WorldWideScience

Sample records for chain carboxylate acid

  1. On the possibility of using short chain length mono-carboxylic acids for stabilization of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation)]. E-mail: avd@nf.jinr.ru; Bica, Doina [Laboratory of Magnetic Fluids, CFATR, Romanian Academy, Timisoara Division, Timisoara (Romania); Vekas, Ladislau [National Center for Engineering of Systems with Complex Fluids, University Politehnica, Timisoara (NC ESCF-UPT) (Romania); Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Marinica, Oana [National Center for Engineering of Systems with Complex Fluids, University Politehnica, Timisoara (NC ESCF-UPT) (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary); Aksenov, Victor L. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation); Rosta, Laszlo [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany); Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Short chain length mono-carboxylic acids (lauric and myristic acids) are used to coat magnetite nanoparticles in non-polar organic liquids, which results in highly stable magnetic fluids. The new fluids are compared with classical organic fluids stabilized by oleic acid (OA). Magnetic granulometry and small-angle neutron scattering (polarized mode) reveal a great difference in the particle size distribution function for the studied magnetic fluids, particularly a decrease in the characteristic particle radius of magnetite when lauric and myristic acids are used instead of OA.

  2. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans.

    Science.gov (United States)

    Vieira, Neide; Casal, Margarida; Johansson, Björn; MacCallum, Donna M; Brown, Alistair J P; Paiva, Sandra

    2010-03-01

    The major fungal pathogen Candida albicans has the metabolic flexibility to assimilate a wide range of nutrients in its human host. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources contributes to its virulence. JEN1 encodes a monocarboxylate transporter in C. albicans and we show that its paralogue, JEN2, encodes a novel dicarboxylate plasma membrane transporter, subjected to glucose repression. A strain deleted in both genes lost the ability to transport lactic, malic and succinic acids by a mediated mechanism and it displayed a growth defect on these substrates. Although no significant morphogenetic or virulence defects were found in the double mutant strain, both JEN1 and JEN2 were strongly induced during infection. Jen1-GFP (green fluorescent protein) and Jen2-GFP were upregulated following the phagocytosis of C. albicans cells by neutrophils and macrophages, displaying similar behaviour to an Icl1-GFP fusion. In the murine model of systemic candidiasis approximately 20-25% of C. albicans cells infecting the kidney expressed Jen1-GFP and Jen2-GFP. Our data suggest that Jen1 and Jen2 are expressed in glucose-poor niches within the host, and that these short-chain carboxylic acid transporters may be important in the early stages of infection.

  4. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis.

    Science.gov (United States)

    Xu, Jiajie; Guzman, Juan J L; Andersen, Stephen J; Rabaey, Korneel; Angenent, Largus T

    2015-04-21

    We had extracted n-caproate from bioreactor broth. Here, we introduced in-line membrane electrolysis that utilized a pH gradient between two chambers to transfer the product into undissociated n-caproic acid without chemical addition. Due to the low maximum solubility of this acid, selective phase separation occurred, allowing simple product separation into an oily liquid containing ∼90% n-caproic and n-caprylic acid.

  5. Dispersion of ceria nanoparticles on γ-alumina surface functionalized using long chain carboxylic acids

    Science.gov (United States)

    Ledwa, Karolina Anna; Kępiński, Leszek

    2017-04-01

    Dispersion and stability of nanoparticles on a support is determined by the interaction between these phases. In case of hydrophobic nanoparticles (e.g. synthesized by reverse microemulsion method) the interaction with hydrophilic support (e.g. γ-Al2O3) is weak and agglomeration as well as poor resistance to sintering may cause problems. The bonding of the particles to the support may be effectively strengthened by proper modification of the support, e.g. by adsorption of hydrophobic compounds on its surface. In this work decanoic, myristic, stearic and oleic acid were used for the first time to cover γ-Al2O3 surface in order to enhance the dispersion of ceria nanoparticles deposited afterward by impregnation on such support. TGA and FTIR methods revealed that at monolayer coverage (1.1-2.5 molecules per nm2) the acid molecules are firmly bounded to the alumina surface. Morphology, textural properties, phase composition and reducibility of the CeO2/γ-Al2O3 samples were investigated using TEM, SEM, BET, XRD and H2-TPR methods. It has been shown that deposition of CeO2 nanoparticles on γ-Al2O3 surface covered with all studied acids enhances its dispersion, stability and reducibility. The most effective modification of the γ-Al2O3 surface was obtained at loading of 2.3 molecules of decanoic acid per nm2 of the support.

