WorldWideScience

Sample records for chain polyunsaturated fatty

  1. Plasma Phospholipid Long-Chain n-3 Polyunsaturated Fatty Acids and Body Weight Change

    DEFF Research Database (Denmark)

    Jakobsen, Marianne U; Dethlefsen, Claus; Due, Karen M;

    2011-01-01

    We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers.......We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers....

  2. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...... enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability...

  3. Long-chain polyunsaturated fatty acids in maternal and infant nutrition

    NARCIS (Netherlands)

    Muskiet, Frits A. J.; van Goor, Saskia A.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Smit, Ella N.; Bouwstra, Hylco; Dijck-Brouwer, D. A. Janneke; Boersma, E. Rudy; Hadders-Algra, Mijna

    2006-01-01

    Homo sapiens has evolved on a diet rich in alpha-linolenic acid and long chain polyunsaturated fatty acids (LCP). We have, however, gradually changed our diet from about 10,000 years ago and accelerated this change from about 100 to 200 years ago. The many dietary changes, including lower intake of

  4. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    1998-01-01

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  5. Polyunsaturated fatty acids in the food chain in Europe.

    Science.gov (United States)

    Sanders, T A

    2000-01-01

    Intakes of partially hydrogenated fish oil and animal fats have declined and those of palm, soybean, sunflower, and rapeseed oils have increased in northern Europe in the past 30 y. Soybean and rapeseed oils are currently the most plentiful liquid vegetable oils and both have desirable ratios of n-6 to n-3 fatty acids. However, soybean and rapeseed oils are commonly partially hydrogenated for use in commercial frying to decrease susceptibility to oxidative degradation. This process leads to selective losses of alpha-linolenic acid (18:3n-3). Intake of linoleic acid (18:2n-6) has risen in many northern European countries. In the United Kingdom, intakes have increased from approximately 10 g/d in the late 1970s to approximately 15 g/d in the 1990s. The intake of alpha-linolenic acid is estimated to be approximately 1-2 g/d but varies with the type of culinary oil used. There are few reliable estimates of the intake of long-chain n-3 fatty acids, but those are generally approximately 0.1-0.5 g/d. The increased use of intensive, cereal-based livestock production systems has resulted in a lower proportion of n-3 fatty acids in meat compared with traditional extensive production systems. Overall, there has been a shift in the balance between n-6 and n-3 fatty acids over the past 30 y. This shift is reflected in the declining concentrations of docosahexaenoic acid and rising concentrations of linoleic acid in breast milk. PMID:10617968

  6. Polyunsaturated fatty acids and inflammation

    OpenAIRE

    Calder Philip C

    2004-01-01

    The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites) and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and ...

  7. Role of Dietary Long-Chain Polyunsaturated Fatty Acids in Infant Allergies and Respiratory Diseases

    OpenAIRE

    Shek, Lynette P.; Mary Foong-Fong Chong; Jia Yi Lim; Shu-E Soh; Yap-Seng Chong

    2012-01-01

    Maternal nutrition has critical effects on the developing structures and functions of the fetus. Malnutrition during pregnancy can result in low birth weight and small for gestational age babies, increase risk for infection, and impact the immune system. Long-chain polyunsaturated fatty acids (PUFAs) have been reported to have immunomodulatory effects. Decreased consumption of omega-6 PUFAs, in favor of more anti-inflammatory omega-3 PUFAs in modern diets, has demonstrated the potential prote...

  8. Medium-chain triglyceride and n-3 polyunsaturated fatty acid-containing emulsions in intravenous nutrition.

    Science.gov (United States)

    Chan, S; McCowen, K C; Bistrian, B

    1998-03-01

    Medium-chain triglycerides and n-3 polyunsaturated fatty acid emulsions as a physical mixture have attracted increasing interest for use in parenteral nutrition and may play an important role in the development of structured triglycerides in a future generation of new lipids. Over the past two decades, the clinical use of intravenous emulsion for the nutritional support of hospitalized patients has relied exclusively on long-chain triglycerides providing both a safe, calorically dense alternative to dextrose and a source of essential fatty acids needed for biological membranes and maintenance of the immune function. During the past decade, the development of new triglycerides (medium- and long-chain triglyceride emulsions and structured triglyceride emulsions) for parenteral use have provided useful advances and opportunities to enhance nutritional and metabolic support. Medium-chain triglycerides and n-3 polyunsaturated fatty acid emulsions possess unique physical, chemical, and metabolic properties that make them theoretically advantageous over the conventional long-chain triglycerides. The physical mixture of medium- and long-chain triglycerides have been used clinically in patients with critical illness, liver disease, immunosuppression, pulmonary disease, and in premature infants, with good tolerance and the avoidance of some of the problems encountered with long-chain triglycerides alone. PMID:10565343

  9. Unusual medium-chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina.

    Science.gov (United States)

    Rezanka, Tomás; Nedbalová, Linda; Sigler, Karel

    2008-01-01

    The gas chromatography-mass spectrometry (GC-MS) method was used to identify unusual medium-chain polyunsaturated fatty acids (PUFAs) in the snow alga Chloromonas brevispina collected in 2006 from surface layers of a snow field with conspicuous green patches in Bohemian Forest (Czech Republic). PUFAs formed more than 75% total fatty acids. Among them, mass spectroscopy of picolinyl esters showed sizable proportions of medium-chain PUFA, e.g., 5,8,11-tetradecatrienoic and 6,9,12-pentadecatrienoic acids. The high relative content of PUFA indicates that PUFA are an important element ensuring cell survival. Our report appears to be the first to describe the presence of short- and medium-chain PUFAs in green psychrophilic algae of the genus Chloromonas. PMID:17403601

  10. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    Directory of Open Access Journals (Sweden)

    Kiyohito Yoshida

    2016-05-01

    Full Text Available The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase, the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  11. High contents of very long-chain polyunsaturated fatty acids in different moss species

    OpenAIRE

    Beike, Anna K; Jaeger, Carsten; Zink, Felix; Decker, Eva L; Reski, Ralf

    2013-01-01

    Key message Mosses have high contents of polyunsaturated fatty acids. Tissue-specific differences in fatty acid contents and fatty acid desaturase (FADS)-encoding gene expression exist. The arachidonic acid-synthesizing FADS operate in the ER. Abstract Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chai...

  12. Polyunsaturated fatty acids and inflammation

    Directory of Open Access Journals (Sweden)

    Calder Philip C.

    2004-01-01

    Full Text Available The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and so available for eicosanoid production. Thus, n-3 polyunsaturated fatty acids act as arachidonic acid antagonists. Components of both natural and acquired immunity, including the production of key inflammatory cytokines, can be affected by n-3 polyunsaturated fatty acids. Although some of the effects of n-3 fatty acids may be brought about by modulation of the amount and types of eicosanoids made, it is possible that these fatty acids might elicit some of their effects by eicosanoid-independent mechanisms. Such n-3 fatty acid-induced effects may be of use as a therapy for acute and chronic inflammation, and for disorders that involve an inappropriately-activated immune response.

  13. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Directory of Open Access Journals (Sweden)

    João Varela

    2013-06-01

    Full Text Available The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.

  14. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  15. The Impact of Dietary Long-Chain Polyunsaturated Fatty Acids on Respiratory Illness in Infants and Children

    NARCIS (Netherlands)

    Hageman, J.H.J.; Hooyenga, P.; Diersen-Schade, D.A.; Scalabrin, D.M.F.; Wichers, H.J.; Birch, E.E.

    2012-01-01

    Increasing evidence suggests that intake of long-chain polyunsaturated fatty acids (LCPUFA), especially omega-3 LCPUFA, improves respiratory health early in life. This review summarizes publications from 2009 through July 2012 that evaluated effects of fish, fish oil or LCPUFA intake during pregnanc

  16. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  17. Serum long-chain omega-3 polyunsaturated fatty acids and risk of orthostatic hypotension.

    Science.gov (United States)

    Nyantika, Asenath N; Tuomainen, Tomi-Pekka; Kauhanen, Jussi; Voutilainen, Sari; Virtanen, Jyrki K

    2016-07-01

    Long-chain omega-3 polyunsaturated fatty acids (PUFAs) from fish have been shown to lower blood pressure. However, there is little information about the association with orthostatic hypotension, for which hypertension is a risk factor. We investigated the associations between serum long-chain omega-3 PUFAs and orthostatic hypotension in 1666 middle-aged or older men and women free of cardiovascular disease (CVD), diabetes or hypertension in 1998-2001 in the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) in eastern Finland. We also investigated the associations with mercury exposure, a major source of which is fish, and which has been associated with higher CVD risk in KIHD. Orthostatic hypotension was defined as decrease in systolic blood pressure of at least 20 mm Hg or diastolic blood pressure of at least 10 mm Hg within 1 min of standing. Orthostatic hypotension was found in 146 participants (8.8%). The mean serum concentrations were 1.67% (s.d. 0.92) for eicosapentaenoic acid, 0.79% (s.d. 0.16) for docosapentaenoic acid (DPA) and 2.78 (s.d. 0.92) for docosahexaenoic acid of all serum fatty acids. The mean pubic hair mercury concentration was 1.5 μg g(-1) (s.d. 1.6). We did not find statistically significant associations between the serum long-chain omega-3 PUFAs or pubic hair mercury and risk of orthostatic hypotension, except for DPA. Those in the highest vs. the lowest serum DPA tertile had multivariate-adjusted 41% lower odds for orthostatic hypotension (95% confidence interval 7-63%, P-trend=0.02). Serum long-chain omega-3 PUFAs or mercury exposure were not associated with the risk of orthostatic hypotension, except for the inverse association with DPA. PMID:26911234

  18. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil

    OpenAIRE

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-01-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the ‘golden standard’. In the microalgae oils an important part of the omega-3 long chain po...

  19. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Hauenschild A

    2003-11-01

    Full Text Available Abstract Background The amount and quality of dietary fatty acids can modulate the fat metabolism. Objective This dietary intervention is based on the different metabolic pathways of long-chain saturated fatty acids (LCFA, which are mostly stored in adipocytic triacylglycerols, medium-chain fatty acids (MCFA which are preferentially available for hepatic mitochondrial β-oxidation and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA suggested to modulate fat oxidation and storage by stimulating the peroxisomal β-oxidation. Combined dietary MCFA and n-3 LCPUFA without LCFA may synergistically stimulate fatty acid oxidation resulting in blood lipid clearance and LCFA release from adipocytes. Design In a short term, parallel, randomized, double-blind trial effects on the fatty acid metabolism of 10 healthy volunteers (Body Mass Index 25–30 of a formula containing 72% MCFA and 22% n-3 LCPUFA without LCFA (intake: 1.500 kcal/day; fat: 55.5% of energy were measured in comparison to an isoenergetic formula with equal fat amount and LCFA dominated lipid profile. Results The plasma triacylglycerol (p Conclusion Combined dietary 72% MCFA and 22% n-3 LCPUFA without LCFA stimulate the fatty acid oxidation and release from adipocytes without affecting any safety parameters measured.

  20. Role of Dietary Long-Chain Polyunsaturated Fatty Acids in Infant Allergies and Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Lynette P. Shek

    2012-01-01

    Full Text Available Maternal nutrition has critical effects on the developing structures and functions of the fetus. Malnutrition during pregnancy can result in low birth weight and small for gestational age babies, increase risk for infection, and impact the immune system. Long-chain polyunsaturated fatty acids (PUFAs have been reported to have immunomodulatory effects. Decreased consumption of omega-6 PUFAs, in favor of more anti-inflammatory omega-3 PUFAs in modern diets, has demonstrated the potential protective role of omega-3 PUFAs in allergic and respiratory diseases. In this paper, we examine the role of PUFAs consumption during pregnancy and early childhood and its influence on allergy and respiratory diseases. PUFAs act via several mechanisms to modulate immune function. Omega-3 PUFAs may alter the T helper (Th cell balance by inhibiting cytokine production which in turn inhibits immunoglobulin E synthesis and Th type 2 cell differentiation. PUFAs may further modify cellular membrane, induce eicosanoid metabolism, and alter gene expression. These studies indicate the benefits of omega-3 PUFAs supplementation. Nevertheless, further investigations are warranted to assess the long-term effects of omega-3 PUFAs in preventing other immune-mediated diseases, as well as its effects on the later immunodefense and health status during early growth and development.

  1. Elongase reactions as control points in long-chain polyunsaturated fatty acid synthesis.

    Directory of Open Access Journals (Sweden)

    Melissa K Gregory

    Full Text Available BACKGROUND: Δ6-Desaturase (Fads2 is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA. However, increasing dietary ALA or the direct Fads2 product, stearidonic acid (18:4n-3; SDA, increases tissue levels of eicosapentaenoic acid (20:5n-3; EPA and docosapentaenoic acid (22:5n-3; DPA, but not DHA. These observations suggest that one or more control points must exist beyond ALA metabolism by Fads2. One possible control point is a second reaction involving Fads2 itself, since this enzyme catalyses desaturation of 24:5n-3 to 24:6n-3, as well as ALA to SDA. However, metabolism of EPA and DPA both require elongation reactions. This study examined the activities of two elongase enzymes as well as the second reaction of Fads2 in order to concentrate on the metabolism of EPA to DHA. METHODOLOGY/PRINCIPAL FINDINGS: The substrate selectivities, competitive substrate interactions and dose response curves of the rat elongases, Elovl2 and Elovl5 were determined after expression of the enzymes in yeast. The competitive substrate interactions for rat Fads2 were also examined. Rat Elovl2 was active with C(20 and C(22 polyunsaturated fatty acids and this single enzyme catalysed the sequential elongation reactions of EPA→DPA→24:5n-3. The second reaction DPA→24:5n-3 appeared to be saturated at substrate concentrations not saturating for the first reaction EPA→DPA. ALA dose-dependently inhibited Fads2 conversion of 24:5n-3 to 24:6n-3. CONCLUSIONS: The competition between ALA and 24:5n-3 for Fads2 may explain the decrease in DHA levels observed after certain intakes of dietary ALA have been exceeded. In addition, the apparent saturation of the second Elovl2 reaction, DPA→24:5n-3, provides further explanations for the accumulation of DPA when ALA, SDA or EPA is provided in the diet. This study suggests that Elovl2 will be

  2. Growth and development of term infants fed with milk with long-chain polyunsaturated fatty acid supplementation

    Institute of Scientific and Technical Information of China (English)

    BEN Xiao-ming 贲晓明; ZHOU Xiao-yu 周晓玉; ZHAO Wei-hua 赵卫华; YU Wen-liang 喻文亮; PAN Wei 潘伟; ZHANG Wei-li 张伟利; WU Sheng-mei 吴圣楣; Christien M. Van Beusekom; Anne Schaafsma

    2004-01-01

    @@ Presently, there is growing interest in long-chain polyunsaturated fatty acids (LCPUFAs), which are considered a major determinant of growth, visual and neural development, and long-term health.1 Two groups of LCPUFAs have received special interest: homologues of linoleic acid (LA) of the n-6 series, which are precursors of arachidonic acid (AA), and homologues of α-linolenic acid (ALA) of the n-3 series, which are precursors of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

  3. Fluorescent n-3 and n-6 Very Long Chain Polyunsaturated Fatty Acids: THREE-PHOTON IMAGING IN LIVING CELLS EXPRESSING LIVER FATTY ACID-BINDING PROTEIN*

    OpenAIRE

    McIntosh, Avery L.; Huang, Huan; Atshaves, Barbara P.; Wellberg, Elizabeth; Kuklev, Dmitry V.; Smith, William L.; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    Despite the considerable beneficial effects of n-3 and n-6 very long chain polyunsaturated fatty acids (VLC-PUFAs), very little is known about the factors that regulate their uptake and intracellular distribution in living cells. This issue was addressed in cells expressing liver-type fatty acid-binding protein (L-FABP) by real time multiphoton laser scanning microscopy of novel fluorescent VLC-PUFAs containing a conjugated tetraene fluorophore near the carboxyl group and natural methylene-in...

  4. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus.

    Science.gov (United States)

    Desbois, Andrew P; Lawlor, Keelan C

    2013-11-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  5. Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Andrew P. Desbois

    2013-11-01

    Full Text Available New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32–1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA and 15-hydroxyeicosatrienoic acid (HETrE, while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15–30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically.

  6. Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment.

    Science.gov (United States)

    Willemsen, Linette E M

    2016-08-15

    The rise in non-communicable diseases, such as allergies, in westernized countries links to changes in lifestyle and diet. N-3 long chain polyunsaturated fatty acids (LCPUFA) present in marine oils facilitate a favorable milieu for immune maturation and may contribute to allergy prevention. N-3 LCPUFA can suppress innate and adaptive immune activation and induce epigenetic changes. Murine studies convincingly show protective effects of fish oil, a source of n-3 LCPUFA, in food allergy and asthma models. Observational studies in human indicate that high dietary intake of n-3 LCPUFA and low intake of n-6 PUFA may protect against the development of allergic disease early in life. High n-6 PUFA intake is also associated with an increased asthma risk while n-3 LCPUFA may be protective and reduce symptoms. The quality of the marine oil used has impact on efficacy of allergy prevention and several observations link in particular n-3 LCPUFA DHA to allergy suppression. Randomized controlled trials indicate that optimal timing, duration and dosage of n-3 LC-PUFA is required to exert an allergy protective effect. Supplementation during early pregnancy and lactation has shown promising results regarding allergy prevention. However these findings should be confirmed in a larger cohort. Although clinical trials in asthma patients reveal no consistent clinical benefits of n-3 LCPUFA supplementation on lung function, it can suppress airway inflammation. Future food-pharma approaches may reveal whether adjunct therapy with dietary n-3 LCPUFA can improve allergy prevention or immunotherapy via support of allergen specific oral tolerance induction or contribute to the efficacy of drug therapy for asthma patients. PMID:27041644

  7. Fish oil and mental health: the role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders.

    Science.gov (United States)

    Assisi, Alessandro; Banzi, Rita; Buonocore, Carmela; Capasso, Filippo; Di Muzio, Valeria; Michelacci, Francesca; Renzo, Danila; Tafuri, Giovanni; Trotta, Francesco; Vitocolonna, Maria; Garattini, Silvio

    2006-11-01

    Epidemiological and experimental studies have indicated that consumption of more n-3 long-chain polyunsaturated fatty acids may reduce the risk for a variety of diseases, including cardiovascular, neurological and immunological disorders, diabetes and cancer. This article focuses on the role of marine n-3 long-chain polyunsaturated fatty acids in brain functions, including the development of the central nervous system and neurological disorders. An overview of the major animal studies and clinical trials is provided here, focusing on fatty acid supplementation during pregnancy and infancy, and prevention and management of Alzheimer's disease, schizophrenia, depression and attention deficit hyperactive disorder. Although an optimal balance in n-3/n-6 long-chain polyunsaturated fatty acid ratio is important for proper neurodevelopment and cognitive functions, results from randomized controlled trials are controversial and do not confirm any useful effect of supplementation on development of preterm and term infants. The relationship between fatty acid status and mental disorders is confirmed by reduced levels of n-3 long-chain polyunsaturated fatty acids in erythrocyte membranes of patients with central nervous system disorders. Nevertheless, there are very little data supporting the use of fish oil in those patients. The only way to verify whether n-3 long-chain polyunsaturated fatty acids are a potential therapeutic option in the management and prevention of mental disorders is to conduct a large definitive randomized controlled trials similar to those required for the licensing of any new pharmacological treatment.

  8. The impact of long chain polyunsaturated fatty acids on food allergy and cardiovascular disease. Fish and no chips?

    OpenAIRE

    van den Elsen, L.W.J.

    2013-01-01

    This thesis creates more insight into the efficacy and mechanism of action of polyunsaturated fatty acids (PUFA), which act on the interface between pharmacology and nutrition in the prevention of allergic and cardiovascular disease. PUFA are categorized into n-6 and n-3 PUFA. The last decades have seen a fall in the consumption of long chain n-3 PUFA (LCPUFA) from oily fish, while the use of vegetable oils and products that are rich in n-6 PUFA has increased. It was demonstrated that increas...

  9. Polyunsaturated Fatty Acids in Children

    OpenAIRE

    Lee, Ji-Hyuk

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-im...

  10. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations

    DEFF Research Database (Denmark)

    Koletzko, Berthold; Lien, Eric; Agostoni, Carlo;

    2008-01-01

    This paper reviews current knowledge on the role of the long-chain polyunsaturated fatty acids (LC-PUFA), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, 20:4n-6), in maternal and term infant nutrition as well as infant development. Consensus recommendations and practice guidelines...

  11. Does supplementation of formula with evening primrose and fish oils augment long chain polyunsaturated fatty acid status of low birthweight infants to that of breast-fed counterparts?

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Okken, A; Muskiet, FAJ

    1999-01-01

    We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RSC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (less than or equal to 2500 g) rec

  12. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their m

  13. Effects of long-chain polyunsaturated fatty acid supplementation of infant formula on cognition and behaviour at 9 years of age

    NARCIS (Netherlands)

    De Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna

    2012-01-01

    AIM: Long-chain polyunsaturated fatty acid (LCPUFA) supplementation of infant formula may have a beneficial effect on cognitive development. This study aimed to investigate the effect of LCPUFA formula supplementation primarily on cognition and secondarily on behaviour at age 9 years. Special attent

  14. Fish and long-chain n-3 polyunsaturated fatty acid intakes during pregnancy and risk of postpartum depression: a prospective study based on a large national birth cohort

    DEFF Research Database (Denmark)

    Strøm, Marin; Mortensen, Erik Lykke; Halldorsson, Thorhallur I;

    2009-01-01

    that long-chain n-3 polyunsaturated fatty acids (PUFAs) might have a beneficial effect on depression. OBJECTIVE: The objective was to explore the association between intake of fish and n-3 PUFAs during pregnancy and PPD in the Danish National Birth Cohort (DNBC). DESIGN: Exposure information from the DNBC...

  15. Effect of three low-dose fish oil supplements, administered during pregnancy, on neonatal long-chain polyunsaturated fatty acid status at birth

    NARCIS (Netherlands)

    Velzing-Aarts, FV; van der Klis, FRM; van der Dijs, FPL; van Beusekom, CM; Landman, H; Capello, JJ; Muskiet, FAJ

    2001-01-01

    Adequate long-chain polyunsaturated fatty acid (LCP) status during pregnancy is important. We studied the effect of three low-dose fish oil supplements, administered during uncomplicated pregnancy, on neonatal LCP status at term delivery. Supplements were administered from the second trimester to de

  16. Egg yolk as a source of long-chain polyunsaturated fatty acids in infant feeding.

    Science.gov (United States)

    Simopoulos, A P; Salem, N

    1992-02-01

    In this paper we compare the fatty acid content of egg yolks from hens fed four different feeds as a source of docosahexaenoic acid to supplement infant formula. Greek eggs contain more docosahexaenoic acid (DHA, 22:6 omega 3) and less linoleic acid (LA, 18:2 omega 6) and alpha-linolenic acid (LNA, 18:3 omega 3) than do fish-meal or flax eggs. Two to three grams of Greek egg yolk may provide an adequate amount of DHA and arachidonic acid for a preterm neonate. Mean intake of breast milk at age 1 mo provides 250 mg long-chain omega 3 fatty acids. This amount can be obtained from less than 1 yolk of a Greek egg (0.94), greater than 1 yolk of flax eggs (1.6) and fish-meal eggs (1.4), or 8.3 yolks of supermarket eggs. With proper manipulation of the hens' diets, eggs could be produced with fatty acid composition similar to that of Greek eggs.

  17. Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Rani, Alka; Wadhwani, Nisha; Chavan-Gautam, Preeti; Joshi, Sadhana

    2016-09-01

    The placenta is an essential organ formed during pregnancy that mainly transfers nutrients from the mother to the fetus. Nutrients taken up by the placenta are required for its own growth and development and to optimize fetal growth. Hence, placental function is an important determinant of pregnancy outcome. Among various nutrients, fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFAs), including omega 3 and omega 6 fatty acids, are essential for placental development from the time of implantation. Studies have associated these LCPUFAs with placental development through their roles in regulating oxidative stress, angiogenesis, and inflammation, which may in turn influence their transfer to the fetus. The placenta has a heterogeneous morphology with variable regional vasculature, oxidative stress, and LCPUFA levels in healthy pregnancies depending upon the location within the placenta. However, these regional structural and functional parameters are found to be disturbed in pathological conditions, such as preeclampsia (PE), thereby affecting pregnancy outcome. Hence, the alterations in LCPUFA metabolism and transport in different regions of the PE placenta as compared with normal placenta could potentially be contributing to the pathological features of PE. The regional variations in development and function of the placenta and its possible association with placental LCPUFA metabolism and transport in normal and PE pregnancies are discussed in this review. WIREs Dev Biol 2016, 5:582-597. doi: 10.1002/wdev.238 For further resources related to this article, please visit the WIREs website. PMID:27239793

  18. Determination of essential fatty acids and long chain polyunsaturated fatty acids in complimentary infant foods in the UK

    OpenAIRE

    Loughrill, Emma; Zand, Nazanin

    2014-01-01

    The study reported herein was conducted to establish the concentration of two essential fatty acids; linoleic acid (LA) 18:2 n-6 and α-linolenic acid (ALA) 18:3 n-3; and three long chain poly unsaturated fatty acids (LCPUFA); eicosapentaenoic acid (EPA) 20:5 n-3, decosahexaenoic acid (DHA) 22:6 n-3 and arachidonic acid (AA) 20:4 n-6 in fish based commercial infant foods in the UK. Quantitative analyses were conducted on four different products using charged aerosol detection HPLC. The total ...

  19. High Levels of Both n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids in Cord Serum Phospholipids Predict Allergy Development

    OpenAIRE

    Malin Barman; Sara Johansson; Bill Hesselmar; Wold, Agnes E.; Ann-Sofie Sandberg; Anna Sandin

    2013-01-01

    Background: Long-chain polyunsaturated fatty acids (LCPUFAs) reduce T-cell activation and dampen inflammation. They might thereby counteract the neonatal immune activation and hamper normal tolerance development to harmless environmental antigens. We investigated whether fatty acid composition of cord serum phospholipids affects allergy development up to age 13 years. Methods: From a population-based birth-cohort born in 1996/7 and followed until 13 years of age (n = 794), we selected cases w...

  20. Role of autophagy in the ω-3 long chain polyunsaturated fatty acid-induced death of lung cancer A549 cells

    OpenAIRE

    Yao, Qinghua; Fu, Ting; Wang, Lu; LAI, YUEBIAO; Wang, Yuqi; Xu, Chao; Huang, Lulu; Guo, Yong

    2015-01-01

    The present study identified that ω-3 long chain polyunsaturated fatty acids (ω-3 PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) demonstrate anti-proliferative effects in lung cancer A549 cells. MTS and cytotoxicity assays were conducted to confirm that ω-3 PUFAs induced cell death. Autophagy-associated gene and signaling pathways were also detected. Microtubule-associated protein light chain 3 (LC3) expression was found to be increased subsequent to treatment with DHA and...

  1. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Hamilton, Mary L; Powers, Stephen; Napier, Johnathan A; Sayanova, Olga

    2016-03-01

    We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions. PMID:27005636

  2. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Mary L. Hamilton

    2016-03-01

    Full Text Available We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs docosahexaenoic acid (DHA. This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA. Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.

  3. The impact of long chain polyunsaturated fatty acids on food allergy and cardiovascular disease. Fish and no chips?

    NARCIS (Netherlands)

    van den Elsen, L.W.J.

    2013-01-01

    This thesis creates more insight into the efficacy and mechanism of action of polyunsaturated fatty acids (PUFA), which act on the interface between pharmacology and nutrition in the prevention of allergic and cardiovascular disease. PUFA are categorized into n-6 and n-3 PUFA. The last decades have

  4. Reduced Maternal Erythrocyte Long Chain Polyunsaturated Fatty Acids Exist in Early Pregnancy in Preeclampsia.

    Science.gov (United States)

    Wadhwani, Nisha S; Narang, Ankita S; Mehendale, Savita S; Wagh, Girija N; Gupte, Sanjay A; Joshi, Sadhana R

    2016-01-01

    The present prospective study examines proportions of maternal erythrocyte fatty acids across gestation and their association with cord erythrocyte fatty acids in normotensive control (NC) and preeclamptic pregnancies. We hypothesize that maternal fatty acid status in early pregnancy influences fetal fatty acid stores in preeclampsia. 137 NC women and 58 women with preeclampsia were included in this study. Maternal blood was collected at 3 time points during pregnancy (16-20th weeks, 26-30th weeks and at delivery). Cord blood was collected at delivery. Fatty acids were analyzed using gas chromatography. The proportions of maternal erythrocyte α-linolenic acid, docosahexaenoic acid, nervonic acid, and monounsaturated fatty acids (MUFA) (p preeclampsia as compared with NC. Cord 18:3n-3, 22:6n-3, 24:1n-9, MUFA, and total n-3 fatty acids (p preeclampsia as compared with NC. A positive association was observed between maternal erythrocyte 22:6n-3 and 24:1n-9 at 16-20th weeks with the same fatty acids in cord erythrocytes (p preeclampsia. Our study for the first time indicates alteration in maternal erythrocyte fatty acids at 16th weeks of gestation which is further reflected in cord erythrocytes at delivery in preeclampsia.

  5. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    Science.gov (United States)

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.

  6. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    Science.gov (United States)

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. PMID:27070119

  7. Infants fed formula with added long chain polyunsaturated fatty acids have reduced incidence of respiratory illnesses and diarrhea during the first year of life

    OpenAIRE

    Lapillonne, Alexandre; Pastor, Nitida; Zhuang, Weihong; Scalabrin, Deolinda MF

    2014-01-01

    Background Long chain polyunsaturated fatty acids (LCPUFAs) may influence the immune system. Our objective was to compare the frequency of common illnesses in infants who received formula with or without added LCPUFAs. Methods In this observational, multi-center, prospective study, infants consumed formula with 17 mg DHA and 34 mg ARA/100 kcal (n = 233) or with no added DHA or ARA (n = 92). Pediatricians recorded respiratory illnesses, otitis media, eczema, and diarrhea through 1 year of age....

  8. Polyunsaturated fatty acids in emerging psychosis.

    Science.gov (United States)

    Mossaheb, Nilufar; Schloegelhofer, Monika; Schaefer, Miriam R; Fusar-Poli, Paolo; Smesny, Stefan; McGorry, Pat; Berger, Gregor; Amminger, G Paul

    2012-01-01

    The role of polyunsaturated fatty acids and their metabolites for the cause and treatment of psychotic disorders are widely discussed. The efficacy as an augmenting agent in chronic schizophrenia seems to be small or not present, however epidemiological data, as well as some recent controlled studies in emerging psychosis point towards possible preventive effects of long-chain polyunsaturated fatty acids in early and very early stages of psychotic disorders and some potential secondary or tertiary beneficial long-term effects in later, more chronic stages, in particular for metabolic or extra-pyramidal side effects. In this comprehensive review, we describe the physiology and metabolism of polyunsaturated fatty acids, phospholipases, epidemiological evidence and the effect of these fatty acids on the brain and neurodevelopment. Furthermore, we examine the available evidence in indicated prevention in emerging psychosis, monotherapy, add-on therapy and tolerability. The neuroprotective potential of n-3 LC-PUFAs for indicated prevention, i.e. delaying transition to psychosis in high-risk populations needs to be further explored.

  9. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.

    Science.gov (United States)

    Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-08-01

    Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish.

  10. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.

    Science.gov (United States)

    Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-08-01

    Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish. PMID:27050407

  11. Higher de novo synthesized fatty acids and lower omega 3-and omega 6-long-chain polyunsaturated fatty acids in umbilical vessels of women with preeclampsia and high fish intakes

    NARCIS (Netherlands)

    Huiskes, Victor J. B.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; van der Meulen, Jan; Muskiet, Frits A. J.

    2009-01-01

    Umbilical veins (UV) and arteries (UA) of preeclamptic women in Curacao harbor lower long-chain polyunsaturated fatty acids (LCP). The present aim was to test these findings in Mwanza (Tanzania), whose inhabitants have high LCP omega 3 and LCP omega 6 intakes from Lake Victoria fish. Women with pree

  12. Influence of an n-3 long-chain polyunsaturated fatty acid-enriched diet on experimentally induced synovitis in horses.

    Science.gov (United States)

    Ross-Jones, T N; McIlwraith, C W; Kisiday, J D; Hess, T M; Hansen, D K; Black, J

    2016-06-01

    Dietary n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementation has previously been shown to modify joint-related inflammation in several species, although information in the horse is lacking. We investigated whether dietary supplementation with n-3 LCPUFA would modify experimentally induced synovitis in horses. Twelve, skeletally mature, non-pregnant mares were randomly assigned to either a control diet (CONT) or an n-3 long-chain fatty acid-enriched treatment diet (N3FA) containing 40 g/day of n-3 LCPUFA for 91 days. Blood samples taken on days 0, 30, 60 and 90, and synovial fluid collected on days 0 and 90 were processed for lipid composition. On day 91, joint inflammation was stimulated using an intra-articular (IA) injection of 100 ng of recombinant equine IL-1beta (reIL-1β). Synovial fluid samples taken at post-injection hours (PIH) 0, 4, 8 and 24 were analysed for prostaglandin E2 (PGE2 ), matrix metalloproteinase (MMP) activity and routine cytology. Synovium and articular cartilage samples collected at PIH 8 were analysed for gene expression of MMP 1 and MMP 13, interleukin-1beta (IL-1β), cyclooxygenase 2 (COX-2), tumour necrosis factor-alpha and the aggrecanases, a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. A 90-day feeding period of n-3 LCPUFA increased serum phospholipid and synovial fluid lipid compositions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) compared to CONT horses. The reIL-1β injection caused an inflammatory response; however, there was no effect of dietary treatment on synovial fluid PGE2 content and MMP activity. Synovial tissue collected from N3FA horses exhibited lower expression of ADAMTS-4 compared to CONT horses. Despite the presence of EPA and DHA in the synovial fluid of N3FA horses, dietary n-3 LCPUFA supplementation did not modify synovial fluid biomarkers compared to CONT horses; however, the lower ADAMTS-4 mRNA expression in N3FA synovium warrants further

  13. Long-chain omega3 polyunsaturated fatty acids and cognition in older people: interaction with APOE genotype

    Directory of Open Access Journals (Sweden)

    Barberger-Gateau Pascale

    2016-01-01

    Full Text Available Basic research and epidemiological studies suggest a protective effect of long-chain omega3 polyunsaturated fatty acids (LC n-3 PUFA against age-related cognitive decline. However, most randomized controlled trials with LC n-3 PUFA supplements have yielded disappointing results on cognitive outcomes in older persons. One explanation for this discrepancy may be an inadequate targeting of potential beneficiaries of LC n-3 PUFA according to their Apolipoprotein E (APOE genotype. The aim of this paper was to examine the potential modifying effect of APOE genotype on LC n-3 PUFA metabolism and its relation to cognitive decline in older persons. At least five epidemiological studies and three intervention studies with LC n-3 PUFA supplements have found an interaction between LC n-3 PUFA and APOE genotype on cognition. However, the direction of the effect is inconsistent across studies: the impact of LC n-3 PUFA on cognition is stronger in APOE4 carriers (the main genetic risk factor for Alzheimer’s disease in some studies, but conversely stronger in APOE4 non-carriers in other studies. These discordant results may be explained by different age groups, cognitive status, measures of cognition, or amounts of DHA intake across studies. Experimental studies suggest that the APOE4 genotype modifies the metabolism of DHA. The APOE genotype should be systematically taken into account and interactions tested in epidemiological and intervention studies with LC n-3 PUFA. Further research is needed to better understand the underlying mechanisms of this gene X diet interaction.

  14. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Mary L Hamilton

    Full Text Available The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA eicosapentaenoic acid (EPA and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA. Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO, supplemented with F/2 nutrients (F2N under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 on a 16:8h light:dark cycle, in

  15. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma choleste

  16. Polyunsaturated fatty acids for multiple sclerosis treatment

    Directory of Open Access Journals (Sweden)

    Monserrat Kong-González

    2015-01-01

    Full Text Available INTRODUCTION Fatty acids have an important role in structure and function of the nervous system. Recently, epidemiologic studies on neurodegenerative disorders have evaluated the usefulness of polyunsaturated fatty acids on multiple sclerosis. OBJECTIVE To examine recent studies, clinical trials, and reviews on the therapeutic effect of polyunsaturated fatty acids in multiple sclerosis. METHODS We conducted a search in MEDLINE/PubMed and Cochrane Library with the terms "fatty acids", "omega-3" and "omega-6" in combination with "multiple sclerosis". Articles were selected according to their relevance on the topic. RESULTS Epidemiologic studies have shown benefits of dietary supplementation with polyunsaturated fatty acids -especially omega-3- in relation to inflammatory, autoimmune and neurodegenerative disorders. In contrast, the studies do not show a beneficial effect of polyunsaturated fatty acids in multiple sclerosis. However, there are limitations related to design and sample issues in these studies CONCLUSIONS There is some evidence of a protective effect of polyunsaturated fatty acids on the risk of multiple sclerosis. Despite this, to date controlled trials have not produced definite results on the benefits of supplementation with polyunsaturated fatty acids in patients with multiple sclerosis. Any potential benefit will have to be confirmed in the long term.

  17. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    Directory of Open Access Journals (Sweden)

    Sarah Usher

    2015-12-01

    Full Text Available The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation.

  18. Perturbation and age-related changes in the fatty acid pattern of soleus muscle phospholipids and triglycerides in rats depleted in long-chain polyunsaturated omega3 fatty acids.

    Science.gov (United States)

    Malaisse, Willy J; Portois, Laurence; Sener, Abdullah; Carpentier, Yvon A

    2007-12-01

    Altered D-glucose metabolism prevails in the soleus muscle of rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3). In these animals, the prior intravenous injection of an omega3-rich medium-chain triglyceride:fish oil emulsion (omega3-FO rats), as compared to that of an omega3-poor medium-chain triglyceride:olive oil emulsion (omega3-OO rats), may either correct or aggravate selected metabolic variables. This study deals with the fatty acid pattern of soleus phospholipids and triglycerides in control animals versus omega3-depleted rats not injected with any lipid emulsion (omega3-NI rats) and in omega3-OO versus omega3-FO rats. In each group of omega3-depleted rats, age-related changes were also monitored. The omega3-depleted rats displayed low long-chain polyunsaturated omega3 fatty acid content, facilitated metabolism of long-chain polyunsaturated omega6 fatty acids, and increased Delta9-desaturase activity. Both the age-related changes in lipid variables and those attributable to the prior intravenous injection of the omega3-rich lipid emulsion consisted either in a move towards normalization or in the opposite direction, i.e. towards aggravation of the defect found in the omega3-depleted rats. Emphasis is placed, therefore, on the unusual situation found in the soleus muscle of omega3-depleted rats, in which both lipid and metabolic variables may be either favourably or adversely affected by the same environmental factor(s). PMID:17982700

  19. High content of long-chain n-3 polyunsaturated fatty acids in red blood cells of Kenyan Maasai despite low dietary intake

    Directory of Open Access Journals (Sweden)

    Kiage-Mokua Beatrice N

    2011-08-01

    Full Text Available Abstract Background Increasing land restrictions and a reduced livestock-to-human ratio during the 20th century led the Maasai to lead a more sedentary, market-orientated lifestyle. Although plant-derived food nowadays contributes substantially to their diet, dairy products being high in saturated fatty acids (SFA and low in polyunsaturated fatty acids (PUFA still are an important energy source. Since reliable data regarding the Maasai diet date back to the 1980s, the study objective was to document current diet practices in a Kenyan Maasai community and to investigate the fatty acid distribution in diet and red blood cells. Methods A cross-sectional study was conducted among 26 Maasai (20 women, 6 men from Loodokilani, Kajiado District, Kenya. Food intake was described by the subjects via 24-h recall, and both food and blood samples were analysed. Results Two main foods - milk and ugali - constituted the Maasai diet in this region. A total of 0.9 L of milk and 0.6 kg of ugali were consumed per person and day to yield an energy intake of 7.6 MJ/d per person. A major proportion of ingested food contributing 58.3% to the total dietary energy (en% was plant-derived, followed by dairy products representing 41.1 en%. Fat consumed (30.5 en% was high in SFA (63.8% and low in PUFA (9.2%. Long-chain n-3 PUFA (EPA, DPA and DHA made up only 0.15% of the ingested fatty acids, but 5.9% of red blood cell fatty acids. Conclusion The study indicates the Maasai diet is rich in SFA and low in PUFA. Nevertheless, red blood cells are composed of comparable proportions of long-chain n-3 PUFA to populations consuming higher amounts of this fatty acid group.

  20. Infant Formula Supplementation With Long-chain Polyunsaturated Fatty Acids Has No Effect on Bayley Developmental Scores at 18 Months of Age-IPD Meta-analysis of 4 Large Clinical Trials

    NARCIS (Netherlands)

    Beyerlein, Andreas; Hadders-Algra, Mijna; Kennedy, Katherine; Fewtrell, Mary; Singhal, Atul; Rosenfeld, Eva; Lucas, Alan; Bouwstra, Hylco; Koletzko, Berthold; von Kries, Ruediger

    2010-01-01

    Objectives: To find out whether supplementation of formula milk by long-chain polyunsaturated fatty acids (LCPUFA) affects neurodevelopment at 18 months of age in term or preterm infants by an individual patient data (IPD) meta-analysis. Materials and Methods: Data of 870 children from 4 large rando

  1. ERYTHROCYTE AND PLASMA-CHOLESTEROL ESTER LONG-CHAIN POLYUNSATURATED FATTY-ACIDS OF LOW-BIRTH-WEIGHT BABIES FED PRETERM FORMULA WITH AND WITHOUT RIBONUCLEOTIDES - COMPARISON WITH HUMAN-MILK

    NARCIS (Netherlands)

    WOLTIL, HA; VANBEUSEKOM, CM; SIEMENSMA, AD; POLMAN, HA; MUSKIET, FAJ; OKKEN, A

    1995-01-01

    We investigated whether a regular formula for premature infants (pre) supplemented with ribonucleotides (pre+RN) raises erythrocyte and plasma cholesterol ester (CE) long-chain polyunsaturated fatty acids (LCPUFAs) of low-birthweight babies (less than or equal to 2.50 kg) compared with their breast-

  2. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids Docosapentaenoic (DPA, 22:5n-6) and Docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Science.gov (United States)

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolu...

  3. Identification and characterization of a novel C20-elongase gene from the marine microalgae, Pavlova viridis, and its use for the reconstitution of two pathways of long-chain polyunsatured fatty acids biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Shi, Tonglei; Yu, Aiqun; Li, Ming; Zhang, Meng; Xing, Laijun; Li, Mingchun

    2013-08-01

    The marine microalga, Pavlova viridis, contains long-chain polyunsatured fatty acids including eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3). A full-length cDNA sequence, pvelo5, was isolated from P. viridis. From sequence alignment, the gene was homologous to fatty acyl elongases from other organisms. Heterologous expression of pvelo5 in Saccharomyces cerevisiae confirmed that it encoded a specific C20-elongase within the n-3 and n-6 pathways. Elongation activity was confined exclusively to EPA and arachidonic acid (20:4n-6). GC analysis indicated that pvelo5 could co-express with other genes for biosynthesis to reconstitute the Δ8 and Δ6 pathways. Real-time PCR results and fatty acid analysis demonstrated that long-chain polyunsatured fatty acids production by the Δ8 pathway might be more effective than that by the Δ6 pathway. PMID:23546943

  4. Role of ω3 long-chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors.

    Science.gov (United States)

    Abeywardena, Mahinda Y; Patten, Glen S

    2011-09-01

    Cardiovascular disease is the leading cause of mortality in many economically developed nations, and its incidence is increasing at a rapid rate in emerging economies. Diet and lifestyle issues are closely associated with a myriad of cardiovascular disease risk factors including abnormal plasma lipids, hypertension, insulin resistance, diabetes and obesity, suggesting that diet-based approaches may be of benefit. Omega-3 longchain-polyunsaturated fatty acids (ω3 LC-PUFA) are increasingly being used in the prevention and management of several cardiovascular risk factors. Both the ω3 and ω6 PUFA families are considered essential, as the human body is itself unable to synthesize them. The conversion of the two precursor fatty acids - linoleic acid (18:2ω6) and α-linoleic acid (α18:3ω3) - of these two pathways to longer (≥C(20)) PUFA is inefficient. Although there is an abundance of ω6 PUFA in the food supply; in many populations the relative intake of ω3 LC-PUFA is low with health authorities advocating increased consumption. Fish oil, rich in eicosapentaenoic (EPA, 20:5ω3) and docosahexaenoic (DHA, 22:6ω3) acids, has been found to cause a modest reduction in blood pressure at a dose level of >3g/d both in untreated and treated hypertensives. Whilst a multitude of mechanisms may contribute to the blood pressure lowering action of ω3 LC-PUFA, improved vascular endothelial cell function appears to play a central role. Recent studies which evaluated the potential benefits of fish oil in type-2 diabetes have helped to alleviate concerns raised in some previous studies which used relatively large dose (5-8 g/d) and reported a worsening of glycemic control. Several meta-analyses have confirmed that the most consistent action of ω3 LC-PUFA in insulin resistance and type-2 diabetes is the reduction in triglycerides. In some studies, fish oil has been found to cause a small rise in LDL-cholesterol, but a change in the LDL particle size, from the smaller more

  5. High levels of both n-3 and n-6 long-chain polyunsaturated fatty acids in cord serum phospholipids predict allergy development.

    Directory of Open Access Journals (Sweden)

    Malin Barman

    Full Text Available BACKGROUND: Long-chain polyunsaturated fatty acids (LCPUFAs reduce T-cell activation and dampen inflammation. They might thereby counteract the neonatal immune activation and hamper normal tolerance development to harmless environmental antigens. We investigated whether fatty acid composition of cord serum phospholipids affects allergy development up to age 13 years. METHODS: From a population-based birth-cohort born in 1996/7 and followed until 13 years of age (n = 794, we selected cases with atopic eczema (n = 37 or respiratory allergy (n = 44, as well as non-allergic non-sensitized controls (n = 48 based on diagnosis at 13 years of age. Cord and maternal sera obtained at delivery from cases and controls were analysed for proportions of saturated, monounsaturated and polyunsaturated fatty acids among serum phospholipids. RESULTS: The cord serum phospholipids from subject who later developed either respiratory allergy or atopic eczema had significantly higher proportions of 5/8 LCPUFA species, as well as total n-3 LCPUFA, total n-6 LCPUFA and total LCPUFA compared to cord serum phospholipids from controls who did not develop allergy (P<0.001 for all comparisons. Conversely, individuals later developing allergy had lower proportion of the monounsaturated fatty acid 18∶1n-9 as well as total MUFA (p<0.001 among cord serum phospholipids. The risk of respiratory allergy at age 13 increased linearly with the proportion of n-3 LCPUFA (Ptrend<0.001, n-6 LCPUFA (Ptrend = 0.001, and total LCPUFA (Ptrend<0.001 and decreased linearly with the proportions of total MUFA (Ptrend = 0.025 in cord serum phospholipids. Furthermore, Kaplan-Meier estimates of allergy development demonstrated that total LCPUFA proportion in cord serum phospholipids was significantly associated with respiratory allergy (P = 0.008 and sensitization (P = 0.002, after control for sex and parental allergy. CONCLUSION: A high proportion of long-chain

  6. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration.

    Science.gov (United States)

    Barabas, Peter; Liu, Aihua; Xing, Wei; Chen, Ching-Kang; Tong, Zongzhong; Watt, Carl B; Jones, Bryan W; Bernstein, Paul S; Križaj, David

    2013-03-26

    Stargardt type 3 (STGD3) disease is a juvenile macular dystrophy caused by mutations in the ELOVL4 (Elongation of very long chain fatty acids 4) gene. Its protein product, ELOVL4, is an elongase required for the biosynthesis of very long-chain polyunsaturated fatty acids (VLC-PUFAs). It is unclear whether photoreceptor degeneration in STGD3 is caused by loss of VLC-PUFAs or by mutated ELOVL4 protein trafficking/aggregation. We therefore generated conditional knockout (cKO) mice with Elovl4 ablated in rods or cones and compared their phenotypes to transgenic (TG) animals that express the human STGD3-causing ELOVL4(STGD3) allele. Gas chromatography-mass spectrometry was used to assess C30-C34 VLC-PUFA and N-retinylidene-N-retinylethanolamine content; electroretinography was used to measure phototransduction and outer retinal function; electron microscopy was used for retinal ultrastructure; and the optomotor tracking response was used to test scotopic and photopic visual performance. Elovl4 transcription and biosynthesis of C30-C34 VLC-PUFAs in rod cKO and TG retinas were reduced up to 98%, whereas the content of docosahexaenoic acid was diminished in TG, but not rod cKO, retinas. Despite the near-total loss of the retinal VLC-PUFA content, rod and cone cKO animals exhibited no electrophysiological or behavioral deficits, whereas the typical rod-cone dystrophic pattern was observed in TG animals. Our data suggest that photoreceptor-specific VLC-PUFA depletion is not sufficient to induce the STGD3 phenotype, because depletion alone had little effect on photoreceptor survival, phototransduction, synaptic transmission, and visual behavior. PMID:23479632

  7. Feeding laying hens stearidonic acid-enriched soybean oil, as compared to flaxseed oil, more efficiently enriches eggs with very long-chain n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Elkin, Robert G; Ying, Yun; Harvatine, Kevin J

    2015-03-18

    The desaturation of α-linolenic acid (ALA) to stearidonic acid (SDA) is considered to be rate-limiting for the hepatic conversion of ALA to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans, rodents, and chickens. Thus, we hypothesized that feeding laying hens SDA, as a component of the oil derived from the genetic modification of the soybean, would bypass this inefficient metabolic step and result in the enrichment of eggs with EPA and DHA at amounts comparable to that achieved by direct supplementation of hens' diet with these very long-chain (VLC) n-3 polyunsaturated fatty acids (PUFAs). In a 28-d study, laying hens incorporated 0.132 mg, 0.041 mg, or 0.075 mg of VLC n-3 PUFAs into egg yolk for each milligram of ingested dietary ALA derived primarily from conventional soybean oil (CON), dietary ALA derived primarily from flaxseed oil (FLAX), or dietary SDA derived from SDA-enriched soybean oil, respectively. Moreover, the amounts of total yolk VLC n-3 PUFAs in eggs from hens fed the CON (51 mg), FLAX (91 mg), or SDA (125 mg) oils were markedly less than the 305 mg found in eggs from fish oil-fed hens. Unexpectedly, SDA appeared to be more readily incorporated into adipose tissue than into egg yolk. Since egg yolk FAs typically reflect the hens' dietary pattern, these tissue-specific differences suggest the existence of an alternate pathway for the hepatic secretion and transport of SDA in the laying hen.

  8. N-3 long-chain polyunsaturated fatty acids and risk of all-cause mortality among general populations: a meta-analysis.

    Science.gov (United States)

    Chen, Guo-Chong; Yang, Jing; Eggersdorfer, Manfred; Zhang, Weiguo; Qin, Li-Qiang

    2016-01-01

    Prospective observational studies have shown inconsistent associations of dietary or circulating n-3 long-chain polyunsaturated fatty acids (LCPUFA) with risk of all-cause mortality. A meta-analysis was performed to evaluate the associations. Potentially eligible studies were identified by searching PubMed and EMBASE databases. The summary relative risks (RRs) with 95% confidence intervals (CIs) were calculated using the random-effects model. Eleven prospective studies involving 371 965 participants from general populations and 31 185 death events were included. The summary RR of all-cause mortality for high-versus-low n-3 LCPUFA intake was 0.91 (95% CI: 0.84-0.98). The summary RR for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake was 0.83 (95% CI: 0.75-0.92) and 0.81 (95% CI: 0.74-0.95), respectively. In the dose-response analysis, each 0.3 g/d increment in n-3 LCPUFA intake was associated with 6% lower risk of all-cause mortality (RR = 0.94, 95% CI: 0.89-0.99); and each 1% increment in the proportions of circulating EPA and DHA in total fatty acids in blood was associated with 20% (RR = 0.80, 95% CI: 0.65-0.98) and 21% (RR = 0.79, 95% CI: 0.63-0.99) decreased risk of all-cause mortality, respectively. Moderate to high heterogeneity was observed across our anlayses. Our findings suggest that both dietary and circulating LCPUFA are inversely associated with all-cause mortality. PMID:27306836

  9. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.

