Sample records for chain wheel shape

  1. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling

    DEFF Research Database (Denmark)

    Hansen, Ernst Albin; Jensen, Kurt; Hallen, Jostein


    at preset pedal rates as well as resulting in lower pedal rate and metabolic response at freely chosen pedal rate. Ten trained cyclists (mean+/-SD: 27+/-3 years of age, 182+/-4 cm tall, 77.5+/-7.0 kg of body mass, and peak oxygen uptake of 61.7+/-4.4 ml kg(-1) min(-1)) cycled with a Biopace and a circular...... chain wheel at 180 W at 65 and 90 rpm for recording of crank torque profiles, and at their freely chosen pedal rate for recording of pedal rate and metabolic response, including oxygen uptake and blood lactate concentration. Crank torque profiles were similar between the two chain wheels during cycling...... at preset pedal rates. During cycling at the freely chosen pedal rate (being 93+/-6 and 93+/-4 rpm for the Biopace and circular chain wheel, respectively), blood lactate concentration was significantly different between the two chain wheels, being on average 0.2 mmol l(-1) lower with the Biopace chain wheel...

  2. Improvement of wheel skidder tractive performance by tire inflation pressure and tire chains


    Stoilov, Stanimir


    The motion resistance ratio, gross traction ratio and net traction ratio of a wheel cable skidder were determined and mathematical models derived for three tire inflation pressure values with or without tire chains on forest road in mountainous conditions. The motion resistance ratio increases with the increase of tire inflation pressure. On the contrary, the gross traction ratio increases with the decrease of tire inflation pressure. However, when the tires are equipped with tire chains t...

  3. Interrelated Dimensional Chains in Predicting Accuracy of Turbine Wheel Assembly Parameters (United States)

    Yanyukina, M. V.; Bolotov, M. A.; Ruzanov, N. V.


    The working capacity of any device primarily depends on the assembly accuracy which, in its turn, is determined by the quality of each part manufactured, i.e., the degree of conformity between final geometrical parameters and the set ones. However, the assembly accuracy depends not only on a qualitative manufacturing process but also on the assembly process correctness. In this connection, there were preliminary calculations of assembly stages in terms of conformity to real geometrical parameters with their permissible values. This task is performed by means of the calculation of dimensional chains. The calculation of interrelated dimensional chains in the aircraft industry requires particular attention. The article considers the issues of dimensional chain calculation modelling by the example of the turbine wheel assembly process. The authors described the solution algorithm in terms of mathematical statistics implemented in Matlab. The paper demonstrated the results of a dimensional chain calculation for a turbine wheel in relation to the draw of turbine blades to the shroud ring diameter. Besides, the article provides the information on the influence of a geometrical parameter tolerance for the dimensional chain link elements on a closing one.

  4. Numerical investigation on effect of blade shape for stream water wheel performance. (United States)

    Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.


    Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance


    Directory of Open Access Journals (Sweden)

    Andrzej N. WIECZOREK


    Full Text Available The main objective of the study was to demonstrate the possibility of replacing the materials of domestic and foreign production currently used for chain drums with alternative materials. ADIs were selected as materials that may replace the cast steels used so far. L35GSM cast steel, commonly used for mining chain wheels and austempered ductile iron, conforming with the requirements of EN-GJS-1400-1 quality grade were subjected to wear tests. On the basis of the experimental studies it has been observed that for almost all the combinations of destructive factors considered, the ADI in question was characterised by a wear resistance better than that in the case of the L35GSM cast steel used so far. In addition, it has been found that the ADI has favourable features predestining it for use in the production of chain drums for armoured-face conveyors.

  6. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only) (United States)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn


    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively

  7. A case study in experiential learning: pharmaceutical cold chain management on wheels. (United States)

    Vesper, James; Kartoglu, Ümit; Bishara, Rafik; Reeves, Thomas


    People who handle and regulate temperature-sensitive pharmaceutical products require the knowledge and skills to ensure those products maintain quality, integrity, safety, and efficacy throughout their shelf life. People best acquire such knowledge and skills through "experiential learning" that involves working with other learners and experts. The World Health Organization developed a weeklong experiential learning event for participants so they could gain experience in how temperature-sensitive products are handled, stored, and distributed throughout the length of the distribution supply chain system. This experiential learning method enabled participants to visit, critically observe, discuss and report on the various components of the cold chain process. An emphasis was placed on team members working together to learn from one another and on several global expert mentors who were available to guide the learning, share their experiences, and respond to questions. The learning event, Pharmaceutical Cold Chain Management on Wheels, has been conducted once each year since 2008 in Turkey with participants from the global pharmaceutical industry, health care providers, national regulatory authorities, and suppliers/vendors. Observations made during the course showed that it was consistent with the principles of experiential and social learning theories. Questionnaires and focus groups provided evidence of the value of the learning event and ways to improve it. Reflecting the critical elements derived from experiential and social learning theories, five factors contributed to the success of this unique experiential learning event. These factors may also have relevance in other experiential learning courses and, potentially, for experiential e-learning events.

  8. Using wheel availability to shape running behavior of the rat towards improved behavioral and neurobiological outcomes. (United States)

    Basso, Julia C; Morrell, Joan I


    Though voluntary wheel running (VWR) has been used extensively to induce changes in both behavior and biology, little attention has been given to the way in which different variables influence VWR. This lack of understanding has led to an inability to utilize this behavior to its full potential, possibly blunting its effects on the endpoints of interest. We tested how running experience, sex, gonadal hormones, and wheel apparatus influence VWR in a range of wheel access "doses". VWR increases over several weeks, with females eventually running 1.5 times farther and faster than males. Limiting wheel access can be used as a tool to motivate subjects to run but restricts maximal running speeds attained by the rodents. Additionally, circulating gonadal hormones regulate wheel running behavior, but are not the sole basis of sex differences in running. Limitations from previous studies include the predominate use of males, emphasis on distance run, variable amounts of wheel availability, variable light-dark cycles, and possible food and/or water deprivation. We designed a comprehensive set of experiments to address these inconsistencies, providing data regarding the "microfeatures" of running, including distance run, time spent running, running rate, bouting behavior, and daily running patterns. By systematically altering wheel access, VWR behavior can be finely tuned - a feature that we hypothesize is due to its positive incentive salience. We demonstrate how to maximize VWR, which will allow investigators to optimize exercise-induced changes in their behavioral and/or biological endpoints of interest. Published by Elsevier B.V.

  9. Analysis of a complex shape chain plate using Transmission Photoelasticity

    Directory of Open Access Journals (Sweden)

    Dasari N.


    Full Text Available Most chains are an assembly [1] of five parts namely, outer plate, inner plate, bush, pin and roller. Two inner plates are press fitted with two bushes to form an inner block assembly. The outer plates are press fitted with pins after keeping the pins through the assembled bushes of the inner block. Roller is a rotating member and placed over the bush during inner block assembly. Inner block assembly is the load transfer member from sprocket tooth. The outer block assembly helps in holding and also to pull the inner block over the sprocket teeth. If a chain length is in odd number of pitches, it requires an offset plate as shown in Figure 1 to connect two ends of the chain together to make chain endless. When the chain is assembled with an offset plate, the chain fatigue life was observed only 20 to 25% of the total life of a chain, assembled without an offset plate. The holes in the offset plate are of the same size as in the outer and inner plates respectively and it is a complex in shape chain plate. A inbuilt thinning zone at the centre of the chain plate as shown in Figure 1 is unavoidable. The stresses and its distribution in this complex shape chain plate geometry play a critical role in the fatigue life performance of a chain assembly. However, it is difficult identify the stress distribution and stress concentration zones precisely using only the conventional industrial friendly tools such as routine quality control test, breaking load test and numerical computations. In this context the transmission photoelastic technique has made it possible to identify the stress distribution, its concentration and also to quantify the stress and strain [2-3] at any point in the chain plate. This paper explains how transmission photoelastic technique is used to estimate the stress distribution and its concentration zones in a complex chain plate when it isloaded. An epoxy chain plate model was made through the casting method using a Perspex mould [2

  10. Seizing market shaping opportunities for vaccine cold chain equipment. (United States)

    Azimi, Tara; Franzel, Lauren; Probst, Nina


    Gavi, the Vaccine Alliance, supports immunisation programmes in eligible countries to reach children with lifesaving vaccines. Dramatic improvement in the scale and performance of current cold chain systems is required to extend the reach of immunisation services - especially for children living in remote locations - to advance progress towards full vaccine coverage. Achieving these improvements will require a healthier market for cold chain equipment where the products meet user needs, are sustainably priced, and are available in sufficient quantities to meet demand. Yet evidence suggests that the cold chain market has suffered from several failures including limited demand visibility, fragmented procurement, and insufficient information exchange between manufacturers and buyers on needs and equipment performance. One of Gavi's strategic goals is to shape markets for vaccines and other immunisation products, including cold chain equipment and in 2015, Gavi created a new mechanism - the Cold Chain Equipment (CCE) Optimisation Platform - to strengthen country cold chain systems by offering financial support and incentives for higher performing CCE. The main objective of the CCE Platform is to get more equipment that is efficient, sustainable, and better performing deployed to every health facility where it is required at an affordable price. To achieve these objectives, Gavi is putting in place tested market shaping approaches and tools adapted for the CCE market: the development of market strategies or 'roadmaps'; improvement of product performance through the development of target product profiles (TPPs); strategic engagement with CCE manufacturers and countries to enhance information sharing; and tailoring procurement tactics to the CCE market. These approaches and tools will allow for increased demand and supply of higher-performing, cost-effective and quality products. By strengthening immunisation systems with improved cold chain equipment, Gavi countries can

  11. What shapes food value chains? Lessons from aquaculture in Asia

    DEFF Research Database (Denmark)

    Jespersen, Karen Sau; Kelling, I; Ponte, Stefano


    In this article, we explain what shapes food value chains through the analysis of selected aquaculture industries in four key Asian producing countries. Worldwide production of aquatic resources has grown rapidly in the past few decades, and aquaculture production in Asia has played a decisive role...... in this growth. We examine the main forms of coordination found along these value chains and the role that institutional frameworks play in governing them. We observe that negative publicity, driven by NGO and media campaigns, has led to increased use of third-party certification and the adoption of public...... and private standards. We find that the most sophisticated aquaculture operations in Asia are found in value chains led by retailers and branded processors and where the quality of domestic institutional frameworks has facilitated compliance with increasing demands from buyers overseas. Finally, we reflect...

  12. Cost analysis of an electricity supply chain using modification of price based dynamic economic dispatch in wheeling transaction scheme (United States)

    Wahyuda; Santosa, Budi; Rusdiansyah, Ahmad


    Deregulation of the electricity market requires coordination between parties to synchronize the optimization on the production side (power station) and the transport side (transmission). Electricity supply chain presented in this article is designed to facilitate the coordination between the parties. Generally, the production side is optimized with price based dynamic economic dispatch (PBDED) model, while the transmission side is optimized with Multi-echelon distribution model. Both sides optimization are done separately. This article proposes a joint model of PBDED and multi-echelon distribution for the combined optimization of production and transmission. This combined optimization is important because changes in electricity demand on the customer side will cause changes to the production side that automatically also alter the transmission path. The transmission will cause two cost components. First, the cost of losses. Second, the cost of using the transmission network (wheeling transaction). Costs due to losses are calculated based on ohmic losses, while the cost of using transmission lines using the MW - mile method. As a result, this method is able to provide best allocation analysis for electrical transactions, as well as emission levels in power generation and cost analysis. As for the calculation of transmission costs, the Reverse MW-mile method produces a cheaper cost than the Absolute MW-mile method

  13. A study on the stability of a motorcycle wheel-swingarm suspension with chain transmission (United States)

    Sorrentino, S.; Leonelli, L.


    The present study describes a possible driving mechanism for a self-excited oscillation observed in motorcycle dynamics, often referred to as chatter. This phenomenon, affecting the performance of road racing motorcycles, has been simulated in straight running braking manoeuvres with multibody motorcycle models. It involves rear suspension bounce and driveline oscillation in the frequency range between 17 and 22 Hz. A simplified model of a motorcycle rear suspension with chain transmission is proposed and its stability in equilibrium configurations is studied via eigenvalue analysis. The sensitivity with respect to all its governing parameters is analysed by means of stability maps and the self-excitation mechanism is explained with the aid of energy balance analysis and phase diagrams. It is found that the key role for the instability onset is played by the gradient of the nonlinear characteristic slip function of the tyre.

  14. Regularities of shaping of a wheel profile as a result of deterioration of the rolling surface in exploitation

    Directory of Open Access Journals (Sweden)

    Aleksander VORON’KO


    Full Text Available In the middle of the 90s the deterioration of wheels flanges and lateral rail surfaces on roads in the countries of CIS from natural process of wear process of surfaces has turned to the sharp problem which has received the status of a «rail plague». On separate roads the lateral deterioration of rails has reached 1 mm times 106 tons, by exceeding a level of normative deterioration in some times. Thus the run of wheel pairs between regrinding on flange undercuts was reduced in by 3-5 times [5]. In the article some ways of elimination of deterioration of wheels and rails are considered. The technique of process modeling of parameters changes of deterioration is offered.

  15. A New Algorithm of Shape Boundaries Based on Chain Coding

    Directory of Open Access Journals (Sweden)

    Zhao Xin


    Full Text Available A new method to obtain connected component in binary images is presented. The method uses DFA automaton to obtain chain code and label the component boundary. It is theoretically proved that the algorithm improves the image encoding efficiency closer to the lowest time consumption.

  16. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running. (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore


    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  17. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development

    International Nuclear Information System (INIS)

    Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L.


    Road transport produces significant amounts of CO 2 by using crude oil as primary energy source. A reduction of CO 2 emissions can be achieved by implementing alternative fuel chains. This article studies CO 2 emissions and energy efficiencies by means of a well to wheel analysis of alternative automotive fuel chains, using natural gas (NG) as an alternative primary energy source to replace crude oil. The results indicate that NG-based hydrogen applied in fuel cell vehicles (FCVs) lead to largest CO 2 emission reductions (up to 40% compared to current practice). However, large implementation barriers for this option are foreseen, both technically and in terms of network change. Two different transition strategies are discussed to gradually make the transition to these preferred fuel chains. Important transition technologies that are the backbone of these routes are traditional engine technology fuelled by compressed NG and a FCV fuelled by gasoline. The first is preferred in terms of carbon emissions. The results furthermore indicate that an innovation in the conventional chain, the diesel hybrid vehicle, is more efficient than many NG-based chains. This option scores well in terms of carbon emissions and implementation barriers and is a very strong option for the future

  18. Size, shape, and diffusivity of a single Debye-Hückel polyelectrolyte chain in solution (United States)

    Soysa, W. Chamath; Dünweg, B.; Prakash, J. Ravi


    Brownian dynamics simulations of a coarse-grained bead-spring chain model, with Debye-Hückel electrostatic interactions between the beads, are used to determine the root-mean-square end-to-end vector, the radius of gyration, and various shape functions (defined in terms of eigenvalues of the radius of gyration tensor) of a weakly charged polyelectrolyte chain in solution, in the limit of low polymer concentration. The long-time diffusivity is calculated from the mean square displacement of the centre of mass of the chain, with hydrodynamic interactions taken into account through the incorporation of the Rotne-Prager-Yamakawa tensor. Simulation results are interpreted in the light of the Odjik, Skolnick, Fixman, Khokhlov, and Khachaturian blob scaling theory (Everaers et al., Eur. Phys. J. E 8, 3 (2002)) which predicts that all solution properties are determined by just two scaling variables—the number of electrostatic blobs X and the reduced Debye screening length, Y. We identify three broad regimes, the ideal chain regime at small values of Y, the blob-pole regime at large values of Y, and the crossover regime at intermediate values of Y, within which the mean size, shape, and diffusivity exhibit characteristic behaviours. In particular, when simulation results are recast in terms of blob scaling variables, universal behaviour independent of the choice of bead-spring chain parameters, and the number of blobs X, is observed in the ideal chain regime and in much of the crossover regime, while the existence of logarithmic corrections to scaling in the blob-pole regime leads to non-universal behaviour.

  19. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores (United States)

    El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei


    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467

  20. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains. (United States)

    Tarafdar, Pradip K; Swamy, Musti J


    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  1. A wheel-shaped single-molecule magnet of [MnII 3MnIII 4]: quantum tunneling of magnetization under static and pulse magnetic fields. (United States)

    Koizumi, Satoshi; Nihei, Masayuki; Shiga, Takuya; Nakano, Motohiro; Nojiri, Hiroyuki; Bircher, Roland; Waldmann, Oliver; Ochsenbein, Stefan T; Güdel, Hans U; Fernandez-Alonso, Felix; Oshio, Hiroki


    The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.


    Institute of Scientific and Technical Information of China (English)

    Kan Yue; Jinlin He; Chang Liu; Mingjun Huang; Xue-Hui Dong; Kai Guo; Peihong Ni


    "Click chemistry" is,by definition,a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis.This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS).The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide.Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography.The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy.The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS).The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls,resulting in an amphiphilic shape amphiphile,mPS-DPOSS.This synthetic approach is highly efficient and modular.It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.

  3. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Directory of Open Access Journals (Sweden)

    Ryan C Oliver

    Full Text Available Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS, micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  4. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong


    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  5. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail:; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)


    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  6. Voluntary Wheel Running in Mice. (United States)

    Goh, Jorming; Ladiges, Warren


    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  7. Elevator wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhornik, V.I.; Cherkov, Ye.M.; Simonov, A.A.


    An elevator wheel is suggested for unloading a sunken product from a bath of a heavy-average separator including discs of a bucket with inner walls, and covering sheets hinged to the buckets. In order to improve the degree of dehydration of the removed product, the inner wall of each bucket is made of sheets installed in steps with gaps of one in relation to the other.

  8. Word wheels

    CERN Document Server

    Clark, Kathryn


    Targeting the specific problems learners have with language structure, these multi-sensory exercises appeal to all age groups including adults. Exercises use sight, sound and touch and are also suitable for English as an Additional Lanaguage and Basic Skills students.Word Wheels includes off-the-shelf resources including lesson plans and photocopiable worksheets, an interactive CD with practice exercises, and support material for the busy teacher or non-specialist staff, as well as homework activities.

  9. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender. (United States)

    Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong


    Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. (United States)

    Chung, Hyunjoong; Dudenko, Dmytro; Zhang, Fengjiao; D'Avino, Gabriele; Ruzié, Christian; Richard, Audrey; Schweicher, Guillaume; Cornil, Jérôme; Beljonne, David; Geerts, Yves; Diao, Ying


    Martensitic transition is a solid-state phase transition involving cooperative movement of atoms, mostly studied in metallurgy. The main characteristics are low transition barrier, ultrafast kinetics, and structural reversibility. They are rarely observed in molecular crystals, and hence the origin and mechanism are largely unexplored. Here we report the discovery of martensitic transition in single crystals of two different organic semiconductors. In situ microscopy, single-crystal X-ray diffraction, Raman and nuclear magnetic resonance spectroscopy, and molecular simulations combined indicate that the rotating bulky side chains trigger cooperative transition. Cooperativity enables shape memory effect in single crystals and function memory effect in thin film transistors. We establish a molecular design rule to trigger martensitic transition in organic semiconductors, showing promise for designing next-generation smart multifunctional materials.

  11. One-step solution fabrication of magnetic chains consisting of jingle-bell-shaped cobalt mesospheres (United States)

    Liang, Fang; Guo, Lin; Zhong, QunPeng; Wen, Xiaogang; Yang, Shihe; Zheng, Wangzhi; Chen, Chinping; Zhang, Nina; Chu, Weiguo


    Using a one-step solution phase approach, the authors have synthesized uniform jingle bell-shaped cobalt mesopheres (550-750nm) and assembled the mesospheres into long magnetic chains (20-30μm). All of the cobalt spheres are hollow with ˜40nm thick shells but each contains an ˜200nm diameter solid ball. The nano- to mesoscale structures were realized via reaction of CoCl2•6H2O and N2H4•H2O in the presence of polyvinylpyrrolidone (PVP) in an ethylene glycol solution. Magnetic measurements show a coercivity of about 75Oe with a remnance of 9.6emu /g at 300K. We propose a possible mechanism for the formation of the nanoto mesoscale structures.

  12. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure. (United States)

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin


    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  13. The shaping of environmental concern in product chains: analysing Danish case studies on environmental aspects in product chain relations

    DEFF Research Database (Denmark)

    Forman, Marianne; Hansen, Anne Grethe; Jørgensen, Michael Søgaard

    indirect demand for greening activities. The analysis shows the co-construction of environmental concerns and demands, companies’ environmental practices and technological developments, and their stabilisation in the supply chain. The case studies also point to how the greening of frontrunners might make...... the systems of production, consumption, knowledge and regulation are discussed. The role of boundary objects is discussed with eco-labelling as case. The role of and the impact on the product chain relations are analysed as part of these mechanisms. From the case studies, green innovations in the product...... chain, which the case company represents, are identified. Direct customer and regulatory demands, as well as indirect societal and regulatory demands are mapped, and their role for product chain greening analysed. The case studies point to the importance of customer demand, regulation and potentially...

  14. Solvable single-species aggregation-annihilation model for chain-shaped cluster growth

    International Nuclear Information System (INIS)

    Ke Jianhong; Lin Zhenquan; Zheng Yizhuang; Chen Xiaoshuang; Lu Wei


    We propose a single-species aggregation-annihilation model, in which an aggregation reaction between two clusters produces an active cluster and an annihilation reaction produces an inert one. By means of the mean-field rate equation, we respectively investigate the kinetic scaling behaviours of three distinct systems. The results exhibit that: (i) for the general aggregation-annihilation system, the size distribution of active clusters consistently approaches the conventional scaling form; (ii) for the system with the self-degeneration of the cluster's activities, it takes the modified scaling form; and (iii) for the system with the self-closing of active clusters, it does not scale. Moreover, the size distribution of inert clusters with small size takes a power-law form, while that of large inert clusters obeys the scaling law. The results also show that all active clusters will eventually transform into inert ones and the inert clusters of any size can be produced by such an aggregation-annihilation process. This model can be used to mimic the chain-shaped cluster growth and can provide some useful predictions for the kinetic behaviour of the system

  15. Umbrella Wheel - a stair-climbing and obstacle-handling wheel design concept

    DEFF Research Database (Denmark)

    Iversen, Simon; Jouffroy, Jerome


    This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change of configurat......This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change...... of configuration, staircases with a wide range of dimensions can be covered efficiently and safely. The design, named Umbrella Wheel, can consist of as many wheel segments as desired, and as few as two. A smaller or higher number of wheel segments has advantages and disadvantages depending on the specific...

  16. From bicycle chain ring shape to gear ratio: algorithm and examples. (United States)

    van Soest, A J


    A simple model of the bicycle drive system with a non-circular front chain ring is proposed and an algorithm is devised for calculation of the corresponding Gear Ratio As a Function Of Crank Angle (GRAFOCA). It is shown that the true effective radius of the chain ring is always the perpendicular distance between the crank axis and the line through the chain segment between the chain ring and the cog. It is illustrated that the true effective radius of the chain ring at any crank angle may differ substantially from the maximum vertical distance between the crank axis and the chain ring circumference that is used as a proxy for the effective chain ring radius in several studies; in particular, the crank angle at which the effective chain ring radius is maximal as predicted from the latter approach may deviate by as much as 0.30 rad from the true value. The algorithm proposed may help in designing chain rings that achieve the desired GRAFOCA. © 2013 Published by Elsevier Ltd. All rights reserved.

  17. Wheel inspection system environment. (United States)


    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  18. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain. (United States)

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie


    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  19. Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation

    DEFF Research Database (Denmark)

    Tian, Bo; Wetterskog, Erik; Qiu, Zhen


    anisotropy), and directly increasing the optomagnetic signal (via optical shape anisotropy). We achieve a limit of detection (LOD) of 5.5 pM (0.82 ng/mL) for the detection of a model multivalent molecule, biotinylated anti-streptavidin, in PBS. For the measurements of prostate-specific antigen (PSA) in 50...

  20. The Impact of Complexity on Shaping Logistics Strategies in Global Supply Chains

    Directory of Open Access Journals (Sweden)

    Agnieszka Szmelter


    Full Text Available Aim/purpose - The paper aims to summarize approaches to complexity management by implementing particular logistics concepts within logistics strategies in global supply chains and to highlight a research gap in this regard. Additionally, complexity management concepts are presented. Design/methodology/approach - To achieve the research objective, a systematic literature review was used. 11 research paper were analyzed with use of review protocol. Findings - Approaches to mentioned research problem are heterogeneous in current literature and there is a research gap in complexity studies in logistics, precluding further research, for example, on complexity measurement systems. Research implications/limitations - Identified research gap will require further studies. Studied area requires more empirical research, especially in the field of complexity measurement and management techniques in particular global supply chains. Originality/value/contribution - The paper summarizes current knowledge about logistics concepts helping to manage complexity in global supply chains and defines research gaps. There are no available literature summary of that kind. The article contains a full review of logistics complexity management concepts presented in scientific literature until the end of 2016.

  1. The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter




    PUBLISHED The effect of grinding-wheel eccentricity on grinding forces, wheel wear and final waviness height was studied. Eccentricity was evident in force oscillations and acceleration and audio measurements. A model was developed to predict final scallop-profile shape from grinding parameters and eccentricity. Recommendations are given on detecting eccentricity and determining when eccentricity is tolerable.


    Directory of Open Access Journals (Sweden)

    Soňa Benešová


    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.


    Directory of Open Access Journals (Sweden)

    Sona Benesova


    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  4. Grinding Wheel Profile (United States)


    This graphic dubbed by engineers as the 'Grinding Wheel Profile' is the detective's tool used by the Opportunity team to help them understand one of the processes that formed the interior of a rock called 'McKittrick.' Scientists are looking for clues as to how layers, grains and minerals helped create this rock, and the engineers who built the rock abrasion tool (RAT) wanted to ensure that their instrument's handiwork did not get confused with natural processes.In the original microscopic image underlaying the graphics, engineers and scientists noticed 'layers' or 'scratches' on the spherical object nicknamed 'blueberry' in the lower right part of the image. The designers of the rock abrasion tool noticed that the arc length and width of the scratches were similar to the shape and size of the rock abrasion tool's grinding wheel, which is made out of a pad of diamond teeth.The scrapes on the bottom right blueberry appear to be caused by the fact that the berry got dislodged slightly and its surface was scraped with the grinding pad. In this image, the largest yellow circle is the overall diameter of the hole ground by the rock abrasion tool and the largest yellow rectangular shape is the area of the grinding wheel bit. The smaller yellow semi-circle is the path that the center of the grinding tool follows. The orange arrow arcing around the solid yellow circle (center of grinding tool) indicates the direction that the grinding tool spins around its own center at 3,000 revolutions per minute. The tool simultaneously spins in an orbit around the center of the hole, indicated by the larger orange arrow to the left.The grinding tool is 22 millimeters (0.9 inches) in length and the actual grinding surface, which consists of the diamond pad, is 1.5 millimeters (0.06 inches) in length, indicated by the two smaller rectangles. You can see that the smaller bottom rectangle fits exactly the width of the scrape marks.The grooves on the blueberry are also the same as the

  5. Grinding Wheel System (United States)

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh


    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  6. Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system

    International Nuclear Information System (INIS)

    Ding, Haitao; Shao, Jinyou; Ding, Yucheng; Liu, Weiyu; Li, Xiangming; Tian, Hongmiao; Zhou, Yaopei


    Highlights: • Conductive island shape influences the dynamic process occurring in DEP assembly of 10 nm gold nanoparticles in a conductive-island-based microelectrode system. • The DEP-assembled nanoparticle wires form a straighter conduction path with the increase in the geometric angle of conductive island tip. • The different island shapes distort the DEP force distribution and increase the local electrothermally induced fluid flow to different extents, which is important for the morphology and electrical conductance quality of the DEP-assembled metal nanoparticle chains. - Abstract: The electrical conduction quality of an electric circuit connection formed by dielectrophoretic (DEP)-assembled metal nanoparticle wires between small conductive elements plays a significant role in electronic devices. One of the major challenges for improving the electrical conductance of nanowires is optimizing their geometric morphology. So far, the electrical conduction quality has been enhanced by optimizing the AC frequency and conductivity of nanoparticle suspensions. Herein, the effect of the conductive island shapes on the dynamic process occurring in a DEP assembly of 10 nm gold nanoparticles was investigated in a conductive-island-based microelectrode system. The nanoparticle wires between the microelectrodes were assembled in situ from colloidal suspensions. The wires were grown in a much straighter route by increasing the geometric angle of the conductive-island tip. To validate the experiments, the effects of mutual DEP interactions and electrothermally induced fluid flow on the dynamic behavior of particle motion for different island geometric configurations in the conductive-island-based microelectrode system were determined by numerical simulations. The simulation results are consistent with those of experiments. This indicates that different conductive island shapes change the distribution of DEP force and increase the electrothermally induced fluid flow to

  7. Can origin labels re-shape relationships along international supply chains? – The case of Café de Colombia

    Directory of Open Access Journals (Sweden)

    Xiomara F. Quiñones-Ruiz


    Full Text Available Origin labels, more specifically Geographical Indications (GIs, allow organised producers to define quality standards and defend their food products’ reputation while highlighting their geographical origin and value to consumers. Café de Colombia was the first non-European food product registered as Protected Geographical Indication (PGI under EU legislation (510/2006, followed by 1151/2012. This paper aims to identify the dynamics of collective efforts and the rules of the game developed by coffee growers to protect the collective intellectual property right. Our guiding research questions are: i to what extent can the Ostrom’s design principles explain effective collective action for GI registration and implementation? and ii can collective action for GIs re-shape relations between supply chain actors and support producers in gaining control over origin products? We collected data using semi-structured interviews and document analysis, which we then processed in a qualitative text analysis. Results show that the principles are very helpful for understanding the internal collective action of coffee growers and also clearly show the challenges in the interaction with industrial coffee processors (e.g. international roasters, brand owners. A pure focus on the producers’ collective action for establishing and managing the origin protection does not give a full picture, since green coffee beans are roasted and commercialised abroad. The GI has already re-shaped the relationships along the supply chains, as international roasters sign the producers’ rules governing the PGI use. The commercial GI impact however, will depend on consumers’ willingness to appreciate and pay extra for high quality origin coffee as well as the readiness of international roasters or brand owners to emphasise on origin coffee, in addition to their brands of blended coffee.