  6. Synthesis of α,β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction

    Directory of Open Access Journals (Sweden)

    Yitao Duan

    2015-11-01

    Full Text Available α,β-Unsaturated esters are versatile building blocks for organic synthesis and of significant importance for industrial applications. A great variety of synthetic methods have been developed, and quite a number of them use aldehydes as precursors. Herein we report a chemo-enzymatic chain elongation approach to access α,β-unsaturated esters by combining an enzymatic carboxylic acid reduction and Wittig reaction. Recently, we have found that Mycobacterium sp. was able to reduce phenylacetic acid (1a to 2-phenyl-1-ethanol (1c and two sequences in the Mycobacterium sp. genome had high identity with the carboxylic acid reductase (CAR gene from Nocardia iowensis. These two putative CAR genes were cloned, overexpressed in E. coli and one of two proteins could reduce 1a. The recombinant CAR was purified and characterized. The enzyme exhibited high activity toward a variety of aromatic and aliphatic carboxylic acids, including ibuprofen. The Mycobacterium CAR catalyzed carboxylic acid reduction to give aldehydes, followed by a Wittig reaction to afford the products α,β-unsaturated esters with extension of two carbon atoms, demonstrating a new chemo-enzymatic method for the synthesis of these important compounds.

  7. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe

    2013-09-01

    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  8. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  9. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  10. Understanding biocatalyst inhibition by carboxylic acids

    OpenAIRE

    Jarboe, Laura R.; Royce, Liam A.; Liu, Ping

    2013-01-01

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fac...

  11. Column comparison and method development for the analysis of short-chain carboxylic acids by zwitterionic hydrophilic interaction liquid chromatography with UV detection.

    Science.gov (United States)

    Marrubini, Giorgio; Pedrali, Alice; Hemström, Petrus; Jonsson, Tobias; Appelblad, Patrik; Massolini, Gabriella

    2013-11-01

    Short-chain carboxylic acids are relevant in pharmaceutical, food quality control, and biomedical analysis. In this study, 11 acids commonly found in drugs and in food products were selected. Wine was chosen as matrix for testing the method. The test compounds were used for comparing the selectivity of four 150 × 2.1 mm zwitterionic hydrophilic interaction LC (HILIC) columns (ZIC-HILIC 5 μm, 200 Å, and 3.5 μm, 100 Å, ZIC-pHILIC 5 μm, ZIC-cHILIC 3 μm, 100 Å) while varying the conditions to optimize for low UV wavelength detection and achieve high sensitivity. Retention using potassium phosphate and ammonium carbonate as mobile-phase components at pH 6.0, 7.5, and 8.5-8.9 was studied considering recent hypotheses on HILIC mechanism-related with the Hofmeister series effect and ion hydration. An isocratic method with UV detection at 200 nm and mobile phase consisting of 75% acetonitrile and 10 mM potassium phosphate at pH 6.0 applied to a ZIC-cHILIC column was found provisionally optimal and partially validated for the 11 analytes. Satisfactory results (R(2) from 0.9940 to >0.9999), and recoveries from 93-106% for all analytes evidenced the method as suitable for wine analysis. To the best of our knowledge, no previous study has reported on the direct ZIC-HILIC separation and UV detection of the acids considered here in wine. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene...... in the derivatized polymers and the glass-transition temperature has emerged: the aromatic carboxylic acids give high glass-transition temperatures (90–120 °C), and the aliphatic carboxylic acids give lower glass-transition temperatures (50–65 °C). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...