    Science.gov (United States)

    Ferraz, Anete Curte; Kiss, Agata; Araújo, Renata Lins Fuentes; Salles, Hélidy Maria Rossi; Naliwaiko, Katya; Pamplona, Juliana; Matheussi, Francesca

    2008-03-01

    In this work we investigated the effect from fish oil (FO) supplementation, rich in n-3 fatty acids, on an antidepressant effect on adult rats in Phase A (supplementation during pregnancy and lactation) and phase B (supplementation during post-weaning until adulthood). During Phase A, female rats, used as matrix to obtain male rats, were divided in three groups: FO (daily supplemented), CF (coconut fat daily supplemented) and control (not supplemented). Our results showed that adult rats whose mothers were supplemented with FO during Phase A and rats supplemented during phase B demonstrated a significantly decreased immobility time when compared to control and CF groups. There was no difference in neither motor activity nor anxiety behavior in the three groups excluding false positive results. Our results suggest that n-3 fatty acids supplementation during Phases A and B had a beneficial effect on preventing the development of depression-like behavior in adult rats. PMID:18378130

  10. Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation.

    Directory of Open Access Journals (Sweden)

    Ramez Alhazzaa

    Full Text Available This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18:3n-3 (ALA bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA, and to determine the overall pathway kinetics. Using rat hepatocytes (FaO as model cells, it was established that a maximum 20:5n-3 (EPA production from 50 µM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125 µM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22:5n-3 (DPA and 22:6n-3 (DHA in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB method on cell culture system (cells with medium enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km of the theoretical maximal (V max = 3654 µmol.g(-1 of cell protein.hour(-1 Fads2 activity on ALA can be achieved with 81 µM initial ALA. Interestingly, the apparent activity of Elovl2 (20:5n-3 elongation was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.

  11. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  12. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17 and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19 are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high

  13. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes

    Science.gov (United States)

    Zheng, Desong; Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Hua, Jinping

    2016-01-01

    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of

  14. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Science.gov (United States)

    Xia, Fei; Li, Xueying; Li, Xinzheng; Zheng, Desong; Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Hua, Jinping; Qi, Baoxiu

    2016-01-01

    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of

  15. The Effects of n-3 Long-Chain Polyunsaturated Fatty Acid Supplementation on Biomarkers of Kidney Injury in Adults With Diabetes

    Science.gov (United States)

    Miller, Edgar R.; Juraschek, Stephen P.; Anderson, Cheryl A.; Guallar, Eliseo; Henoch-Ryugo, Karen; Charleston, Jeanne; Turban, Sharon; Bennett, Michael R.; Appel, Lawrence J.

    2013-01-01

    OBJECTIVE Long-chain n-3 polyunsaturated fatty acid (n-3 PUFA) supplements may have renoprotective effects in patients with diabetes, but previous trials have been inconsistent. We performed a randomized controlled trial of n-3 PUFA supplementation on urine albumin excretion and markers of kidney injury in adults with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted a randomized, placebo-controlled, two-period crossover trial to test the effects of 4 g/day of n-3 PUFA supplementation on markers of glomerular filtration and kidney injury in adults with adult-onset diabetes and greater than or equal to trace amounts of proteinuria. Each period lasted 6 weeks and was separated by a 2-week washout. The main outcome was urine albumin excretion and, secondarily, markers of kidney injury (kidney injury molecule-1, N-acetyl β-d-glucosaminidase [NAG], neutrophil gelatinase-associated lipocalin [NGAL], and liver fatty acid–binding protein [LFABP]), serum markers of kidney function (cystatin C, β2-microglobulin, and creatinine), and estimated glomerular filtration rate (eGFR). RESULTS Of the 31 participants, 29 finished both periods. A total of 55% were male, and 61% were African American; mean age was 67 years. At baseline, mean BMI was 31.6 kg/m2, median eGFR was 76.9 mL/min/1.73 m2, and median 24-h urine albumin excretion was 161 mg/day. Compared with placebo, n-3 PUFA had nonsignificant effects on urine albumin excretion (−7.2%; 95% CI −20.6 to 8.5; P = 0.35) and significant effects on urine NGAL excretion (−16% [−29.1 to −0.5%]; P = 0.04). There was no effect on serum markers of kidney function or eGFR. In subgroup analyses, there were significant decreases in 24-h urinary excretion of albumin, NGAL, LFABP, and NAG among participants taking medications that block the renin-angiotensin-aldosterone system (RAAS). CONCLUSIONS These results suggest a potential effect of n-3 PUFA supplementation on markers of kidney injury in patients with diabetes and

  16. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO-FISH trial.

    Science.gov (United States)

    Miller, Edgar R; Juraschek, Stephen P; Anderson, Cheryl A; Guallar, Eliseo; Henoch-Ryugo, Karen; Charleston, Jeanne; Turban, Sharon; Bennett, Michael R; Appel, Lawrence J

    2013-06-01

    OBJECTIVE Long-chain n-3 polyunsaturated fatty acid (n-3 PUFA) supplements may have renoprotective effects in patients with diabetes, but previous trials have been inconsistent. We performed a randomized controlled trial of n-3 PUFA supplementation on urine albumin excretion and markers of kidney injury in adults with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted a randomized, placebo-controlled, two-period crossover trial to test the effects of 4 g/day of n-3 PUFA supplementation on markers of glomerular filtration and kidney injury in adults with adult-onset diabetes and greater than or equal to trace amounts of proteinuria. Each period lasted 6 weeks and was separated by a 2-week washout. The main outcome was urine albumin excretion and, secondarily, markers of kidney injury (kidney injury molecule-1, N-acetyl β-d-glucosaminidase [NAG], neutrophil gelatinase-associated lipocalin [NGAL], and liver fatty acid-binding protein [LFABP]), serum markers of kidney function (cystatin C, β2-microglobulin, and creatinine), and estimated glomerular filtration rate (eGFR). RESULTS Of the 31 participants, 29 finished both periods. A total of 55% were male, and 61% were African American; mean age was 67 years. At baseline, mean BMI was 31.6 kg/m(2), median eGFR was 76.9 mL/min/1.73 m(2), and median 24-h urine albumin excretion was 161 mg/day. Compared with placebo, n-3 PUFA had nonsignificant effects on urine albumin excretion (-7.2%; 95% CI -20.6 to 8.5; P = 0.35) and significant effects on urine NGAL excretion (-16% [-29.1 to -0.5%]; P = 0.04). There was no effect on serum markers of kidney function or eGFR. In subgroup analyses, there were significant decreases in 24-h urinary excretion of albumin, NGAL, LFABP, and NAG among participants taking medications that block the renin-angiotensin-aldosterone system (RAAS). CONCLUSIONS These results suggest a potential effect of n-3 PUFA supplementation on markers of kidney injury in patients with diabetes and early

  17. Potential Production of Polyunsaturated Fatty Acids from Microalgae

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2011-07-01

    Full Text Available Currently, public awareness of healthcare importance increase. Polyunsaturated fatty acid is an essential nutrition for us, such arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. The need of Polyunsaturated fatty acid generally derived from fish oil, but fish oil has a high risk chemical contamination. Microalgae are single cell microorganism, one of Phaeodactylum tricornutum which have relatively high content of eicosapentaenoic acid (29,8%. Biotechnology market of Polyunsaturated fatty acid is very promising for both foods and feeds, because the availability of abundant raw materials and suitable to develop in the tropics. This literature review discusses about the content of Polyunsaturated fatty acid in microalgae, omega-3, omega-6, Polyunsaturated fatty acid production processes, and applications in public health

  18. Effect of long chain omega-3 polyunsaturated fatty acids on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mohammed S. Ellulu

    2016-01-01

    Full Text Available Background: Obesity is a degree of excess weight that predisposes people to metabolic syndromes via an inflammatory mechanism. Hypertensive and diabetic people have higher risks of developing systemic inflammation. Long chain omega-3 polyunsaturated fatty acids (LC ω-3 PUFAs can reduce the cardiovascular events and help against inflammation. Objective: To identify the effects of LC ω-3 PUFAs on reducing the levels of inflammatory markers on hypertensive and/or diabetic obese adults. Materials and methods: Sixty-four patients, who were hypertensive and/or diabetic obese with high levels of inflammatory markers, from primary healthcare centers of Gaza City, Palestine, enrolled in two groups of an open-label, parallel, randomized, controlled trial for 8 weeks. Thirty-three patients were in the control group, and 31 patients were in the experimental group. The experimental group was treated with a daily dose of 300 mg eicosapentaenoic acid and 200 mg of docosahexaenoic acid. Results: Treatment with LC ω-3 PUFAs significantly reduced the level of high sensitivity C reactive protein (hs-CRP [14.78±10.7 to 8.49±6.69 mg/L, p<0.001], fasting blood glucose (FBG [178.13±58.54 to 157.32±59.77 mg/dL, p=0.024], and triglyceride (TG [209.23±108.3 to 167.0±79.9 mg/dL, p<0.05] after 8 weeks of treatment, whereas no significant changes appeared in interleukin 6 (IL-6 and total cholesterol (TC. In the control group, significant reduction was detected for FBG [187.15±64.8 to 161.91±37.9 mg/dL, p<0.05] and TG [202.91±107.0 to 183.45±95.82 mg/dL, p<0.05], and no changes for hs-CRP, IL-6, or TC. By comparing the experimental group with the changes of control group at the endpoint, LC ω-3 PUFAs did not reach the clinical significance in treating effectiveness for any of the clinical variables. Conclusion: LC ω-3 PUFAs have recommended effects on health; the obtained results can improve the role of LC ω-3 PUFAs as a protective factor on inflammation and

  19. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  20. Echium oil increased the expression of a Δ4 Fads2 fatty acyl desaturase and the deposition of n-3 long-chain polyunsaturated fatty acid in comparison with linseed oil in striped snakehead (Channa striata) muscle.

    Science.gov (United States)

    Jaya-Ram, Annette; Shu-Chien, Alexander Chong; Kuah, Meng-Kiat

    2016-08-01

    Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.

  1. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    Science.gov (United States)

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.

  2. Echium oil increased the expression of a Δ4 Fads2 fatty acyl desaturase and the deposition of n-3 long-chain polyunsaturated fatty acid in comparison with linseed oil in striped snakehead (Channa striata) muscle.

    Science.gov (United States)

    Jaya-Ram, Annette; Shu-Chien, Alexander Chong; Kuah, Meng-Kiat

    2016-08-01

    Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species. PMID:26842427

  3. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    Science.gov (United States)

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores. PMID:25542509

  4. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Directory of Open Access Journals (Sweden)

    Valenzuela, R.

    2016-06-01

    Full Text Available Long-chain polyunsaturated fatty acids (LCPUFA which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO is rich in anti-oxidants (polyphenols and tocopherols which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group were fed a control diet (CD or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day. The group fed HFD showed a significant increase (p Los ácidos grasos poliinsaturados de cadena larga (AGPICL sintetizados principalmente por el hígado, cumplen funciones relevantes en el organismo. Una dieta alta en grasa (DAG genera un incremento en los niveles de grasa y estrés oxidativo (lipoperoxidación en hígado y una reducción en los niveles de AGPICL n-3 y n-6 en diferentes tejidos. El aceite de oliva extra virgen (AOEV es rico en antioxidantes (polifenoles y tocoferoles que ayudan a prevenir el desarrollo del estrés oxidativo. Este trabajo evaluó el rol del AOEV en la prevención del depósito de grasa, estrés oxidativo hepático y reducción de los AGPICL n-3 y n-6 en diferentes tejidos generado por una DAG en ratones C57BL/6J. Cuatro grupos experimentales (n=10/grupo fueron alimentados (12 semanas con dieta control (DC o DAG y suplementados con AOEV (100 mg/día. El grupo alimentado con DAG presentó un incremento (p < 0,05 en la acumulación de grasa y estrés oxidativo hepático, acompañado de una reducción en los niveles de AGPICL n-3 y n-6 en hígado, eritrocitos y cerebro. La suplementación con AOEV logr

  5. Potential Production of Polyunsaturated Fatty Acids from Microalgae

    OpenAIRE

    Noer Abyor Handayani; Dessy Ariyanti; Hady Hadiyanto

    2011-01-01

    Currently, public awareness of healthcare importance increase. Polyunsaturated fatty acid is an essential nutrition for us, such arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. The need of Polyunsaturated fatty acid generally derived from fish oil, but fish oil has a high risk chemical contamination. Microalgae are single cell microorganism, one of Phaeodactylum tricornutum which have relatively high content of eicosapentaenoic acid (29,8%). Biotechnology market of Polyunsat...

  6. A randomised controlled trial investigating the effect of n-3 long-chain polyunsaturated fatty acid supplementation on cognitive and retinal function in cognitively healthy older people: the Older People And n-3 Long-chain polyunsaturated fatty acids (OPAL study protocol [ISRCTN72331636

    Directory of Open Access Journals (Sweden)

    Letley Louise

    2006-08-01

    Full Text Available Abstract The number of individuals with age-related cognitive impairment is rising dramatically in the UK and globally. There is considerable interest in the general hypothesis that improving the diet of older people may slow the progression of cognitive decline. To date, there has been little attention given to the possible protective role of n-3 long-chain polyunsaturated fatty acids (n-3 LCPs most commonly found in oily fish, in age-related loss of cognitive function. The main research hypothesis of this study is that an increased dietary intake of n-3 LCPs will have a positive effect on cognitive performance in older people in the UK. To test this hypothesis, a double-blind randomised placebo-controlled trial will be carried out among adults aged 70–79 years in which the intervention arm will receive daily capsules containing n-3 LCP (0.5 g/day docosahexaenoic acid and 0.2 g/day eicosapentaenoic acid while the placebo arm will receive daily capsules containing olive oil. The main outcome variable assessed at 24 months will be cognitive performance and a second major outcome variable will be retinal function. Retinal function tests are included as the retina is a specifically differentiated neural tissue and therefore represents an accessible window into the functioning of the brain. The overall purpose of this public-health research is to help define a simple and effective dietary intervention aimed at maintaining cognitive and retinal function in later life. This will be the first trial of its kind aiming to slow the decline of cognitive and retinal function in older people by increasing daily dietary intake of n-3 LCPs. The link between cognitive ability, visual function and quality of life among older people suggests that this novel line of research may have considerable public health importance.

  7. The effect of fatty acid positioning in dietary triacylglycerols and intake of long-chain n-3 polyunsaturated fatty acids on bone mineral accretion in growing piglets

    DEFF Research Database (Denmark)

    Ludvig, Stine Erbs; Andersen, Anders Daniel

    2013-01-01

    Long-chain n-3 PUFA (LCPUFA) and palmitate (16:0) positioning in the triacylglycerol (TAG) of infant formula may affect calcium-uptake which could affect bone health. We investigated if a human milk fat substitute (HMFS) with a modified TAG structure holding 16:0 predominantly in the sn-2-position...... computed tomography and mechanical strength. Bone mineral content (BMC) was higher in the FO compared to the SO-group (p=0.03). Despite similar weight gain in HMFS- and CONT-groups, body fat accumulation was higher with HMFS (p<0.001), and BMC, bone area (BA) and cortical BA in femur were lower (p=0.002, p...

  8. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. Implications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, S.B.; Madsbad, S.; Høy, Carl-Erik;

    2006-01-01

    analysis that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R-2 = 0.33, P ...Objective Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity....... Design Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  9. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E;

    2006-01-01

    that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, P...OBJECTIVE: Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity....... DESIGN Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  10. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Yan-Qin Wu

    2016-04-01

    Full Text Available Doxorubicin (DOX is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg over three weeks starting seven days before DOX administration (2.5 mg/kg. Open-field test (OFT and forced swimming test (FST were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  11. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants

    DEFF Research Database (Denmark)

    Jørgensen, M.H.; Nielsen, P.K.; Michaelsen, K.F.;

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal and...

  12. TECHNOLOGY FOR OIL ENRICHED BY POLYUNSATURATED FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    K. Leshukov

    2012-03-01

    Full Text Available The technology of butter with the "OmegaTrin" complex with the balanced content of polynonsaturated fat acids is developed. Studied the fatty acid composition of milk - raw materials, optimal amount of insertion of polyunsaturated fatty acids, organoleptic characteristics of enriched butter; studied physico-chemical properties and biological value (biological effectiveness of the final product, fatty acid composition of a new product, set the shelf life and developed an oil recipe.

  13. Note on the chromatographic analyses of marine polyunsaturated fatty acids

    Science.gov (United States)

    Schultz, D.M.; Quinn, J.G.

    1977-01-01

    Gas-liquid chromatography was used to study the effects of saponification/methylation and thin-layer chromatographic isolation on the analyses of polyunsaturated fatty acids. Using selected procedures, the qualitative and quantitative distribution of these acids in marine organisms can be determined with a high degree of accuracy. ?? 1977 Springer-Verlag.

  14. Polyunsaturated fatty acid supplementation stimulates differentiation of oligodendroglia cells

    NARCIS (Netherlands)

    van Meeteren, ME; Baron, W; Beermann, C; van Tol, EAF

    2006-01-01

    Dietary polyunsaturated fatty acids (PUFAs) have been postulated as alternative supportive treatment for multiple sclerosis, since they may promote myelin repair. We set out to study the effect of supplementation with n-3 and n-6 PUFAs on OLN-93 oligodendroglia and rat primary oligodendrocyte differ

  15. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    Science.gov (United States)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  16. The role of long-chain polyunsaturated fatty acids in the treatment of cancer Cachexia and tumour growth in patients with malignant diseases: A review

    Directory of Open Access Journals (Sweden)

    Elizabeth A Symington

    2008-02-01

    Full Text Available Recent studies show that ω-3 polyunsaturated fatty acids (PUFAs have the capacity to modulate cancer outcomes. The body responds to cancer in the same way that it responds to inflammation and wound healing. Nutrients with anti-inflammatory effects could therefore be expected to play a role in cancer treatment. This review focuses on the role of ω-3 PUFAs in tumourigenesis and cancer cachexia. Studies indicate that eicosapentaenoic acid (EPA supplementation may promote arrest of tumour growth and reduce cell proliferation. Patients need to consume at least 2 g of EPA per day for it to have a therapeutic effect. Positive outcomes related to cachexia include diminished weight loss, increased appetite, improved quality of life and prolonged survival, although there is controversy regarding these clinical outcomes. The effects of ω-3 PUFAs on tumourigenesis and cachexia are viewed in the context of altered lipid and protein metabolism. This altered metabolism usually experienced by cancer patients results in increased formation of proinflammatory eicosanoids and cytokines. Cytokines play an indirect role by stimulating the production of arachidonic acid-derived eicosanoids, which support inflammation, cell proliferation and angiogenesis, and inhibit apoptosis. It can be concluded that ω-3 PUFA supplementation offers a means of augmenting cancer therapy, inhibiting tumourigenesis and possibly contributing to cachexia alleviation. Opsomming Onlangse studies toon dat ω-3-poli-onversadigde vetsure (POVSe oor die vermoë beskik om kankeruitkomste te moduleer. Die liggaam reageer op kanker op dieselfde wyse as wat dit op inflammasie en wondgenesing reageer. Daar kan dus verwag word dat voedingstowwe met ‘n anti-inflammatoriese uitwerking ‘n rol in die behandeling van kanker kan speel. In hierdie oorsig word daar op die rol van ω-3-POVSe in tumorigenese en kankerkageksie gefokus. Studies dui daarop dat eikosapentanoënsuur- (EPS

  17. A importância dos ácidos graxos poliinsaturados de cadeia longa na gestação e lactação The significance of long chain polyunsaturated fatty acids in pregnancy and lactation

    Directory of Open Access Journals (Sweden)

    Deila Regina Bentes da Silva

    2007-04-01

    Full Text Available Os ácidos graxos poliinsaturados de cadeia longa (AGPICL, ácido docosahexaenóico (DHA e ácido araquidônico (AA são componentes essenciais não só para o desenvolvimento neurológico quanto para a função visual da criança. O objetivo desta revisão foi buscar estudos recentes sobre a importância desses nutrientes no período gestacional e neonatal. A maior necessidade dos AGPICL ocorre durante a vida intra-uterina e nos primeiros meses de vida. A mãe é um fator determinante na oferta desses ácidos graxos para a criança. O leite materno contém todos os nutrientes necessários para o crescimento e desenvolvimento da criança. O bebê não tem capacidade de elongação e dessaturação dos ácidos graxos e dessa maneira as fórmulas infantis devem conter AGPICL pré-formados.Long chain polyunsaturated fatty acids (LC-PUFAS, docosahexaenoic acid (DHA and arachinodonic acid (AA are essential components for both neurological development and visual function of the child. This review focused on recent studies concerning the value of these nutrients during gestational and neonatal periods. The need for (LC-PUFAS is enhanced during intra-uterine and first months of life. The mother is the principal source of fatty acids to the child. Maternal milk contains all required nutrients for infant's growth and development. Babies do not have the ability to elong and desaturate fatty acids therefore; feeding formulas should contain preformed LC-PUFAS.

  18. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Science.gov (United States)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  19. Australians are not Meeting the Recommended Intakes for Omega-3 Long Chain Polyunsaturated Fatty Acids: Results of an Analysis from the 2011–2012 National Nutrition and Physical Activity Survey

    Directory of Open Access Journals (Sweden)

    Barbara J. Meyer

    2016-02-01

    Full Text Available Health benefits have been attributed to omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA. Therefore it is important to know if Australians are currently meeting the recommended intake for n-3 LCPUFA and if they have increased since the last National Nutrition Survey in 1995 (NNS 1995. Dietary intake data was obtained from the recent 2011–2012 National Nutrition and Physical Activity Survey (2011–2012 NNPAS. Linoleic acid (LA intakes have decreased whilst alpha-linolenic acid (LNA and n-3 LCPUFA intakes have increased primarily due to n-3 LCPUFA supplements. The median n-3 LCPUFA intakes are less than 50% of the mean n-3 LCPUFA intakes which highlights the highly-skewed n-3 LCPUFA intakes, which shows that there are some people consuming high amounts of n-3 LCPUFA, but the vast majority of the population are consuming much lower amounts. Only 20% of the population meets the recommended n-3 LCPUFA intakes and only 10% of women of childbearing age meet the recommended docosahexaenoic acid (DHA intake. Fish and seafood is by far the richest source of n-3 LCPUFA including DHA.

  20. Australians are not Meeting the Recommended Intakes for Omega-3 Long Chain Polyunsaturated Fatty Acids: Results of an Analysis from the 2011-2012 National Nutrition and Physical Activity Survey.

    Science.gov (United States)

    Meyer, Barbara J

    2016-02-24

    Health benefits have been attributed to omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA). Therefore it is important to know if Australians are currently meeting the recommended intake for n-3 LCPUFA and if they have increased since the last National Nutrition Survey in 1995 (NNS 1995). Dietary intake data was obtained from the recent 2011-2012 National Nutrition and Physical Activity Survey (2011-2012 NNPAS). Linoleic acid (LA) intakes have decreased whilst alpha-linolenic acid (LNA) and n-3 LCPUFA intakes have increased primarily due to n-3 LCPUFA supplements. The median n-3 LCPUFA intakes are less than 50% of the mean n-3 LCPUFA intakes which highlights the highly-skewed n-3 LCPUFA intakes, which shows that there are some people consuming high amounts of n-3 LCPUFA, but the vast majority of the population are consuming much lower amounts. Only 20% of the population meets the recommended n-3 LCPUFA intakes and only 10% of women of childbearing age meet the recommended docosahexaenoic acid (DHA) intake. Fish and seafood is by far the richest source of n-3 LCPUFA including DHA.

  1. Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis.

    OpenAIRE

    Guichardant, Michel; Calzada, Catherine; Bernoud-Hubac, Nathalie; Lagarde, Michel; Véricel, Evelyne

    2014-01-01

    International audience; Numerous epidemiological studies and clinical trials have reported the health benefits of omega-3 polyunsaturated fatty acids (PUFA), including a lower risk of coronary heart diseases. This review mainly focuses on the effects of alpha-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on some risk factors associated with atherothrombosis, including platelet activation, plasma lipid concentrations and oxidative modification of low-density lipoprote...

  2. Are all n-3 polyunsaturated fatty acids created equal?

    OpenAIRE

    Ma David WL; Anderson Breanne M

    2009-01-01

    Abstract N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is...

  3. Effect of antioxidants on polyunsaturated fatty acids – review

    Directory of Open Access Journals (Sweden)

    Ancuţa Elena Prisacaru

    2016-06-01

    Full Text Available This paper aims to review the available literature data and provide an overview regarding the efficiency of antioxidants to prevent peroxidation of polyunsaturated fatty acids. Lipid peroxidation is a serious problem that often leads to a loss of shelf-life, reduced consumer acceptability, poorer functionality, lower nutritional value, and poorer safety. It represents an oxidative degradation of polyunsaturated fatty acids incorporated in cell membrane lipids or in lipoproteins, but also in vegetables and food oils rich in PUFA n-3. It is a complex process that leads to the production of numerous highly reactive metabolites with consequences for food preservation and for the development of various diseases. The targets of lipid oxidation are polyunsaturated fatty acids. Lipid peroxidation can proceed by means of two different reactions that lead to the formation of hydroperoxides as primary products. Hydroperoxides decompose rapidly to give many secondary products, such as lipid free radicals, which contribute to increased oxidation of other molecules, such as proteins, nu- cleic acids and other lipids. Lipid peroxidation is a major problem for the food industry, as well as for human health, since it is associated with many diseases. The use of antioxidants reduces oxidative damage.

  4. Effects of lactoferrin, phytic acid, and EDTA on oxidation in two food emulsions enriched with long-chain polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Petersen, A.; Meyer, Anne S.;

    2004-01-01

    The influence of the addition of metal chelators on oxidative stability was studied in a milk drink and in a mayonnaise system containing highly polyunsaturated lipids. Milk drinks containing 5% (w/w) of specific structured lipid were supplemented with lactoferrin (6-24 M) and stored at 2 C for up...... to 9 weeks. Mayonnaise samples with 16% fish oil and 64% rapeseed oil (w/w) were supplemented with either lactoferrin (8-32 M), phytic acid (16-124 M), or EDTA (16-64 M) and were stored at 20 C for up to 4 weeks. The effect of the metal chelators was evaluated by determination of peroxide values......, secondary volatile oxidation products, and sensory analysis. Lactoferrin reduced the oxidation when added in concentrations of 12 M in the milk drink and 8 M in the mayonnaise, whereas it was a prooxidant at higher concentrations in both systems. In mayonnaise, EDTA was an effective metal chelator even...

  5. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning.

    Science.gov (United States)

    Kasbi-Chadli, Fatima; Boquien, Clair-Yves; Simard, Gilles; Ulmann, Lionel; Mimouni, Virginie; Leray, Véronique; Meynier, Anne; Ferchaud-Roucher, Véronique; Champ, Martine; Nguyen, Patrick; Ouguerram, Khadija

    2014-07-01

    Perinatal nutrition is thought to affect the long-term risk of the adult to develop metabolic syndrome. We hypothesized that maternal supplementation with eicosapentaenoic acid and docosahexaenoic acid during pregnancy and lactation would protect offspring fed a high-fat diet from developing metabolic disturbances. Thus, two groups of female hamsters were fed a low-fat control diet, either alone (LC) or enriched with n-3 long chain polyunsaturated fatty acids (LC-PUFA) (LO), through the gestational and lactation periods. After weaning, male pups were randomized to separate groups that received either a control low-fat diet (LC) or a high-fat diet (HC) for 16 weeks. Four groups of pups were defined (LC-LC, LC-HC, LO-LC and LO-HC), based on the combinations of maternal and weaned diets. Maternal n-3 LC-PUFA supplementation was associated with reduced levels of basal plasma glucose, hepatic triglycerides secretion and postprandial lipemia in the LO-HC group compared to the LC-HC group. Respiratory parameters were not affected by maternal supplementation. In contrast, n-3 LC-PUFA supplementation significantly enhanced the activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase compared to the offspring of unsupplemented mothers. Sterol regulatory element binding protein-1c, diacylglycerol O-acyltransferase 2, fatty acid synthase, stearoyl CoA desaturase 1 and tumor necrosis factor α expression levels were not affected by n-3 LC-PUFA supplementation. These results provide evidence for a beneficial effect of n-3 LC-PUFA maternal supplementation in hamsters on the subsequent risk of metabolic syndrome. Underlying mechanisms may include improved lipid metabolism and activation of the mitochondrial oxidative pathway.

  6. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    OpenAIRE

    P.C. Calder

    1998-01-01

    1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune...

  7. Long-chain polyunsaturated fatty acids in breast-milk and erythrocytes and neurodevelopmental outcomes in Danish late-preterm infants

    DEFF Research Database (Denmark)

    Andersen, Stine Brøndum; Hellgren, Lars I; Larsen, Mette Krogh;

    2015-01-01

    month after delivery, and 3 months corrected age. Fatty acid composition was determined by gas-liquid chromatography. Neurodevelopmental outcomes were assessed by the Nicu Network Neurobehavioral Scale (NNNS) at 1 week and 1 month and the Bayley Scales (BSID-III) at 1 year corrected age. Results: We...

  8. Omega-3 polyunsaturated fatty acids and mood disorders

    Directory of Open Access Journals (Sweden)

    Astorg Pierre

    2007-05-01

    Full Text Available The hypothesis of a role of n-3 polyunsaturated fatty acids (PUFA in the pathophysiology of depression has emerged from the observation that depressed patients had decreased levels of n-3 long-chain PUFA (especially eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA in plasma, erythrocytes, or adipose tissue, as compared to healthy controls, a decrease which was not observed with n-6 PUFA. Suicide attempters have much lower levels of EPA and DHA in red blood cells than hospital controls. Recently, a decreased level of DHA has also been observed in the post-mortem brain cortex of patients with major depression. The fact that these changes were specific of the n-3 family suggests that a low n-3 PUFA status or intake predisposes to depression. International ecological studies show a strong negative correlation between apparent fish consumption and the prevalence of depression or of bipolar disorder, as well as between DHA content of maternal milk and the prevalence of postpartum depression. In cross-sectional studies in several countries, a higher risk of depression or of depressive symptoms has been found in subjects with a lower fish consumption. In a French cohort of adults, habitual fatty fish consumption or a higher n-3 PUFA intake were associated with a lower risk of depression, especially of recurrent depression. Randomized, placebo-controlled trials have been conducted to test the effects of long-chain n-3 PUFA in depressive or bipolar patients. EPA as an adjunct to a standard treatment appears to improve depressive patients or bipolar patients in depressive phase when given at the dose of 1-2 g/day, and fish oil prevents depressive recurrences in bipolar patients. Recently, a mixture of EPA plus DHA has proven efficiency in untreated depressive children. In summary, many epidemiological and clinical works in the last ten years have abundantly documented the existence of an association between a low n-3 PUFA intake or status and a

  9. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time.

  10. Polyunsaturated fatty acid content of mother's milk is associated with childhood body composition

    DEFF Research Database (Denmark)

    Pedersen, Louise; Lauritzen, Lotte; Brasholt, Martin;

    2012-01-01

    The consumption of polyunsaturated fatty acids has changed, and the prevalence of adiposity has increased over the past 30 y. A decrease of n-3 polyunsaturated fatty acid content in breast milk has been suggested to be a contributing factor. The objective of this study was to investigate...... the relationship between docosahexaenoic acid (DHA) content and n-6/n-3 polyunsaturated fatty acid ratio in breast milk, body composition, and timing of adiposity rebound in children....

  11. Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle

    Directory of Open Access Journals (Sweden)

    Widmann Philipp

    2011-11-01

    Full Text Available Abstract Background The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease. Results To screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-based genome scan in a F2 Charolais × German Holstein resource population and identified a quantitative trait locus (QTL for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1 gene was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the complete coding, exon-flanking intronic sequences, 3' untranslated region (3'UTR and partial promoter region of the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants, six polymorphisms in the promoter region, and four variants in the 3' UTR region. The association analysis identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G to be significantly associated with the relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain polyunsaturated fatty acids, trans vaccenic acid in skeletal muscle. A tentative association

  12. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions

    DEFF Research Database (Denmark)

    Frankel, E.N.; Satue-Gracia, T.; Meyer, Anne Boye Strunge;

    2002-01-01

    , and the presence and activity of transition metals. Fish and algal oils were initially much more stable to oxidation in bulk systems than in the corresponding oil-in-water emulsions. The oxidative stability of emulsions cannot, therefore, be predicted on the basis of stability data obtained with bulk long......-chain PUFA-containing fish oils and DHA-containing algal oils. The relatively high oxidative stability of an algal oil containing 42% DHA was completely lost after chromatographic purification to remove tocopherols and other antioxidants. Therefore, this evidence does not support the claim that DHA-rich oils...

  13. Opposing Effects of Omega-3 and Omega-6 Long Chain Polyunsaturated Fatty Acids on the Expression of Lipogenic Genes in Omental and Retroperitoneal Adipose Depots in the Rat

    Directory of Open Access Journals (Sweden)

    B. S. Muhlhausler

    2010-01-01

    Full Text Available This study aimed to determine the effect of varying dietary intake of the major n-3 PUFA in human diets, α-linolenic acid (ALA; 18 : 3n-3, on expression of lipogenic genes in adipose tissue. Rats were fed diets containing from 0.095%en to 6.3%en ALA and a constant n-6 PUFA level for 3 weeks. Samples from distinct adipose depots (omental and retroperitoneal were collected and mRNA expression of the pro-lipogenic transcription factors Sterol-Retinoid-Element-Binding-Protein1c (SREBP1c and Peroxisome Proliferator Activated Receptor-γ (PPARγ, lipogenic enzymes Sterol-coenzyme Desaturase1 (SCD-1, Fatty Acid Synthase (FAS, lipoprotein lipase (LPL and glycerol-3-phosphate dehydrogenase (G3PDH and adipokines leptin and adiponectin determined by qRT-PCR. Increasing dietary ALA content resulted in altered expression of SREBP1c, FAS and G3PDH mRNA in both adipose depots. SREBP1c mRNA expression was related directly to n-6 PUFA concentrations (omental, r2=.71; P<.001; Retroperitoneal, r2=.20; P<.002, and inversely to n-3 PUFA concentrations (omental, r2=.59; P<.001; Retroperitoneal, r2=.19; P<.005 independent of diet. The relationship between total n-6 PUFA and SREBP1c mRNA expression persisted when the effects of n-3 PUFA were controlled for. Altering red blood cell concentrations of n-3 PUFA is thus associated with altered expression of lipogenic genes in a depot-specific manner and this effect is modulated by prevailing n-6 PUFA concentrations.

  14. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes

    OpenAIRE

    Petrescu, Anca D.; Huang, Huan; Martin, Gregory G.; McIntosh, Avery L.; Storey, Stephen M.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm

    2012-01-01

    Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUF...

  15. Long-chain polyunsaturated fatty acid concentration in patients with inborn errors of metabolism Concentración de ácidos grasos poliinsaturados de cadena larga en pacientes con errores innatos del metabolismo

    Directory of Open Access Journals (Sweden)

    M.ª A. Vilaseca

    2011-02-01

    Full Text Available Introduction: Long-chain polyunsaturated fatty acid (LCPUFA can be provided by diet (fatty fish, eggs, viscera and human milk or synthetised from essential fatty acids linoleic and α-linolenic acids through the microsomal pathway. However, endogenous LCPUFA synthesis is rather low, especially for docosahexaenoic (DHA, and seems insufficient to achieve normal DHA values in individuals devoid of preformed dietary supply. Inborn errors of metabolism (IEMs are therefore diseases with a special risk for LCPUFA deficient status. Aim: Our aim was to evaluate LCPUFA status in 132 patients with different IEMs. Methods: We performed a cross-sectional study of plasma and erythrocyte LCPUFA composition of 63 patients with IEMs treated with protein-restricted diets compared with data from 69 patients with IEMs on protein-unrestricted diets, and 43 own reference values. Results: Erythrocyte and plasma DHA and arachidonic acid concentrations were significantly decreased in patients treated with protein-restriction compared with those on protein-unrestricted diets and with our reference values (p Introducción: Los ácidos grasos poliinsaturados de cadena larga (LCPUFA pueden ser suministrados por la dieta o sintetizados a partir de los ácidos grasos esenciales, linoleico y α-linolénico. La síntesis endógena de LCPUFA es escasa, especialmente la de ácido docosahe-xaenoico (DHA, e insuficiente para alcanzar los valores normales de DHA en individuos que carecen de un suministro dietético de dichos ácidos preformados. Por ello, los errores innatos del metabolismo (IEM son enfermedades con riesgo especial de deficiencia de LCPUFAs. Objetivos: Evaluar el estado de LCPUFA en 132 pacientes con diferentes IEMs. Métodos: Estudio transversal de LCPUFA en plasma y eritrocitos de 63 pacientes con IEMs tratados con dieta restringida en proteínas comparados con 69 pacientes con IEMs con una dieta libre y 43 valores de referencia. Resultados: Las concentraciones de

  16. Fish oil-derived long-chain n-3 polyunsaturated fatty acids reduce expression of M1-associated macrophage markers in an ex vivo adipose tissue culture model, in part through adiponectin

    Directory of Open Access Journals (Sweden)

    Anna A. De Boer

    2015-10-01

    Full Text Available Adipose tissue (AT macrophages (ATM play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad, may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil n-6 PUFA-rich diet or an isocaloric fish-oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM. We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute (18 h ACM plus LPS for the last 6 h or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2 and Ccl5 compared with CON ACM (p≤0.05; however, these effects were largely attenuated when Ad was neutralized (p>0.05. Further, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2 and Il1β and IL-6 and CCL2 secretion (p≤0.05; however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT inflammation.

  17. TRPA1 is a polyunsaturated fatty acid sensor in mammals.

    Directory of Open Access Journals (Sweden)

    Arianne L Motter

    Full Text Available Fatty acids can act as important signaling molecules regulating diverse physiological processes. Our understanding, however, of fatty acid signaling mechanisms and receptor targets remains incomplete. Here we show that Transient Receptor Potential Ankyrin 1 (TRPA1, a cation channel expressed in sensory neurons and gut tissues, functions as a sensor of polyunsaturated fatty acids (PUFAs in vitro and in vivo. PUFAs, containing at least 18 carbon atoms and three unsaturated bonds, activate TRPA1 to excite primary sensory neurons and enteroendocrine cells. Moreover, behavioral aversion to PUFAs is absent in TRPA1-null mice. Further, sustained or repeated agonism with PUFAs leads to TRPA1 desensitization. PUFAs activate TRPA1 non-covalently and independently of known ligand binding domains located in the N-terminus and 5(th transmembrane region. PUFA sensitivity is restricted to mammalian (rodent and human TRPA1 channels, as the drosophila and zebrafish TRPA1 orthologs do not respond to DHA. We propose that PUFA-sensing by mammalian TRPA1 may regulate pain and gastrointestinal functions.

  18. The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke

    Directory of Open Access Journals (Sweden)

    Jiyuan Bu

    2016-01-01

    Full Text Available Stroke is the third commonest cause of death following cardiovascular diseases and cancer. In particular, in recent years, the morbidity and mortality of stroke keep remarkable growing. However, stroke still captures people attention far less than cardiovascular diseases and cancer. Past studies have shown that oxidative stress and inflammation play crucial roles in the progress of cerebral injury induced by stroke. Evidence is accumulating that the dietary supplementation of fish oil exhibits beneficial effects on several diseases, such as cardiovascular diseases, metabolic diseases, and cancer. Omega-3 polyunsaturated fatty acids (n-3 PUFAs, the major component of fish oil, have been found against oxidative stress and inflammation in cardiovascular diseases. And the potential of n-3 PUFAs in stroke treatment is attracting more and more attention. In this review, we will review the effects of n-3 PUFAs on stroke and mainly focus on the antioxidant and anti-inflammatory effects of n-3 PUFAs.

  19. N-3 polyunsaturated fatty acids, body fat and inflammation

    DEFF Research Database (Denmark)

    Lund, Anne-Sofie Quist; Hasselbalch, Ann Louise; Gamborg, Michael;

    2013-01-01

    -related inflammatory markers. METHODS: The study population consisted of 1,212 healthy individuals with information on habitual food intake from food frequency questionnaires, six different measures of body fat, and levels of six circulating inflammatory markers. Multiple linear regression analysis of intakes of PUFAs......BACKGROUND: Based on animal studies, n-3 polyunsaturated fatty acids (PUFAs) have been suggested to lower the risk of obesity and inflammation. We aimed to investigate if, among humans, intake of n-3 PUFAs was associated with i) total body fat, ii) body fat distribution and iii) obesity...... in relation to outcomes were performed and adjusted for potential confounders. RESULTS: Absolute n-3 PUFA intake, but not n-3/n-6, was inversely associated with the different measures of body fat. Among n-3 PUFA derivatives, only α-linolenic acid (ALA) was inversely associated with body fat measures...

  20. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    OpenAIRE

    Royah Vaezi; Napier, Johnathan A.; Olga Sayanova

    2013-01-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of...

  1. Serum n-3 polyunsaturated fatty acids and psychological distress in early pregnancy: Adjunct Study of Japan Environment and Children's Study

    OpenAIRE

    Hamazaki, K; Harauma, A; Otaka, Y; Moriguchi, T; Inadera, H

    2016-01-01

    N-3 polyunsaturated fatty acids (PUFAs), especially long-chain types such as docosahexaenoic acid, are important nutrients in pregnancy, but the relationship between n-3 PUFA levels and perinatal and postnatal depression remains controversial. This study examined the possible relationship between serum n-3 PUFA levels and psychological distress among expectant mothers in early pregnancy. Data and specimen samples were obtained in a birth cohort study started at Toyama Regional Center in July ...

  2. Dietary ω-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose–endoplasmic reticulum stress reduction to increase adiponectin1234

    OpenAIRE

    Fu, Zhongjie; Lofqvist, Chatarina A; Shao, Zhuo; Sun, Ye; Joyal, Jean-Sebastien; Hurst, Christian G.; Cui, Ricky Z; Evans, Lucy P.; Tian, Katherine; SanGiovanni, John Paul; Chen, Jing; Ley, David; Hansen Pupp, Ingrid; Hellstrom, Ann; Smith, Lois EH

    2015-01-01

    Background: Retinopathy of prematurity (ROP) is a vision-threatening disease in premature infants. Serum adiponectin (APN) concentrations positively correlate with postnatal growth and gestational age, important risk factors for ROP development. Dietary ω-3 (n–3) long-chain polyunsaturated fatty acids (ω-3 LCPUFAs) suppress ROP and oxygen-induced retinopathy (OIR) in a mouse model of human ROP, but the mechanism is not fully understood.

  3. Ketogenic Diet, but Not Polyunsaturated Fatty Acid Diet, Reduces Spontaneous Seizures in Juvenile Rats with Kainic Acid-induced Epilepsy

    OpenAIRE

    Dustin, Simone M.; Stafstrom, Carl E

    2016-01-01

    Background and Purpose: The high-fat, low-carbohydrate ketogenic diet (KD) is effective in many cases of drug-resistant epilepsy, particularly in children. In the classic KD, fats consist primarily of long-chain saturated triglycerides. Polyunsaturated fatty acids (PUFAs), especially the n-3 type, decrease neuronal excitability and provide neuroprotection; pilot human studies have raised the possibility of using PUFAs to control seizures in patients. Methods: To determine the relative roles o...

  4. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet

    OpenAIRE

    Hooiveld Guido JEJ; Vink Carolien; Molthoff Jos; Bunschoten Annelies; Kuda Ondrej; Franssen-van Hal Nicole LW; Flachs Pavel; van Schothorst Evert M; Kopecky Jan; Keijer Jaap

    2009-01-01

    Abstract Background Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J muri...

  5. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth;

    2016-01-01

    threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by...... shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  6. Enhanced production of polyunsaturated fatty acid docosahexaenoic acid by thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Chandramohan, D.

    The polyunsaturated fatty acid docosahexaenoic acid (DHA) is an important requirement in the human diet. It is also essential in the nutrition of crustaceans and aquaculture animals. Of the sources available for commercial production of DHA...

  7. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes

    International Nuclear Information System (INIS)

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E

  8. Exacerbation of alcohol-induced oxidative stress in rats by polyunsaturated fatty acids and iron load

    Directory of Open Access Journals (Sweden)

    S N Patere

    2011-01-01

    Full Text Available The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography, polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron.

  9. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.

    Science.gov (United States)

    Yang, Wan Seok; Kim, Katherine J; Gaschler, Michael M; Patel, Milesh; Shchepinov, Mikhail S; Stockwell, Brent R

    2016-08-23

    Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts. PMID:27506793

  10. Do we need 'new' omega-3 polyunsaturated fatty acids formulations?

    Science.gov (United States)

    Cicero, Arrigo F G; Morbini, Martino; Borghi, Claudio

    2015-02-01

    The therapeutic value of omega-3 polyunsaturated fatty acids (PUFAs), mainly (but not only) found in fish oils, eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively), has been extensively studied in a wide variety of disease conditions, predominantly in cardiovascular disease. However, the significant difference in efficacy observed in various conditions with different dosages seems to be at least partly related to the large discrepancy in quality of the product and to the bioavailability of the omega-3 PUFA. The research of new sources (e.g., from arctic Krill oil) and pharmaceutical forms of omega-3 PUFA (e.g., omega-3 carboxylic acids) is needed in order to detect the one with the best bioavailability and efficacy, and with a parallel reduction in the production costs. There is also the need to understand if long-term PUFA supplementation could increase the efficacy of the already-available evidence-based therapies for cardiovascular disease prevention and for the management of the diseases where the use of PUFA could have a possible improving effect.

  11. Omega-3 Polyunsaturated Fatty Acids and Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Jeppe Hagstrup Christensen

    2011-11-01

    Full Text Available Omega-3 polyunsaturated fatty acids (PUFA may modulate autonomic control of the heart because omega-3 PUFA is abundant in the brain and other nervous tissue as well as in cardiac tissue. This might partly explain why omega-3 PUFA offer some protection against sudden cardiac death (SCD. The autonomic nervous system is involved in the pathogenesis of SCD. Heart rate variability (HRV can be used as a non-invasive marker of cardiac autonomic control and a low HRV is a predictor for SCD and arrhythmic events. Studies on HRV and omega-3 PUFA have been performed in several populations such as patients with ischemic heart disease, patients with diabetes mellitus, patients with chronic renal failure, and in healthy subjects as well as in children.. The studies have demonstrated a positive association between cellular content of omega-3 PUFA and HRV and supplementation with omega-3 PUFA seems to increase HRV which could be a possible explanation for decreased risk of arrhythmic events and SCD sometimes observed after omega-3 PUFA supplementation. However, the results are not consistent and further research is needed

  12. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    Science.gov (United States)

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.

  13. Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA- cp rats modifies immune function and lipid-raft fatty acid composition.

    Science.gov (United States)

    Ruth, Megan R; Proctor, Spencer D; Field, Catherine J

    2009-05-01

    Dietary EPA and DHA modulate immunity and thereby may improve the aberrant immune function in obese states. To determine the effects of feeding fish oil (FO) containing EPA and DHA on splenocyte phospholipid (PL) and lipid-raft fatty acid composition, phenotypes and cytokine production, 14-week-old obese, leptin receptor-deficient JCR:LA-cp rats (cp/cp; n 10) were randomised to one of three nutritionally adequate diets for 3 weeks: control (Ctl, 0 % EPA+DHA); low FO (LFO, 0.8 % (w/w) EPA+DHA); high FO (HFO, 1.4 % (w/w) EPA+DHA). Lean JCR:LA-cp (+/ - or +/+) rats (n 5) were fed the Ctl diet. Obese Ctl rats had a higher proportion of n-3 PUFA in splenocyte PL than lean rats fed the same diet (P JCR:LA-cp rats. Feeding FO lowered the ex vivo inflammatory response, without altering IL-2 production from ConA-stimulated splenocytes which may occur independent of leptin signalling.

  14. Polyunsaturated fatty acids modify the gating of Kv channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-09-01

    Full Text Available Polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, which are attributed to their capability to modulate ion channels. This PUFAs ability has been reported to be due to their effects on the gating properties of ion channels. In the present review, we will focus on the role of PUFAs on the gating of two Kv channels, Kv1.5 and Kv11.1. Kv1.5 channels are blocked by n-3 PUFAs of marine (docosahexaenoic and eicosapentaenoic acid, DHA and EPA and plant origin (alpha-linolenic acid, ALA at physiological concentrations. The blockade of Kv1.5 channels by PUFAs steeply increased in the range of membrane potentials coinciding with those of Kv1.5 channel activation, suggesting that PUFAs-channel binding may derive a significant fraction of its voltage sensitivity through the coupling to channel gating. A similar shift in the activation voltage was noted for the effects of arachidonic acid (AA and DHA on Kv1.1, Kv1.2, and Kv11.1 channels. PUFAs-Kv1.5 channel interaction is time-dependent, producing a fast decay of the current upon depolarization. Thus, Kv1.5 channel opening is a prerequisite for the PUFA-channel interaction. Similar to the Kv1.5 channels, the blockade of Kv11.1 channels by AA and DHA steeply increased in the range of membrane potentials that coincided with the range of Kv11.1 channel activation, suggesting that the PUFAs-Kv channel interactions are also coupled to channel gating. Furthermore, AA regulates the inactivation process in other Kv channels, introducing a fast voltage-dependent inactivation in non-inactivating Kv channels. These results have been explained within the framework that AA closes voltage-dependent potassium channels by inducing conformational changes in the selectivity filter, suggesting that Kv channel gating is lipid dependent.

  15. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    NARCIS (Netherlands)

    Ginneken, van V.J.T.; Helsper, J.P.F.G.; Visser, de W.; Keulen, van H.; Brandenburg, W.A.

    2011-01-01

    Background - In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods - The fatty acid (FA) composition in lipids from seven sea

  16. Modulation of the chicken immune cell function by dietary polyunsaturated fatty acids

    NARCIS (Netherlands)

    Sijben, J.W.C.

    2002-01-01

    Polyunsaturated fatty acids (PUFA) possess a wide range of biological properties, including immunomodulation. The amount, type, and ratio of dietary PUFA determine the types of fatty acids that are incorporated into immune cell membranes. Consequently, the physiological properties of immune cells an

  17. N-3 polyunsaturated fatty acids in adipose tissue and depression in different age groups from Crete

    NARCIS (Netherlands)

    Mamalakis, G.

    2007-01-01

    In this thesis, the results of cross-sectional studies on the relationship of depression with adipose tissue n-3 polyunsaturated fatty acids have been described. The aim of this thesis is to investigate whether adipose tissue n-3 fatty acids, an objective index or biomarker of long-term or habitual

  18. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Science.gov (United States)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  19. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    Science.gov (United States)

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  20. Effect of dietary polyunsaturated fatty acids and Vitamin E on serum oxidative status in horses performing very light exercise

    Directory of Open Access Journals (Sweden)

    Liviana Prola

    2010-01-01

    Full Text Available In sporting horses the use of dietary polyunsaturated fatty acids (PUFAs could enhance performance because these fatty acids are very important in membrane permeability, and in particular they seem to increase the possibility of long chain fatty acids entering mythochondria to be burnt. The composition of cellular membranes and lipoprotein fatty acids com- position is strictly related to dietary fat quality; percentages of polyunsaturated fatty acids and amount of antioxidants also affect tissue susceptibility to lipid peroxidation. Six horses were used in a latin square design in which three homogeneous groups were subsequently assigned three dif- ferent dietary treatments for one month each: Control group (C: basic diet; Oil group (O: Basic diet + 200g/day oil rich in PUFAs (Crossential GLA TG20, Croda ®; Vitamin E group (O+E: basic diet + 200 g/day oil rich in PUFAs (Crossential GLA TG20, Croda ® + 5 g/day α-toco- pheryl-acetate (Egon-E, Acme ®. At the end of each experimental period blood samples were taken by jugular vein puncture. Serum oxidative status was evaluated by TBARs and d-ROMs assessment. Oxidative markers showed the high- est mean values for the oil group, even if no statistically significant differences were found.

  1. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  2. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  3. The Multifaceted Effects of Omega-3 Polyunsaturated Fatty Acids on the Hallmarks of Cancer

    Directory of Open Access Journals (Sweden)

    J. A. Stephenson

    2013-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, and docosahexaenoic acid have been shown to have multiple beneficial antitumour actions that affect the essential alterations that dictate malignant growth. In this review we explore the putative mechanisms of action of omega-3 polyunsaturated fatty acid in cancer protection in relation to self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion, and how these will hopefully translate from bench to bedside.

  4. Evaluation of the impact of genetic polymorphisms in glutathione-related genes on the association between methylmercury or n-3 polyunsaturated long chain fatty acids and risk of myocardial infarction: a case-control study

    Directory of Open Access Journals (Sweden)

    Norberg Margareta

    2011-04-01

    Full Text Available Abstract Background The n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. However, fish also contains methylmercury, which influences the risk of myocardial infarction, possibly by generating oxidative stress. Methylmercury is metabolized by conjugation to glutathione, which facilitates elimination. Glutathione is also an antioxidant. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would thus benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction. Methods Polymorphisms in glutathione-synthesizing (glutamyl-cysteine ligase catalytic subunit, GCLC and glutamyl-cysteine ligase modifier subunit, GCLM or glutathione-conjugating (glutathione S-transferase P, GSTP1 genes were genotyped in 1027 individuals from northern Sweden (458 cases of first-ever myocardial infarction and 569 matched controls. The impact of these polymorphisms on the association between erythrocyte-mercury (proxy for methylmercury and risk of myocardial infarction, as well as between plasma eicosapentaenoic+docosahexaenoic acid and risk of myocardial infarction, was evaluated by conditional logistic regression. The effect of erythrocyte-selenium on risk of myocardial infarction was also taken into consideration. Results There were no strong genetic modifying effects on the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction risk. When eicosapentaenoic

  5. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiajie Liu

    2014-11-01

    Full Text Available Breast cancer (BC is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA, are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA, however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

  6. Role and significance of polyunsaturated fatty acids in nutrition in prevention and treatment of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ristić Vanja I.