  8. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W


    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  9. A Nontoxic Barlow's Wheel (United States)

    Daffron, John A.; Greenslade, Thomas B.


    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822.1 In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns the wheel. The original device used mercury to provide electrical contact to the rim, and the dangers involved with the use of this heavy metal have caused the apparatus to disappear from the lecture hall.

  10. Wheeled hopping robot (United States)

    Fischer, Gary J [Albuquerque, NM


    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  11. Analysis of wheel rim - Material and manufacturing aspects (United States)

    Misra, Sheelam; Singh, Abhiraaj; James, Eldhose


    The tire in an automobile is supported by the rim of the wheel and its shape and dimensions should be adjusted to accommodate a specified tire. In this study, a tire of car wheel rim belonging to the disc wheel category is considered. Design is an important industrial operation used to define and specify the quality of the product. The design and modelling reduces the risk of damage involved in the manufacturing process. The design performed on this wheel rim is done on modelling software. After designing the model, it is imported for analysis purposes. The analysis software is used to calculate the different types of force, stresses, torque, and pressures acting upon the rim of the wheel and it reduces the time spent by a human for mathematical calculations. The analysis carried out considers two different materials namely structural steel and aluminium. Both materials are analyzed and their performance is noted.

  12. Wheeling in Canada

    International Nuclear Information System (INIS)

    Fytche, E.L.


    The quest for economic efficiency, or lowest cost, in the electricity supply industry is furthered by trading between high and low cost utilities, one aspect being transporting or wheeling power through the transmission system of a third party. Some of the pressures and constraints limiting wheeling are discussed. A simple formula is presented for determining whether trading and wheeling are worthwhile. It is demonstrated for assumed capital and operating cost levels, the viability of nine cases where bulk power or economy energy would need to be wheeled across provincial boundaries in order to reach potential buyers. Wheeling in Canada is different from the situation in the USA, due to large distances spanned by Canadian utilities and because most are provincial crown corporations, with different territorial interests and profit motivations than investor-owned utilities. Most trading in electricity has been between contiguous neighbours, for mutual advantage. New technology allows power transmission over distances of up to 1000 miles, and the economics of Canada's electrical supply could be improved, with means including access to low cost coal of Alberta, and remote hydro in British Columbia, Manitoba, Quebec and Labrador. Nuclear plants could be located anywhere but suffer from an unfriendly public attitude. A bridge across the Prairies appears uneconomic due to cost of transmission, and also due to low valuation given to Alberta coal. 7 refs., 2 figs., 3 tabs

  13. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.


    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  14. Costs associated with wheeling

    International Nuclear Information System (INIS)



    Wheeling costs are incurred by all companies that experience a change in power flows over their transmission lines during a specific transaction, whether or not the lines of that company are part of the contract path. The costs of providing wheeling service differ from one system to another and from one kind of wheeling transaction to another. While most transactions may be completed using existing capacity, others may require an increase in line. Depending on the situation, some cost components may be high, low, negative, or not incurred at all. This article discusses two general categories of costs; transactional and capital. The former are all operation, maintenance and opportunity costs incurred in completing a specific transaction assuming the existence of adequate capacity. Capital costs are the costs of major new equipment purchases and lines necessary to provide any increased level of transmission services

  15. The prospects for retail wheeling

    International Nuclear Information System (INIS)

    O'Donnell, E.H.; Center, J.A.


    This paper as published is an outline of a presentation on retail wheeling of electric power. The topics discussed are development of increased wholesale transmission access, government regulatory policies on wholesale transmission, examples of past and present retail transmission access agreements, examples of Federal Energy Regulatory Commission jurisdiction over retail wheeling, and state policies on retail wheeling

  16. Color Wheel Windows (United States)

    Leonard, Stephanie


    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  17. Atomic Ferris wheel beams (United States)

    Lembessis, Vasileios E.


    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.


    Directory of Open Access Journals (Sweden)

    N. M. Rasulov


    Full Text Available The paper presents research results of forming accuracy for diametrical sizes at gear shaping with stepped cutter and the traditional method. Analysis of static technological dimensional pitch size chain of wheels being cut is performed. It was revealed that the most of transmission errors of the wheels, formed by the traditional gear-shaped cutter are caused by manufacturing and installation error of the cutter and result from the formation of each tooth of the wheel with a certain tool. This is not the case with gear shaping by step cutter since at that, the profiles of all gear teeth are formed by means of tooth profile mostly remote from the tool rotation axis. Analysis of occurrence of setting-up errors typical for the above gear shaping methods has been performed. At gear shaping with stepped cutter there are no setting-up error components. It was revealed that this fact causes the absence of errors in the tool position before its each double motion. The accuracy of diametrical sizes increases. Formation mechanism of tool installation errors and workpiece are also given and their analysis is presented. Findings in the field of gear shaping with stepped cutter comply with results of research carried out by the other authors in the field of traditional gear shaping.

  19. Wheels With Sense (United States)

    Cambridge, Dwayne; Clauss, Douglas; Hewson, Fraser; Brown, Robert; Hisrich, Robert; Taylor, Cyrus


    We describe a student intrapreneurial project in the Physics Entrepreneurship Program at Case Western Reserve University. At the request of a major fortune 100 company, a study has been made of the technical and marketing issues for a new business of selling sensors on commercial vehicle wheels for monitoring pressure, temperature, rotations, and vibrations, as well as providing identification. The nature of the physics involved in the choice of the appropriate device such as capacitive or piezoresistive sensors is discussed, along with the possibility of MEMS (micro-electro-mechanical systems) technology and RFID (radiofrequency identification) readout on wheels. Five options (status quo, in-house development, external business acquisition, a large business national partnership, and a small-business Cleveland consortium partnership) were studied from both technological and business perspectives to commercialize the technology. The decision making process for making a choice is explained.

  20. Diabetes education on wheels. (United States)

    Hardway, D; Weatherly, K S; Bonheur, B


    Diabetes education programs remain underdeveloped in the pediatric setting, resulting in increased consumer complaints and financial liability for hospitals. The Diabetes Education on Wheels program was designed to provide comprehensive, outcome-oriented education for patients with juvenile diabetes. The primary goal of the program was to enhance patients' and family members' ability to achieve self-care in the home setting. The program facilitated sequential learning, improved consumer satisfaction, and promoted financial viability for the hospital.

  1. Mono- and multilayers of molecular spoked carbazole wheels on graphite. (United States)

    Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd


    Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  2. Mono- and multilayers of molecular spoked carbazole wheels on graphite

    Directory of Open Access Journals (Sweden)

    Stefan-S. Jester


    Full Text Available Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system and its synthetic precursor are investigated by scanning tunneling microscopy (STM at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs, where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  3. 49 CFR 570.10 - Wheel assemblies. (United States)


    ... bead through one full wheel revolution and note runout in excess of one-eighth of an inch. (c) Mounting... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  4. Tracked Vehicle Road Wheel Puller (United States)


    employed for removing smaller-size components, such as bolts and the like. U.S. Patent No. 5,410,792, issued to Freeman (3), discloses a caster wheel ...separation of the rubberized annular layer from the outer annular surface of the wheel . Figure 5 further illustrates a modification of the wheel puller...2001. 2. Rubino et al. Pulling Tool. U.S. Patent 5,479,688, 1996. 3. Freeman. Caster Wheel Axle Extraction Apparatus. U.S. Patent 5,410,792

  5. High data density and capacity in chipless radiofrequency identification (chipless-RFID) tags based on double-chains of S-shaped split ring resonators (S-SRRs) (United States)

    Herrojo, Cristian; Mata-Contreras, Javier; Paredes, Ferran; Martín, Ferran


    The data density per surface (DPS) is a figure of merit in chipless radiofrequency identification (chipless-RFID) tags. In this paper, it is demonstrated that chipless-RFID tags with high DPS can be implemented by using double-chains of S-shaped split ring resonators (S-SRRs). Tag reading is achieved by near-field coupling between the tag and the reader, a CPW transmission line fed by a harmonic signal tuned to the resonance frequency of the S-SRRs. By transversally displacing the tag over the CPW, the transmission coefficient of the line is modulated by tag motion. This effectively modulates the amplitude of the injected (carrier) signal at the output port of the line, and the identification (ID) code, determined by the presence or absence of S-SRRs at predefined and equidistant positions in the chains, is contained in the envelope function. The DPS is determined by S-SRR dimensions and by the distance between S-SRRs in the chains. However, by using two chains of S-SRRs, the number of bits per unit length that can be accommodated is very high. This chipless-RFID system is of special interest in applications where the reading distance can be sacrificed in favor of data capacity (e.g., security and authentication). Encoding of corporate documents, ballots, exams, etc., by directly printing the proposed tags on the item product to prevent counterfeiting is envisaged.

  6. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. (United States)

    Tan, Yann-Chong; Blum, Lisa K; Kongpachith, Sarah; Ju, Chia-Hsin; Cai, Xiaoyong; Lindstrom, Tamsin M; Sokolove, Jeremy; Robinson, William H


    We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination. Published by Elsevier Inc.

  7. Wheel speed management control system for spacecraft (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)


    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  8. Mechanical Design Engineering Enabler Project wheel and wheel drives (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.


    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  9. The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579. (United States)

    Huillet, Eugénie; Bridoux, Ludovic; Wanapaisan, Pagakrong; Rejasse, Agnès; Peng, Qi; Panbangred, Watanalai; Lereclus, Didier


    The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.

  10. An elevator wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhornik, V.I.; Cherkov, Ye.M.; Simonov, A.A.


    This invention deals with mineral enrichment and is primarily for unloading submerged products of enrichment during separation in heavy mediums. An elevator wheel is proposed for unloading the submerged product from the bath of a heavy to medium separator which includes ladle disks with internal walls and overlapping sheets hinged to the ends. In order to increase the degree of dehydration of the unloaded product, the internal wall of each ladle is made of sheets installed in stages with clearances relative to each other. The advantages of the proposed device include an improvement in the degree of dehydration of the submerged product in the ladles and a reduction in the carry away of the heavy medium with the enrichment products.

  11. Wheels lining up for ATLAS

    CERN Multimedia


    On 30 October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It is the second wheel for the Tilecal completely assembled this year.

  12. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel. (United States)

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr


    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  13. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft (United States)

    Rizvi, Farheen


    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  14. Two new wheels for ATLAS

    CERN Multimedia


    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  15. Propulsion Wheel Motor for an Electric Vehicle (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide


    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  16. Analysis of power wheeling services

    Energy Technology Data Exchange (ETDEWEB)

    Tepel, R.C.; Jewell, W.; Johnson, R.; Maddigan, R.


    Purpose of this study is to examine existing wheeling arrangements to determine the terms of the agreements, to analyze the terms relative to regulatory goals, and finally, to suggest ways in which the arrangements can be modified to lead to outcomes more closely in line with the goals. The regulatory goals that are considered are: Does the arrangement meet the revenue requirement of the wheeling firm. Is efficient use promoted. Are the costs fairly apportioned. And, is the arrangement practical and feasible to implement.

  17. 49 CFR 229.73 - Wheel sets. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel sets. 229.73 Section 229.73 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Suspension System § 229.73 Wheel sets. (a...) when applied or turned. (b) The maximum variation in the diameter between any two wheel sets in a three...

  18. Recovery tread wheel pairs of machining

    Directory of Open Access Journals (Sweden)

    Igor IVANOV


    Full Text Available The basic methods of resurfacing wheels are determined and analised. It’sshown that for raising resource of used wheels and decreasing requirements of railwaytransport for new wheels it’s reasonable to use methods of recovering not only geometricparameters of rim, but also its mechanical properties. It’s marked that use of infeedprofile high-speed grinding (VPVSh enables to intensify significantly process ofmechanical treatment of wheel rim profile both when its resurfacing in service and whenmanufacturing new wheel.

  19. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri


    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  20. Proposal to use vibration analysis steering components and car body to monitor, for example, the state of unbalance wheel (United States)

    Janczur, R.


    The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.

  1. Development of phased array UT technique for inspection of turbine wheel rim

    International Nuclear Information System (INIS)

    Komura, I.; Nagal, S.; Goto, M.; Ohmatsu, K.


    A phased array UT technique has been developed for the improvement of defect detection under the keyway region of shrunk-on type turbine wheel. The sector scanning mode operation with plexiglas wedge of phased array capability was applied to construct the B-scope image of turbine wheel rim region. Preceding to the inspection test of the model specimen having real shape of rim region, the distribution of sound field intensity along the steering angle of the scanning line was measured on the test block. Then, the minimum depth of detectable defect by the B-scope imaging was evaluated on the dovetail shape specimens which had different depth EDM notches at the each hook fillet. As the results, it has been realized that the B-scope imaging of the sector scanning mode phased array technique has a capability for distinguishing the defect echoes from the many reflection echoes caused by the complexed shape of wheel rim region

  2. Three omni-directional wheels control on a mobile robot


    Ribeiro, António Fernando; Moutinho, Ivo; Silva, Pedro; Fraga, Carlos; Pereira, Nino


    Traditional two wheels differential drive normally used on mobile robots have manoeuvrability limitations and take time to sort out. Most teams use two driving wheels (with one or two cast wheels), four driving wheels and even three driving wheels. A three wheel drive with omni-directional wheel has been tried with success, and was implemented on fast moving autonomous mobile robots. This paper deals with the mathematical kinematics description of such mobile platform, it describes the advant...

  3. Space shuttle wheels and brakes (United States)

    Carsley, R. B.


    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  4. Reaction wheels for kinetic energy storage (United States)

    Studer, P. A.


    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  5. Customer loads of two-wheeled vehicles (United States)

    Gorges, C.; Öztürk, K.; Liebich, R.


    Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.


    Directory of Open Access Journals (Sweden)

    M. Mueller


    Full Text Available Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation, a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons of a steering wheel and a pairwise connection of these points to straight lines. The HALCON system (HALCON, 2016 was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching, ±0.12° (3D approach and ±0.029° (point-to-point matching could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel results in a detection rate of 100% and ±0.48° (2D matching and ±0.24° (point-to-point matching. Both methods also fulfil the request of real time processing (three measurements per second.

  7. Four-Wheel Vehicle Suspension System (United States)

    Bickler, Donald B.


    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  8. Modelling of a mecanum wheel taking into account the geometry of road rollers (United States)

    Hryniewicz, P.; Gwiazda, A.; Banaś, W.; Sękala, A.; Foit, K.


    During the process planning in a company one of the basic factors associated with the production costs is the operation time for particular technological jobs. The operation time consists of time units associated with the machining tasks of a workpiece as well as the time associated with loading and unloading and the transport operations of this workpiece between machining stands. Full automation of manufacturing in industry companies tends to a maximal reduction in machine downtimes, thereby the fixed costs simultaneously decreasing. The new construction of wheeled vehicles, using Mecanum wheels, reduces the transport time of materials and workpieces between machining stands. These vehicles have the ability to simultaneously move in two axes and thus more rapid positioning of the vehicle relative to the machining stand. The Mecanum wheel construction implies placing, around the wheel free rollers that are mounted at an angle 450, which allow the movement of the vehicle not only in its axis but also perpendicular thereto. The improper selection of the rollers can cause unwanted vertical movement of the vehicle, which may cause difficulty in positioning of the vehicle in relation to the machining stand and the need for stabilisation. Hence the proper design of the free rollers is essential in designing the whole Mecanum wheel construction. It allows avoiding the disadvantageous and unwanted vertical vibrations of a whole vehicle with these wheels. In the article the process of modelling the free rollers, in order to obtain the desired shape of unchanging, horizontal trajectory of the vehicle is presented. This shape depends on the desired diameter of the whole Mecanum wheel, together with the road rollers, and the width of the drive wheel. Another factor related with the curvature of the trajectory shape is the length of the road roller and its diameter decreases depending on the position with respect to its centre. The additional factor, limiting construction of

  9. Strain measurement of wheel by a super-small size strain history recorder and its application to fatigue design; Chokogata jitsudo hizumi keisoku sochi ni yoru wheel no hizumi keisoku to hiro kyodo sekkei eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y [Kyushu University, Fukuoka (Japan); Mineki, K; Wakamatsu, K [Central Motor Wheel, Tokyo (Japan); Morita, T


    A very small strain history recorder based on the rainflow method has been developed and applied to strain measurement of car wheels under several road tests. Various strain amplitude histogram data under mountain road, city road and high-way were acquired by the recorder for various types of wheels. The data were studied from the viewpoint of random fatigue and the fatigue damages were evaluated by Miner`s rule. The results of the damage evaluation were used for the improvement of shapes of wheels. 2 refs., 6 figs., 1 tab.

  10. Greasing the Wheels of Trade


    Hendrik P. van Dalen; Aico P. van Vuuren


    This discussion paper resulted in a publication in 'De Economist' , 2005, 153(2), 139-165. How much does a nation spend on resources to 'grease the wheels of trade'? To examine this question the Dutch economy is used as an exemplary case as the Netherlands are known as a nation of traders. This image was derived in the seventeenth century from successes in long distance trade, shipping and financial innovations. Despite its historical background in trading the potential to 'truck and barter' ...

  11. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies (United States)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.


    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  12. Meals on Wheels Association of America (United States)

    ... Meals About Meals on Wheels Get Started The Issue The Problem & Our Solution Meals on Wheels Health Facts & Resources Senior Facts Map State Fact Sheets Research More Than a Meal Pilot Research Study Medicare Claims Analyses Policy Myths Hunger in Older Adults Take Action Volunteer Advocate #SAVELUNCH ...

  13. A Full Disturbance Model for Reaction Wheels

    NARCIS (Netherlands)

    Le, M.P.; Ellenbroek, Marcellinus Hermannus Maria; Seiler, R; van Put, P.; Cottaar, E.J.E.


    Reaction wheels are rotating devices used for the attitude control of spacecraft. However, reaction wheels also generate undesired disturbances in the form of vibrations, which may have an adverse effect on the pointing accuracy and stability of spacecraft (optical) payloads. A disturbance model for

  14. Assessment of a Boat Fractured Steering Wheel

    Directory of Open Access Journals (Sweden)

    Vukelic Goran


    Full Text Available During regular use of the steering wheel mounted on a boat, two cracks emanating from a fastener hole were noticed which, consequently, caused final fracture of the wheel. To determine the behavior of a boat steering wheel with cracks present, assessment of a fractured wheel was performed. Torque moments of the fasteners were measured prior to removing the steering wheel from the boat. Visual and dye penetrant inspection followed along with the material detection. Besides using experimental procedures, assessment of the fractured wheel was performed using finite element analysis, i.e. stress intensity factor values were numerically determined. Variation of stress intensity factor with crack length is presented. Possible causes of crack occurrence are given and they include excessive values of fastener torque moments coupled with fretting between fastener and fastener hole that was poorly machined. Results obtained by this assessment can be taken for predicting fracture behavior of a cracked steering wheel and as a reference in the design, mounting and exploitation process of steering wheels improving that way their safety in transportation environment.

  15. Riding the Ferris Wheel: A Sinusoidal Model (United States)

    Mittag, Kathleen Cage; Taylor, Sharon E.


    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  16. The Ferris Wheel and Justifications of Curvature (United States)

    Stevens, Irma E.; Moore, Kevin C.


    This report discusses the results of semi-structured clinical interviews with ten prospective secondary mathematics teachers who were provided with dynamic images of Ferris wheels. We asked the students to graph the relationship between the distance a rider traveled around the Ferris wheel and the height of the rider from the ground. We focus on…

  17. 29 CFR 1915.134 - Abrasive wheels. (United States)


    ... 29 Labor 7 2010-07-01 2010-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... wheels shall fit freely on the spindle and shall not be forced on. The spindle nut shall be tightened...

  18. Dynamic and Acoustic Characterisation of Automotive Wheels

    Directory of Open Access Journals (Sweden)

    Francesca Curà


    Full Text Available The subject of this paper is the dynamic and acoustic characterisation of an automotive wheel. In particular, an experimental research activity previously performed by the authors about the dynamic behaviour of automotive wheels has been extended to the acoustic field.

  19. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    41-218/2012 (SR)), India for financial support. DG and BS thank the Council of Scientific and Indus- trial Research (CSIR) for Senior Research Fellowship. We are grateful to Perkin-Elmer for ESI-Mass analysis. References. 1. (a) Lehn J M 1995 In Supramolecular Chem- istry, Concepts and Perspectives (Weinheim: VCH);.

  20. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.


    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  1. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin


    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  2. Minisatellite Attitude Guidance Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ion STROE


    Full Text Available In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of reaction wheels angular velocities using a similar inverse dynamics method based on inverting Euler’s equations of motion for a rigid body with one fixed point, written in the framework of the x-y-z sequence of rotations parameterization. For the particular case A=B not equal C of an axisymmetric minisatellite, the two computations are compared: the active torques computation versus the computation of reaction wheels angular velocities ̇x , ̇y and ̇z. An interesting observation comes out from this numerical study: if the three reaction wheels are identical (with Iw the moment of inertia of one reaction wheel with respect to its central axis, then the evolutions in time of the products between Iw and the derivatives of the reaction wheels angular velocities, i.e. ̇ , ̇ and ̇ remain the same and do not depend on the moment of inertia Iw.

  3. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.


    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  4. Shape memory polymers (United States)

    Wilson, Thomas S.; Bearinger, Jane P.


    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  5. A rotating target wheel system for gammasphere

    International Nuclear Information System (INIS)

    Greene, J. P.


    A description is given for a low-mass, rotating target wheel to be used within the Gammasphere target chamber. This system was developed for experiments employing high beam currents in order to extend lifetimes of targets using low-melting point target material. The design is based on a previously successful implementation of rotating target wheels for the Argonne Positron Experiment (APEX) as well as the Fragment Mass Analyser (FMA) at ATLAS (Argonne Tandem Linac Accelerator System). A brief history of these rotating target wheel systems is given as well as a discussion on target preparation and performance

  6. Why Animals Run on Legs, Not on Wheels. (United States)

    Diamond, Jared


    Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)

  7. Wheel set run profile renewing method effectiveness estimation


    Somov, Dmitrij; Bazaras, Žilvinas; Žukauskaite, Orinta


    At all the repair enterprises, despite decreased rim wear-off resistance, after every grinding only geometry wheel profile parameters are renewed. Exploit wheel rim work edge decrease tendency is noticed what induces acquiring new wheels. This is related to considerable axle load and train speed increase and also because of wheel work edge repair method imperfection.

  8. 49 CFR 230.113 - Wheels and tire defects. (United States)


    ... tires may not have a seam running lengthwise that is within 33/4 inches of the flange. (g) Worn flanges... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  9. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity. (United States)

    Seward, T; Harfmann, B D; Esser, K A; Schroder, E A


    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to

  10. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    Directory of Open Access Journals (Sweden)

    Paul Molyneux-Berry


    Full Text Available The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing. The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets.

  11. Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagomé-shaped tubular architecture. (United States)

    Zhao, Hai-Rong; Li, Dong-Ping; Ren, Xiao-Ming; Song, You; Jin, Wan-Qin


    Four isostructural inorganic-organic hybrid ferroelectric compounds, assembled from achiral 3-R-benzylidene-1-aminopyridiniums (R = NO(2), Br, Cl, or F for 1-4, respectively) and [PbI(3)](-) anions with the chiral Kagomé-shaped tubular aggregating architecture, show larger spontaneous polarizations.

  12. An Ultrasonic Wheel-Array Probe (United States)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.


    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  13. Multiple Wheel Throwing: And Chess Sets. (United States)

    Sapiro, Maurice


    A chess set project is suggested to teach multiple throwing, the creation on a potter's wheel of several pieces of similar configuration. Processes and finished sets are illustrated with photographs. (SJL)

  14. UT Biomedical Informatics Lab (BMIL) probability wheel (United States)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.


    Directory of Open Access Journals (Sweden)

    Igor IVANOV


    Full Text Available This paper shows the results of a theoretical study of profile high-speed grinding (PHSG for forming tread wheel sets during repair instead of turning and mold-milling. Significant disadvantages of these methods are low capacity to adapt to the tool and inhomogeneous structure of the wheel material. This leads to understated treatment regimens and difficulties in recovering wheel sets with thermal and mechanical defects. This study carried out modeling and analysis of emerging cutting forces. Proposed algorithms describe the random occurrence of the components of the cutting forces in the restoration profile of wheel sets with an inhomogeneous structure of the material. To identify the statistical features of randomly generated structures fractal dimension and the method of random additions were used. The multifractal spectrum formed is decomposed into monofractals by wavelet transform. The proposed method allows you to create the preconditions for controlling the parameters of the treatment process.

  16. Electrostatic Spectrometer for Mars Rover Wheel (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  17. Benefits of magnesium wheels for consumer cars (United States)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis


    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.

  18. A Nontoxic Barlow's Wheel (United States)

    Daffron, John A.; Greenslade, Thomas B., Jr.


    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822. In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns…

  19. Aerodynamic analysis of an isolated vehicle wheel (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.


    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  20. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M


    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  1. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei


    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  2. Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene Cores on Self-Assembly Behavior. Part 2: Domain Formation by Self-Assembly in Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Stefan Werner


    Full Text Available Supramolecular self-assembly of membrane constituents within a phospholipid bilayer creates complex functional platforms in biological cells that operate in intracellular signaling, trafficking and membrane remodeling. Synthetic polyphilic compounds of macromolecular or small size can be incorporated into artificial phospholipid bilayers. Featuring three or four moieties of different philicities, they reach beyond ordinary amphiphilicity and open up avenues to new functions and interaction concepts. Here, we have incorporated a series of X-shaped bolapolyphiles into DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers of giant unilamellar vesicles. The bolapolyphiles consist of a rod-like oligo(phenylene ethynylene (OPE core, hydrophilic glycerol-based headgroups with or without oligo(ethylene oxide expansions at both ends and two lateral alkyl chains attached near the center of the OPE core. In the absence of DPPC and water, the compounds showed thermotropic liquid-crystalline behavior with a transition between polyphilic and amphiphilic assembly (see part 1 in this issue. In DPPC membranes, various trends in the domain morphologies were observed upon structure variations, which entailed branched alkyl chains of various sizes, alkyl chain semiperfluorination and size expansion of the headgroups. Observed effects on domain morphology are interpreted in the context of the bulk behavior (part 1 and of a model that was previously developed based on spectroscopic and physicochemical data.

  3. Experimental Setup for Diamond Grinding Using Electrochemical InProcess Controlled Dressing (ECD of Grinding Wheel

    Directory of Open Access Journals (Sweden)

    M. A. Shavva


    Full Text Available The most effective method for finish machining of hard-metals and alloys is to use the diamond grinding wheels for grinding. An application of diamond wheels significantly increases the employee output, reduces costs, and raises manufacturing efficiency with achieving the high performance properties of treated surfaces.During grinding a working surface of diamond wheel wears out. It adversely affects the cutting capability of the diamond grains, and depending on the grinding conditions can occur through different mechanisms. Wear of diamond wheel causes distortion of its shape and reduces cutting properties. However, dressing of diamond wheels is a complicated and time-consuming operation in terms of manufacturing technique.Methods to make dressing of diamond grinding wheel have different types of classification. Classification of dressing methods by the type of energy used is as follows: mechanical, chemical, electrophysical, electromechanical, and electrochemical. All these methods have their advantages and disadvantages.Electrochemical method of dressing is the most productive and efficient. Electrochemical method comprises anode-mechanical dressing and electrochemical (electrolytic one. The paper presents the electrochemical in-process dressing (ECD and the electrolytic in-process dressing (ELID.The source of energy, grinding a wheel with metal bond, and an electrode are necessary for providing ELID. The ELID consists of several stages. The first stage is preliminary electrolytic dressing of diamond wheel. The electrolyte is placed into the gap between the wheel and electrode. The bond of the wheel is oxidized. An insulating layer is formed. It reduces an electrical conductivity of the wheel and controls consumption of diamond grains, as well as polishes the surface of the work piece. Further, the insulating layer is destroyed. The cycle of dressing begins anew.The ECD proceeds in the same way as ELID. However during the ECD-process there

  4. Project considerations and design of systems for wheeling cogenerated power

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.; Boyle, J.R.; Fish, J.H. III; Martin, W.A.


    Wheeling electric power, the transmission of electricity not owned by an electric utility over its transmission lines, is a term not generally recognized outside the electric utility industry. Investigation of the term`s origin is intriguing. For centuries, wheel has been used to describe an entire machine, not just individual wheels within a machine. Thus we have waterwheel, spinning wheel, potter`s wheel and, for an automobile, wheels. Wheel as a verb connotes transmission or modification of forces and motion in machinery. With the advent of an understanding of electricity, use of the word wheel was extended to be transmission of electric power as well as mechanical power. Today, use of the term wheeling electric power is restricted to utility transmission of power that it doesn`t own. Cogeneration refers to simultaneous production of electric and thermal power from an energy source. This is more efficient than separate production of electricity and thermal power and, in many instances, less expensive.