  13. Recovery of carboxylic acids produced by fermentation.

    Science.gov (United States)

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. CARBOXYLIC ACIDS ELECTROOXIDATION ON SHUNGITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Oleksandr Davydenko

    2017-03-01

    Full Text Available Purpose: This article discusses the electrochemical method of directional conversion of carboxylic acids, which are the most aggressive hydrocarbons oxidation products back into the corresponding hydrocarbons. Existing methods for the regeneration of waste petroleum oils have significant drawbacks, which include the formation of new hard-reclaimed waste and loss of a significant part of the oil during regeneration. Methods: Electrooxidation processes of carboxylic acid on various electrode materials: platinum, graphite and shungite anodes were studied. Results: Potentiostatic polarization curves with simultaneous measurement of near-electrode solution pH showed differences in the process on these anode materials: dimer yield for Kolbe is decreased under the transition from platinum to shungite. At potentials higher than 2.0 v, carboxylic acid has a higher adsorbability compared to water. Therefore Faraday’s side-process of water oxidation doesn’t almost occur, which contributes to high yield of expected product according to current. Electrolysis of carboxylic acids solutions under controlled potential (2.0 and 2.4 V and chromatographic analysis of the formed products showed that along with the dimeric structures formation for Kolbe reaction, the occurrence of a hydrocarbons mixture takes place, which may be the result of disproportionation of hydrocarbon radicals (alkane and alkene and hydrocarbons of isomeric structure, by further oxidation of the hydrocarbon radical to carbocation and its subsequent transformation into the corresponding saturated and unsaturated isomers. Such statement is not supported by conception of the process of one- and two-electron carboxylic acid oxidation. Discussion: General carboxylic acid oxidation scheme according to one-electron mechanism (dimerization and disproportionation of the radical and two-electron mechanism (formation and carbocation rearrangement is proposed. The formation of hydrocarbons under

  15. Pyrolysis Mechanisms of Aromatic Carboxylic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Eskay, T.P.; Buchanan, A.C. III

    1997-12-31

    Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

  16. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the [alpha]I(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, G.A.; Rash, B.; Sweetman, W.A.; Thomas, J.T.; Grant, M.E.; Boot-Handford, R.P. (Univ. of Manchester (United Kingdom)); Super, M. (Royal Manchester Children' s Hospital, Manchester (United Kingdom)); Evans, G. (Robert Jones Orthopaedic Hospital, Oswestry (United Kingdom))

    1994-02-01

    Type X collagen is a homotrimeric, short-chain, nonfibrillar extracellular-matrix component that is specifically and transiently synthesized by hypertrophic chondrocytes at the site of endochondral ossification. The precise function of type X collagen is not known, but its specific pattern of expression suggests that mutations within the encoding gene (COL10A1) that alter the structure or synthesis of the protein may cause heritable forms of chondrodysplasia. The authors used the PCR and the SSCP techniques to analyze the coding and upstream promoter regions of the COL10A1 gene in a number of individuals with forms of chondrodysplasia. Using this approach, they identified two individuals with metaphyseal chondrodysplasia type Schmid (MCDS) with SSCP changes in the region of the gene encoding the carboxyl-terminal domain. Sequence analysis demonstrated that the individuals were heterozygous for two unique single-base-pair transitions that led to the substitution of the highly conserved amino acid residue tyrosine at position 598 by aspartic acid in one person and of leucine at position 614 by proline in the other. The substitution at residue 598 segregated with the phenotype in a family of eight (five affected and three unaffected) related persons. The substitutions at residue 614 occurred in a sporadically affected individual but not in her unaffected mother and brother. Additional members of this family were not available for further study. These results suggest that certain amino acid substitutions within the carboxyl-terminal domain of the chains of the type X collagen molecule cause MCDS. These amino acid substitutions are likely to alter either chain recognition or assembly of the type X collagen molecule, thereby depleting the amount of normal type X collagen deposited in the extracellular matrix, with consequent aberrations in bone growth and development. 36 refs., 5 figs.