    2003-01-01

    Full Text Available Introduction Hyperlipoproteinemia is a key factor in development of atherosclerosis, whereas regression of atherosclerosis mostly depends on decreasing the plasma level of total and LDL-cholesterol. Many studies have reported the hypocholesterolemic effect of linolenic acid. Types of polyunsaturated fatty acids (PUFA Linoleic and α-linolenic acids are essential fatty acids. The main sources of linoleic acid are vegetable seeds and of α-linolenic acid - green parts of plants. α-linolenic acid is converted to eicosapentaenoic and docosahexaenoic acid. Linoleic acid is converted into arachidonic acid competing with eicosapentaenoic acid in the starting point for synthesis of eicosanoids, which are strong regulators of cell functions and as such, very important in physiology and pathophysiology of cardiovascular system. Eicosanoids derived from eicosapentaenoic acid have different biological properties in regard to those derived from arachidonic acid, i.e. their global effects result in decreased vasoconstriction platelet aggregation and leukocyte toxicity. Role and significant of PUFA The n-6 to n-3 ratio of polyunsaturated fatty acids in the food is very important, and an optimal ratio 4 to 1 in diet is a major issue. Traditional western diets present absolute or relative deficiency of n-3 polyunsaturated fatty acids, and a ratio 15-20 to 1. In our diet fish and fish oil are sources of eicosapentaenoic and docosahexaenoic acid. Refined and processed vegetable oils change the nature of polyunsaturated fatty acids and obtained derivates have atherogenic properties.

  7. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves

    NARCIS (Netherlands)

    Hendriks, I.E.; Van Duren, L.A.; Herman, P.M.J.

    2003-01-01

    The pre-spawning condition of adult bivalves is influenced by quantity and quality of available food. For bivalves, the essential polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3) are presumed to determine the nutritional value of alga

  8. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids

    NARCIS (Netherlands)

    Madsen, L.; Pedersen, L.M.; Liaset, B.; Ma, T.; Petersen, R.K.; Berg, S. van den; Pan, J.; Müller-Decker, K.M.; Dülsner, E.D.; Kleemann, R.; Kooistra, T.; Døskeland, S.O.; Kristiansen, K.

    2008-01-01

    The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti-ad

  9. Reduced Triacylglycerol Mobilization during Seed Germination and Early Seedling Growth in Arabidopsis Containing Nutritionally Important Polyunsaturated Fatty Acids

    Science.gov (United States)

    Shrestha, Pushkar; Callahan, Damien L.; Singh, Surinder P.; Petrie, James R.; Zhou, Xue-Rong

    2016-01-01

    There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  10. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae.

    Science.gov (United States)

    Vaezi, Royah; Napier, Johnathan A; Sayanova, Olga

    2013-12-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative "front-end" desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  11. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  12. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid...... of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(ll) led to a substantial increase...

  13. Omega-3 polyunsaturated fatty acids and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Ştefan C. Vesa

    2008-12-01

    Full Text Available The article presents some general facts about omega-3 fatty acids and their role in the treatment and prevention of cardiovascular diseases. Omega-3 fatty acids are essential for the human body. Their beneficial effects in the prevention of cardiovascular disease have been known for decades. Since then, several epidemiological and interventional trials showed the value of omega-3 acids in the treatment of certain diseases. Most of them revealed the protective role of omega-3 fatty acids on heart and cardiac functions. However, some of these studies couldn?t demonstrate a positive association between fish oils and preventing cardiac events. The major cardiologic societies from European Union and United States of America recommend omega-3 fatty acids as supplements for primary and secondary prophylaxis of cardiovascular diseases.

  14. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...... cells with increased content of ARA and EPA. The invention especially involves improvement of the PUFA content in the host organism through various over-expression of e.g. cytochrome b5 and cytochrome b5 reductase involved in fatty acid desaturation, and heterologous expression of cytochrome b5...

  15. Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae.

    Science.gov (United States)

    Chikaraishi, Yoshito; Suzuki, Yaeko; Naraoka, Hiroshi

    2004-08-01

    Compound-specific hydrogen isotopic compositions (deltaD) of saturated, monounsaturated and polyunsaturated fatty acids have been determined for natural marine macroalgae including two brown algae (Heterokontophyta) and two red algae (Rhodophyta). deltaD values of individual fatty acids from four macroalgae exhibit a wide variation ranging from -189% to +48%. Generally, stearic (18:0), arachidic (20:0) and behenic acids (22:0) are much more enriched in D by up to approximately 180% relative to myristic (14:0), palmitic (16:0), octatetraenoic [18:4(n-3)] and eicosapentaenoic acids [20:5(n-3)]. Other fatty acids such as oleic [18:1(n-9)], lenoleic [18:2(n-6)] and linolenic acids [18:3(n - 3)] fall isotopically between these fatty acids. This wide deltaD variation of fatty acids is probably explained by the hydrogen isotopic fractionation during desaturation being much larger than that during elongation in the network of polyunsaturated fatty acid biosynthesis. A large hydrogen isotopic fractionation during desaturation may cause D-enrichment in the remaining hydrogen of the residual fatty acids, which could be controlled by the relative flux into their desaturates. PMID:15587713

  16. Polyunsaturated fatty acid-derived lipid mediators and T cell function

    Directory of Open Access Journals (Sweden)

    Anna eNicolaou

    2014-02-01

    Full Text Available Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signalling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signalling pathways linked to membrane raft associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function.

  17. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Science.gov (United States)

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  18. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    P.C. Calder

    1998-04-01

    Full Text Available 1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3. Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6, the precursor of arachidonic acid (20:4n-6. 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

  19. The effects of dietary omega-3 polyunsaturated fatty acid supplementation on attention and impulsivity in an animal model of attention deficit/hyperactivity disorder (ADHD)

    OpenAIRE

    Ewelina Makulska-Gertruda; Joachim Hauser; Thomas-A. Sontag; Lange, Klaus W.

    2014-01-01

    Background: Attention deficit/hyperactivity disorder (ADHD) is one of the commonest psychiatric disorders in children and adolescents. The main symptoms of ADHD are hyperactivity, inattention and impulsivity. Both etiology and neurobiological basis of ADHD are unknown. In this context, long-chain polyunsaturated fatty acids (LC-PUFAs), especially omega-3 (n-3) PUFAs, have become a focus of interest. The symptoms of ADHD have been suggested to be associated with a deficienc...

  20. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves improvem......The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...... enzymes involved in biosynthesis of the precursor for PUFAs, or codon optimization of the heterologous genes, or expression of heterologous enzymes involved in the biosynthesis of the precursor for PUFAs....

  1. Milk yield and reproductive performance of dairy heifers and cows supplemented with polyunsaturated fatty acids

    OpenAIRE

    Félix Gonzalez; Rodrigo Muiño; Víctor Pereira; Diego Martinez; Cristina Castillo; Joaquín Hernández; José Luis Benedito

    2015-01-01

    The objective of this work was to determine productive and fertility responses of Holstein-Friesian heifers and cows to supplementation with extruded linseed and soybean as sources of polyunsaturated fatty acids (PUFAs). Supplementation had a positive effect on profitability, with significant increases in milk yield in supplemented cows, but not in heifers. Treatments had no effect on milk fat content, but higher milk protein contents were observed with supplementation. A higher conception ra...

  2. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease

    OpenAIRE

    Broekhuizen, R; Wouters, E.; Creutzberg, E; Weling-Scheepers, C; Schols, A

    2005-01-01

    Background: Muscle wasting and decreased muscle oxidative capacity commonly occur in patients with chronic obstructive pulmonary disease (COPD). Polyunsaturated fatty acids (PUFA) have been shown to mediate several inflammatory and metabolic pathways which may be involved in the pathogenesis of muscle impairment in COPD. The aim of this study was to investigate the effect of PUFA modulation on systemic inflammation, reversal of muscle wasting, and functional status in COPD.

  3. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis

    OpenAIRE

    Connor, Kip M.; SanGiovanni, John Paul; Lofqvist, Chatarina; Aderman, Christopher M.; Chen, Jing; Higuchi, Akiko; Hong, Song; Pravda, Elke A.; Majchrzak, Sharon; Carper, Deborah; Hellstrom, Ann; Jing X Kang; Chew, Emily Y.; Salem, Norman; Serhan, Charles N.

    2007-01-01

    Many sight-threatening diseases have two critical phases, vessel loss followed by hypoxia-driven destructive neovascularization. These diseases include retinopathy of prematurity and diabetic retinopathy, leading causes of blindness in childhood and middle age affecting over 4 million people in the United States. We studied the influence of ω-3- and ω-6-polyunsaturated fatty acids (PUFAs) on vascular loss, vascular regrowth after injury, and hypoxia-induced pathological neovascularization in ...

  4. Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids

    OpenAIRE

    Jerzy Z. Nowak

    2010-01-01

    Inflammation is a physiological defense reaction of living tissues to injury or infection. An array of mediators, including those derived from omega-6 (ω6) polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA) e.g. prostaglandins and leukotrienes, promote the inflammatory response. Acute inflammation has several programmed fates, including complete resolution or progression to chronic inflammation, scarring, and eventual loss of tissue function. Studies on AA-derived proinflammat...

  5. n-3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization

    OpenAIRE

    Shaikh, Saame Raza; Jolly, Christopher A.; Chapkin, Robert S.

    2011-01-01

    Fish oil, enriched in bioactive n-3 polyunsaturated fatty acids (PUFA), has therapeutic value for the treatment of inflammation-associated disorders. The effects of n-3 PUFAs are pleiotropic and complex; hence, an understanding of their cellular targets and molecular mechanisms of action remains incomplete. Here we focus on recent data indicating n-3 PUFAs exert immunosuppressive effects on the function of effector and regulatory CD4+ T cells. In addition, we also present emerging evidence th...

  6. Polyunsaturated Fatty Acid and S-Adenosylmethionine Supplementation in Predementia Syndromes and Alzheimer's Disease: A Review

    OpenAIRE

    Francesco Panza; Vincenza Frisardi; Cristiano Capurso; Alessia D'Introno; Colacicco, Anna M.; Alessandra Di Palo; Imbimbo, Bruno P; Gianluigi Vendemiale; Antonio Capurso; Vincenzo Solfrizzi

    2009-01-01

    A growing body of evidence indicates that nutritional supplements can improve cognition; however, which supplements are effective remains controversial. In this review article, we focus on dietary supplementation suggested for predementia syndromes and Alzheimer’s disease (AD), with particular emphasis on S-adenosylmethionine (SAM) and polyunsaturated fatty acids (PUFA). Very recent findings confirmed that SAM can exert a direct effect on glutathione S-transferase (GST) activity. AD is accomp...

  7. Unusually High Levels of n-6 Polyunsaturated Fatty Acids in Whale Sharks and Reef Manta Rays

    OpenAIRE

    Couturier, L. I. E.; Rohner, C. A.; Richardson, A. J.; Pierce, S. J.; Marshall, A. D.; Jaine, F. R. A.; Townsend, K A; Bennett, M. B.; Weeks, S.J.; Nichols, P D

    2013-01-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12–17 % of total FA), and comparatively lower levels of the essential n-3 PUFA—eicosapentaenoic acid (20:5n-3; ~1 %) and d...

  8. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    DEFF Research Database (Denmark)

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    Objective: To study the lipoprotein distribution of supplemented coenzyme Q(10) (CoQ(10)), vitamin E, and polyunsaturated fatty acids (PUFA). Design: Balanced three- period crossover study. Setting: University research unit. Subjects: Eighteen apparently healthy free-living non-smoking volunteers...... the first period and then after each period. Plasma and isolated lipoproteins were analysed for cholesterol, triacylglycerol, alpha- and gamma -tocopherol, CoQ(10), and fatty acid composition. Results: Significant (P ... supplementations, but fish oil increased the amount of n-3 fatty acids at the expense of n-6 fatty acids. Conclusion: Lipoprotein distribution of CoQ(10) is markedly different from that of alpha -tocopherol, suggesting that they may be metabolised by distinct routes. alpha -Tocopherol is distributed similarly to n...

  9. Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle

    OpenAIRE

    Widmann Philipp; Nuernberg Karin; Kuehn Christa; Weikard Rosemarie

    2011-01-01

    Abstract Background The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease. Results To screen for genetic factors affecting fatty acid profiles in beef,...

  10. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.

  11. Polyunsaturated fatty acids in the blood of spontaneously or induced muricidal male Wistar rats.

    Science.gov (United States)

    Augier, S; Penes, M C; Debilly, G; Miachon, A S

    2003-04-15

    Serum levels of several n-6 and n-3 polyunsaturated fatty acids were compared in male Wistar muricidal (Mu) and non-Mu rats. The Mu behavior was either spontaneous or induced by long-term isolation, feeding with a starch-enriched polyunsaturated fatty acid diet (PUFA+S), water restriction, or adrenalectomy (ADX). Arachidonic acid (ARA) levels were lower in diet-induced (PUFA+S) Mu rats than in their non-Mu controls. Total n-6 fatty acid levels were also lower in spontaneously Mu rats than in spontaneously non-Mu rats. Docosahexaenoic acid (DHA) and total n-3 fatty acids levels were lower in rats with isolation-induced Mu behavior. The n-3/n-6 ratio was higher in spontaneously Mu rats than in spontaneously non-Mu rats. The changes in ARA levels were greater than those in DHA levels, possibly due to the higher blood-brain barrier passage of arachidonic acid. The results were analyzed in the light of recent results showing a role of PUFAs in human and animal behavior. PMID:12725904

  12. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes.

    Science.gov (United States)

    Petrescu, Anca D; Huang, Huan; Martin, Gregory G; McIntosh, Avery L; Storey, Stephen M; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-02-01

    Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes.

  13. Inhibition of fatty acid synthesis in rat hepatocytes by exogenous polyunsaturated fatty acids is caused by lipid peroxidation

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.;

    1993-01-01

    by the peroxidized PUFA. Arachidonic acid and eicosapentaenoic acid showed a dose- and time-dependent cytotoxicity. Two other antioxidants: 50 µM a-tocopherol acid succinate and 1 µM N,N'-diphenyl-1,4-phenylenediamine, both proved more efficient than a-tocopherol phosphate. There was a significant correlation......Rat hepatocyte long-term cultures were utilized to investigate the impact of different polyunsaturated fatty acids (PUFA) on the insulin-induced de novo fatty acid synthesis in vitro. The addition of 0.5 mM albumin-complexed oleic, linoleic, columbinic, arachidonic, eicosapentaenoic...... or docosahexaenoic acid resulted in a marked suppression of fatty acid synthesis. By evaluation of cell viability (determined as the leakage of lactate dehydrogenase (LDH)) it turned our, that the antioxidant used (50 µM a-tocopherol phosphate) had a low antioxidant activity, resulting in cytotoxic effects...

  14. Polyunsaturated fatty acids production by Schizochytrium sp. isolated from mangrove

    Directory of Open Access Journals (Sweden)

    K.W. Fan

    2003-09-01

    Full Text Available Five Schizochytrium strains (N-1, N-2, N-5, N-6, and N-9 were isolated from fallen, senescent leaves of mangrove tree (Kandelia candel in Hong Kong. The fungi were cultivated in glucose yeast extract medium containing 60 g of glucose, 10 g of yeast extract and 1 L of 15‰ artificial seawater, initial pH 6.0, with shaking for 52 hr at 25ºC. Biomass yields of 5 isolates ranged from 10.8 to 13.2 g/l. Isolate N-2 yielding the highest dried cell mass at 13.2 g/l and isolate N-9 grew poorly with 10.8 g/l of biomass. EPA (Eicosapentaenoic acid, 20:5n-3 yield was low in most strains, while DHA (Docosahexaenoic acid, 22:6n-3 was high on the same medium. The contents of DHA in biomass varied: 174.9, 203.6, 186.1, 171.3 and 157.9 mg/g of dried-biomass for Schizochytrium isolate N-1, N-2, N-5, N-6, and N-9, respectively. Isolate N-2 had the highest proportion of DHA in fatty acid profile with 15:0, 28.7%; 16:0, 21.3%; 18:0, 0.9%; 18:3, 0.2%; 20:4, 0.3%; 20:5, 0.9%; 22:4, 6.7%; 22:6, 36.1%; and others, 9.3%. The salinity range for growth of Schizochytrium isolates was from 0-30‰ with optimum salinity for growth between 20-30‰.

  15. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

    DEFF Research Database (Denmark)

    Liin, Sara I.; Silverå Ejneby, Malin; Barro-Soria, Rene;

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the β-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic...... charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act...... mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pKa value, to preserve their negative...

  16. Ready-to-use therapeutic food with elevated n-3 polyunsaturated fatty acid content, with or without fish oil, to treat severe acute malnutrition: a randomized controlled trial.

    LENUS (Irish Health Repository)

    Jones, Kelsey D J

    2015-01-01

    Ready-to-use therapeutic foods (RUTF) are lipid-based pastes widely used in the treatment of acute malnutrition. Current specifications for RUTF permit a high n-6 polyunsaturated fatty acid (PUFA) content and low n-3 PUFA, with no stipulated requirements for preformed long-chain n-3 PUFA. The objective of this study was to develop an RUTF with elevated short-chain n-3 PUFA and measure its impact, with and without fish oil supplementation, on children\\'s PUFA status during treatment of severe acute malnutrition.

  17. Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Hong-Ye Li

    2014-01-01

    Full Text Available The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs. However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.

  18. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Haring, M.M.G.; Keestra, N.G.M.; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    This study was conducted to investigate the role of the enzyme cyclooxygenase (COX) and its prostaglandin product PGE2 in n-6 and n-3 polyunsaturated fatty acid (PUFA)-mediated effects on cellular proliferation of two human colorectal carcinoma cell lines. The long chain PUFAs eicosapentaenoic acid

  19. Milk yield and reproductive performance of dairy heifers and cows supplemented with polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Félix Gonzalez

    2015-04-01

    Full Text Available The objective of this work was to determine productive and fertility responses of Holstein-Friesian heifers and cows to supplementation with extruded linseed and soybean as sources of polyunsaturated fatty acids (PUFAs. Supplementation had a positive effect on profitability, with significant increases in milk yield in supplemented cows, but not in heifers. Treatments had no effect on milk fat content, but higher milk protein contents were observed with supplementation. A higher conception rate was found for supplemented heifers, but not for cows. Fat sources containing PUFAs are recommended for dairy cattle supplementation, since they improve fertility in heifers and milk yield in cows.

  20. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone Møller; Liaset, Bjørn;

    2008-01-01

    The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti...... pivotal in regulating the adipogenic effect of n-6 PUFAs and that diet-induced differences in cAMP levels may explain the ability of n-6 PUFAs to either enhance or counteract adipogenesis and obesity....

  1. pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis

    OpenAIRE

    Orikasa, Yoshitake; TANAKA, Mika; Sugihara, Shinji; Hori, Ryuji; Nishida, Takanori; Ueno, Akio; Morita, Naoki; Yano, Yutaka; Yamamoto, Kouhei; SHIBAHARA, Akira; Hayashi, Hidenori; Yamada, Yohko; Yamada, Akiko; Yu, Reiko; Watanabe, Kazuo

    2009-01-01

    When pDHA4, a vector carrying all five pfaA-pfaE genes responsible for docosahexaenoic acid (DHA; 22:6) biosynthesis in Moritella marina MP-1, was coexpressed in Escherichia coli with the individual pfaA-pfaD genes for eicosapentaenoic acid (EPA; 20:5) biosynthesis from Shewanella pneumatophori SCRC-2738, both polyunsaturated fatty acids were synthesized only in the recombinant carrying pfaB for EPA synthesis. Escherichia coli coexpressing a deleted construct comprising pfaA, pfaC, pfaD and p...

  2. Synthesis of Monoacylglycerol Rich in Polyunsaturated Fatty Acids from Tuna Oil with Immobilized Lipase AK

    DEFF Research Database (Denmark)

    Pawongrat, Ratchapol; Xu, Xuebing; H-Kittikun, Aran

    2007-01-01

    The aim of this study was to produce monoacylglycerols (MAG) rich in polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), by glycerolysis of tuna oil with lipase AK from Pseudomonas fluorescence immobilized on Accurel EP-100 (IM-AK). tert...... on tuna oil. The temperature was controlled at 45 degrees C. Under these conditions, with a 24 h reaction, the yield of MAG was 24.6%, but containing 56.0 wt% PUFA (EPA and DHA). Stability of the IM-AK was also studied. The hydrolytic activity of the enzyme remained at 88% and 80% of initial activity...

  3. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    Directory of Open Access Journals (Sweden)

    van Keulen Herman

    2011-06-01

    Full Text Available Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum and two from tropical seas (Caulerpa taxifolia, Sargassum natans was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3 and omega-6 (n-6 polyunsaturated fatty acids (PUFAs, were in the concentration range of 2-14 mg/g dry matter (DM, while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6 and/or eicosapentaenoic acids (EPA, C20:5, n-3, the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3 at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6 FA: (n-3 FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3, while in S. natans also docosahexaenoic acid (DHA, C

  4. Effect of intakes of n-3 long chain polyunsaturated fatty acids during pregnancy and early childhood оn development, morbidity and immunity of in infants in fist year of life: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Marushko RV

    2014-03-01

    Full Text Available Background: at present, there are considered the efficient mechanisms existed by which diets high in n-3 LC PUFAs during pregnancy and early childhood may modulate the development of innative immune disorders and promote the adequate formation of immune system both on general and local levels. Early availability of n-3 LC PUFA could contribute to the normal growth and development, decrease risk factors of diseases or pathological disorders in infants. Goals: to assess the relationship between n-3 LC PUFAs intakes during pregnancy and postnatally and development, morbidity and immunity of infants in first year of life. A retrospective study was conducted using interview method of 300 women, whose children reached the age of one year. Elaborated questionnaires were filled in by pediatricians throughout their daily working hours while attending the patients. Was conducted assessment of frequency of common diseases and disorders like respiratory diseases, functional intestinal disorders and atopic diseases. Were investigated immunity of infants assessing the content of IgA, IgG and IgM by immunological methods and detected DHA, EPA (n-3 LC PUFAs and AA (n-6 LC PUFAs by gas chromatographic analysis in blood serum of children. The outcomes of the study were analysed and processed using statistical methods. Retrospective clinical findings indicate on higher incidence of acute respiratory tract and atopic diseases as well as functional disorders of the gastrointestinal tract in infants whose mothers did not use seafood in their diets during the pregnancy and in the lactating period. The research of immunity of children showed no difference in concentration of IgG and IgM in blood serum (p >> 0,05 but significant difference for IgA concentrations in plasma. In infants of n-3 LC PUFAs group IgA concentration was higher compared to opposite group. The fatty acid composition of the blood serum showed changes in the content of the main representatives of n-3

  5. Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays.

    Science.gov (United States)

    Couturier, L I E; Rohner, C A; Richardson, A J; Pierce, S J; Marshall, A D; Jaine, F R A; Townsend, K A; Bennett, M B; Weeks, S J; Nichols, P D

    2013-10-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12-17 % of total FA), and comparatively lower levels of the essential n-3 PUFA-eicosapentaenoic acid (20:5n-3; ~1 %) and docosahexaenoic acid (22:6n-3; 3-10 %). Whale sharks and reef manta rays are regularly observed feeding on surface aggregations of coastal crustacean zooplankton during the day, which generally have FA profiles dominated by n-3 PUFA. The high levels of n-6 PUFA in both giant elasmobranchs raise new questions about the origin of their main food source.

  6. Polyunsaturated fatty acids in the modulation of T-cell signalling.

    Science.gov (United States)

    Akhtar Khan, Naim

    2010-01-01

    n-3 polyunsaturated fatty acids (PUFA) have been shown to modulate immune responses. These agents, being considered as adjuvant immunosuppressants, have been used in the treatment of various inflammatory and autoimmune diseases. However, the molecular mechanisms of action of n-3 PUFA-induced immunosuppressive effects are not well-understood. Since exogenous n-3 PUFA, under in vitro and in vivo conditions, are efficiently incorporated into T-cell plasma membranes, a number of recent studies have demonstrated that these agents may modulate T-cell signalling. In this review, the interactions of n-3 PUFA with the second messenger cascade initiated during early and late events of T-cell activation are discussed. We particularly focus on how these fatty acids can modulate the production of diacylglycerol and the activation of protein kinase C, mitogen activated protein kinase, calcium signalling and translocation of transcriptional factors, implicated in the regulation of gene transcription in T-cells.

  7. Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays.

    Science.gov (United States)

    Couturier, L I E; Rohner, C A; Richardson, A J; Pierce, S J; Marshall, A D; Jaine, F R A; Townsend, K A; Bennett, M B; Weeks, S J; Nichols, P D

    2013-10-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12-17 % of total FA), and comparatively lower levels of the essential n-3 PUFA-eicosapentaenoic acid (20:5n-3; ~1 %) and docosahexaenoic acid (22:6n-3; 3-10 %). Whale sharks and reef manta rays are regularly observed feeding on surface aggregations of coastal crustacean zooplankton during the day, which generally have FA profiles dominated by n-3 PUFA. The high levels of n-6 PUFA in both giant elasmobranchs raise new questions about the origin of their main food source. PMID:23975574

  8. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle.

    Science.gov (United States)

    Oseikria, Mouhamad; Elis, Sébastien; Maillard, Virginie; Corbin, Emilie; Uzbekova, Svetlana

    2016-06-01

    The positive effect of n-3 polyunsaturated fatty acids (FAs) on fertility in ruminants seems to be partly mediated through direct effects on the oocyte developmental potential. We aimed to investigate whether supplementation with physiological levels of docosahexaenoic acid (DHA, C22:6 n-3 polyunsaturated fatty acids) during IVM has an effect on oocyte maturation and in vitro embryo development in cattle. We reported that DHA (0, 1, 10, or 100 μM) had no effect on oocyte viability or maturation rate after 22-hour IVM. Incubation of oocyte-cumulus complexes with 1-μM DHA during IVM significantly increased (P reaction, negative effects of 100-μM DHA were associated with significant increase of progesterone synthesis by oocyte-cumulus complexes, a three-fold increase in expression level of FA transporter CD36 and a two-fold decrease of FA synthase FASN genes in cumulus cells (CCs) of corresponding oocytes. Docosahexaenoic acid at 1 and 10 μM had no effect on expression of those and other key lipid metabolism-related genes in CC. In conclusion, administration of a low physiological dose of DHA (1 μM) during IVM may have beneficial effects on oocyte developmental competence in vitro without affecting lipid metabolism gene expression in surrounding CCs, contrarily to 100 μM DHA which diminished oocyte quality associated with perturbation of lipid and steroid metabolism in CC. PMID:26898414

  9. Role of n-3 series polyunsaturated fatty acids in cardiovascular disease prevention

    Directory of Open Access Journals (Sweden)

    Lee AH

    2011-09-01

    Full Text Available Andy H Lee1, Naoko Hiramatsu21School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; 2Laboratory of Nutritional Science, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, JapanAbstract: Cardiovascular disease is a major cause of morbidity and mortality worldwide. Its prevention through a healthy lifestyle and appropriate diet is important. Omega-3 polyunsaturated fatty acids (n-3 PUFA therapy has shown promise in both primary and secondary prevention of cardiovascular disease. This commentary discusses the nutritional role of n-3 PUFA, including its metabolism and physiological role, comparison with n-6 series PUFA, as well as complications due to deficiency. Clinical use of n-3 PUFA for the prevention and treatment of cardiovascular disease, recommended intake, and potential adverse effects will also be examined. The available scientific evidence suggests that its supplementation and clinical use ranging from 0.4 to 1 g/day can provide tangible benefits. However, further studies are required to determine optimal dosing and the relative ratio of docosahexaenoic acid and eicosapentaenoic acid that provides maximal cardioprotection and treatment of cardiovascular disease.Keywords: alpha-linolenic acid, docosahexaenoic acid, eicosapentaenoic acid, cardiovascular disease, fish oil, polyunsaturated fatty acids

  10. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Hooiveld Guido JEJ

    2009-03-01

    Full Text Available Abstract Background Dietary polyunsaturated fatty acids (PUFA, in particular the long chain marine fatty acids docosahexaenoic (DHA and eicosapentaenoic (EPA, are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process. Results The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon. Conclusion We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabetes.

  11. Unique odd-chain polyenoic phospholipid fatty acids present in chytrid fungi.

    Science.gov (United States)

    Akinwole, Philips O; Lefevre, Emilie; Powell, Martha J; Findlay, Robert H

    2014-09-01

    Chytrid fungi are ubiquitous components of aquatic and terrestrial ecosystems yet they remain understudied. To investigate the use of phospholipid fatty acids as phenotypic characteristics in taxonomic studies and biomarkers for ecological studies, 18 chytrid fungi isolated from soil to freshwater samples were grown in defined media and their phospholipid fatty acid profile determined. Gas chromatographic/mass spectral analysis indicated the presence of fatty acids typically associated with fungi, such as 16:1(n-7), 16:0, 18:2(n-6), 18:3(n-3) 18:1(n-9), and 18:0, as well as, a number of odd-chain length fatty acids, including two polyunsaturated C-17 fatty acids. Conversion to their 3-pyridylcarbinol ester facilitated GC-MS determination of double-bond positions and these fatty acid were identified as 6,9-17:2 [17:2(n-8)] and 6,9,12-17:3 [17:3(n-5)]. To the best of our knowledge, this is the first report of polyunsaturated C-17 fatty acids isolated from the phospholipids of chytrid fungi. Cluster analysis of PLFA profiles showed sufficient correlation with chytrid phylogeny to warrant inclusion of lipid analysis in species descriptions and the presence of several phospholipid fatty acids of restricted phylogenetic distributions suggests their usefulness as biomarkers for ecological studies. PMID:25119485

  12. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  13. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce-beta oxidation in white fat

    NARCIS (Netherlands)

    Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-Hal, van N.L.W.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C.; Keijer, J.; Houstek, J.; Kopecky, J.

    2005-01-01

    Aims/hypothesis Intake of n-3 polyunsaturated fatty acids reduces adipose tissue mass, preferentially in the abdomen. The more pronounced effect of marine-derived eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on adiposity, compared with their precursor -linolenic acid, may be mediated by ch

  14. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    DEFF Research Database (Denmark)

    Mahaffey, K. R.; Sunderland, E. M.; Chan, H. M.;

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce...

  15. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sørensen, T.I.;

    1986-01-01

    an important part in the timing of parturition in human beings. Dietary (n-3)-polyunsaturated fatty acids (PUFA) in high amounts influence endogenous prostaglandin metabolism. Owing to the large consumption of marine fat, the average intake of (n-3)-PUFA in the Faroes by far exceeds that in Denmark...

  16. Childrens' learning and behaviour and the association with cheek cell polyunsaturated fatty acid levels.

    Science.gov (United States)

    Kirby, A; Woodward, A; Jackson, S; Wang, Y; Crawford, M A

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs), particularly omega-3, in their red blood cells and plasma, and that supplementation with omega-3 fatty acids may alleviate behavioural symptoms in this population. However, in order to compare levels it seems appropriate to establish fatty acid levels in a mainstream school aged population and if levels relate to learning and behaviour. To date no study has established this. For this study, cheek cell samples from 411 typically developing school children were collected and analysed for PUFA content, in order to establish the range in this population. In addition, measures of general classroom attention and behaviour were assessed in these children by teachers and parents. Cognitive performance tests were also administered in order to explore whether an association between behaviour and/or cognitive performance and PUFA levels exists. Relationships between PUFA levels and socio-economic status were also explored. Measures of reading, spelling and intelligence did not show any association with PUFA levels, but some associations were noted with the level of omega-3 fatty acids and teacher and parental reports of behaviour, with some evidence that higher omega-3 levels were associated with decreased levels of inattention, hyperactivity, emotional and conduct difficulties and increased levels of prosocial behaviour. These findings are discussed in relation to previous findings from omega-3 supplementation studies with children. PMID:20172688

  17. Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids

    Science.gov (United States)

    Gabrielsson, Britt G.; Peris, Eduard; Nookaew, Intawat; Grahnemo, Louise; Sandberg, Ann-Sofie; Wernstedt Asterholm, Ingrid; Jansson, John-Olov; Nielsen, Jens

    2016-01-01

    Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ. PMID:27166587

  18. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

    Directory of Open Access Journals (Sweden)

    Karla A. Bascuñán

    2014-11-01

    Full Text Available Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA, which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20–36 years old in the 3rd–6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid and low in n-3 PUFA (alpha-linolenic acid and DHA, with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  19. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Lobna Ouldamer

    Full Text Available The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality.Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality.We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality.These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  20. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice

    Directory of Open Access Journals (Sweden)

    Santhosh Karanth

    2013-11-01

    Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte β-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr, despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr.

  1. [Polyunsaturated omega-3 fatty acids and systemic lupus erythematosus: what do we know?].

    Science.gov (United States)

    Borges, Mariane Curado; Santos, Fabiana de Miranda Moura; Telles, Rosa Weiss; Correia, Maria Isabel Toulson Davisson; Lanna, Cristina Costa Duarte

    2014-01-01

    Various studies have demonstrated the impact of omega-3 fatty acids on the concentration of C reactive protein (CRP), pro-inflammatory eicosanoids, cytokines, chemokines and other inflammatory mediators. Therefore, the supplementation of these types of lipids may represent additional option treatment for chronic systemic diseases, such as Systemic Lupus Erythematous and other rheumatic diseases. The role of these lipids has not been well established, yet. However, it seems there is a direct relationship between its intake and the decrease of the disease clinical manifestations as well as of the inflammatory status of the patients. Thus, the aim of this manuscript is to present a thorough review on the effects of omega-3 fatty acids in patients with SLE. Bibliographic data set as the Medical Literature Analysis and Retrieval System Online (MEDLINE) and Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) were searched using as key words: systemic lupus erythematous (SLE), polyunsaturated fatty acids omega-3, eicosapentanoic acid (EPA), docosahexanoic acid (DHA), antioxidants and diet. Manuscripts published up to September 2013 were included. There were 43 articles related to the topic, however only 15 pertained human studies, with three review articles and 12 clinical studies.

  2. [Effects of polyunsaturated fatty acids on Krebs cycle in the rat kidney in chronic phosphorus intoxication].

    Science.gov (United States)

    Kulkybaev, G A; Merkusheva, N V

    1992-01-01

    The investigation of Krebs cycle state in kidney homogenates of August rats subjected to oral intoxication with oil solution of yellow phosphorus in a dose of 0.3 mg/kg, has shown that under conditions of balanced nutrition the activity of NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase and accumulation of the substrate fund of the cycle decreased 3.5-fold as compared to the control. The addition of polyunsaturated fatty acids to the ration produced a positive effect on Krebs cycle state: dehydrogenase activity was not significantly changed, accumulation of Krebs cycle substrate was two-fold lower. However, this ration did not completely abolish the toxic action of yellow phosphorus on Krebs cycle.

  3. Extraction and analysis of polyunsaturated fatty acid from Asterina pectinifera in Huanghai Sea

    Institute of Scientific and Technical Information of China (English)

    Guo Chenghua; Liu Wanshun; Han Baoqin; Dong Xinwei; Liu Chuanlin; Hu Dan; Soon-Teck Jung

    2006-01-01

    The full fats of Asterina pectinifera in Huanghai Sea were extracted and refined using solvent extraction combined with silica gel column chromatography with yield of 1.64 %. The full fats were analyzed by gas chromatography and the result indicated that the full fats from Asterina pectinifera contained abundant Polyunsaturated Fatty Acid (PUFA) with a total of 25 kinds, especially rich in EPA and DHA. After enrichment by silica gel column chromatography, the total PUFA content in ligarine fraction is 42.20%, in which EPA and DHA account for 12.50% and 10.33% respectively. The total PUFA content in acetic ether fraction is 48.98%, in which EPA and DHA take up 17.53% and 6.59% respectively. The total amount of EPA and DHA in both fractions all exceeded that of the fish oil from deep sea. In conclusion,the Asterina pectinifera in Huanghai Sea is a favorable source of PUFA.

  4. Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls.

    Science.gov (United States)

    Yamasaki, Takashi; Aki, Tsunehiro; Mori, Yuhsuke; Yamamoto, Takeki; Shinozaki, Masami; Kawamoto, Seiji; Ono, Kazuhisa

    2007-09-01

    In marine aquaculture, rotifers and Artemia nauplii employed as larval fish feed are often nutritionally enriched with forage such as yeast and algal cells supplemented with polyunsaturated fatty acids and xanthophylls, which are required for normal growth and a high survival ratio of fish larvae. To reduce the enrichment steps, we propose here the use of a marine thraustochytrid strain, Schizochytrium sp. KH105, producing docosahexaenoic acid, docosapentaenoic acid, canthaxanthin, and astaxanthin. The KH105 cells prepared by cultivation under optimized conditions were successfully incorporated by rotifers and Artemia nauplii. The contents of docosahexaenoic acid surpassed the levels required in feed for fish larvae, and the enriched Artemia showed an increased body length. The results demonstrate that we have developed an improved method of increasing the dietary value of larval fish feed. PMID:17964484

  5. Omega-3 polyunsaturated fatty acids promote liver regeneration after 90% hepatectomy in rats

    Institute of Scientific and Technical Information of China (English)

    Yu-Dong Qiu; Sheng Wang; Yue Yang; Xiao-Peng Yan

    2012-01-01

    AIM:To evaluate the effectiveness of omega-3 polyunsaturated fatty acid (ω-3 PUFA) administration on liver regeneration after 90% partial hepatectomy (PH) in METHODS:ω-3 PUFAs were intravenously injected in the ω-3 PUFA group before PH surgery.PH,sparing only the caudate lobe,was performed in both the control and the ω-3 PUFA group.Survival rates,liver weight/body weight ratios,liver weights,HE staining,transmission electron microscope imaging,nuclearassociated antigen Ki-67,enzyme-linked immunosorbent assay and signal transduction were evaluated to analyze liver regeneration.RESULTS:All rats in the control group died within 30 h after hepatectomy.Survival rates in the ω-3 PUFA group were 20/20 at 30 h and 4/20 1 wk after PH.Liver weight/body weight ratios and liver weights increased significantly in the ω-3 PUFA group.The structure of sinusoidal endothelial cells and space of Disse was greatly restored in the ω-3 PUFA group compared to the control group after PH.In the ω-3 PUFA group,interleukin (IL)-4 and IL-10 levels were significantly increased whereas IL-6 and tumor necrosis factor-α levels were dramatically decreased.In addition,activation of protein kinase B (Akt) and of signal transducer and activator of transcription 3 signaling pathway were identified at an earlier time after PH in the ω-3 PUFA group.CONCLUSION:Omega-3 polyunsaturated fatty acids may prevent acute liver failure and promote liver regeneration after 90% hepatectomy in rats.

  6. Insulin secretion after dietary supplementation with conjugated linoleic acids and n-3 polyunsaturated fatty acids in normal and insulin-resistant mice.

    OpenAIRE

    Sörhede Winzell, Maria; Pacini, Giovanni; Ahrén, Bo

    2006-01-01

    Insulin secretion after dietary supplementation with conjugated linoleic acids and n-3 polyunsaturated fatty acids in normal and insulin-resistance mice. Am J Physiol Endocrinol Metab 290: E347-E354, 2006. First published September 27, 2005; doi:10.1152/ajpendo.00163.2005.-Conjugated linoleic acids (CLAs) and n-3 polyunsaturated fatty acids (PUFAs) improve insulin sensitivity in insulin-resistant rodents. However, the effects of these fatty acids on insulin secretion are not known but are of ...

  7. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat.

    Science.gov (United States)

    Sinclair, A J

    1975-03-01

    The incorporation of radioactivity from orally administered linoleic acid-1-14C, linolenic acid-1-14C, arachidonic acid-3H8, and docosahexaenoic acid-14C into the liver and brain lipids of suckling rats was studied. In both tissues, 22 hr after dosing, 2 distinct levels of incorporation were observed: a low uptake (from 18:2-1-14C and 18:3-1-14C) and a high uptake (from 20:4-3H8 and 22:6-14C). In adult rats, the incorporation of radioactivity into brain lipids from 18:2-1-14C and 20:4-3H was considerably lower than the incorporation into the brains of the young rats. In the livers of the suckling rats, the activity from the 18 carbon acids was associated mostly with the triglyceride fraction, whereas the activity from the 20:4-3H8 and 22:6-14C was concentrated in the phospholipid fraction. In the brain lipids, the activity from the different fatty apid fatty acids, some of the activity in the 18:2-1-14C and 18:3-1-14C experiments was associated with 20 and 22 carbon polyunsaturated fatty acids; however, radioactivity from orally administered 20:4-3H8 and 22:6-14C was incorporated intact into the tissue phospholipid to a much greater extent compared with the incorporation of radioactivity into 20:4 and 22:6 in the experiments where 18:2-1-14C and 18:3-1-14C, respectively, were administered. Possible reasons for these differences are discussed. Rat milk contains a wide spectrum of polyunsaturated fatty acids, including linoleate, linolenate, arachidonate, and docosahexaenoate. During the suckling period in the rat, there is a rapid deposition of 20:4 and 22:6 in the brain. The results of the present experiments suggested that dietary 20:4 and 22:6 were important sources of brain 20:4 and 22:6 in the developing rat.

  8. Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production

    Directory of Open Access Journals (Sweden)

    Ravelo Ángel G

    2011-04-01

    Full Text Available Abstract Background The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs from fish, i.e. eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 are well known. These same benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs, such as stearidonic acid (SDA, 18:4 n-3. In order to obtain alternative sources for the large-scale production of PUFAs, new searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors, i.e. SDA and GLA (18:3n-6, γ-linolenic acid. Results The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in order to research the accumulation and metabolism of fatty acids (FAs in a plant particularly rich in GLA and SDA. Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid and 18:3n-6 (GLA, accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, α-linolenic acid and 18:4n-3 (SDA, represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the optimal productivity was always associated with the highest biomass density during the culture period. Assuming a compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines (29.75 and 60.95 mg/g DW, with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the hairy roots with very minute amounts being released into the liquid nutrient medium. Conclusions The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots. They are capable of biosynthesizing and accumulating a large

  9. Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Shi, Tonglei; Yu, Aiqun; Li, Ming; Ou, Xiuyuan; Xing, Laijun; Li, Mingchun

    2012-12-01

    Isochrysis galbana, produces long chain polyunsaturated fatty acids including docosahexaenoic acid (DHA, 22:6n-3). A novel gene (IgFAD4-2), encoding a C22-∆4 polyunsaturated fatty acid specific desaturase, has been isolated and characterized from I. galbana. A full-length cDNA of 1,302 bp was cloned by LA-PCR technique. The IgFAD4-2 encoded a protein of 433 amino acids that shares 78 % identity with a previously reported ∆4-desaturase (IgFAD4-1) from I. galbana. The function of IgFAD4-2 was deduced by its heterologous expression in Saccharomyces cerevisiae, which then desaturated docosapentaenoic acid (DPA, 22:5n-3) to DHA. The conversion ratio of DPA to DHA was 34 %, which is higher than other ∆4-desaturases cloned from algae. However, IgFAD4-2 did not catalyze the desaturation or elongation reactions with other fatty acids. These results confirm that IgFAD4-2 has C22-∆4-PUFAs-specific desaturase activity.

  10. Combining nutrition, food science and engineering in developing solutions to Inflammatory bowel diseases--omega-3 polyunsaturated fatty acids as an example.

    Science.gov (United States)

    Ferguson, Lynnette R; Smith, Bronwen G; James, Bryony J

    2010-10-01

    The Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are debilitating conditions, characterised by lifelong sensitivity to certain foods, and often a need for surgery and life-long medication. The anti-inflammatory effects of long chain omega-3 polyunsaturated acids justify their inclusion in enteral nutrition formulas that have been associated with disease remission. However, there have been variable data in clinical trials to test supplementary omega-3 polyunsaturated fatty acids in inducing or maintaining remission in these diseases. Although variability in trial design has been suggested as a major factor, we suggest that variability in processing and presentation of the products may be equally or more important. The nature of the source, and rapidity of getting the fish or other food source to processing or to market, will affect the percentage of the various fatty acids, possible presence of heavy metal contaminants and oxidation status of the various fatty acids. For dietary supplements or fortified foods, whether the product is encapsulated or not, whether storage is under nitrogen or not, and length of time between harvest, processing and marketing will again profoundly affect the properties of the final product. Clinical trials to test efficacy of these products in IBD to date have utilised the relevant skills of pharmacology and gastroenterology. We suggest that knowledge from food science, nutrition and engineering will be essential to establish the true role of this important group of compounds in these diseases.

  11. Effects of n-3 polyunsaturated fatty acids from seal oils on nonalcoholic fatty liver disease associated with hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    Feng-Shang Zhu; Su Liu; Xi-Mei Chen; Zhi-Gang Huang; Dong-Wei Zhang

    2008-01-01

    AIM: To investigate the efficacy and safety of n-3 polyunsaturated fatty acids (PUFA) from seal oils for patients with nonalcoholic fatty liver disease (NAFLD) associated with hyperlipidemia. METHODS: One hundred and forty-four patients with NAFLD associated with hyperlipidemia were included in the 24-wk, randomized, controlled trial. The patients were randomized into two groups. Group A (n = 72) received recommended diet and 2 g n-3 PUFA from seal oils, three times a day. Group B (n = 72) received recommended diet and 2 g placebo, three times a day. Primary endpoints were fatty liver assessed by symptom scores, liver alanine aminotransferase (ALT) and serum lipid levels after 8, 12, 16, and 24 wk. Hepatic fat infiltration was detected by ultrasonography at weeks 12 and 24 after treatment. RESULTS: A total of 134 patients (66 in group A, 68 in group B) were included in the study except for 10 patients who were excluded from the study. After 24 wk of treatment, no change was observed in body weight, fasting blood glucose (FBG), renal function and blood cells of these patients. Total symptom scores, ALT and triglyceride (TG) levels decreased more significantly in group A than in group B (P < 0.05). As expected, there was a tendency toward improvement in aspartate aminotransferase (AST), 7-glutamyltranspeptidase (GGT), and total cholesterol (TCHO) and high-density lipoprotein (HDL) cholesterol levels (P < 0.05) after administration in the two groups. However, no significant differences were found between the two groups. The values of low-density lipoprotein (LDL) were significantly improved in group A (P < 0.05), but no significant change was found in group B at different time points and after a 24-wk treatment. After treatment, complete fatty liver regression was observed in 19.70% (13/66) of the patients, and an overall reduction was found in 53.03% (35/66) of the patients in group A. In contrast, in group B, only five patients (7.35%, 5/68) achieved complete fatty

  12. Effects of Dietary Polyunsaturated Fatty Acids on Colorectal Cancer and the Development of the Total Western Diet-2

    OpenAIRE

    Kellen, Sara

    2014-01-01

    The Western diet is commonly consumed by industrialized societies and characterized by an increased consumption of vegetable oils rich in omega-6 (n-6) fatty acids. This results in a higher ratio of omega-6 to omega-3 (n-3) fatty acids in the diet. Omega-6 polyunsaturated fatty acids (PUFA) are believed to induce a pro-inflammatory response in the body. Therefore, this change in PUFA concentration and/or ratio of n-6:n-3 in the Western diet may contribute to colorectal cancer (CRC) risk. Five...

  13. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans ☆

    OpenAIRE

    Vauzour, D.; Pascual-Teresa, Sonia de; Minihane, Anne-Marie

    2015-01-01

    © 2015 The Authors. Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we ...

  14. Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence

    Science.gov (United States)

    Weylandt, Karsten H.; Serini, Simona; Chen, Yong Q.; Su, Hui-Min; Lim, Kyu; Cittadini, Achille; Calviello, Gabriella

    2015-01-01

    Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer. PMID:26301240

  15. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Massimiliano Petracci

    2009-10-01

    Full Text Available Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA, conjugated linoleic acid (CLA, vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA for n-3 PUFA.

  16. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease.

    Science.gov (United States)

    Devassy, Jessay Gopuran; Leng, Shan; Gabbs, Melissa; Monirujjaman, Md; Aukema, Harold M

    2016-09-01

    Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD. PMID:27633106

  17. Regulatory Activity of Polyunsaturated Fatty Acids in T-Cell Signaling

    Science.gov (United States)

    Kim, Wooki; Khan, Naim A.; McMurray, David N.; Prior, Ian A.; Wang, Naisyin; Chapkin, Robert S.

    2010-01-01

    n-3 polyunsaturated fatty acids (PUFA) are considered to be authentic immunosuppressors and appear to exert beneficial effects with respect to certain immune-mediated diseases. In addition to promoting T-helper 1 (Th1) cell to T-helper 2 (Th2) cell effector T-cell differentiation, n-3 PUFA may also exert anti-inflammatory actions by inducing apoptosis in Th1 cells. With respect to mechanisms of action, effects range from the modulation of membrane receptors to gene transcription via perturbation of a number of second messenger cascades. In this review, the putative targets of anti-inflammatory n-3 PUFA, activated during early and late events of T-cell activation will be discussed. Studies have demonstrated that these fatty acids alter plasma membrane micro-organization (lipid rafts) at the immunological synapse, the site where T-cells and antigen presenting cells (APC) form a physical contact for antigen initiated T-cell signaling. In addition, the production of diacylglycerol and the activation of different isoforms of protein kinase C (PKC), mitogen activated protein kinase (MAPK), calcium signaling, and nuclear translocation/activation of transcriptional factors, can be modulated by n-3 PUFA. Advantages and limitations of diverse methodologies to study the membrane lipid raft hypothesis, as well as apparent contradictions regarding the effect of n-3 PUFA on lipid rafts will be critically presented. PMID:20176053

  18. Novel Simplified and Rapid Method for Screening and Isolation of Polyunsaturated Fatty Acids Producing Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Ashwini Tilay

    2012-01-01

    Full Text Available Bacterial production of polyunsaturated fatty acids (PUFAs is a potential biotechnological approach for production of valuable nutraceuticals. Reliable method for screening of number of strains within short period of time is great need. Here, we report a novel simplified method for screening and isolation of PUFA-producing bacteria by direct visualization using the H2O2-plate assay. The oxidative stability of PUFAs in growing bacteria towards added H2O2 is a distinguishing characteristic between the PUFAs producers (no zone of inhibition and non-PUFAs producers (zone of inhibition by direct visualization. The confirmation of assay results was performed by injecting fatty acid methyl esters (FAMEs produced by selected marine bacteria to Gas Chromatography-Mass Spectrometry (GCMS. To date, this assay is the most effective, inexpensive, and specific method for bacteria producing PUFAs and shows drastically reduction in the number of samples thus saves the time, effort, and cost of screening and isolating strains of bacterial PUFAs producers.

  19. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease.

    Science.gov (United States)

    Devassy, Jessay Gopuran; Leng, Shan; Gabbs, Melissa; Monirujjaman, Md; Aukema, Harold M

    2016-09-01

    Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD.

  20. n-3 Polyunsaturated Fatty Acids and Mechanisms to Mitigate Inflammatory Paracrine Signaling in Obesity-Associated Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-10-01

    Full Text Available Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.