  5. Modelling and mitigation of wheel squeal noise amplitude (United States)

    Meehan, Paul A.; Liu, Xiaogang


    The prediction of vibration amplitude and sound pressure level of wheel squeal noise is investigated using a concise mathematical model that is verified with measurements from both a rolling contact two disk test rig and a field case study. The model is used to perform an energy-based analysis to determine a closed form solution to the steady state limit cycle amplitude of creep and vibration oscillations during squealing. The analytical solution compares well with a numerical solution using an experimentally tuned creep curve with full nonlinear shape. The predicted squeal sound level trend also compares well with that recorded at various crabbing velocities (proportional to angle of attack) for the test rig at different rolling speeds. In addition, further verification is performed against many field recordings of wheel squeal on a sharp curve of 300 m. A comparison with a simplified modified result from Rudd [1] is also provided and highlights the accuracy and advantages of the present efficient model. The analytical solution provides insight into why the sound pressure level of squeal noise increases with crabbing velocity (or angle of attack) as well as how the amplitude is affected by the critical squeal parameters including a detailed investigation of modal damping. Finally, the efficient model is used to perform a parametric investigation into means of achieving a 6 dB decrease in squeal noise. The results highlight the primary importance of crabbing velocity (and angle of attack) as well as the creep curve parameters that may be controlled using third body control (ie friction modifiers). The results concur with experimental and field observations and provide important theoretical insight into the useful mechanisms of mitigating wheel squeal and quantifying their relative merits.

  6. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam


    Full Text Available This study aims to design, and analyze a mobilerobot that can handle some of the obstacles, they are unevensurfaces, slopes, can also climb stairs. WMR in this study is Tristarwheel that is containing three wheels for each set. Onaverage surface only two wheels in contact with the surface, ifthere is an uneven surface or obstacle then the third wheel willrotate with the rotation center of the wheel in contact with theleading obstacle then only one wheel in contact with the surface.This study uses the C language program. Furthermore, theminimum thrust to be generated torque of the motor andtransmission is 9.56 kg. The results obtained by calculation andanalysis of DC motors used must have a torque greater than14.67 Minimum thrust to be generated motor torque andthe transmission is 9.56 kg. The experimental results give goodresults for robot to moving forward, backward, turn left, turnright and climbing the stairs

  7. Reaction Wheel Disturbance Model Extraction Software - RWDMES (United States)

    Blaurock, Carl


    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  8. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.


    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  9. A Self-Propelled Wheel for Wheeled Vehicles. (United States)


    embodiments of both types, in 16 general the axial permanent magnet motors feature a stator disk, 17 or drum, with a central opening and electrical...6 In general, in radial permanent magnet motors , the stator is 7 annularly-shaped and is concentrically disposed around a 8 generally to provide a motor 6 assembly which is more efficient than the presently available 7 axial permanent magnet motors and radial permanent magnet motors 8

  10. The Effect of First-Order Bending Resonance of Wheelset at High Speed on Wheel-Rail Contact Behavior

    Directory of Open Access Journals (Sweden)

    Shuoqiao Zhong


    Full Text Available The first-order bending deformation of wheelset is considered in the modeling vehicle/track coupling dynamic system to investigate its effect on wheel/rail contact behavior. In considering the effect of the first-order bending resonance on the rolling contact of wheel/rail, a new wheel/rail contact model is derived in detail in the modeling vehicle/track coupling dynamic system, in which the many intermediate coordinate systems and complex coordinate system transformations are used. The bending mode shape and its corresponding frequency of the wheelset are obtained through the modal analysis by using commercial software ANSYS. The modal superposition method is used to solve the differential equations of wheelset motion considering its flexible deformation due to the first-order bending resonance. In order to verify the present model and clarify the influence of the first-order bending deformation of wheelset on wheel/track contact behavior, a harmonic track irregularity with a fixed wavelength and a white-noise roughness are, respectively used as the excitations in the two models of vehicle-rail coupling dynamic system, one considers the effect of wheelset bending deformation, and the other does not. The numerical results indicate that the wheelset first-order bending deformation has an influence on wheel/rail rolling contact behavior and is easily excited under wheel/rail roughness excitation.

  11. Assessing the influence of wheel defects of a rolling stockon railway tracks

    Directory of Open Access Journals (Sweden)

    Loktev Aleksey Alekseevich


    Full Text Available Transfer of the load from the wheels on the rail occurs at a very small area compared with the size of the wheels and rails. The materials near this site have a very large voltage. Determination of contact stresses is complicated by the fact that the magnitude of these stresses in the rails under actually revolving wheel load exceeds the yield and compressive strength of modern rail steel. We should note that the metal of the rail head, experiencing contact stresses, especially when the location of the pads is closer to the middle of the rail head, works in the conditions close to the compression conditions, and therefore can withstand higher voltage without plastic deformation than the standard compressible sample. But, as a rule, the observed hardening of the metal in the zone of contact stresses and lapping at the edges of the rail head indicates the presence of plastic deformation and, consequently, higher stresses in the wheel-rail contact zone than the yield strength of the metal rail even in the conditions of its operation in the rail head.The use of the design equations derived on the basis of the Hertz theory for metal behavior in elastic stage, is valid. The reason is that each individual dynamic application of wheel loads on the rail is very short, and the residual plastic deformation from the individual loads of the pair of wheels on the rail is actually small. This elastic-plastic deformation of the rail becomes visible as a result of gradual gaining of a missed tonnage of rails and wheels respectively. Irregularities on the running surface of the wheels are of two types. The most common are the so-called continuous bumps on the wheel, when due to the uneven wear of rail the original shape of the wheel across the tread surface distorts. But nowadays, more and more often there occur isolated smooth irregularities of the wheel pairs, due to the increased wear of the wheel because of the stopping and blocking of wheels of the vehicles

  12. Evaluation of the 30 Ton CHA Crane Wheel Axle Modification

    International Nuclear Information System (INIS)

    RICH, J.W.


    An existing design for eccentric bushings was utilized and updated as necessary to accommodate minor adjustment as required to correct wheel alignment on the North West Idler wheel. The design is revised to install eccentric bushings on only one end

  13. Tensegrital Wheel for Enhanced Surface Mobility, Phase I (United States)

    National Aeronautics and Space Administration — ProtoInnovations introduces the "tensegrital wheel" an inventive concept for wheeled locomotion that exploits the geometric and mechanical attributes of a tensegrity...

  14. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.


    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  15. Reaction Wheel Disturbance Model Extraction Software, Phase I (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  16. 29 CFR 1910.215 - Abrasive wheel machinery. (United States)


    ... be securely fastened to the spindle and the bearing surface shall run true. When more than one wheel... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a...

  17. 49 CFR 229.75 - Wheels and tire defects. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A... two adjoining spots that are each two or more inches in length. (e) A seam running lengthwise that is...

  18. Rolling Friction on a Wheeled Laboratory Cart (United States)

    Mungan, Carl E.


    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  19. Vegetation response to wagon wheel camp layouts.

    African Journals Online (AJOL)

    Wagon wheel camp layouts have been favoured, in some quarters, for rotational grazing due to the economy and convenience of having the camps radially arranged around central facilities. A possible disadvantage of such layouts is the tendency for over-grazing near the hub and under-grazing at the extremities.

  20. Examination of a failed fifth wheel coupling

    CSIR Research Space (South Africa)

    Fernandes, PJL


    Full Text Available Examination of a fifth wheel coupling which had failed in service showed that it had been modified and that the operating handle had been moved from its original design position. This modification completely eliminated the safety device designed...

  1. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó


    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  2. Investigating Functions with a Ferris Wheel (United States)

    Johnson, Heather Lynn; Hornbein, Peter; Azeem, Sumbal


    The authors provide a dynamic Ferris wheel computer activity that teachers can use as an instructional tool to help students investigate functions. They use a student's work to illustrate how students can use relationships between quantities to further their thinking about functions.

  3. Experiments on a Tail-wheel Shimmy (United States)

    Harling, R; Dietz, O


    Model tests on the "running belt" and tests with a full-scale tail wheel were made on a rotating drum as well as on a runway in order to investigate the causes of the undesirable shimmy phenomena frequently occurring on airplane tail wheels, and the means of avoiding them. The small model (scale 1:10) permitted simulation of the mass, moments of inertia, and fuselage stiffness of the airplane and determination of their influence on the shimmy, whereas by means of the larger model with pneumatic tires (scale 1:2) more accurate investigations were made on the tail wheel itself. The results of drum and road tests show good agreement with one another and with model values. Detailed investigations were made regarding the dependence of the shimmy tendency on trail, rolling speed, load, size of tires, ground friction,and inclination of the swivel axis; furthermore, regarding the influence of devices with restoring effect on the tail wheel, and the friction damping required for prevention of shimmy. Finally observations from slow-motion pictures are reported and conclusions drawn concerning the influence of tire deformation.

  4. The physics of wheel-rail stability (United States)

    Tan, B. T. G.


    This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure.

  5. 49 CFR 215.103 - Defective wheel. (United States)


    ... of the rim; or, (i) A wheel on the car has been welded unless the car is being moved for repair in... on the car shows evidence of being loose such as oil seepage on the back hub or back plate; (h) A...

  6. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl


    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  7. Performance Evaluation of Abrasive Grinding Wheel Formulated ...

    African Journals Online (AJOL)

    This paper presents a study on the formulation and manufacture of abrasive grinding wheel using locally formulated silicon carbide abrasive grains. Six local raw material substitutes were identified through pilot study and with the initial mix of the identified materials, a systematic search for an optimal formulation of silicon ...

  8. The time has come for retail wheeling

    International Nuclear Information System (INIS)

    Dahlen, D.O.; Achinger, S.K.


    Retail wheeling, the transmission and distribution of electric power for end users, fosters competition and promotes the efficient use of resources. Access to electric-utility transmission and distribution systems would establish competitive electric markets by permitting retail customers to obtain the lowest cost for energy which would meet their specific needs. Among electric utilities and their customers, the idea of allowing market forces to attract supply and set prices is a current controversy. To counter the anticompetitive effects of recent mergers in the wholesale market, the Federal Energy Regulatory Commission (FERC) has mandated open transmission access for wholesale customers. However, the FERC denied access to retail customers and qualifying facilities (QF) in both its Northeast Utilities (FERC case No. EC-90-1 90) and PacifiCorp (U.S. Circuit Court of Appeals for D.C., 89-1333) decisions. Retail wheeling will benefit both consumers and producers. The ability of large customers to purchase power from the lowest cost sources and have it transmitted to their facilities, will save American industrial and commercial customers at least $15 billion annually. The Increased efficiency resulting from competition would also reduce residential electric bills. Through retail wheeling, independent power producers can market their capacity to a greater customer base, and traditional utilities will benefit from access to other utilities markets with the more efficient utilities prospering. Retail wheeling will, therefore, reward efficient utilities and encourage inefficient utilities to improve

  9. 2009 Tactical Wheeled Vehicles Conference (TWV) (United States)


    fields. 5 ... Spent $265.2 Million in Reset of TWVs … or larger than the entire 2007 revenue of the Los Angeles Dodgers . ... Spent $265.2 Million in...Reset of T Vs or larger than the entire 2007 revenue of the Los Angeles Dodgers . ... Maintains over 29,000 Tactical Wheeled Vehicles in theater … or

  10. The Physics of Wheel-Rail Stability (United States)

    Tan, B. T. G.


    This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure

  11. Reinventing the Wheel: The Economic Benefits of Wheeled Transportation in Early British Colonial West Africa


    Isaías N. Chaves; Stanley L. Engerman; James A. Robinson


    One of the great puzzles of Sub-Saharan African economic history is that wheeled transportation was barely used prior to the colonial period. Instead, head porterage was the main method of transportation. The consensus among historians is that this was a rational adaption to the underlying conditions and factor endowments. In this paper we undertake the first systematic investigation of the relative costs of the different forms of wheeled transportation in Africa. We focus on calculating the ...

  12. Design and experimental study of a micro-groove grinding wheel with spray cooling effect

    Directory of Open Access Journals (Sweden)

    Shi Chaofeng


    Full Text Available The effectiveness of grinding fluid supply has a crucial impact on grinding quality and efficiency in high speed grinding. In order to improve the cooling and lubrication, through in-depth research of self-inhaling internal cooling method and intermittent grinding mechanism, a new spray cooling method used in high speed grinding is proposed. By referring to the structure of bowl-shaped dispersion disk, the grinding wheel matrix with atomization ability is designed; through studying heat transfer of droplet collision and the influence of micro-groove on the boiling heat transfer, grinding segment with micro-groove is designed to enhance the heat flux of coolant and achieve maximum heat transfer between droplets and grinding contact zone. High-speed grinding experiments on GH4169 with the developed grinding wheel are carried out. The results show that with the micro-groove grinding wheel just 5.4% of pump outlet flow rate and 0.5% of spindle energy is needed to reduce the grinding temperature to 200 °C, which means the developed grinding wheel makes cooling high efficient and low energy consuming.

  13. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis (United States)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard


    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  14. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam


    Full Text Available This study aims to design, and analyze a mobile robot that can handle some of the obstacles, they are uneven surfaces, slopes, can also climb stairs. WMR in this study is Tristar wheel that is containing three wheels for each set. On average surface only two wheels in contact with the surface, if there is an uneven surface or obstacle then the third wheel will rotate with the rotation center of the wheel in contact with the leading obstacle then only one wheel in contact with the surface. This study uses the C language program. Furthermore, the minimum thrust to be generated torque of the motor and transmission is 9.56 kg. The results obtained by calculation and analysis of DC motors used must have a torque greater than 14.67 Minimum thrust to be generated motor torque and the transmission is 9.56 kg. The experimental results give good results for robot to moving forward, backward, turn left, turn right and climbing the stairs.

  15. Kinematics and dynamics modelling of a mecanum wheeled mobile platform

    CSIR Research Space (South Africa)

    Tlale, NS


    Full Text Available analysis for mecanum wheeled mobile platform same time during the operation of the mobile platform, a maximum of eighty-one combinations of wheels (four wheels: 1,2, 3 and 4) and directions of rotational velocity of wheels (three directions of rotation... = I ’ (15) where ai is a constant depending on the wheel number and ai = -1 for i = 1 and 4, and ai = 1 for i = 2 and 3, T is the torque developed on the vehicle that changes the posture of the vehicle, I is the mass inertia of the vehicle...

  16. Study on the Attitude Control of Spacecraft Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ju-Young Du


    Full Text Available Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  17. Latent effectiveness of desiccant wheel: A silica gels- water system

    International Nuclear Information System (INIS)

    Rabah, A. A.; Mohamed, S. A.


    A latent heat effectiveness model in term of dimensionless groups? =f (NTU, m * ,Crm * ) for energy wheel has been analytically derived. The energy wheel is divided into humidification and dehumidification sections. For each section macroscopic mass differential equations for gas and the matrix were applied. In this process local latent effectiveness (? c ,? h ) for the humidification and dehumidification section of the wheel were obtained. The Latent effectiveness of the wheel is then derived form local effectiveness [? =f (? c ,? h)]. The model is compared with the existing experimental investigation and manufacturer data for energy wheel. More than 90% of the experimental data within a confidence limit of 95%. (Author)

  18. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study. (United States)

    Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin


    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.

  19. Wheel traffic effect on air-filled porosity and air permeability in a soil catena across the wheel rut

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Lamandé, Mathieu

    might induce different effects on soil physical properties. The objective of this study was to investigate the impact of vehicle traffic on soil physical properties and air permeability by systematic collection of samples in a transect running from the center to the outside of the wheel rut. A field...... catena running from center of the wheel rut to un wheeled part of the field ( 0, 20, 40, 50,60 and 400 cm horizontal distance). We measured water retention and air permeability (ka) at -30, -100 and -300 hPa matric potentials. At -100 hPa, we obtained consistently lower air filled under the wheel rut......The impact of wheel traffic on soil physical properties is usually quantified by randomly collecting soil cores at specific depths below the wheeled surface. However, modeling studies as well as few measurements indicated a non-uniform stress distribution in a catena across the wheel rut, which...

  20. Consideration on the dynamics of course-driver-vehicle system of four-wheel steering vehicles. annex. Static directional stability and approximation of general motion by chain of steady-state circular turns; 4WS sha no shinro-driver-jidoshakei no undo rikigaku ni kansuru ichikosatsu. Seiteki hoko anteisei oyobi teijoen senkai de tsunagu kinjisei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Togo, K [Yomiuri Koto Institute of Science and Engineering, Tokyo (Japan); Kondo, M [Tokyo Institute of Technology, Tokyo (Japan)


    One of the authors intended before to understand the fundamentals of automobile steering emphasizing the importance of the driver`s forward view point. This idea was called Kondo`s hypothesis by several Professors and has been used and developed by many researchers in Japan. Using this thought, dynamical properties and steering of four-wheel steering vehicles, of which two points of the vehicle`s body can trace the designated course, are studied in this paper. Some numerical calculations have shown the tendency similar to the actual steering now used by a Japanese manufacturer. This idea would be useful in the automatic driving systems such as ITS. 4 refs., 3 tabs., 1 tab.

  1. Advanced Control of Wheeled Inverted Pendulum Systems

    CERN Document Server

    Li, Zhijun; Fan, Liping


    Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics,dynamics modeling, advanced control design techniques,and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by.   The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation met...

  2. Numerical Simulation of a Grinding Process for the Spatial Work-pieces: a Model of the Workpiece and Grinding Wheel

    Directory of Open Access Journals (Sweden)

    I. A. Kiselev


    Full Text Available The paper describes a spatial grinding dynamics mathematical model. This model includes a grinding wheel dynamics model, a work-piece dynamics model, and a numerical algorithm of geometric modeling as well. The geometric modeling algorithm is based on the Z-buffer method with author’s modifications. This algorithm allows us to simulate the formation of a new workpiece surface when removing material and as well as to determine the cutting layer thickness for each abrasive grain of the grinding wheel. The use of the surface cell bilinear approximation and the simultaneous use of multiple projection directions are the special features of the algorithm. These features improve modeling quality of machined surface. The grinding wheel model is represented as cutting micro-edges (grains set. Abrasive grains are randomly distributed on the wheel outer surface. Grains size, shape, wheel structure and graininess are taken into account. To determine the uncut chip thickness, which is cut off by each grain of the grinding wheel is used the algorithm, which finds intersection point of uncut work-piece surface with radial ray passing through the grain cutting edge. Grinding forces for each grain are defined based on the cutting layer thickness value using the phenomenological models described in the literature. Using transformations described in the article, grinding forces determined for each grain are reduced to the total grinding force, which acts on the tool and machined work-piece in the appropriate coordinate systems. Work-piece dynamics is modeled with the help of the finite element method using quadratic tetrahedral elements. The described model of spatial grinding dynamics makes it possible to evaluate the level of vibration and grinding forces, as well as the shape errors and surface quality of machined work-piece.

  3. Peculiarities of Clutch Forming Rails and Wheel Block Construction (United States)

    Shiler, V. V.; Galiev, I. I.; Shiler, A. V.


    The clutch of the wheel and rail is significantly influenced by the design features of the standard wheel pair, which are manifested in the presence of "parasitic" slipping of the wheels along the rails during its movement. The purpose of the presented work is to evaluate new design solutions for wheel sets. The research was carried out using methods of comparative simulation modelling and physical prototyping. A new design of the wheel pair (block wheel pair) is proposed, which features an independent rotation of all surfaces of the wheels in contact with the rails. The block construction of the wheel pair forms open mechanical contours with the track gauge, which completely eliminates the "parasitic" slippage. As a result, in the process of implementing traction or braking forces, the coupling coefficient of the block construction of the wheel pair is significantly higher than that of existing structures. In addition, in the run-out mode, the resistance to movement of the block wheel pair is half as much. All this will allow one to significantly reduce the energy consumption for traction of trains, wear of track elements and crew, and to increase the speed and safety of train traffic.

  4. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels (United States)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie


    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  5. Slew Maneuver Control for Spacecraft Equipped with Star Camera and Reaction Wheels

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.


    A configuration consisting of a star camera, four reaction wheels and magnetorquers for momentum unloading has become standard for many spacecraft missions. This popularity has motivated numerous agencies and private companies to initiate work on the design of an imbedded attitude control system...... realized on an integrated circuit. This paper provides an easily implementable control algorithm for this type of configuration. The paper considers two issues: slew maneuver with a feature of avoiding direct exposure of the camera's CCD chip to the Sun %, three-axis attitude control and optimal control...... torque distribution in a reaction wheel assembly. The attitude controller is synthesized applying the energy shaping technique, where the desired potential function is carefully designed using a physical insight into the nature of the problem. The system stability is thoroughly analyzed and the control...

  6. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis


    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  7. The colour wheels of art, perception, science and physiology (United States)

    Harkness, Nick


    Colour is not the domain of any one discipline be it art, philosophy, psychology or science. Each discipline has its own colour wheel and this presentation examines the origins and philosophies behind the colour circles of Art, Perception, Science and Physiology (after image) with reference to Aristotle, Robert Boyle, Leonardo da Vinci, Goethe, Ewald Hering and Albert Munsell. The paper analyses and discusses the differences between the four colour wheels using the Natural Colour System® notation as the reference for hue (the position of colours within each of the colour wheels). Examination of the colour wheels shows the dominance of blue in the wheels of art, science and physiology particularly at the expense of green. This paper does not consider the three-dimensionality of colour space its goal was to review the hue of a colour with regard to its position on the respective colour wheels.

  8. Falling chains


    Wong, Chun Wa; Yasui, Kosuke


    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  9. Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine

    Directory of Open Access Journals (Sweden)

    Jiří FRIES


    Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.

  10. Analysis of traversable pits model to make intelligent wheeled vehicles

    Directory of Open Access Journals (Sweden)

    F. Abbasi


    Full Text Available In this paper, the issue of passing wheeled vehicles from pits is discussed. The issue is modeled by defining the limits of passing wheeled vehicles. The proposed model has been studied based on changes in the effective parameters. Finally, in order to describe the problem, the proposed model has been solved for wheeled vehicles based on the effective parameters by using one of the numerical methods.

  11. Wheel running decreases the positive reinforcing effects of heroin. (United States)

    Smith, Mark A; Pitts, Elizabeth G


    The purpose of this study was to examine the effects of voluntary wheel running on the positive reinforcing effects of heroin in rats with an established history of drug self-administration. Rats were assigned to sedentary (no wheel) and exercise (wheel) conditions and trained to self-administer cocaine under positive reinforcement contingencies. Rats acquiring cocaine self-administration were then tested with various doses of heroin during daily test sessions. Sedentary rats self-administered more heroin than exercising rats, and this effect was greatest at low and moderate doses of heroin. These data suggest that voluntary wheel running decreases the positive reinforcing effects of heroin.

  12. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo


    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  13. Computation of wheel-rail contact force for non-mapping wheel-rail profile of Translohr tram (United States)

    Ji, Yuanjin; Ren, Lihui; Zhou, Jinsong


    Translohr tram has steel wheels, in V-like arrangements, as guide wheels. These operate over the guide rails in inverted-V arrangements. However, the horizontal and vertical coordinates of the guide wheels and guide rails are not always mapped one-to-one. In this study, a simplified elastic method is proposed in order to calculate the contact points between the wheels and the rails. By transforming the coordinates, the non-mapping geometric relationship between wheel and rail is converted into a mapping relationship. Considering the Translohr tram's multi-point contact between the guide wheel and the guide rail, the elastic-contact hypothesis take into account the existence of contact patches between the bodies, and the location of the contact points is calculated using a simplified elastic method. In order to speed up the calculation, a multi-dimensional contact table is generated, enabling the use of simulation for Translohr tram running on curvatures with different radii.

  14. Drowsy Driver Detection via Steering Wheel

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM


    Full Text Available The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  15. Electric wheel hub motor; Elektrischer Radnabenmotor

    Energy Technology Data Exchange (ETDEWEB)

    Groeninger, Michael; Kock, Alexander [IFAM Bremen (Germany); Horch, Felix [IFAM Bremen (Germany). Komponentenentwicklung; Pleteit, Hermann [IFAM Bremen (Germany). Abt. Giessereitechnologie und Komponentenentwicklung


    The bundled competences of the participating Fraunhofer Institutes have made it possible to develop a wheel hub motor that has essentially overcome currently existing technical hurdles, enabling its use in a vehicle. In addition to direct technical challenges such as sealing against external influences, high bearing stiffness requirements, necessary high torque densities and simple integration in the chassis, the safety aspects required by modern vehicles were also taken into account. A drive system that guarantees safe driving states, even in the case of malfunction, was developed through the combination of recuperative braking with a classic mechanical braking system and redundant motor design. (orig.)

  16. Wheelchair users' perceptions of and experiences with power assist wheels. (United States)

    Giacobbi, Peter R; Levy, Charles E; Dietrich, Frederick D; Winkler, Sandra Hubbard; Tillman, Mark D; Chow, John W


    To assess wheelchair users' perceptions of and experiences with power assist wheels using qualitative interview methods. Qualitative evaluations were conducted in a laboratory setting with a focus on users' experiences using power assist wheel in their naturalistic environments. Participants consisted of seven women and 13 men (M(age) = 42.75, SD = 14.68) that included one African American, one Hispanic, 17 whites, and one individual from Zambia. Qualitative interviews were conducted before, during, and after use of a power assist wheel. Main outcome measures included the wheelchair users' evaluations and experiences related to the use of power assist wheels. The primary evaluations included wheeling on challenging terrains, performance of novel activities, social/family aspects, fatigue, and pain. These descriptions indicated that most participants perceived positive experiences with the power assist wheels, including access to new and different activities. Secondary evaluations indicated that the unit was cumbersome and prohibitive for some participants because of difficulties with transport in and out of a vehicle and battery life. Most participants felt that power assist wheels provided more independence and social opportunities. The power assist wheel seems to offer physical and social benefits for most wheelers. Clinicians should consider users' home environment and overall life circumstances before prescribing.

  17. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  18. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter


    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  19. First Wheel of the Hadronic EndCap Calorimeter Completed

    CERN Multimedia

    Oram, C.J.


    With the LAr calorimeters well advanced in module production, the attention is turning to Batiment 180 where the calorimeter modules are formed into complete detectors and inserted into their respective cryostats. For the Hadronic End Cap (HEC) Group the task in B180 is to assemble the wheels, rotate them into their final orientation, and put them onto the cradle in front of the End Cap Cryostat. These tasks have been completed for the first HEC wheel in the B180 End Cap Clean Room. Given that this wheel weighs 70 tons the group is very relieved to have established that these gymnastics with the wheel proceed in a routine fashion. To assemble a wheel we take modules that have already been cold tested, do the final electrical testing and locate them onto the HEC wheel assembly table. Four wheels are required in total, each consisting of 32 modules. Wheel assembly is done in the horizontal position, creating a doughnut-like object sitting on the HEC table. The first picture shows the last module being added ...

  20. Procedure and applications of combined wheel/rail roughness measurement

    NARCIS (Netherlands)

    Dittrich, M.G.


    Wheel-rail roughness is known to be the main excitation source of railway rolling noise. Besides the already standardised method for direct roughness measurement, it is also possible to measure combined wheel-rail roughness from vertical railhead vibration during a train pass-by. This is a different

  1. Cyber Security Considerations for Autonomous Tactical Wheeled Vehicles (United States)


    Update Will Enable Autonomous Driving. Retrieved August 6, 2015, from cars -that-think...Cyber Security Considerations for Autonomous Tactical Wheeled Vehicles 1 UNCLASSIFIED Cyber Security Considerations for... Autonomous Tactical Wheeled Vehicles Sebastian C Iovannitti 4/1/2016 Submitted to Lawrence Technological University College of Management in

  2. 49 CFR 230.112 - Wheels and tires. (United States)


    ... wheels mounted on the same axle shall not vary more than 1/4 inch. (d) Tire thickness. Wheels may not have tires with a minimum thickness less than that indicated in the table in this paragraph (d). When... the minimum thickness of tires may be as much below the limits specified earlier in this paragraph (d...

  3. Load-bearing processes in agricultural wheel-soil systems

    NARCIS (Netherlands)

    Tijink, F.G.J.


    In soil dynamics we distinguish between loosening and loadbearing processes. Load-bearing processes which can occur under agricultural rollers, wheels, and tyres are dealt with In this dissertation.

    We classify rollers, wheels, and tyres and treat some general aspects of these

  4. The Wheels of Stress Go 'Round and 'Round (United States)

    Brey, Rebecca A.; Clark, Susan E.


    "The Wheels of Stress Go Round and Round" teaching idea uses three activity wheels to reinforce stress-related content and concepts. After presenting a definition of stress, the instructor assists students in identifying stressors, and aids in formulating a list of negative, reactive behaviors and a list of positive coping mechanisms. Using…

  5. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter


    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory trackin...

  6. Multi-scale Fatigue Damage Life Assessment of Railroad Wheels (United States)


    This study focused on the presence of a crack in the railway wheels subsurface and how it affects the wheels fatigue life. A 3-D FE-model was constructed to simulate the stress/strain fields that take place under the rolling contact of railway ...

  7. Wheeling and transmission system service policy in North America

    International Nuclear Information System (INIS)

    Casazza, J.A.; Schultz, A.J.; Limmer, H.D.


    This paper provides a review and discussion of the status of wheeling in the USA and Canada; the pros and cons of the new policies that are evolving and under consideration for wheeling and transmission access; specific case examples of some of the difficulties that have arisen; and the potential for new transmission technology. (author)

  8. Lateral ring metal elastic wheel absorbs shock loading (United States)

    Galan, L.


    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  9. Possibilities of using welding-on technologies in crane wheel ...

    Indian Academy of Sciences (India)


    Abstract. The paper deals with analysis of welds-on quality of traverse crane wheels made from gr. 90–60 mate- rial, ASTM A148. Three types of welding-on technology with various filling materials were used. On wheel after wearing was welded-on one interlayer by a combination of additional materials, wire A 106 with F 11 ...