  17. Photocaging of carboxylic acids: a modular approach.

    Science.gov (United States)

    Szymański, Wiktor; Velema, Willem A; Feringa, Ben L

    2014-08-11

    Photocaged compounds are important tools for studying and regulating multiple processes, including biological functions. Reported herein is the use of the Passerini multicomponent reaction for modular preparation of photocaged carboxylic acids. The reaction is compatible with several functionalities and proceeds smoothly both in water and dichloromethane. The choice of aldehyde determines the wavelength used for deprotection and enables formation of orthogonally protected products. The isocyanide component can be used for introduction of reactive tags and photosensitizers, as well as for immobilization on a solid support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice.

    Science.gov (United States)

    Sheng, Nan; Zhou, Xiujuan; Zheng, Fei; Pan, Yitao; Guo, Xuejiang; Guo, Yong; Sun, Yan; Dai, Jiayin

    2017-08-01

    Due to their structural similarities, 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA) are often used as alternatives to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), respectively. With limited health risk data and 6:2 FTSA detection in water and sludge, the toxicity of these chemicals is of growing concern. Here, adult male mice were exposed with 5 mg/kg/day of 6:2 FTCA or 6:2 FTSA for 28 days to investigate their hepatotoxicological effects. In contrast to 6:2 FTCA, 6:2 FTSA was detected at high and very high levels in serum and liver, respectively, demonstrating bioaccumulation potential and slow elimination. Furthermore, 6:2 FTSA induced liver weight increase, inflammation, and necrosis, whereas 6:2 FTCA caused no obvious liver injury, with fewer significantly altered genes detected compared with that of 6:2 FTSA (39 vs. 412). Although PFOA and PFOS commonly activate peroxisome proliferator-activated receptor α (PPARα), 6:2 FTSA induced an increase in PPARγ and related proteins, but not in lipid metabolism-related genes such as PPARα. Our results showed that 6:2 FTCA and 6:2 FTSA exhibited weak and moderate hepatotoxicity, respectively, compared with that reported for legacies PFOA and PFOS.

  19. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  20. Role of carboxylate side chains in the cation Hofmeister series.

    Science.gov (United States)

    Kherb, Jaibir; Flores, Sarah C; Cremer, Paul S

    2012-06-28

    Thermodynamic and surface-specific spectroscopic investigations were carried with an elastin-like polypeptide (ELP) containing 16 aspartic acid residues. The goal was to explore the role of the carboxylate moieties in hydrophobic collapse and related Hofmeister effects. Experiments were conducted with a series of monovalent and divalent metal chloride salts. Both phase transition temperature and spectroscopic data demonstrated that the divalent cations showed relatively strong association to the carboxylate sites on the biopolymer with K(d) values in the range of 1 to 10 mM. The ordering of the divalent series was: Zn(2+) > Ca(2+) > Ba(2+) > Sr(2+) > Mg(2+). Monovalent cations displayed weaker binding which ranged from 78 mM for NH(4)(+) to 345 mM for Cs(+). The order for this series was: NH(4)(+) > Li(+) > Na(+) > NMe(4)(+) > K(+) > Rb(+) ≥ Cs(+). These results are in general agreement with the notion that strongly hydrated cations bind more tightly to carboxylate groups than do weakly hydrated cations. Moreover, the data for the monovalent series was partially consistent with the law of matching water affinity, although Li(+) and NH(4)(+) did not follow the model. The series for the divalent cations did not appear to obey the law of matching water affinity at all.

  1. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4...... of the pendant groups in the derivatized polymers and the glass-transition temperature has emerged: the aromatic carboxylic acids give high glass-transition temperatures (90—120 DC), and the aliphatic carboxylic acids give lower glass-transition temperatures (50—65 DC).......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...

  2. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    Science.gov (United States)

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  3. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  4. Page 1 Ultrasonic absorption in carboxylic acids 46; annular rubber ...

    Indian Academy of Sciences (India)

    Figure 1a shows that the measured ultrasonic absorption for the oxalic acid dihydrate, benzoic acid and succinic acid increases with increase in the concentration of the solute, reaches a maximum (the concentration at which the absorption maximum occurs is. Figure 1. Absorption vs concentration of carboxylic acids in ...