  1. A Perspective on Free Radical Autoxidation: The Physical Organic Chemistry of Polyunsaturated Fatty Acid and Sterol Peroxidation

    Science.gov (United States)

    2013-01-01

    This Perspective describes advances from the author’s laboratory on the free radical reactions of organic compounds with molecular oxygen. Polyunsaturated fatty acids (PUFAs) and sterols are particularly prone to undergo radical chain oxidation and evidence suggests that this process, known as lipid peroxidation, occurs in vivo under a variety of conditions that are the result of an oxidative stress. Cyclic peroxides, hydroperoxides, and epoxy-alcohols are major products formed from peroxidation and the basic mechanisms of product formation are now reasonably well understood. These mechanisms include reversible addition of oxygen to carbon radicals, rearrangement and cyclization of allyl and pentadienyl peroxyl radicals and homolytic substitution of carbon radicals on the peroxide bond. A physical organic approach to the problem of free radicals in biology and medicine is highlighted in this Perspective with stereochemical, kinetic and extrathermodynamic probes applied to the study of mechanism. A radical clock permits the determination of free radical propagation rate constants and 7-dehydrocholesterol, the immediate biosynthetic precursor of cholesterol, is found by this clock to be one of the most oxidizable lipids known. The consequences of the extreme reactivity of 7-dehydrocholesterol on human health is the focus of a current research theme in the author’s laboratory. PMID:23445181

  2. Lysophosphatidylcholines containing polyunsaturated fatty acids were found as Na+,K+-ATPase inhibitors in acutely volume-expanded hog

    International Nuclear Information System (INIS)

    Na+,K+-ATPase inhibitors activities against the specific binding of ouabain to Na+,K+-ATPase and 86Rb uptake into hog erythrocytes have been purified from the plasma of acutely saline-infused hog. The purifications were performed by a combination of Amberlite XAD-2 adsorption chromatography and four steps of high-performance liquid chromatography with four different types of columns. Fast atom bombardment (FAB) mass and proton NMR spectrometric studies identified the purified substances as γ-arachidoyl- [LPCA(γ), 34%], β-arachidoyl- [LPCA(β), 4%], γ-linoleoyl- (LPCL, 33%), and γ-oleoyl- (LPCO, 25%) lysophosphatidylcholine, expressed in molar ratio in the plasma. Small amounts of γ-docosapentaenoyl-, γ-eicosatrienoyl-, and γpalmitoyllysophosphatidylcholine were also detected by both FAB mass and 1H NMR spectrometric studies. The inhibition of Na+,K+-ATPase activity due to these compounds was always more sensitive than that of both ouabain-binding and 86Rb uptake activities. The ouabain-displacing activity in plasma due to these compounds increased with time during saline infusion. The maximal plasma level was approximately 10 times higher than that in the preinfusion plasma sample. Although these results suggest that γ-acyl-LPC's with long-chain polyunsaturated fatty acids are not simple competitive inhibitors to Na+,K+-ATPase, these compounds could be implicated in the pathogenesis of the circulation abnormality through the modulation of membrane enzyme

  3. Short-Term Stability of Whole Blood Polyunsaturated Fatty Acid Content on Filter Paper During Storage at -28 °C.

    Science.gov (United States)

    Pupillo, Daniele; Simonato, Manuela; Cogo, Paola E; Lapillonne, Alexandre; Carnielli, Virgilio P

    2016-02-01

    Finger or heel-pricked blood sampling for fatty acid analysis is suitable especially in newborn infants where blood sampling is difficult and phlebotomy for research can be unethical. The aim of this study was to evaluate dried blood long chain polyunsaturated fatty acids (LC-PUFA) stability during storage at -28 °C. We collected 12 blood cord samples that were analyzed immediately after blood drawing, with and without drying the blood on filter paper. Dried samples were then analyzed 7 days and 1, 3, and 6 months after collection. Butylated hydroxytoluene was added to all samples. Fatty acid composition and (13)C enrichment were measured by gas chromatography and by gas chromatography-isotope ratio mass spectrometry, respectively. The fatty acid composition, expressed in mol%, of the major LC-PUFA at day 7 was not statistically different from time 0, however lower values were found by the first month of storage. The (13)C enrichment of 20:4n-6 and 22:6n-3 did not differ during the whole study period. LC-PUFA analysis from dried umbilical cord blood in neonates should be performed within a week, major losses of LC-PUFA occur afterwards. However, fatty acids obtained from dried blood maintain their (13)C enrichment value for up to 6 months and thus these samples are suitable for natural abundance isotopic studies. PMID:26749585

  4. Effect of ω-3 polyunsaturated fatty acids on the growth of IEC-6 cells injured by heavy metals

    OpenAIRE

    Zhang, Feng; Yu, Haining; Ni, Xiaofeng; ZHU, Jing; Wang, Shanshan; Shen, Shengrong

    2016-01-01

    Environmental pollution is a current area of focus worldwide, particularly heavy metal pollution. Feasible prevention or therapeutic strategies are required. Exploration of the correlation between ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and intestinal epithelial cells injured by heavy metals may be of significance for intestinal health. In the present study, the effects of ω-3 PUFAs on the rat intestinal crypt cell line (IEC-6) injured by heavy metals and its mechanisms were determined ac...

  5. Beneficial Effects of Omega-3 Polyunsaturated Fatty Acids in Gestational Diabetes: Consequences in Macrosomia and Adulthood Obesity

    OpenAIRE

    Akadiri Yessoufou; Nekoua, Magloire P.; Adam Gbankoto; Yohana Mashalla; Kabirou Moutairou

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are increasingly being used to prevent cardiovascular diseases, including diabetes and obesity. In this paper, we report data on the observed effects of omega-3 PUFA on major metabolic disorders and immune system disruption during gestational diabetes and their consequences on macrosomia. While controversies still exist about omega-3 PUFA effects on antioxidant status regarding the level of omega-3 PUFA in diet supplementation, their lipid-lowering ...

  6. Testing the interactive effects of carotenoids and polyunsaturated fatty acids on ejaculate traits in the guppy Poecilia reticulata (Pisces: Poeciliidae).

    Science.gov (United States)

    Rahman, M M; Gasparini, C; Turchini, G M; Evans, J P

    2015-05-01

    Using the polyandrous livebearing guppy Poecilia reticulata, this study revealed no main effects of carotenoids in the diet on ejaculate traits, but significant main effects of polyunsaturated fatty acids (PUFAs) on sperm viability and weak but significant interacting effects of both nutrients on sperm length. Collectively, these findings not only add evidence that PUFAs are critical determinants of sperm quality, but also provide tentative evidence that for some traits these effects may be moderated by carotenoid intake.

  7. Effects of supplementation with protected polyunsaturated fatty acids on productive and hormonal parameters of embryo recipient heifers

    OpenAIRE

    Juan Camilo Angel Cardona; Harold Ospina Patino; Mônica Marcela Ramirez Hernandez; Carolina Heller Pereira; Kendall Swanson

    2016-01-01

    Supplementation with protected polyunsaturated fatty acids (PPUFA) has positive effects on cow reproduction. Therefore, the aim of this study was to evaluate the effects of adding a source of PPUFA to energy supplements for embryo recipient heifers on productive performance and plasma concentrations of progesterone, cholesterol and insulin. For this purpose, 44 Angus x Hereford embryo recipient heifers (average body weight = 385 kg) raised on pasture were studied in a completely randomized de...

  8. Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality

    OpenAIRE

    Gatellier, Philippe; Kondjoyan, Alain; Portanguen, Stéphane; Sante-Lhoutellier, Veronique

    2010-01-01

    The effect of cooking on protein oxidation was investigated in M. Longissimus thoracis of eight Normand cows fed during a 100 days finishing period with two different diets: a conventional diet (concentrate/straw based diet) and a diet rich in n-3 polyunsaturated fatty acids (PUFAs), obtained by addition to the conventional diet of a mixture of extruded linseed and extruded rapeseed. After 11 days storage, at 4 degrees C under vacuum, meat was cooked by applying jets of steam. Three experimen...

  9. Effect of Cooking on the Polyunsaturated Fatty Acid and Antioxidant Properties of Small Indigenous Fish Species of the Eastern Himalayas

    OpenAIRE

    Wahengbam Sarjubala Devi; Ch. Sarojnalini

    2014-01-01

    The effect of cooking method on the polyunsaturated fatty acid and antioxidant properties of small indigenous freshwater fish species, Amblypharyngodon mola and Puntius sophore of the Eastern Himalayas were determined. In the raw and fried samples, docosahexaenoic acid was significantly higher (2.907 and 1.167mg/100g) in Amblypharyngodon mola and lowest (0.749 and 0.291mg/100g) were recorded in Puntius sophore. The eicosapentaenoic acid of raw, fried and curried samples of Amb...

  10. Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Womeni Hilaire Macaire

    2009-07-01

    (8.56% and linoleic acid (6.59% are also present. These results show that these insects are considerable sources of fat. Their oils are rich in polyunsaturated fatty acids, of which essential fatty acids are linoleic and linolenic acids. The ratio PUFA/SFA, in the majority of cases is higher than 0.8, associated with desirable levels of cholesterol.

  11. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    Science.gov (United States)

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  12. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation in Patients with Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar MD, FASH

    2012-08-01

    Full Text Available Atrial fibrillation (AF is the most common sustained atrial arrhythmia conferring a higher morbidity and mortality. Despite the increasing incidence of AF; available therapies are far from perfect. Dietary fish oils, containing omega 3 fatty acids, also called polyunsaturated fatty acid [PUFA] have demonstrated beneficial electrophysiological, autonomic and anti-inflammatory effects on both atrial and ventricular tissue. Multiple clinical trials, focusing on various subsets of patients with AF, have studied the role of PUFA and their potential role in reducing the incidence of this common arrhythmia. While PUFA appears to have a beneficial effect in the primary prevention of AF in the elderly with structural heart disease, this benefit has not been universally observed. In the secondary prevention of AF, PUFA seems to have a greater impact in the reducing AF in patients with paroxysmal or persistent AF, stages of AF associated with less atrial fibrosis and negative structural remodeling. However, AF suppression has not been consistently demonstrated in clinical trials. In patients undergoing heart surgery, increasing PUFA intake has yielded mixed results in terms of AF prevention post-operatively; however, increased PUFA has been associated with a reduction in hospital stay. Therefore recommending the use of PUFA for the purpose of AF reduction remains controversial. This is in part attributable to the complexity of AF. Other conflicting variables include: heterogeneous patient populations studied; variable dosing; duration of follow-up; comorbidities; and, concomitant pharmacotherapy. This review article reviews in detail available basic and clinical research studies of fish oil in the treatment of AF, and its role in the treatment of this common disorder.

  13. Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance.

    Science.gov (United States)

    Abbott, Sarah K; Else, Paul L; Atkins, Taleitha A; Hulbert, A J

    2012-05-01

    In one of the most extensive analyses to date we show that the balance of diet n-3 and n-6 polyunsaturated fatty acids (PUFA) is the most important determinant of membrane composition in the rat under 'normal' conditions. Young adult male Sprague-Dawley rats were fed one of twelve moderate-fat diets (25% of total energy) for 8weeks. Diets differed only in fatty acid (FA) profiles, with saturate (SFA) content ranging 8-88% of total FAs, monounsaturate (MUFA) 6-65%, total PUFA 4-81%, n-6 PUFA 3-70% and n-3 PUFA 1-70%. Diet PUFA included only essential FAs 18:2n-6 and 18:3n-3. Balance between n-3 and n-6 PUFA is defined as the PUFA balance (n-3 PUFA as % of total PUFA) and ranged 1-86% in the diets. FA composition was measured for brain, heart, liver, skeletal muscle, erythrocytes and plasma phospholipids, as well as adipose tissue and plasma triglycerides. The conformer-regulator model was used (slope=1 indicates membrane composition completely conforming to diet). Extensive changes in diet SFA, MUFA and PUFA had minimal effect on membranes (average slopes 0.01, 0.07, 0.07 respectively), but considerable influence on adipose tissue and plasma triglycerides (average slopes 0.27, 0.53, 0.47 respectively). Diet balance between n-3 and n-6 PUFA had a biphasic influence on membrane composition. When n-3 PUFAdiet (average slope 0.95), while diet PUFA balance>10% had little influence (average slope 0.19). The modern human diet has an average PUFA balance ~10% and this will likely have significant health implications.

  14. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-10-01

    Full Text Available Background: Distiller's dried grains with solubles (DDGS and soybean meal were used as the substrates for the production of polyunsaturated fatty acids (PUFA in solid-state fermentation (SSF by Mortierella alpine. These fermented products were fed to laying hens. PUFA enrichment from chicken breasts was studied. Methods: The maximum productivity of PUFA was achieved under optimized process condition, including 1% w/w yeast extract as additive, an incubation period of 5 days at 12°C, 10% v/w inoculum level, 75% moisture content, and pH 6.0. The hens were then fed with ration containing soybean DDGS, rapeseed oil, soybean oil, and peanut oil. The control group was fed with basal ration. Results: Under the optimal condition, M. alpine produced total fatty acids (TFA of 182.34 mg/g dry substrate. It has better mycelial growth when soybean meal was added to DDGS (SDDGS. PUFA in fermentation product increased with higher soybean meal content. The addition of 70% soybean meal to DDGS substrate yielded 175.16 mg of TFA, including 2.49 mg eicosapentaenoic acid (EPA and 5.26 mg docosahexaenoic acid (DHA. The ratios of ω-6/ω-3 found in chicken breasts fat were all lower than that found in control by 36.98, 31.51, 18.15, and 12.63% for SDDGS, rapeseed oil, soybean oil, and peanut oil, respectively. Conclusions: This study identified an optimized SSF process to maximize PUFA productivity by M. alpine as the strain. This PUFA-enriched feed increased the PUFA contents as well as the proportions of ω-6 and ω-3 in chicken breasts and liver.

  15. Omega-3 polyunsaturated fatty acids: Their potential role in blood pressure prevention and management

    Directory of Open Access Journals (Sweden)

    Claudio Borghi

    2010-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (PUFAs from fish and fish oils appear to protect against coronary heart disease: their dietary intake is in fact inversely associated to cardiovascular disease morbidity/mortality in population studies. Recent evidence suggests that at least part of their heart protective effect is mediated by a relatively small but significant decrease in blood pressure level. In fact, omega-3 PUFAs exhibit wide-ranging biological actions that include regulating both vasomotor tone and renal sodium excretion, partly competing with omega- 6 PUFAs for common metabolic enzymes and thereby decreasing the production of vasocostrincting rather than vasodilating and anti-inflammatory eicosanoids. PUFAs also reduce angiotensin- converting enzyme (ACE activity, angiotensin II formation, TGF-beta expression, enhance eNO generation and activate the parasympathetic nervous system. The final result is improved vasodilation and arterial compliance of both small and large arteries. Preliminary clinical trials involving dyslipidemic patients, diabetics and elderly subjects, as well as normotensive and hypertensive subjects confirm this working hypothesis. Future research will clarify if PUFA supplementation could improve the antihypertensive action of specific blood pressure lowering drug classes and of statins.

  16. Neuroinflammation and aging: influence of dietary n-3 polyunsaturated fatty acid*

    Directory of Open Access Journals (Sweden)

    Layé Sophie

    2011-11-01

    Full Text Available The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against noxious agents or lesions. Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed in the brain, leading to the development of altered emotional and cognitive behavior. These behavioral alterations cease along with the synthesis of brain cytokines. When the level of expression of these cytokines remains high, they become toxic to neurons possibly leading to neuronal death, as observed in neurodegenerative disorders such as Alzheimer’s disease. Omega-3 (n-3 type polyunsaturated fatty acids (PUFAs are essential nutrients and fundamental components of neuronal and glial cell membranes. Additionally, they have immunomodulatory properties. They accumulate in the brain during the perinatal period in a dietary supply-dependant fashion. Their brain levels diminish with age, but can be corrected by a diet enriched in n-3 PUFAs. The increasing exposure of the population to diets unbalanced in n-3 PUFAs could contribute to the deleterious effect of inflammatory cytokines in the brain.

  17. ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy.

    Science.gov (United States)

    O'Rourke, Eyleen J; Kuballa, Petric; Xavier, Ramnik; Ruvkun, Gary

    2013-02-15

    Adaptation to nutrient scarcity depends on the activation of metabolic programs to efficiently use internal reserves of energy. Activation of these programs in abundant food regimens can extend life span. However, the common molecular and metabolic changes that promote adaptation to nutritional stress and extend life span are mostly unknown. Here we present a response to fasting, enrichment of ω-6 polyunsaturated fatty acids (PUFAs), which promotes starvation resistance and extends Caenorhabditis elegans life span. Upon fasting, C. elegans induces the expression of a lipase, which in turn leads to an enrichment of ω-6 PUFAs. Supplementing C. elegans culture media with these ω-6 PUFAs increases their resistance to starvation and extends their life span in conditions of food abundance. Supplementation of C. elegans or human epithelial cells with these ω-6 PUFAs activates autophagy, a cell recycling mechanism that promotes starvation survival and slows aging. Inactivation of C. elegans autophagy components reverses the increase in life span conferred by supplementing the C. elegans diet with these fasting-enriched ω-6 PUFAs. We propose that the salubrious effects of dietary supplementation with ω-3/6 PUFAs (fish oils) that have emerged from epidemiological studies in humans may be due to a similar activation of autophagic programs. PMID:23392608

  18. Role of omega-3 polyunsaturated fatty acids in diet of patients with rheumatic diseases

    Directory of Open Access Journals (Sweden)

    P. Spinella

    2011-09-01

    Full Text Available The beneficial effects of ω-3 polyunsaturated fatty acids have been widely described in the literature in particular those on cardiovascular system. In the last decade there has been an increased interest in the role of these nutrients in the reduction of articular inflammation as well as in the improvement of clinical symptoms in subjects affected by rheumatic diseases, in particular rheumatoid arthritis (RA. Nutritional supplementation with ω-3 may represent an additional therapy to the traditional pharmacological treatment due to the anti-inflammatory properties which characterize this class of lipids: production of alternative eicosanoids, reduction of inflammatory cytochines, reduction of T-lymphocytes activation, reduction of catabolic enzymes activity. The encouraging results of dietetic therapy based on ω- 3 in RA are leading researchers to test their effectiveness on patients with other rheumatic conditions such as systemic lupus erythematosus and ankylosing spondylitis. Nutritional therapy based on food rich in ω-3 or on supplementation with fish oil capsules, proved to be a valid support to he treatment of chronic inflammatory rheumatic diseases.

  19. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  20. Polyunsaturated Fatty Acid Dietary Supplementation Induces Lipid Peroxidation in Normal Dogs

    Directory of Open Access Journals (Sweden)

    John M. Walters

    2010-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs have anti-inflammatory effects at low concentrations; however increased dietary consumption may conversely increase susceptibility to oxidation by free radicals. The objective of this study was to determine the effects of PUFAs on selective oxidative injury and inflammatory biomarkers in canine urine and serum. Dogs (n=54 consumed a diet supplemented with 0.5% conjugated linoleic acid/dry matter, 1.0% conjugated linoleic acid/dry matter, or 200 mg/kg docosahexaenoic acid/eicosapentaenoic acid for 21 days. All dogs exhibited significantly increased plasma PUFA concentrations. All dogs had significant elevations in urinary F2a isoprostane concentration, though dogs consuming a diet containing 1.0% conjugated linoleic acid/dry matter had the highest increase (P=.0052. Reduced glutathione concentrations within erythrocytes decreased significantly in all three dietary treatment groups (P=.0108. Treatment with diets containing 1.0% conjugated linoleic acid/dry matter resulted in the greatest increase in oxidant injury. Caution should be exercised when supplementing PUFAs as some types may increase oxidation.

  1. Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Margaret Harris

    2015-01-01

    Full Text Available A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997 of postmenopausal women (n=266; 56.6±4.7 years participating in the Bone Estrogen Strength Training (BEST study (a 12-month, block-randomized, clinical trial. Bone mineral density (BMD was measured at femur neck and trochanter, lumbar spine (L2–L4, and total body BMD using dual-energy X-ray absorptiometry (DXA. Mean dietary polyunsaturated fatty acids (PUFAs intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT, total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P<0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward’s triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399.

  2. Perioperative ω-3 Polyunsaturated Fatty Acid Nutritional Support in Gastrointestinal Cancer Surgical Patients: A Systematic Evaluation.

    Science.gov (United States)

    Ma, Ying-Jie; Liu, Lian; Xiao, Jing; Cao, Bang-Wei

    2016-01-01

    This study was a systematic evaluation of the beneficial effects of n-3 polyunsaturated fatty acid (PUFA) in abdominal cancer surgical patients. A literature search of the databases PubMed, Medline, Cochrane, and EMBASE was conducted for studies published up to November 2014 in English language journals. Randomized controlled trials (RCTs) examining the effects of n-3 PUFA intake relative to conventional nutrition in surgical patients were included. The main outcomes were the duration of systemic inflammatory response syndrome (SIRS), length of hospital stay (LOS), serum C-reactive protein (CRP) levels, and postoperative complications. We identified 15 RCTs among 158 relevant trials. The results indicated the associations between n-3 PUFA intake and reduced LOS [mean differences (MDs), -2.47 d; 95% confidence intervals (CIs), -3.25 to -1.69], duration of SIRS (MD, -0.57 d; 95% CI, -0.92 to -0.22), and serum CRP levels (MD, -3.97 mg/l; 95% CI, -7.88 to -0.07) compared with consumption of conventional nutrition, as well as reduced incidence of postoperative infectious complications (risk ratio, 0.66; 95% CI, 0.49-0.87). This systematic evaluation suggests that n-3 PUFA significantly reduces the postoperative infectious complication rate, and shortens hospitalization and SIRS duration, particularly in malnourished gastrointestinal cancer patients. PMID:27115734

  3. Differential Effects of Antipsychotic Medications on Polyunsaturated Fatty Acid Biosynthesis in Rats: Relationship with Liver Delta6-Desaturase Expression

    OpenAIRE

    McNamara, Robert K.; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Cole-Strauss, Allyson; Lipton, Jack W

    2011-01-01

    Polyunsaturated fatty acids (PUFA), a lipid family comprised of omega-3 (n-3) and n-6 fatty acids, are a critical component of cellular membranes, and recent in vitro studies have found that antipsychotic medications up-regulate genes responsible for PUFA biosynthesis. To evaluate this effect in vivo, rats were treated with risperidone (1.5, 3, 6 mg/kg/d), paliperidone (1.5, 3, 6 mg/kg/d), olanzapine (2.5, 5, 10 mg/kg/d), quetiapine (5, 10, 20 mg/kg/d), haloperidol (1, 3 mg/kg/d) or vehicle t...

  4. Stimulation of proliferation of an essential fatty acid-deficient fish cell line by C20 and C22 polyunsaturated fatty acids and effects on fatty acid composition.

    Science.gov (United States)

    Tocher, D R; Dick, J R; Sargent, J R

    1996-11-01

    Recently we reported the development of a fish cell line, EPC-EFAD, derived from the carp (Cyprinus carpio) epithelial papilloma line, EPC, that could survive and proliferate in essential fatty acid-deficient (EFAD) medium. The EPC-EFAD cell line may be a useful model system in which to study the cellular biochemical effects of EFA deficiency and has advantages in studies of polyunsaturated fatty acid (PUFA) and eicosanoid metabolism in fish in that the complications introduced by culture in relatively n-6 PUFA-rich mammalian sera are removed. In the present study, the effects on cell proliferation rate of supplementing EPC-EFAD cells with various n-3 and n-6 PUFA were investigated to determine the possible role(s) of PUFA in cell growth and division. The selectivity of incorporation of specific PUFA into individual glycerophospholipid classes and the feasibility of reproducing in vivo fatty acid compositions in vitro were also investigated. Proliferation of the EPC-EFAD cell line was stimulated by arachidonic (20:4 n-6), eicosapentaenoic (20:5 n-3) and docosahexaenoic (22:6 n-3) fatty acids but not by 18:2 n-6 or 18:3 n-3. The differential effects of PUFA on cellular proliferation may be related to the lack of significant delta 5 desaturase activity in the cells at 22 degrees C and may implicate a role for eicosanoids in the mechanism of stimulation of proliferation. PUFA supplementation increased the cytotoxic effects of longer term culture, an effect that was partly alleviated by inclusion of vitamin E in the culture medium. The cells could generally be supplemented with PUFA to produce cellular fatty acid compositions in vitro that were similar to in vivo compositions. PMID:8981632

  5. Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid.

    Science.gov (United States)

    Nichols, D S; Nichols, P D; Russell, N J; Davies, N W; McMeekin, T A

    1997-08-16

    The production of eicosapentaenoic acid [20:5omega3; EPA] from Shewanella gelidimarina (ACAM 456T) was investigated with respect to growth temperature and growth on sole carbon sources. The percentage and quantitative yield of EPA remained relatively constant at all growth temperatures within or below the optimal growth temperature region. At higher growth temperatures, these values decreased greatly. Growth on differing sole carbon sources also influenced the percentage and amount of EPA produced, with the fatty acid composition influenced by provision of potential acyl chain primers as sole carbon sources. The highest amounts of EPA occurred from growth on propionic acid and L-leucine respectively, while the highest percentage of EPA occurred from growth on L-proline. Monounsaturated fatty acid components and EPA were concentrated in phosphatidylglycerol (PG), while the proportion of branched-chain fatty acids was elevated in phosphatidylethanolamine (PE); the two major phospholipid classes. Specific associations of EPA with other acyl chains were identified within cellular phospholipid classes. The association of EPA with 17:1 and 18:0 acyl chains in phospholipid species was specific to PG, whereas the association of EPA with i13:0/13:0 and 14:0/i14:0 was specific to PE. Such acyl chain 'tailoring' is indicative of the important role of EPA in bacterial membrane adaptive responses. EPA was also a large component (22%) of a non-esterified fatty acid (NEFA) fraction within the total lipid extract of the bacterium. This may point toward a particular role of NEFA in polyunsaturated fatty acid (PUFA) metabolism. The formation of EPA was investigated by labelling with L-[U-14C]serine and sodium [1-14C]acetate. The accumulation of radiolabel within unsaturated intermediates (di-, tri- and tetraunsaturated fractions) was low, indicating a rapid formation and derivatisation of these components. Similar results were found for the unsaturated fatty acid fractions of both

  6. Dietary omega 3 polyunsaturated fatty acids and Alzheimer's disease: interaction with apolipoprotein E genotype. : Fatty acids and ApoE genotype

    OpenAIRE

    Barberger-Gateau, Pascale; Samieri, Cécilia; Féart, Catherine; Plourde, Mélanie

    2011-01-01

    International audience; Epidemiological studies suggest a protective role of omega-3 poly-unsaturated fatty acids (n-3 PUFA) against Alzheimer's disease (AD). However, most intervention studies of supplementation with n-3 PUFA have yielded disappointing results. One reason for such discordant results may result from inadequate targeting of individuals who might benefit from the supplementation, in particular because of their genetic susceptibility to AD. The ε4 allele of the apolipoprotein E ...

  7. How selected tissues of lactating holstein cows respond to dietary polyunsaturated fatty acid supplementation.

    Science.gov (United States)

    Hiller, Beate; Angulo, Joaquin; Olivera, Martha; Nuernberg, Gerd; Nuernberg, Karin

    2013-04-01

    The effect of a 10-week supplementation with polyunsaturated fatty acids [via sunflower oil/DHA-rich algae (SUNA) or linseed oil/DHA-rich algae (LINA) enriched diets] versus saturated fatty acids (SAT) of lactating German Holstein dairy cows in mid-lactation on expression patterns of lipid metabolism-associated genes and gene products in hepatic, longissimus muscle and subcutaneous/perirenal/omental adipose tissue was assessed. Most pronounced transcriptomic responses to dietary PUFA were obtained in hepatic [down-regulated ACACA (FC = 0.83, SUNA; FC = 0.86, LINA), FADS1 (FC = 0.60, SUNA; FC = 0.72, LINA), FADS2 (FC = 0.64, SUNA; FC = 0.79, LINA), FASN (FC = 0.64, SUNA; FC = 0.72, LINA), SCD (FC = 0.37, SUNA; FC = 0.47, LINA) and SREBF1 (FC = 0.79, SUNA, LINA) expression] and omental adipose [up-regulated ACACA (FC = 1.58, SUNA; FC = 1.22, LINA), ADFP (FC = 1.33, SUNA; FC = 1.32, LINA), CEBPA (FC = 1.75, SUNA; FC = 1.40, LINA), FASN (FC = 1.57, SUNA; FC = 1.21, LINA), LPL (FC = 1.50, SUNA; FC = 1.20, LINA), PPARG (FC = 1.36, SUNA; FC = 1.12, LINA), SCD (FC = 1.41, SUNA; FC = 1.17, LINA) and SREBF1 (FC = 1.56, SUNA; FC = 1.18, LINA) expression] tissue. Interestingly, gene/gene product associations were comparatively low in hepatic and omental adipose tissue compared with longissimus muscle, perirenal adipose and subcutaneous adipose tissue, indicating matches only in regard to minor concentrations of SCD product 18:1c9, FADS1 product 20:4n-6 and FADS2 product 18:3n-6 in hepatic tissue, and higher concentrations of ACACA and FASN gene products 12:0 and 14:0 and SCD product 18:2c9,t11 in omental adipose tissue. Whereas all analyzed tissues accumulated dietary PUFA and their ruminally generated biohydrogenation products, tissue-divergent preferences for certain fatty acids were identified. This descriptive study reports tissue-divergent effects of dietary PUFA and outlines the significance of a PUFA intervention

  8. Early life exposure to polyunsaturated fatty acids and psychomotor development in children from the EDEN mother-child cohort

    Directory of Open Access Journals (Sweden)

    Bernard Jonathan Y.

    2016-01-01

    Full Text Available Epidemiological studies have reported that breastfed children have improved psychomotor development compared to never breastfed children. Human studies suggest that polyunsaturated fatty acids (PUFA, especially long chain PUFA (LC-PUFA which are highly contained in breast milk, could explain this link, since they are needed for pre- and postnatal brain development. Our aim was to study the relationships between several measures of pre- and postnatal exposures to PUFA and child’s psychomotor development at 2 and 3 years in the EDEN cohort. We evaluated breastfeeding duration, colostrum PUFA levels and maternal dietary PUFA intake during pregnancy, that we related with three scores of psychomotor development, after taking into account potential confounders. Breastfeeding duration was positively associated with psychomotor development. No relationship was found with both pre- and postnatal exposure to LC-PUFA. However, the maternal dietary omega-6/omega-3 ratio was negatively associated with psychomotor development, mainly driven by intake in linoleic acid (LA. Among breastfed children, linoleic acid levels were negatively associated with psychomotor development. Furthermore, children exposed to the highest colostrum LA levels tended to score closer to never breastfed children than to children exposed to the lowest colostrums LA levels. Taken together, these results do not provide evidence in favour of a positive role of pre- and postnatal exposure to LC-PUFA on later psychomotor development, but highlight a potential negative role of being exposed in early life to high LA levels. From a public health perspective, this work reiterates the need to promote breastfeeding duration, and to monitor the balance of PUFA intake during pregnancy and lactation periods.

  9. Omega-3 long-chain fatty acids strongly induce angiopoietin-like 4 in humans.

    Science.gov (United States)

    Brands, Myrte; Sauerwein, Hans P; Ackermans, Mariette T; Kersten, Sander; Serlie, Mireille J

    2013-03-01

    Angiopoietin-like 4 (ANGPTL4) is a regulator of LPL activity. In this study we examined whether different fatty acids have a differential effect on plasma ANGPTL4 levels during hyperinsulinemia in healthy lean males. In 10 healthy lean males, 3 hyperinsulinemic euglycemic clamps were performed during concomitant 6 h intravenous infusion of soybean oil (Intralipid® rich in PUFA), olive oil (Clinoleic® rich in MUFA) and control saline. In 10 other healthy lean males, 2 hyperinsulinemic clamps were performed during infusion of a mixed lipid emulsion containing a mixture of fish oil (FO), medium-chain triglycerides (MCTs), and long-chain triglycerides (LCTs) (FO/MCT/LCT; SMOFlipid®) or saline. FFA levels of approximately 0.5 mmol/l were reached during each lipid infusion. Plasma ANGPTL4 decreased during hyperinsulinemia by 32% (18-52%) from baseline. This insulin-mediated decrease in ANGPTL4 concentrations was partially reduced during concomitant infusion of olive oil and completely blunted during concomitant infusion of soybean oil and FO/MCT/LCT. The reduction in insulin sensitivity was similar between all lipid infusions. In accordance, incubation of rat hepatoma cells with the polyunsaturated fatty acid C22:6 increased ANGPTL4 expression by 70-fold, compared with 27-fold by the polyunsaturated fatty acid C18:2, and 15-fold by the monounsaturated fatty acid C18:1. These results suggest that ANGPTL4 is strongly regulated by fatty acids in humans, and is also dependent on the type of fatty acid. PMID:23319744

  10. Dietary Supplementation with Conjugated Linoleic Acid Plus n-3 Polyunsaturated Fatty Acid Increases Food Intake and Brown Adipose Tissue in Rats

    Directory of Open Access Journals (Sweden)

    Amanda C. Morris

    2009-11-01

    Full Text Available The effect of supplementation with 1% conjugated linoleic acid and 1% n-3 long chain polyunsaturated fatty acids (CLA/n-3 was assessed in rats. Food intake increased with no difference in body weights. White adipose tissue weights were reduced whereas brown adipose tissue and uncoupling protein-1 expression were increased. Plasma adiponectin, triglyceride and cholesterol levels were reduced while leptin, ghrelin and liver weight and lipid content were unchanged. Hypothalamic gene expression measurements revealed increased expression of orexigenic and decreased expression of anorexigenic signals. Thus, CLA/n-3 increases food intake without affecting body weight potentially through increasing BAT size and up-regulating UCP-1 in rats.

  11. Association of n3 and n6 polyunsaturated fatty acids in red blood cell membrane and plasma with severity of normal tension glaucoma

    Institute of Scientific and Technical Information of China (English)

    Man; Yu; Bo; Chen; Bo; Gong; Ping; Shuai; Zheng-Zheng; Wu; Wei; Lin

    2015-01-01

    AIM: To determine whether red blood cell(RBC)membrane and plasma lipids, particularly long-chain polyunsaturated fatty acids such as eicosapentaenoic acid(EPA), docosahexaenoic acid(DHA), arachidonic acid(AA) are significantly correlated with severity of normal tension glaucoma(NTG).METHODS: This study included 35 patients with NTG and 12 healthy normal control subjects, matched for age and sex with the study group. The stage of glaucoma was determined according to the Hodapp-Parrish-Anderson classification. Lipids were extracted from RBC membranes and plasma, and fatty acid methyl esters prepared and analyzed by gas chromatography-mass spectrometry(GC-MS).RESULTS: When RBC lipids were analyzed, the levels of EPA, the levels of DHA and the ratio of n3 to n6 were positively associated with the Humphrey Perimetry mean Deviation(MD) score(r =0.617, P <0.001; r =0.727, P <0.001 and r =0.720, P <0.001, respectively), while the level of AA was negatively associated with the MD score(r =-0.427, P =0.001). When plasma lipids were analyzed,there was a significant positive relationship between the levels of EPA and the MD score(r =0.648, P <0.001), and the levels of AA were inversely correlated with the MD score(r =-0.638, P <0.001). CONCLUSION: The levels of n3 and n6 polyunsaturated fatty acids in RBC membrane and plasma lipids were associated with severity of NTG.

  12. Polyunsaturated Fatty Acid and S-Adenosylmethionine Supplementation in Predementia Syndromes and Alzheimer's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Francesco Panza

    2009-01-01

    Full Text Available A growing body of evidence indicates that nutritional supplements can improve cognition; however, which supplements are effective remains controversial. In this review article, we focus on dietary supplementation suggested for predementia syndromes and Alzheimer’s disease (AD, with particular emphasis on S-adenosylmethionine (SAM and polyunsaturated fatty acids (PUFA. Very recent findings confirmed that SAM can exert a direct effect on glutathione S-transferase (GST activity. AD is accompanied by reduced GST activity, diminished SAM, and increased S-adenosylhomocysteine (SAH, the downstream metabolic product resulting from SAM-mediated transmethylation reactions, when deprived of folate. Therefore, these findings underscored the critical role of SAM in maintenance of neuronal health, suggesting a possible role of SAM as a neuroprotective dietary supplement for AD patients. In fact, very recent studies on early-stage AD patients and moderate- to late-stage AD patients were conducted with a nutriceutical supplementation that included SAM, with promising results. Given recent findings from randomized clinical trials (RCTs in which n-3 PUFA supplementation was effective only in very mild AD subgroups or mild cognitive impairment (MCI, we suggest future intervention trials using measures of dietary supplementation (dietary n-3 PUFA and SAM plus B vitamin supplementation to determine if such supplements will reduce the risk for cognitive decline in very mild AD and MCI. Therefore, key supplements are not necessarily working in isolation and the most profound impact, or in some cases the only impact, is noted very early in the course of AD, suggesting that nutriceutical supplements may bolster pharmacological approaches well past the window where supplements can work on their own. Recommendations regarding future research on the effects of SAM or n-3 PUFA supplementation on predementia syndromes and very mild AD include properly designed RCTs that are

  13. Polyunsaturated fatty acids and calcaneal ultrasound parameters among Inuit women from Nuuk (Greenland: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Paunescu

    2013-06-01

    Full Text Available Background. The traditional diet of Inuit people comprises large amounts of fish and marine mammals that are rich in omega-3 polyunsaturated fatty acids (PUFAs. Results from in vitro studies, laboratory animal experiments and population studies suggest that omega-3 PUFA intake and a high omega-3/omega-6 ratio exert a positive effect on bone health. Objective. This longitudinal study was conducted to examine the relationship between omega-3 and omega-6 PUFA status and quantitative ultrasound (QUS parameters in Greenlandic Inuit women. Methods. The study included 118 Inuit women from Nuuk (Greenland, aged 49–64 years, whose QUS parameters measured at baseline (year 2000, along with PUFA status and covariates, and follow-up QUS measurements 2 years later (year 2002. QUS parameters [speed of sound (SOS; broadband ultrasound attenuation (BUA] were measured at the right calcaneus with a water-bath Lunar Achilles instrument. Omega-3 and omega-6 PUFA contents of erythrocyte membrane phospholipids were measured after transmethylation by gas chromatography coupled with a flame ionization detector. Relationships between QUS parameters and different PUFAs were studied in multiple linear regression models. Results. Increasing values of EPA, DHA and the omega-3/omega-6 PUFA ratio were associated with increased BUA values measured at follow-up (year 2002. These associations were still present in models adjusted for several confounders and covariates. We found little evidence of associations between PUFAs and SOS values. Conclusion. The omega-3 PUFA intake from marine food consumption seems to have a positive effect on bone intrinsic quality and strength, as revealed by higher BUA values in this group of Greenlandic Inuit women.

  14. Assesment of polyunsaturated fatty acids in cord blood of infants of diabetic mothers

    Institute of Scientific and Technical Information of China (English)

    Galila M Mokhar; Soha M Abd EI Dayem; Nermine H Sayed; Sohair abd El Maksod; Manal El Shamaa; Hani M El Mikaty

    2009-01-01

    Objective:To assess whether infants of diabetic mothers [pre pregnancy diabetics (PPD) and gestational diabetics mellitus (GDM)] have compromised arachidonic and docosahexaenoic acids in their plasma and the relationship with deficiency of the same compounds in their mothers. Methods:This study was conducted on 30 diabetic mothers (both PPD and GDM) and their infants. Twenty healthy infants and their mothers with age and sex matched were included as controls. All infant (of diabetic and non diabetic mothers) were subjected to assessment of APGAR Scoring, thorough history taking and anthropometric measures. Lipid profile components as well as polyunsaturated fatty acids(PUFA) were assessed in diabetic GDM and PPD and non diabetic mothers as well as in their babies. Results: High-density lipoproteir(HDL) level was found to be significantly lower in diabetic mothers (specially those with PPD) compared to non diabetic ones, whereas no significant difference was found between babies of the two groups. Also, the current study revealed that diabet-ic mothers (GDM and PPD) and their babies had significantly higher levels of PUFA precursors linoleic acids (LA) and alpha linoleic acids (ALA). PUFA arachidonic acid (AA) and docosahexaenoic acids (DHA) were found to be significantly lower in diabetic mothers (GDM and PPD) compared to non diabetic mothers, and same results were found in the babies of the two groups. Conclusion: Neonates with diabetic mothers (both GDM and PPD) have highly compromised plasma levels of AA and DHA PUFA, which affects the child well being by far, and produces hazardous multi-system complications on the long run.

  15. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    Directory of Open Access Journals (Sweden)

    Völp Andreas

    2010-09-01

    Full Text Available Abstract Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsychological skills. Materials and methods In our large observational study we monitored 810 children from 5 to 12 years of age referred for medical help and recommended for consuming polyunsaturated fatty acids (PUFA in combination with zinc and magnesium by a physician over a period of at least 3 months. The food supplement ESPRICO® (further on referred to as the food supplement is developed on the basis of current nutritional science and containing a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc. Study objective was to evaluate the nutritional effects of the PUFA-zinc-magnesium combination on symptoms of attention deficit, impulsivity, and hyperactivity as well as on emotional problems and sleep related parameters. Assessment was performed by internationally standardised evaluation scales, i.e. SNAP-IV and SDQ. Tolerance (adverse events and acceptance (compliance of the dietary therapy were documented. Results After 12 weeks of consumption of a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc most subjects showed a considerable reduction in symptoms of attention deficit and hyperactivity/impulsivity assessed by SNAP-IV. Further, the assessment by SDQ revealed fewer emotional problems at the end of the study period compared to baseline and also sleeping disorders. Mainly problems to fall asleep, decreased during the 12 week nutritional therapy. Regarding safety, no serious adverse events occurred. A

  16. Delivery of Polyunsaturated Fatty Acids from a Glycerol Polyester Matrix with Anti-oxidant Properties

    Science.gov (United States)

    Awareness of the health benefits associated with the polyunsaturated acids such as alpha linolenic (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has generated interest in formulating foods and dietary supplements with these compounds. However, the highly unsaturated structure o...

  17. Clinical efficacy ofω-3 polyunsaturated fatty acids in perioperative period of radical operation for gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Wei-Xue Li; Shan-Min Wu; Tao Zeng

    2016-01-01

    Objective:To study the regulating effect of application ofω-3 polyunsaturated fatty acids in perioperative period of radical surgery for gastric cancer on patients’ nutritional status, inflammatory response and immune function.Methods:A total of86 cases of patients receiving radical operation for gastric cancer in our hospital were selected for study and randomly divided into two groups,ω-3 PUFAs group receivedω-3 polyunsaturated fatty acids combined with conventional intravenous nutritional support and control group only received conventional intravenous nutritional support. Serum nutrition indicators of two groups were detected before and after surgery, and inflammation indicators in serum as well as immune molecules in tumor tissue of tow groups were detected after surgery.Results:1d before operation and 3 d after operation, serum RBP, PA, RTF, PEPT1 and ghrelin contents ofω-3 PUFAs group were significantly higher than those of control group; 3 d after operation, serum CC16, α-MSH and HSP70 contents ofω-3 PUFAs group were significantly higher than those of control group, and LBP and sCD14 contents were significantly lower than those of control group; B7-H1, B7-H4, CD157 and CD133 contents in tumor tissue of ω-3 PUFAs group were significantly lower than those of control group, and CD11c content was significantly higher than that of control group.Conclusion:Application ofω-3 polyunsaturated fatty acids in perioperative period of radical operation for gastric cancer can improve patients’ nutritional status, reduce postoperative inflammatory response caused by surgical trauma and regulate the expression of immune molecules in tumor tissue.

  18. Aberrant serum polyunsaturated fatty acids profile is relevant with acute coronary syndrome.

    Science.gov (United States)

    Sakamoto, Atsushi; Saotome, Masao; Hosoya, Natsuko; Kageyama, Shigetaka; Yoshizaki, Toru; Takeuchi, Ryosuke; Murata, Koichiro; Nawada, Ryuzo; Onodera, Tomoya; Takizawa, Akinori; Satoh, Hiroshi; Hayashi, Hideharu

    2016-08-01

    Although a robust relationship between aberrant serum polyunsaturated fatty acids (PUFAs) profile and coronary artery disease (CAD) has been reported, the details concerning the association between aberrant PUFAs profile and clinical feature of CAD are not fully discovered. Therefore, we investigated the relationship between serum PUFAs and clinical profiles in CAD patients. We classified 595 consecutive CAD patients, who underwent coronary angiography into 3 groups according to the clinical profiles of CAD (group A: early phase ACS, n = 96; group B: stable CAD with previous history of ACS, n = 259; group C: stable CAD without previous history of ACS, n = 240) and measured serum n-3 [eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)] and n-6 [arachidonic acid (AA)] PUFAs. Serum EPA, DHA, and EPA/AA ratio were significantly low in the order of group A EPA; 48.1 (34.1-60.3) μg/ml, 61.7 (41.2-94.5) μg/ml, and 74.4 (52.7-104.9) μg/ml, DHA; 113.1 (92.8-135.1) μg/ml, 125.8 (100.4-167.2) μg/ml, and 140.1 (114.7-177.0) μg/ml, EPA/AA ratio; 0.31 (0.22-0.45), 0.39 (0.26-0.62), and 0.44 (0.31-0.69), medians with interquartile range, p EPA (p = 0.009) and EPA/AA ratio (p = 0.023), but not DHA and DHA/AA ratio, were negatively associated with clinical profiles of ACS in CAD patients. Significant correlation was not observed between PUFAs profile and severity of coronary stenosis. Low serum EPA and EPA/AA ratio correlates with clinical profiles of ACS in patients with CAD, regardless of the extent and severity of coronary artery stenosis. PMID:26233644

  19. Biosynthesis of odd-chain fatty alcohols in Escherichia coli.

    Science.gov (United States)

    Cao, Ying-Xiu; Xiao, Wen-Hai; Liu, Duo; Zhang, Jin-Lai; Ding, Ming-Zhu; Yuan, Ying-Jin

    2015-05-01

    Engineered microbes offer the opportunity to design and implement artificial molecular pathways for renewable production of tailored chemical commodities. Targeted biosynthesis of odd-chain fatty alcohols is very challenging in microbe, due to the specificity of fatty acids synthase for two-carbon unit elongation. Here, we developed a novel strategy to directly tailor carbon number in fatty aldehydes formation step by incorporating α-dioxygenase (αDOX) from Oryza sativa (rice) into Escherichia coli αDOX oxidizes Cn fatty acids (even-chain) to form Cn-1 fatty aldehydes (odd-chain). Through combining αDOX with fatty acyl-acyl carrier protein (-ACP) thioesterase (TE) and aldehyde reductase (AHR), the medium odd-chain fatty alcohols profile (C11, C13, C15) was firstly established in E. coli. Also, medium even-chain alkanes (C12, C14) were obtained by substitution of AHR to aldehyde decarbonylase (AD). The titer of odd-chain fatty alcohols was improved from 7.4mg/L to 101.5mg/L in tube cultivation by means of fine-tuning endogenous fatty acyl-ACP TE (TesA'), αDOX, AHRs and the genes involved in fatty acids metabolism pathway. Through high cell density fed-batch fermentation, a titer of 1.95g/L odd-chain fatty alcohols was achieved, which was the highest reported titer in E. coli. Our system has greatly expanded the current microbial fatty alcohols profile that provides a new brand solution for producing complex and desired molecules in microbes. PMID:25773521

  20. Effects of Chrysanthemum coronarium Extract on Fermentation Characteristics and Biohydrogenation of Polyunsaturated Fatty Acids in vitro Batch Culture

    Institute of Scientific and Technical Information of China (English)

    WANG Li-fang; MA Yan-fen; GAO Min; LU De-xun

    2011-01-01

    IntroductionCis-9,trans-11 CLA has been shown to be potentially healthpromoting CLA in many animal models.The C18∶1 trans-11 fatty acid (VA) is also desirable as a product flowing from the rumen,because the flow from the rumen of VA play a more important role than CLA in determining CLA concentration in animal tissues.The factors which affect CLA content in milk have been studied mainly in dairy cows and most factors are basically dietary factors,especially fat source(e.g.,plant oils,fish oil,et al.).Recently some researches showed that some plants or plant extracts could increase cis-9,trans-11 -CLA content in milk.The purpose of this experiment was to evaluate the effects of Chrysanthemum coronarium extract on in vitro Biohydrogenation of polyunsaturated fatty acids and fermentation characteristics of mixed rumen microorganisms.

  1. ADAPTATION OF THE QUALITY CONTROL OF THE POLYUNSATURATED FATTY ACIDS AND VITAMIN EENRICHED FEEDS TO THE EUROPEAN STANDARDS

    Directory of Open Access Journals (Sweden)

    MARIANA ROPOTA

    2013-12-01

    Full Text Available Considering the new norms in feed quality checking (ANSVSA Order 51/2005 on the performance of the analytical methods and data interpretation, which are aligned to the European norms, the market for feeds implemented a checking system similar to the one for the food industry. These requirements stipulate that the laboratories for feed control must have validated methods for each sample assay. We therefore proposed to validate two chromatographic methods (HPLC and GC for vitamin E and linolenic acid from the polyunsaturated fatty acids-enriched feeds for layers supplemented with 250 ppm vitamin E. The determined parameters were in agreement with SR EN ISO / CEI 17025:2005 as follows: exactness, reproducibility, sensitivity, accuracy, detection limit, quantification limit. We used for validation only certified reference materials and blanks, of analytical purity. We determined the incertitude for each validated method. We worked on two types of compound feeds for layers enriched in polyunsaturated fatty acids (I; with addition of flax seeds and with enriched linolenic acid (II. While the calculation of incertitude (10,62±0,44μg/g and 15,409±0,6μg/g for linolenic acid and 400±24 μg/g for vitamin E shows that the methods range within admissible limits. The validated methods are proper for the determination of vitamin E and linolenic acid from feeds enriched in plant fat with a significant supplement of α-tocopherol.

  2. Mechanisms involved in the selective transfer of long chain polyunsaturted fatty acids to the fetus

    Directory of Open Access Journals (Sweden)

    Alfonso eGil-Sánchez

    2011-09-01

    Full Text Available The concentration of long chain polyunsaturated fatty acid (LCPUFA in the fetal brain increases dramatically from the third trimester until 18 months of life. Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid (DHA during gestation and development of the cognitive functions in the neonate. Since only very low levels of LCPUFA are synthesized in the fetus and placenta, their primary source for the fetus is that of maternal origin. Both in vitro and human in vivo studies using labelled fatty acids have shown the preferential transfer of LCPUFA from the placenta to the fetus compared with other fatty acids, although the mechanisms involved are still uncertain. The placenta takes up circulating maternal non-esterified fatty acids (NEFA and fatty acids released mainly by maternal lipoprotein lipase and endothelial lipase. These NEFA may enter the cell by passive diffusion or by means of membrane carrier proteins. Once in the cytosol, NEFA bind to cytosolic fatty acid-binding proteins for transfer to the fetal circulation or can be oxidized within the trophoblasts and even re-esterified and stored in lipid droplets (LD. Although trophoblast cells are not specialized in lipid storage, LCPUFA may up-regulate peroxisome proliferator activated receptor-γ (PPARγ and hence the gene expression of fatty acid transport carriers, fatty acid acyl-CoA synthetases and adipophilin or other enzymes related with lipolysis, modifying their rate of placental transfer and metabolization. The placental transfer of LCPUFA during pregnancy seems to be a key factor in the neurological development of the fetus. Increased knowledge on the factors that modify placental transfer of fatty acids would contribute to our understanding of this complex process.

  3. Omega-3 polyunsaturated fatty acid profiles and relationship with cardiometabolic risk factors in Cree (Eeyouch of Northern Québec

    Directory of Open Access Journals (Sweden)

    Françoise Proust

    2016-07-01

    Full Text Available Background: n-3 long-chain polyunsaturated fatty acids (LC-PUFAs from fish are known modulators of cardiometabolic risk factors. Objective: To examine fatty acids (FAs status and the relationship between n-3 LC-PUFA and cardiometabolic risk factors in Cree participants. Design: We analyzed data from a cross-sectional study (n=829 conducted in Cree adults (aged 18–74 years from 7 communities of the James Bay territory of Quebec (Canada in 2005–2009. Sociodemographic, lifestyle, clinical and anthropometric data were collected. FAs were quantified in red blood cells (RBCs under fasting conditions. Results: A total of 89% of the participants were overweight (with 69% obesity, 33% had hypertriglyceridemia, 44% had low plasma HDL-c and 77% had fasting plasma insulin ≥90 pmol/l. Total n-3 PUFAs accounted for 6% of total FAs and were higher among older participants, while n-6 PUFAs accounted for 31% of total FAs and were higher among younger participants. According to the adjusted multiple linear regression models, n-3 LC-PUFA was associated (p<0.05 with higher total cholesterol, LDL-c and apo B-100, and was also associated (p<0.05 with lower blood glucose. Conclusion: Overall, this study showed that n-3 LC-PUFA levels measured in the RBCs of the Cree adults are relatively low and tend towards lower levels among youth. These levels might be insufficient to offset the prevalence of cardiometabolic risk factors.

  4. Studies on anti-inflammatory activity of spice principles and dietary n-3 polyunsaturated fatty acids on carrageenan-induced inflammation in rats.

    Science.gov (United States)

    Reddy, A C; Lokesh, B R

    1994-01-01

    The antioxidant spice principles curcumin and eugenol when given by gavage lowered the carrageenan-induced edema in the foot pads of rats. This lowering effect was dependent on the concentration, the time gap between the administration of spice principles and the induction of inflammation by carrageenan. Dietary lipids also influenced the extent of inflammation. Animals fed 10% cod liver oil [containing n-3 polyunsaturated fatty acids (PUFA)] for 10 weeks showed a significantly lower inflammation compared to that observed in animals fed diets supplemented with 10% groundnut oil (rich in n-6 PUFA) or 10% coconut oil (rich in medium-chain saturated fatty acids). Supplementation of diets with 1 weight% of curcumin did not affect the inflammatory responses of animals to carrageenan injection. However, supplementation of diets with 0.17 weight% eugenol further lowered inflammation by 16, 32 and 30% in animals fed coconut oil, groundnut oil and cod liver oil, respectively. Therefore, combinations of dietary lipids with spice principles like eugenol can help in lowering inflammation.