  10. Simulation of Intelligent Single Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    Maki K. Rashid


    Full Text Available Stabilization of a single wheel mobile robot attracted researcher attentions in robotic area. However, the budget requirements for building experimental setups capable in investigating isolated parameters and implementing others encouraged the development of new simulation methods and techniques that beat such limitations. In this work we have developed a simulation platform for testing different control tactics to stabilize a single wheel mobile robot. The graphic representation of the robot, the dynamic solution, and, the control scheme are all integrated on common computer platform using Visual Basic. Simulation indicates that we can control such robot without knowing the detail of it's internal structure or dynamics behaviour just by looking at it and using manual operation tactics. Twenty five rules are extracted and implemented using Takagi-Sugeno's fuzzy controller with significant achievement in controlling robot motion during the dynamic simulation. The resulted data from the successful implementation of the fuzzy model are used to utilize and train a neurofuzzy controller using ANFIS scheme to produce further improvement in robot performance

  11. Camber Angle Inspection for Vehicle Wheel Alignments. (United States)

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan


    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x -axis or z -axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  12. Camber Angle Inspection for Vehicle Wheel Alignments

    Directory of Open Access Journals (Sweden)

    Jieh-Shian Young


    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  13. Deconstructing symbolic ideology in contemporary communication strategy in advertising: The case of Nirma and Wheel

    Directory of Open Access Journals (Sweden)

    Pragyan Rath


    Full Text Available The paper reviews the conceptual applications of the use of semioethics—responsible use of symbols—in advertising messages. We adopt an interdisciplinary approach to derive multiple meanings invested in seemingly simple persuasive strategies adopted in advertisements, which in turn can act as complex potent forces shaping the psychological contours of a gendered society. We attempt a discourse analysis of two specific television advertisements, Wheel and Nirma, as prototypes of contemporary advertising communication. We deconstruct the paradox embedded in their symbolic representations that repudiate the explicit social agenda valorised by these commercials to promote their product ideologies.

  14. Blocking of conditioned taste avoidance induced by wheel running. (United States)

    Pierce, W David; Heth, C Donald


    In Experiment 1, compared to non-reinforced presentation of a food stimulus (A-->no US), the association of a food stimulus with wheel running (A-->US) blocked subsequent avoidance of a distinctive flavor (X), when both the food and flavor were followed by wheel running (AX-->US). Experiment 2 replicated and extended the blocking effect, demonstrating that the amount of avoidance of X after AX-->wheel training depended on the correlation between A-alone trials and wheel running-the predictiveness of the A stimulus. The present study is the first to demonstrate associative blocking of conditioned taste avoidance (CTA) induced by wheel running and strongly implicates associative learning as the basis for this kind of avoidance. 2009 Elsevier B.V. All rights reserved.

  15. Control of wheeled mobile robot in restricted environment (United States)

    Ali, Mohammed A. H.; En, Chang Yong


    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  16. A fully omnidirectional wheeled assembly for robotic vehicles

    International Nuclear Information System (INIS)

    Killough, S.M.; Pin, F.G.


    A large number of wheeled or tracked platform mechanisms have been studied and developed to provide their mobility capability to teleoperated and autonomous robot vehicles. This paper presents an original wheeled platform based on an orthogonal wheel assembly that provides a full (three-degrees-of-freedom) omnidirectionality of the platform without wheel slippage and with the capability for simultaneous motions in rotation and translation (including sideways movements). A schematic of the basic wheel assembly is shown. The motion of the assembly is unconstrained (freewheeling) in the direction parallel to the main assembly shaft, while it is constrained in the direction perpendicular to the shaft, being driven in this direction by rotation of the shaft. A prototype platform was constructed to demonstrate the feasibility of this new concept

  17. Nonlinear analysis of the GFRP material wheel hub

    Directory of Open Access Journals (Sweden)

    Dong Yun-Feng


    Full Text Available In this paper, the current bicycle wheel was replaced by the ones which composed by the wheel hub with Glassfiber Reinforced Plastic (alkali free thin-walled cylinder material, hereinafter referred to as GFRP material and the protective components made up of rubber outer pneumatic pad. With the help of the basic theory of elastic-plastic mechanics, the finite element “Nonlinear buckling” analysis of the wheel was carried out. The results show that the maximum elastic deformation of the wheel hub and the critical value of buckling failure load were restricted by the elasticity under the condition of external loads. Considering with the tensile strength and elastic modulus of the GFRP value of the material, it is demonstrated that the material is feasible to be used for wheel hub.

  18. Grinding Characteristics Of Directionally Aligned SiC Whisker Wheel-Comparison With Al2O3 Fiber Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口胜美; 菊泽贤二; 洞口严; 中根正喜


    A unique SiC whisker wheel was invented,in which the whiskers were aligned normally to the grinding wheel surface.In this paper,grindabilities of the SiC whisker wheel are investigated and compared with those of other wheels of SiC grains,Al2O3 grains,as well as Al2O3 long and short fibres which were also aligned normally to the grinding wheel surface,respectively.The main research contents concern grinding characteristics of a directionally aligned SiC whisker wheel such as material-removal volume,wheel-wear rates,integrity of the ground surfaces,grinding ratios and grinding efficiency.Furthermore,grinding wheels of whiskers and fibres have a common disadvantage:they tend to load easily.The authors have proposed a simple method of loading-free grinding to overcome this propensity and investigate some related grinding characteristics under loading-free grinding conditions.

  19. Installation of the first of the big wheels of the ATLAS muon spectrometer, a thin gap chamber (TGC) wheel

    CERN Multimedia

    Claudia Marcelloni


    The muon spectrometer will include four big moving wheels at each end, each measuring 25 metres in diameter. Of the eight wheels in total, six will be composed of thin gap chambers for the muon trigger system and the other two will consist of monitored drift tubes (MDTs) to measure the position of the muons

  20. The influence of friction coefficient and wheel/rail profiles on energy dissipation in the wheel/rail contact

    NARCIS (Netherlands)

    Idarraga Alarcon, G.A.; Burgelman, N.D.M.; Meza Meza, J.; Toro, A.; Li, Z.


    This work investigates the energy dissipation in a wheel/rail system through friction work modeling. In order to identify the effect of the friction coefficient on the energy dissipation in the wheel/rail contact, several simulations were performed using a 3D multibody model of a railway vehicle

  1. 77 FR 70478 - RG Steel Wheeling, LLC, Wheeling Office, A Division Of RG Steel, LLC, Including On-Site Leased... (United States)


    ... Unlimited and Green Energy Initiatives LLC, Including Workers Whose Wages Were Reported Through Severstal..., Wheeling Office, a division of RG Steel, LLC, including on-site leased workers from Pro Unlimited and Green Energy Initiatives, LLC, Wheeling, West Virginia (TA-W-81,880) and Mountain State Carbon, LLC, including...

  2. Predicting the wheel rolling resistance regarding important motion parameters using the artificial neural network

    Directory of Open Access Journals (Sweden)

    F Gheshlaghi


    the analytical and statistical methods. It is expected that the neural network can more accurately predict the rolling resistance. In this study, the neural network for experimental data was trained and the relationship among some parameters of velocity, dynamic load and tire pressure and rolling resistance were evaluated. Materials and Methods: The soil bin and single wheel tester of Biosystem Engineering Mechanics Department of Urmia University was used in this study. This soil bin has 24 m length, 2 m width and 1 m depth including a single-wheel tester and the carrier. Tester consists of four horizontal arms and a vertical arm to vertical load. The S-shaped load cells were employed in horizontal arms with a load capacity of 200 kg and another 500 kg in the vertical arm was embedded. The tire used in this study was a general pneumatic tire (Good year 9.5L-14, 6 ply In this study, artificial neural networks were used for optimizing the rolling resistance by 35 neurons, 6 inputs and 1 output choices. Comparison of neural network models according to the mean square error and correlation coefficient was used. In addition, 60% of the data on training, 20% on test and finally 20% of the credits was allocated to the validation and Output parameter of the neural network model has determined the tire rolling resistance. Finally, this study predicts the effects of changing parameters of tire pressure, vertical load and velocity on rolling resistance using a trained neural network. Results and Discussion: Based on obtained error of Levenberg- Marquardt algorithm, neural network with 35 neurons in the hidden layer with sigmoid tangent function and one neuron in the output layer with linear actuator function were selected. The regression coefficient of tested network is 0.92 which seems acceptable, considering the complexity of the studied process. Some of the input parameters to the network are speed, pressure and vertical load which their relationship with the rolling

  3. Well-to-wheel study of passenger vehicles in the Norwegian energy system

    International Nuclear Information System (INIS)

    Mari Svensson, Ann; Moller-Holst, Steffen; Gloeckner, Ronny; Maurstad, Ola


    For the evaluation of potential routes for production and application of hydrogen in a future energy system, well-to-wheel (WtW) methodologies provide a means of comparing overall impacts of technologies and fuels in a consistent and transparent manner. Such analysis provides important background information for decision makers when implementing political incentives for the conversion to more environmentally friendly energy production and consumption. In this study, a WtW approach was applied in order to evaluate the energetic and environmental impacts of introducing hydrogen in the transportation sector, in terms of energy efficiency and emissions of CO 2 and NO x , under conditions relevant for the Norwegian energy system. The hydrogen chains were compared to reference chains with conventional fuels

  4. Advances in single chain technology. (United States)

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A


    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  5. Dynamic motion stabilization for front-wheel drive in-wheel motor electric vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu


    Full Text Available This article presents a new dynamic motion stabilization approach to front-wheel drive in-wheel motor electric vehicles. The approach includes functions such as traction control system, electronic differential system, and electronic stability control. The presented electric vehicle was endowed with anti-skid performance in longitudinal accelerated start; smooth turning with less tire scrubbing; and safe driving experience in two-dimensional steering. The analysis of the presented system is given in numerical derivations. For practical verifications, this article employed a hands-on electric vehicle named Corsa-electric vehicle to carry out the tests. The presented approach contains an integrated scheme which can achieve the mentioned functions in a single microprocessor. The experimental results demonstrated the effectiveness and feasibility of the presented methodology.

  6. Habituation contributes to the decline in wheel running within wheel-running reinforcement periods. (United States)

    Belke, Terry W; McLaughlin, Ryan J


    Habituation appears to play a role in the decline in wheel running within an interval. Aoyama and McSweeney [Aoyama, K., McSweeney, F.K., 2001. Habituation contributes to within-session changes in free wheel running. J. Exp. Anal. Behav. 76, 289-302] showed that when a novel stimulus was presented during a 30-min interval, wheel-running rates following the stimulus increased to levels approximating those earlier in the interval. The present study sought to assess the role of habituation in the decline in running that occurs over a briefer interval. In two experiments, rats responded on fixed-interval 30-s schedules for the opportunity to run for 45 s. Forty reinforcers were completed in each session. In the first experiment, the brake and chamber lights were repeatedly activated and inactivated after 25 s of a reinforcement interval had elapsed to assess the effect on running within the remaining 20 s. Presentations of the brake/light stimulus occurred during nine randomly determined reinforcement intervals in a session. In the second experiment, a 110 dB tone was emitted after 25 s of the reinforcement interval. In both experiments, presentation of the stimulus produced an immediate decline in running that dissipated over sessions. No increase in running following the stimulus was observed in the first experiment until the stimulus-induced decline dissipated. In the second experiment, increases in running were observed following the tone in the first session as well as when data were averaged over several sessions. In general, the results concur with the assertion that habituation plays a role in the decline in wheel running that occurs within both long and short intervals. (c) 2004 Elsevier B.V. All rights reserved.

  7. Determining Spacecraft Reaction Wheel Friction Parameters (United States)

    Sarani, Siamak


    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  8. Rover's Wheel Churns Up Bright Martian Soil (United States)


    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  9. Design of two wheel self balancing car (United States)

    He, Chun-hong; Ren, Bin


    This paper proposes a design scheme of the two-wheel self-balancing dolly, the integration of the gyroscope and accelerometer MPU6050 constitutes the car position detection device.System selects 32-bit MCU stmicroelectronics company as the control core, completed the processing of sensor signals, the realization of the filtering algorithm, motion control and human-computer interaction. Produced and debugging in the whole system is completed, the car can realize the independent balance under the condition of no intervention. The introduction of a suitable amount of interference, the car can adjust quickly to recover and steady state. Through remote control car bluetooth module complete forward, backward, turn left and other basic action..

  10. The Wheeling and Transmission Manual, Second Edition

    International Nuclear Information System (INIS)

    Weiss, L.; Spiewak, S.


    The Wheeling and Transmission Manual addresses the key issues involved in the debate: the need for coordination, the extent to which access should be permitted, various pricing methodologies which might be employed, obstacles to the addition of new transmission capacity, and contractual matters which should be considered in negotiations between the parties. As one shall see, these matters are all interrelated and the resolution of any of them may affect the outcome of the others. The Manual is designed to give an overview of the issues involved. It is not intended exclusively for the expert engineer or attorney, although both might benefit from it. Rather, the Manual was written with the objective of providing decisionmakers and policymakers with detailed, timely and understandable materials to evaluate the specific circumstances affecting their companies. Each chapter of the book is indexed separately

  11. Infinity properads and infinity wheeled properads

    CERN Document Server

    Hackney, Philip; Yau, Donald


    The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter.   Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.

  12. The sensory wheel of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Mojet, Jos


    Full Text Available During a 3-year FLAIR study extra virgin olive oils, varying in species, degree of ripeness and extraction method, were evaluated by 6 different institutes according to QDA or GDI-methods in order to identify parameters related to the quality of extra virgin olive oil. The current COI-method yields a poor between-panel reproducibility. This could well be caused by a difference in the perception of positive quality aspects. Whereas the QDA-method is especially suitable for determining sensory profiles according to the perception of the consumer, the COI-method should be tailored to detect possible defects only.
    In order to cluster all attributes to one condensed set of sensory attributes for describing virgin olive oil, the COI and QDA data of ail panels were pooled and analyzed separately for appearance, texture and flavour. This approach resulted in a set of 3 appearance, 3 texture and 12 flavour descriptors which can be conveniently represented graphically in the form of a "sensory wheel".
    On the basis of the findings it is recommended to base the "extra virgin" qualification for olive oils solely on the absence of defects. The between-panel reproducibility of such a simplified COI-test can be assessed by means of ring tests and improved by training with reference products. When an oil passes this screening it can be profiled subsequently using the attributes of the sensory wheel. Such a profile can be linked to preferential profiles derived from consumer studies enabling the production of most preferred olive oils.

  13. Diagnostics of the wheel thread of railway rolling stock

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak


    Full Text Available Purpose. At present, the devastating impact of faulty wheels on rails on the move is a major problem of railway transport. This factor is one of the most important, which causes the shift from traditional manual methods of verification and external examination to the automated diagnostic system of rolling stock in operation. Methodology. To achieve this goal the main types of wheel damages and the way they appear are analyzed. The methods for defects and abnormalities of the wheel thread determining as well as their advantages and disadvantages were presented. Nowadays these methods are under usage in both the international practice and in the one of the CIS countries. Findings. The faulty wheel sound on the move was researched and analyzed. The necessity of using the automated system, enabling one to reduce significantly the human factor is substantiated. Originality. The method to determine the wheel thread damage on the basis of a sound diagnostic is proposed. Practical value. Automatic tracking system of the wheels condition allows performing their more qualitative diagnostics, detecting a fault at the early stage and forecasting the rate of its extension. Besides detecting the location of the faulty wheel in the rolling stock, it is also possible to trace the dynamics of the fault extension and to give the recommendations on how to eliminate it.

  14. Pre-exposure to wheel running disrupts taste aversion conditioning. (United States)

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C


    When rats are given access to a running wheel after drinking a flavored solution, they subsequently drink less of that flavor solution. It has been suggested that running produces a conditioned taste aversion (CTA). This study explored whether CTA is eliminated by prior exposure to wheel running [i.e., unconditioned stimulus (UCS) pre-exposure effect]. The rats in the experimental group (UW) were allowed to wheel run for 1 h daily for seven consecutive days of pre-exposure. Rats in the two other groups had either access to locked wheels (LW group) or were maintained in their home cages (HC group) during the pre-exposure days. All rats were then exposed to four paired and four unpaired trials using a "ABBAABBA" design. Conditioning trials were composed of one flavored liquid followed by 60-min access to wheel running. For the unpaired trials, rats received a different flavor not followed by the opportunity to run. All rats were then initially tested for water consumption followed by tests of the two flavors (paired or unpaired) in a counterbalanced design. Rats in the UW group show no CTA to the liquid paired with wheel running, whereas LW and HC groups developed CTA. These results indicate that pre-exposure to wheel running (i.e., the UCS), eliminates subsequent CTA.

  15. Wheel liner design for improved sound and structural performances (United States)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan


    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed - nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  16. Low-cost real-time automatic wheel classification system (United States)

    Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria


    This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.

  17. Western diet increases wheel running in mice selectively bred for high voluntary wheel running. (United States)

    Meek, T H; Eisenmann, J C; Garland, T


    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  18. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.


    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  19. Simulation and Measurement of Wheel on Rail Fatigue and Wear


    Dirks, Babette


    The life of railway wheels and rails has been decreasing in recent years. This is mainly caused by more traffic and running at higher vehicle speed. A higher speed usually generates higher forces, unless compensated by improved track and vehicle designs, in the wheel-rail contact, resulting in more wear and rolling contact fatigue (RCF) damage to the wheels and rails. As recently as 15 years ago, RCF was not recognised as a serious problem. Nowadays it is a serious problem in many countries a...

  20. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel (United States)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie


    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  1. Evolutionary squeaky wheel optimization: a new framework for analysis. (United States)

    Li, Jingpeng; Parkes, Andrew J; Burke, Edmund K


    Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing.

  2. Characteristics of The Magnet Wheel As A Magnetic Levitation Device of Induction Type


    藤井, 信男; 小川, 幸吉; 松本, 敏雄; Nobuo, FUJII; Kokichi, OGAWA; Toshio, MATSUMOTO; 九州大学; 大分大学; 安川電機; Kyushu University; Oita University; Yaskawa Electric Co., Ltd.


    A new type of magnetic wheel called the "magnet wheel" has been proposed. The magnet wheel has both magnetic levitation and linear drive functions combined into one. In the magnet wheel, the permanent magnets are rotated over the conducting plate so that an induction type of repulsive lift force is obtained. To produce thrust from the drag torque which is simultaneously induced with the lift force, the "tilt type" and "partial overlap type" magnet wheels have been proposed. Poor power factor ...

  3. Primitive chain network simulations of probe rheology. (United States)

    Masubuchi, Yuichi; Amamoto, Yoshifumi; Pandey, Ankita; Liu, Cheng-Yang


    Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories. In this study, the viscoelastic and dielectric relaxations of probe chains were calculated by primitive chain network simulations. The simulations semi-quantitatively reproduced the dielectric relaxation, which reflects the effect of constraint release on the end-to-end relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. However, the viscoelastic relaxation intensity was underestimated, possibly due to some flaws in the model for the inter-chain cross-correlations between probe and matrix chains.

  4. Forces on wheels and fuel consumption in cars (United States)

    Güémez, J.; Fiolhais, M.


    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.

  5. Forces on wheels and fuel consumption in cars

    International Nuclear Information System (INIS)

    Güémez, J; Fiolhais, M


    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed. (paper)

  6. Numerical and experimental analysis of a solid desiccant wheel

    Directory of Open Access Journals (Sweden)

    Koronaki Irene P.


    Full Text Available The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification.

  7. Stereotypic wheel running decreases cortical activity in mice (United States)

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.


    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  8. Wheel slip dump valve for railway braking system (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao


    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  9. Complex eigenvalue analysis of railway wheel/rail squeal

    African Journals Online (AJOL)

    DR OKE

    Squeal noise from wheel/rail and brake disc/pad frictional contact is typical in railways. ... squeal noise by multibody simulation of a rail car running on rigid rails. ... system, traditional complex eigenvalue analysis by finite element was used.

  10. Three-wheeled scooter taxi: A safety analysis

    Indian Academy of Sciences (India)

    Three-wheel scooter taxis (TSR) form an essential part of public transport for the urban ... These low cost vehicles will remain a major mode of travel in the South Asian region ... commercial codes can be avoided for computational efficiency.

  11. Development of Diamond-like Carbon Fibre Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口勝美; 洞口巌; 竹内雅之


    A unique diamond-like carbon (DLC) grinding wheel was developed, in which the DLC fibres were made by rolling Al sheets coated with DLC films and aligned normally to the grinding wheel surface by laminating Al sheets together with DLC fibres. In this paper, the formation process of DLC fibres and the fabrication process of a DLC fibre wheel were investigated. Many grinding experiments were also carried out on a precision NC plane milling machine using a newly developed DLC wheel. Grinding of specimens of silicon wafers, optical glasses, quartz, granites and hardened die steel SKD11 demonstrated the capabilities of nanometer surface finish. A smooth surface with a roughness value of Ra2.5nm (Ry26nm) was achieved.

  12. performance (assessment) of two- wheel tractors for small holder

    African Journals Online (AJOL)


    and easy operation and maintenance; reasonably rugged ... whole the professional two- wheel tractor is expected to have ... in order to achieve reasonable productivity in developing .... producers of both food and cash crops in. Nigeria, power ...

  13. Reaction Wheel Disturbance Model Extraction Software, Phase II (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  14. Miniature Reaction Wheel for Small Satellite Control, Phase I (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  15. Fluid Mechanics of a High Performance Racing Bicycle Wheel (United States)

    Mercat, Jean-Pierre; Cretoux, Brieuc; Huat, Francois-Xavier; Nordey, Benoit; Renaud, Maxime; Noca, Flavio


    In 2012, MAVIC released the most aerodynamic bicycle wheel on the market, the CXR 80. The french company MAVIC has been a world leader for many decades in the manufacturing of bicycle wheels for competitive events such as the Olympic Games and the Tour de France. Since 2010, MAVIC has been in a research partnership with the University of Applied Sciences in Geneva, Switzerland, for the aerodynamic development of bicycle wheels. While most of the development up to date has been performed in a classical wind tunnel, recent work has been conducted in an unusual setting, a hydrodynamic towing tank, in order to achieve low levels of turbulence and facilitate quantitative flow visualization (PIV). After a short introduction on the aerodynamics of bicycle wheels, preliminary fluid mechanics results based on this novel setup will be presented.

  16. Development of Composite Grinding Wheels for Hard and Soft Metals


    Pruti, Faruk


    This research investigates the performance of grinding wheel in terms of its internal granular particles and their effect on the surface finish for both soft and hard metals subjected to both dry and wet conditions of use. The study considers the properties of materials of construction including hardness of the granular particles and their size and distributions that affects the grinding wheel efficiency in abrading of soft and hard metal surfaces. Furthermore, in order to improve grinding pe...

  17. Controlled braking scheme for a wheeled walking aid


    Coyle, Eugene; O'Dwyer, Aidan; Young, Eileen; Sullivan, Kevin; Toner, A.


    A wheeled walking aid with an embedded controlled braking system is described. The frame of the prototype is based on combining features of standard available wheeled walking aids. A braking scheme has been designed using hydraulic disc brakes to facilitate accurate and sensitive controlled stopping of the walker by the user, and if called upon, by automatic action. Braking force is modulated via a linear actuating stepping motor. A microcontroller is used for control of both stepper movement...

  18. Comparative Analysis of Lightweight Robotic Wheeled and Tracked Vehicle


    Johnson, Christopher Patrick


    This study focuses on conducting a benchmarking analysis for light wheeled and tracked robotic vehicles. Vehicle mobility has long been a key aspect of research for many organizations. According to the Department of Defense vehicle mobility is defined as, "the overall capacity to move from place to place while retaining its ability to perform its primary mission"[1]. Until recently this definition has been applied exclusively to large scale wheeled and tracked vehicles. With new development l...

  19. Environmental Management in Product Chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne


    between existing resources, norms and values and external pressures for environmental management (second section). A model for the types of corporate network relations that need to be mapped and understood in order to analyze and/or develop environmental management in a product chain (third section......The chapter aims at giving background to companies, consultants, governmental regulators, NGOs etc. for the analysis and planning of environmental management in specific product chains through: A framework for understanding environmental management in product chains as shaped by the interaction......). An overview of examples from our own research and from literature of the type and the role of environmental issues and initiatives in product chains (fourth section). A typology for characterizing corporate strategies as part of environmental management in product chains and characterizing those competencies...

  20. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.


    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  1. Wheel running, voluntary ethanol consumption, and hedonic substitution. (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A


    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  2. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel (United States)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  3. Milestone reached for the Big Wheels of the Muon Spectrometer

    CERN Multimedia

    Sandro Palestini

    The assembly and integration of the Big Wheels sectors of the Muon Spectrometer is reaching its conclusion, with only a few sectors of Wheel TGC-A-3 remaining on the assembly stations in building 180. The six trigger chambers (TGCs) wheels and two precision chambers wheels (MDTs) contain in total 104 sectors, which were assembled, equipped with detectors and fully tested over a period of two years. The few remaining Big Wheel sectors still stored in building 180 Most of the sectors left building 180 over the last twelve months, and form the six Wheels currently installed in the ATLAS detector. The remaining two will be installed before the end of the summer. The commitment of the personnel from the many teams who contributed to different parts of the project was essential to its success. In particular, teams coming from countries of different traditions and languages, such as China, Israel, Japan, Pakistan, Russia and USA contributed and collaborated very effectively to the timely completion of the p...

  4. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying (United States)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  5. Uranium targets sandwiched between carbon layers for use on target wheels and on a Wobbler in heavy-ion bombardments

    International Nuclear Information System (INIS)

    Folger, H.; Hartmann, W.; Klemm, J.; Thalheimer, W.


    Uranium layers of ≅ 0.4 mg/cm 2 are evaporated by means of a 6 kW electron-beam gun onto 0.04 mg/cm 2 thick carbon films in a high-vacuum process; a protecting layer of ≅ 0.01 mg/cm 2 of carbon is added in the same vacuum cycle. The evaporation- and deposition yields are discussed and measurements of target characteristics are described. C/U/C sandwich targets in the shape of a sector of an annulus are prepared for use on rotating target wheels of 155 mm radius to be bombarded with a pulsed beam of heavy ions. One type of circular targets of 20 mm in diameter is mounted to a target wobbler. Both, wheel and wobbler, distribute the intensity of the heavy-ion beam to a larger area to reduce radiation damages. Examples of target applications will be mentioned. (orig.)

  6. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles (United States)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang


    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  7. Paper recycling framework, the "Wheel of Fiber". (United States)

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka


    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access. (United States)

    Kolb, Erik M; Kelly, Scott A; Garland, Theodore


    Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.

  9. A sub-target approach to the kinodynamic motion control of a wheeled mobile robot (United States)

    Motonaka, Kimiko; Watanabe, Keigo; Maeyama, Shoichi


    A mobile robot with two independently driven wheels is popular, but it is difficult to stabilize it by a continuous controller with a constant gain, due to its nonholonomic property. It is guaranteed that a nonholonomic controlled object can always be converged to an arbitrary point using a switching control method or a quasi-continuous control method based on an invariant manifold in a chained form. From this, the authors already proposed a kinodynamic controller to converge the states of such a two-wheeled mobile robot to the arbitrary target position while avoiding obstacles, by combining the control based on the invariant manifold and the harmonic potential field (HPF). On the other hand, it was confirmed in the previous research that there is a case that the robot cannot avoid the obstacle because there is no enough space to converge the current state to the target state. In this paper, we propose a method that divides the final target position into some sub-target positions and moves the robot step by step, and it is confirmed by the simulation that the robot can converge to the target position while avoiding obstacles using the proposed method.

  10. Stabilization of the wheel running phenotype in mice. (United States)

    Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P


    Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13

  11. Modeling of traction-coupling properties of wheel propulsor (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.


    In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.

  12. Applied design methodology for lunar rover elastic wheel (United States)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro


    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  13. Finite element analysis of rail-wheel interaction

    International Nuclear Information System (INIS)

    Rahman, F.; Kharlamov, Y.A.; Islam, S.; Khan, A.A.


    Damage mechanisms such as surface cracks, plastic deformation and wear can significantly reduce the service life of railway track and rolling stock. They also have a negative impact on the rolling noise as well as: on the riding comfort. A proper understanding of these mechanisms requires a detailed knowledge of physical interaction between wheel and rail. Furthermore, demands for higher train speeds and increased axle loads implies that the consequences of larger contact. forces between wheel and rail must be thoroughly investigated. Two methods have traditionally been used to investigate the rail-wheel contact, that is the Hertz analytical method and simplified numerical method based on the boundary element (BE) method. These methods rely on a half-space assumption and a linear material model. This paper presents that to overcome these limitations, a tool for FE-based quasistatic wheel-rail contact simulations has been developed. The tool is a library of ANSYS macro routines for configuring, meshing and loading of a parametric wheel-rail model. The meshing is based on measured wheel and rail profiles. The wheel and rail materials in the contact region are treated as elastic-plastic with kinematic hardening. By controlling the values of the configuration parameters, representations of various driving cases can be generated. The quasi-static loads are obtained from train motion. Interaction phenomena such as rolling, spinning and sidling can be included. The modeling tool and a methodology are described in the presented paper. Significant differences in the calculated state between the FE solution and the traditional approaches can be observed. These differences are most significant in situations with flange contact. (author)

  14. Heavy Chain Diseases (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  15. Economic efficiency, independent power producers and wheeling

    International Nuclear Information System (INIS)

    Fytche, E.L.