  5. Mechanistic Investigation into the Decarboxylation of Aromatic Carboxylic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P F; Buchanan, III, A C; Eskay, T P; Mungall, W S

    1999-08-22

    It has been proposed that carboxylic acids and carboxylates are major contributors to cross-linking reactions in low-rank coals and inhibit its thermochemical processing. Therefore, the thermolysis of aromatic carboxylic acids was investigated to determine the mechanisms of decarboxylation at temperatures relevant to coal processing, and to determine if decarboxylation leads to cross-linking (i.e., formation of more refractory products). From the thcrmolysis of simple and polymeric coal model compounds containing aromatic carboxylic acids at 250-425 °C, decarboxylation was found to occur primarily by an acid promoted ionic pathway. Carboxylate salts were found to enhance the decarboxylation rate, which is consistent with the proposed cationic mechanism. Thermolysis of the acid in an aromatic solvent, such as naphthalene, produced a small amount of arylated products (~5 mol%)), which constitute a low-temperature cross-link. These arylated products were formed by the rapid decomposition of aromatic anhydrides, which are in equilibrium with the acid. These anhydrides decompose by a free radical induced decomposition pathway to form atyl radicals that can add to aromatic rings to form cross-links or abstract hydrogen. Large amounts of CO were formed in the thennolysis of the anhydrides which is consistent with the induced decomposition pathway. CO was also formed in the thermolysis of the carboxylic acids in aromatic solvents which is consistent with the formation and decomposition of the anhydride. The formation of anhydride linkages and cross-links was found to be very sensitive to the reactions conditions. Hydrogen donor solvents, such as tetralin, and water were found to decrease the formation of arylated products. Silar reaction pathways were also found in the thermolysis of a polymeric model that contained aromatic carboxylic acids. In this case, anhydride formation and decomposition produced an insoluble polymer, while the O-methylated polymer and the non-carboxylated

  6. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  7. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  8. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    Science.gov (United States)

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.

  9. Pyrazine Carboxylic Acid Derivatives of Dichlorobis(Cyclopentadienyltitanium(IV

    Directory of Open Access Journals (Sweden)

    Satish Chandra Dixit

    2012-07-01

    Full Text Available Reactions of dichlorobis(cyclopentadienyltitanium(IV with pyrazine carboxylic acids viz. 2-pyrazine carboxylic acid (2-PzCH, 5-methyl-2-pyrazine carboxylic acid (MPzCH and 2,3-pyrazine dicarboxylic acid (2,3-PzDCH2 were carried out in different stoichiometric ratios. Complexes of the type Cp2Ti(2-PzCCl , Cp2Ti(2-PzC2 ,Cp2Ti(MPzCCl,Cp2Ti(MPzC2, Cp2Ti(2,3-PzDCHCl and Cp2Ti(2,3-PzDCH2 were obtained. These newly synthesized complexes were characterized on the basis of elemental analyses, electrical conductance, magnetic moment and spectral data.

  10. Different carboxylic acid homodimers in self-assemblies of adducts ...

    Indian Academy of Sciences (India)

    understand dislodging process of a dimeric assembly. Our anticipation was also based on our earlier obser- vation where we obtained packing polymorphs of the. (3-carboxymethoxy-naphthalen-2-yloxy)acetic acid,50 which is also a molecule comprised of linkages with carboxylic acid groups with intervening methylene.

  11. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  12. Hydroxy, carboxylic and amino acid functionalized ...

    Indian Academy of Sciences (India)

    precipitation method and modified with different coating agents such as ascorbic acid, hexanoic acid, salicylic acid, L-arginine and L-cysteine. The synthesized nanoparticles were characterized by various techniques such as FT IR, XRD, VSM, ...

  13. Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.