  5. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    Directory of Open Access Journals (Sweden)

    Chao-Wei Huang

    2016-10-01

    Full Text Available The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA, DHA (docosahexaenoic acid and EPA (eicosapentaenoic acid exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1 lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2 energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3 inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities.

  6. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    Science.gov (United States)

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  7. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  8. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    OpenAIRE

    Debora Cutuli; Maurizio Ronci; Cristina Neri; Stefano Farioli Vecchioli

    2014-01-01

    As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogen...

  9. Association of serum aryl hydrocarbon receptor activity and RBC omega-3 polyunsaturated fatty acids with flow-mediated dilation in healthy, young Hispanic cigarette smokers

    OpenAIRE

    Wiest, Elani F.; Warneke, Alex; Walsh, Mary T.; Langsfeld, Mark; Anderson, Joe; Walker, Mary K

    2014-01-01

    Impaired flow-mediated dilation (FMD) occurs prior to clinical disease in young cigarette smokers. We investigated two potential biomarkers of FMD: serum aryl hydrocarbon receptor (AHR) activity and RBC omega-3 polyunsaturated fatty acids in healthy young Hispanic cigarette smokers. We recruited never (n = 16) and current (n = 16) Hispanic smokers (32 ± 7 years old), excluding individuals with clinical cardiovascular disease. We measured FMD with duplex ultrasound, RBC fatty acids and serum A...

  10. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice

    OpenAIRE

    Mingam, Rozenn; Moranis, Aurélie; Bluthé, Rose-Marie; De Smedt-Peyrusse, Véronique; Kelley, Keith W.; Guesnet, Philippe; Lavialle, Monique; Dantzer, Robert; Layé, Sophie

    2008-01-01

    Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cells membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness beha...

  11. The effect of dietary omega-3 and -6 polyunsaturated fatty acids on ovine ovarian function and the pre-implantation embryo

    OpenAIRE

    Hughes, Jaime

    2011-01-01

    There is considerable interest in the beneficial role of dietary polyunsaturated fatty acids (PUFA) on reproduction in ruminants. Detailed information regarding the mechanisms behind this beneficial effect is limited. The main objective of this thesis was to test the effects of dietary supplementation with omega-3 (n-3) or -6 (n-6) PUFA on gene expression, fatty acid (FA) composition and steroidogenesis in granulosa and theca cells and pre-implantation embryo development. A previous study...

  12. Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing C57BL/6J mice

    NARCIS (Netherlands)

    Janssen, C.I.F.; Zerbi, V.; Mutsaers, M.P.; Jong, B.S. de; Wiesmann, M.; Arnoldussen, I.A.C.; Geenen, B.; Heerschap, A.; Muskiet, F.A.J.; Jouni, Z.E.; Tol, E.A. van; Gross, G.; Homberg, J.R.; Berg, B.M.; Kiliaan, A.J.

    2015-01-01

    Maternal intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is critical during perinatal development of the brain. Docosahexaenoic acid (DHA) is the most abundant n-3 PUFA in the brain and influences neuronal membrane function and neuroprotection. The present study aims to assess the effect of

  13. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes : The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, Nita G.; Imamura, Fumiaki; Sharp, Stephen J.; Koulman, Albert; Schulze, Matthias B.; Zheng, Jusheng; Ye, Zheng; Sluijs, Ivonne; Guevara, Marcela; Huerta, José María; Kröger, Janine; Wang, Laura Yun; Summerhill, Keith; Griffin, Julian L.; Feskens, Edith J M; Affret, Aurélie; Amiano, Pilar; Boeing, Heiner; Dow, Courtney; Fagherazzi, Guy; Franks, Paul W.; Gonzalez, Carlos; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay Tee; Kühn, Tilman; Mortensen, Lotte Maxild; Nilsson, Peter M.; Overvad, Kim; Pala, Valeria; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rodriguez-Barranco, Miguel; Rolandsson, Olov; Sacerdote, Carlotta; Scalbert, Augustin; Slimani, Nadia; Spijkerman, Annemieke M W; Tjonneland, Anne; Tormo, Maria Jose; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Langenberg, Claudia; Riboli, Elio; Wareham, Nicholas J.

    2016-01-01

    Background: Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations. Methods and Findings: Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 inci

  14. Effect of eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, on UVR-related cancer risk in humans. An assessment of early genotoxic markers

    NARCIS (Netherlands)

    Rhodes, L.E.; Shahbakhti, H.; Azurdia, R.M.; Moison, R.M.W.; Steenwinkel, M.J.S.T.; Homburg, M.I.; Dean, M.P.; McArdle, F.; Beijersbergen van Henegouwen, G.M.J.; Epe, B.; Vink, A.A.

    2003-01-01

    Dietary omega-3 polyunsaturated fatty acids (ω-3 PUFAs) protect against photocarcinogenesis in animals, but prospective human studies are scarce. The mechanism(s) underlying the photoprotection are uncertain, although ω-3 PUFAs may influence oxidative stress. We examined the effect of supplementatio

  15. Effects of dietary polyunsaturated fatty acids on in vivo splenic cytokine mRNA expression in layer chicks immunized with salmonella typhimurium lipopolysaccharide

    NARCIS (Netherlands)

    Sijben, J.W.C.; Schrama, J.W.; Parmentier, H.K.; Poel, van der J.J.; Klasing, K.C.

    2001-01-01

    Effects of dietary polyunsaturated fatty acids (PUFA) on immune responses in poultry have been reported. However, effects on the underlying mechanisms, such as the role of cytokines, have not been documented because the necessary tools were lacking. Recently, primer sets for chicken interleukin (IL)

  16. Lack of an association of depression with n-3 polyunsaturated fatty acids in adipose tissue and serum phospholipids in healthy adults.

    NARCIS (Netherlands)

    Mamalakis, G.; Kiriakakis, M.; Tsibinos, G.; Jansen, E.; Cremers, H.; Strien, C.; Hatzis, C.; Moschandreas, J.; Linardakis, M.; Kromhout, D.; Kafatos, A.

    2008-01-01

    Studies have shown that depression relates to biomarkers of both short-term and long-term polyunsaturated fatty acid intake. However, it is not known which of these two biomarkers is more closely related to depression. The aim of this study was to examine the relationship of depression with both adi

  17. Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.

    Directory of Open Access Journals (Sweden)

    Barbara D Pachikian

    Full Text Available Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF versus a control diet (CT, which only differed in the PUFA content. DEF mice exhibited hepatic insulin resistance (assessed by euglycemic-hyperinsulinemic clamp and steatosis that was associated with a decrease in fatty acid oxidation and occurred despite a higher capacity for triglyceride secretion. Microarray and qPCR analysis of the liver tissue revealed higher expression of all the enzymes involved in lipogenesis in DEF mice compared to CT mice, as well as increased expression and activation of sterol regulatory element binding protein-1c (SREBP-1c. Our data suggest that the activation of the liver X receptor pathway is involved in the overexpression of SREBP-1c, and this phenomenon cannot be attributed to insulin or to endoplasmic reticulum stress responses. In conclusion, n-3 PUFA depletion in liver phospholipids leads to activation of SREBP-1c and lipogenesis, which contributes to hepatic steatosis.

  18. Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD)

    Science.gov (United States)

    Titz, Bjoern; Luettich, Karsta; Leroy, Patrice; Boue, Stephanie; Vuillaume, Gregory; Vihervaara, Terhi; Ekroos, Kim; Martin, Florian; Peitsch, Manuel C.; Hoeng, Julia

    2016-01-01

    Smoking is a major risk factor for several diseases including chronic obstructive pulmonary disease (COPD). To better understand the systemic effects of cigarette smoke exposure and mild to moderate COPD—and to support future biomarker development—we profiled the serum lipidomes of healthy smokers, smokers with mild to moderate COPD (GOLD stages 1 and 2), former smokers, and never-smokers (n = 40 per group) (ClinicalTrials.gov registration: NCT01780298). Serum lipidome profiling was conducted with untargeted and targeted mass spectrometry-based lipidomics. Guided by weighted lipid co-expression network analysis, we identified three main trends comparing smokers, especially those with COPD, with non-smokers: a general increase in glycero(phospho)lipids, including triglycerols; changes in fatty acid desaturation (decrease in ω-3 polyunsaturated fatty acids, and an increase in monounsaturated fatty acids); and an imbalance in eicosanoids (increase in 11,12- and 14,15-DHETs (dihydroxyeicosatrienoic acids), and a decrease in 9- and 13-HODEs (hydroxyoctadecadienoic acids)). The lipidome profiles supported classification of study subjects as smokers or non-smokers, but were not sufficient to distinguish between smokers with and without COPD. Overall, our study yielded further insights into the complex interplay between smoke exposure, lung disease, and systemic alterations in serum lipid profiles. PMID:27657052

  19. Polyunsaturated fatty acid supplementation: effects of seaweed Ascophyllum nodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer.

    Science.gov (United States)

    Caroprese, Mariangela; Ciliberti, Maria Giovanna; Marino, Rosaria; Santillo, Antonella; Sevi, Agostino; Albenzio, Marzia

    2016-08-01

    The research reported in this Research Communication was undertaken to evaluate the effects of different sources of polyunsaturated fatty acids (PUFA) supplemented in the diet on milk production and milk fatty acid profile of lactating ewes exposed to long term heat stress. The experiment was conducted during summer, involved 32 ewes divided into 4 groups of 8 each, and lasted 6 weeks. The ewes in all groups were fed twice daily and received 1·8 kg/d of oat hay and 1 kg/d of concentrate. Flaxseed group (FS) was supplemented with 250 g/d of whole flaxseed, Ascophyllum nodosum group (AG) was supplemented with 25 g/d of seaweed Ascophyllum nodosum, and the combination group (FS + AG) received both flaxseed and Ascophyllum nodosum supplementation. The control group (CON) was fed with 1 kg/d of pelleted concentrate without PUFA supplementation. Milk samples were collected twice daily per week, and analysed for fat, total protein, casein, and lactose content. At the beginning and then at 2, 4 and 6 week of the experiment each milk sample was analysed for milk fatty acids. Temperature-humidity index (THI) was calculated daily. Supplementation of flaxseed and of the combination of flaxseed and Ascophyllum nodosum increased milk yield. The total content of saturated fatty acids (SFA) in milk decreased for ewes fed FS, followed by FS + AG. On the contrary, monounsaturated fatty acids (MUFA) increased for ewes fed FS and FS + AG. The total n-3 FA was found higher in FS and FS + AG than in AG and CON groups mainly because of the increase in C 18 : 3 n-3 in FS and FS + AG milk. Milk from FS + AG resulted in the highest n-3/n-6 ratio and decreases in atherogenic and thrombogenic indices. The combination of seaweed Ascophyllum nodosum and flaxseed can be suggested as an adequate supplementation to sustain milk production and milk fatty acid profile of sheep during summer season. PMID:27600962

  20. Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach.

    Directory of Open Access Journals (Sweden)

    Kayode A Balogun

    Full Text Available BACKGROUND: Omega (n-3 polyunsaturated fatty acids (PUFA are converted to bioactive lipid components that are important mediators in metabolic and physiological pathways; however, which bioactive compounds are metabolically active, and their mechanisms of action are still not clear. We investigated using lipidomic techniques, the effects of diets high in n-3 PUFA on the fatty acid composition of various bioactive lipids in plasma and liver. METHODOLOGY AND PRINCIPAL FINDINGS: Female C57BL/6 mice were fed semi-purified diets (20% w/w fat containing varying amounts of n-3 PUFA before mating, during gestation and lactation, and until weaning. Male offspring were continued on their mothers' diets for 16 weeks. Hepatic and plasma lipids were extracted in the presence of non-naturally occurring internal standards, and tandem electrospray ionization mass spectrometry methods were used to measure the fatty acyl compositions. There was no significant difference in total concentrations of phospholipids in both groups. However, there was a significantly higher concentration of eicosapentaenoic acid containing phosphatidylcholine (PC, lysophosphatidylcholine (LPC, and cholesteryl esters (CE (p < 0.01 in the high n-3 PUFA group compared to the low n-3 PUFA group in both liver and plasma. Plasma and liver from the high n-3 PUFA group also had a higher concentration of free n-3 PUFA (p < 0.05. There were no significant differences in plasma concentrations of different fatty acyl species of phosphatidylethanolamine, triglycerides, sphingomyelin and ceramides. CONCLUSIONS/SIGNIFICANCE: Our findings reveal for the first time that a diet high in n-3 PUFA caused enrichment of n-3 PUFA in PC, LPC, CE and free fatty acids in the plasma and liver of C57BL/6 mice. PC, LPC, and unesterified free n-3 PUFA are important bioactive lipids, thus altering their fatty acyl composition will have important metabolic and physiological roles.

  1. No effect on oxidative stress biomarkers by modified intakes of polyunsaturated fatty acids or vegetables and fruit

    DEFF Research Database (Denmark)

    Freese, R; Dragsted, L O; Loft, S;

    2007-01-01

    Diet may both increase and decrease oxidative stress in the body. We compared the effects of four strictly controlled isocaloric diets with different intakes of polyunsaturated fatty acids (PUFA, 11 or 3% of energy) and vegetables and fruit (total amount of vegetables and fruit 516 or 1059 g/10 MJ......) on markers associated with oxidative stress in 77 healthy volunteers (19-52 years). Plasma protein carbonyls (2-aminoadipic semialdehyde residues) and whole-body DNA and nucleotide oxidation (urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion) tended to decrease in all treatment groups with no differences...... between the diets. The diets did not differ in their effects on red blood cell antioxidative enzyme activities, either. The results suggest that in healthy volunteers with adequate nutrient intakes, 6-week diets differing markedly in the amount of PUFA or vegetables and fruit do not differ...

  2. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    Science.gov (United States)

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized.

  3. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    Science.gov (United States)

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  4. Role of Omega-3 Polyunsaturated fatty acids in Inflammation and rheumatoid arthritis disorders

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2014-03-01

    Full Text Available Reviewing the relationships between polyunsaturated FAs (PUFAs with inflammation and rheumatoid arthritis disorders, the PUFAs containing ω-3, ω-6 and ω-9, these ω-3FAs levels were correlated with ω-6: ω-3 ratios including arachidonic acid (AA, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. Based on previously-reports, the levels of ω-3 FAs considered being as a 'lower risk' category for inflammation and rheumatoid arthritis. Certain PUFAs ratios may aid in inflammation and rheumatoid arthritis-related risk assessment. PUFA are the most effective for the production of oil with high concentration of DHA and EPA content significantly.

  5. Deficiencies of polyunsaturated fatty acids and replacement by nonessential fatty acids in plasma lipids in multiple sclerosis.

    OpenAIRE

    Holman, R T; Johnson, S.B.; Kokmen, E.

    1989-01-01

    Fatty acid compositions of plasma phospholipids, cholesteryl esters, triacylglycerols, and nonesterified fatty acids of 14 clinically proven and graded cases of multiple sclerosis were determined by capillary gas chromatography and compared with the values obtained for 100 normal, healthy subjects. In phospholipids, linoleic acid (18:2 omega 6; 18 carbon atoms, 2 double bonds, 6 carbon atoms beyond last double bond) was normal and 18:3 omega 6 was increased, but all subsequent omega 6 acids w...

  6. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    de Lorgeril Michel

    2012-05-01

    Full Text Available Abstract Cardiovascular diseases and cancers are leading causes of morbidity and mortality. Reducing dietary saturated fat and replacing it with polyunsaturated fat is still the main dietary strategy to prevent cardiovascular diseases, although major flaws have been reported in the analyses supporting this approach. Recent studies introducing the concept of myocardial preconditioning have opened new avenues to understand the complex interplay between the various lipids and the risk of cardiovascular diseases. The optimal dietary fat profile includes a low intake of both saturated and omega-6 fatty acids and a moderate intake of omega-3 fatty acids. This profile is quite similar to the Mediterranean diet. On the other hand, recent studies have found a positive association between omega-6 and breast cancer risk. In contrast, omega-3 fatty acids do have anticancer properties. It has been shown that certain (Mediterranean polyphenols significantly increase the endogenous synthesis of omega-3 whereas high intake of omega-6 decreases it. Finally, epidemiological studies suggest that a high omega-3 to omega-6 ratio may be the optimal strategy to decrease breast cancer risk. Thus, the present high intake of omega-6 in many countries is definitely not the optimal strategy to prevent cardiovascular disease and cancers. A moderate intake of plant and marine omega-3 in the context of the traditional Mediterranean diet (low in saturated and omega-6 fatty acids but high in plant monounsaturated fat appears to be the best approach to reduce the risk of both cardiovascular diseases and cancers, in particular breast cancer.

  7. Comparison of elongatio n efficiency between DHA and EPA in syn thesis of very long chain polyunsaturated fatty acids%DHA 与 EPA 合成超长链多不饱和脂肪酸的效率比较

    Institute of Scientific and Technical Information of China (English)

    余曼; 陈波; 张瑞帆; 吴峥峥

    2014-01-01

    Objective To compare the elongation efficiency between DHA and EPA for synthesis of very long chain polyunsat -urated fatty acid (VLC-PUFAs) under catalytic action of ELOVL4 protease.Methods PC12 cells were transduced with recombinant adenovirus type 5 carrying mouse Elovl4 and green fluorescent protein (GFP).GFP-expressing and non-transduced cells were used as controls.ELOVL4 gene expression was quantified by qRT-PCRs.ELOVL4 protein was analyzed by Western-Blot (WB).The transduced cells were treated with DHA or EPA (1:1).After 48 h of incubation,cells were collected,and fatty acid methyl esters were prepared following total lipids extraction .The fatty acid was analyzed by using a gas chromatography-mass spectrometry ( GC-MS) .Results GC-MS analysis showed that the DHA and EPA treated PC 12+Ad-ELOVL4 had n3 VLC-PUFAs in which 34:5n3 and 36:5n3 were 0.85%and 1.11%,respectively;34:6n3 and 36:6n3 were 0.16% and 0.29%,respectively.Total amount of pentaenoics synthesized from EPA was almost four times than that of hexaenoics synthesized from DHA .Conclusion Elongation efficiency of VLC-PUFAs from EPA is much higher than that from DHA .Therefore,dietary supplementation of more EPA rather than DHA may provide some therapeutic benefits for patients with Stargardts'disease (STGD3).%目的:比较在ELOVL4蛋白酶催化作用下,DHA和EPA合成超长链多不饱和脂肪酸VLC-PUFA的效率。方法构建携带ELOVL4基因和绿色荧光蛋白的重组腺病毒,转入培养的 PC12细胞,通过qRT-PCR定量分析ELOVL 4基因的表达量,WB检测ELOVL4蛋白的表达;1∶1加入DHA和EPA,孵育48 h之后进行脂肪酸提取,通过气相质谱 GC-MS分析超长链脂肪酸的成分。结果 GC-MS检测到分别用DHA及EPA处理后的PC12+Ad-ELOVL4的细胞中有n3 VLC-PUFA的表达,34:5n3和36:5n3分别为0.85%和1.11%;34:6n3和36:63n分别为0.16%和0.29%;EPA所产生的五烯酸总和是DHA所产生的六烯酸总和的4

  8. Very long-chain fatty acids support synaptic structure and function in the mammalian retina

    Directory of Open Access Journals (Sweden)

    Hopiavuori Blake R.

    2016-01-01

    Full Text Available Elongation of Very Long chain fatty acids-like 4 (ELOVL4 is a fatty acid elongase responsible for the biosynthesis of very long chain (VLC; ≥ C26 fatty acids in the retina, brain, skin, Meibomian gland, and testes. Heterozygous inheritance of mutant ELOVL4 causes juvenile macular degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3. Retinal photoreceptors are enriched with VLC polyunsaturated fatty acids (VLC-PUFAs, which have been shown by our group and others to be necessary for the survival of rod photoreceptors. Our group performed a series of studies using mice conditionally depleted of retinal Elovl4 (KO aimed at understanding the role of VLC-PUFAs in long-term retinal health and function, focusing on the role of these fatty acids in mediating synaptic function between the photoreceptors and the rest of the neural retina. The absence of VLC-PUFA from the retina of KO mice resulted in a marked decrease in retinal b-wave responses of the electroretinogram as well as a decrease in the amplitude of the oscillatory potentials mediated by the neural retina. Although there were no measureable differences between KO and wild type (WT mice in either pre-synaptic rod calcium channel function or post-synaptic bipolar cell glutamate receptor responses, ultrastructural analysis revealed a marked decrease in the diameter of synaptic vesicles in rod terminals. Recent quantification suggests that this decrease in synaptic vesicle size due to the absence of VLC-PUFAs in KO mice, and the consequent decrease in glutamate content, could account for the decrease in b-wave response amplitudes that were previously measured in these animals.

  9. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  10. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Brockhoff, P.M.B.; Jensen, Benny

    2000-01-01

    Increased intensity of train oil taste, bitterness, and metal taste are the most pronounced sensory changes during frozen storage of salmon (Refsgaard, H. H. F.; Brockhoff, P. B.; Jensen, B. Sensory and Chemical Changes in Farmed Atlantic Salmon (Salmo salar) during Frozen Storage. J. Agric. Food...... the intensity of train oil taste, bitterness, and metal taste. The added level of each fatty acid (similar to 1 mg/g salmon meat) was equivalent to the concentration of the fatty acids determined in salmon stored as fillet at -10 degrees C for 6 months. The effect of addition of the fatty acids on the intensity...... of train oil taste, bitterness and metal taste was in the order: DHA > palmitoleic acid > linoleic acid > EPA. Formation of free fatty acids was inhibited by cooking the salmon meat before storage. Furthermore, no changes in phospholipid level were observed during frozen storage. The results suggest...

  11. Beneficial Effects of Omega-3 Polyunsaturated Fatty Acids in Gestational Diabetes: Consequences in Macrosomia and Adulthood Obesity

    Directory of Open Access Journals (Sweden)

    Akadiri Yessoufou

    2015-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids (PUFAs are increasingly being used to prevent cardiovascular diseases, including diabetes and obesity. In this paper, we report data on the observed effects of omega-3 PUFA on major metabolic disorders and immune system disruption during gestational diabetes and their consequences on macrosomia. While controversies still exist about omega-3 PUFA effects on antioxidant status regarding the level of omega-3 PUFA in diet supplementation, their lipid-lowering effects are unanimously recognized by researchers. Animal studies have shown that omega-3 PUFA contributes to the maintenance of the immune defense system by promoting the differentiation of T helper (Th cell to a Th2 phenotype in diabetic pregnancy and by shifting the Th1/Th2 ratio from a deleterious proinflammatory Th1 phenotype to a protective anti-inflammatory Th2 phenotype in macrosomia and in adulthood obesity that results from macrosomia at birth. Based on the available evidence, international nutritional and food agencies recommend administration of omega-3 PUFA as triglyceride-lowering agents, for the prevention of cardiovascular disease risk and during human pregnancy and lactation. Furthermore, studies targeting humans are still required to explore application of the fatty acids as supplement in the management of gestational diabetes and inflammatory and immune diseases.

  12. Does sow reproduction and piglet performance benefit from the addition of n-3 polyunsaturated fatty acids to the maternal diet?

    Science.gov (United States)

    Tanghe, Sofie; De Smet, Stefaan

    2013-09-01

    Good sow reproductive performance and piglet survival are essential for the profitability of the pig industry. Based on basic research of fatty acid and endocrine metabolism, it has been suggested that dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) could enhance reproductive outcome. However, proper requirements for these nutrients in sow diets have not been established. This review examines the literature on the effect of n-3 PUFA in the maternal diet on sow reproduction and piglet performance. Few reported studies have included biochemical analyses, e.g. eicosanoid concentrations or gene expression data, which could help elucidate any link between dietary n-3 PUFA supplementation and reproduction. Additionally, most studies used relatively low numbers of pigs, limiting the validity of the conclusions which can be drawn. In pregnant pigs, supplementing with n-3 PUFA has not been shown to increase significantly the number of embryos (in gilts) or (in most studies) the total number of piglets born (live and/or stillborn), but may prolong gestation, although the literature is not consistent. Most studies found no effect of n-3 PUFA on piglet birth weight, although positive effects on piglet vitality and pre- and post-weaning growth have been reported. In contrast to the impact during pregnancy, low amounts of n-3 PUFA in the lactation diet may increase litter size in the subsequent gestation.

  13. Comparative effects of curcumin and its analog on alcohol- and polyunsaturated fatty acid-induced alterations in circulatory lipid profiles.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Rajasekaran, Kallikat Narayanan; Menon, Venugopal P

    2005-01-01

    Excessive alcohol intake induces hyperlipidemia. Studies suggest that natural principles and their analogs are known to possess anti-hyperlipidemic properties. In the present work we tested the effect of curcumin, an active principle of turmeric (Curcuma longa), and a curcumin analog on alcohol- and thermally oxidized polyunsaturated fatty acid (deltaPUFA)- induced hyperlipidemia. Male albino Wistar rats were used for the experimental study. Anti-hyperlipidemic activity of curcumin and curcumin analog was evaluated by analyzing the levels of cholesterol, triglycerides (TGs), phospholipids (PLs), and free fatty acids (FFAs). The results showed that the levels of cholesterol, TGs, PLs, and FFAs were increased significantly in alcohol-, deltaPUFA-, and alcohol + deltaPUFA-treated groups, which were brought down significantly on treatment with either of the curcuminoids. Curcumin analog treatment was found to be more effective than curcumin treatment. From the results obtained, we conclude that both curcumin and its analog effectively protect the system against alcohol- and deltaPUFA-induced hyperlipidemia and are possible candidates for the treatment of hyperlipidemia.

  14. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease.

    Directory of Open Access Journals (Sweden)

    Julio J Amaral

    Full Text Available Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.

  15. Omega-3 long-chain fatty acids strongly induce angiopoietin-like 4 in humans12[S

    Science.gov (United States)

    Brands, Myrte; Sauerwein, Hans P.; Ackermans, Mariette T.; Kersten, Sander; Serlie, Mireille J.

    2013-01-01

    Angiopoietin-like 4 (ANGPTL4) is a regulator of LPL activity. In this study we examined whether different fatty acids have a differential effect on plasma ANGPTL4 levels during hyperinsulinemia in healthy lean males. In 10 healthy lean males, 3 hyperinsulinemic euglycemic clamps were performed during concomitant 6 h intravenous infusion of soybean oil (Intralipid® rich in PUFA), olive oil (Clinoleic® rich in MUFA) and control saline. In 10 other healthy lean males, 2 hyperinsulinemic clamps were performed during infusion of a mixed lipid emulsion containing a mixture of fish oil (FO), medium-chain triglycerides (MCTs), and long-chain triglycerides (LCTs) (FO/MCT/LCT; SMOFlipid®) or saline. FFA levels of approximately 0.5 mmol/l were reached during each lipid infusion. Plasma ANGPTL4 decreased during hyperinsulinemia by 32% (18–52%) from baseline. This insulin-mediated decrease in ANGPTL4 concentrations was partially reduced during concomitant infusion of olive oil and completely blunted during concomitant infusion of soybean oil and FO/MCT/LCT. The reduction in insulin sensitivity was similar between all lipid infusions. In accordance, incubation of rat hepatoma cells with the polyunsaturated fatty acid C22:6 increased ANGPTL4 expression by 70-fold, compared with 27-fold by the polyunsaturated fatty acid C18:2, and 15-fold by the monounsaturated fatty acid C18:1. These results suggest that ANGPTL4 is strongly regulated by fatty acids in humans, and is also dependent on the type of fatty acid. PMID:23319744

  16. Enzyme-assisted acidolysis of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils: incorporation of omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Senanayake, S P; Shahidi, F

    1999-08-01

    Lipase-catalyzed acidolysis of borage (Borago officinalis L.) and evening primrose (Oenothera biennisL.) oils with long-chain omega3 polyunsaturated fatty acids (PUFA), namely, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, was carried out in hexane, and the products were analyzed using gas chromatography. The most effective lipase for incorporation of omega3 PUFA into these oils was Pseudomonas sp. as compared to lipases from Mucor miehei and Candida antarctica. Response surface methodology was used to obtain a maximum yield of EPA+DHA incorporation while using the minimum amount of enzyme possible. The process variables studied were the amount of enzyme (150-350 units), reaction temperature (30-60 degrees C), and reaction time (6-30 h). All experiments were carried out according to a face-centered cube design. Under optimum conditions, incorporation of EPA+DHA was 35.5% in borage oil and 33. 6% in evening primrose oil. The modified borage and evening primrose oils containing gamma-linolenic acid, EPA, and DHA were successfully produced and may have potential health benefits. PMID:10552616

  17. Nutritional enrichment of vegetable oils with long-chain n-3 fatty acids through enzymatic interesterification with a new vegetable lipase

    OpenAIRE

    Sousa, J.S.; Torres, A. G.; FREIRE D.M.G.

    2015-01-01

    The aim of the present work was to produce vegetable oils enriched with long-chain n-3 fatty acids of nutraceutical interest, through an enzyme-catalyzed interesterification with a new lipase, from physic nut (Jatropha curcas L.). The Vegetable Lipase Powder (biocatalyst) called VLP, which has never been applied in functional foods, was obtained from the physic nut seed, and efficiently hydrolyzed the 95% of waste fish oil in 24 h. Urea precipitation was used to concentrate polyunsaturated fa...

  18. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    Science.gov (United States)

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo.

  19. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    Directory of Open Access Journals (Sweden)

    Manuela Oraldi

    2009-01-01

    Full Text Available Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s. Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis.

  20. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    Directory of Open Access Journals (Sweden)

    Agnes Robert

    2014-01-01

    Full Text Available Fatty acids (FAs particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus, Nile tilapia (Oreochromis niloticus, Tilapia zillii, and dagaa (Rastrineobola argentea from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA, eicosapentaenoic (EPA, docosapentaenoic (DPA, and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34 compared to L. niloticus (27, T. zillii (26, and R. argentea (21. The levels of EPA differed significantly among the four commercial fish species (F=6.19,  P=0.001. The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F=0.652,  P=0.583. The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA.

  1. The morphological characteristic of regenerative neuroma of peripheral nerve in conditions of its injury and application of omega-3-polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Korsak A.V.

    2007-01-01

    Full Text Available Experiment was carried out on white rats, which were divided into 3 groups. Experimental trauma of the sciatic nerve was carried out in 1 end 2 groups. Standart trauma of the sciatic nerve was carried out in 3 groups. Drug correction was not applied in the first group. Omega-3-polyunsaturated fatty acids were applied during 3 weeks in a doze 0,04 g /kg a day in the second group of animals. Drug correction applied in the second group. Morphological characteristic of regenerative neuroma of sciatic nerve in 6 weeks after the injury in 1,2,3 groups of animals was studied. The results obtained testify, that in the group of rats with pharmacological correction by omega-3-polyunsaturated fatty acids process of regeneration was activated.

  2. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows.

    Science.gov (United States)

    Baumann, E; Chouinard, P Y; Lebeuf, Y; Rico, D E; Gervais, R

    2016-08-01

    Eight ruminally fistulated, multiparous Holstein cows were arranged in a double 4×4 Latin square with 14-d periods to investigate the effects of lipid supplementation on performance, rumen parameters, the milk odd- and branched-chain fatty acid (OBCFA) profile, and the relationships between milk OBCFA and rumen parameters. Lipid supplementation is known to inhibit microbial growth in the rumen, decrease de novo microbial fatty acid synthesis, and increase the uptake of circulating fatty acids by the mammary gland; treatments were selected to isolate these effects on the milk OBCFA profile. The 4 treatments were (1) a lipid-free emulsion medium infused in the rumen (CTL), (2) soybean oil as a source of polyunsaturated fatty acids infused in the rumen (RSO), (3) saturated fatty acids (38% 16:0, 40% 18:0) infused in the rumen (RSF), and (4) saturated fatty acids infused in the abomasum (ASF). Fat supplements were provided continuously as emulsions at a rate of 450g/d. Preplanned contrasts compared CTL to RSO, RSO to RSF, and RSF to ASF. Infusing RSO slightly decreased ruminal pH, but did not affect volatile fatty acids profile and milk fat concentration as compared with CTL. The yields of energy-corrected milk, fat, and protein were greater with RSF compared with RSO. The concentration of odd-chain fatty acids was decreased by RSO, whereas even-chain iso fatty acids were not affected. Milk fat concentration of 17:0 + cis-9 17:1 was higher for RSF than for RSO, due to the saturated fatty acids supplement containing 2% 17:0 + cis-9 17:1. Limited differences were observed in the milk OBCFA profile between RSF and ASF. A multiple regression analysis yielded the following equation for predicting rumen pH based on milk fatty acids: pH=6.24 - (0.56×4:0) + (1.67 × iso 14:0) + (4.22 × iso 15:0) + (9.41×22:0). Rumen propionate concentration was negatively correlated with milk fat concentration of iso 14:0 and positively correlated with milk 15:0, whereas the acetate

  3. Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.;

    1994-01-01

    - tocopheryl acid succinate, or a-tocopheryl phosphate, or of 1 µM N,N'- diphenyl-1,4-phenylenediamine, was investigated with respect to the agent's ability to prevent lactate dehydrogenase leakage in long-term rat hepatocyte cultures supplemented with 0.5 mM highly unsaturated fatty acids. Formation...... of thiobarbituric acid reactive substances in the cultures was also measured. a-Tocopheryl acid succinate was found to be the most effective cytoprotective compound, followed by N,N'-diphenyl-1,4-phenylenediamine, a- tocopherol, ¿-tocopherol and a-tocopheryl acetate, and a-tocopheryl phosphate was without effect.......When highly unsaturated fatty acids are added to cell cultures, it can become important to include antioxidants in the culture medium to prevent cytotoxic peroxidation. To find an optimal antioxidant for this purpose, the effect of 50 µM a-tocopherol, ¿-tocopherol, a-tocopheryl acetate, a...

  4. Polymorphisms in Fatty Acid Desaturase (FADS Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA Supplementation

    Directory of Open Access Journals (Sweden)

    Patrick Couture

    2013-09-01

    Full Text Available Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM. Polymorphisms (SNPs in the fatty acid desaturase (FADS gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG and fasting insulin (FI responses following a 6-week n-3 polyunsaturated fatty acids (PUFA supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA. Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03 was performed. Results: Carriers of the minor allele for rs482548 (FADS2 had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008. For FI levels, a genotype effect was observed with one SNP (rs174456. For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively. Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation.

  5. Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice

    OpenAIRE

    Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il

    2014-01-01

    Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice ...

  6. Effect of Dietary Omega-3 Polyunsaturated Fatty Acids on Heart Rate and Heart Rate Variability in Animals Susceptible or Resistant to Ventricular Fibrillation

    OpenAIRE

    George E Billman

    2012-01-01

    The consumption of omega-3 polyunsaturated fatty acids (n−3 PUFAs) has been reported to reduce cardiac mortality following myocardial infarction as well as to decrease resting heart rate (HR) and increase HR variability (HRV). However, it has not been established whether n−3 PUFAs exhibit the same actions on HR and HRV in individuals known to be either susceptible or resistant to ventricular fibrillation (VF). Therefore, HR and HRV (high frequency and total R–R interval variability) were eval...

  7. Effect of Dietary Omega-3 Polyunsaturated Fatty Acids on Heart Rate and Heart Rate Variability in Animals Susceptible or Resistant to Ventricular Fibrillation

    OpenAIRE

    George E Billman

    2012-01-01

    The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been reported to reduce cardiac mortality following myocardial infarction as well as to decrease resting heart rate (HR) and increase heart rate variability (HRV). However, it has not been established whether n-3 PUFAs exhibit the same actions on HR and HRV in individuals known to be either susceptible or resistant to ventricular fibrillation (VF). Therefore, HR and HRV (high frequency and total R-R interval variability)...

  8. High ω3-polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced Purkinje cell degeneration through BDNF-mediated autophagy

    OpenAIRE

    Dong Ho Bak; Enji Zhang; Min-Hee Yi; Do-Kyung Kim; Kyu Lim; Jwa-Jin Kim; Dong Woon Kim

    2015-01-01

    Loss of Purkinje cells has been implicated in the development of diabetic neuropathy, and this degeneration is characterized by impairment of autophagic processes. We evaluated whether fat-1 transgenic mice, a well-established animal model that endogenously synthesizes ω3 polyunsaturated fatty acids (ω3-PUFA), are protected from Purkinje cell degeneration in streptozotocin (STZ)-treated model with fat-1 mice. STZ-treated fat-1 mice did not develop hyperglycemia, motor deficits, or Purkinje ce...

  9. Fatty liver and medium chain triglyceride (MCT) diet.

    OpenAIRE

    Beverley, D; Arthur, R.

    1988-01-01

    A 12 year old boy with intractable epilepsy developed fatty infiltration of the liver after three years' treatment on the medium chain triglyceride (MCT) diet. This was not associated with any hepatic dysfunction and resolved after discontinuing the diet. Three of four other patients on the same diet had evidence of hepatic steatosis.

  10. Rapid Capacity Growth of Long Chain Fatty Alcohols

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Long chain fatty alcohols here are referring to those alcohols with more than six carbon atoms per molecular.They are basic chemical raw materials for the synthesis of surfactants,detergents, plasticizers and various other fine chemicals and are extensively used in textile, household chemicals, papermaking, foodstuffs,pharmaceuticals and leather manufacturing sectors.

  11. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    Directory of Open Access Journals (Sweden)

    Debora eCutuli

    2014-08-01

    Full Text Available As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations found in n-3 PUFA supplemented mice also pointed towards an effective neuroprotection.On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

  12. Fish consumption and omega-3 polyunsaturated fatty acids in relation to depressive episodes: a cross-sectional analysis.

    Directory of Open Access Journals (Sweden)

    Anna Liisa Suominen-Taipale

    Full Text Available High fish consumption and omega-3 polyunsaturated fatty acid (PUFA intake are suggested to benefit mental well-being but the current evidence is conflicting. Our aim was to evaluate whether a higher level of fish consumption, a higher intake of omega-3 PUFAs, and a higher serum concentration of omega-3 PUFAs link to a lower 12-month prevalence of depressive episodes.We used data from the nationwide Health 2000 Survey (n = 5492 and the Fishermen Study on Finnish professional fishermen and their family members (n = 1265. Data were based on questionnaires, interviews, health examinations, and blood samples. Depressive episodes were assessed with the M-CIDI (the Munich version of the Composite International Diagnostic Interview and a self-report of two CIDI probe questions, respectively. Fish consumption was measured by a food frequency questionnaire (g/day and independent frequency questions (times/month. Dietary intake (g/day and serum concentrations (% from fatty acids of PUFAs were determined. Fish consumption was associated with prevalence of depressive episodes in men but not in women. The prevalence of depressive episodes decreased from 9% to 5% across the quartiles of fish consumption (g/day in men of the Health 2000 Survey (p for linear trend = 0.01, and from17% to 3% across the quartiles of fish consumption (times/month in men of the Fishermen Study (p for linear trend = 0.05. This association was modified by lifestyle; in the Health 2000 Survey a higher level of fish consumption was related to a lower prevalence of depressive episodes in men who consumed the most alcohol, were occasional or former smokers, or had intermediate physical activity. The associations between depressive episodes and the intake or serum concentrations of omega-3 PUFAs were not consistent.In men, fish consumption appears as a surrogate for underlying but unidentified lifestyle factors that protect against depression.

  13. Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Agbor, Larry N; Wiest, Elani F; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2014-12-01

    The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs.

  14. Plasma n-3 polyunsaturated fatty acid and cardiovascular disease risk factors in Japanese, Korean and Mongolian workers.

    Science.gov (United States)

    Nogi, Akiko; Yang, Jianjun; Li, Limei; Yamasaki, Masayuki; Watanabe, Mamiko; Watanabe, Minako; Hashimoto, Michio; Shiwaku, Kuninori

    2007-05-01

    The favorable role of n-3 polyunsaturated fatty acid (PUFA) in cardiovascular disease (CVD) has been demonstrated in animal experiments and in humans in Western countries, but its effect remains controversial in Asian populations. An observational study of Japanese, Koreans and Mongolians with extended histories of remarkably different frequencies of fish intake was conducted to examine whether differences in plasma n-3 PUFA affects CVD risk factors. We conducted a cross-sectional study in workplace settings and determined body mass index (BMI), blood pressure, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglyceride (TG), glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and fatty acid composition in plasma. A total of 411 Japanese, 418 Korean and 252 Mongolian workers aged 30-60 yr participated in this study. The Japanese ate fish more frequently and had remarkably higher values of eicosapentaenoic acid, docosahexaenoic acid and n-3 PUFA, and lower values of BMI and HOMA-IR, followed by the Koreans, and then the Mongolians. In age groups, the Japanese and Koreans showed a similar tendency of increase in n-3 PUFA with increasing age. General linear measurement multivariate analysis after adjustment for gender, age, smoking, drinking, exercise habits and BMI showed n-3 PUFA was associated with HDL-C and TG in the Japanese, while it was associated with systolic blood pressure in the Koreans, and TG in the Mongolians. In conclusion, an increase in n-3 PUFA was associated with HDL-C and TG in the Japanese and Mongolians, but these beneficial effects were not constant across the three Asian ethnic groups.

  15. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    Science.gov (United States)

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.

  16. Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice

    Directory of Open Access Journals (Sweden)

    Carpentier Yvon A

    2011-06-01

    Full Text Available Abstract Backround Western diet is characterized by an insufficient n-3 polyunsaturated fatty acid (PUFA consumption which is known to promote the pathogenesis of several diseases. We have previously observed that mice fed with a diet poor in n-3 PUFA for two generations exhibit hepatic steatosis together with a decrease in body weight. The gut microbiota contributes to the regulation of host energy metabolism, due to symbiotic relationship with fermentable nutrients provided in the diet. In this study, we have tested the hypothesis that perturbations of the gut microbiota contribute to the metabolic alterations occurring in mice fed a diet poor in n-3 PUFA for two generations (n-3/- mice. Methods C57Bl/6J mice fed with a control or an n-3 PUFA depleted diet for two generations were supplemented with prebiotic (inulin-type Fructooligosaccharides, FOS, 0.20 g/day/mice during 24 days. Results n-3/-mice exhibited a marked drop in caecum weight, a decrease in lactobacilli and an increase in bifidobacteria in the caecal content as compared to control mice (n-3/+ mice. Dietary supplementation with FOS for 24 days was sufficient to increase caecal weight and bifidobacteria count in both n-3/+ and n-3/-mice. Moreover, FOS increased lactobacilli content in n-3/-mice, whereas it decreased their level in n-3/+ mice. Interestingly, FOS treatment promoted body weight gain in n-3/-mice by increasing energy efficiency. In addition, FOS treatment decreased fasting glycemia and lowered the higher expression of key factors involved in the fatty acid catabolism observed in the liver of n-3/-mice, without lessening steatosis. Conclusions the changes in the gut microbiota composition induced by FOS are different depending on the type of diet. We show that FOS may promote lactobacilli and counteract the catabolic status induced by n-3 PUFA depletion in mice, thereby contributing to restore efficient fat storage.

  17. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    Science.gov (United States)

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.

  18. Relationships between n-3 polyunsaturated fatty acid intake, serum 25 hydroxyvitamin D, food consumption, and nutritional status among adolescents.

    Science.gov (United States)

    Lopes, Mariana P; Giudici, Kelly V; Marchioni, Dirce M; Fisberg, Regina M; Martini, Lígia A

    2015-08-01

    We have hypothesized that higher n-3 polyunsaturated fatty acid (PUFA) intake is associated with better lipid profile, higher 25 hydroxyvitamin D (25(OH)D) serum concentrations, and healthy food consumption and nutritional status. Thus, this study aimed to evaluate the relationships between n-3 PUFA intake, serum 25(OH)D, lipid profile, nutritional status, and food consumption among adolescents. A total of 198 Brazilian adolescents (51% male), with mean age of 16.3 ± 1.4 years, were enrolled in this cross-sectional study. Blood was collected for 25(OH)D and lipid profile serum measurement. Weight and height were measured, and food consumption was accessed by a 24-hour food record (n = 69). Analysis of variance, the Student t test, and Pearson correlation were performed using SPSS software (SPSS, Chicago, IL, USA). The prevalence of vitamin D inadequacy (25(OH)D, nutritional status and favorable lipid profile. Food groups usually found in Brazilian traditional meals (characterized by rice, beans, meat, and vegetables) were associated with higher n-3 PUFA intake, which may contribute to prevent the development of noncommunicable diseases in adolescence and adulthood.

  19. Effect of n-3 Polyunsaturated Fatty Acids on Regression of Coronary Atherosclerosis in Statin Treated Patients Undergoing Percutaneous Coronary Intervention

    Science.gov (United States)

    Ahn, Jinhee; Park, Seo Kwang; Park, Tae Sik; Kim, Jin Hee; Yun, Eunyoung; Kim, Sang-Pil; Lee, Hye Won; Oh, Jun-Hyok; Choi, Jung Hyun; Cha, Kwang Soo; Hong, Taek Jong; Lee, Sang Yeoup

    2016-01-01

    Background and Objectives Statins remain the mainstay of secondary coronary artery disease (CAD) prevention, but n-3 polyunsaturated fatty acids (ω-3 PUFA) display biological effects that may also reduce the risk of atherosclerosis and CAD. However, data on the possible antiatherosclerotic benefits of adding ω-3 PUFA to statin therapy are limited. This study aimed to investigate the potential additive effects of ω-3 PUFA on regression of atherosclerosis in CAD patients receiving statin therapy and stent implantation. Subjects and Methods Seventy-four CAD patients undergoing percutaneous coronary intervention (PCI) with stent implantation were enrolled, prescribed statins, and randomly assigned to two groups: n-3 group (ω-3 PUFA 3 g/day, n=38) or placebo group (placebo, n=36). All patients completed the study follow-up consisting of an intravascular ultrasound at baseline and at 12 months. Results There was no difference in the baseline characteristics and distribution of other medications. No significant differences were observed in primary endpoints, including changes in atheroma volume index (−12.65% vs. −8.51%, p=0.768) and percent atheroma volume (−4.36% vs. −9.98%, p=0.526), and in secondary endpoints including a change in neointimal volume index (7.84 vs. 4.94 mm3/mm, p=0.087). Conclusion ω-3 PUFA had no definite additional effect on the regression of coronary atherosclerosis when added to statin in CAD patients undergoing PCI. PMID:27482256

  20. Effect of Cooking on the Polyunsaturated Fatty Acid and Antioxidant Properties of Small Indigenous Fish Species of the Eastern Himalayas

    Directory of Open Access Journals (Sweden)

    Wahengbam Sarjubala Devi

    2014-07-01

    Full Text Available The effect of cooking method on the polyunsaturated fatty acid and antioxidant properties of small indigenous freshwater fish species, Amblypharyngodon mola and Puntius sophore of the Eastern Himalayas were determined. In the raw and fried samples, docosahexaenoic acid was significantly higher (2.907 and 1.167mg/100g in Amblypharyngodon mola and lowest (0.749 and 0.291mg/100g were recorded in Puntius sophore. The eicosapentaenoic acid of raw, fried and curried samples of Amblypharyngodon mola were recorded higher. In DPPH (1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay of IC50 value of the raw fish extract were 2.9µg/ml and 1.66µg/ml respectively. The highest antioxidant activity was found in fish curry of Amblypharyngodon mola (0.11µg/ml. It shows that the Maillard reaction product forms the melanoidin during cooking, increases the antioxidant property of the fish curry and also improved the taste.

  1. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids.

    Science.gov (United States)

    Fernández-Fernández, Laura; Esteban, Gerard; Giralt, Mercedes; Valente, Tony; Bolea, Irene; Solé, Montse; Sun, Ping; Benítez, Susana; Morelló, José Ramón; Reguant, Jordi; Ramírez, Bartolomé; Hidalgo, Juan; Unzeta, Mercedes

    2015-04-01

    The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease. PMID:25756794

  2. BIOTECHNOLOGY AS A USEFUL TOOL FOR NUTRITIONAL IMPROVEMENT OF CEREAL-BASED MATERIALS ENRICHED WITH POLYUNSATURATED FATTY ACIDS AND PIGMENTS

    Directory of Open Access Journals (Sweden)

    M. Čertík

    2008-09-01

    Full Text Available Cereals represent a major food supply for humanity. Although these sources are rich in proteins and carbohydrates, many of them are deficient in several essential nutrients, such as polyunsaturated fatty acids (PUFAs and carotenoid pigments. One possible approach how to enhance the content of PUFAs or carotenoids in cereal diet is based on biotechnological transformation of cereal materials by solid state fermentations. This technique is powerful tool for effective valorisation of these resources to various types of value-added bioproducts with demanded properties and functions. Selected filamentous Mucorales fungi were applied for conversion of numerous agroindustrial substrates to bioproducts enriched with PUFAs, such as gamma-linolenic acid (GLA, dihomo-gamma-linolenic acid (DGLA, arachidonic acid (AA and eicosapentaenoic acid (EPA. On the other hand, a range of yeast species utilizing agroindustrial substrates were employed for formation of carotenoids, such as β-carotene, torulene, torularhodine and astaxanthin. Such naturally prepared cereal based bioproducts enriched with either PUFAs or carotenoid pigments may be used as an inexpensive food and feed supplement. The work was supported by grant VEGA No. 1/0747/08 from the Grant Agency of Ministry of Education, Slovak Republic.

  3. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation.

    Science.gov (United States)

    Solaesa, Ángela García; Sanz, María Teresa; Falkeborg, Mia; Beltrán, Sagrario; Guo, Zheng

    2016-01-01

    Production of monoacylglycerols (MAGs) rich in ω-3 polyunsaturated fatty acids (n-3 PUFAs) was conducted through short path distillation (SPD) of an acylglycerol mixture (containing 67% MAGs) produced by enzymatic glycerolysis of sardine oil with glycerol. A stepwise SPD process in a UIC KDL 5 system (vacuum 10(-3)mbar, feeding flow 1.0 mL/min) was proceeded: the first distillation performed at evaporator temperature (TE) of 110 °C to remove glycerol completely and most of FFAs; and the second distillation at optimized TE 155 °C; resulting in a stream distillate with 91% purity and 94% overall recovery of MAGs. This work also demonstrated that SPD is able to concentrate n-3 PUFAs in MAG form by distilling at proper TE e.g. 125 °C, where n-3 PUFAs are concentrated in the residues. Moreover, this work mapped out a complete processing diagram for scalable production of n-3 PUFAs enriched MAGs as potential food emulsifier and ingredient. PMID:26213062

  4. Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs in Cardiovascular Diseases (CVDs and Depression: The Missing Link?

    Directory of Open Access Journals (Sweden)

    Jane Pei-Chen Chang

    2009-01-01

    Full Text Available Background. Based on epidemiological data, clinical trials, and meta-analytic reviews, omega-3 polyunsaturated fatty acids (n-3 PUFAs seem to be a biological link between depression and cardiovascular diseases (CVDs. Presentation. Involvement of n-3 PUFAs in depression and CVDs may be associated with a chronic, low-grade, inflammation. We hypothesize that n-3 PUFAs link depression and CVDs via “PUFA-prostaglandin E2 (PGE2 cascade.” Testing. To further support our hypothesis, case-control studies are needed to test the role of COX2 and PLA2 functions in depression and in CVDs. In addition, the effects of n-3 PUFAs on cardiovascular markers in depression and on depressive symptoms in CVDs should be investigated in clinical trials. Finally, the effects of manipulating COX2 and PLA2 functions on depression-like behaviors and cardiovascular functions could be explored in animal studies. Implications. n-3 PUFAs might be a promising treatment for both cardiovascular diseases and depression via its anti-inflammatory, cardioprotective, and neuroprotective effects.

  5. Hormonal and metabolic effects of polyunsaturated fatty acid (omega-3 on polycystic ovary syndrome induced rats under diet

    Directory of Open Access Journals (Sweden)

    Elaheh Ouladsahebmadarek

    2014-02-01

    Full Text Available Objective(s: PCOS (polycystic ovary syndrome produces symptoms in approximately 5% to 10% of women of reproductive age (12–45 years old. It is thought to be one of the leading causes of female subfertility. This study aimed to confirm the role of nutrition containing omega-3 (polyunsaturated fatty acid on control of experimental PCO induced by estradiol-valerat in rats. Materials and Methods: Wistar female rats (n=40 were allocated into control (n=10 and test groups (n= 30, test group was subdivided into 3 groups: G1, received omega-3 (240 mg/kg/orally/daily; G2 and G3 groups were induced PCO by single injection of estradiol-valerate (16 mg/kg/IM. Group 3 received omega-3 (240 mg/kg/orally/daily and low carbohydrate feeding for 60 subsequent days; on sixtieth day 5 ml blood samples and ovarian tissues of all rats in the group were removed and prepared for biochemical and hormonal analysis. Results: Catalase, GPX (Glutathione peroxidase, SOD (Superoxide dismutase in groups that received omega-3showed higher levels, but MDA (malondialdehyde level was significantly decreased (P

  6. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice.