    Traditionally, electric utilities have sought to decrease the cost of production by such means as merit order running of machines, by improving equipment efficiency, by fuel mix, by interconnection and exchange of cheap energy, and by unit participation and firm purchase and sale contracts for long term savings. In the ''new look'', it was suggested that financial and technical competition is not enough, and that economic gains could be achieved through fostering independent power producers, i.e., non-utility generators (NUG's), greater exchanges of economy energy, unrestricted access to the transmission network for moving cheap energy through facilities of third parties, and by bidding to supply energy to non-generators, etc. Naturally, the proposals to change the comfortable and time-hallowed practices by which utility business had been carried out in the past has created an ongoing debate both pro and con, much of it acrimonious, and, unfortunately, some of it ill-informed. The turmoil in the political context impacts on a utility's technical and financial planners, and on their managements, all of whom contribute to justifying and maintaining the flow of capital to the industry and energy to the customer. They must now seek new ways to implement both short- and long-term planning of power supply. Some of the factors that were neglected in the past will demand more attention in the future. This paper discusses some of the costs that, under the anticipated modus operandi, must be integrated into the planning process while meeting the new challenges. The costs are those relating to third-parties, costs of transmission constraints, and costs of wheeling. The opinion is ventured that much of the efficiency improvement anticipated during the debate has already been achieved by conscientious utility managements. (author)

  16. A comparison of two types of running wheel in terms of mouse preference, health, and welfare. (United States)

    Walker, Michael; Mason, Georgia


    Voluntary wheel running occurs in mice of all strains, sexes, and ages. Mice find voluntary wheel running rewarding, and it leads to numerous health benefits. For this reason wheels are used both to enhance welfare and to create models of exercise. However, many designs of running wheel are used. This makes between-study comparisons difficult, as this variability could potentially affect the amount, pattern, and/or intensity of running behaviour, and thence the wheels' effects on welfare and exercise-related changes in anatomy and physiology. This study therefore evaluated two commercially available models, chosen because safe for group-housed mice: Bio Serv®'s "fast-trac" wheel combo and Ware Manufacturing Inc.'s stainless steel mesh 5″ upright wheel. Working with a total of three hundred and fifty one female C57BL/6, DBA/2 and BALB/c mice, we assessed these wheels' relative utilization by mice when access was free; the strength of motivation for each wheel-type when access required crossing an electrified grid; and the impact each wheel had on mouse well-being (inferred from acoustic startle responses and neophobia) and exercise-related anatomical changes (BMI; heart and hind limb masses). Mice ran more on the "fast-trac" wheel regardless of whether both wheel-types were available at once, or only if one was present. In terms of motivation, subjects required to work to access a single wheel worked equally hard for both wheel-types (even if locked and thus not useable for running), but if provided with one working wheel for free and the other type of wheel (again unlocked) accessible via crossing the electrified grid, the "fast-trac" wheel emerged as more motivating, as the Maximum Price Paid for the Ware metal wheel was lower than that paid for the "fast-trac" plastic wheel, at least for C57BL/6s and DBA/2s. No deleterious consequences were noted with either wheel in terms of health and welfare, but only mice with plastic wheels developed significantly larger

  17. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    Ceramic microfabrication by rapid prototyping process chains ... is nearly impossible, shaping has to be done by a replication step in the green, unfired state. ... This process chain combines the fast and inexpensive supply of master models by ...


    Directory of Open Access Journals (Sweden)



    Full Text Available With support from the Department of Atomic Energy, our institute has initiated a programme on development and study of a low capacity (20 liters/hr. turboexpander based Nitrogen liquefier. Hence a process design was carried out and a turboexpander was designed to meet the requirement of the liquefier. The turboexpander is used for lowering the temperature of the process gas (Nitrogen by the isenthalpic expansion. The efficiency of the turboexpander mainly depends on the specific speed and specific diameter of the turbine wheel. The paper explains a general methodology for the design of any type of turbine wheel (radial, backward swept and forward swept for any pressure ratio with different process gases. The design of turbine wheel includes the determination of dimensions, blade profile and velocity triangles at inlet and outlet of the turbine wheel. Generally radial turbine wheels are used but in this case to achieve the high efficiency at desired speed, backward curved blades are used to maintain the Mach number of the process gas at the nozzle exit, close to unity. If the velocity of fluid exceeds the speed of sound, the flow gets choked leading to the creation of shock waves and flow at the exit of the nozzle will be non-isentropic.

  19. Analysis of motion of the three wheeled mobile platform

    Directory of Open Access Journals (Sweden)

    Jaskot Anna


    Full Text Available The work is dedicated to the designing motion of the three wheeled mobile platform under the unsteady conditions. In this paper the results of the analysis based on the dynamics model of the three wheeled mobile robot, with two rear wheels and one front wheel has been included The prototype has been developed by the author's construction assumptions that is useful to realize the motion of the platform in a various configurations of wheel drives, including control of the active forces and the direction of their settings while driving. Friction forces, in longitudinal and in the transverse directions, are considered in the proposed model. Relation between friction and active forces are also included. The motion parameters of the mobile platform has been determined by adopting classical approach of mechanics. The formulated initial problem of platform motion has been solved numerically using the Runge-Kutta method of the fourth order. Results of motion analysis with motion parameters values are determined and sample results are presented.

  20. Reduction of extinction and reinstatement of cocaine seeking by wheel running in female rats. (United States)

    Zlebnik, Natalie E; Anker, Justin J; Gliddon, Luke A; Carroll, Marilyn E


    Previous work has shown that wheel running reduced the maintenance of cocaine self-administration in rats. In the present study, the effect of wheel running on extinction and reinstatement of cocaine seeking was examined. Female rats were trained to run in a wheel during 6-h sessions, and they were then catheterized and placed in an operant conditioning chamber where they did not have access to the wheel but were allowed to self-administer iv cocaine. Subsequently, rats were divided into four groups and were tested on the extinction and reinstatement of cocaine seeking while they had varying access to a wheel in an adjoining compartment. The four groups were assigned to the following wheel access conditions: (1) wheel running during extinction and reinstatement (WER), (2) wheel running during extinction and a locked wheel during reinstatement (WE), (3) locked wheel during extinction and wheel running during reinstatement (WR), and (4) locked wheel during extinction and reinstatement (WL). WE and WR were retested later to examine the effect of one session of wheel access on cocaine-primed reinstatement. There were no group differences in wheel revolutions, in rate of acquisition of cocaine self-administration, or in responding during maintenance when there was no wheel access. However, during extinction, WE and WER responded less than WR and WL. WR and WER had lower cocaine-primed reinstatement than WE and WL. One session of wheel exposure in WE also suppressed cocaine-primed reinstatement. Wheel running immediately and effectively reduced cocaine-seeking behavior, but concurrent access to running was necessary. Thus, exercise is a useful and self-sustaining intervention to reduce cocaine-seeking behavior.

  1. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles (United States)

    Fahimi, Farbod


    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  2. Fuzzy model for predicting the number of deformed wheels

    Directory of Open Access Journals (Sweden)

    Ž. Đorđević


    Full Text Available Deformation of the wheels damage cars and rails and affect on vehicle stability and safety. Repair and replacement cause high costs and lack of wagons. Planning of maintenance of wagons can not be done without estimates of the number of wheels that will be replaced due to wear and deformation in a given period of time. There are many influencing factors, the most important are: weather conditions, quality of materials, operating conditions, and distance between the two replacements. The fuzzy logic model uses the collected data as input variables to predict the output variable - number of deformed wheels for a certain type of vehicle in the defined period at a particular section of the railway.

  3. Modeling and analysis of linearized wheel-rail contact dynamics

    International Nuclear Information System (INIS)

    Soomro, Z.


    The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)

  4. On minimizing mechanical stresses of the rail way wheels

    International Nuclear Information System (INIS)

    Moosavi, H.; Esfahanian, M.


    The purpose of this paper is to study the behavior of elastic-plastic stresses under severe drag braking. A railway wheel performs three tasks, aiding in trian movement, supporting the car load, and acting as a brake drum. Finite element computer programs are developed for elasto-plastic stress analysis. An attempt is made here to find an improved fillet profile of the wheel with the intention of minimizing high tensile mechanical stresses. Three new fillet profiles for the wheel are tested. A penalty function is used as a criterion for comparison of stresses between the new designs and the old design. The design with the least penalty is chosen to be the improved one

  5. A Ferris Wheel Accident at a Movable Amusement Park. (United States)

    Cho, Young-Jin; Ji, Hong-Keun; Moon, Byung-Sun; Park, Ha-Sun; Goh, Jae-Mo; Park, Nam-Kyu; Choi, Don-Mook


    This study presented a Ferris wheel accident case. A Ferris wheel is composed of many parts, and the outmost ring of it is assembled using a lock pin. This accident occurred because the lock pin caught the door of a gondola and the gondola overturned. Five of the seven passengers in the gondola fell to the ground, along with the gondola's viewing window. The investigation revealed that the gondola became stuck when its door was caught by a lock pin at the Ferris wheel's three o'clock position. The contact between the door and the lock pin was due to a structural problem: There was not enough space allotted between the door and the lock pin. Therefore, if a passenger pushed on the gondola's door, the potential existed for contact between the door and the lock pin. © 2016 American Academy of Forensic Sciences.

  6. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture


    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  7. Transmission access and retail wheeling. The key questions

    International Nuclear Information System (INIS)

    Casazza, J.A.


    The key questions involving transmission access and retail wheeling are discussed, distinguishing between opposing views regarding the effect on system costs and the environment, particularly on optimal planning involving matching capacity and demand, generation use, demand side management, and economic operations. Also discussed are contrasting views regarding the effect of cost control pressures, regulatory advantages and disadvantages, the impact on system reliability, and the stranding of investment. The author's key concern is the effect of retail wheeling upon optimal planning and operation i.e., will competitors be willing to provide one another with the cost and technical information required for coordination? In his worst scenario, retail wheeling may lead to substantial production cost increases, lessened reliability, and unfair cost-shifting between customer classes. More optimistically, production costs and reliability may be unaffected and the cost-shifting could be salubrious. 7 figs., 11 refs

  8. On the non-proportionality between wheel/rail contact forces and speed during wheelset passage over specific welds (United States)

    Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio


    This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.

  9. Development and application of resilient wheels in urban rail transit vehicle

    Directory of Open Access Journals (Sweden)

    Juan WEN

    Full Text Available Urban rail transit vehicles have been more and more attractive to people as a kind of fast, comfortable, energy-saving, environmental protection and safe transportation. But because of the vehicle noise and vibration, urban rail vehicles also face severe challenges. The research of resilient wheels has been continuously developed and improved. Based on the review of development background and structure sorts of resilient wheels, the advantages of resilient wheels are described, and the research status of noise and vibration reducing, infinite element strength analysis, vehicle dynamic analysis and the wheel-rail wear of resilient wheels are discussed. Taking the low-floor LRVs (light rail vehicles in domestic and overseas as example, the development and application of the resilient wheels in city rail transit is described, and the application prospects of the resilient wheels in LRVs in domestic and the future research direction of elastic wheel are discussed.

  10. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions (United States)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei


    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  11. Engineering report. Part 1: NASA wheel air seal development for space shuttle type environmental requirements (United States)


    The sealing techniques are studied for existing aircraft wheel-tire designs to meet the hard vacuum .00001 torr and cold temperature -65 F requirements of space travel. The investigation covers the use of existing wheel seal designs.

  12. 49 CFR 238.119 - Rim-stamped straight-plate wheels. (United States)


    ... input to the wheel during braking. (b) A rim-stamped straight-plate wheel shall not be used as a... that is periodically tread-braked for a short duration by automatic circuitry for the sole purpose of...


    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov


    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  14. A Star-Wheel Stair-Climbing Wheelchair

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; WU Bo; JIN Ai-min; JIANG Shi-hong; ZHENG Yu-fei; ZHANG Shuai


    In order to achieve a wheelchair climb stairs function, this paper designs a star-wheel stair-climbing mechanism. Through the effect of the lock coupling, the star-wheel stair-climbing mechanism is formed to be fixed axis gear train or planetary gear train achieving flat-walking and stair-climbing functions. Crossing obstacle analysis obtains the maximum height and minimum width of obstacle which the wheelchair can cross. Stress-strain analysis in Solidworks simulation is performed to verify material strength.

  15. Stochastic stability of four-wheel-steering system

    International Nuclear Information System (INIS)

    Huang Dongwei; Wang Hongli; Zhu Zhiwen; Feng Zhang


    A four-wheel-steering system subjected to white noise excitations was reduced to a two-degree-of-freedom quasi-non-integrable-Hamiltonian system. Subsequently we obtained an one-dimensional Ito stochastic differential equation for the averaged Hamiltonian of the system by using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems. Thus, the stochastic stability of four-wheel-steering system was analyzed by analyzing the sample behaviors of the averaged Hamiltonian at the boundary H = 0 and calculating its Lyapunov exponent. An example given at the end demonstrated that the conclusion obtained is of considerable significance

  16. Simulation of the ATLAS New Small Wheel Trigger Sysmtem

    CERN Document Server

    Saito, Tomoyuki; The ATLAS collaboration


    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the original design value to explore higher energy scale. In order to benefit from the expected high luminosity performance, the first station of the ATLAS muon end-cap Small Wheel system will be replaced by a New Small Wheel (NSW) detector. The NSW provide precise track segment information to the muon Level-1 trigger to reduce fake triggers. This contribution will summarize a detail of the NSW trigger decision system, track reconstruction algorithm implemented into the trigger processor and results of performance studies on the trigger system.

  17. Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan, E-mail: [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Chen, Hong [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Gao, Li [College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306 (China); Wang, Haibo [College of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Bian, Xiaohai; Gong, Mingjie [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)


    Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons grow after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.

  18. Measuring the Dynamic Soil Response During Repeated Wheeling Using Seismic Methods

    DEFF Research Database (Denmark)

    Keller, Thomas; Carizzon, Marco; Berisso, Feto Esimo


    was performed with an agricultural tire (60 kN wheel load) on a gleyic Cambisol. We measured Vp using an acoustic (microseismic) device at various depths before, during (i.e., below the tire), and after wheeling. In addition, we measured bulk density and penetrometer resistance before and after wheeling...

  19. 30 CFR 56.15014 - Eye protection when operating grinding wheels. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Eye protection when operating grinding wheels... MINES Personal Protection § 56.15014 Eye protection when operating grinding wheels. Face shields or goggles in good condition shall be worn when operating a grinding wheel. [53 FR 32526, Aug. 25, 1988] ...

  20. 30 CFR 57.15014 - Eye protection when operating grinding wheels. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Eye protection when operating grinding wheels. 57.15014 Section 57.15014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... grinding wheels. Face shields or goggles in good condition shall be worn when operating a grinding wheel...

  1. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO) (United States)



  2. Buckling of paramagnetic chains in soft gels (United States)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  3. Detector on wheel system (flying spot)

    International Nuclear Information System (INIS)

    Annis, M.


    An arc-shaped x-ray beam penetrates an arcual cross-sectional area of a body and the attentuated transmitted beam irradiates a portion of a circular array of detectors on a rotating disc. The detectors operate to generate signals proportional to the intensity of the incident transmitted radiation. The beam and detectors are moved along the axis of the body during rotation of the disc to irradiate adjacent cross-sectional areas of the body. A computer operated crt receives the detector signals and displays an image of the radiation attentuation characteristics of the scanned arcual areas

  4. Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi


    Full Text Available In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions.

  5. The Botswana medical eligibility criteria wheel: adapting a tool to ...

    African Journals Online (AJOL)

    The main objectives of this process were to present technical updates of the various contraceptive methods, to update the current medical conditions prevalent to Botswana and to adapt the MEC wheel to meet the needs of the Botswanian people. This commentary focuses on the adaptation process that occurred during the ...

  6. Analysis of wheel speed vibrations for road friction classification

    NARCIS (Netherlands)

    Schmeitz, A.J.C.; Alirezaei, M.


    With higher level of vehicle automation, it becomes increasingly important to know the maximum possible tyre forces during normal driving. An interesting method in this respect is estimating the tyre-road friction from the resonance in the wheel speed signal, excited by road roughness. A simulation

  7. Steel Housing - The Reinvention of the Square Wheel?

    NARCIS (Netherlands)

    Willems, M.H.P.M.


    Steel housing has some remarkable resemblance with a square wheel. Both combine a simple concept, uncommon appearance and lack of appreciation. The title furthermore refers to the repeated stubborn efforts over the last decennia to develop prefabricated steel-based housing systems. Steel has

  8. A new solution method for wheel/rail rolling contact. (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei


    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  9. 29 CFR 1926.303 - Abrasive wheels and tools. (United States)


    ... 29 Labor 8 2010-07-01 2010-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... freely on the spindle and shall not be forced on. The spindle nut shall be tightened only enough to hold...

  10. Improving yaw dynamics by feedforward rear wheel steering

    NARCIS (Netherlands)

    Besselink, I.J.M.; Veldhuizen, T.J.; Nijmeijer, H.


    Active rear wheel steering can be applied to improve vehicle yaw dynamics. In this paper two possible control algorithms are discussed. The first method is a yaw rate feedback controller with a reference model, which has been reported in a similar form previously in literature. The second controller

  11. Model-based analysis and simulation of regenerative heat wheel

    DEFF Research Database (Denmark)

    Wu, Zhuang; Melnik, Roderick V. N.; Borup, F.


    The rotary regenerator (also called the heat wheel) is an important component of energy intensive sectors, which is used in many heat recovery systems. In this paper, a model-based analysis of a rotary regenerator is carried out with a major emphasis given to the development and implementation of...


    Directory of Open Access Journals (Sweden)

    N. Artemov


    Full Text Available Different views on the definition of «stability of wheeled vehicles» are considered and the author’s own definition is offered. A version of the structure of stability properties as a complex op-erational property is offered.

  13. Desiccant wheels for air humidification: An experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Intini, Manuel; Joppolo, Cesare Maria; Molinaroli, Luca; Romano, Francesco


    Highlights: • The use of desiccant wheel to humidify an air stream is investigated. • Air humidification is obtained by extracting water vapour from outdoor air. • Experimental tests in winter humidification conditions are performed. • The design of the proposed humidification system is numerically analyzed. • Effects of boundary conditions on humidification capacity are investigated. - Abstract: In this work the use of a desiccant wheel for air humidification is investigated through a numerical and experimental approach. In the proposed humidification system, water vapour is adsorbed from outdoor environment and it is released directly to the air stream supplied to the building. Such a system can be an interesting alternative to steam humidifiers in hospitals or, more generally, in applications where air contamination is a critical issue and therefore adiabatic humidifiers are not allowed. Performance of the proposed system is deeply investigated and optimal values of desiccant wheel configuration parameters are discussed. It is shown that in the investigated conditions, which are representative of Southern Europe winter climate, the system can properly match the latent load of the building. Finally, power consumption referred to the primary source of the proposed humidification system is compared to the one of steam humidifiers. The present analysis is carried out through experimental tests of a desiccant wheel in winter humidification conditions and through a phenomenological model of the device, based on heat and mass transfer equations.

  14. Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping

    Directory of Open Access Journals (Sweden)



    Full Text Available Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.

  15. The TASC Wheel Supports a Honey Bee Challenge (United States)

    Seeley, Claire


    The concept of TASC (Thinking Actively in a Social Context) was created by Belle Wallace (Wallace et al., 1993) as a model that can be used to nurture and develop thinking skills. As children work through the TASC wheel, the teacher has a very good opportunity to facilitate explicit conversations about thinking. This allows the children to grow in…

  16. Austempered ductile iron (ADI) for railroad wheels : final report. (United States)


    The purpose of this project is to investigate the potential for austempered ductile iron (ADI) to be used as an alternative material for the production of rail wheels, which are currently cast or forged steel which is commonly heat treated. ADI has s...

  17. Development of New Wheel-Chair for Sports Competition

    Directory of Open Access Journals (Sweden)

    Akira Shionoya


    Full Text Available The purpose of this study was to develop the new wheel-chair which had the function to drive straight by one-hand operation. To perform this purpose, the driving force transmission axis (DFTA which had transmitted the driving force from the one side of wheel to another side of that was developed. The wheel-chair could drive straight by one-hand operation by the DFTA. The large torque, however, was generated in the DFTA, because the DFTA transmitted the driving force from the one side of wheel to another side by the axis of small diameter. Furthermore, the shear stress in the DFTA generated by this torque would lead to the DFTA break. The shear stress in the DFTA was calculated to examine the axial strength and durability. On the DETA of the wheelchair, the maximum shear stress calculated from the torque in driving was 39.53 MP and this was defined as the standard of the demand specifications as a strength and durability of the DFTA.

  18. Characterizing the Performance of the Wheel Electrostatic Spectrometer (United States)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Calle, C. I.; Clements, J. S.


    Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor

  19. Teens Take the Wheel (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    One of most noteworthy moments in a teenager’s life is earning a driver’s license. While it provides a newfound freedom, it also presents serious risks. In this podcast, Amy Jewett discusses ways to keep young drivers safe behind the wheel.

  20. Theoretical design study of the MSFC wind-wheel turbine (United States)

    Frost, W.; Kessel, P. A.


    A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.

  1. Design of wheel-type walking-assist device

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Jung, Kyung Min; Lee, Sung Uk


    In this research, a outdoor wheel-type walking-assist device is developed to help an elder having a poor muscular strength at legs for walking, sitting and standing up easily at outdoors, and also for going and downing stairs. In conceptually designing, the environments of an elder's activity, the size of an elder's body and a necessary function of helping an elder are considered. This device has 4 wheels for stability. When an elder walks in incline plane with the proposed device, a rear-wing is rotated to keep the supporting device horizontal, regardless of an angle of inclination. A height-controlling device, which can control the height of the supporting device for adjusting an elder's height, is varied vertically to help an elder to sit and stand-up easily. Moreover, a outdoor wheel-type walking-assist device is conceptually designed and is made. In order to design it, the preview research is investigated firstly. On the basis of the proposed walking-assist device, the outdoor walking-assist device is designed and made. The outdoor wheel-type walking-assist device can go and down stairs automatically. This device go up and down the stair of having maximum 20cm height and an angle of 25 degrees with maximum 4 sec/stairs speed, and move at flatland with 60cm/sec speed

  2. A Case Study in Experiential Learning: Pharmaceutical Cold Chain Management on Wheels (United States)

    Vesper, James; Kartoglu, Umit; Bishara, Rafik; Reeves, Thomas


    Introduction: People who handle and regulate temperature-sensitive pharmaceutical products require the knowledge and skills to ensure those products maintain quality, integrity, safety, and efficacy throughout their shelf life. People best acquire such knowledge and skills through "experiential learning" that involves working with other…

  3. Developments of 207Pb, 208Pb and 209Bi target wheels in the synthesis of 107Ns, 108Hs and 109Mt

    International Nuclear Information System (INIS)

    Folger, H.; Hartmann, W.; Hessberger, F.P.; Hofmann, S.; Klemm, J.; Muenzenberg, G.; Ninov, V.; Schmidt, K.H.; Schoett, H.J.; Thalheimer, W.; Armbruster, P.


    The developments of 207 Pb, 208 Pb and 209 Bi target wheels and their applications in heavy-ion fusion reactions are reviewed. In both, fabrication and use, the centers of the evaporator or accelerator beams are focussed at wheel radii of 155 mm to specially shaped frames which generate very homogeneous target layers and very constant reaction and counting rates in the experiment. Target areas of up to ∼98% of a wheel's circumference of 974 mm can be provided. The preparation procedures for necessary C backings and protecting layers of C are described, and details are given for the developments of high-vacuum evaporations of 207 Pb, 208 Pb and 209 Bi with deposition yields of 35-55% from tantalum crucibles. The applications of the target wheels in heavy-ion fusion reactions with beams of 54 Cr and 58 Fe at energies near the Coulomb barrier and intensities of ∼10 12 particles/s are mentioned. The target parameters for the production runs of the new chemical elements 107 Ns, 108 Hs and 109 Mt are included. (orig.)

  4. The Effects of Wear upon the Axial Profile of a Grinding Wheel in the Construction of Innovative Grinding Wheels for Internal Cylindrical Grinding


    Nadolny, K.; Słowiński, B.


    The article describes the effects of wear upon the axial profile of a grinding wheel in the axial cylindrical grinding processes. This mechanism was used to develop a grinding wheel with zone diversified structure made of microcrystalline sintered corundum abrasive grains and vitrifies bond. Such a grinding wheel is characterized by the conical rough grinding zone that is made by grains of a relatively large size, and a cylindrical finish grinding zone with grains of a smaller size and can be...

  5. Simulation modeling of wheeled vehicle dynamics on the stand "Roller"

    Directory of Open Access Journals (Sweden)

    G. O. Kotiev


    Full Text Available The tests are an integral part of the wheeled vehicle design, manufacturing, and operation. The need for their conducting arises from the research and experimental activities to assess the qualitative and quantitative characteristics of the vehicles in general, as well as the individual components and assemblies. It is obvious that a variety of design features of wheeled vehicles request a development of methods both for experimental studies and for creating the original bench equipment for these purposes.The main positive feature of bench tests of automotive engineering is a broad capability to control the combinations of traction loads, speed rates, and external input conditions. Here, the steady state conditions can be used for a long time, allowing all the necessary measurements to be made, including those with video and photo recording experiment.It is known that the benefits of test "M" type (using a roller dynamometer include a wide range of test modes, which do not depend on the climatic conditions, as well as a capability to use a computer-aided testing programs. At the same time, it is known that the main drawback of bench tests of full-size vehicle is that the tire rolling conditions on the drum mismatch to the real road pavements, which are difficult to simulate on the drum surface. This problem can be solved owing to wheeled vehicle tests at the benches "Roller" to be, in efficiency, the most preferable research method. The article gives a detailed presentation of developed at BMSTU approach to its solving.Problem of simulation mathematical modeling has been solved for the vehicle with the wheel formula 8 × 8, and individual wheel-drive.The simulation results have led to the conclusion that the proposed principle to simulate a vehicle rolling on a smooth non-deformable support base using a bench " Roller " by simulation modeling is efficient.

  6. Experimental studies of breaking of elastic tired wheel under variable normal load (United States)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.


    The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.

  7. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.


    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  8. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. (United States)

    Brooks, Matthew J; Hajira, Ameena; Mohamed, Junaith S; Alway, Stephen E


    Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a non-damaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice (n=6/group) were randomly placed into 5 groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: non-suspended mice-cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation, was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force and decreased the in vivo fatigability and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type type I and IIa MHC abundance, increased fiber cross sectional area (CSA), and an increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7 positive nuclei inside muscle fibers and a greater MyoD to Pax 7 protein ratio when compared to HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR had lower levels of the inactive phosphorylated YAP serine127 which may have contributed to increased satellite cell activation creased with reloading after HSU. These results indicate that voluntary wheel running increased YAP

  9. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice. (United States)

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo


    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  10. Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang


    Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.

  11. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.


    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  12. Study on general theory of kinematics and dynamics of wheeled mobile robots (United States)

    Tsukishima, Takahiro; Sasaki, Ken; Takano, Masaharu; Inoue, Kenji


    This paper proposes a general theory of kinematics and dynamics of wheeled mobile robots (WMRs). Unlike robotic manipulators which are modeled as 3-dimensional serial link mechanism, WMRs will be modeled as planar linkage mechanism with multiple links branching out from the base and/or another link. Since this model resembles a tree with branches, it will be called 'tree-structured-link'. The end of each link corresponds to the wheel which is in contact with the floor. In dynamics of WMR, equation of motion of a WMR is derived from joint input torques incorporating wheel dynamics. The wheel dynamics determines forces and moments acting on wheels as a function of slip velocity. This slippage of wheels is essential in dynamics of WMR. It will also be shown that the dynamics of WMR reduces to kinematics when slippage of wheels is neglected. Furthermore, the equation of dynamics is rewritten in velocity input form, since most of industrial motors are velocity controlled.

  13. Environmental management in product chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne; Hansen, Anne Grethe

    of environmental initiatives, a number of recommendations for governmental regulation, which can support the further diffusion of environmental management in product chains, are developed. Furthermore, the report describes a number of theoretical perspectives from sociology of technology, organisation theory......This report presents the analyses of the shaping, implementation and embedding of eight types of environmental initiatives in product chains. The analyses focus on • the role of the type of product and branch, of the size of the companies and of governmental regulation • the focus...... of the environmental concerns and the reductions in environmental impact • organisational changes which have been part of the embedding of the initiatives The analyses are based on 25 cases from national and international product chains involving one or more Danish companies. Based on the analyses of the eight types...

  14. To the question of modeling of wheels and rails wear processes

    Directory of Open Access Journals (Sweden)

    S.V. Myamlin


    Full Text Available Purpose. There is a need of wear process modeling in the wheel-rail system. This is related to the fact that the wear processes in this system are absolutely different in the initial and final stages. The profile change of rail and, especially, of the wheels caused by the wear significantly affects the rolling stock dynamics, traffic safety and the resource of the wheels and rails. Wear modeling and the traffic safety evaluation requires the accounting of the low frequency component forces (including the modeling of transitional areas affecting the wheel on the side of the rail and carriage in motion of rolling stock, so the statistical analysis is not possible. Methodology. The method of mathematical modeling of the wheel set and the rail interaction was used during the research conducting. Findings. As a result of the modeling of the wheel set motion on the rail track, the mathematic model with 19 freedom degrees was obtained. This model takes into account the axle torque and studies wheels constructions as the components of the mechanical systems, consisting of a hub and tire. Originality. The mathematic model allows evaluating the wear degree of the wheels and rails when using on the rolling stock not only all-metal wheel sets, but also compound ones with the use of spring wheels and independent rotation of semi-axes with the wheels. Practical value. The development of the improved mathematical model of freight car wheel set motion with differential rotation of the wheels and compound axles allows studying the wear processes of wheels and rails.

  15. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.


    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  16. Shape coexistence in N = 28 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kaushik, M.; Kumawat, M.; Jain, S.K.


    Shape coexistence is one of the important nuclear phenomenon which appears throughout the periodic chart from light mass nuclei to superheavy nuclei. The evolution of ground-state shapes in an isotopic or isotonic chain is governed by changes of the shell structure of single-nucleon orbitals. In recent past, evolution of shell structure guiding shape coexistence, has been observed in the N = 20 and N = 28 isotones around proton drip line. In this paper we have investigated shape coexistence phenomenon for N = 28 isotones in the vicinity of proton drip line using Relativistic Mean Field plus BCS approach

  17. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype


    Smythe, Gayle M; White, Jason D


    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the...

  18. The Bicycle Illusion: Sidewalk Science Informs the Integration of Motion and Shape Perception (United States)

    Masson, Michael E. J.; Dodd, Michael D.; Enns, James T.