    Science.gov (United States)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨dO-O⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  14. Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Science.gov (United States)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2018-01-01

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homolog YajL was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp23 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the E. coli homolog YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with an LBHB. A PDB-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short (=2.542(2) Å). Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs. PMID:27989121

  15. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    Dehydrogenative synthesis of carboxylic acids catalyzed by a ruthenium N- heterocycliccarbene complex. A new methodology for the synthesis of carboxylic acids from primary alcohols and hydroxide has been developed. The reaction is catalyzed by the ruthenium N-heterocycliccarbene complex [RuCl2(Ii......Pr)(p-cymene)] where dihydrogen is generated as the only by-product (Scheme i). The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation followed by extraction. Various substituted benzyl alcohols smoothly undergo the transformation. The fast conversion...... to the carboxylic acids can be explained by the involvement of a competing Cannizzaro reaction. The scope of the dehydrogenation was further extended to linear and branched saturated aliphatic alcohols, although longer reaction times are necessary to ensure complete substrate conversions. The kinetic isotope effect...

  16. The role of carboxylic acids in TALSQueak separations

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Carter, Jennifer C.; Sinkov, Sergey I.; Nash, Ken L.; Lumetta, Gregg J.

    2012-04-13

    Recent reports have indicated TALSPEAK-type separations chemistry can be improved through the replacement of bis-2-ethyl(hexyl) phosphoric acid (HDEHP) and diethylenetriamine-N,N,N,N,N-pentaacetic acid (DTPA) with the weaker reagents 2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), respectively. This modified TALSPEAK has been provided with an adjusted acronym of TALSQueak (Trivalent Actinide Lanthanide Separation using Quicker Extractants and Aqueous Komplexes). Among several benefits, TALSQueak chemistry provides more rapid phase transfer kinetics, is less reliant on carboxylic acids to mediate lanthanide extraction and allows a simplified thermodynamic description of the separations process that generally requires only parameters available in the literature to describe metal transfer. This manuscript focuses on the role of carboxylic acids in aqueous ternary (M-HEDTA-carboxylate) complexes, americium/lanthanide separations, and extraction kinetics. Spectrophotometry (UV-vis) of the Nd hypersensitive band indicates the presence of aqueous ternary species (K111 = 1.83 {+-} 0.01 at 1.0 M ionic strength, Nd(HEDTA) + Lac <-> Nd(HEDTA)Lac). Varying the carboxylic acid does not have a significant impact on Ln/Am separations or extraction kinetics. TALSqueak separations come to equilibrium in five minutes at the conventional operational pH of 3.6 using only 0.1 M total lactate or citrate.

  17. Identification of new non-carboxylic acid containing inhibitors of aldose reductase.

    Science.gov (United States)

    Maccari, Rosanna; Ciurleo, Rosella; Giglio, Marco; Cappiello, Mario; Moschini, Roberta; Corso, Antonella Del; Mura, Umberto; Ottanà, Rosaria

    2010-06-01

    Non-carboxylic acid containing bioisosteres of (5-arylidene-2,4-dioxothiazolidin-3-yl)acetic acids, which are active as aldose reductase (ALR2) inhibitors, were designed by replacing the carboxylic group with the trifluoromethyl ketone moiety. The in vitro evaluation of the ALR2 inhibitory effects of these trifluoromethyl substituted derivatives led to the identification of two inhibitors effective at low micromolar doses. It was further confirmed that a carboxylic chain on N-3 of the thiazolidinedione scaffold is a determining requisite to obtain the highest efficacy levels; however, it is not essential for the interaction with the target enzyme and it can be replaced by different polar groups, thus obtaining less ionised or unionised inhibitors.

  18. Hydroxy, carboxylic and amino acid functionalized ...

    Indian Academy of Sciences (India)

    Abstract. Superparamagnetic iron oxide nanoparticles were synthesized by simple co-precipitation method and modified with different coating agents such as ascorbic acid, hexanoic acid, salicylic acid, L-arginine and L-cysteine. The synthesized nanoparticles were characterized by various techniques such as FT IR, XRD,.

  19. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...... enthalpies and the vapor-liquid equilibrium of relevant binary mixtures containing low molecular weight organic acids. The model sheds light on the interplay of intermolecular interactions through the calculation of the various contributions to the mixing enthalpies, namely from hydrogen bonding and non......-hydrogen bonding (dipolar, induced polar or dispersive) interactions. According to model predictions, the acid molecules are so strongly associated that the addition of inert solvents to carboxylic acids with small carbon numbers at ambient temperature does not dramatically alter their degree of association...