    Science.gov (United States)

    Reardon, Catherine A; Blachowicz, Lydia; Gupta, Gaorav; Lukens, John; Nissenbaum, Michael; Getz, Godfrey S

    2006-08-01

    Polyunsaturated fatty acids (PUFA) are thought to influence plasma lipid levels, atherosclerosis, and the immune system. In this study, we fed male LDL receptor deficient (LDLR(-/-)) mice and immune incompetent LDLR(-/-) RAG2(-/-) mice diets containing predominantly saturated fats (milk fat) or PUFA (safflower oil) to determine if the response to diet was influenced by immune status. Relative to milk fat diet, plasma lipid and VLDL levels in both the LDLR(-/-) and LDLR(-/-) RAG2(-/-) mice fed safflower oil diet were lower, suggesting that the primary effect of PUFA on plasma lipids was not due to its inhibition of the immune system. Neither diet nor immune status influenced hepatic triglyceride production and post-heparin lipase activity, suggesting that the differences in triglyceride levels are due to differences in rates of catabolism of triglyceride-rich lipoproteins. While both diets promoted atherogenesis, both aortic root and innominate artery atherosclerosis in LDLR(-/-) mice was less in safflower oil fed animals. In contrast, a site-specific effect of PUFA was observed in the immune incompetent LDLR(-/-) RAG2(-/-). In these mice, aortic root atherosclerosis, but not innominate artery atherosclerosis, was less in PUFA fed animal. These results suggest that PUFA and the immune system may influence innominate artery atherosclerosis by some overlapping mechanisms.

  7. Resolvin D1, a Metabolite of Omega-3 Polyunsaturated Fatty Acid, Decreases Post-Myocardial Infarct Depression

    Directory of Open Access Journals (Sweden)

    Kim Gilbert

    2014-11-01

    Full Text Available We hypothesized that inflammation induced by myocardial ischemia plays a central role in depression-like behavior after myocardial infarction (MI. Several experimental approaches that reduce inflammation also result in attenuation of depressive symptoms. We have demonstrated that Resolvin D1 (RvD1, a metabolite of omega-3 polyunsaturated fatty acids (PUFA derived from docosahexaenoic acid, diminishes infarct size and neutrophil accumulation in the ischemic myocardium. The aim of this study is to determine if a single RvD1 injection could alleviate depressive symptoms in a rat model of MI. MI was induced in rats by occlusion of the left anterior descending coronary artery for 40 min. Five minutes before ischemia or after reperfusion, 0.1 μg of RvD1 or vehicle was injected in the left ventricle cavity. Fourteen days after MI, behavioral tests (forced swim test and socialization were conducted to evaluate depression-like symptoms. RvD1 reduced infarct size in the treated vs. the vehicle group. Animals receiving RvD1 also showed better performance in the forced swim and social interaction tests vs. vehicle controls. These results indicate that a single RvD1 dose, given 5 min before occlusion or 5 min after the onset of reperfusion, decreases infarct size and attenuates depression-like symptoms.

  8. Protective effect of ω-3 polyunsaturated fatty acids on L-arginine-induced nephrotoxicity and oxidative damage in rat kidney.

    Science.gov (United States)

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    L-Arginine (ARG), an essential amino acid, is the endogenous source of the deleterious nitric oxide. Dietary ω-3 polyunsaturated fatty acid (PUFA)-enriched fish oil (FO) has been shown to reduce the severity of certain types of cancers, cardiovascular disease, and renal disease. Present study examined whether feeding of FO/flaxseed oil (FXO) would have protective effect against ARG-induced nephrotoxicity. ARG-induced nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. ARG significantly altered the activities of metabolic and brush border membrane (BBM) enzymes. ARG caused significant imbalances in the antioxidant system. These alterations were associated with increased lipid peroxidation (LPO) and altered antioxidant enzyme activities. Feeding of FO and FXO with ARG ameliorated the changes in various parameters caused by ARG. Nephrotoxicity parameters lowered and enzyme activities of carbohydrate metabolism, BBM and inorganic phosphate (32Pi) transport were improved to near control values. ARG-induced LPO declined and antioxidant defense mechanism was strengthened by both FO and FXO alike. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing ARG-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22531969

  9. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    Science.gov (United States)

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  10. Role of Omega-3 Polyunsaturated Fatty Acids in the Production of Prostaglandin E2 and Nitric Oxide during Experimental Murine Paracoccidioidomycosis

    OpenAIRE

    Sargi, S. C.; Dalalio, M. M. O.; Moraes, A. G.; Visentainer, J. E. L.; Morais, D. R.; J.V. Visentainer

    2013-01-01

    There has recently been increased interest in the potential health effects of omega-3 polyunsaturated fatty acids on the immune system. Paracoccidioidomycosis is the most important endemic mycosis in Latin America. Macrophages have a fundamental role and act as first line of organism defense. The purpose of this study was to analyze the effect of n-3 fatty acids on the production of PGE2 and NO by mice infected with Pb18 and fed a diet enriched with LNA for 8 weeks. To study the effect of ome...

  11. Butylated hydroxytoluene can protect polyunsaturated fatty acids in dried blood spots from degradation for up to 8 weeks at room temperature

    OpenAIRE

    Metherel, Adam H; Hogg, Ryan C; Buzikievich, Lindy M; Stark, Ken D.

    2013-01-01

    Background Dried blood spots (DBS) from fingertip prick blood can enable high throughput fatty acid profiling but may be prone to lipid peroxidation during storage. The use of butylated hydroxytoluene (BHT) on chromatography paper can prevent polyunsaturated fatty acid (PUFA) loss but examinations on the length of storage times possible are not comprehensive. Method In the first study, venous whole blood was saturated on paper strips pre-soaked with 0, 2.5 or 5.0 mg/mL BHT and exposed to air ...

  12. Role of omega-3 polyunsaturated fatty acids for the treatment of patients with major depression disorder

    Directory of Open Access Journals (Sweden)

    Ali Al Hussain

    2014-01-01

    Full Text Available A rising number of studies have raised questions regarding the association of mental illness in a particular mood disorders such as depression with low intake of omega-3 fatty acids. Given all the side-effects that traditional antidepressants put patients at risk for, omega-3 is certainly a better alternative that might improve depressive symptoms and patient′s compliance to treatment by removing the stigma of psychiatric drugs. This study critically reviewed 12 relevant studies from PubMed published between 1992 - 2013 in order to determine whether omega-3 supplements or diet rich in fish were likely to show affectivity in reducing depressive symptoms. Most of the studies showed clear association between omega-3 and reduced depressive symptoms. Studies support the adjunctive role of omega-3 and high fish consumption in reducing depression. Omega-3 fatty acids have also shown to be safe when used during pregnancy to prevent postpartum depression. Although some studies showed mixed results of positive findings, the use of omega-3 supplements could not be an absolute substitute of antidepressants due to limitation in their studies. Minority of the studies reviewed did not correlate omega-3 with the improvement of depressive symptoms for many reasons such as the healthy life-style of subjects, etc. Given the fact that depression has various causes, this puts the testing of omega-3 in a lot of bias due to several variables such as dose, formula, period administered as well as the candidates′ state of health. Further research is definitely warranted on a larger sample size with close follow-up using proper assessment tools. Omega-3 has shown to have minimal or no side-effects at all, which makes it important for mental health professional to at least ensure that patients diagnosed with depression have adequate amounts of omega-3 fatty acids whether by supplementation or in their daily diet.

  13. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  14. The implication of omega-3 polyunsaturated fatty acids in retinal physiology

    Directory of Open Access Journals (Sweden)

    Acar Niyazi

    2007-05-01

    Full Text Available Neuronal tissues such as the retina and the brain are characterized by their high content in phospholipids. In the retina, phospholipids can account for until 80% of total lipids and are mainly composed by species belonging to phosphatidyl-choline and phosphatidyl-ethanolamine sub-classes. Within fatty acids esterified on retinal phospholipids, omega-3 PUFAs are major components since docosahexaenoic acid (DHA can represent until 50% of total fatty acids in the photoreceptor outer segments. For long time, DHA is known to play a major role in membrane function and subsequently in visual processes by affecting permeability, fluidity, thickness and the activation of membrane-bound proteins. Today, more and more studies show that PUFAs from the omega-3 series may also operate as protective factors in retinal vascular and immuno-regulatory processes, in maintaining the physiologic redox balance and in cell survival. They may operate within complex systems involving eicosanoids, angiogenic factors, inflammatory factors and matrix metalloproteinases. This new and emerging concept based on the interrelationship of omega-3 PUFAs with neural and vascular structure and function appears to be essential when considering retinal diseases of public health significance such as age-related macular degeneration.

  15. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study.

    Directory of Open Access Journals (Sweden)

    Nita G Forouhi

    2016-07-01

    Full Text Available Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs are related to type 2 diabetes (T2D is debated. Objectively measured plasma PUFAs can help to clarify these associations.Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC-InterAct study across eight European countries. Country-specific hazard ratios (HRs were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, α-linolenic acid (ALA was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98, but eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were not significantly associated. Among n-6 PUFAs, linoleic acid (LA (0.80; 95% CI 0.77-0.83 and eicosadienoic acid (EDA (0.89; 95% CI 0.85-0.94 were inversely related, and arachidonic acid (AA was not significantly associated, while significant positive associations were observed with γ-linolenic acid (GLA, dihomo-GLA, docosatetraenoic acid (DTA, and docosapentaenoic acid (n6-DPA, with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs.These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA but no convincing association of marine-derived n3 PUFAs (EPA and DHA with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA is inversely

  16. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study

    Science.gov (United States)

    Forouhi, Nita G.; Schulze, Matthias B.; Zheng, Jusheng; Ye, Zheng; Kröger, Janine; Wang, Laura Yun; Summerhill, Keith; Griffin, Julian L.; Feskens, Edith J. M.; Affret, Aurélie; Amiano, Pilar; Boeing, Heiner; Dow, Courtney; Fagherazzi, Guy; Franks, Paul W.; Gonzalez, Carlos; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay Tee; Kühn, Tilman; Mortensen, Lotte Maxild; Nilsson, Peter M.; Overvad, Kim; Pala, Valeria; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Scalbert, Augustin; Slimani, Nadia; Spijkerman, Annemieke M. W.; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L.; Riboli, Elio

    2016-01-01

    Background Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations. Methods and Findings Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study across eight European countries. Country-specific hazard ratios (HRs) were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, α-linolenic acid (ALA) was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88–0.98), but eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not significantly associated. Among n-6 PUFAs, linoleic acid (LA) (0.80; 95% CI 0.77–0.83) and eicosadienoic acid (EDA) (0.89; 95% CI 0.85–0.94) were inversely related, and arachidonic acid (AA) was not significantly associated, while significant positive associations were observed with γ-linolenic acid (GLA), dihomo-GLA, docosatetraenoic acid (DTA), and docosapentaenoic acid (n6-DPA), with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs. Conclusions These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA) but no convincing association of marine-derived n3 PUFAs (EPA and DHA) with T2D. Moreover, they

  17. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats

    Directory of Open Access Journals (Sweden)

    Benedito Vagner A

    2011-10-01

    Full Text Available Abstract Background Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Methods Female Sprague-Dawley rats (age 28 d were randomly assigned (n = 10/group to be fed a high fat 12% (wt diet consisting of either corn oil (CO or n-3 PUFA rich flaxseed (FO, krill (KO, menhaden (MO, salmon (SO or tuna (TO oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs and thromoboxanes (TXBs using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS and total antioxidant capacity (TAC using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR. Results Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. Conclusions On the basis that the optimal n-3 PUFA sources should

  18. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers

    Directory of Open Access Journals (Sweden)

    Konagai C

    2013-09-01

    Full Text Available Chizuru Konagai,1,2 Kenichi Yanagimoto,3 Kohsuke Hayamizu,3 Li Han,3 Tomoko Tsuji,3 Yoshihiko Koga2 1Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan; 2Department of Neuropsychiatry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan; 3Human Life Science R&D Center, Nippon Suisan Kaisha Ltd, Chiyoda-ku, Tokyo, Japan Background: Krill oil, rich in n-3 (omega-3 polyunsaturated fatty acids (PUFAs incorporated in phosphatidylcholine, has been reported to have many effects on physiological function. However, there are few studies using psychophysiological methods published that describe the effects of krill oil on brain function. We investigated the influence of ingestion of krill oil on cognitive function in elderly subjects by using near-infrared spectroscopy and electroencephalography. Methods: A randomized, double-blind, parallel-group comparative study design was adopted. Forty-five healthy elderly males aged 61–72 years were assigned to receive 12 weeks of treatment with: medium-chain triglycerides as placebo; krill oil, which is rich in n-3 PUFAs incorporated in phosphatidylcholine; or sardine oil, which is abundant in n-3 PUFAs incorporated in triglycerides. Changes in oxyhemoglobin concentrations in the cerebral cortex during memory and calculation tasks were measured. The P300 component of event-related potentials was also measured during a working memory task. Results: During the working memory task, changes in oxyhemoglobin concentrations in the krill oil and sardine oil groups were significantly greater than those in the medium-chain triglyceride group at week 12. The differential value for P300 latency in the krill oil group was significantly lower than that in the medium-chain triglyceride group at week 12. With regard to the calculation task, changes in oxyhemoglobin concentrations in the krill oil group were significantly greater than those in the medium-chain triglyceride group at week 12

  19. Comparative Evaluation of Diagnostic Tools for Oxidative Deterioration of Polyunsaturated Fatty Acid-Enriched Infant Formulas during Storage

    Directory of Open Access Journals (Sweden)

    Caroline Siefarth

    2013-12-01

    Full Text Available The challenge in the development of infant formulas enriched with polyunsaturated fatty acids (PUFAs is to meet the consumers’ expectations with regard to high nutritional and sensory value. In particular, PUFAs may be prone to fatty acid oxidation that can generate potential rancid, metallic and/or fishy off-flavors. Although such off-flavors pose no health risk, they can nevertheless lead to rejection of products by consumers. Thus, monitoring autoxidation at its early stages is of great importance and finding a suitable analytical tool to perform these evaluations is therefore of high interest in quality monitoring. Two formulations of infant formulas were varied systematically in their mineral composition and their presence of antioxidants to produce 18 model formulas. All models were aged under controlled conditions and their oxidative deterioration was monitored. A quantitative study was performed on seven characteristic odor-active secondary oxidation products in the formulations via two-dimensional high resolution gas chromatography-mass spectrometry/olfactometry (2D-HRGC-MS/O. The sensitivity of the multi-dimensional GC-MS/O analysis was supported by two additional analytical tools for monitoring autoxidation, namely the analysis of lipid hydroperoxides and conjugated dienes. Furthermore, an aroma profile analysis (APA was performed to reveal the presence and intensities of typical odor qualities generated in the course of fatty acid oxidation. The photometrical analyses of lipid hydroperoxides and conjugated dienes were found to be too insensitive for early indication of the development of sensory defects. By comparison, the 2D-HRGC-MS/O was capable of monitoring peroxidation of PUFAs at low ppb-level in its early stages. Thereby, it was possible to screen oxidative variances on the basis of such volatile markers already within eight weeks after production of the products, which is an earlier indication of oxidative deterioration

  20. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA.

  1. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  2. Predator evasion in zooplankton is suppressed by polyunsaturated fatty acid limitation.

    Science.gov (United States)

    Brzeziński, Tomasz; von Elert, Eric

    2015-11-01

    Herbivorous zooplankton avoid size-selective predation by vertical migration to a deep, cold water refuge. Adaptation to low temperatures in planktonic poikilotherms depends on essential dietary lipids; the availability of these lipids often limits growth and reproduction of zooplankton. We hypothesized that limitation by essential lipids may affect habitat preferences and predator avoidance behavior in planktonic poikilotherms. We used a liposome supplementation technique to enrich the green alga Scenedesmus obliquus and the cyanobacterium Synecchococcus elongatus with the essential lipids, cholesterol and eicosapentaenoic acid (EPA), and an indoor system with a stratified water-column (plankton organ) to test whether the absence of these selected dietary lipids constrains predator avoidance (habitat preferences) in four species of the key-stone pelagic freshwater grazer Daphnia. We found that the capability of avoiding fish predation through habitat shift to the deeper and colder environment was suppressed in Daphnia unless the diet was supplemented with EPA; however, the availability of cholesterol did not affect habitat preferences of the tested taxa. Thus, their ability to access a predator-free refuge and the outcome of predator-prey interactions depends upon food quality (i.e. the availability of an essential fatty acid). Our results suggest that biochemical food quality limitation, a bottom-up factor, may affect the top-down control of herbivorous zooplankton. PMID:26232092

  3. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats

    Science.gov (United States)

    Rousseau, D.; Helies-Toussaint, C.; Raederstorff, D.; Moreau, D.; Grynberg, A.

    2001-01-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  4. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Xi Lei

    Full Text Available OBJECTIVES: To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. METHODS: Female Sprague-Dawley rats (n = 3 each group were treated with or without an n-3 PUFAs (fish oil enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7 were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control. The 5-bromodeoxyuridine (Brdu was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9, respectively. RESULTS: Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. CONCLUSION: Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working

  5. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sailaja Polavarapu

    Full Text Available In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs tested on human neuroblastoma IMR-32 (0.5 × 10(4 cells/100 µl of IMR cells (EPA > DHA > ALA = GLA = AA > DGLA = LA: ∼ 60, 40, 30, 10-20% respectively at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF2α, and PGI2 and leukotrienes (LTD4 and LTE4 tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4, 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA and 10(S,17(S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S,17(SDiHDoHE, metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions.

  6. N-3 Polyunsaturated Fatty Acids (PUFAs Reverse the Impact of Early-Life Stress on the Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Matteo M Pusceddu

    Full Text Available Early life stress is a risk factor for many psychiatric disorders ranging from depression to anxiety. Stress, especially during early life, can induce dysbiosis in the gut microbiota, the key modulators of the bidirectional signalling pathways in the gut-brain axis that underline several neurodevelopmental and psychiatric disorders. Despite their critical role in the development and function of the central nervous system, the effect of n-3 polyunsaturated fatty acids (n-3 PUFAs on the regulation of gut-microbiota in early-life stress has not been explored.Here, we show that long-term supplementation of eicosapentaenoic acid (EPA/docosahexaenoic acid (DHA (80% EPA, 20% DHA n-3 PUFAs mixture could restore the disturbed gut-microbiota composition of maternally separated (MS female rats. Sprague-Dawley female rats were subjected to an early-life stress, maternal separation procedure from postnatal days 2 to 12. Non-separated (NS and MS rats were administered saline, EPA/DHA 0.4 g/kg/day or EPA/DHA 1 g/kg/day, respectively. Analysis of the gut microbiota in adult rats revealed that EPA/DHA changes composition in the MS, and to a lesser extent the NS rats, and was associated with attenuation of the corticosterone response to acute stress.In conclusion, EPA/DHA intervention alters the gut microbiota composition of both neurodevelopmentally normal and early-life stressed animals. This study offers insights into the interaction between n-3 PUFAs and gut microbes, which may play an important role in advancing our understanding of disorders of mood and cognitive functioning, such as anxiety and depression.

  7. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: potential markers for susceptibility and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Reem Al-Mubarak

    2011-09-01

    Full Text Available BACKGROUND: Leprosy is a disease of the skin and peripheral nervous system caused by the obligate intracellular bacterium Mycobacterium leprae. The clinical presentations of leprosy are spectral, with the severity of disease determined by the balance between the cellular and humoral immune response of the host. The exact mechanisms that facilitate disease susceptibility, onset and progression to certain clinical phenotypes are presently unclear. Various studies have examined lipid metabolism in leprosy, but there has been limited work using whole metabolite profiles to distinguish the clinical forms of leprosy. METHODOLOGY AND PRINCIPAL FINDINGS: In this study we adopted a metabolomics approach using high mass accuracy ultrahigh pressure liquid chromatography mass spectrometry (UPLC-MS to investigate the circulatory biomarkers in newly diagnosed untreated leprosy patients. Sera from patients having bacterial indices (BI below 1 or above 4 were selected, subjected to UPLC-MS, and then analyzed for biomarkers which distinguish the polar presentations of leprosy. We found significant increases in the abundance of certain polyunsaturated fatty acids (PUFAs and phospholipids in the high-BI patients, when contrasted with the levels in the low-BI patients. In particular, the median values of arachidonic acid (2-fold increase, eicosapentaenoic acid (2.6-fold increase and docosahexaenoic acid (1.6-fold increase were found to be greater in the high-BI patients. SIGNIFICANCE: Eicosapentaenoic acid and docosahexaenoic acid are known to exert anti-inflammatory properties, while arachidonic acid has been reported to have both pro- and anti-inflammatory activities. The observed increase in the levels of several lipids in high-BI patients may provide novel clues regarding the biological pathways involved in the immunomodulation of leprosy. Furthermore, these results may lead to the discovery of biomarkers that can be used to investigate susceptibility to

  8. Computational Modeling of Competitive Metabolism between ω3- and ω6-Polyunsaturated Fatty Acids in Inflammatory Macrophages.

    Science.gov (United States)

    Gupta, Shakti; Kihara, Yasuyuki; Maurya, Mano R; Norris, Paul C; Dennis, Edward A; Subramaniam, Shankar

    2016-08-25

    Arachidonic acid (AA), a representative ω6-polyunsaturated fatty acid (PUFA), is a precursor of 2-series prostaglandins (PGs) that play important roles in inflammation, pain, fever, and related disorders including cardiovascular diseases. Eating fish or supplementation with the ω3-PUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is widely assumed to be beneficial in preventing cardiovascular diseases. A proposed mechanism for a cardio-protective role of ω3-PUFAs assumes competition between AA and ω3-PUFAs for cyclooxygenases (COX), leading to reduced production of 2-series PGs. In this study, we have used a systems biology approach to integrate existing knowledge and novel high-throughput data that facilitates a quantitative understanding of the molecular mechanism of ω3- and ω6-PUFA metabolism in mammalian cells. We have developed a quantitative computational model of the competitive metabolism of AA and EPA via the COX pathway through a two-step matrix-based approach to estimate the rate constants. This model was developed by using lipidomic data sets that were experimentally obtained from EPA-supplemented ATP-stimulated RAW264.7 macrophages. The resulting model fits the experimental data well for all metabolites and demonstrates that the integrated metabolic and signaling networks and the experimental data are consistent with one another. The robustness of the model was validated through parametric sensitivity and uncertainty analysis. We also validated the model by predicting the results from other independent experiments involving AA- and DHA-supplemented ATP-stimulated RAW264.7 cells using the parameters estimated with EPA. Furthermore, we showed that the higher affinity of EPA binding to COX compared with AA was able to inhibit AA metabolism effectively. Thus, our model captures the essential features of competitive metabolism of ω3- and ω6-PUFAs. PMID:27063350

  9. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Wenqing Cao

    Full Text Available Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6, eicosapentaenoic acid (EPA, C20:5 shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa MCF-7 and T47D cells. 17 β-estradiol (E2 enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2. E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0 as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1 may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  10. Oxidation process intensity in microsomal fraction of rat liver under conditions of different supplementation with polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    O. V. Ketsa

    2014-02-01

    Full Text Available The effect of fat compositions with the varying ratio of polyunsaturated fatty acids (PUFAs of families ω-3 and ω-6 on oxidation process intensity in microsomal fraction of rat liver has been investigated. The aim of the study was to investigate the level of markers of oxidative modification of lipids and proteins in microsomal fraction of rat liver. Fat components in the experiment diets were presented by sunflower oil, soybean oil and fish oil. Rats were fed using one of the fillowing 5 diets for the period of 4 weeks: 1 AIN-93 diet with 7% sunflower oil and fish oil, with the inclusion of linoleic acid, eicosapentaenoic acid and docosahexaenoic acid in the ratio of ω-6:ω-3 – 7:1 (control diet; 2 AIN-93 diet with 7% soybean oil, with the inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1; 3 the diet containing only ω-6 PUFAs; 4 the diet containing only ω-3 PUFAs; 5 the diet without PUFAs. The fatty acid compositions of the diets were analysed by gas chromatography. We measured the primary and secondary lipoperoxidation products, proteins carbonyl derivatives and SH-groups of proteins. It was shown that inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1 or ω-6 PUFAs into the animal diet increased lipid peroxidation in microsomal fraction of the rat liver as compared with the control group. Only ω-6 PUFAs increased the oxidative modification of proteins in microsomal fraction of the rat liver as compared with the control rat group. High dose of ω-3 PUFAs – eicosapentaenoic acid and docosahexaenoic acid had no influence on free radical oxidation of lipids and proteins. Using the diet without PUFAs increased oxidation process intensity in microsomal fraction of rat liver. According to our study, ω-6 PUFAs increased the oxidative modification of lipids and proteins in microsomal fraction of the rat liver. ω-3 PUFAs, in particular, eicosapentaenoic acid and docosahexaenoic acid, increased lipid and

  11. Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids.

    Science.gov (United States)

    Bonnet, Nicolas; Somm, Emmanuel; Rosen, Clifford J

    2014-11-01

    Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans. PMID:25088402

  12. Very long chain fatty acid synthesis in sunflower kernels.

    Science.gov (United States)

    Salas, Joaquín J; Martínez-Force, Enrique; Garcés, Rafael

    2005-04-01

    Most common seed oils contain small amounts of very long chain fatty acids (VLCFAs), the main components of oils from species such as Brassica napus or Lunnaria annua. These fatty acids are synthesized from acyl-CoA precursors in the endoplasmic reticulum through the activity of a dissociated enzyme complex known as fatty acid elongase. We studied the synthesis of the arachidic, behenic, and lignoceric VLCFAs in sunflower kernels, in which they account for 1-3% of the saturated fatty acids. These VLCFAs are synthesized from 18:0-CoA by membrane-bound fatty acid elongases, and their biosynthesis is mainly dependent on NADPH equivalents. Two condensing enzymes appear to be responsible for the synthesis of VLCFAs in sunflower kernels, beta-ketoacyl-CoA synthase-I (KCS-I) and beta-ketoacyl-CoA synthase-II (KCS-II). Both of these enzymes were resolved by ion exchange chromatography and display different substrate specificities. While KCS-I displays a preference for 20:0-CoA, 18:0-CoA was more efficiently elongated by KCS-II. Both enzymes have different sensitivities to pH and Triton X-100, and their kinetic properties indicate that both are strongly inhibited by the presence of their substrates. In light of these results, the VLCFA composition of sunflower oil is considered in relation to that in other commercially exploited oils.

  13. Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos Omega-3 and omega-6 polyunsaturated fatty acids: importance and occurrence in foods

    Directory of Open Access Journals (Sweden)

    Clayton Antunes Martin

    2006-12-01

    Full Text Available Os ácidos graxos poliinsaturados abrangem as famílias de ácidos graxos ômega-3 e ômega-6. Os ácidos graxos de cadeia muito longa, como os ácidos araquidônico e docosaexaenóico, desempenham importantes funções no desenvolvimento e funcionamento do cérebro e da retina. Esse grupo de ácidos graxos não pode ser obtido pela síntese de novo, mas pode ser sintetizado a partir dos ácidos linoléico e alfa-linolênico presentes na dieta. Neste artigo são considerados os principais fatores que podem inibir a atividade das enzimas dessaturases envolvidas na síntese dos ácidos graxos de cadeia muito longa. São apresentadas as recomendações da razão ômega-6/ômega-3 na dieta, propostas em diversos países, sendo verificada a convergência para o intervalo de 4 a 5:1. São relacionados alimentos que podem contribuir para aumentar a ingestão do ácido alfa-linolênico e dos ácidos graxos de cadeia muito longa. A essencialidade dos ácidos graxos de cadeia muito longa é muito dependente do metabolismo do indivíduo, sendo que a razão n-6/n-3 da dieta exerce grande influência nesse sentido.Polyunsaturated fatty acids include the classes of fatty acids designated as omega-3 and omega-6. Very-long-chain polyunsaturated fatty acids as arachidonic and docosahexaenoic have important roles in the development and functioning of the brain and retina. This group of fatty acids cannot be synthesized by de novo pathway, but can be formed from linoleic and alpha-linolenic acid present in diet. In this article, the main factors that can inhibit desaturase enzymes activity involved in the synthesis of MLC-PUFAs are considered. Recommendations of omega-6/omega-3 ratio in diet proposed in several countries are presented, showing a coverage range from 4 to 5:1. Foods that are sources of alpha-linolenic acid and Very-long-chain are listed. The essentiality of Very-long-chain is very dependent of individual metabolism, and omega-6/omega-3 dietary ratio

  14. Comparison of algal and fish sources on the oxidative stability of poultry meat and its enrichment with omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Rymer, C; Gibbs, R A; Givens, D I

    2010-01-01

    Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the mat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.

  15. Myocardial protection during elective coronary artery bypasses grafting by pretreatment with omega-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Veljović Milić

    2013-01-01

    Full Text Available Background/Aim. Despite recent advances in coronary artery bypass grafting (CABG, cardioplegic cardiac arrest and cardiopulmonary bypass (CPB are still associated with myocardial injury. Accordingly, the efforts have been made lately to improve the outcome of CPB by glucose-insulinpotassium, adenosine, Ca2+-channel antagonists, L-arginine, N-acetylcysteine, coenzyme Q10, diazoxide, Na+/H+ exchange inhibitors, but with an unequal results. Since omega-3 polyunsatutated fatty acids (PUFAs have shown remarkable cardioprotection in preclinical researches, the aim of our study was to check their effects in prevention of ischemia reperfusion injury in patients with CPB. Methods. This prospective, randomized, placebo-controlled study was performed with parallel groups. The patients undergoing elective CABG were randomized to receive preoperative intravenous omega-3 PUFAs infusion (n = 20 or the same volume of 0.9% saline solution infusion (n = 20. Blood samples were collected simultaneously from the radial artery and the coronary sinus before starting CPB and at 10, 20 and 30 min after the release of the aortic cross clamp. Lactate extraction/excretion and myocardial oxygen extraction were calculated and compared between the two groups. The levels of troponin I (TnT and creatine kinase-myocardial band (CK-MB were determined before starting CPB and 4 and 24 h postoperatively. Results. Demographic and operative characteristics, including CPB and aortic cross-clamp time, were similar between the two groups of patients. The level of lactate extraction 10 and 20 min after aortic cross-clamp time has shown negative values in the control group, but positive values in the PUFAs group with statistically significant differences (-19.6% vs 7.9%; p < 0.0001 and -19.9% vs 8.2%; p < 0.0008, respectively. The level of lactate extraction 30 minutes after reperfusion was not statistically different between the two groups (6.9% vs 4.2%; p < 0.54. Oxygen extraction in the

  16. The specificity of Several Kinds Lipases on n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jenny Elisabeth, T Yuliani, P M Tambunan, J M Purba

    2001-04-01

    Full Text Available Several lipases from microbial and plant, i.e Rhizomucor miehei, Pseudomonas sp., Candida antartica, rice bran, and Carica papaya latex (CPL were examined for synthesis of omega-3 (n-3 PUFA-rich glyceride by hydrolysis and acidolysis reaction. Tuna oil was used in hydrolysis reaction, whereas tuna and palm oils were used as source of triglyceride (TAG molecules and n-3 PUFA concentrate from tuna oil as source of EPA and DHA in acidolysis reaction.For hydrolysis reaction, the rice bran and CPL lipases showed the lowest hydrolytic activity of the tuna oil, whereas the R. miehei lipase showed the highest hydrolytic activity but was unable to hydrolyze EPA and DHA. On the contrary, the C. antartica and Pseudomonas sp. lipases acted stronger on hydrolysis of DHA ester bond than EPA.For acidolysis reaction, all the lipases showed ability to incorporate n-3 PUFA into tuna and palm oils. C. antartica lipase had the maximum DHA incorporation into tuna and palm oils, rice bran lipase had relatively similar ability with R. miehei lipase, and the CPL lipase had the lowest ability. This study proved that rice bran and CPL lipases also had transesterification activity and showed the feasibility of the rice bran lipase to be a biocatalyst for n-3 PUFA-rich glyceride production. Increasing the substrate ratio, of n-3 PUFA concentrate and tuna or palm oil, could increase the EPA and DHA incorporation. The R. miehei, rice bran, and CPL lipases unabled to incorporate DHA into DHA-containing glyceride molecule, whereas C. antartica lipase had the capability in high ratio of n-3 PUFA concentrate to oil. Therefore, the lipases were easier to incorporate n-3 PUFA into palm oil than tuna oil, since the TAG molecules of palm oil was not as complex as tuna oil. It could be suggested that the lipases did not only have acyl chain and positional specificity, but also the whole glyceride structure specificity.

  17. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products

    Directory of Open Access Journals (Sweden)

    Strobel Claudia

    2012-10-01

    Full Text Available Abstract Background The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA. The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123. Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Results Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply. Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %, however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4 but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Conclusions Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower

  18. Effects of dietary flax seed and sunflower seed supplementation on normal canine serum polyunsaturated fatty acids and skin and hair coat condition scores.

    Science.gov (United States)

    Rees, C A; Bauer, J E; Burkholder, W J; Kennis, R A; Dunbar, B L; Bigley, K E

    2001-04-01

    This prospective study involved supplementing 18 normal dogs with flax seed (FLX) and sunflower seed (SUN) and evaluating their effects on skin and hair coat condition scores and serum polyunsaturated fatty acids (PUFA) concentrations. Skin and hair coat were evaluated in a double-blinded fashion using a numeric scoring system and serum PUFA concentrations were determined. Our hypothesis was that changes in serum PUFA concentrations are associated with improvements in skin and hair coat and that serum PUFA would provide an objective method for making dietary fatty acid supplement recommendations. Although a numerical improvement was found in hair coat quality in both groups, this improvement was not sustained beyond 28 days. The relative per cent of 18:3n-3 concentrations in serum phospholipids increased in the FLX treated dogs but these concentrations remained unchanged in the SUN treated dogs. Also, elevations in relative per cent of 18:2n-6 concentrations in serum phospholipids were seen in the FLX group. The ratio of serum polyunsaturated to saturated fatty acids also showed a transient increase. These increases preceded the peak skin condition score peak value by approximately 14 days. It was concluded that a 1-month supplementation with either flax seed or sunflower seed in dogs provides temporary improvement in skin and hair coat. These changes appeared to be associated with increased serum 18 carbon PUFA.

  19. Growth inhibitory effect of polyunsaturated fatty acids (PUFAs on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes.

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhang

    Full Text Available Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs, leukotrienes (LTs and lipoxins (LXs play a significant role in colon cancer.Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS, microsomal prostaglandin E synthase (mPGES were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.

  20. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.

  1. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  2. Validation of a food frequency questionnaire to assess intake of n-3 polyunsaturated fatty acids in subjects with and without Major Depressive Disorder

    OpenAIRE

    Sublette, M. Elizabeth; Segal-Isaacson, C. J.; Cooper, Thomas B.; Fekri, Shiva; Vanegas, Nora; Galfalvy, Hanga C.; Oquendo, Maria A.; Mann, J. John

    2011-01-01

    The role of n-3 polyunsaturated fatty acids (PUFAs) in psychiatric illness is a topic of public health importance. This report describes development and biomarker validation of a 21 item, self-report food frequency questionnaire (FFQ) intended for use in psychiatric research, to assess intake of α-linolenic acid (18:3n-3, ALA), docosahexaenoic acid (22:6n-3, DHA), and eicosapentaenoic acid (20:5n-3, EPA). In a cross-sectional study carried out from September, 2006 – September, 2008, 61 ethnic...

  3. Regulation of Inflammation by Short Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Renato T. Nachbar

    2011-10-01

    Full Text Available The short chain fatty acids (SCFAs acetate (C2, propionate (C3 and butyrate (C4 are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43 and inhibiton of histone deacetylase (HDAC. SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10, eicosanoids and chemokines (e.g., MCP-1 and CINC-2. The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.

  4. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells

    Directory of Open Access Journals (Sweden)

    Wai Wing So

    2015-08-01

    Full Text Available Omega-3 (n-3 fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA exhibited time- and concentration-dependent anti-proliferative effect on the human neuroblastoma LA-N-1 cells, but had minimal cytotoxicity on the normal or non-tumorigenic cells, as measured by MTT reduction assay. Mechanistic studies indicated that DHA and EPA triggered G0/G1 cell cycle arrest in LA-N-1 cells, as detected by flow cytometry, which was accompanied by a decrease in the expression of CDK2 and cyclin E proteins. Moreover, DHA and EPA could also induce apoptosis in LA-N-1 cells as revealed by an increase in DNA fragmentation, phosphatidylserine externalization and mitochondrial membrane depolarization. Up-regulation of Bax, activated caspase-3 and caspase-9 proteins, and down-regulation of Bcl-XL protein, might account for the occurrence of apoptotic events. Collectively, our results suggest that the growth-inhibitory effect of DHA and EPA on LA-N-1 cells might be mediated, at least in part, via triggering of cell cycle arrest and apoptosis. Therefore, DHA and EPA are potential anti-cancer agents which might be used for the adjuvant therapy or combination therapy with the conventional anti-cancer drugs for the treatment of some forms of human neuroblastoma with minimal toxicity.

  5. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Structured triglycerides (STs containing both medium-chain fatty acids (MCFA and polyunsaturated fatty acids (PUFA in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs, while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM and of the catalyst (chemical or enzymatic on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after interesterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermograms obtained by Differential Scanning Calorimetry (DSC showed that interesterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced.

    Triglicéridos estructurados (SL conteniendo ácidos grasos de cadena media (MCFA y ácidos grasos poliinsaturados (PUFA en la misma molécula de glicerol tienen ventajas nutricionales y terapéuticas. Se establece la incorporación de MCFA a los triglicéridos (TAGs de aceite de pescado, conservando un contenido considerable de ácidos docosahexaenóico (DHA y eicosapentaenóico (EPA. El efecto de diferentes acil donadores (éster metílico de ácido cáprico/MeC10 o triglicéridos de cadena media/TCM y de catalizador (químico o enzimático sobre la composición del producto de las reacciones fue estudiado. La composición de ácidos grasos de los TAGs del aceite de pescado fue modificada después de las reacciones para contener MCFA y dependió del catalizador y de los substratos. Los termogramas obtenidos por Calorimetría Diferencial de Barrido (DSC indicaron que la interesterificación provocó alteraciones considerables de

  6. Hypothalamic-pituitary-adrenal axis activation and immune regulation in heat-stressed sheep after supplementation with polyunsaturated fatty acids.

    Science.gov (United States)

    Caroprese, M; Ciliberti, M G; Annicchiarico, G; Albenzio, M; Muscio, A; Sevi, A

    2014-07-01

    The aim of this study was to assess the effects of supplementation with polyunsaturated fatty acids from different sources on immune regulation and hypothalamic-pituitary-adrenal (HPA) axis activation in heat-stressed sheep. The experiment was carried out during the summer 2012. Thirty-two Comisana ewes were divided into 4 groups (8 sheep/group): (1) supplemented with whole flaxseed (FS); (2) supplemented with Ascophyllum nodosum (AG); (3) supplemented with a combination of flaxseed and A. nodosum (FS+AG); and (4) control (C; no supplementation). On d 22 of the experiment, cortisol concentrations in sheep blood were measured after an injection of ACTH. Cellular immune response was evaluated by intradermic injection of phytohemagglutinin (PHA) at 0, 15, and 30 d of the trial. Humoral response to ovalbumin (OVA) was measured at 0, 15, and 30 d. At 0, 15, and 30 d of the experiment, blood samples were collected from each ewe to determine production of T-helper (Th)1 cytokines (IL-12 and IFN-γ), and Th2 cytokines (IL-10, IL-4, IL-13), and concentrations of heat shock proteins (HSP) 70 and 90. Ewes supplemented with flaxseed alone had greater cortisol concentrations and a longer-lasting cell-mediated immune response compared with ewes in the control and other groups. Anti-OVA IgG concentrations increased in all groups throughout the trial, even though ewes in the FS+AG group had the lowest anti-OVA IgG concentrations at 15 d. The level of IL-10 increased in all groups throughout the experiment; the FS+AG group had the lowest IL-13 concentration at 15 and 30 d. The concentration of HSP 70 increased in AG ewes at the end of the experiment and decreased in FS ewes, whereas that of HSP 90 increased in FS ewes compared with FS+AG ewes. Flaxseed supplementation was found to influence in vivo HPA activation in heat-stressed sheep, resulting in increased cortisol concentrations, probably to meet increased energy demand for thermoregulation. Flaxseed supplementation also

  7. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder.

    Science.gov (United States)

    Mocking, R J T; Harmsen, I; Assies, J; Koeter, M W J; Ruhé, H G; Schene, A H

    2016-01-01

    Omega-3 polyunsaturated fatty acid (PUFA) supplementation has been proposed as (adjuvant) treatment for major depressive disorder (MDD). In the present meta-analysis, we pooled randomized placebo-controlled trials assessing the effects of omega-3 PUFA supplementation on depressive symptoms in MDD. Moreover, we performed meta-regression to test whether supplementation effects depended on eicosapentaenoic acid (EPA) or docosahexaenoic acid dose, their ratio, study duration, participants' age, percentage antidepressant users, baseline MDD symptom severity, publication year and study quality. To limit heterogeneity, we only included studies in adult patients with MDD assessed using standardized clinical interviews, and excluded studies that specifically studied perinatal/perimenopausal or comorbid MDD. Our PubMED/EMBASE search resulted in 1955 articles, from which we included 13 studies providing 1233 participants. After taking potential publication bias into account, meta-analysis showed an overall beneficial effect of omega-3 PUFAs on depressive symptoms in MDD (standardized mean difference=0.398 (0.114-0.682), P=0.006, random-effects model). As an explanation for significant heterogeneity (I(2)=73.36, P<0.001), meta-regression showed that higher EPA dose (β=0.00037 (0.00009-0.00065), P=0.009), higher percentage antidepressant users (β=0.0058 (0.00017-0.01144), P=0.044) and earlier publication year (β=-0.0735 (-0.143 to 0.004), P=0.04) were significantly associated with better outcome for PUFA supplementation. Additional sensitivity analyses were performed. In conclusion, present meta-analysis suggested a beneficial overall effect of omega-3 PUFA supplementation in MDD patients, especially for higher doses of EPA and in participants taking antidepressants. Future precision medicine trials should establish whether possible interactions between EPA and antidepressants could provide targets to improve antidepressant response and its prediction. Furthermore, potential

  8. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Te-Chih Wong

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM, appendicular skeletal muscle mass (ASM, and its determinants in patients receiving standard hemodialysis (HD treatment for the management of end stage renal disease.In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI for both n-3 PUFAs and alpha-linolenic acid (ALA was 1.6 g/day and 1.1 g/day for men and women, respectively.The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047. No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients.Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  9. Adipose tissue fatty acid patterns and changes in anthropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre;

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue...

  10. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    Science.gov (United States)

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  11. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    Science.gov (United States)

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  12. Role of Omega-3 Polyunsaturated Fatty Acids in the Production of Prostaglandin E2 and Nitric Oxide during Experimental Murine Paracoccidioidomycosis

    Directory of Open Access Journals (Sweden)

    S. C. Sargi

    2013-01-01

    Full Text Available There has recently been increased interest in the potential health effects of omega-3 polyunsaturated fatty acids on the immune system. Paracoccidioidomycosis is the most important endemic mycosis in Latin America. Macrophages have a fundamental role and act as first line of organism defense. The purpose of this study was to analyze the effect of n-3 fatty acids on the production of PGE2 and NO by mice infected with Pb18 and fed a diet enriched with LNA for 8 weeks. To study the effect of omega-3 fatty acids on macrophage activity during experimental paracoccidioidomycosis, mice were infected with Pb18 and fed a diet supplemented with LNA. PGE2 in the serum of animals was analyzed and NO in the supernatants of macrophages cultured and challenged in vitro with Pb18 was measured. Omega-3 fatty acids seemed to decrease the production of PGE2 in vivo in the infected group fed an LNA-supplemented diet during the 4th and 8th weeks of the experiment. At the same time, we observed an increase in synthesis of NO by peritoneal macrophages in this group. Omega-3 fatty acids thus appear to have an immunomodulatory effect in paracoccidioidomycosis.

  13. High-Fat Diets Containing Different Amounts of n3 and n6 Polyunsaturated Fatty Acids Modulate Inflammatory Cytokine Production in Mice.

    Science.gov (United States)

    Sundaram, Sneha; Bukowski, Michael R; Lie, Wen-Rong; Picklo, Matthew J; Yan, Lin

    2016-05-01

    Dysregulation of adipokines is a hallmark of obesity. Polyunsaturated fatty acids in fish oil may exert anti-inflammatory effects on adipose tissue mitigating the dysregulation of adipokines thereby preventing obesity. This study investigated the effects of high-fat diets containing different amounts of n3 polyunsaturated fatty acids (PUFA) on adiposity and adipokine production in mice. Mice were fed a low-fat or a high-fat diet with 16 or 45 % of energy from corn oil (low n3 PUFA) in comparison with a high-fat diet containing soybean or high-oleic sunflower oil (adequate n3 PUFA) or flaxseed or fish oil (high n3 PUFA) for 11 weeks. High-fat diets, regardless of types of oils, significantly increased body fat mass and body weights compared to the low-fat diet. Adipose fatty acid composition and contents reflected dietary fatty acid profiles. The high-fat fish oil diet significantly increased adiponectin and reduced leptin concentrations in both plasma and adipose tissue; it did not elevate plasma insulin concentration compared to the high-fat corn oil diet. All high-fat diets elevated concentrations of plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1) but lowered resistin concentrations in both plasma and adipose tissue. In conclusion, fish oil may be beneficial in improving insulin sensitivity by upregulation of adiponectin and downregulation of leptin production; n3 and n6 PUFA do not play a role at the dietary levels tested in reducing adiposity and production of pro-inflammatory cytokines (leptin, PAI-1, MCP-1 and resistin) and anti-inflammatory cytokine adiponectin.

  14. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    Science.gov (United States)

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  15. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Dias, Cintia B; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2015-04-01

    Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.

  16. Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model.

    Science.gov (United States)

    Pang, Shao-Chen; Wang, Hou-Peng; Li, Kuo-Yu; Zhu, Zuo-Yan; Kang, Jing X; Sun, Yong-Hua

    2014-10-01

    Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.

  17. The effects of dietary omega-3 polyunsaturated fatty acid supplementation on attention and impulsivity in an animal model of attention deficit/hyperactivity disorder (ADHD

    Directory of Open Access Journals (Sweden)

    Ewelina Makulska-Gertruda

    2014-07-01

    Full Text Available Background: Attention deficit/hyperactivity disorder (ADHD is one of the commonest psychiatric disorders in children and adolescents. The main symptoms of ADHD are hyperactivity, inattention and impulsivity. Both etiology and neurobiological basis of ADHD are unknown. In this context, long-chain polyunsaturated fatty acids (LC-PUFAs, especially omega-3 (n-3 PUFAs, have become a focus of interest. The symptoms of ADHD have been suggested to be associated with a deficiency of n-3 PUFAs. In addition, the impact of a supply of dietary n-3 PUFAs in the treatment of ADHD has frequently been discussed. Objective: The aim of the present study was to examine the influence of n-3 PUFA supplementation on attention and impulsivity in the spontaneously hypertensive rat (SHR which has been proposed to be a valid genetic animal model of ADHD. Methods: Seven-week-old male SHRs were randomly divided into two groups of 15 rats and fed one of two experimental diets (n-3 PUFA-enriched or n-3 PUFA-deficient prior to and during behavioral testing. Attention and impulsivity were assessed using a three-choiceserial-reaction-time-task (3CSRTT which is based on the five-choice-serial-reaction-timetask. The experiment was performed with three-month-old rats. Results: Our findings demonstrate a marked difference between groups regarding impulsivity but not attention. The n-3 PUFA-enriched diet significantly reduced impulsivity in SHRs compared with rats fed with the n-3 PUFA-deficient diet. Conclusion: The present data show a decrease in impulsivity following a dietary n-3 PUFA supplementation, but no changes in attention. A possible explanation for these results is that the attention displayed by SHR may not be linked to n-3 PUFA supply. It is important to note that inattention and impulsiveness are two of the main symptoms of ADHD. Our results regarding dietary n-3 PUFA supply may support the positive findings in human studies demonstrating that n-3 PUFA administration

  18. Prenatal and early postnatal supplementation with long-chain polyunsaturated fatty acids : neurodevelopmental considerations

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2011-01-01

    It takes >20 y before the human brain obtains its complex adult configuration. Most dramatic neurodevelopmental changes occur prenatally and early postnatally, including a major transformation in cortical organization 3-4 mo after term. The long-lasting changes have practical implications for studie

  19. Long-chain polyunsaturated fatty acid status and early growth of low birth weight infants

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Muskiet, FAJ; Okken, A

    1998-01-01

    We correlated arachidonic acid (AA) and docosahexaenoic acid (DHA) status with anthropometric measures and growth rates in a group of low birth weight infants (less than or equal to 2500 g; gestational ages 30-41 weeks; n = 143). AA and DHA status were measured in erythrocytes (RBC) and plasma chole

  20. Folate and long-chain polyunsaturated fatty acids in psychiatric disease

    NARCIS (Netherlands)

    Muskiet, Frits A. J.; Kemperman, Ramses F. J.

    2006-01-01

    Schizophrenia, autism and depression do not inherit by Mendel's law, and the search for a genetic basis seems unsuccessful. Schizophrenia and autism relate to low birth weight and pregnancy complications, which are associated with developmental adaptations by "programming". Epigenetics might constit

  1. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells.

    Directory of Open Access Journals (Sweden)

    Chieko Iwao

    Full Text Available The acyclic diterpenoid acid geranylgeranoic acid (GGA has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1 GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2 all-trans retinoic acid induces XBP1 splicing but little cell death; and 3 phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells.

  2. Gas Chromatographic Analysis of Medium Chain Fatty Acids in Coconut Oil

    Directory of Open Access Journals (Sweden)

    Julius Pontoh

    2016-09-01

    Full Text Available Analysis of medium chain of fatty acids in coconut oil becomes important due to their roles in health issues. The present analysis methods for fatty acids present in food mainly focused to the overall fatty acid concentration. The analytical method for specific medium chain fatty acids is not so much be given attention. This research is focused to the analytical methods for these particular fatty acids in coconut oil. Several analytical methods were compared including acid catalyzed, basic catalyzed and acid boron trifluoride catalyzed derivatization. The response of each fatty acid toward the derivatization methods are different. Formation of the fatty acid methyl ester from caprylic and capric was low for acid catalyzed method compared to basic catalyzed method and acid boron trifluoride catalyzed methods. This finding shows that the kinetics of the esterification among the fatty acids are not the same. The analysis of all fatty acids in coconut oil is better using basic catalyzed than the other methods.

  3. Single Nucleotide Polymorphisms in the FADS Gene Cluster but not the ELOVL2 Gene are Associated with Serum Polyunsaturated Fatty Acid Composition and Development of Allergy (in a Swedish Birth Cohort)

    Science.gov (United States)

    Barman, Malin; Nilsson, Staffan; Torinsson Naluai, Åsa; Sandin, Anna; Wold, Agnes E.; Sandberg, Ann-Sofie

    2015-01-01

    Exposure to polyunsaturated fatty acids (PUFA) influences immune function and may affect the risk of allergy development. Long chain PUFAs are produced from dietary precursors catalyzed by desaturases and elongases encoded by FADS and ELOVL genes. In 211 subjects, we investigated whether polymorphisms in the FADS gene cluster and the ELOVL2 gene were associated with allergy or PUFA composition in serum phospholipids in a Swedish birth-cohort sampled at birth and at 13 years of age; allergy was diagnosed at 13 years of age. Minor allele carriers of rs102275 and rs174448 (FADS gene cluster) had decreased proportions of 20:4 n-6 in cord and adolescent serum and increased proportions of 20:3 n-6 in cord serum as well as a nominally reduced risk of developing atopic eczema, but not respiratory allergy, at 13 years of age. Minor allele carriers of rs17606561 in the ELOVL2 gene had nominally decreased proportions of 20:4 n-6 in cord serum but ELOVL polymorphisms (rs2236212 and rs17606561) were not associated with allergy development. Thus, reduced capacity to desaturase n-6 PUFAs due to FADS polymorphisms was nominally associated with reduced risk for eczema development, which could indicate a pathogenic role for long-chain PUFAs in allergy development. PMID:26633493

  4. Single Nucleotide Polymorphisms in the FADS Gene Cluster but not the ELOVL2 Gene are Associated with Serum Polyunsaturated Fatty Acid Composition and Development of Allergy (in a Swedish Birth Cohort

    Directory of Open Access Journals (Sweden)

    Malin Barman

    2015-12-01

    Full Text Available Exposure to polyunsaturated fatty acids (PUFA influences immune function and may affect the risk of allergy development. Long chain PUFAs are produced from dietary precursors catalyzed by desaturases and elongases encoded by FADS and ELOVL genes. In 211 subjects, we investigated whether polymorphisms in the FADS gene cluster and the ELOVL2 gene were associated with allergy or PUFA composition in serum phospholipids in a Swedish birth-cohort sampled at birth and at 13 years of age; allergy was diagnosed at 13 years of age. Minor allele carriers of rs102275 and rs174448 (FADS gene cluster had decreased proportions of 20:4 n-6 in cord and adolescent serum and increased proportions of 20:3 n-6 in cord serum as well as a nominally reduced risk of developing atopic eczema, but not respiratory allergy, at 13 years of age. Minor allele carriers of rs17606561 in the ELOVL2 gene had nominally decreased proportions of 20:4 n-6 in cord serum but ELOVL polymorphisms (rs2236212 and rs17606561 were not associated with allergy development. Thus, reduced capacity to desaturase n-6 PUFAs due to FADS polymorphisms was nominally associated with reduced risk for eczema development, which could indicate a pathogenic role for long-chain PUFAs in allergy development.