    The authors describe a new visual illusion first discovered in a natural setting. A cyclist riding beside a pair of sagging chains that connect fence posts appears to move up and down with the chains. In this illusion, a static shape (the chains) affects the perception of a moving shape (the bicycle), and this influence involves assimilation…

  19. Haulage trucks model with four electric separate wheel drives

    Directory of Open Access Journals (Sweden)

    R. Setlak


    Full Text Available This article contains a course of work of the construction of a vehicle model that has four electrical motors built into each wheel. During the project two models of a vehicle were constructed. A microprocessor based control system has also been designed and built. A vehicle is controlled by a steering unit which contains a steering wheel with a force feedback system, push buttons, an accelerator and a brake. The connection between a steering unit and a model is realized by interface RS-485. The driving motors are dc motors with permanent magnets. Power supply consists of an acid battery located in the vehicle. The vehicle control system is divided into two parts. The first part is built into the vehicle and operates as a vehicle main control system and the second is built into a steering unit and operates as the main control steering system.

  20. The rolling motion of an eccentrically loaded wheel (United States)

    Theron, W. F. D.


    This article discusses the rolling motion on a rough plane of a wheel whose center of mass does not coincide with the axis; for example, when a heavy particle is fixed to the rim of a rigid hoop. In cases with large eccentricity, the resulting motion is surprisingly complex, with four phases being identified, namely rolling (without slipping), spinning, skidding, and "hopping," by which is meant that the wheel actually leaves the plane. The main result of this analysis is the identification of the conditions that are required for hopping to occur. A second result is that faster than gravity accelerations occur when the mass of the particle is greater than the mass of the hoop. Massless hoops are briefly discussed as a special case of the general results.

  1. Effect of machinery wheel load on grass yield

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian


    Effect of machinery wheel load on grass   Ole Green1, Rasmus N. Jørgensen2, Kristian Kristensen3, René Gislum3, Dionysis Bochtis1, & Claus G. Sørensen1   1University of Aarhus, Dept. of Agricultural Engineering 2University of Southern Denmark, Inst. of Chemical Eng., Biotechnology and Environmental...... 3University of Aarhus, Dept. of Genetics and Biotechnology   Corresponding author: Ole Green Address & e-mail: Research Centre Foulum, Blichers Allé 20, 8830 Tjele.     Abstract   Different traffic intensities have been shown to have a negative influence on the yield of grass...... and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16 different traffic intensities with 35 replicates and 1 traffic free treatment with 245 replicates, totalling 17...

  2. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won


    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  3. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  4. Simulation of the ATLAS New Small Wheel trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399900; The ATLAS collaboration


    The instantaneous luminosity of the LHC will increase up to a factor of seven with respect to the original design value to explore physics at higher energy scale. The inner station of the ATLAS muon end-cap system (Small Wheel) will be replaced by the New Small Wheel (NSW) to benefit from the high luminosity. The NSW will provide precise track-segment information to the Level-1 trigger system in order to suppress the trigger rate from fake muon tracks. This article summarizes the NSW trigger decision system and track-segment finding algorithm implemented in the trigger processor, and discusses results of performance studies on the trigger system. The results demonstrate that the NSW trigger system is capable of working with good performance satisfying the requirements.

  5. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov


    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  6. Utilization of wheel dop based on ergonomic aspects (United States)

    Widiasih, Wiwin; Murnawan, Hery; Setiawan, Danny


    Time is an important thing in life. People need a tool or equipment to measure time which is divided into two types, namely clock and watch. Everyone needs those kinds of tool. It becomes an opportunity for manufacturer to build a business. However, establishing a business by depending on the demand is not enough, it is necessary to take a consideration of making innovation. Innovation is a difficult thing to find out, but it is not impossible to do it. By creating an innovative product, it can be a strategy to win the competitive market. This study aimed to create an innovative product based on the ergonomic aspects, which was by utilizing wheel dop. This methodology consisted of pre-study, planning and product development, and product analysis. This product utilized wheel dop and was made based on the ergonomic aspects.

  7. Process capability improvement through DMAIC for aluminum alloy wheel machining (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra


    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  8. Local cyclic deformation behavior and microstructure of railway wheel materials

    International Nuclear Information System (INIS)

    Walther, F.; Eifler, D.


    The current investigations concentrate on the relation between the loading and environmental conditions, the local microstructure and the fatigue behavior of highly stressed railway wheel and tire steels. Experiments under stress control and total strain control were performed at ambient temperature with servohydraulic testing systems. Superimposed mean loadings allow an evaluation of cyclic creep and mean stress relaxation effects. Strain, temperature and electrical measuring techniques were used to characterize the cyclic deformation behavior of specimens from different depth positions of the cross-sections of UIC-specified wheel components (UIC: International Railway Union). The measured values show a strong interrelation. The microstructural characterization of the different material conditions was done by light and scanning electron microscopy together with digital image processing

  9. Demographic Profile of Older Adults Using Wheeled Mobility Devices

    Directory of Open Access Journals (Sweden)

    Amol M. Karmarkar


    Full Text Available The purpose of this study was to determine whether the use of wheeled mobility devices differed with respect to age, gender, residential setting, and health-related factors among older adults. A total of 723 adults ageing 60 and older are representing three cohorts, from nursing homes, the Center for Assistive Technology, and the wheelchair registry from the Human Engineering Research Laboratories. Wheeled mobility devices were classified into three main groups: manual wheelchairs, power wheelchairs, and scooters. Our results found factors including age, gender, diagnosis, and living settings to be associated with differences in use of manual versus powered mobility devices. Differences in use were also noted for subtypes of manual (depot, standard, and customized and powered (scooter, standard, and customized mobility devices, on demographic, living arrangements, and health-related factors. Consideration of demographic, health-related, and environmental factors during the prescription process may help clinicians identify the most appropriate mobility device for the user.

  10. Dynamics based modeling of wheeled platform for humanoid robot torso

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir M.


    Full Text Available From the ancient mythology till the modern times, people were trying to build an artificial mechanical replica of themselves. Inspired by this long tradition of various engineering projects, we will hereby describe a partly humanoid robotic structure. Our robotic configuration is composed out of an anthropomimetic upper body, but instead of legs it uses a wheeled cart for the motion. In our research, this so-called semi-anthropomimetic structure has a four-wheeled cart. This work is aiming to analyze the behaviour of the robot that is exposed to different kind of external disturbances. Disturbances coming from the outside in the form of external forces (impulse and long term simulate the interactions of the robot and its ambience. Necessary simulations were thoroughly executed (in that way analyzing robotic balance and proper size of the cart is evaluated following the ZMP theoretical background. [Projekat Ministarstva nauke Republike Srbije, br. TR-35003 i br. III-44008

  11. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress (United States)

    Jing, Lin; Han, Liangliang


    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  12. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi


    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  13. Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic (United States)

    Johansson, Anders


    Results from an extensive wheel measurement campaign performed in Sweden are given and discussed. Out-of-roundness (OOR), transverse profile and surface hardness of 99 wheels on passenger trains (X2 and intercity), freight trains, commuter trains (Regina) and underground trains (C20) were measured. Both tread and disc braked wheels were investigated. The selected wheels had travelled a distance of more than 100000 km, and the measurements were conducted when the train wagons/coaches had been taken out of traffic for maintenance, most of them due to reasons other than wheel OOR. Mechanical contact measurement methods were used. The highest roughness levels (higher than 20 dB re 1 μm for some wheels) were found on powered high-speed (X2) train wheels. The previously known polygonalization of C20 underground wheels is quantified. It is also verified that an initial irregularity is formed due to the clamping in a three-jaw chuck during profiling of new C20 wheels. Magnitudes and wavelength contents of measured wheel roughness are compared with corresponding measurements of rail roughness.

  14. Study on design of light-weight super-abrasive wheel (United States)

    Nohara, K.; Yanagihara, K.; Ogawa, M.


    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  15. Body weight manipulation, reinforcement value and choice between sucrose and wheel running: a behavioral economic analysis. (United States)

    Belke, Terry W; Pierce, W David


    Twelve female Long-Evans rats were exposed to concurrent variable (VR) ratio schedules of sucrose and wheel-running reinforcement (Sucrose VR 10 Wheel VR 10; Sucrose VR 5 Wheel VR 20; Sucrose VR 20 Wheel VR 5) with predetermined budgets (number of responses). The allocation of lever pressing to the sucrose and wheel-running alternatives was assessed at high and low body weights. Results showed that wheel-running rate and lever-pressing rates for sucrose and wheel running increased, but the choice of wheel running decreased at the low body weight. A regression analysis of relative consumption as a function of relative price showed that consumption shifted toward sucrose and interacted with price differences in a manner consistent with increased substitutability. Demand curves showed that demand for sucrose became less elastic while demand for wheel running became more elastic at the low body weight. These findings reflect an increase in the difference in relative value of sucrose and wheel running as body weight decreased. Discussion focuses on the limitations of response rates as measures of reinforcement value. In addition, we address the commonalities between matching and demand curve equations for the analysis of changes in relative reinforcement value.

  16. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle (United States)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo


    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  17. A Multiple Data Fusion Approach to Wheel Slip Control for Decentralized Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dejun Yin


    Full Text Available Currently, active safety control methods for cars, i.e., the antilock braking system (ABS, the traction control system (TCS, and electronic stability control (ESC, govern the wheel slip control based on the wheel slip ratio, which relies on the information from non-driven wheels. However, these methods are not applicable in the cases without non-driven wheels, e.g., a four-wheel decentralized electric vehicle. Therefore, this paper proposes a new wheel slip control approach based on a novel data fusion method to ensure good traction performance in any driving condition. Firstly, with the proposed data fusion algorithm, the acceleration estimator makes use of the data measured by the sensor installed near the vehicle center of mass (CM to calculate the reference acceleration of each wheel center. Then, the wheel slip is constrained by controlling the acceleration deviation between the actual wheel and the reference wheel center. By comparison with non-control and model following control (MFC cases in double lane change tests, the simulation results demonstrate that the proposed control method has significant anti-slip effectiveness and stabilizing control performance.


    Directory of Open Access Journals (Sweden)

    Ye. Dubinin


    Full Text Available With introducing a mobile measurement system with linear acceleration sensors there was experimentally determined the parameter of position stability of the articulated wheeled vehicle on the example of HTA-200 «Slobozhanets». It was determined that the position stability was provided within the entire range of operating speeds and accelerations. The obtained results can be used to enhance the traffic safety of articulated vehicles.

  19. Wear estimation of the wheel tyre in different service conditions

    Directory of Open Access Journals (Sweden)

    Henryk BĄKOWSKI


    Full Text Available In this article presented the results of fatigue strength test aluminium alloys using in car industry. Demonstrated distributions and values of stresses the wheel tyre made of aluminium alloys by means of FEM. In fatigue test used special machine, which can allow to determine Wohler diagram. In this way to determine the allowable stresses values in which do not occurring the damages.

  20. Sediment production from forest roads with wheel ruts (United States)

    Randy B. Foltz; Edward R. Burroughs


    Artificial rainfall was applied to two sets of paired plots 30.5 m long by 1.52 m wide, each set on a different soil type. One plot in each set contained a wheel rut while the other did not. Measurements of water and sediment yield on rutted plots showed sediment production declined with cumulative runoff while unrutted plots did not show a significant sediment...

  1. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study


    Flôres, Danilo E. F. L.; Bettilyon, Crystal N.; Jia, Lori; Yamazaki, Shin


    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity,...

  2. Teens Take the Wheel (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts


    One of most noteworthy moments in a teenager’s life is earning a driver’s license. While it provides a newfound freedom, it also presents serious risks. In this podcast, Amy Jewett discusses ways to keep young drivers safe behind the wheel.  Created: 10/22/2015 by MMWR.   Date Released: 10/22/2015.

  3. Vehicle Mobility Assessment for Project Wheels Study Group (United States)


    cash savings p’Asible through the elimination of special military automotive features, such as front-wheel 1 Idrive , or the use of commercial vehicles...E12. (12) off-,,,d mobiliY profile 4x4 0ruck, c 2Z4< 20 ,ernn It Iot "- III IIIII III I I I IIII A%. West Germany 0A * s ps ArizonazD • Ř’.. • D

  4. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu


    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  5. Planning for meals-on-wheels: algorithms and application


    H Yildiz; M P Johnson; S Roehrig


    Home-delivered meals provision, also known as meals-on-wheels, is a volunteer-staffed activity for which little strategic planning is performed. We develop a Memetic Algorithm to solve the Home Delivered Meals Location-Routing Problem. This planning model addresses facility location, allocation of demand to facilities, and design of delivery routes, while balancing efficiency and effectiveness considerations. The case study presented on a large data set shows how trade-off curves, which are v...

  6. Cold Regions Test of Tracked and Wheeled Vehicles (United States)


    time from when the operator applied the brake and when the brake application actually occurs due to the brake fluid viscosity becoming thicker. Note if...while operating in snow. The TOP includes guidance for snow as well as mud, sand, swamps, and wet clay . Most conventional wheeled vehicles cannot...grade to the proper viscosity oils and grease as prescribed by the applicable LO for the vehicle’s intended destination. h. Prior to shipment of the

  7. Effects of genetic background and environmental novelty on wheel running as a rewarding behaviour in mice. (United States)

    de Visser, Leonie; van den Bos, Ruud; Stoker, Astrid K; Kas, Martien J H; Spruijt, Berry M


    Recent studies suggest running wheel activity to be naturally rewarding and reinforcing; considering the shared neuro-behavioural characteristics with drug-induced reward situations, wheel running behaviour gains interest as a tool to study mechanisms underlying reward-sensitivity. Previously, we showed that wheel running has the potential to disrupt the daily organization of home cage behaviour in female C57BL/6 [de Visser L, van den Bos R, Spruijt BM. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 2005;160:382-8]. In the present study, we investigated the effects of novelty-induced stress on wheel running and its impact on home cage behaviour in male C57BL/6 and DBA/2 mice. Our aim was to determine whether wheel running may be used as a tool to study both genetic and environmentally induced differences in sensitivity to rewarding behaviour in mice. One group of male mice was placed in an automated home cage observation system for 2 weeks with a wheel integrated in the cage. A second group of mice was allowed to habituate to this cage for 1 week before a running wheel was introduced. Results showed a pronounced sensitising effect of novelty on the level of wheel running in C57Bl/6 mice but not in DBA mice. Overall levels of wheel running were higher in DBA/2 mice. Furthermore, wheel running affected circadian rhythmicity in DBA/2 mice but not in C57BL/6 mice. From these findings we tentatively suggest that wheel running behaviour could serve as a tool to study the interaction between genetic and environmental factors in sensitivity to rewarding behaviour in mice. As it is displayed spontaneously and easy to monitor, wheel running may be well suitable to be included in high-throughput phenotyping assays.

  8. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior (United States)

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin


    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  9. New Record Five-Wheel Drive, Spirit's Sol 1856 (United States)


    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest. The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007). The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south. This view is presented as a cylindrical projection with geometric seam correction.

  10. New methodology for fast prediction of wheel wear evolution (United States)

    Apezetxea, I. S.; Perez, X.; Casanueva, C.; Alonso, A.


    In railway applications wear prediction in the wheel-rail interface is a fundamental matter in order to study problems such as wheel lifespan and the evolution of vehicle dynamic characteristic with time. However, one of the principal drawbacks of the existing methodologies for calculating the wear evolution is the computational cost. This paper proposes a new wear prediction methodology with a reduced computational cost. This methodology is based on two main steps: the first one is the substitution of the calculations over the whole network by the calculation of the contact conditions in certain characteristic point from whose result the wheel wear evolution can be inferred. The second one is the substitution of the dynamic calculation (time integration calculations) by the quasi-static calculation (the solution of the quasi-static situation of a vehicle at a certain point which is the same that neglecting the acceleration terms in the dynamic equations). These simplifications allow a significant reduction of computational cost to be obtained while maintaining an acceptable level of accuracy (error order of 5-10%). Several case studies are analysed along the paper with the objective of assessing the proposed methodology. The results obtained in the case studies allow concluding that the proposed methodology is valid for an arbitrary vehicle running through an arbitrary track layout.

  11. Wheel arch aerodynamics of a modern road vehicle

    International Nuclear Information System (INIS)

    Apsley, S.; Aroussi, A.


    A geometrically faithful model of the Aston Martin V12 Vanquish was formed in 3D CAD and used to perform an extensive CFD study into the airflow in and around the wheel arch of the vehicle. Parameters such as spin ratio, ground clearance, vertical and horizontal insertion into the wheel arch and the yaw angles experienced during cornering, were all under investigation. The additional aim of the research was to validate or refute the use of CFD as a tool in this complex area of fluid flow. This research serves to highlight a number of problems and potential solutions in the use of CFD. Meshing problems can be eliminated with increased computational power and suggestions have been made to improve the modeling of rotating boundaries that include radial features such as wheel spokes. Much of the CFD data ties well with previously conducted experimental work, if not numerically then in trend. Without additional physical validation however, it is difficult to ascertain the overall accuracy and usefulness of the remaining results, which have not yet been conducted in physical reality. Despite its limitations, the use of CFD permitted an extensive analysis in a comparatively short length of time and served to highlight potential areas for increased scrutiny. As an example, results from the final yaw angle case drew attention to a potential concern for aerodynamic destabilisation of the vehicle during cornering, generating lift on the front arch of the car that is already lifted due to cornering forces and body roll. (author)


    Directory of Open Access Journals (Sweden)



    Full Text Available This lecture deals with the application problems of convertibility GPS system at paddle excavator K 800. The claims of the modern operating surface mining of the excavators requires a lot of information for monitoring of mining process, capacity mining, selective extraction etc. The utilization of monitoring the excavator setting by GPS system proved to be the only one proper because the receivers are resistant to the vibration, dust, temperature divergence and weather changeable. Only the direct contact with communications satellite is required. It means that they can´t be located in a metal construction space (shadow caused by construction elements, influence of electrical high voltage cables even they can´t be located close to the paddle wheel on the paddle boom (shadow possibility caused by cuttinng edge created during lower gangplanks mining. This is the reason that GPS receivers are set uppermost on the metal construction excavator and the mathematical formulation is required for determination of paddle wheel petting. The relations for calculation of the paddle wheel coordinate were defined mathematically and after that the mathematical model was composed.

  13. Design and development of automatic sharia compliant wheelchair wheels cleaner (United States)

    Shaari, Muhammad Farid; Rasli, Ibrahim Ismail Mohammad; Jamaludin, M. Z. Z. Wan; Isa, W. A. Mohamad; M., H.; Rashid, A. H. Abdul


    Sharia compliant wheelchair wheel cleaner was developed in order to assist the muslim Person with Disabilities (PWD) to pray in the mosque without leaving their wheelchair because of the filthy wheels. Though there are many wheelchair wheel cleaning system in the market, it is very rare to find sharia compliant cleaning system that applies sertu concept which is one of the cleaning and purification technique in Islamic practice. The sertu concept is based on 6:1 ratio that refers to the six times pipe water cleaning and one time soiled water cleaning. The development process consists of design stage, fabrication and system installation stage and followed by testing stage. During the design stage, the proposed prototype underwent design brainstorming, operation programming and structural simulation analysis. Once fabricated, the cleaner prototype underwent was tested. The results showed that the prototype can cater load up to 100kg with 1.31×10-6 mm shaft bending displacement. The water ejection timing varied approximately 3% compared to the program.

  14. Stability Simulation of a Vehicle with Wheel Active Steering

    Directory of Open Access Journals (Sweden)

    Brabec Pavel


    Full Text Available This paper deals with the possibility of increasing the vehicle driving stability at a higher speed. One of the ways how to achieve higher stability is using the 4WS system. Mathematical description of vehicle general movement is a very complex task. For simulation, models which are aptly simplified are used. For the first approach, so-called single-truck vehicle model (often linear is usually used. For the simulation, we have chosen to extend the model into a two-truck one, which includes the possibility to input more vehicle parameters. Considering the 4WS system, it is possible to use a number of potential regulations. In our simulation model, the regulation system with compound coupling was used. This type of regulation turns the rear wheels depending on the input parameters of the system (steering angle of the front wheels and depending on the output moving quantities of the vehicle, most frequently the yaw rate. Criterion for compensation of lateral deflection centre of gravity angle is its zero value, or more precisely the zero value of its first-order derivative. Parameters and set-up of the simulation model were done in conjunction with the dSAPACE software. Reference performances of the vehicle simulation model were made through the defined manoeuvres. But the simulation results indicate that the rear-wheels steering can have a positive effect on the vehicle movement stability, especially when changing the driving direction at high speed.

  15. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.


    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  16. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)


    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  17. Responding for sucrose and wheel-running reinforcement: effects of sucrose concentration and wheel-running reinforcer duration. (United States)

    Belke, Terry W; Hancock, Stephanie D


    Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.

  18. Reinforcement of wheel running in BALB/c mice: role of motor activity and endogenous opioids. (United States)

    Vargas-Pérez, Héctor; Sellings, Laurie H L; Paredes, Raúl G; Prado-Alcalá, Roberto A; Díaz, José-Luis


    The authors investigated the effect of the opioid antagonist naloxone on wheel-running behavior in Balb/c mice. Naloxone delayed the acquisition of wheel-running behavior, but did not reduce the expression of this behavior once acquired. Delayed acquisition was not likely a result of reduced locomotor activity, as naloxone-treated mice did not exhibit reduced wheel running after the behavior was acquired, and they performed normally on the rotarod test. However, naloxone-blocked conditioned place preference for a novel compartment paired previously with wheel running, suggesting that naloxone may delay wheel-running acquisition by blocking the rewarding or reinforcing effects of the behavior. These results suggest that the endogenous opioid system mediates the initial reinforcing effects of wheel running that are important in acquisition of the behavior.

  19. Resting Is Rusting: A Critical View on Rodent Wheel-Running Behavior. (United States)

    Richter, Sophie Helene; Gass, Peter; Fuss, Johannes


    Physical exercise is known to exert various beneficial effects on brain function and bodily health throughout life. In biomedical research, these effects are widely studied by introducing running wheels into the cages of laboratory rodents. Yet, although rodents start to run in the wheels immediately, and perform wheel-running excessively on a voluntary basis, the biological significance of wheel-running is still not clear. Here, we review the current literature on wheel-running and discuss potentially negative side-effects that may give cause for concern. We particularly emphasize on analogies of wheel-running with stereotypic and addictive behavior to stimulate further research on this topic. © The Author(s) 2014.

  20. Assessment of a rail vehicle running with the damaged wheel on a ride comfort for passengers

    Directory of Open Access Journals (Sweden)

    Dižo Ján


    Full Text Available In certain conditions rail vehicles wheels can be during operation damaged. Then, the profile of wheels is no longer circular, but it is changed depending on the type and severity of defects. When such rail vehicle with the damaged wheel operates, the quality of a ride comfort for passenger is degraded. This article is focused on the assessment of ride comfort for passenger based on results obtained from dynamic analyses. Simulations and calculations were carried out in commercial multibody software. In our research we considered one type of the railway wheel untrueness – wheel-flat. This type of wheel damaging is relatively common and has such influence on the ride comfort for passenger worsening, which needs to be detected and investigated.

  1. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA (United States)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji


    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  2. Running in a running wheel substitutes for stereotypies in mink (Mustela vison) but does it improve their welfare?

    DEFF Research Database (Denmark)

    Hansen, Steffen W; Damgaard, Birthe Marie


    This experiment investigated whether access to a running wheel affects the development of stereotypies during restricted feeding and whether selection for high or low levels of stereotypy affects the use of the running wheel. Sixty-two female mink kept in standard cages and selected for high or low...... levels of stereotypy were used. Thirty of these females had access to a running wheel whereas thirty-two female mink had no access to running wheels. The number of turns of the running wheel, behaviour, feed consumption, body weight and the concentration of plasma cortisol were measured during the winter...... period. Mink with access to a running wheel did not perform stereotypic behaviour and mink selected for a high level of stereotypies had more turns in the running wheel than mink selected for low levels of stereotypies. Mink with access to a running wheel used the running wheel for the same amount...

  3. Wheel running decreases palatable diet preference in Sprague-Dawley rats


    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu


    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel...


    Directory of Open Access Journals (Sweden)

    G. S. Gorin


    Full Text Available Fundamental principles for hybrid theory on turning of an all-wheel drive system are given in the paper. The paper shows expediency of accounting longitudinal additional tangential reactions (parasitic forces in contacts of central and lateral wheels with foundation. Algorithms for calculating additional tangential reactions have been proposed in the paper. The paper presents calculation kinematics model for turning of steered and rigid bogie with inter-wheel differential at various axial drive.

  5. 3D dynamic modeling of spherical wheeled self-balancing mobile robot


    İnal, Ali Nail


    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references. In recent years, dynamically stable platforms that move on spherical wheels, also known as BallBots, gained popularity in the robotics literature as an alternative locomotion method to statically stable wheeled mobile robots. In contrast to wheeled ...

  6. Considerations on the use of elastic wheels to the urban transport vehicles (United States)

    Sebesan, Ioan; Arsene, Sorin; Manea, Ion


    To minimize dynamic wheel-rail interaction efforts a condition is that the unassembled mass of the vehicle is as small as possible. The elastic wheel by its construction fulfills these conditions - she has interposed between the crown and the body of the wheel, the elastic rubber elements. In this way, it can be considered that the unsupported mass is represented only by the mass of the wheel crown. Additionally, this elasticity also has a reduction effect on rolling noise. This feature makes it suitable for use on urban transport vehicles.

  7. Sensor set-up for wireless measurement of automotive rim and wheel parameters in laboratory conditions (United States)

    Borecki, M.; Prus, P.; Korwin-Pawlowski, M. L.; Rychlik, A.; Kozubel, W.


    Modern rims and wheels are tested at the design and production stages. Tests can be performed in laboratory conditions and on the ride. In the laboratory, complex and costly equipment is used, as for example wheel balancers and impact testers. Modern wheel balancers are equipped with electronic and electro-mechanical units that enable touch-less measurement of dimensions, including precision measurement of radial and lateral wheel run-out, automatic positioning and application of the counterweights, and vehicle wheel set monitoring - tread wear, drift angles and run-out unbalance. Those tests are performed by on-wheel axis measurements with laser distance meters. The impact tester enables dropping of weights from a defined height onto a wheel. Test criteria are the loss of pressure of the tire and generation of cracks in the wheel without direct impact of the falling weights. In the present paper, a set up composed of three accelerometers, a temperature sensor and a pressure sensor is examined as the base of a wheel tester. The sensor set-up configuration, on-line diagnostic and signal transmission are discussed.

  8. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent (United States)

    Tachinardi, Patricia; Tøien, Øivind; Valentinuzzi, Veronica S.; Buck, C. Loren; Oda, Gisele A.


    Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel. PMID:26460828

  9. Enhanced voluntary wheel running in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B


    to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary wheel...... running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A...

  10. Position and force control of a vehicle with two or more steerable drive wheels

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.


    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

  11. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent.

    Directory of Open Access Journals (Sweden)

    Patricia Tachinardi

    Full Text Available Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel.

  12. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit


    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  13. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.


    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to

  14. New Record Five-Wheel Drive, Spirit's Sol 1856 (Stereo) (United States)


    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11962 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11962 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007). The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south. This view is presented as a cylindrical-perspective projection with geometric seam correction.

  15. System Analysis of Flat Grinding Process with Wheel Face

    Directory of Open Access Journals (Sweden)

    T. N. Ivanova


    Full Text Available The paper presents a conducted system analysis of the flat grinding wheel face, considers the state parameters, input and output variables of subsystems, namely: machine tool, workpiece, grinding wheel, cutting fluids, and the contact area. It reveals the factors influencing the temperature and power conditions for the grinding process.Aim: conducting the system analysis of the flat grinding process with wheel face expects to enable a development of the system of grinding process parameters as a technical system, which will make it possible to evaluate each parameter individually and implement optimization of the entire system.One of the most important criteria in defining the optimal process conditions is the grinding temperature, which, to avoid defects appearance of on the surface of component, should not exceed the critical temperature values to be experimentally determined. The temperature criterion can be useful for choosing the conditions for the maximum defect-free performance of the mechanical face grinding. To define the maximum performance of defect-free grinding can also use other criteria such as a critical power density, indirectly reflecting the allowable thermal stress grinding process; the structure of the ground surface, which reflects the presence or absence of a defect layer, which is determined after the large number of experiments; flow range of the diamond layer.Optimal conditions should not exceed those of defect-free grinding. It is found that a maximum performance depends on the characteristics of circles and grade of processed material, as well as on the contact area and grinding conditions. Optimal performance depends on the diamond value (cost and specific consumption of diamonds in a circle.Above criteria require formalization as a function of the variable parameters of the grinding process. There is an option for the compromise of inter-criteria optimality, thereby providing a set of acceptable solutions, from

  16. The Trigger Processor and Trigger Processor Algorithms for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Lazovich, Tomo; The ATLAS collaboration


    The ATLAS New Small Wheel (NSW) is an upgrade to the ATLAS muon endcap detectors that will be installed during the next long shutdown of the LHC. Comprising both MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), this system will drastically improve the performance of the muon system in a high cavern background environment. The NSW trigger, in particular, will significantly reduce the rate of fake triggers coming from track segments in the endcap not originating from the interaction point. We will present an overview of the trigger, the proposed sTGC and MM trigger algorithms, and the hardware implementation of the trigger. In particular, we will discuss both the heart of the trigger, an ATCA system with FPGA-based trigger processors (using the same hardware platform for both MM and sTGC triggers), as well as the full trigger electronics chain, including dedicated cards for transmission of data via GBT optical links. Finally, we will detail the challenges of ensuring that the trigger electronics can ...

  17. Passivity-Based Control for Two-Wheeled Robot Stabilization (United States)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu


    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  18. Care for the case manager: balancing your wheel of life. (United States)

    Crowell, D M


    The case manager's role in our complex health care system is demanding and draining without some self-reflective attention. The Wheel of Life is a key tool for individuals to assess how well they are leading a fully balanced life. The eight aspects of a balanced life--values, self-care, work, relationships, leisure, relaxation, exercise, and centering--are explained and discussed. A self-reflective activity is presented that encourages readers to assess their current life balance. This focused clarification of personal and professional life will facilitate a more fully balanced life with rewards for case managers as individuals, and for their family, clients, and the health care organization.

  19. Effect of blasting on output increase of bucket wheel excavators

    Energy Technology Data Exchange (ETDEWEB)

    Musil, P.