  20. Synthesis and Optical Properties of Pentamethine Cyanine Dyes With Carboxylic Acid Moieties

    Directory of Open Access Journals (Sweden)

    Tyler L Dost

    2017-05-01

    Full Text Available Cyanine dyes possessing carboxylic acid groups have been used in many different fields of study. The acid groups can act as handles for bioconjugation or as metal chelators. Several pentamethine cyanine dyes with propionic acid handles were synthesized and their optical properties were studied to determine their usefulness as fluorescent probes. The optical properties studies performed include the absorbance and emission maxima values as well as the calculation of quantum yield and molecular brightness levels. Molecular models were also calculated to help analyze the dyes’ behavior and were compared with similar dyes with varying alkyl chain lengths replacing the acid moieties.

  1. Intracomplex compounds of vanadyl with carboxylic acid hydrazides

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Z.M.; Usmankhodzhaeva, Ya.S.; Khodzhaev, O.F. (AN Uzbekskoj SSR, Tashkent. Inst. Khimii)

    1984-07-01

    Intracomplex vanadyl (2) compounds with some carboxylic acid hydrazides (HL) of the VOL/sub 2/xnH/sub 2/O composition, are prepared. Using IR absorption spectra of complexes, it is established that hydrazides are connected with a vanadyl ion in the deprotonated inidoalcohol form through an oxygen atom a nitrogen atom of aminogroup.

  2. Sodium borohydride reduction of aromatic carboxylic acids via ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 5. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters. Aamer Saeed Zaman Ashraf. Volume 118 ... Author Affiliations. Aamer Saeed1 Zaman Ashraf1. Department of Chemistry, Quaid-I-Azam University 45320, Islamabad, Pakistan ...

  3. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    on the earth's radiation balance by scattering incoming solar radiation, which counteracts global warming.3 More attention has been paid to carboxylic acids due to ..... Environ., 2007, 41(10), 2036–2048. 3 Intergovernmental Panel on Climate Change (IPCC). IPCC fourth assessment report, Contribution of Working Group I, ...

  4. (Benzoato-κ2O,O′(quinoline-2-carboxylato-κ2N,O(quinoline-2-carboxylic acid-κ2N,Omanganese(II

    Directory of Open Access Journals (Sweden)

    Nuno D. Martins

    2008-01-01

    Full Text Available The crystal structure of the title compound, [Mn(C7H5O2(C10H6NO2(C10H7NO2], contains manganese(II ions six-coordinated in a distorted octahedral environment. The equatorial plane is occupied by four O atoms, two from the carboxylate group of the benzoate ion, the other two from carboxylate/carboxyl groups of the quinaldate/quinaldic acid molecules. The axial positions are occupied by the N atoms of the quinoline ring systems. The metal ion lies on a twofold rotation axis that bisects the benzoate ligand; the quinaldate and quinaldic acid ligands are therefore equivalent by symmetry, and the carboxylate/carboxyl groups are disordered. The complexes are joined together by hydrogen bonds between the carboxylate/carboxyl groups of adjacent quinaldate/quinaldic acid molecules, forming zigzag chains that run along the c axis.

  5. 6-(Hex-5-enyloxynaphthalene-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Md. Lutfor Rahman

    2014-06-01

    Full Text Available The asymmetric unit of the title compound, C17H18O3, comprises three independent molecules with similar geometries. In each molecule, the carbonyl group is twisted away from the napthalene ring system, making dihedral angles of 1.0 (2, 1.05 (19° and 1.5 (2°. The butene group in all three molecules are disordered over two sets of sites, with a refined occupancy ratio of 0.664 (6:0.336 (6. In the crystal, molecules are oriented with respect to their carbonyl groups, forming head-to-head dimers via O—H...O hydrogen bonds. Adjacent dimers are further interconnected by C—H...O hydrogen bonds into chains along the a-axis direction. The crystal structure is further stabilized by weak C—H...π interactions.

  6. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  7. Esterification of camphene over heterogeneous heteropoly acid catalysts: synthesis of isobornyl carboxylates.