  5. The Effect of Omega-3 Polyunsaturated Fatty Acids on N-Terminal Pro-Brain Natriuretic Peptide and Lipids Concentration in Patients With Type 2 Diabetes Mellitus and Cardiovascular Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Serhiyenko Victoria

    2014-06-01

    Full Text Available Background and Aims: Cardiac autonomic neuropathy (CAN in type 2 diabetes mellitus (T2DM is one of the independent risk factor for cardiovascular mortality. The aim of the study was to analyze the effect of long-chain w-3 polyunsaturated fatty acids (w-3 PUFA on the levels of N-terminal pro-brain natriuretic peptide (NT-proBNP and on some lipid profile parameters in patients with T2DM and CAN. Material and Methods: 36 patients with T2DM and verified CAN were divided into 2 groups. The first group received traditional hypoglycemic therapy (n = 15, control for three months; patients in group 2 (n = 21 received in addition 1 g/day of the long-chain w-3 PUFA for three months. Results: Prescription of the w-3 PUFA to the patients with T2DM and СAN was accompanied by a statistically significant decrease of NT-proBNP level and led to significantly positive changes in the high density lipoprotein cholesterol and triglycerides levels in the blood. Conclusions: Obtained results suggest that the efficacy of w-3 PUFA is the result of a direct effect of the pharmacological agent on the investigated indexes

  6. Association between beta-carotene and acute myocardial infarction depends on polyunsaturated fatty acid status. The EURAMIC Study. European Study on Antioxidants, Myocardial Infarction, and Cancer of the Breast

    OpenAIRE

    Kardinaal, Alwine F; Aro, Antti; Kark, Jeremy D; Riemersma, Rudolph A; van't Veer, Pieter; Gomez-Aracena, Jorge; Kohlmeier, Lenore; Ringstad, Jetmund; Martin, Blaise C; Mazaev, Vladimir P; Delgado-Rodriguez, Miguel; Thamm, Michael; Huttunen, Jussi K; Martin-Moreno, José M; Kok, Frans J.

    1995-01-01

    Because antioxidants may play a role in the prevention of coronary heart disease by inhibiting the peroxidation of polyunsaturated fatty acids (PUFAs), the combined association of diet-derived antioxidants and PUFAs with acute myocardial infarction (MI) was investigated. This multicenter case-control study included 674 patients and 725 control subjects in eight European countries and Israel. Fatty acid composition and alpha-tocopherol and beta-carotene levels were determined in adipose tissue...

  7. The Influence of Different Vegetable Oils on Some ω-3 Polyunsaturated Fatty Acids from Thigh and Abdominal Fat of Broilers

    OpenAIRE

    Dragoş Sorin Fota; Lavinia Ştef; Dan Drinceanu; Izabella Fota; Rodica Căpriţă; Adrian Căpriţă

    2011-01-01

    Energy sources, especialy vegetable oils, added to the combined fodder can segnificantly modefy the fatty acids profile of the chicken feed, thus through its control the fatty acids profile of the carcases can be modefied, through enrichment in some fatty acids. In this respect an experiment was coduced on broilers, made up of three experimental groups, fed with a combined base fodder (corn and soybean meal) in which 2% of different energy sources were added (sunflower oil, soybean oil, linse...

  8. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid wa

  9. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    Science.gov (United States)

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats.

  10. Concentration and stabilization of C₂₀-₂₂ n-3 polyunsaturated fatty acid esters from the oil of Sardinella longiceps.

    Science.gov (United States)

    Chakraborty, Kajal; Joseph, Deepu; Joseph, Dexy

    2016-05-15

    Methyl esters of C20-22n-3 polyunsaturated fatty acids derived from sardine oil triglycerides were concentrated to 86% purity with greater than 30% recovery by argentated chromatography. The synergistic effect of ethyl acetate fractions of seaweeds Kappaphycus alvarezii, Hypnea musciformis and Jania rubens used in 0.1:0.2:0.2 (%, w/w) ratio in arresting oxidative degradation of the n-3 PUFA methyl ester concentrate was demonstrated during accelerated storage. The induction time (6.8h) and antioxidant activity indices (>24) were greater for n-3 PUFA concentrates supplemented with seaweed extracts than antioxidants BHT and α-tocopherol (<5h and <17, respectively). Nuclear Magnetic Resonance spectroscopy was employed to study the oxidative changes of fatty acid signals of PUFA concentrate during accelerated storage. Potential of seaweeds to improve the storage stability of C20-22n-3 fatty acid methyl esters was studied. This study has applications in development of food and pharmaceutical products. PMID:26776041

  11. Preparation of polyunsaturated fatty acid concentrates from the liver oil of dogfish (Squalus acanthias from the Black Sea.

    Directory of Open Access Journals (Sweden)

    Stefanova, K.

    1997-06-01

    Full Text Available The fatty acid composition of the liver oil from the Black Sea dogfish Squalus acanthias, as well as its seasonal variations were determined. A scheme for concentration of polyunsaturated fatty acids from the dogfish liver oil by urea complexation was proposed. From 360g of free fatty acids a 48g concentrate was obtained, containing 7,8% C20:4, 16,4% C20:5. 9,2% C22:5 and 49,7% C22:6.

    Se ha determinado la composición en ácidos grasos del aceite de hígado de cazón (Squalus acanthias del Mar Negro, así como sus variaciones estacionales. Se propone un esquema para la concentración de ácidos grasos poliinsaturados de aceite de hígado de cazón mediante complexión de urea. A partir de 360g de ácidos grasos libres se obtuvo un concentrado de 48g, que contenía 7,8% C20:4, 16,4% C20:5, 9,2% C22:5 y 49,7% C22:6.

  12. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    Science.gov (United States)

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats. PMID:27072368

  13. The Influence of Different Vegetable Oils on Some ω-3 Polyunsaturated Fatty Acids in Broiler Chickens Breast

    Directory of Open Access Journals (Sweden)

    Dragoş-Sorin Fota

    2011-05-01

    Full Text Available Taking into consideration that the vegetable oils added to the combined fodder can significantly modify the fatty acids profile in broiler food, through its redirection even the fatty acids profile of carcasses can be modified through enrichment in certain fatty acids and obtaining functional foods. Therefore an experiment was conduced on broilers, made up of three experimental groups, fed with a combined base fodder in which 2% of different fat sources have been incorporated (sunflower oil, soybean oil, linseed oil. After the 42 days growth period, the fatty acids profile, % of fatty acids in 100 g product (EPA, DPA, DHA, ∑ SFA, ∑ MUFA, ∑ PUFA of the chicken from the experimental groups, were determined. Fatty acids were determined using gascromatography. The data obtained after statistic processing and interpretation have highlighted the fact that, concerning the fatty acids profile in the chickens breast, we can observe variations of the determined fatty acids content, what shows us that they can be influenced through dietary factors, but there quantity being determined by the participation % of the energy sources (vegetable oils, but also by the fatty acids content of the participating raw materials.

  14. Supplementation of glutamine and omega-3 polyunsaturated fatty acids as a novel therapeutic intervention targeting metabolic dysfunction and exercise intolerance in patients with heart failure.

    Science.gov (United States)

    Shahzad, Khurram; Chokshi, Aalap; Schulze, P Christian

    2011-11-01

    With its increasing prevalence throughout the world, heart failure continues to be associated with high morbidity and mortality. Patients with heart failure develop progressive metabolic abnormalities, inflammation, and atrophy in the myocardium and skeletal muscle. Improvement in functional capacity as defined by exercise tolerance is essential for better quality of life and potentially survival of these patients. Therapeutic management options aimed at improving peripheral organ function are limited. Nutritional approaches with dietary supplementation in addition to current therapies are particularly appealing as they are novel and mechanistically different. In this article, we review the role of glutamine and omega-3 polyunsaturated fatty acids on metabolism and functional capacity in heart failure. These two compounds are of particular interest due to their synergistic role on oxidative metabolism, lipolysis and inflammation. PMID:22082326

  15. Types of oilseed and adipose tissue influence the composition and relationships of polyunsaturated fatty acid biohydrogenation products in steers fed a grass hay diet.

    Science.gov (United States)

    Mapiye, C; Aalhus, J L; Turner, T D; Rolland, D C; Basarab, J A; Baron, V S; McAllister, T A; Block, H C; Proctor, S D; Dugan, M E R

    2014-03-01

    The current study evaluated the composition and relationships of polyunsaturated fatty acid biohydrogenation products (PUFA-BHP) from the perirenal (PRF) and subcutaneous fat (SCF) of yearling steers fed a 70 % grass hay diet with concentrates containing either sunflower-seed (SS) or flaxseed (FS). Analysis of variance indicated several groups or families of structurally related FA, and individual FA within these were affected by a number of novel oilseed by fat depot interactions (P adipose tissue differences, therefore, present unique opportunities to differentially enrich a number of PUFA-BHP which seem to have positive health potential in humans (i.e., t11-18:1, c9,t11-18:2 and c9,t11,c15-18:3).

  16. INFLUENCE OF COMPOSITION OF POLYUNSATURATED FATTY ACIDS ON MICROVISCOSITY OF THE MEMBRANE OF ERYTHROCYTES OF THE NAVEL OF THE BLOOD AT HERPES INFECTION CONTAMINATIONS

    Directory of Open Access Journals (Sweden)

    N. A. Isutina

    2013-01-01

    Full Text Available The method of gas-liquid chromatography investigates composition of polyunsaturated fatty acids of membrane of erythrocytes, discharged of navel bloods neonatal from mothers who have transferred in the season gestation exacerbation herpes of an infection contamination and his influence on microviscosity of membrane. Essential infringements of data exchange of bonds in navel bloods neonatal with an exacerbation  herpes  infection  contaminations  (antiserum  capacity  IgG  to  virus  of  simple  herpes  of  1  type 1 : 12 800 which show deficiency essential ω-3 acids at simultaneous augmentation of the precursor proinflammatory eicosanoid ω-6 arachidonic acids, promoting augmentation of relative microviscosity of membrane of erythrocytes that will be one of probable causes of development of hypoxia are found.

  17. The Influence of Different Vegetable Oils on Some ω-3 Polyunsaturated Fatty Acids from Thigh and Abdominal Fat of Broilers

    Directory of Open Access Journals (Sweden)

    Dragoş Sorin Fota

    2011-05-01

    Full Text Available Energy sources, especialy vegetable oils, added to the combined fodder can segnificantly modefy the fatty acids profile of the chicken feed, thus through its control the fatty acids profile of the carcases can be modefied, through enrichment in some fatty acids. In this respect an experiment was coduced on broilers, made up of three experimental groups, fed with a combined base fodder (corn and soybean meal in which 2% of different energy sources were added (sunflower oil, soybean oil, linseed oil. At the end of the 42 days growing period, using gaz cromatography, the fatty acids profile, % of fatty acids in 100 g product (EPA,DPA, DHA, Σ SFA, Σ MUFA, Σ PUFA from the studied cut pieces, were determined. The results obtained after statistc processing and interpretation of the data, showed the fact that regarding the fatty acids profile in chicken thigh and abdominal fat we can observe variations, what denotes that the fatty acids profile can be influenced by dietary factors, the quantity being yet determined by the participation % of the energy sources (vegetable oils, but also by the fatty acids content of the participating raw materials.

  18. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature

    NARCIS (Netherlands)

    Dooremalen, van C.; Pel, R.; Ellers, J.

    2009-01-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids (P

  19. The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids

    OpenAIRE

    Kitajka, Klára; László G Puskás; Zvara, Ágnes; Hackler, László; Barceló-Coblijn, Gwendolyn; Yeo, Young K.; Farkas, Tibor

    2002-01-01

    Rats were fed either a high linolenic acid (perilla oil) or high eicosapentaenoic + docosahexaenoic acid (fish oil) diet (8%), and the fatty acid and molecular species composition of ethanolamine phosphoglycerides was determined. Gene expression pattern resulting from the feeding of n-3 fatty acids also was studied. Perilla oil feeding, in contrast to fish oil feeding, was not reflected in total fatty acid composition of ethanolamine phosphoglycerides. Levels of the alkenylacyl subclass of et...

  20. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity

    OpenAIRE

    Chirinos, R.; Zuoleta, G; Pedreschi, R.; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high a linolenic (a-Ln) fatty acid content was found in all cultivars (x3, 12.8–16.0 g/100 g seed), followed by linoleic (L) fatty acid (x6, 12.4–14.1 g/100 g seed). The ratio x6/x3 was within the ...

  1. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    Science.gov (United States)

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism.

  2. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    Science.gov (United States)

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism. PMID:26474750

  3. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A.

    Directory of Open Access Journals (Sweden)

    Francesca Nardi

    Full Text Available AIMS/HYPOTHESIS: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA, whereas mono and polyunsaturated fatty acids (MUFA and PUFA not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A. This study investigated the effects of oleic acid (OA; a MUFA, linoleic acid (LOA; a PUFA and palmitate (PA; a SFA in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. PRINCIPAL FINDINGS: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt- and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine307phosphorylation - events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A. CONCLUSIONS/INTERPRETATION: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A.

  4. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols.

    Science.gov (United States)

    Jin, Zhu; Wong, Adison; Foo, Jee Loon; Ng, Joey; Cao, Ying-Xiu; Chang, Matthew Wook; Yuan, Ying-Jin

    2016-04-01

    Fatty aldehydes and alcohols are valuable precursors used in the industrial manufacturing of a myriad of specialty products. Herein, we demonstrate the de novo production of odd chain-length fatty aldehydes and fatty alcohols in Saccharomyces cerevisiae by expressing a novel biosynthetic pathway involving cytosolic thioesterase, rice α-dioxygenase and endogenous aldehyde reductases. We attained production titers of ∼20 mg/l fatty aldehydes and ∼20 mg/l fatty alcohols in shake flask cultures after 48 and 60 h respectively without extensive fine-tuning of metabolic fluxes. In contrast to prior studies which relied on bi-functional fatty acyl-CoA reductase to produce even chain-length fatty alcohols, our biosynthetic route exploits α-oxidation reaction to produce odd chain-length fatty aldehyde intermediates without using NAD(P)H cofactor, thereby conserving cellular resource during the overall synthesis of odd chain-length fatty alcohols. The biosynthetic pathway presented in this study has the potential to enable sustainable and efficient synthesis of fatty acid-derived chemicals from processed biomass. PMID:26461930

  5. [Odd- and branched-chain fatty acids in milk fat--characteristic and health properties].

    Science.gov (United States)

    Adamska, Agata; Rutkowska, Jarosława

    2014-01-01

    This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat). For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment. PMID:25228507

  6. Research Advances in the Inhibition of Long Chain Fatty Acid to Methanogenic Activity in Anaeroic Digestion System

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article reviewed the inhibition mechanism of long chain fatty acid on the formation of anaerobic system, then thoroughly analyzed the inhibition factors of long chain fatty acid, and summarized the remission method to its inhibition, finally proposed some suggestions to further study on the influence of long chain fatty acid on anaerobic digestion system.

  7. Polyunsaturated fat and fish oil in diets for growing-finishing pigs: effects on fatty acid composition and meat, fat, and sausage quality.

    Science.gov (United States)

    Bryhni, E A; Kjos, N P; Ofstad, R; Hunt, M

    2002-09-01

    Forty-eight crossbred growing-finishing pigs were used to study the effects of polyunsaturated fatty acids (PUFA 31%= low and 50%= high) and fish oil (0, 0.2, and 0.4% capelin) diets on fatty acid composition, chemical traits, and sensory properties of the longissimus muscle, fat, and sausages. High levels of PUFA, independent of the level of fish oil, increased oxidation and rancidity for whole muscle (stored at 1 and 8 months at -23 °C) and sausages (TBARS 0.6-1.3). Fish oil at 0.4% in the diet increased TBA values of loin, but did not affect sensory evaluation scores. An interaction between PUFA and fish oil occurred for TBARS values and rancid odour in sausage, where the 0.4% fish oil and high PUFA level showed highest oxidation (TBARS 1.9). Although fish oil and high PUFA levels might contribute to a more healthy meat, their undesirable affects on palatability would limit their use.

  8. CD4+ T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Lund, Pia; Kjær, Tanja;

    2010-01-01

    provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4+ T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4+ T...... and CTLA-4. Diminished T-cell receptor (TCR) and CD28 signalling was found to be responsible for n-3 PUFA effects. Thus, the dietary fatty acid composition influences the overall level of CD4+ T-cell activation induced by DCs, while the priming effect of the DC stimuli modulates CD80, CD86 and CD40 levels......Appropriate activation of CD4+ T cells is fundamental for efficient initiation and progression of acquired immune responses. Here, we showed that CD4+ T-cell activation is dependent on changes in membrane n-3 polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the type of signals...

  9. CD4+ T‐cell activation is differentially modulated by bacteria‐primed dendritic cells, but is generally down‐regulated by n‐3 polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Lund, Pia; Kjær, Tanja;

    2010-01-01

    provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4+ T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4+ T...... and CTLA‐4. Diminished T‐cell receptor (TCR) and CD28 signalling was found to be responsible for n‐3 PUFA effects. Thus, the dietary fatty acid composition influences the overall level of CD4+ T‐cell activation induced by DCs, while the priming effect of the DC stimuli modulates CD80, CD86 and CD40 levels......Appropriate activation of CD4+ T cells is fundamental for efficient initiation and progression of acquired immune responses. Here, we showed that CD4+ T‐cell activation is dependent on changes in membrane n‐3 polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the type of signals...

  10. Separation of polyunsaturated fatty acid esters by flowing liquid membrane with porous partition.; Kakumaku gata ryudo ekimaku ni yoru kodo fuhowa shibosan esuteru no bunri

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, R.; Nii, S.; Takahashi, K. [Nagoya Univ., Nagoya (Japan). Depertment of Chemical Engineering; Misawa, Y. [Harima Chemicals, Inc., Osaka (Japan)

    2000-07-10

    A laboratory-constructed flowing liquid membrane apparatus with porous partition (FLM) was applied to the separation of such polyunsaturated fatty acid esters (PUFA-Ets) as eicosapentaenoic acid ethylester (EPA-Et) and docosahexaenoic acid ethylester (DHA-Et) at 293 K. The hydrophilic porous membrane was used as a partition, and 2 M AgNO{sub 3} aqueous solution was used as a membrane liquid. By using dodecane as a feed diluent and m-xylene as a recovery solution, PUFA-Ets were successfully separated from mixture of fatty acid esters. The recovery fraction of PUFA-Ets and the separation degree between DHA-Et and EPA-Et were investigated ; it increases with the velocity of membrane liquid and the flow path length in the module, while it decreased with the velocity of feed and recovery solution. The recovery fraction of DHA-Et reachs 60% with only 8 s-retention time by the continuous operation. The concentrations of the DHA-Et at the outlet of the module were simulated based on the mass transfer model, which gave nearly 85% recovery fraction with 30 s-retention time. These results show that a stable operation, a high recovery and a high recovery and a high throughput are realized by the FLM. (author)

  11. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis.

    Science.gov (United States)

    Lu, Yin; Pan, Yitao; Sheng, Nan; Zhao, Allan Z; Dai, Jiayin

    2016-09-01

    Perfluorooctanoic acid (PFOA) is a degradation-resistant compound with a carbon-fluorine bond. Although PFOA emissions have been reduced since 2000, it remains persistent in the environment. Several studies on laboratory animals indicate that PFOA exposure can impact male fertility. Here, adult male mice received either PFOA (1.25, 5 or 20 mg/kg/d) or an equal volume of water for 28 d consecutively. PFOA accumulated in the epididymis in a dose-dependent manner and resulted in reduced epididymis weight, lower levels of triglycerides (TG), cholesterol (CHO), and free fatty acids (FFA), and activated AKT/AMPK signaling in the epididymis. Altered polyunsaturated fatty acid (PUFA) compositions, such as a higher arachidonic acid:linoleic acid (AA:LA) ratio, concomitant with excessive oxidative stress, as demonstrated by increased malonaldehyde (MDA) and decreased glutathione peroxidase (GSH-Px) in the epididymis, were observed in epididymis tissue following treatment with PFOA. These results indicate that the epididymis is a potential target of PFOA. Oxidative stress and PUFA alteration might help explain the sperm injury and male reproductive dysfunction induced by PFOA exposure. PMID:27262104

  12. Short-chain fatty acids produced by intestinal bacteria.

    Science.gov (United States)

    Topping, D L

    1996-03-01

    The colon is the major site of bacterial colonisation in the human gut and the resident species are predominantly anaerobes. They include potential pathogens but the greater proportion appear to be organisms which salvage energy through the metabolism of undigested carbohydrates and gut secretions. The major products of carbohydrate metabolism are the short chain fatty acids (SCFA), acetate, propionate and butyrate. In addition to general effects (such as lowering of pH) individual acids exert specific effects. All of the major SCFA appear to promote the flow of blood through the colonic vasculature while propionate enhances muscular activity and epithelial cell proliferation. Butyrate appears to promote a normal cell phenotype as well as being a major fuel for colonocytes. Important substrates for bacterial fermentation include non-starch polysaccharides (major components of dietary fibre) but it seems that starch which has escaped digestion in the small intestine (resistant starch) is the major contributor. Oligosaccharides are utilised by probiotic organisms and in the diet, act as prebiotics in promoting their numbers in faeces. High amylose starch is a form of RS and it appears to act as a prebiotic also. Although there is evidence that probiotics such as Bifidobacteria metabolise oligosaccharides and other carbohydrates, there appears to be little evidence to support a change in faecal SCFA excretion. It seems that any health benefits of probiotics are exerted through means other than SCFA. PMID:24394459

  13. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.

    Science.gov (United States)

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-01-01

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae. PMID:27230732

  14. Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing C57BL/6J mice.

    Science.gov (United States)

    Janssen, Carola I F; Zerbi, Valerio; Mutsaers, Martina P C; de Jong, Bas S W; Wiesmann, Maximilian; Arnoldussen, Ilse A C; Geenen, Bram; Heerschap, Arend; Muskiet, Frits A J; Jouni, Zeina E; van Tol, Eric A F; Gross, Gabriele; Homberg, Judith R; Berg, Brian M; Kiliaan, Amanda J

    2015-01-01

    Maternal intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is critical during perinatal development of the brain. Docosahexaenoic acid (DHA) is the most abundant n-3 PUFA in the brain and influences neuronal membrane function and neuroprotection. The present study aims to assess the effect of dietary n-3 PUFA availability during the gestational and postnatal period on cognition, brain metabolism and neurohistology in C57BL/6J mice. Female wild-type C57BL/6J mice at day 0 of gestation were randomly assigned to either an n-3 PUFA deficient diet (0.05% of total fatty acids) or an n-3 PUFA adequate diet (3.83% of total fatty acids) containing preformed DHA and its precursor α-linolenic acid. Male offspring remained on diet and performed cognitive tests during puberty and adulthood. In adulthood, animals underwent (31)P magnetic resonance spectroscopy to assess brain energy metabolites. Thereafter, biochemical and immunohistochemical analyses were performed assessing inflammation, neurogenesis and synaptic plasticity. Compared to the n-3 PUFA deficient group, pubertal n-3 PUFA adequate fed mice demonstrated increased motor coordination. Adult n-3 PUFA adequate fed mice exhibited increased exploratory behavior, sensorimotor integration and spatial memory, while neurogenesis in the hippocampus was decreased. Selected brain regions of n-3 PUFA adequate fed mice contained significantly lower levels of arachidonic acid and higher levels of DHA and dihomo-γ-linolenic acid. Our data suggest that dietary n-3 PUFA can modify neural maturation and enhance brain functioning in healthy C57BL/6J mice. This indicates that availability of n-3 PUFA in infant diet during early development may have a significant impact on brain development. PMID:25444517

  15. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  16. Variants of the FADS1 FADS2 gene cluster, blood levels of polyunsaturated fatty acids and eczema in children within the first 2 years of life.

    Directory of Open Access Journals (Sweden)

    Peter Rzehak

    Full Text Available BACKGROUND: Association of genetic-variants in the FADS1-FADS2-gene-cluster with fatty-acid-composition in blood of adult-populations is well established. We analyze this genetic-association in two children-cohort-studies. In addition, the association between variants in the FADS-gene-cluster and blood-fatty-acid-composition with eczema was studied. METHODS AND PRINCIPAL FINDINGS: Data of two population-based-birth-cohorts in The Netherlands and Germany (KOALA, LISA were pooled (n = 879 and analyzed by (logistic regression regarding the mutual influence of single-nucleotide-polymorphisms (SNPs in the FADS-gene-cluster (rs174545, rs174546, rs174556, rs174561, rs3834458, on polyunsaturated fatty acids (PUFA in blood and parent-reported eczema until the age of 2 years. All SNPs were highly significantly associated with all PUFAs except for alpha-linolenic-acid and eicosapentaenoic-acid, also after correction for multiple-testing. All tested SNPs showed associations with eczema in the LISA-study, but not in the KOALA-study. None of the PUFAs was significantly associated with eczema neither in the pooled nor in the analyses stratified by study-cohort. CONCLUSIONS AND SIGNIFICANCE: PUFA-composition in young children's blood is under strong control of the FADS-gene-cluster. Inconsistent results were found for a link between these genetic-variants with eczema. PUFA in blood was not associated with eczema. Thus the hypothesis of an inflammatory-link between PUFA and eczema by the metabolic-pathway of LC-PUFAs as precursors for inflammatory prostaglandins and leukotrienes could not be confirmed by these data.

  17. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  18. Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial.

    LENUS (Irish Health Repository)

    Phelan, Niamh

    2012-02-01

    BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by an adverse metabolic profile. Although dietary changes are advocated, optimal nutritional management remains uncertain. Polyunsaturated fatty acids (PUFAs), particularly long-chain (LC) n-3 (omega-3) PUFAs, improve metabolic health, but their therapeutic potential in PCOS is unknown. OBJECTIVES: We aimed to determine the associations between plasma PUFAs and metabolic and hormonal aspects of PCOS to investigate the efficacy of LC n-3 PUFA supplementation and to support the findings with mechanistic cellular studies. DESIGN: We selected a cross-sectional PCOS cohort (n = 104) and conducted a principal component analysis on plasma fatty acid profiles. Effects of LC n-3 PUFA supplementation on fasting and postprandial metabolic and hormonal markers were determined in PCOS subjects (n = 22) by a randomized, crossover, placebo-controlled intervention. Direct effects of n-6 (omega-6) compared with n-3 PUFAs on steroidogenesis were investigated in primary bovine theca cells. RESULTS: Cross-sectional data showed that a greater plasma n-6 PUFA concentration and n-6:n-3 PUFA ratio were associated with higher circulating androgens and that plasma LC n-3 PUFA status was associated with a less atherogenic lipid profile. LC n-3 PUFA supplementation reduced plasma bioavailable testosterone concentrations (P < 0.05), with the greatest reductions in subjects who exhibited greater reductions in plasma n-6:n-3 PUFA ratios. The treatment of bovine theca cells with n-6 rather than with n-3 PUFAs up-regulated androstenedione secretion (P < 0.05). CONCLUSIONS: Cross-sectional data suggest that PUFAs modulated hormonal and lipid profiles and that supplementation with LC n-3 PUFAs improves androgenic profiles in PCOS. In bovine theca cells, arachidonic acid modulated androstenedione secretion, which suggests an indirect effect of n-3 PUFAs through the displacement of or increased competition with n-6 PUFAs. This trial was

  19. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  20. Food matrices affect the bioavailability of (n-3) polyunsaturated fatty acids in a single meal study in humans

    DEFF Research Database (Denmark)

    Schram, Laurine B; Nielsen, Carina J.; Porsgaard, Trine;

    2007-01-01

    , a yoghurt drink, eight oil capsules, bread and butter; 4 g of fish oil was incorporated into one of the matrices. Blood samples were collected and fatty acid composition of chylomicrons was determined together with plasma levels of conjugated dienes and alpha-tocopherol. Fish oil incorporated into food...

  1. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  2. Barrier properties of lipid bilayers composed of lecithins with odd chain fatty acids

    NARCIS (Netherlands)

    Salvati, S.; Serlupi-Crescenzi, G.; Gier, J. de

    1979-01-01

    Lecithins with fatty acid chain length of 17 carbon atoms and different degrees of unsaturation were synthesized. The thermotropic behaviour and barrier function of derived liposomal bilayers were studied.

  3. Omega-3 polyunsaturated fatty acid supplementation attenuates blood pressure increase at onset of isometric handgrip exercise in healthy young and older humans.

    Science.gov (United States)

    Clark, Christine M; Monahan, Kevin D; Drew, Rachel C

    2016-07-01

    Aging is associated with alterations of autonomic nerve activity, and dietary intake of omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish oil (FO), can modulate autonomic nerve activity. However, the effect of omega-3 polyunsaturated fatty acid consumption on age-related cardiovascular responses at the onset of isometric handgrip exercise, a time of rapid autonomic adjustments, is unknown. Accordingly, 14 young (25 ± 1 years; mean ± SE) and 15 older (64 ± 2 years) healthy subjects ingested 4 g FO daily for 12 weeks. On pre- and postintervention visits, participants performed 15-sec bouts of isometric handgrip at 10%, 30%, 50%, and 70% maximal voluntary contraction (MVC) while beat-to-beat systolic, diastolic, and mean arterial blood pressure (SBP, DBP, MAP; Finometer) and heart rate (HR; electrocardiogram) were recorded. All baseline cardiovascular variables were similar between groups and visits, except DBP was higher in older subjects (P EPA and DHA content in both groups (P < 0.05). FO attenuated MAP and DBP increases in response to handgrip in both age groups (change from baseline during 70% MVC handgrip pre- and post-FO: young MAPΔ 14 ± 2 mmHg versus 10 ± 2 mmHg, older MAPΔ 14 ± 3 mmHg versus 11 ± 2 mmHg; young DBPΔ 12 ± 1 mmHg versus 7 ± 2 mmHg, older DBPΔ 12 ± 1 mmHg versus 7 ± 1 mmHg; P < 0.05). FO augmented the PP (SBP-DBP) increase with 70% MVC handgrip in both groups (P < 0.05), but did not alter SBP or HR increases with handgrip. These findings suggest that FO supplementation attenuates MAP and DBP increases at the onset of isometric handgrip exercise in healthy young and older humans. PMID:27440746

  4. Effects of Chrysanthemum coronarium Extract on Fermentation Characteristics and Biohydrogenation of Polyunsaturated Fatty Acids in vitro Batch Culture

    Institute of Scientific and Technical Information of China (English)

    WANG Li-fang; MA Yan-fen; GAO Min; LU De-xun

    2011-01-01

    Introduction Cis-9,trans-11 CLA has been shown to be potentially health-promoting CLA in many animal models.The C18:1 trans-11 fatty acid(VA) is also desirable as a product flowing from the rumen,because the flow from the rumen of VA play a more important role than CLA in determining CLA concentration in animal tissues.

  5. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults.

    Science.gov (United States)

    Phillips, Catherine M; Goumidi, Louisa; Bertrais, Sandrine; Field, Martyn R; Ordovas, Jose M; Cupples, L Adrienne; Defoort, Catherine; Lovegrove, Julie A; Drevon, Christian A; Blaak, Ellen E; Gibney, Michael J; Kiec-Wilk, Beata; Karlstrom, Britta; Lopez-Miranda, Jose; McManus, Ross; Hercberg, Serge; Lairon, Denis; Planells, Richard; Roche, Helen M

    2010-02-01

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, and MetS risk and whether plasma fatty acids, a biomarker of dietary fatty acids, modulate this. LEPR polymorphisms (rs10493380, rs1137100, rs1137101, rs12067936, rs1805096, rs2025805, rs3790419, rs3790433, rs6673324, and rs8179183), biochemical measurements, and plasma fatty acid profiles were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). LEPR rs3790433 GG homozygotes had increased MetS risk compared with the minor A allele carriers [odds ratio (OR) = 1.65; 95% CI: 1.05-2.57; P = 0.028], which may be accounted for by their increased risk of elevated insulin concentrations (OR 2.40; 95% CI: 1.28-4.50; P = 0.006) and insulin resistance (OR = 2.15; 95% CI: 1.18-3.90; P = 0.012). Low (less than median) plasma (n-3) and high (n-6) PUFA status exacerbated the genetic risk conferred by GG homozygosity to hyperinsulinemia (OR 2.92-2.94) and insulin resistance (OR 3.40-3.47). Interestingly, these associations were abolished against a high (n-3) or low (n-6) PUFA background. Importantly, we replicated some of these findings in an independent cohort. Homozygosity for the LEPR rs3790433 G allele was associated with insulin resistance, which may predispose to increased MetS risk. Novel gene-nutrient interactions between LEPR rs3790433 and PUFA suggest that these genetic influences were more evident in individuals with low plasma (n-3) or high plasma (n-6) PUFA. PMID:20032477

  6. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    Science.gov (United States)

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals. PMID:23870885

  7. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    Science.gov (United States)

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.

  8. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  9. Serum levels of short-chain fatty acids in cirrhosis and hepatic coma.

    Science.gov (United States)

    Clausen, M R; Mortensen, P B; Bendtsen, F

    1991-12-01

    Short-chain fatty acids cause reversible coma in animals and may contribute to the pathogenesis of the hepatic coma in humans. The concentrations of short-chain fatty acids in peripheral venous blood were significantly elevated in 15 patients with hepatic encephalopathy caused by cirrhosis (362 +/- 83 mumol/L; mean +/- S.E.M.) compared with 17 cirrhotic patients without encephalopathy (178 +/- 57 mumol/L) and 11 normal individuals (60 +/- 8 mumol/L). However, no correlation between the depth of coma and the level of short-chain fatty acids was found after repetitive measurements in the coma group. Compared with normal individuals, all short-chain fatty acids, except valerate, were elevated in patients with hepatic encephalopathy, whereas only the concentrations of isobutyrate and isovalerate were significantly elevated in cirrhotic patients without encephalopathy. The concentrations of short-chain fatty acids in 21 nonencephalopathic cirrhotic patients who underwent catheterization were equally distributed in the aorta (187 +/- 56 mumol/L), the hepatic vein (212 +/- 75 mumol/L), the azygos vein (140 +/- 37 mumol/L) and the renal vein (135 +/- 43 mumol/L) compared with peripheral venous blood (178 +/- 57 mumol/L). This study does not support the idea that short-chain fatty acids are of major importance in the pathogenesis of hepatic coma in patients with cirrhosis. PMID:1959851

  10. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids...

  11. Antibacterial Activity of Long-Chain Fatty Alcohols against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Yoshihiro Inoue

    2007-02-01

    Full Text Available The antibacterial activity against Staphylococcus aureus of long-chain fatty alcohols was investigated, with a focus on normal alcohols. The antibacterial activity varied with the length of the aliphatic carbon chain and not with the water/octanol partition coefficient. 1-Nonanol, 1-decanol and 1-undecanol had bactericidal activity and membrane-damaging activity. 1-Dodecanol and 1-tridecanol had the highest antibacterial activity among the long-chain fatty alcohols tested, but had no membrane-damaging activity. Consequently, it appears that not only the antibacterial activity but also the mode of action of long-chain fatty alcohols might be determined by the length of the aliphatic carbon chain.

  12. The role of polyunsaturated fatty acids in allergic diseases prevention%多不饱和脂肪酸预防过敏性疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    武玉凤

    2011-01-01

    Studies suggested a link between the declining consumption of n-3 polyunsaturated fatty acids (n-3 PUFA)and the rise in allergic diseases. Although the effect of supplementing n-3 PUFA on the treatment of atopic diseases in adult has been disappointing, the epidemiological evidence suggested n-3 polyunsaturated fatty acids may play a role in against allergy. In recent years, there has been a growing focus on the role of n-3 PUFA in allergy prevention in early life. This review will examine the current evidences about the effects and mechanisms of n-3 polyunsaturated fatty acids in allergy protection.%研究显示n-3多不饱和脂肪酸(PUFA)摄入降低与过敏性疾病发病率增加有关.补充n-3PUFA对过敏性疾病的临床疗效尚不确定,但已有流行病学研究提示n-3 PUFA具有一定抗过敏效应.近年来生命早期补充n-3 PUFA对过敏性疾病的预防成为研究的重点.

  13. Alterations in sheep peripheral blood mononuclear cell proliferation and cytokine release by polyunsaturated fatty acid supplementation in the diet under high ambient temperature.

    Science.gov (United States)

    Ciliberti, Maria Giovanna; Albenzio, Marzia; Annicchiarico, Giovanni; Sevi, Agostino; Muscio, Antonio; Caroprese, Mariangela

    2015-02-01

    The aim of this study was to investigate the effects of polyunsaturated fatty acid (PUFA) supplementation from different sources in the diet of dairy sheep under high ambient temperatures on ex vivo lymphocyte proliferation and inflammatory responses. The experiment was carried out during summer: 32 Comisana ewes were divided into 4 groups of 8. The FS group was supplemented with whole flaxseed, the AG group was supplemented with Ascophyllum nodosum, the FS+AG group was supplemented with a combination of flaxseed and A. nodosum. The fourth group (CON group) was a control and received a diet containing no supplement. The average maximum temperature was around 33°C during wk 2 and 3, whereas the mean temperature never decreased below 26°C. Following 15 d of treatment with respective diets, peripheral blood mononuclear cells (PBMC) from sheep who received a diet supplemented with A. nodosum had impaired cell proliferation responses and IL-6 production after mitogen stimulation compared with PBMC from FS+AG sheep. In addition, PBMC from AG sheep displayed impaired cell proliferation compared with cells from the CON group. The FS+AG cells produced lower levels of IL-10 than CON cells, and higher IL-6 than AG and CON cells. Results demonstrated that the supplementation with PUFA from different sources in a sheep's diet can influence their immunological responses under high ambient temperatures depending on the composition of fatty acid supplementation. In particular, synergistic effects of different PUFA from flaxseed and A. nodosum, simultaneously administrated in the sheep diet, were observed on activation of inflammation response. PMID:25497814

  14. Endogenous n-3 Polyunsaturated Fatty Acids Delay Progression of Pancreatic Ductal Adenocarcinoma in Fat-1-p48Cre/+-LSL-KrasG12D/+ Mice

    Directory of Open Access Journals (Sweden)

    Altaf Mohammed

    2012-12-01

    Full Text Available Preclinical studies suggest that diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs may be beneficial for prevention of pancreatic cancer. Nutritional intervention studies are often complex, and there is no clear evidence, without potential confounding factors, on whether conversion of n-6 PUFAs to n-3 PUFAs in pancreatic tissues would provide protection. Experiments were designed using n-3 fatty acid desaturase (Fat-1 transgenic mice, which can convert n-6 PUFA to n-3 FAs endogenously, to determine the impact of n-3 PUFAs on pancreatic intraepithelial neoplasms (PanINs and their progression to pancreatic ductal adenocarcinoma (PDAC. Six-weekold female p48Cre/+-LSL-KrasG12D/+ andcompoundFat-1-p48Cre/+-LSL-KrasG12D/+ mice were fed (AIN-76A diets containing 10% safflower oil for 35 weeks. Pancreata were evaluated histopathologically for PanINs and PDAC. Results showed a dramatic reduction in incidence of PDAC (84%; P 85%; P < .05–0.01 in pancreas of compound transgenic mice than in those of p48Cre/+-LSL-KrasG12D/+ mice. Molecular analysis of the pancreas showed a significant down-regulation of proliferating cell nuclear antigen, cyclooxygenase-2, 5-lipoxygenase (5-LOX, 5-LOX-activating protein, Bcl-2, and cyclin D1 expression levels in Fat-1-p48Cre/+-LSL-KrasG12D/+ mice compared to p48Cre/+-LSL-KrasG12D/+ mice. These data highlight the promise of dietary n-3 FAs for chemoprevention of pancreatic cancer in high-risk individuals.

  15. The combined action of omega-3 polyunsaturated fatty acids and grape proanthocyanidins on a rat model of diet-induced metabolic alterations.

    Science.gov (United States)

    Ramos-Romero, Sara; Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Taltavull, Núria; Dasilva, Gabriel; Romeu, Marta; Medina, Isabel; Torres, Josep Lluís

    2016-08-10

    It has been suggested that food components such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and (poly)phenols counteract diet-induced metabolic alterations by common or complementary mechanisms. To examine the effects of a combination of ω-3 PUFAs and (poly)phenols on such alterations, adult Wistar-Kyoto rats were fed an obesogenic high-fat high-sucrose diet supplemented, or not, for 24 weeks with: eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1 : 1 (16.6 g kg(-1) feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g kg(-1) feed); or EPA/DHA 1 : 1 + GSE. Body weight, feed intake, and plasma glucose were evaluated every 6 weeks, while adipose tissue weight, insulin, glucagon, ghrelin, leptin, adiponectin, cholesterol, and triglycerides were evaluated at the end of the experiment. ω-3 PUFAs reduced plasma leptin and cholesterol levels, but did not modify diet-induced perigonadal fat or plasma insulin levels; while GSE increased plasma triglyceride levels. The combined action of ω-3 PUFAs and the proanthocyanidins reduced plasma insulin and leptin, as well as partially prevented perigonadal fat accumulation. While separate supplementation with ω-3 PUFAs or grape proanthocyanidins may not counteract all the key metabolic changes induced by a high-energy-dense diet, the combination of both supplements reverts altered insulin, leptin and triglyceride levels to normal. PMID:27418399

  16. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  17. Mitigation of indomethacin-induced gastrointestinal damages in fat-1 transgenic mice via gate-keeper action of ω-3-polyunsaturated fatty acids

    Science.gov (United States)

    Han, Young-Min; Park, Jong-Min; Kang, Jing X.; Cha, Ji-Young; Lee, Ho-Jae; Jeong, Migeyong; Go, Eun-Jin; Hahm, Ki Baik

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) damage the gastrointestinal (GI) epithelial cell membranes by inducing several signals through lipid raft organization after membrane incorporation, whereas ω-3 polyunsaturated fatty acids (PUFAs) relieve inflammation, reduce oxidative stress, and provide cytoprotection, consequent to lipid raft disorganization. Therefore, we hypothesized that ω-3 PUFAs can protect the GI from NSAID-induced damages by initiating the gatekeeper action of cell membranes, subsequent to anti-inflammatory and anti-oxidative actions. Administration of indomethacin (IND) leads to the formation of lipid rafts and activation of caveolin-1; however, no such observations were made upon co-administration of eicosapentaenoic acid (EPA) and IND. In addition, the EPA-induced lipid raft disorganization, caveolin-1 inactivation, and cellular cytotoxicity were inhibited when target cells were knocked-out using G-protein coupled receptor 120 (GPR 120). EPA significantly attenuated IND-induced oxidative damage and apoptosis. IND administration induced significant ulceration, bleeding, and oedema in the stomach or small intestine of wild-type (WT) mice; however, such severe damages to the GI significantly decreased in fat-1 transgenic (TG) mice (P < 0.001), which exhibited decreased cyclooxygenase-2 expression and apoptosis, decreased interleukin-1β and FAS concentrations, and increased heme oxygenase-1 concentration. Our study indicates that the gatekeeper function of ω-3 PUFAs improves GI safety when administered with NSAID. PMID:27658533

  18. The Association between Cerebral White Matter Lesions and Plasma Omega-3 to Omega-6 Polyunsaturated Fatty Acids Ratio to Cognitive Impairment Development

    Directory of Open Access Journals (Sweden)

    Michihiro Suwa

    2015-01-01

    Full Text Available Objective. Cerebral white matter hyperintensity (WMH with magnetic resonance imaging (MRI has a potential for predicting cognitive impairment. Serum polyunsaturated fatty acid (PUFA levels are important for evaluating the extent of atherosclerosis. We investigated whether abnormal PUFA levels affected WMH grading and cognitive function in patients without significant cognitive impairment. Methods. Atherosclerotic risk factors, the internal carotid artery (ICA plaque, and serum ratios of eicosapentaenoic to arachidonic acids (EPA/AA and docosahexaenoic to arachidonic acids (DHA/AA were assessed in 286 patients. The relationship among these risk factors, WMH, and cognitive function was evaluated using WMH grading and the Mini-Mental State Examination (MMSE. Results. The development of WMH was associated with aging, hypertension, ICA plaques, and a low serum EPA/AA ratio (<0.38, obtained as the median value but was not related to dyslipidemia, diabetes, smoking, and a low serum DHA/AA ratio (<0.84, obtained as the median value. In addition, the MMSE score deteriorated slightly with the progression of WMH (29.7 ± 1.0 compared to 28.4 ± 2.1, P<0.0001. Conclusions. The progression of WMH was associated with a low serum EPA/AA ratio and accompanied minimal deterioration in cognitive function. Sufficient omega-3 PUFA intake may be effective in preventing the development of cognitive impairment.

  19. Effects of treatment of whole fat soybeans or soy flour with formaldehyde to protect the polyunsaturated fatty acids from biohydrogenation in the rumen.

    Science.gov (United States)

    Ackerson, B A; Johnson, R R; Hendrickson, R L

    1976-10-01

    Full-fat, ground soy flour (GSF) was treated with 37% formaldehyde (HCHO) and evaluated by in vitro and in vivo criteria to determine the protection afforded linoleic acid against ruminal biohydrogenation when the materials described above were fed as a protein supplement to rations for growing lambs. The supplements compared were soybean meal (SBM), uked for 2 hours. Organoleptic evaluations were conducted to determine if any flavor differences in meat from lambs fed these supplements could be detected. Excellent protection of linoleic acid, the major polyunsaturated fatty acid in soybeans, was noted both in vitro and in vivo. Rump, shoulder, kidney knob and omental fat depots of lambs fed the HCHO treated GSF ration had significantly more linoleic acid than lambs fed untreated GSF while lambs fed untreated GSF had significantly, more linoleic acid in their fat depots than lambs fed SBM. Linoleic acid content of intramuscular (loin) fat from lambs fed HCHO treated GSF was not significantly different from lambs fed untreated GSF, but lambs fed untreated GSF had significantly more loin linoleic acid than lambs fed SBM. No significant differences were noted in daily feed intake, feed efficiency or average daily gain for lambs fed growing-finishing rations containing any of the products tested as the protein supplement. A taste panel could not detect any differences in flavor of ground loin among any of the treatments. PMID:987164

  20. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    Science.gov (United States)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm‑1) and lipid (~2845 cm‑1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  1. n-3 Polyunsaturated Fatty Acid Supplementation Has No Effect on Postprandial Triglyceride-Rich Lipoprotein Kinetics in Men with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    André J. Tremblay

    2016-01-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been proposed to modulate plasma lipids, lipoprotein metabolism, and inflammatory state and to reduce triglyceride (TG concentrations. The present double-blind, randomized, placebo-controlled, crossover study investigated the effects of n-3 PUFA supplementation at 3 g/d for 8 weeks on the intravascular kinetics of intestinally derived apolipoprotein (apo B-48-containing lipoproteins in 10 men with type 2 diabetes. In vivo kinetics of the TG-rich lipoprotein (TRL apoB-48 and VLDL apoB-100 were assessed using a primed-constant infusion of L-[5,5,5-D3] leucine for 12 hours in a fed state. Compared with the placebo, n-3 PUFA supplementation significantly reduced fasting TG concentrations by −9.7% (P=0.05 but also significantly increased plasma levels of cholesterol (C (+6.0%, P=0.05, LDL-C (+12.2%, P=0.04, and HDL-C (+8.4, P=0.007. n-3 PUFA supplementation had no significant impact on postprandial TRL apoB-48 and VLDL apoB-100 levels or on the production or catabolic rates of these lipoproteins. These data indicate that 8-week supplementation with n-3 PUFAs in men with type 2 diabetes has no beneficial effect on TRL apoB-48 and VLDL apoB-100 levels or kinetics.

  2. The effect of polyunsaturated fatty acids on the homeostasis of yolk lipoprotein in C. elegans examined by CARS and two-photon excitation fluorescence (TPE-F) microscopy

    Science.gov (United States)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Lin, Yi-Chun; Ma, Tian-Hsiang; Lo, Szecheng J.; Chang, Ta-Chau

    2016-03-01

    Yolk lipoprotein constitutes the major source of energy and the materials for synthesizing signaling factors for the development of oocytes and embryos in C. elegans. Polyunsaturated fatty acids (PUFAs) packed in yolk lipoprotein have been recently recognized as critical molecules for fertilization and reproduction.1 However, the relation between PUFAs and the homeostasis of yolk lipoprotein is not clear. Here we use coherent anti-Stokes Raman scattering (CARS) microscopy and two-photon excitation fluorescence (TPE-F) microscopy to examine the transportation of yolk lipoprotein. We demonstrate that CARS microscopy is a more sensitive method than the traditional Nile Red staining method in probing the abnormal accumulation of yolk lipoprotein in the body cavity of C. elegans. It is found that the accumulation of yolk lipoprotein is a time-dependent process. In addition, a negative correlation (r = -0.955) between reproductive aging and abnormal accumulation of yolk lipoprotein is established. We further examine wild-type, fat-1, and fat-2 worms with or without the expression of GFP-tagged yolk lipoprotein (VIT-2-GFP). Our data reveal that PUFAs have a positive effect on the synthesis and endocytosis of yolk lipoprotein, confirming the model proposed by Edmonds et al.2

  3. Development of an LC-MS/MS analytical method for the simultaneous measurement of aldehydes from polyunsaturated fatty acids degradation in animal feed.

    Science.gov (United States)

    Douny, Caroline; Bayram, Pinar; Brose, François; Degand, Guy; Scippo, Marie-Louise

    2016-05-01

    Knowing that polyunsaturated fatty acids can lead to the formation of potentially toxic aldehydes as secondary oxidation products, an analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) detection was developed to measure the concentration of eight aldehydes in animal feed: malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), 4-hydroxy-2-hexenal (4-HHE), crotonaldehyde (CRT), benzaldehyde (BNZ), hexanal (HXL), 2,4-nonadienal, and 2,4-decadienal. The developed method was validated according to the criteria and procedure described in international standards. The evaluated parameters were specificity/selectivity, recovery, precision, accuracy, uncertainty, limits of detection and quantification, using the concept of accuracy profiles. These parameters were determined during experiments conducted over three different days with ground Kellogg's® Corn Flakes® cereals as model matrix for animal feed and spiked at different levels of concentration. Malondialdehyde, 4-HHE, 4-HNE, crotonaldehyde, benzaldehyde, and hexanal can be analyzed in the same run in animal feed with a very good accuracy, with recovery rates ranging from 86 to 109% for a working range going from 0.16 to 12.50 mg/kg. The analysis of 2,4-nonadienal and 2,4-decadienal can also be performed but in a limited range of concentration and with a limited degree of accuracy. Their recovery rates ranged between 54 and 114% and coefficient of variation for the intermediate precision between 11 and 25% for these two compounds. Copyright © 2016 John Wiley & Sons, Ltd.

  4. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections.

    Science.gov (United States)

    Whelan, Jarrett; Gowdy, Kymberly M; Shaikh, Saame Raza

    2016-08-15

    B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.

  5. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    Science.gov (United States)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm-1) and lipid (~2845 cm-1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  6. The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

    Science.gov (United States)

    Krizak, Jakub; Frimmel, Karel; Bernatova, Iveta; Navarova, Jana; Sotnikova, Ruzena; Okruhlicova, Ludmila

    2016-01-01

    Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of adult Wistar rats after a single dose of bacterial lipopolysaccharide (LPS, Escherichia coli, 1 mg/kg). The ultrastructure of TJs after LPS administration was also investigated. We measured plasma levels of C-reactive protein (CRP), Malondialdehyde (MDA) and CD68 expression and determined the total activity of NO synthase (NOS) in the aortic tissue. Results: LPS induced a significant decrease of occludin expression accompanied by structural alterations of TJs. Levels of CRP, MDA, CD68 and NOS activity were elevated after LPS injection compared to controls indicating presence of moderate inflammation. Ω-3 PUFA supplementation did not affect occludin expression in treated inflammatory group. However they reduced CRP and MDA concentration and CD68 expression, but conversely, they increased NOS activity compared to inflammatory group. Conclusion: Our results indicate that a single dose of LPS could have a long-term impact on occludin expression and thus contribute to endothelial barrier dysfunction. 10-day administration of Ω-3 PUFA had partial anti-inflammatory effects on health of rats without any effect on occludin expression. PMID:27114799

  7. A Novel Process for the Synthesis of Highly Pure n-3 Polyunsaturated Fatty Acid (PUFA)-Enriched Triglycerides by Combined Transesterification and Ethanolysis.