    In brown coal surface mines, consolidated sediments become a problem as mining operations advance into greater depth below the original terrain. Owing to higher digging resistance, the output of bucket wheel excavators drops. This problem may be solved by blasting technology and using drilling machines with higher digging force. This paper describes the blasting operations at the Nastup Mines in Tusmice, Czechoslovakia. About 60% of blasting explosives used is a simple mixture of ammonium nitrate and fuel (ANFO), the rest falls on classic blasting gelatines and blasting explosives plasticized by slurry. It is found that blasting improves output by 30% while electric energy consumption is reduced.

  20. The Online Market of Wheels and Tires in Russia


    Masienok, Mikhail


    This thesis examines market situation of wheels and tires in Russia from 2014 until 2016. As the main type of cars were chosen passenger cars because they are used most. As a case study was chosen the biggest online store “Mosautoshina” and the most popular feedback site “Yandex.Market”. These sites possess real customers’ feedbacks, their opinion about each item and rating. To make right statistics for 2013 and 2014, I have used the work made by Discovery Research Group, which kind...

  1. Analysis of Wheel Hub Motor Drive Application in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sun Yuechao


    Full Text Available Based on the comparative analysis of the performance characteristics of centralized and distributed drive electric vehicles, we found that the wheel hub motor drive mode of the electric vehicles with distributed drive have compact structure, high utilization ratio of interior vehicle space, lower center of vehicle gravity, good driving stability, easy intelligent control and many other advantages, hence in line with the new requirements for the development of drive performance of electric vehicles, and distributed drive will be the ultimate mode of electric vehicles in the future.

  2. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel


    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  3. Increasing Slew Performance of Reaction Wheel Attitude Control Systems (United States)


    operators want an imaging satellite to obtain an image, the rate and acceleration variations over 4π steradians require them to focus on the temporal aspect...51–53. 138 Figure 73. Normalized Momentum and Torque for an Optimal Maneuver Now the temporal element of the identified points becomes important...getattachment/8ccf207d-1ada-4bfc-a21b- 5c400a1f5d52/SmallWheel (Accessed 28 July 2013). [49] EADS Astrium, “CMG 4–6S,” datasheet, [online] 2009

  4. Sustainable Supply Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy

    A significant conceptual and practical challenge is how to integrate triple bottom line (TBL; including economic, social and environmental) sustainability into global supply chains. Although this integration is necessary to slow down global resource depletion, understanding is limited of how...... to implement TBL goals across the supply chain. In supply chain design, the classic economic perspective still dominates, although the idea of the TBL is more widely disseminated. The purpose of this research is to add to the sustainable supply chain management literature (SSCM) research agenda...... by incorporating the physical chain, and the (information and financial) support chains into supply chain design. This manuscript tackles issues of what the chains are designed for and how they are designed structurally. Four sustainable businesses are used as illustrative case examples of innovative supply chain...

  5. [Active and safe with wheeled walkers : Pilot study on feasibility of mobility exercises for wheeled walker users]. (United States)

    Pflaum, Marina; Lang, Frieder R; Freiberger, Ellen


    The number of older people with mobility impairments using wheeled walkers is increasing; however, the handling of these walking aids is often ineffective. Moreover, age-associated functional loss, environmental demands and fear of falling may additionally challenge mobility. The new training program "Active and safe with wheeled walkers" aims to enhance skills and to improve mobility. The present pilot study was carried out to assess the feasibility of the training as well as to identify training effects and methodological insights for further research. The study was carried out with 28 wheeled walker users (age 68-91 years) in assisted living facilities using a pre-post design. Of the participants 13 persons were trained for 10 weeks (90 min, twice a week) and 15 persons served as a control group. Data were collected on functional mobility, hand strength, leg strength, balance, walker handling and fear of falling. The drop-out rate for the training was 38 % due to health concerns (n = 2), lack of time (n = 1) and changes in health status independent of training (n = 3). Medium to large effects were detected. Data regarding the recruitment strategy and the acceptance of individual exercises are available. The results indicate a good feasibility and effectiveness of the training. The simple accessibility of the training was conducive for the regular participation. The everyday relevance of the results and the lack of comparable interventions suggest that further research efforts be carried out. Recruitment strategies, training requirements and data collection methods need to be optimized.

  6. Wheeled Vehicle Steering Systems. Military Curriculum Materials for Vocational and Technical Education. (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle steering systems. It provides the basic theory, and also includes…

  7. Wheeled Vehicle Electrical Systems. Military Curriculum Materials for Vocational and Technical Education. (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle electrical systems. It provides the basic theory, and also includes…

  8. Wheeled Vehicle Clutches, Transmissions, and Transfers. Military Curriculum Materials for Vocational and Technical Education. (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle clutches, transmissions, and transfer cases. It provides the basic…

  9. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work? (United States)

    Steele, Maureen; Silins, Edmund; Flaherty, Ian; Hiley, Sarah; van Breda, Nick; Jauncey, Marianne


    Wheel-filtration of pharmaceutical opioid tablets is a recognised harm reduction strategy, but uptake of the practice among people who inject drugs is low. The study aimed to: (i) examine perceptions of filtration practices; (ii) provide structured education on wheel-filtration; and (iii) assess uptake of the practice. Frequent opioid tablet injectors (n = 30) attending a supervised injecting facility in Sydney, Australia, received hands-on instruction on wheel-filtration based on recommended practice. Pre-education, post-education and follow-up questionnaires were administered. Wheel-filtration was generally regarded as better than cotton-filtration (the typical method) in terms of perceived effects on health, ease of use and overall drug effect. Sixty-eight percent of those who said they would try wheel-filtration after the education had actually done so. Of those who usually used cotton-filtration, over half (60%) had used wheel-filtration two weeks later. Uptake of safer preparation methods for pharmaceutical opioid tablets increases after structured education in wheel-filtration. Findings suggest that SIFs are an effective site for this kind of education. Supervised injecting facility workers are uniquely positioned to provide harm reduction education at the time of injection. [Steele M, Silins E, Flaherty I, Hiley S, van Breda N, Jauncey M. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work? Drug Alcohol Rev 2018;37:116-120]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  10. Reinforcement Value and Substitutability of Sucrose and Wheel Running: Implications for Activity Anorexia (United States)

    Belke, Terry W.; Duncan, Ian D.; Pierce, W. David


    Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior…

  11. Effects of Post-Session Wheel Running on Within-Session Changes in Operant Responding (United States)

    Aoyama, Kenjiro


    This study tested the effects of post-session wheel running on within-session changes in operant responding. Lever-pressing by six rats was reinforced by a food pellet under a continuous reinforcement (CRF) schedule in 30-min sessions. Two different flavored food pellets were used as reinforcers. In the wheel conditions, 30-min operant-sessions…

  12. A study on the implementation of in-wheel motors in a VW Lupo

    NARCIS (Netherlands)

    George, A.D.; Nijmeijer, H.; Besselink, I.J.M.


    This report presents the results of the study on the implementation of an In-Wheel Motor (IWM) propulsion system and the design of a rear suspension for such a system for a Volkswagen Lupo. Previous research has been conducted at the Eindhoven University of Technology on the impact of in-wheel

  13. Improved infrared-sensing running wheel systems with an effective exercise activity indicator. (United States)

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung


    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  14. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    Directory of Open Access Journals (Sweden)

    Chi-Chun Chen

    Full Text Available This paper describes an infrared-sensing running wheel (ISRW system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA, with the IR sensors (which are connected to a conventional PC recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  15. Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard

    This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...

  16. Final version of the pick-up wheels in the Pelletron tandem accelerator at Lund

    International Nuclear Information System (INIS)

    Hakansson, K.; Hellborg, R.


    A new type of pick-up wheel has been designed and constructed for the charge transport system of the Lund 3UDH Pelletron tandem accelerator. The major improvements compared with older types are a slender design with only one ball bearing and more robust contact pins with a rubber ring between the pinhead and the wheel nave. (orig.)

  17. Design procedure for a wind-wheel with self-adjusting blade mechanism

    Directory of Open Access Journals (Sweden)

    Gennady A. Oborsky


    Full Text Available Developed is a wind-wheel design equipped with the self-adjusting blade. The blade is positioned eccentrically to the balance wheel and can freely rotate around its axis. Elaborated is the method of calculating the energy characteristics for a wind-wheel with the self-adjusting blade, considering not only the wind force but the force of air counter flow resistance to the blade’s rotation. Initially, the blade being located at an angle α = 45 to the wheel rotation plane, the air flow rotates the wheel with the maximum force. Thus, the speed of rotation increases that involves the increase in air counter flow resistance and results in blade turning with respective angle α reduction. This, consequently, reduces the torque. When the torsional force and the resistance enter into equilibrium, the blade takes a certain angle α, and the wheel speed becomes constant. This wind-wheel design including a self-adjusting blade allows increasing the air flow load ratio when compared to the wind-wheel equipped with a jammed blade.

  18. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity. (United States)

    Carter, P A; Swallow, J G; Davis, S J; Garland, T


    Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.

  19. Taste avoidance induced by wheel running: effects of backward pairings and robustness of conditioned taste aversion. (United States)

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C


    Rats repeatedly exposed to a distinctive novel solution (conditioned stimulus, CS) followed by the opportunity to run in a wheel subsequently drink less of this solution. Investigations on this phenomenon indicate that wheel running is an effective unconditioned stimulus (US) for establishing conditioned taste aversion (CTA) when using a forward conditioning procedure (i.e., the US-wheel running follows the CS-taste). However, other studies show that wheel running produces reliable preference for a distinctive place when pairings are backward (i.e., the CS-location follows the US-wheel running). One possibility to account for these results is that rewarding aftereffects of wheel running conditioned preference to the CS. The main objective of the present study was to assess the effects of backward conditioning using wheel running as the US and a distinctive taste as the CS. In a between-groups design, two experimental groups [i.e., forward (FC) and backward conditioning (BC)] and two control groups [CS-taste alone (TA) and CS-US unpaired (UNP)] were compared. Results from this experiment indicated that there is less suppression of drinking when a CS-taste followed a bout of wheel running. In fact, rats in the BC group drank more of the paired solution than all the other groups.

  20. Conditioned taste avoidance induced by forced and voluntary wheel running in rats. (United States)

    Forristall, J R; Hookey, B L; Grant, V L


    Voluntary exercise by rats running in a freely rotating wheel (free wheel) produces conditioned taste avoidance (CTA) of a flavored solution consumed before running [e.g., Lett, B.T., Grant, V.L., 1996. Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty. Physiol. Behav. 59, 699-702]. Forced exercise, swimming or running, also produces CTA in rats [e.g., Masaki, T., Nakajima, S., 2006. Taste aversion induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments. Physiol. Behav. 88, 411-416]. Energy expenditure may be the critical factor in producing such CTA. If so, forced running in a motorized running wheel should produce CTA equivalent to that produced by a similar amount of voluntary running. In two experiments, we compared forced running in a motorized wheel with voluntary running in a free wheel. Mean distance run over 30 min was equated as closely as possible in the two apparatuses. Both types of exercise produced CTA relative to sedentary, locked-wheel controls. However, voluntary running produced greater CTA than forced running. We consider differences between running in the free and motorized wheels that may account for the differences in strength of CTA.

  1. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats. (United States)

    Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K


    The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P RUN and R-RUN led to a significantly greater wet mass relative to increase in body mass and muscle fibre cross-sectional area in the soleus muscle compared with CON. We conclude that the pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.

  2. Design of the Dual Offset Active Caster Wheel for Holonomic Omni-Directional Mobile Robots

    Directory of Open Access Journals (Sweden)

    Woojin Chung


    Full Text Available It is shown how a holonomic and omni-directional mobile robot is designed towards indoor public services. Dual offset steerable wheels with orthogonal velocity components are proposed. The proposed wheel provides precise positioning and reliable navigation performance as well as durability. A fabricated prototype is introduced, then, an experiment is carried out.

  3. Bucket wheel excavators for open-cast mining all over the world

    Energy Technology Data Exchange (ETDEWEB)

    Durst, W.


    A report is given on the use of bucket wheel excavators, spreaders and tripper cars in open-cast mining of brown coal, oilsand and other minerals in Australia, Canada, India, Spain, USA and Yugoslavia as well as on the use of bucket wheel excavators for land reclamation in Singapore.

  4. Wheeled Vehicle Drive Lines, Axles, and Suspension Systems. Military Curriculum Materials for Vocational and Technical Education. (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…

  5. Rear suspension design for an in-wheel-drive electric car

    NARCIS (Netherlands)

    George, Ashwin Dayal; Besselink, Igo


    The in-wheel motor configuration can provide more flexibility to electric car design, making the car more compact and lightweight. However, current suspension systems are not designed to incorporate an in-wheel powertrain, and studies have shown deterioration in ride comfort and handling when more

  6. 75 FR 13809 - Reclassification of Motorcycles (Two and Three Wheeled Vehicles) in the Guide to Reporting... (United States)


    ... Taxation, page 3-2. Item I.E.2. Motorcycles: This item includes two-wheeled and three-wheeled motorcycles... FHWA from their motor vehicle registration systems. As a result, such data is based on the definitions... bicycles. \\4\\ American National Standards Institute,

  7. Effect of wheelchair design on wheeled mobility and propulsion efficiency in less-resourced settings

    Directory of Open Access Journals (Sweden)

    Christopher J. Stanfill


    Conclusion: Use of wheel-mounted accelerometers as a means to test user mobility proved to be a feasible methodology in rural settings. Variability in wheeled mobility data could be decreased with longer acclimatisation periods. The data suggest that push rim users experience an easier transition to a dual-lever propulsion system.

  8. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Deng, Na


    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  9. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels (United States)

    Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong


    Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

  10. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько


    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  11. Magnetic power conversion with machines containing full or porous wheel heat exchangers (United States)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier


    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.

  12. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    International Nuclear Information System (INIS)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier


    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies-which are promising-are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants

  13. Improvement of the operation of wheels mobile robot TRASMAR2

    International Nuclear Information System (INIS)

    Guerra C, D. A.; Tovar M, R.; Gonzalez M, J. L.; Segovia de los Rios, A.


    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  14. Simulation of the ATLAS New Small Wheel (NSW) System

    CERN Document Server

    Maekawa, Koki; The ATLAS collaboration


    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. In order to benefit from the expected high luminosity performance that will be provided by the Phase-1 upgraded LHC, the first station of the ATLAS muon end-cap Small Wheel system will need to be replaced by a New Small Wheel (NSW) detector. The NSW is going to be installed in the ATLAS detector in the forward region of 1.3 < |η| < 2.7 during the second long LHC shutdown. The NSW will have to operate in a high background radiation region, while reconstructing muon tracks with high precision as well as furnishing information for the Level-1 trigger. A detailed study of the final design and validation of the readout electronics for a set of precision tracking (Micromegas) and trigger chambers (small-strip Thin Gap Chambers or sTGC) that are able to work at high rates with excellent real-...

  15. Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna (United States)

    Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.


    Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.

  16. Aging Analysis of Micromegas Detectors for ATLAS New Small Wheel

    CERN Document Server

    Quinnan, Melissa


    In preparation for the coming High Luminosity Large Hadron Collider (HL-LHC) upgrade, the New Small Wheel (NSW) will replace the Small Wheel of the ATLAS Muon Spectrometer as part of the 2018 ATLAS Phase-I upgrade. Micromegas (MM) detectors will serve as one component of the NSW. These gaseous micro-mesh detectors will accommodate the higher luminosity and trigger rate of the future HL-LHC.In order to predict performance of MM after several years in the HL-LHC, radiation aging tests were conducted in the Gamma Irradiation Facility (GIF++) using a Cs 137 source. Two small MM prototype "T" chambers were irradiated and studied over the course of several months to accelerate the aging process and characterize chamber behavior. This report outlines a record of the aging process thus far and demonstrates techniques used to describe aging effects, namely measurements of average current, integrated charge, and gain. These will be used in the ongoing aging analysis of the T chambers and in future aging studies of the ...

  17. Non-Harmonic Fourier Analysis for bladed wheels damage detection (United States)

    Neri, P.; Peeters, B.


    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  18. Mechatronic modeling of real-time wheel-rail contact

    CERN Document Server

    Bosso, Nicola; Gugliotta, Antonio; Somà, Aurelio


    Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.

  19. Deformation processes within wheel-rail adhesion in contact area (United States)

    Albagachiev, A. Yu; Keropyan, A. M.


    The study of working surface deformation during interaction of open-pit locomotive tires allowed defining outstanding features of phenomena occurring in the contact area of interacting surfaces. It was found that processes typical for plastic saturated contact occur in the area of wheel-rail interaction of industrial railway transport. In case of plastic deformation exposed to heavy loads typical for open-pit locomotives, upon all rough surfaces of the contour contact area being fully deformed, the frame on which they are found is exposed to plastic deformation. Plastic deformation of roughness within the contact area of interacting surfaces leads to the increase in the actual area of their contact and, therefore, increases the towing capacity of mining machines. Finally, the available data on deformation characteristics with regard to processes occurring in the contact area of wheel-rail interaction will allow making theoretical forecasts on the expected design value of friction coefficient and, therefore, the towing capacity of open-pit locomotives.

  20. Simulation of the ATLAS New Small Wheel (NSW) System

    CERN Document Server

    Maekawa, Koki; The ATLAS collaboration


    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. In order to benefit from the expected high luminosity performance, the first station of the ATLAS muon end-cap Small Wheel system will need to be replaced by a New Small Wheel (NSW) detector during the second long LHC shutdown. The NSW will have to operate in a high background radiation region, while reconstructing muon tracks with high precision as well as furnishing information for the Level-1 trigger. The NSW simulation has been developed to model the actual response of the detector and its fast electronics. The simulation has been used to get a deep understanding of the trigger logic timing, the tracking-segment finding efficiency, track rate and track-pointing resolutions at the high background hit rate expected during the next phases of ATLAS at LHC. The results of these performance stu...

  1. Modeling of the motion of automobile elastic wheel in real-time for creation of wheeled vehicles motion control electronic systems (United States)

    Balakina, E. V.; Zotov, N. M.; Fedin, A. P.


    Modeling of the motion of the elastic wheel of the vehicle in real-time is used in the tasks of constructing different models in the creation of wheeled vehicles motion control electronic systems, in the creation of automobile stand-simulators etc. The accuracy and the reliability of simulation of the parameters of the wheel motion in real-time when rolling with a slip within the given road conditions are determined not only by the choice of the model, but also by the inaccuracy and instability of the numerical calculation. It is established that the inaccuracy and instability of the calculation depend on the size of the step of integration and the numerical method being used. The analysis of these inaccuracy and instability when wheel rolling with a slip was made and recommendations for reducing them were developed. It is established that the total allowable range of steps of integration is s; the strongest instability is manifested in the calculation of the angular and linear accelerations of the wheel; the weakest instability is manifested in the calculation of the translational velocity of the wheel and moving of the center of the wheel; the instability is less at large values of slip angle and on more slippery surfaces. A new method of the average acceleration is suggested, which allows to significantly reduce (up to 100%) the manifesting of instability of the solution in the calculation of all parameters of motion of the elastic wheel for different braking conditions and for the entire range of steps of integration. The results of research can be applied to the selection of control algorithms in vehicles motion control electronic systems and in the testing stand-simulators

  2. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models. (United States)

    Yang, Chenguang; Li, Zhijun; Li, Jing


    In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller.

  3. Securitization of energy supply chains in China

    International Nuclear Information System (INIS)

    Leung, Guy C.K.; Cherp, Aleh; Jewell, Jessica; Wei, Yi-Ming


    Highlights: • Three sources of energy security risks, namely sovereignty, robustness and resilience, affect China’s energy chains. • Energy security issues in China both have shaped and at the same time were shaped by ideas and institutions. • China remains rigid with equating ‘security’ with ‘national security’ and the notion of “national” is socially constructed. • Powerful actors, such as Chinese NOCs, inclined to interpret the problem so that it fits their preferred solution. • Securitization of any energy supply chains results from their historical roots, system properties and institutional agents. - Abstract: Energy policies in China, the world’s largest energy consumer, are an important factor in shaping the global energy system. While scholars agree that energy security is a major driver of China’s energy policies, there is insufficient understanding of what exactly constitutes China’s energy security from the policy perspective. We apply recent insights from the Global Energy Assessment, particularly the idea of vital energy systems, and the securitization theory to propose a framework for explaining China’s energy security policies in their historic evolution. We pay specific attention to explaining how particular energy supply chains are constructed and securitized. We draw data from over 300 Chinese and over 100 English publications and 30 interviews with energy officials and experts in China. We demonstrate that China’s focus on vulnerabilities of its oil supply chain at the expense of improving the reliability of domestic electricity supply is not accidental. It has its roots in historic events, properties of energy systems, as well as the presence of powerful institutional agents interested in securitizing the oil supply chain but not other vital energy systems. We suggest that this focus on the oil supply chain is likely to be maintained in the future, possibly accompanied by increasing concerns over natural gas

  4. Environmental enrichment in the absence of wheel running produces beneficial behavioural and anti-oxidative effects in rats. (United States)

    Mármol, F; Sánchez, J; Torres, M N; Chamizo, V D


    The effects of early environmental enrichment (EE) when solving a simple spatial task in adult male rats were assessed. After weaning, rats were housed in pairs in enriched or standard cages (EE and control groups) for two and a half months. Then the rats were trained in a triangular-shaped pool to find a hidden platform whose location was defined in terms of two sources of information, a landmark outside the pool and a particular corner of the pool. As expected, enriched rats reached the platform faster than control animals. Enriched rats also performed better on a subsequent test trial without the platform with the geometry cue individually presented (in the absence of the landmark). Most importantly, the beneficial effects of the present protocol were obtained in the absence of wheel running. Additionally, the antioxidative effects in the hippocampus produced by the previous protocol are also shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw (United States)

    Liu, Binbin; Bruni, Stefano; Vollebregt, Edwin


    A novel approach is proposed in this paper to deal with non-Hertzian normal contact in wheel-rail interface, extending the widely used Kik-Piotrowski method. The new approach is able to consider the effect of the yaw angle of the wheelset against the rail on the shape of the contact patch and on pressure distribution. Furthermore, the method considers the variation of profile curvature across the contact patch, enhancing the correspondence to CONTACT for highly non-Hertzian contact conditions. The simulation results show that the proposed method can provide more accurate estimation than the original algorithm compared to Kalker's CONTACT, and that the influence of yaw on the contact results is significant under certain circumstances.

  6. Stocks and flows of lead-based wheel weights in the United States (United States)

    Bleiwas, Donald I.


    Lead is used in many widely known applications, such as automobile batteries and radiation shielding. Another lesser known, but long-term, use of lead is in automotive vehicle wheel weights. Lead weights have been used to balance wheels since the 1930s because of its high specific gravity, low relative cost, and its malleability. Out-of-balance tires tend to 'cup' and vibrate and as a result cause excessive wear on tires and vehicle suspension components and result in compromised handling, especially at high speeds. The mass, number, and style of weights needed to balance a wheel depend on the tire's size and weight and on the type and condition of the wheels (rims) on the vehicle. This study addresses an accounting of the stocks and flows of lead contained in lead wheel weights from their manufacture, through use, dissipation, and recycling, and environmental issues associated with the use of lead.

  7. Multi-component lightweight gearwheels with deep-drawn wheel body for automotive applications (United States)

    Benkert, Tim; Hiller, Maria; Volk, Wolfram


    Multi-component gearwheels offer great lightweight opportunities for automotive applications. An assembly of a gear ring and a wheel body joined by press fit replaces the monolithic gearwheel. To save weight, the wheel body uses lightweight design. This lightweight design influences the assembled gearwheel’s mechanical properties like stiffness, weight and torque capacity. Further, the wheel body material influences the mentioned properties as well. In this paper, the effects of the lightweight wheel body manufactured by deep-drawing on the mechanical properties of the assembled gearwheel are investigated. Three different wheel body designs are examined regarding their stiffness and weight compared to a reference gearwheel. Using the best design, the influence of five materials with increasing yield strength on the maximum torque the gearwheel can transmit is studied. All research is done virtually using Abaqus 6.12-3.

  8. Wheel-running reinforcement in free-feeding and food-deprived rats. (United States)

    Belke, Terry W; Pierce, W David


    Rats experiencing sessions of 30min free access to wheel running were assigned to ad-lib and food-deprived groups, and given additional sessions of free wheel activity. Subsequently, both ad-lib and deprived rats lever pressed for 60s of wheel running on fixed ratio (FR) 1, variable ratio (VR) 3, VR 5, and VR 10 schedules, and on a response-initiated variable interval (VI) 30s schedule. Finally, the ad-lib rats were switched to food deprivation and the food-deprived rats were switched to free food, as rats continued responding on the response-initiated VI 30-s schedule. Wheel running functioned as reinforcement for both ad-lib and food-deprived rats. Food-deprived rats, however, ran faster and had higher overall lever-pressing rates than free-feeding rats. On the VR schedules, wheel-running rates positively correlated with local and overall lever pressing rates for deprived, but not ad-lib rats. On the response-initiated VI 30s schedule, wheel-running rates and lever-pressing rates changed for ad-lib rats switched to food deprivation, but not for food-deprived rats switched to free-feeding. The overall pattern of results suggested different sources of control for wheel running: intrinsic motivation, contingencies of automatic reinforcement, and food-restricted wheel running. An implication is that generalizations about operant responding for wheel running in food-deprived rats may not extend to wheel running and operant responding of free-feeding animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Wheel-running attenuates intravenous cocaine self-administration in rats: sex differences. (United States)

    Cosgrove, Kelly P; Hunter, Robb G; Carroll, Marilyn E


    This experiment examines the effect of access to a running-wheel on intravenous cocaine self-administration in male and female rats. Rats maintained at 85% of their free-feeding body weight were first exposed to the running-wheel alone during the 6-h sessions until behavior stabilized for 14 days. Intravenous cannulae were then implanted, and the rats were trained to self-administer a low dose of cocaine (0.2 mg/kg) under a fixed-ratio (FR 1) schedule during the 6-h sessions, while the wheel remained inactive and cocaine self-administration stabilized (cocaine-only condition). Next, the wheel access and cocaine self-administration were concurrently available followed by a period of cocaine-only. Behavior was allowed to stabilize for 10 days at each phase. During wheel access, cocaine infusions decreased by 21.9% in males and 70.6% in females compared to the cocaine-only condition; the effect was statistically significant in females. Infusions increased to baseline levels when wheel access was terminated. When cocaine infusions were concurrently available, wheel revolutions were reduced by 63.7% and 61.5% in males and females, respectively, compared to the wheel-only condition. This result did not differ due to sex, but it was statistically significant when data from males and females were combined. These results indicate that wheel-running activity had a greater suppressant effect on cocaine self-administration in females than in males, and in females, wheel-running and cocaine self-administration are substitutable as reinforcers.

  10. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  11. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)


    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...


    Directory of Open Access Journals (Sweden)

    S. A. Semenov


    Full Text Available Purpose. The article is aimed to the definition of technical and economic efficiency from the use of wheels of perspective structural scheme in the undercarriage of the rail vehicles (wagon. Methodology. The use efficiency of wheels of promising design scheme by reducing the motion resistance and wear of the wheel flanges is estimated by calculated values of estimated annual economic effect of implementation and payback period of the costs required for the development and implementation of the proposed wheel. Non-recurring costs include the cost associated with conducting research and development work, as well as the additional costs required for the manufacture of wheels of promising design scheme. Findings. In the course of computation and analysis of the economic efficiency from introductions of wheels of promising design concept, carried out on the basis of the initial data for the South-West railway, it was determined the profit which can be obtained by reducing the following operating costs: cost of returning the wheel flange on wheel sets; cost of fuel and energy resources for train traction; the value of the idle of cars in the current uncoupling repair; cost of repairs and current maintenance of rail track. In addition, it can be additionally released a number of cars by reducing their downtime. The calculation of net discounted income is carried out with the following assumptions: calculation period; estimated increase in the cost of wheel sets with wheels of promising constructive scheme compared to the model, the values of net profit for the accounting period, which was calculated by calculating the average value minus the cost of research, development and manufacturing of wheelset park with wheels of new design scheme. For a given billing period, the calculated value of the net discounted income was obtained and the payback period of the project was determined. Originality. The approaches to the perfection of design scheme of wheels

  13. Chain transitivity in hyperspaces

    International Nuclear Information System (INIS)

    Fernández, Leobardo; Good, Chris; Puljiz, Mate; Ramírez, Ártico


    Given a non-empty compact metric space X and a continuous function f: X → X, we study the dynamics of the induced maps on the hyperspace of non-empty compact subsets of X and on various other invariant subspaces thereof, in particular symmetric products. We show how some important dynamical properties transfer across induced systems. These amongst others include, chain transitivity, chain (weakly) mixing, chain recurrence, exactness by chains. From our main theorem we derive an ε-chain version of Furstenberg’s celebrated 2 implies n Theorem. We also show the implications our results have for dynamics on continua.

  14. Decisive Markov Chains


    Abdulla, Parosh Aziz; Henda, Noomene Ben; Mayr, Richard


    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In part...

  15. Gushing metal chain (United States)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander


    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  16. Rover's Wheel Churns Up Bright Martian Soil (False Color) (United States)


    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.

  17. Rover's Wheel Churns Up Bright Martian Soil (Stereo) (United States)


    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.

  18. Rover's Wheel Churns Up Bright Martian Soil (Vertical) (United States)


    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  19. Private Finance 2 (PF2): Re-inventing the Wheel? (United States)

    Zawawi, N. A. W. A.; Abdul-Aziz, A. R.; Khamidi, M. F.; Othman, I.; Idrus, A.; Umar, A. A.


