenAIRE

    White, Jane S.

    2002-01-01

    As a consequence of the widespread industrial and agricultural applications of organotin compounds, contamination of various ecosystems has occurred in recent decades. Understanding how these compounds interact with cellular membranes is essential in assessing the risks of organotin pollution. The organotins, tributyltin (TBT) and trimethyltin (TMT) and inorganic tin, Sn(IV), were investigated for their physical interactions with non-metabolising cells and protoplasts of the yeast, Candida ma...

  20. Pentose utilization in yeasts: Physiology and biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, H.

    1996-04-01

    The fermentive performance of bacteria, yeasts, and filamentous fungi was investigated in a pentose (xylose)-rich lignocellulosic hydrolyzate. The filamentous fungus Fusarium oxysporum and the xylose-fermenting yeast Pichia stipitis were found to be very sensitive to the inhibiting hydrolyzate. Recombinant xylose-utilizing Saccharomyces cerevisiae showed very poor ethanol formation from xylose; xylitol being the major product formed. The highest ethanol yields were obtained with recombinant Escherichia coli KO11, however, for maximal ethanol yield detoxification of the hydrolyzate was required. The influence of oxygen on the regulation of carbohydrate metabolism in the xylose-fermenting yeast P. stipitis CBS 6054 was investigated. A low and well-controlled level of oxygenation has been found to be required for efficient ethanol formation from xylose by the xylose-fermenting yeasts. The requirement of oxygen is frequently ascribed to the apparent redox imbalance which develops under anaerobic conditions due to the difference in co-factor utilization of the two first enzymes in the xylose metabolism, further reflected in xylitol excretion. However, a low and well controlled level of oxygenation for maximal ethanol production from glucose was also demonstrated, suggesting that the oxygen requirement is not only due to the dual co-factor utilization, but also serves other purposes. Cyanide-insensitive and salicyl hydroxamic acid-sensitive respiration (CIR) was found in P. stipitis. CIR is suggested to act as a redox sink preventing xylitol formation in P. stipitis under oxygen-limited xylose fermentations. Xylitol metabolism by P. stipitis CBS 6054 was strictly respiratory and ethanol was not formed under any conditions. The absence of ethanol formation was not due to a lack of fermentative enzymes, since the addition of glucose to xylitol-pregrown cells resulted in ethanol formation. 277 refs, 5 figs, 7 tabs