    Science.gov (United States)

    Li, Daoming; Wang, Weifei; Qin, Xiaoli; Li, Xingxing; Yang, Bo; Wang, Yonghua

    2016-08-31

    In this study, a novel two-step enzymatic reaction was developed for the synthesis of highly pure triacylglycerols (TAGs) with a high content of n-3 polyunsaturated fatty acids (PUFAs). Glyceride mixtures were primarily synthesized by Novozym 435-catalyzed transesterification of glycerol and DHA/EPA-rich ethyl esters (EEs), followed by removal of partial glycerides, for the first time, by immobilized mono- and diacylglycerol lipase SMG1-F278N-catalyzed ethanolysis. TAG yield as high as 98.66% was achieved under the optimized conditions, and highly pure (98.75%) n-3 PUFA-enriched TAGs with 88.44% of n-3 PUFA was obtained after molecular distillation at lower temperature (140 °C). In addition, the EEs produced during ethanolysis had a FA composition similar to that of the original EEs, making them feasible for cyclic utilization. This was the first study reporting removal of partial glycerides by ethanolysis. Through ethanolysis, a higher purity product could be easily obtained at a relatively low temperature compared with the conventional high-temperature molecular distillation. PMID:27540752

  8. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols.

    Science.gov (United States)

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2016-11-01

    Declining quantity/quality of available n-3 polyunsaturated fatty acids (n-3 PUFAs) resources demand innovative technology to concentrate n-3 PUFAs from low quality oils into value-added products/health-beneficial ingredients rich in n-3 PUFAs. This work proposed the catalytic property and specificity of an ideal enzyme required to tackle this task and identified Candida antarctica lipase A (CAL-A) is such a near-ideal enzyme in practice, which concentrates n-3 PUFAs from 25% to 27% in oils to a theoretically closer value 90% in monoacylglycerols (MAGs) via one-step enzymatic ethanolysis. Non-regiospecificity and high non-n-3 PUFAs preference of CAL-A are the catalytic feature to selectively cleave non-n-3 PUFAs in all 3 positions of triacylglycerols (TAGs); while high ethanol/TAGs ratio, low operation temperature and high tolerance to polar ethanol are essential conditions beyond biocatalyst itself. C-13 Nuclear magnetic resonance ((13)C NMR) analysis and competitive factor estimation verified the hypothesis and confirmed the plausible suggestion of catalytic mechanism of CAL-A. PMID:27521783

  9. Effect of feeding whole linseed as a source of polyunsaturated fatty acids on performance and egg characteristics of laying hens kept at high ambient temperature

    Directory of Open Access Journals (Sweden)

    S Ahmad

    2013-03-01

    Full Text Available The present study was conducted to evaluate the effects of feeding whole linseed on the laying performance and egg characteristics in laying hens kept at high ambient environmental temperatures (average 34 ºC; the diurnal temperature range 26 ºC to 41 ºC. Two hundred and forty 38-wk-old white Leghorn laying hens were fed diets containing 0, 5, 10 or 15% whole linseed (as a source of n-3 polyunsaturated fatty acids for a period of 12 weeks. Egg production was recorded daily, while feed intake and egg characteristics were monitored on weekly basis. The results of the study demonstrated that egg production and feed intake decreased, while feed conversion ratio (FCR per dozen of eggs increased (p 0.05 by linseed levels in the diets offered to the laying hens. The results of the present trial suggest that feeding linseed to the laying hens in hot climates has no detrimental effects on egg characteristics, but has suppressive effects on egg production, feed intake and feed efficiency of laying hens.

  10. The effects of maternal supplementation of polyunsaturated Fatty acids on visual, neurobehavioural, and developmental outcomes of the child: a systematic review of the randomized trials.

    Science.gov (United States)

    Lo, Andrea; Sienna, Julianna; Mamak, Eva; Djokanovic, Nada; Westall, Carol; Koren, Gideon

    2012-01-01

    Polyunsaturated fatty acid (PUFA) use in pregnancy has been promoted as beneficial for visual and neurobehavioural development in the fetus. However, no systematic review of the randomized trials has been conducted. The objective of this review was to evaluate potential advantages of this regiment by reviewing all randomized trials in pregnancy. Methods. Systematic review of randomized controlled studies comparing cognitive and visual achievements among infants whose mothers were treated and untreated with PUFA during gestation. Results. Nine studies met the inclusion criteria, three focusing on visual and six on neurobehavioural development. Due to differing outcome measurements in the infants, the studies could not be combined into a formal meta-analysis. Synthesizing the existing data, for both visual and neurobehavioural development, most studies could not show sustained benefits to infant cognition or visual development. Conclusion. At the present time a recommendation to change practice and supplement all expecting mothers with PUFA to improve offspring vision or neurobehavioural function is not supported by existing evidence.

  11. The Effects of Maternal Supplementation of Polyunsaturated Fatty Acids on Visual, Neurobehavioural, and Developmental Outcomes of the Child: A Systematic Review of the Randomized Trials

    Directory of Open Access Journals (Sweden)

    Andrea Lo

    2012-01-01

    Full Text Available Polyunsaturated fatty acid (PUFA use in pregnancy has been promoted as beneficial for visual and neurobehavioural development in the fetus. However, no systematic review of the randomized trials has been conducted. The objective of this review was to evaluate potential advantages of this regiment by reviewing all randomized trials in pregnancy. Methods. Systematic review of randomized controlled studies comparing cognitive and visual achievements among infants whose mothers were treated and untreated with PUFA during gestation. Results. Nine studies met the inclusion criteria, three focusing on visual and six on neurobehavioural development. Due to differing outcome measurements in the infants, the studies could not be combined into a formal meta-analysis. Synthesizing the existing data, for both visual and neurobehavioural development, most studies could not show sustained benefits to infant cognition or visual development. Conclusion. At the present time a recommendation to change practice and supplement all expecting mothers with PUFA to improve offspring vision or neurobehavioural function is not supported by existing evidence.

  12. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    Science.gov (United States)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2013-07-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acid (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and atmosphere of the marine boundary layer is discussed.

  13. Correlation between the different chain lengths of free fatty acid oxidation and ability of trophoblastic invasion

    Institute of Scientific and Technical Information of China (English)

    Yu Huan; Yang Zi; Ding Xiaoyan; Wang Yanling; Han Yiwei

    2014-01-01

    Background Preeclampsia (PE) is associated with abnormal fatty acid beta-oxidation (FAO),especially metabolic disorders of long-chain fatty acid oxidation.The role of FAO dysfunction in inadequate invasion is unclear.The aim of this study was to explore the influence of various lengths fatty acids oxidation on invasiveness of trophoblasts.Methods Primary human trophoblast cells and HTR8/SVneo cells were treated with fatty acids of various lengths.Morphological changes,lipid deposition and ultrastructure changes of trophoblast cells were detected.Cells invasiveness was determined by transwell insert.CPT1,CPT2 and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) protein expression were analyzed.The correlation between intracellular lipid droplets deposition and cells invasiveness was evaluated.Results Cells treated with long-chain fatty acids showed significant increased lipid droplets deposition,severe mitochondrial damage,decreased CPT2 and LCHAD protein expression (P <0.05) but no significant difference in CPT1 protein expression (P >0.05).Invasiveness of the trophoblast cells of the LC-FFA group significantly decreased (P <0.05).Intracellular lipid droplets deposition was negatively correlated with invasivenss (R=-0.745,P <0.05).Conclusion Trophoblast cells after stimulation with long chain fatty acids exist fatty acid oxidation disorders,and reduce the ability of trophoblastic invasion.

  14. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... on the substrate concentrations used. At excess acetyl-CoA to malonyl-CoA, greater amounts of acetyl-CoA were incorporated than theoretically expected from the malonyl-CoA pathway. At excess malonyl-CoA, less acetyl-CoA was incorporated than theoretically expected. - 4. An increase in the chain-length of fatty...

  15. Ácidos graxos poli-insaturados n-3 e n-6: metabolismo em mamíferos e resposta imune Omega-3 and omega-6 polyunsaturated fatty acids: metabolism in mammals and immune response

    Directory of Open Access Journals (Sweden)

    João Ângelo De Lima Perini

    2010-12-01

    Full Text Available A experimentação animal apresenta uma grande importância para o desenvolvimento da ciência. O uso de camundongos em experimentos ocorre devido à semelhança destes animais com os seres humanos, fácil criação e manutenção e resposta experimental bastante rápida. Esses animais possuem as mesmas enzimas dessaturases e elongases que os humanos, por isso são usados em pesquisas envolvendo incorporação e síntese de ácidos graxos em tecidos. Os ácidos graxos da família ômega-3 e ômega-6 são de suma importância na dieta humana, pois estes não são sintetizados pela síntese de novo e são precursores dos ácidos graxos poli-insaturados de cadeia muito longa, como os ácidos eicosapentaenóico, docosahexaenóico e araquidônico. Estes desempenham funções importantes no organismo, como a síntese de eicosanóides que estão envolvidos diretamente no sistema imune e nas respostas inflamatórias. A razão entre o consumo de ácidos graxos n-6 e n-3 na dieta é um importante fator para determinar a ingestão adequada de ácidos graxos bem como prevenir o aparecimento de doenças. Este artigo tem como objetivo avaliar a incorporação de ácidos graxos em tecidos de animais e discutir a importância dos ácidos da família n-3 e seus metabólitos no sistema imunológico.Experiments with animals are very important for the improvement of science. The use of mice in experiments is due to their similarity with humans, the easy of raising and maintaining them and their very fast response. These animals have the same desaturase and elongase enzymes as humans and so they are used in research involving the incorporation and synthesis of fatty acids in tissues. The fatty acids omega-3 and omega-6 are extremely important in the human diet because they are not synthesized de novo and are precursors of very long-chain polyunsaturated fatty acids, such as the eicosapentaenoic, docosahexaenoic and arachidonic acids. These acids play important roles

  16. The Effect of Fatty Amine Chain Length on Synthesis Process of Inp/Zns Quantum Dots

    Directory of Open Access Journals (Sweden)

    Zahra Ranjbar Navazi

    2016-08-01

    Full Text Available Obtaining narrow size distribution through conventional methods used for quantum dots of group II-VI semiconductors is impractical in the case of III-V semiconductors speciallyInP/ZnS quantum dots because of molecular precursors depletion and growth stage continuation through Ostwald ripening process. Using fatty amines as activator along with precursors can lead to more monodispersed quantum dots. In this work, the effect of fatty amine chain length on InP/ZnS quantum dots synthesis was investigated. Octylamine, dodecylamine and oleylamine were used as the activator of InP/ZnS quantum dots synthesis. Synthesis progress and color changes in reaction mixture with time lapse, indicative of formed quantum dots concentration, was intensified in presence of fatty amines with shorter chain length. Quantum dots with smaller mean size and broader size distribution were synthesized in presence of longer fatty amines as a result of higher capping capacity of them. Thereupon the optical properties of quantum dots were affected by chain length of fatty amine. Longer wavelength of photoluminescence emission was achieved by using octylamine with the shortest chain length among selected fatty amines.

  17. Orphan drugs in development for long-chain fatty acid oxidation disorders: challenges and progress

    Directory of Open Access Journals (Sweden)

    Sun A

    2015-04-01

    Full Text Available Angela Sun, J Lawrence Merritt II Department of Pediatrics, University of Washington, Seattle, WA, USA Abstract: Fatty acid oxidation disorders are inborn errors of metabolism resulting in failure of ß-oxidation within or transport of fatty acids into the mitochondria. The long-chain fatty acid oxidation disorders are characterized by variable presentations ranging from newborn cardiomyopathy, to infantile hypoketotic hypoglycemia resulting from liver involvement, to skeletal myopathy often resulting in rhabdomyolysis in adolescents and adults. Treatments for these long-chain fatty acid oxidation disorders have typically focused upon avoidance of fasting with dietary fat restriction and medium-chain triglyceride supplementation. These treatments have resulted in only a partial response with improvements in hypoglycemia, reduction in frequency of rhabdomyolysis, and improvement in cardiomyopathy with early therapy, but significant risk remains. Recent advances in therapies for long-chain fatty acid oxidation disorders are reviewed in this article. These include sodium D,L-3-hydroxybutyrate, triheptanoin, gene therapy, and bezafibrates. Sodium D,L-3-hydroxybutyrate has shown clinical effect, with improvements in muscle tone, neurological abnormalities, and some cases of cardiomyopathy and leukodystrophy. Triheptanoin has been used as an alternative medium-chain triglyceride in a number of fatty acid oxidation disorders and has shown promising findings in the treatment of cardiomyopathy and hypoglycemia. However, it does not significantly reduce episodes of rhabdomyolysis. Gene therapy has been shown to improve acylcarnitine levels in very-long-chain acyl-coenzyme A dehydrogenase deficiency mouse models, with preservation of glucose levels. Bezafibrates have shown improvements in acylcarnitine concentrations in fibroblast studies, but clinical observations have not demonstrated consistent effects. Together, these treatments have shown some

  18. Gene expression of desaturase (FADS1 and FADS2 and Elongase (ELOVL5 enzymes in peripheral blood: association with polyunsaturated fatty acid levels and atopic eczema in 4-year-old children.

    Directory of Open Access Journals (Sweden)

    Aida Maribel Chisaguano

    Full Text Available BACKGROUND: It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA levels in children with atopic eczema (AE. We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5 is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children. METHODS: AE (n=20 and non-AE (n=104 children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson's rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE. RESULTS: Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA and arachidonic (AA acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively, but no differences were found for FADS1. CONCLUSIONS AND SIGNIFICANCE: Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children.

  19. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    Science.gov (United States)

    Belhaj, Nabila; Desor, Frédéric; Gleizes, Céline; Denis, Frédéric M.; Arab-Tehrany, Elmira; Soulimani, Rachid; Linder, Michel

    2013-01-01

    A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS), after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation. PMID:24177675

  20. Production, composition, and oxidative stability of milk highly enriched in polyunsaturated fatty acids from dairy cows fed alfalfa protein concentrate or supplemental vitamin E.

    Science.gov (United States)

    Fauteux, M-C; Gervais, R; Rico, D E; Lebeuf, Y; Chouinard, P Y

    2016-06-01

    Given its elevated content of carotenoids, alfalfa protein concentrates (APC) have the potential to prevent oxidation of milk enriched in polyunsaturated fatty acids. The effects of feeding APC or supplemental vitamin E on production, composition, and oxidative stability of milk enriched in polyunsaturated fatty acids were evaluated using 6 lactating Holstein cows (224±18d in milk) in a replicated 3×3 Latin square (21-d periods, 14d for adaptation). Treatment diets contained (dry matter basis) (1) 9% soybean meal (control, CTL); (2) 9% soybean meal + 300 IU of vitamin E/kg (VitE treatment); or (3) 9% APC (APC treatment). Cows received a continuous abomasal infusion of 450g/d of linseed oil. As a result, milk fat content of cis-9,cis-12 18:2 increased from 1.08±0.13 to 3.9±0.40% (mean ± SD), whereas cis-9,cis-12,cis-15 18:3 increased from 0.40±0.04 to 14.27±1.81% during the experimental period compared with the pretrial period. Milk yield tended to be higher for APC (14.7kg/d) compared with CTL (13.4kg/d), and was greater than that for VitE (13.0kg/d). Protein yield was higher in cows fed APC (518g/d) compared with VitE (445g/d) but was not different from that in cows fed CTL (483g/d). These effects resulted in improved milk N efficiency in cows fed APC (26.1% of N intake secreted in milk) compared with CTL (23.0%) and VitE (22.9%). Feeding APC increased milk fat content of lutein (252μg/g) compared with CTL (204μg/g) and VitE (190μg/g). Milk fat content of vitamin E was higher for APC (34.5μg/g) compared with CTL (19.0μg/g) and tended to be lower than that with VitE (44.9μg/g). Redox potential of fresh milk from cows fed APC (152mV) was similar to that of VitE (144mV), but lower than that of CTL (189mV). Treatments had no effect on fresh milk contents of dissolved oxygen (8.1±1.5mg/L), and conjugated diene hydroperoxides (2.7±0.5mmol/L). The concentrations of volatile lipid oxidation products (propanal, hexanal, hept-cis-4-enal, 1-octen-3-one) tended

  1. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD

    Directory of Open Access Journals (Sweden)

    Dervola Kine S

    2012-12-01

    Full Text Available Abstract Background Previous reports suggest that omega-3 (n-3 polyunsaturated fatty acids (PUFA supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. Methods We used spontaneously hypertensive rats (SHR. SHR dams were given n-3 PUFA (EPA and DHA-enriched feed (n-6/n-3 of 1:2.7 during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY control rats were given control-feed (n-6/n-3 of 7:1. During postnatal days (PND 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. Results n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. Conclusions Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms

  2. Protective effect of ω-3 polyunsaturated fatty acids (PUFAs) on sodium nitroprusside-induced nephrotoxicity and oxidative damage in rat kidney.

    Science.gov (United States)

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    Sodium nitroprusside (SNP) a nitric oxide (NO) donor has proven toxic effects. Dietary ω-3 polyunsaturated fatty acid (PUFA) has been shown to reduce the severity of numerous ailments. Present study examined whether intake of fish oil (FO)/flaxseed oil (FXO, Omega Nutrition, St Vancouver, Canada) would have protective effect against SNP-induced toxicity. Male Wistar rats (150 ± 10 g) were used in this study. Initially animals were divided into two groups: one fed on normal diet and the other on 15% FO/FXO for 15 days. On the 16th day, SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days daily. After 7 days animals were killed, kidneys were harvested for further analysis. SNP induced nephrotoxicity by increasing serum creatinine and blood urea nitrogen, SNP significantly decreased malate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and malic enzyme but increased lactate dehydrogenase and glucose-6-phosphate dehydrogenase. Brush border membrane enzymes such as alkaline phosphatase, γ-glutamyl transpeptidase and leucine amino peptidase were also decreased. The activity of catalase and glutathione peroxidase decreased concomitantly with increased lipid peroxidation, indicating that the significant kidney damage has been inflicted by SNP. Feeding of FO and FXO with SNP ameliorated the changes in various parameters caused by SNP. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing SNP-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22549094

  3. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function.

    Directory of Open Access Journals (Sweden)

    Maria Tikhonenko

    Full Text Available OBJECTIVE: The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs. We propose that n-3 polyunsaturated fatty acid (PUFA deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs. RESEARCH DESIGN AND METHODS: Type 2 diabetic rats on control or docosahexaenoic acid (DHA-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL-1β, IL-6, intracellular adhesion molecule (ICAM-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined. RESULTS: DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation. CONCLUSIONS: In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.

  4. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air–water interface and of the sea surface microlayer

    Directory of Open Access Journals (Sweden)

    S. Zhou

    2013-07-01

    Full Text Available Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML component, i.e. the polyunsaturated fatty acid (PUFA linoleic acid (LA, was exposed to gas-phase ozone at the air–seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and <1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. The potential impact of such chemistry on the atmosphere of the marine boundary layer is discussed.

  5. Development of an LC-MS/MS analytical method for the simultaneous measurement of aldehydes from polyunsaturated fatty acids degradation in animal feed.

    Science.gov (United States)

    Douny, Caroline; Bayram, Pinar; Brose, François; Degand, Guy; Scippo, Marie-Louise

    2016-05-01

    Knowing that polyunsaturated fatty acids can lead to the formation of potentially toxic aldehydes as secondary oxidation products, an analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) detection was developed to measure the concentration of eight aldehydes in animal feed: malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), 4-hydroxy-2-hexenal (4-HHE), crotonaldehyde (CRT), benzaldehyde (BNZ), hexanal (HXL), 2,4-nonadienal, and 2,4-decadienal. The developed method was validated according to the criteria and procedure described in international standards. The evaluated parameters were specificity/selectivity, recovery, precision, accuracy, uncertainty, limits of detection and quantification, using the concept of accuracy profiles. These parameters were determined during experiments conducted over three different days with ground Kellogg's® Corn Flakes® cereals as model matrix for animal feed and spiked at different levels of concentration. Malondialdehyde, 4-HHE, 4-HNE, crotonaldehyde, benzaldehyde, and hexanal can be analyzed in the same run in animal feed with a very good accuracy, with recovery rates ranging from 86 to 109% for a working range going from 0.16 to 12.50 mg/kg. The analysis of 2,4-nonadienal and 2,4-decadienal can also be performed but in a limited range of concentration and with a limited degree of accuracy. Their recovery rates ranged between 54 and 114% and coefficient of variation for the intermediate precision between 11 and 25% for these two compounds. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27443200

  6. A randomized controlled study of the efficacy of six-month supplementation with concentrated fish oil rich in omega-3 polyunsaturated fatty acids in first episode schizophrenia.

    Science.gov (United States)

    Pawełczyk, Tomasz; Grancow-Grabka, Marta; Kotlicka-Antczak, Magdalena; Trafalska, Elżbieta; Pawełczyk, Agnieszka

    2016-02-01

    Short-term clinical trials of omega-3 polyunsaturated fatty acids (n-3 PUFA) as add-on therapy in patients with schizophrenia revealed mixed results. The majority of these studies used an 8- to 12-week intervention based on ethyl-eicosapentaenoic acid. A randomized placebo-controlled trial was designed to compare the efficacy of 26-week intervention, composed of either 2.2 g/day of n-3 PUFA, or olive oil placebo, with regard to symptom severity in first-episode schizophrenia patients. Seventy-one patients (aged 16-35) were enrolled in the study and randomly assigned to the study arms. The primary outcome measure of the clinical evaluation was schizophrenia symptom severity change measured by the Positive and Negative Syndrome Scale (PANSS). Mixed models repeated measures analysis revealed significant differences between the study arms regarding total PANSS score change favouring n-3 PUFA (p = 0.016; effect size (ES) = 0.29). A fifty-percent improvement in symptom severity was achieved significantly more frequently in the n-3 PUFA group than in the placebo group (69.4 vs 40.0%; p = 0.017). N-3 PUFA intervention was also associated with an improvement in general psychopathology, measured by means of PANSS (p = 0.009; ES = 0.32), depressive symptoms (p = 0.006; ES = 0.34), the level of functioning (p = 0.01; ES = 0.31) and clinical global impression (p = 0.046; ES = 0.29). The findings suggest that 6-month intervention with n-3 PUFA may be a valuable add-on therapy able to decrease the intensity of symptoms and improve the level of functioning in first-episode schizophrenia patients.

  7. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  8. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells.

    Science.gov (United States)

    Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin

    2016-03-01

    Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.

  9. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test.

    Science.gov (United States)

    Park, Yongsoon; Moon, Hyoun-Jung; Kim, Seok-Hyeon

    2012-08-01

    Epidemiological data and clinical trials suggest that n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have preventive and therapeutic effects on depression; however, the underlying mechanism remains elusive. The present study aimed to examine the behavioral effects and antidepressant mechanism of n-3 PUFA using a forced swimming test. Eleven-week-old male Sprague-Dawley rats were fed an American Institute of Nutrition-93M diet containing 0%, 0.5% or 1% EPA and DHA relative to the total energy intake in their diet for 12 weeks (n=8 per group). Total dietary intake, body weight and hippocampus weights were not significantly different among groups. The groups administered 0.5% and 1% EPA+DHA diets had significantly higher levels of n-3 PUFA in their brain phospholipids compared to those in the control group. The immobility time was significantly decreased and the climbing time was significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Plasma serotonin concentration and hippocampus c-AMP response element binding protein (CREB) expression were significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Conversely, interleukin (IL)-6 expression was significantly reduced in the 0.5% and 1% EPA+DHA groups compared with that in the 0% EPA+DHA group. However, there were no dose-dependent effects of n-3 PUFA and no significant differences in expressions of IL-1β, tumor necrosis factor-α, brain-derived neurotrophic factor or phosphorylated CREB. In conclusion, long-term intake of EPA+DHA induced antidepressant-like effects in rats and overexpression of CREB via decreased IL-6 expression.

  10. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells

    Directory of Open Access Journals (Sweden)

    Tomizawa,Kazuhito

    2007-06-01

    Full Text Available Neuronal apoptosis is involved in neurodegenerative diseases such as Alzheimer's disease and Parkinson.s disease. An efficient means of preventing it remains to be found. Some n-3 polyunsaturated fatty acids (PUFAs such as docosahexaenoic acid (DHA, 22 : 6n-3 and eicosapentaenoic acid (EPA, 20 : 5n-3 have been reported to be protective against the neuronal apoptosis and neuronal degeneration seen after spinal cord injury (SCI [1]. However, it is unclear which kinds of PUFAs have the most potent ability to inhibit neuronal apoptosis and whether the simultaneous treatment of PUFAs inhibits the apoptosis. In the present study, we compared the abilities of various n-3- and n-6- PUFAs to inhibit the apoptosis induced after the administration of different apoptotic inducers, etoposide, okadaic acid, and AraC, in mouse neuroblastoma cells (Neuro2a. Preincubation with DHA (22 : 6n-3, eicosapentaenoic acid (EPA, 20 : 5n-3, alpha-linolenic acid (alpha-LNA, 18 : 3n-3, linoleic acid (LA, 18 : 2n-6, arachidonic acid (AA, 20 : 4n-3, and gamma-linolenic acid (gamma-LNA, 18 : 3n-6 significantly inhibited caspase-3 activity and LDH leakage but simultaneous treatment with the PUFAs had no effect on the apoptosis of Neuro2a cells. There were no significant differences of the anti-apoptotic eff ect among the PUFAs. These results suggest that PUFAs may not be effective for inhibiting neuronal cell death after acute and chronic neurodegenerative disorders. However, dietary supplementation with PUFAs may be beneficial as a potential means to delay the onset of the diseases and/or their rate of progression.

  11. Toxicology of drinking water disinfection byproducts from nutrients. Rate studies of destruction of polyunsaturated fatty acids in vitro by chlorine-based disinfectants.

    Science.gov (United States)

    Bercz, J P

    1992-01-01

    As model reactions between unsaturated fats and water disinfectants in the GI tract, relative rates of destruction of seven polyunsaturated fatty acids (L, alpha Ln, gamma Ln, Ara, EPA, DH, and DT) by OCl- and NH2Cl were investigated in vitro. Using millimolar solutions of seven PUFAs combined with various OCl- mole ratios, disappearance of PUFAs was followed by UV spectrophotometry at pH = 9.5 and at 35 degrees C via conjugated hydroperoxydienes at 234 nm. While OCl- rapidly destroyed all PUFAs, NH2Cl was inert. Overall second-order rate constants computed for L at increasing times disclosed that the attack on the cis-CH=CHCH2CH=CH moiety by OCl- does not follow simple second-order kinetics. Using a logit-log transform and second-order polynomial regression analysis of L's disappearance in a stoichiometric ([L] = 1.2 mM; [ClO-] = 2.4 mM) mix, data were analyzed by the time ratio method of Schwemer and Frost. These agreed with a sequential system of at least two irreversible second-order reactions having k1 = 15.6 L.mol-1.s-1 and k2 = 2.6 L.mol-1.s-1. Preliminary GC/MS analysis indicated that the initial product is a mix of chlorohydrin isomers. These undergo second addition of HOCl and/or lose halogens and polymerize. Additional minor products were also C5-C9 mono- and bifunctional carboxylates and mixed acid aldehydes. Studies with mol equiv of Cl- - free 36ClO- allowed estimation of covalent binding of Cl by L at various times, supporting the kinetic findings. For other PUFAs of higher degree unsaturation, the complexity of feasible reactions precluded an analogous approach.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Endogenous n 3 polyunsaturated fatty acids PUFAs mitigate ovariectomy-induced bone loss by attenuating bone marrow adipogenesis in FAT1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Chen TY

    2013-06-01

    Full Text Available Tian-yu Chen,1,2,* Zhong-min Zhang,1,2,* Xiao-chen Zheng,1,2 Liang Wang,1,2 Min-jun Huang,1,2 Si Qin,3 Jian Chen,1,2 Ping-lin Lai,4 Cheng-liang Yang,1,2 Jia Liu,1,2 Yi-fan Dai,5 Da-di Jin,1,2 Xiao-chun Bai1,2,4 1Department of Orthopaedic, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China; 2Academy of Orthopaedics, Guangdong Province, Guangzhou, Guangdong, People's Republic of China; 3Department of Dermatology and STD, Guangdong No.2 Provincial People's Hospital, Guangzhou, Guangdong, People's Republic of China; 4Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; 5Center of Metabolic Disease Research, Nanjing Medical University, Jiangsu, People's Republic of China *These authors contributed equally to this work Aim: To investigate the effect of endogenous n-3 polyunsaturated fatty acids (PUFAs on bone marrow adipogenesis under osteoporosis conditions. Methods: A mouse osteoporosis model overexpressing the FAT1 gene from Caenorhabditis elegans and converting n-6 PUFAs to n-3 PUFAs endogenously was used. Results: The mice presented significantly lower bone marrow adiposity (adipocyte volume/tissue volume, mean adipocyte number but increased the bone parameters (bone mineral density, bone mineral content, bone volume/total volume in the distal femoral metaphysis. Conclusion: Endogenous n-3 PUFAs protect bone marrow adipogenesis, which provides a novel drug target. Keywords: antiosteoporosis, n-3 PUFAs, bone marrow, adipogenesis

  13. Evaluation of maize grain and polyunsaturated fatty acid (PUFA) as energy sources for breeding rams based on hormonal, sperm functional parameters and fertility.

    Science.gov (United States)

    Selvaraju, Sellappan; Raju, Priyadarshini; Rao, Somu Bala Nageswara; Raghavendra, Subbarao; Nandi, Sumantha; Dineshkumar, Dhanasekaran; Thayakumar, Allen; Parthipan, Shivashanmugam; Ravindra, Janivara Parameswaraiah

    2012-01-01

    The objective of the present study was to elucidate the effect of different sources of dietary energy (maize vs polyunsaturated fatty acid (PUFA) on semen functional parameters and fertility of adult rams. Eighteen adult rams were divided into two groups (maize and PUFA, n=9). The main energy source for the rams in the maize group was coarsely ground maize grain, whereas in the PUFA group it was sunflower oil (rich in 18:2 linoleic acid, an omega-6 acid). The ration was fed for a minimum period of 60 days and thereafter semen was collected for evaluation. The proportion of progressive forward motility was significantly (P<0.05) higher in the PUFA group compared with the maize group. Sperm lipid peroxidation as measured by malondialdehyde formation (µM per 1×10(9) spermatozoa) was significantly (P<0.05) higher in the PUFA group compared with the maize group. When the semen was diluted with Tris-egg yolk-citrate buffer and incubated for 24h at 4°C, the proportions of plasmalemma integrity, the sperm subpopulation positive for functional membrane and acrosomal integrities, and mitochondrial membrane potential were significantly (P<0.05) higher in PUFA-fed than in maize-fed animals. The different sources of energy did not influence the serum and seminal plasma IGF-I levels. The cleavage rate (percentage) did not differ significantly between PUFA- (45.4±4.91) and maize- (44.63±6.8) fed animals. In conclusion, PUFA feeding influenced sperm quality by altering or stabilising membrane integrity. The present study indicates that PUFA may improve semen quality but did not improve in vitro fertilisation.

  14. Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA

    Directory of Open Access Journals (Sweden)

    Williams Jim E

    2008-06-01

    Full Text Available Abstract Background Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid (PUFA intake, of ewes with a constant body condition score around the time of conception influenced sex ratio. Methods Ewes (n = 44 maintained in similar body condition throughout the study were assigned either a control (C diet or one (F enriched in rumen-protected PUFA, but otherwise essentially equivalent, from four weeks prior to breeding until d13 post-estrus. On d13, conceptuses were recovered, measured, cultured to assess their capacity for interferon-tau (IFNT production and their sex determined. The experiment was repeated with all ewes being fed the F diet to remove any effects of parity order on sex ratio. Maternal body condition score (BCS, plasma hormone and metabolite concentrations were also assessed throughout the study and related to diet. Results In total 129 conceptuses were recovered. Ewes on the F diet produced significantly more male than female conceptuses (proportion male = 0.69; deviation from expected ratio of 0.5, P 0.1, but positively correlated with maternal body condition score (P Conclusion These results provide evidence that maternal diet, in the form of increased amounts of rumen-protected PUFA fed around conception, rather than maternal body condition, can skew the sex ratio towards males. These observations may have implications to the livestock industry and animal management policies when offspring of one sex may be preferred over the other.

  15. Evaluation of maize grain and polyunsaturated fatty acid (PUFA) as energy sources for breeding rams based on hormonal, sperm functional parameters and fertility.

    Science.gov (United States)

    Selvaraju, Sellappan; Raju, Priyadarshini; Rao, Somu Bala Nageswara; Raghavendra, Subbarao; Nandi, Sumantha; Dineshkumar, Dhanasekaran; Thayakumar, Allen; Parthipan, Shivashanmugam; Ravindra, Janivara Parameswaraiah

    2012-01-01

    The objective of the present study was to elucidate the effect of different sources of dietary energy (maize vs polyunsaturated fatty acid (PUFA) on semen functional parameters and fertility of adult rams. Eighteen adult rams were divided into two groups (maize and PUFA, n=9). The main energy source for the rams in the maize group was coarsely ground maize grain, whereas in the PUFA group it was sunflower oil (rich in 18:2 linoleic acid, an omega-6 acid). The ration was fed for a minimum period of 60 days and thereafter semen was collected for evaluation. The proportion of progressive forward motility was significantly (P<0.05) higher in the PUFA group compared with the maize group. Sperm lipid peroxidation as measured by malondialdehyde formation (µM per 1×10(9) spermatozoa) was significantly (P<0.05) higher in the PUFA group compared with the maize group. When the semen was diluted with Tris-egg yolk-citrate buffer and incubated for 24h at 4°C, the proportions of plasmalemma integrity, the sperm subpopulation positive for functional membrane and acrosomal integrities, and mitochondrial membrane potential were significantly (P<0.05) higher in PUFA-fed than in maize-fed animals. The different sources of energy did not influence the serum and seminal plasma IGF-I levels. The cleavage rate (percentage) did not differ significantly between PUFA- (45.4±4.91) and maize- (44.63±6.8) fed animals. In conclusion, PUFA feeding influenced sperm quality by altering or stabilising membrane integrity. The present study indicates that PUFA may improve semen quality but did not improve in vitro fertilisation. PMID:22697117

  16. Fatty acid desaturase gene variants, cardiovascular risk factors, and myocardial infarction in the costa rica study

    Science.gov (United States)

    Genetic variation in fatty acid desaturases (FADS) has previously been linked to long-chain polyunsaturated fatty acids (PUFAs) in adipose tissue and cardiovascular risk. The goal of our study was to test associations between six common FADS polymorphisms (rs174556, rs3834458, rs174570, rs2524299, r...

  17. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis

    NARCIS (Netherlands)

    Werner, A; Bongers, MEJ; Bijvelds, MJ; de Jonge, HR; Verkade, HJ

    2004-01-01

    A deficiency of essential fatty acids (EFA) is frequently described in cystic fibrosis (CF), but whether this is a primary consequence of altered EFA metabolism or a secondary phenomenon is unclear. It was suggested that defective long-chain polyunsaturated fatty acid (LCPUFA) synthesis contributes

  18. Milk Odd- and Branched-Chain Fatty Acids in Relation to the Rumen Fermentation Pattern

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Tamminga, S.; Dewhurst, R.J.; Vuuren, van A.M.; Brabander, de D.; Demeyer, D.

    2006-01-01

    The objectives of this study were 1) to determine whether a relationship exists between molar proportions of volatile fatty acids in the rumen and milk odd-and branched-chain fatty acid concentrations (i.e., iso C13:0, anteiso C13:0, iso C14:0, C15:0, iso C15:0, anteiso C15:0, iso C16:0, C17:0, iso

  19. The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    OpenAIRE

    Kenny, John G.; Deborah Ward; Elisabet Josefsson; Ing-Marie Jonsson; Jason Hinds; Rees, Huw H.; Lindsay, Jodi A; Andrej Tarkowski; Horsburgh, Malcolm J.

    2009-01-01

    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, t...

  20. Evidence for the Gut Microbiota Short-Chain Fatty Acids as Key Pathophysiological Molecules Improving Diabetes

    OpenAIRE

    2014-01-01

    In type 2 diabetes, hyperglycemia, insulin resistance, increased inflammation, and oxidative stress were shown to be associated with the progressive deterioration of beta-cell function and mass. Short-chain fatty acids (SCFAs) are organic fatty acids produced in the distal gut by bacterial fermentation of macrofibrous material that might improve type 2 diabetes features. Their main beneficial activities were identified in the decrease of serum levels of glucose, insulin resistance as well as ...

  1. Effect of dietary n-3 polyunsaturated fatty acids on antioxidant defense and sperm quality in rainbow trout (Oncorhynchus mykiss) under regular stripping conditions.

    Science.gov (United States)

    Köprücü, Kenan; Yonar, Muhammet Enis; Özcan, Sinan

    2015-12-01

    This study examined the effect of dietary n-3 polyunsaturated fatty acids (PUFA) on malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and reduced glutathione (GSH) levels; semen and liver fatty acid compositions; and spermatological values (semen volume and pH, sperm density, percentage and duration of sperm motility) in rainbow trout (Oncorhynchus mykiss) under regular stripping conditions. For this purpose, one control and two experimental diets were prepared as isonitrogenous and isocaloric. The control diet did not contain n-3 PUFA. However, the D1 and D2 diets were supplemented with n-3 PUFA concentrated anchovy oil at a 1% and 2% level, respectively. The n-3 PUFA content in the semen and liver, semen volume, initial sperm motility, duration of 50% sperm motility, total duration of sperm motility and sperm density values of the control fish fed the n-3 PUFA-deficient diet were decreased and were accompanied by a reduction of the antioxidant defense (SOD, CAT, GSH-Px and GSH) and an elevation of MDA in the blood, gonad, liver and kidney at all of the sampling periods (P0.01). However, supplementation with n-3 PUFA protected the fish from these adverse effects. The modulations were clearly observed in the fish fed the D2 diet because they were under lower oxidative stress, as indicated by MDA. The increased enzyme activity corresponds with the physiological mechanisms combating the elevation of free radicals under oxidative stress. The highest n-3 PUFA levels in the semen and liver and spermatological values were obtained from the fish fed the D2 diet at all of the sampling periods. On the other hand, the effects of the sampling stage on the spermatological values of the fish fed the D1 and D2 diets were not significant (P>0.01). However, the effects of the sampling stage in the fish fed the control diet on these values (with the exception of semen pH) were significant (Preproduction. PMID:26530952

  2. Omega-3 and Omega-6 Polyunsaturated Fatty Acid Levels and Correlations with Symptoms in Children with Attention Deficit Hyperactivity Disorder, Autistic Spectrum Disorder and Typically Developing Controls.

    Directory of Open Access Journals (Sweden)

    Natalie Parletta

    Full Text Available There is evidence that children with Attention Deficit Hyperactivity Disorder (ADHD and Autistic Spectrum Disorder (ASD have lower omega-3 polyunsaturated fatty acid (n-3 PUFA levels compared with controls and conflicting evidence regarding omega-6 (n-6 PUFA levels.This study investigated whether erythrocyte n-3 PUFAs eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were lower and n-6 PUFA arachidonic acid (AA higher in children with ADHD, ASD and controls, and whether lower n-3 and higher n-6 PUFAs correlated with poorer scores on the Australian Twin Behaviour Rating Scale (ATBRS; ADHD symptoms and Test of Variable Attention (TOVA in children with ADHD, and Childhood Autism Rating Scale (CARS in children with ASD.Assessments and blood samples of 565 children aged 3-17 years with ADHD (n = 401, ASD (n = 85 or controls (n = 79 were analysed. One-way ANOVAs with Tukey's post-hoc analysis investigated differences in PUFA levels between groups and Pearson's correlations investigated correlations between PUFA levels and ATBRS, TOVA and CARS scores.Children with ADHD and ASD had lower DHA, EPA and AA, higher AA/EPA ratio and lower n-3/n-6 than controls (P<0.001 except AA between ADHD and controls: P = 0.047. Children with ASD had lower DHA, EPA and AA than children with ADHD (P<0.001 for all comparisons. ATBRS scores correlated negatively with EPA (r = -.294, P<0.001, DHA (r = -.424, P<0.001, n-3/n-6 (r = -.477, P<0.001 and positively with AA/EPA (r = .222, P <.01. TOVA scores correlated positively with DHA (r = .610, P<0.001, EPA (r = .418, P<0.001 AA (r = .199, P<0.001, and n-3/n-6 (r = .509, P<0.001 and negatively with AA/EPA (r = -.243, P<0.001. CARS scores correlated significantly with DHA (r = .328, P = 0.002, EPA (r = -.225, P = 0.038 and AA (r = .251, P = 0.021.Children with ADHD and ASD had low levels of EPA, DHA and AA and high ratio of n-6/n-3 PUFAs and these correlated significantly with symptoms. Future research should further

  3. Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension

    DEFF Research Database (Denmark)

    Nielsen, Gorm; Wandall-Frostholm, Christine; Sadda, Veeranjaneyulu;

    2013-01-01

    in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension. Expression of PUFA-activated K2P in the murine lung was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), by patch...... clamp (PC) and myography. K2P -gene expression was examined in chronic hypoxic mice. qRT-PCR showed that the K2P 2.1 and K2P 6.1 were the predominantly expressed K2P in the murine lung. IHC revealed protein expression of K2P 2.1 and K2P 6.1 in the endothelium of pulmonary arteries and of K2P 6...... relaxations that were resistant to endothelial removal and inhibition of NO and prostacyclin synthesis and to a cocktail of blockers of calcium-activated K(+) channels but were abolished by high extracellular (30 mM) K(+) -concentration. Gene expression and protein of K2P 2.1 were not altered in chronic...

  4. Omega-3多不饱和脂肪酸对前列腺癌细胞生长的作用%Effect of omega-3 polyunsaturated fatty acids on the growth of prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    王超; 张荣远; 马鸣

    2014-01-01

    目的 探讨Omega-3多不饱和脂肪酸对前列腺癌细胞生长的作用和机制.方法 通过噻唑蓝(MTT)比色法观察浓度分别为20、40、60、80 μmol/L的二十二碳六烯酸对前列腺癌LNCap细胞活力的影响;使用40 μmol/L二十二碳六烯酸处理前列腺癌LNCap细胞0、12、24、36 h,通过实时荧光定量聚合酶链反应(FQ-PCR)和Western blot法检测二十二碳六烯酸对LNCap细胞雄激素受体(AR)的影响.结果 MTT实验结果显示20、40、60、80 μmol/L的二十二碳六烯酸对LNCap细胞增殖的抑制率分别为13.3%、46.7%、53.3%、63.3%,Western blot结果显示40 μmoL/L的二十二碳六烯酸能够使AR的蛋白表达量下降60% ~ 80%.结论 Omega-3多不饱和脂肪酸抑制前列腺癌细胞的生长与其下调AR的表达有关.%Objective To discuss the effect of omega-3 polyunsaturated fatty acids on the growth of prostate cancer cells and the possible action mechanism.Methods The cytotoxic effect of different con-centrations of docosahexenoic acid (20,40,60 and 80 μmol/L) on prostate cancer cell line LNCap was examined by methyl thiazol tetrazolium (MTT) assay.The mRNA and protein expression level of androgen receptor was detected by real-time fluorescence quantitative polymerase chain reaction (FQ-PCR) and Western Blotting in order to demonstrate the effect of 40 μmol/L docosahexenoic acid on the growth of LNCap cells for 0,12,24 and 36 h.Results MTT assay showed that the inhibition ratio of 20,40,60 and 80 μmol/L docosahexenoic acid on the growth of LNCap cells was 13.3%,46.7%,53.3% and 63.3% respectively.Western blotting revealed that the androgen receptor protein quantity was obviously downregulated with docosahexenoic acid by 60%-80%.Conclusion Omega-3 Polyunsaturated fatty acids inhibit the growth of prostate cancer cells,which may be associated with down-regulation of androgen recep-tor protein level.

  5. Production, Composition, Fatty Acids Profile and Stability of Milk and Blood Composition of Dairy Cows Fed High Polyunsaturated Fatty Acids Diets and Sticky Coffee Hull

    Directory of Open Access Journals (Sweden)

    Geraldo Tadeu dos Santos

    2014-08-01

    Full Text Available Four lactating Holstein cows were assigned to a 4 × 4 Latin square design to determine the effects of feeding sticky coffee hull (SCH as a source of antioxidants on dairy cows fed with high PUFA diets. The treatments (on DM basis were control diet, diet with 30 g/kg of soybean oil, diet with 30 g/kg of soybean oil and 100 g/kg of SCH, and diet with 30 g/kg of soybean oil and 150 g/kg of SCH. Inclusion of 150 g/kg of SCH decreased the crude protein digestibility. Lower values of NDF digestibility were also observed when cows were fed with 100 g/kg and 150g/kg of SCH. The digestibility of NDT was lower in the control and 150 g/kg of SCH diets. Milk production and composition did not differ among the treatments. Inclusion of SCH increased the total polyphenols and flavonoids in the milk and reducing power as well. Soybean oil and SCH supplementation increased the LDL and total cholesterol concentration in the plasma. Milk fatty acid profile was barely altered by the treatments. In conclusion, the results confirmed that SCH added up to 15% in the diet did not alter milk production, improved its stability, and incorporated antioxidants substances in the milk, improving its quality for human health.

  6. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  7. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    Science.gov (United States)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  8. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  9. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  10. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA. PMID:26710334

  11. Modulation effect of n-3 polyunsaturated fatty acids (PUFA) on target organ function as well as immune and inflammatory response of cecal ligation and puncture-induced septic rats

    Institute of Scientific and Technical Information of China (English)

    Dian-Xun Liu

    2016-01-01

    Objective:To study the modulation effect of n-3 polyunsaturated fatty acids (PUFA) on target organ function as well as immune and inflammatory reaction of cecal ligation and puncture-induced septic rats.Methods:Adult SD rats were selected as research subjects and randomly divided into control group, model group and PUFA group. Septic rat models were made by cecal ligation and puncture method and given n-3 polyunsaturated fatty acid for parenteral nutrition. Then number of apoptosis cells in intestinal mucosa, contents of intestinal flora, intestinal mucosal barrier function and immune function were detected.Results: (1) Intestinal mucosa function: the number of apoptosis cells in intestinal mucosa, intestinal E. coli contents, serum D-lactose and DAO contents as well as L/M ratio in urine of model group were higher than those of control group, and contents of bifidobacteria and lactobacilli were lower than those of control group; the number of apoptosis cells in intestinal mucosa, intestinal E. coli contents, serum D-lactose and DAO contents as well as L/M ratio in urine of PUFA group were lower than those of model group, and contents of bifidobacteria and lactobacilli were higher than those of model group; (2) Immune and inflammatory response: the number of PP nodes and PP node cells as well as contents of B cells and T cells in intestinal mucosa of model group were lower than those of control group; the number of PP nodes and PP node cells as well as contents of B cells and T cells in intestinal mucosa of PUFA group were higher than those of model group.Conclusion: n-3 polyunsaturated fatty acids (n-3PUFAs) are helpful to protect intestinal mucosal barrier function of cecal ligation and puncture-induced septic rats, regulate intestinal flora balance and improve immune and inflammatory response.

  12. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  13. Regulation of immune cell function by short-chain fatty acids

    OpenAIRE

    Corrêa-Oliveira, Renan; Fachi, José Luís; Vieira, Aline; Sato, Fabio Takeo; Vinolo, Marco Aurélio R

    2016-01-01

    Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of...

  14. Self-assembly of long chain fatty acids: effect of a methyl branch.

    Science.gov (United States)

    Liljeblad, Jonathan F D; Tyrode, Eric; Thormann, Esben; Dublanchet, Ann-Claude; Luengo, Gustavo; Magnus Johnson, C; Rutland, Mark W

    2014-09-01

    The morphology and molecular conformation of Langmuir-Blodgett deposited and floating monolayers of a selection of straight chain (eicosanoic acid, EA), iso (19-methyl eicosanoic acid, 19-MEA), and anteiso (18-methyl eicosanoic acid, 18-MEA) fatty acids have been investigated by Vibrational Sum Frequency Spectroscopy (VSFS), AFM imaging, and the Langmuir trough. While the straight chain fatty acid forms smooth, featureless monolayers, all the branched chain fatty acids display 10-50 nm sized domains (larger for 19-MEA than the 18-MEA) with a homogeneous size distribution. A model is suggested to explain the domain formation and size in terms of the branched fatty acid packing properties and the formation of hemispherical caps at the liquid-air interface. No difference between the chiral (S) form and the racemic mixture of the 18-MEA is observed with any of the utilized techniques. The aliphatic chains of the straight chain fatty acids appear to be oriented perpendicular to the sample surface, based on an orientational analysis of VSFS data and the odd/even effect. In addition, the selection of the subphase (neat water or CdCl2 containing water buffered to pH 6.0) used for the LB-deposition has a profound influence on the monolayer morphology, packing density, compressibility, and conformational order. Finally, the orientation of the 19-MEA dimethyl moiety is estimated, and a strategy for performing an orientational analysis to determine the complete molecular orientation of the aliphatic chains of 19-MEA and 18-MEA is outlined and discussed. PMID:25045762

  15. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    Science.gov (United States)

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  16. The associations between serum adiponectin, leptin, C-reactive protein, insulin, and serum long-chain omega-3 fatty acids in Labrador Retrievers

    Directory of Open Access Journals (Sweden)

    Streeter RM

    2015-04-01

    Full Text Available Renee M Streeter,1 Angela M Struble,1 Sabine Mann,2 Daryl V Nydam,2 John E Bauer,3 Marta G Castelhano,1 Rory J Todhunter,1 Bethany P Cummings,4 Joseph J Wakshlag11Department of Clinical Sciences, 2Department of Population Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; 3Department of Clinical Sciences, Texas A&M University, College Station, TX, USA; 4Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USAAbstract: Obesity has been associated with an increased inflammatory response and insulin resistance due to adipose tissue–derived adipokines and increases in C-reactive protein (CRP. Dogs appear to be similar to other species with the exception of adiponectin, which might not be affected by obesity status. Serum long-chain polyunsaturated fatty acid concentrations have been positively and negatively associated with serum adipokines. The aim of the study was to examine the relationship between leptin, CRP, adiponectin, and insulin to body condition score (BCS and to the long-chain omega-3 fatty acids in serum lipoproteins, including alpha-linolenic acid, eicosapentaenoic acid (EPA, docosapentanenoic acid (DPA, and docosahexaenoic acid (DHA as a reflection of dietary omega-3 status in the Labrador Retriever. Seventy-seven Labrador Retrievers were evaluated for BCS, percent fasting serum lipoprotein fatty acid concentrations, as well as serum leptin, adiponectin, insulin, and CRP. A multivariable general linear regression model was constructed to examine the association between the dependent variables leptin, CRP, adiponectin, and insulin and the predictor variables of BCS, age, and sex, as well as concentrations of alpha-linolenic acid, EPA, DHA, and DPA. Adiponectin concentration was positively associated with age (P<0.0008, EPA (P=0.027 and negatively associated with DHA (P=0.008. Leptin concentration was positively associated with an increased DHA (P=0.009, BCS (P

  17. Yeast sphingolipids do not need to contain very long chain fatty acids

    DEFF Research Database (Denmark)

    Cerantola, Vanessa; Vionnet, Christine; Aebischer, Olivier F;

    2007-01-01

    , the very long chain fatty acids (C26 and C24) account for 97%. Notwithstanding, IPCs incorporated into glycosylphosphatidylinositol anchors of 4Delta.Lass5 show normal mobility on TLC and the ceramide- and raft-dependent traffic of Gas1p (glycophospholipid-anchored surface...

  18. Short chain fatty acids exchange: Is the cirrhotic, dysfunctional liver still able to clear them?

    NARCIS (Netherlands)

    Bloemen, J.G.; Olde Damink, S.W.M.; Venema, K.; Buurman, W.A.; Jalan, R.; Dejong, C.H.C.

    2010-01-01

    Background & aims: Prebiotics are increasingly used to improve gut integrity. A presumed mechanism of their beneficial action is the synthesis of short chain fatty acids (SCFA: acetate, propionate and butyrate). High systemic concentrations of propionate and butyrate are toxic and can adversely affe

  19. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids

    NARCIS (Netherlands)

    den Besten, Gijs; Lange, Katja; Havinga, Rick; van Dijk, Theo H.; Gerding, Albert; van Eunen, Karen; Muller, Michael; Groen, Albert K.; Hooiveld, Guido J.; Bakker, Barbara M.; Reijngoud, Dirk-Jan

    2013-01-01

    Acetate, propionate, and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relati

  20. Metagenomic analysis on thermophilic biogas reactors fed with high load of Long Chain Fatty Acids (LCFA)

    DEFF Research Database (Denmark)

    Zhu, Xinyu; De Francisci, Davide; Treu, Laura;

    In anaerobic digestion systems, the accumulation of long chain fatty acids (LCFA) leads to process instability and decrease of the methane production. This detrimental condition is known to be reversible depending on the concentration of the accumulated LCFAs and mainly on the microbial consortiu...