    The Procurement policy of any government is the most influential factor in determining the efficiency of infrastructure and service provision like roads, water supply and energy. The UK's HM Treasury released its new guidelines on private involvement in infrastructures provision and services towards reforming the popular Private Finance Initiatives (PFI) policy. This new approach, it now refers to as the Private Finance 2 (PF2) is meant to correct the imperfections which have bedeviled the older version-PFI. However, the 'new guidelines' contained nothing really new in the area of private financing and operation of public infrastructures, at best it is akin to 're-inventing the wheel' rather than being 'new'. While dwelling extensively on issues relating to cheaper financing sources, risks transfer, counterpart funding by government and improving public sector procurement skills, this paper argues that some countries in the developing world have long recognised these issues and taken practical steps to correct them.

  20. Static In-wheel Wireless Charging Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chirag Panchal


    Full Text Available Wireless charging is a popular upcoming technology with uses ranging from mobile phone charging through to electric vehicle EV charging. Large air gaps found in current EV wireless charging systems WCS pose a hurdle of its success. Air gaps in WCS cause issues in regards to efficiency power transfer and electromagnetic compatibility EMC leakage issues. A static In-Wheel WCS IW-WCS is presented which significantly reduces the issues associated with large air gaps. A small scale laboratory prototype utilizing a standard 10mm steel reinforced tyre has been created and compared to a typical 30mm air gap. The IW-WCS has been investigated by experimental and finite element method FEM based electro-magnetic field simulation methods to validate performance.

  1. Bucket wheel excavator performances at Neyveli lignite mine

    Energy Technology Data Exchange (ETDEWEB)

    Kumaraswamy, S; Mozumdar, B K


    Bucket-wheel excavators have been in use at the Neyveli Lignite Mine in the State of Tamil Nadu, India, since the early nineteen-sixties. The mining environment has been particularly harsh for BWE application. The adverse influencing factors are the hardness of the over-burden formation, high abrasivity of rock and artesian ground water conditions. In this paper, the performances of the BWEs at Neyveli have been statistically analysed to determine the effects of physico-mechanical properties of overburden, blasting and rainfall on machine productivity, availability, wear-and-tear of bucket teeth, power consumption, production efficiency and cost of mining. An empirical relationship between the production efficiency, defined as the ratio of actual production rate to the theoretical one, and the bench height and width, height of slices, specific cutting resistance of the overburden material and its clay content, consumption of explosives, and conveyor length has been established.

  2. Desiccant wheel thermal performance modeling for indoor humidity optimal control

    International Nuclear Information System (INIS)

    Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua


    Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy

  3. Fractional Control of An Active Four-wheel-steering Vehicle (United States)

    Wang, Tianting; Tong, Jun; Chen, Ning; Tian, Jie


    A four-wheel-steering (4WS) vehicle model and reference model with a drop filter are constructed. The decoupling of 4WS vehicle model is carried out. And a fractional PIλDμ controller is introduced into the decoupling strategy to reduce the effects of the uncertainty of the vehicle parameters as well as the unmodelled dynamics on the system performance. Based on optimization techniques, the design of fractional controller are obtained to ensure the robustness of 4WS vehicle during the special range of frequencies through proper choice of the constraints. In order to compare with fractional robust controller, an optimal controller for the same vehicle is also designed. The simulations of the two control systems are carried out and it reveals that the decoupling and fractional robust controller is able to make vehicle model trace the reference model very well with better robustness.

  4. Private Finance 2 (PF2): Re-inventing the Wheel?

    International Nuclear Information System (INIS)

    Zawawi, N A W A; Khamidi, M F; Othman, I; Umar, A A; Abdul-Aziz, A R; Idrus, A


    The Procurement policy of any government is the most influential factor in determining the efficiency of infrastructure and service provision like roads, water supply and energy. The UK's HM Treasury released its new guidelines on private involvement in infrastructures provision and services towards reforming the popular Private Finance Initiatives (PFI) policy. This new approach, it now refers to as the Private Finance 2 (PF2) is meant to correct the imperfections which have bedeviled the older version-PFI. However, the 'new guidelines' contained nothing really new in the area of private financing and operation of public infrastructures, at best it is akin to 're-inventing the wheel' rather than being 'new'. While dwelling extensively on issues relating to cheaper financing sources, risks transfer, counterpart funding by government and improving public sector procurement skills, this paper argues that some countries in the developing world have long recognised these issues and taken practical steps to correct them.

  5. Stop wheeling and start dealing. Resolving the transmission dilemma

    International Nuclear Information System (INIS)

    Ruff, L.E.


    The author distinguishes the role of a Gridco that owns actual transmission assets from that of a Poolco that must dispatch generation and transmission optimally to meet time- and space-differentiated customer demands. He contends that present wheeling orders that convert high-voltage wires of generation and transmission companies into 'open access' transmission providers while maintaining their control of dispatch are skewed; rather, the Poolco must charge the same prices for comparable transmission services provided to any customer. Transmission plant must always be dispatched in a least-cost fashion; contracts-for-differences enable customers to hedge against extreme price fluctuations that may arise. Poolco payments should be made to an independent Gridco as compensation for providing its physical grid; necessary revenues must be recovered from Poolco customers. 6 figs

  6. Stop wheeling and start dealing. Resolving the transmission dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Ruff, L.E. [Putnam, Hayes and Bartlett, Inc., Washington, DC (United States)


    The author distinguishes the role of a Gridco that owns actual transmission assets from that of a Poolco that must dispatch generation and transmission optimally to meet time- and space-differentiated customer demands. He contends that present wheeling orders that convert high-voltage wires of generation and transmission companies into `open access` transmission providers while maintaining their control of dispatch are skewed; rather, the Poolco must charge the same prices for comparable transmission services provided to any customer. Transmission plant must always be dispatched in a least-cost fashion; contracts-for-differences enable customers to hedge against extreme price fluctuations that may arise. Poolco payments should be made to an independent Gridco as compensation for providing its physical grid; necessary revenues must be recovered from Poolco customers. 6 figs.

  7. Numerical simulation of low pressure die-casting aluminum wheel

    Directory of Open Access Journals (Sweden)

    Mi Guofa


    Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  8. Design and Assessment of a Machine Vision System for Automatic Vehicle Wheel Alignment

    Directory of Open Access Journals (Sweden)

    Rocco Furferi


    Full Text Available Abstract Wheel alignment, consisting of properly checking the wheel characteristic angles against vehicle manufacturers' specifications, is a crucial task in the automotive field since it prevents irregular tyre wear and affects vehicle handling and safety. In recent years, systems based on Machine Vision have been widely studied in order to automatically detect wheels' characteristic angles. In order to overcome the limitations of existing methodologies, due to measurement equipment being mounted onto the wheels, the present work deals with design and assessment of a 3D machine vision-based system for the contactless reconstruction of vehicle wheel geometry, with particular reference to characteristic planes. Such planes, properly referred to as a global coordinate system, are used for determining wheel angles. The effectiveness of the proposed method was tested against a set of measurements carried out using a commercial 3D scanner; the absolute average error in measuring toe and camber angles with the machine vision system resulted in full compatibility with the expected accuracy of wheel alignment systems.

  9. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin


    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  10. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Kaikai Lv


    Full Text Available This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abnormal vibration considering the track and the vehicle system. The influence of wheel eccentricity on the car body vibration was firstly analyzed. Simulated acceleration of car body has a great accordance with test. The wheel eccentricity could excite the resonance of car body at the speed of 21 km/h, and the vertical acceleration would increase considerably. Decreasing the secondary stiffness can effectively reduce the vertical vibration caused by wheel eccentricity, especially at the resonant speed. In the secondary test, the peak of car body acceleration at speed of 20 km/h is not appearing when only renewing the wheels, and the acceleration is decreasing obviously at the domain frequency. It is further determined that the abnormal vibration is mainly caused by the wheel eccentricity.

  11. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake (United States)

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.


    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  12. Naloxone attenuates the conditioned place preference induced by wheel running in rats. (United States)

    Lett, B T; Grant, V L; Koh, M T


    Pairings, during which an episode of wheel running is followed by confinement in a distinctive place, produce conditioned place preference (CPP) in rats. This finding indicates that wheel running has a rewarding effect that outlasts the activity itself. In two similar experiments, we tested the hypothesis that this rewarding effect of wheel running is mediated by endogenous opioids. During a paired trial, the rats in the naloxone group were first allowed to wheel run for 2 h, then injected with naloxone (0.5 or 0.1 mg/kg in Experiments 1 and 2, respectively), and 10 min later placed in a distinctive chamber. During an unpaired trial, these rats were confined in an adjoining chamber without wheel running. Naloxone was injected before placement in both chambers, so that if naloxone-induced conditioned place aversion occurred, it would have counteracting effects on performance during the preference test. The rats in the saline group were similarly treated, except that saline was injected instead of naloxone. CPP occurred in the saline group, but not in the naloxone group. Thus, naloxone attenuated the CPP induced by wheel running. This finding supports the hypothesis that the rewarding effect of wheel running is mediated by endogenous opioids.

  13. Cross-stream ejection in the inter-wheel region of aircraft landing gears (United States)

    McCarthy, Philip; Ekmekci, Alis


    The reduction of aircraft noise is an important challenge currently faced by aircraft manufacturers. During approach and landing, the landing gears contribute a significant proportion of the aircraft generated noise. It is therefore critical that the key noise sources be identified and understood in order for effective mitigation methods to be developed. For a simplified two-wheel nose landing gear, a strong cross stream flow ejection phenomena has been observed to occur in the inter-wheel region in presence of wheel wells. The location and orientation of these flow ejections causes highly unsteady, three dimensional flow between the wheels that may impinge on other landing gear components, thereby potentially acting as a significant noise generator. The effects of changing the inter-wheel geometry (inter-wheel spacing, the wheel well depth and main strut geometry) upon the cross-stream ejection behaviour has been experimentally investigated using both qualitative flow visualisation and quantitative PIV techniques. A summary of the key results will be presented for the three main geometrical parameters under examination and the application of these findings to real life landing gears will be discussed. Thanks to Messier-Bugatti-Dowty and NSERC for their support for this project.

  14. Properties of Confined Star-Branched and Linear Chains. A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Romiszowski, P.; Sikorski, A.


    A model of linear and star-branched polymer chains confined between two parallel and impenetrable surfaces was built. The polymer chains were restricted to a simple cubic lattice. Two macromolecular architectures of the chain: linear and star branched (consisted of f = 3 branches of equal length) were studied. The excluded volume was the only potential introduced into the model (the athermal system). Monte Carlo simulations were carried out using a sampling algorithm based on chain's local changes of conformation. The simulations were carried out at different confinement conditions: from light to high chain's compression. The scaling of chain's size with the chain length was studied and discussed. The influence of the confinement and the macromolecular architecture on the shape of a chain was studied. The differences in the shape of linear and star-branched chains were pointed out. (author)

  15. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom? (United States)

    Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert


    Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.

  16. Four-wheeled walker related injuries in older adults in the Netherlands. (United States)

    van Riel, K M M; Hartholt, K A; Panneman, M J M; Patka, P; van Beeck, E F; van der Cammen, T J M


    With ageing populations worldwide, mobility devices are used more than ever. In the current literature there is no consensus whether the available mobility devices safely improve the mobility of their users. Also, evidence is lacking concerning the risks and types of injuries sustained while using a four-wheeled walker. To assess injury risks and injury patterns in older adults (≥65 years) who presented at Emergency Departments (ED) in the Netherlands with an injury due to using a four-wheeled walker. In this study, the Dutch Injury Surveillance System was used to obtain a national representative sample of annual ED visits in the Netherlands in the adult population (≥65 years) sustaining an injury while using a four-wheeled walker. The numbers of four-wheeled walker users in the Netherlands were obtained from the national insurance board. The numbers of ED visits were divided by the numbers of four-wheeled walker users to calculate age- and sex-specific injury risks. Annually 1869 older adults visited an ED after sustaining an injury while using a four-wheeled walker. Falls were the main cause of injury (96%). The injury risk was 3.1 per 100 users of four-wheeled walkers. Women (3.5 per 100 users) had a higher risk than men (2.0 per 100 users). Injury risk was the highest in women aged 85 years and older (6.2 per 100 users). The majority of injuries were fractures (60%) with hip fracture (25%) being the most common injury. Nearly half of all four-wheeled walker related injuries required hospitalisation, mostly due to hip fractures. Healthcare costs per injury were approximately €12 000. This study presents evidence that older adults experiencing a fall while using a four-wheeled walker are at high risk to suffer severe injuries.

  17. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method. (United States)

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li


    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump (United States)

    Liu, Yefeng; Meng, Deren; Chen, Shen


    In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.

  19. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai


    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  20. Increasing coupling properties of locomotive by magnetizing contact area of wheel with rail (United States)

    Antipin, D. Ya; Vorobyov, V. I.; Korchagin, V. O.; Kobishchanov, V. V.; Shorokhov, S. G.


    The authors of the paper consider a section of the magnetic circuit, which includes a band of a wheel pair, a railhead and an air gap between them. The parameters of the magnetic field and magnetic resistance between the wheel and the rail are obtained. Attention is paid to the decrease in the magnetic permeability of saturated steel regions and to the change in the magnetic susceptibility of the contact regions at high temperatures in the contact spot. The epicenters of the magnetic field concentration at different modes of magnetization are determined taking into account the change in the wheel position relative to the rail.

  1. Development of an omnidirectional Automated Guided Vehicle with MY3 wheels

    Directory of Open Access Journals (Sweden)

    Suyang Yu


    Full Text Available This paper presents an omnidirectional Automated Guided Vehicle (AGV with a novel omnidirectional wheel named MY3 wheel. Due to the special structure and material of the MY3 wheel, the AGV has full three DOFs in the motion plane and good capabilities of load carrying and slip resisting. In addition, the kinematic model of the AGV is derived, and the guiding method that can make the AGV to follow a specified path is established. Finally, experiments are performed to verify the kinematic model and guiding method.

  2. Effect of short-term prefeeding and body weight on wheel running and responding reinforced by the opportunity to run in a wheel. (United States)

    Belke, Terry W; Pierce, W David; Jensen, K


    A biobehavioural analysis of activity anorexia suggests that the motivation for physical activity is regulated by food supply and body weight. In the present experiment, food allocation was varied within subjects by prefeeding food-deprived rats 0, 5, 10 and 15 g of food before sessions of lever pressing for wheel-running reinforcement. The experiment assessed the effects of prefeeding on rates of wheel running, lever pressing, and postreinforcement pausing. Results showed that prefeeding animals 5 g of food had no effect. Prefeeding 10 g of food reduced lever pressing for wheel running and rates of wheel running without a significant change in body weight; the effect was, however, transitory. Prefeeding 15 g of food increased the animals' body weights, resulting in a sustained decrease of wheel running and lever pressing, and an increase in postreinforcement pausing. Overall the results indicate that the motivation for physical activity is regulated by changes in local food supply, but is sustained only when there is a concomitant change in body weight.

  3. Characterizing Wheel-Soil Interaction Loads Using Meshfree Finite Element Methods: A Sensitivity Analysis for Design Trade Studies (United States)

    Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.


    A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce

  4. Editorial: Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Dimitrios Aidonis


    Full Text Available This special issue has followed up the 3rd Olympus International Conference on Supply Chains held on Athens Metropolitan Expo, November 7 & 8 2015, Greece. The Conference was organized by the Department of Logistics Technological Educational Institute of Central Macedonia, in collaboration with the: a Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH, b Greek Association of Supply Chain Management (EEL of Northern Greece and the c Supply Chain & Logistics Journal. During the 2-Days Conference more than 60 research papers were presented covering the following thematic areas: (i Transportation, (ii Best Practices in Logistics, (iii Information and Communication Technologies in Supply Chain Management, (iv Food Logistics, (v New Trends in Business Logistics, and (vi Green Supply Chain Management. Three keynote invited speakers addressed interesting issues for the Operational Research, the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.

  5. Supply Chain Management og Supply Chain costing

    DEFF Research Database (Denmark)

    Nielsen, Steen; Mortensen, Ole


    Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed...

  6. Some causes of the variable shape of flocks of birds.

    Directory of Open Access Journals (Sweden)

    Charlotte K Hemelrijk

    Full Text Available Flocks of birds are highly variable in shape in all contexts (while travelling, avoiding predation, wheeling above the roost. Particularly amazing in this respect are the aerial displays of huge flocks of starlings (Sturnus vulgaris above the sleeping site at dawn. The causes of this variability are hardly known, however. Here we hypothesise that variability of shape increases when there are larger local differences in movement behaviour in the flock. We investigate this hypothesis with the help of a model of the self-organisation of travelling groups, called StarDisplay, since such a model has also increased our understanding of what causes the oblong shape of schools of fish. The flocking patterns in the model prove to resemble those of real birds, in particular of starlings and rock doves. As to shape, we measure the relative proportions of the flock in several ways, which either depend on the direction of movement or do not. We confirm that flock shape is usually more variable when local differences in movement in the flock are larger. This happens when a flock size is larger, b interacting partners are fewer, c the flock turnings are stronger, and d individuals roll into the turn. In contrast to our expectations, when variability of speed in the flock is higher, flock shape and the positions of members in the flock are more static. We explain this and indicate the adaptive value of low variability of speed and spatial restriction of interaction and develop testable hypotheses.

  7. Integrated well-to-wheel assessment on biofuels, analysing energy, emission and welfare economic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Slentoe, E.; Moeller, F.; Frederiksen, P.; Jepsen, M.R.


    Various biofuel evaluation methods exist, with different analytical framework setup and different scopes. The scope of this study is to develop an integrated method to evaluate the consequences of producing biofuels. The consequences should include energy consumption, emission and welfare economic changes within the well-to-wheel (WTW) flow chain focusing on the production of biomass, and the subsequent conversion into bio fuel and combustion in vehicles. This method (Moeller and Slentoe, 2010) is applied to a Danish case, implementing policy targets for biofuel use in the transport sector and also developing an alternative scenario of higher biofuel shares. This paper presents the results of three interlinked parallel running analyses, of energy consumption, emissions and welfare economics (Slentoe, Moeller and Winther, 2010), and discusses the feasibility of those analyses, which are based on the same consequential analysis method, comparing a scenario situation to a reference situation. As will be shown, the results are not univocal; example given, what is an energy gain is not necessarily a welfare economic gain. The study is conducted as part of the Danish REBECa project. Within this, two main scenarios, HS1 and HS2, for biofuel mixture in fossil diesel fuel and gasoline are established. The biofuel rape diesel (RME) stems from rape seeds and bioethanol stems from either wheat grains (1st generation) or straw (2nd generation) - all cultivated in Denmark. The share of 2nd generation bioethanol exceeds 1st generation bioethanol towards 2030. Both scenarios initiate at a 5.75% mixture in 2010 and reach 10% and 25% in 2030 for HS1 and HS2, such that the low mixture scenario reflects the Danish Act on sustainable biofuels (June 2009), implementing the EU renewable energy directive (2009/29/EC), using biofuels as energy carrier. The two scenarios are computed in two variants each, reflecting oil prices at 65$ and 100$ per barrel. (Author)

  8. Improving Hybrid III injury assessment in steering wheel rim to chest impacts using responses from finite element Hybrid III and human body model. (United States)

    Holmqvist, Kristian; Davidsson, Johan; Mendoza-Vazquez, Manuel; Rundberget, Peter; Svensson, Mats Y; Thorn, Stefan; Törnvall, Fredrik


    The main aim of this study was to improve the quality of injury risk assessments in steering wheel rim to chest impacts when using the Hybrid III crash test dummy in frontal heavy goods vehicle (HGV) collision tests. Correction factors for chest injury criteria were calculated as the model chest injury parameter ratios between finite element (FE) Hybrid III, evaluated in relevant load cases, and the Total Human Model for Safety (THUMS). This is proposed to be used to compensate Hybrid III measurements in crash tests where steering wheel rim to chest impacts occur. The study was conducted in an FE environment using an FE-Hybrid III model and the THUMS. Two impactor shapes were used, a circular hub and a long, thin horizontal bar. Chest impacts at velocities ranging from 3.0 to 6.0 m/s were simulated at 3 impact height levels. A ratio between FE-Hybrid III and THUMS chest injury parameters, maximum chest compression C max, and maximum viscous criterion VC max, were calculated for the different chest impact conditions to form a set of correction factors. The definition of the correction factor is based on the assumption that the response from a circular hub impact to the middle of the chest is well characterized and that injury risk measures are independent of impact height. The current limits for these chest injury criteria were used as a basis to develop correction factors that compensate for the limitations in biofidelity of the Hybrid III in steering wheel rim to chest impacts. The hub and bar impactors produced considerably higher C max and VC max responses in the THUMS compared to the FE-Hybrid III. The correction factor for the responses of the FE-Hybrid III showed that the criteria responses for the bar impactor were consistently overestimated. Ratios based on Hybrid III and THUMS responses provided correction factors for the Hybrid III responses ranging from 0.84 to 0.93. These factors can be used to estimate C max and VC max values when the Hybrid III is

  9. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves


    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  10. Self-erecting shapes (United States)

    Reading, Matthew W.


    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  11. Supply chain components


    Vieraşu, T.; Bălăşescu, M.


    In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  12. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.


    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  13. Markov Tail Chains


    janssen, Anja; Segers, Johan


    The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In ...

  14. Economy, market and chain


    Sukkel, W.; Hommes, M.


    In their pursuit of growth and professionalisation, the Dutch organic sector focuses primarily on market development. But how do you stimulate the market for organic foods? This is the subject of many research projects concerning market, consumer preferences and the supply chain. These projects focus specifically at consumer purchasing behaviour, product development, supply chain formation and minimising cost price. As a rule, this research takes place in close cooperation with chain actors

  15. Supply chain planning classification (United States)

    Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans


    Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.

  16. The Hue of Shapes (United States)

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo


    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  17. Newtonian Analysis of a Folded Chain Drop (United States)

    Mungan, Carl E.


    Consider a chain of length L that hangs in a U shape with end A fixed to a rigid support and free end E released from rest starting from the same initial height (call it y = 0) as A. Figure 1 sketches the chain after end E has fallen a distance y. Points O and A are assumed to be close enough to each other and the chain flexible enough that the radius of curvature r at the bottom point C can be taken to be negligibly small (compared to the length of the chain). The problem is to compare the speed of descent v(y) = dy/dt of the free end E of the chain to the speed vfree(y )=√{2 g y } of a free-falling point mass that has descended the same distance y. If v(y) > vfree (y) for all y > 0, then, in a race to fall any arbitrary distance Y (where 0 < Y < L), the chain end E will always beat a simultaneously released point mass, because the fall time t for E will be shorter than tfree for the point mass, t = ∫0 Y d/y v (y )

  18. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia


    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  19. Development of a Hardware-In-Loop (HIL Simulator for Spacecraft Attitude Control Using Momentum Wheels

    Directory of Open Access Journals (Sweden)

    Dohee Kim


    Full Text Available In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of spacecraft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System. The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

  20. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle (United States)

    Zhang, Han; Zhao, Wanzhong


    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  1. Analysis of the distribution of temperature fields in the braked railway wheel

    Directory of Open Access Journals (Sweden)

    Suchánek Andrej


    Full Text Available The article deals with detection of reduced stress in a braked railway wheel, based on thermal transient analysis on virtual models, which influence the characteristics of the railway wheels. Structural analysis was performed by means of the ANSYS Multiphysics program system package. Thermal transient analysis deals with detection of temperature fields which are a result of braking by brake block. The applied heat flux represents the heat generated by friction of brake block. It is applied to a quarter model of the wheel to speed up the calculation. This analysis simulates two braking processes with subsequent cooling. Distribution of the equivalent stress was detected in the railway wheel cross section, at selected points. The input parameters were taken from the thermal transient analysis. These equivalent stresses result from thermal load.

  2. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load (United States)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.


    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  3. Effects of setting angle on performance of fish-bionic wind wheel (United States)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.


    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  4. Dynamic Measurement for the Diameter of A Train Wheel Based on Structured-Light Vision

    Directory of Open Access Journals (Sweden)

    Zheng Gong


    Full Text Available Wheels are very important for the safety of a train. The diameter of the wheel is a significant parameter that needs regular inspection. Traditional methods only use the contact points of the wheel tread to fit the rolling round. However, the wheel tread is easily influenced by peeling or scraping. Meanwhile, the circle fitting algorithm is sensitive to noise when only three points are used. This paper proposes a dynamic measurement method based on structured-light vision. The axle of the wheelset and the tread are both employed. The center of the rolling round is determined by the axle rather than the tread only. Then, the diameter is calculated using the center and the contact points together. Simulations are performed to help design the layout of the sensors, and the influences of different noise sources are also analyzed. Static and field experiments are both performed, and the results show it to be quite stable and accurate.

  5. Dynamic Measurement for the Diameter of A Train Wheel Based on Structured-Light Vision. (United States)

    Gong, Zheng; Sun, Junhua; Zhang, Guangjun


    Wheels are very important for the safety of a train. The diameter of the wheel is a significant parameter that needs regular inspection. Traditional methods only use the contact points of the wheel tread to fit the rolling round. However, the wheel tread is easily influenced by peeling or scraping. Meanwhile, the circle fitting algorithm is sensitive to noise when only three points are used. This paper proposes a dynamic measurement method based on structured-light vision. The axle of the wheelset and the tread are both employed. The center of the rolling round is determined by the axle rather than the tread only. Then, the diameter is calculated using the center and the contact points together. Simulations are performed to help design the layout of the sensors, and the influences of different noise sources are also analyzed. Static and field experiments are both performed, and the results show it to be quite stable and accurate.

  6. Thermomechanical Testing and Microstructural Development of Class L Steel Wheel Alloy (United States)


    Macrostructure, microstructure, and quantitative metallographic analysis is conducted on Association of American Railroads Class L wheel steel specimens tested in a Gleeble 1500 under combined mechanical compression and resistance heating to temperat...

  7. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min


    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author)

  8. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang


    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  9. Implementation of Rolling Wheel Deflectometer (RWD) in PMS and Pavement Preservation (United States)


    The rolling wheel deflectometer (RWD) offers the benefit to measure pavement deflection without causing any traffic interruption or compromising safety : along tested road segments. This study describes a detailed field evaluation of the RWD system i...

  10. Rotor-blade wheel solves the sediment problems; Loepehjul loeser sedimentproblemer

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Marte


    Test period in Peru is over for the recently developed rotor-blade wheel from the Norwegian firm DynaVec. The result shows that the wear and tear problems caused by sediments in great extent is solved. (AG)

  11. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author).

  12. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel (United States)

    Wang, Jifeng; Müller, Norbert


    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  13. Evaluation of four steering wheels to determine driver hand placement in a static environment. (United States)

    Mossey, Mary E; Xi, Yubin; McConomy, Shayne K; Brooks, Johnell O; Rosopa, Patrick J; Venhovens, Paul J


    While much research exists on occupant packaging both proprietary and in the literature, more detailed research regarding user preferences for subjective ratings of steering wheel designs is sparse in published literature. This study aimed to explore the driver interactions with production steering wheels in four vehicles by using anthropometric data, driver hand placement, and driver grip design preferences for Generation-Y and Baby Boomers. In this study, participants selected their preferred grip diameter, responded to a series of questions about the steering wheel grip as they sat in four vehicles, and rank ordered their preferred grip design. Thirty-two male participants (16 Baby Boomers between ages 47 and 65 and 16 Generation-Y between ages 18 and 29) participated in the study. Drivers demonstrated different gripping behavior between vehicles and between groups. Recommendations for future work in steering wheel grip design and naturalistic driver hand positioning are discussed. Copyright © 2014. Published by Elsevier Ltd.

  14. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera

    National Research Council Canada - National Science Library

    Chen, J; Dixon, W. E; Dawson, D. M; Chitrakaran, V. K


    In this paper, a visual servo tracking controller for a wheeled mobile robot (WMR) is developed that utilizes feedback from a monocular camera system that is mounted with a fixed position and orientation...

  15. Wheeling and Banking Strategies for Optimal Renewable Energy Deployment. International Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vora, Ravi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Madrigal, Paola [Energy Regulatory Commission (Mexico); Chatterjee, Sushanta K. [Central Electricity Regulatory Commission (India); Shah, Rakesh [SunEdison, Mumbai (India)


    This paper defines the principles of wheeling (i.e., transmission) tariffs and renewable energy (RE) banking provisions and their role in RE deployment in countries with plans for large-scale RE. It reviews experiences to date in the United States, Mexico, and India and discusses key policy and regulatory considerations for devising more effective wheeling and/or banking provisions for countries with ambitious RE deployment targets. The paper addresses the challenges of competing needs of stakeholders, especially those of RE generators, distribution utilities, and transmission network owners and operators. The importance of wheeling and banking and their effectiveness for financial viability of RE deployment is also explored. This paper aims to benefit policymakers and regulators as well as key renewable energy stakeholders. Key lessons for regulators include: creating long-term wheeling and banking policy certainty, considering incentivizing RE through discounted transmission access, and assessing the cost implications of such discounts, as well as expanding access to renewable energy customers.

  16. Prediction of bead area contact load at the tire-wheel interface using NASTRAN (United States)

    Chen, C. H. S.


    The theoretical prediction of the bead area contact load at the tire wheel interface using NASTRAN is reported. The application of the linear code to a basically nonlinear problem results in excessive deformation of the structure and the tire-wheel contact conditions become impossible to achieve. A psuedo-nonlinear approach was adopted in which the moduli of the cord reinforced composite are increased so that the computed key deformations matched that of the experiment. Numerical results presented are discussed.

  17. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Directory of Open Access Journals (Sweden)

    Frankovský P.


    Full Text Available This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  18. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation


    Kaikai Lv; Kaiyun Wang; Zhihui Chen; Chengbiao Cai; Lirong Guo


    This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abn...

  19. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing (United States)

    Roach, Grahm C.; Edke, Mangesh


    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  20. Just-In-Time predictive control for a two-wheeled robot


    Nakpong, Nuttapun; Yamamoto, Shigeru


    In this paper, we introduce the use of Just-In-Time predictive control to enhance the stability of a two-wheeled robot. Just-In-Time predictive control uses a database which includes a huge amounts of input-output data of the two-wheeled robot and predicts its future movements based on a Just-In-Time algorithm. © 2012 IEEE.