    OpenAIRE

    Meireles, Augusto Luís Pereira de; Rocha, Kelly Alessandra da Silva; Kozhevnikov, Ivan V.; Goussevskaia, Elena Vitalievna

    2011-01-01

    Silica supported H3PW12O40 (PW), the strongest heteropoly acid in the Keggin series, is an active and environmentally friendly solid acid catalyst for liquid-phase esterification of camphene, a renewable biomass-based substrate, with C2, C4 and C6 short-chain fatty acids. The reaction provides isobornyl carboxylates, useful as fragrances, in virtually 100% selectivity and 80–90% yield. The reaction is equilibrium-controlled and occurs under mild conditions with a catalyst turnover number of u...

  8. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids.

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina; Cysewski, Piotr

    2016-03-31

    The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and ethenzamide (2-ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Monitoring carboxylic acid formation in engine oils by liquid chromatography with fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Simon W.; Worsfold, Paul J. (Dept. of Environmental Sciences, Univ. of Plymouth (United Kingdom)); McKerrell, Euan H. (Shell Research Ltd., Thornton Research Centre, Chester (United Kingdom))

    1994-04-21

    Straight chain aliphatic carboxylic acids (C[sub 6]-C[sub 22]) were selectively derivatised in oxidised engine oils with the fluorescent label 9-anthracenemethanol after dialysis of the oils to remove polymeric additives, organometallic oxidation products and solid debris. The ester derivatives were separated by reversed-phase liquid chromatography and quantified using fluorescence detection ([lambda][sub ex]=251 nm; [lambda][sub em]=412 nm). Calibrations over the range 1-4 mg ml[sup -1] were linear (0.9987[<=]r[sup 2][<=]1.0000). The limit of detection (S/N=3) for octadecanoic acid was 85 [mu]g ml[sup -1] in n-heptane (4.3 ng on-column). Results showed that carboxylic acids are formed during the oxidation of oils in car engines and that their concentrations are directly related to the degree of oil degradation

  10. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    Directory of Open Access Journals (Sweden)

    Roman Matthessen

    2014-10-01

    Full Text Available The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process.

  11. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)

    2015-03-15

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  12. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Science.gov (United States)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-03-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  13. Carboxylic ionophores enhance the cytotoxic potency of ligand- and antibody-delivered ricin A chain

    Science.gov (United States)

    1984-01-01

    The highly selective cytotoxicity of site-directed ricin A chain conjugates can be potentiated by membrane-active carboxylic ionophores. The combined use of the two agents results in much faster inactivation of ribosomes and subsequent cell death and lysis. The potency of A chain cytotoxins is correspondingly increased by several orders of magnitude and cells that sparsely express the target antigen or receptor can be killed. PMID:6090575

  14. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  15. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...... to undergo initial diazotization and successive hydroxylation, since neither β-amino acids nor acid derivatives such as esters and amides undergo hydroxylations. The method is successfully applied for the synthesis of 18 proteinogenic amino acids....

  16. Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive.

    Science.gov (United States)

    Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli

    2017-04-19

    We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

  17. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  18. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  19. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.

    Science.gov (United States)

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew

    2014-04-07

    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  20. Integrated process for preparing a carboxylic acid from an alkane

    Science.gov (United States)

    Benderly, Abraham [Elkins Park, PA; Chadda, Nitin [Radnor, PA; Sevon, Douglass [Fairless Hills, PA

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  1. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    OpenAIRE

    Mardjan, Muhammad Idham Darussalam; Ambarwati, Retno; Matsjeh, Sabirin; Wahyuningsih, Tutik Dwi; Haryadi, Winarto

    2012-01-01

    Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-h...

  2. Understanding potential exposure sources of perfluorinated carboxylic acids in the workplace

    National Research Council Canada - National Science Library

    Kaiser, Mary A; Dawson, Barbara J; Barton, Catherine A; Botelho, Miguel A

    2010-01-01

    This paper integrates perspectives from analytical chemistry, environmental engineering, and industrial hygiene to better understand how workers may be exposed to perfluorinated carboxylic acids when...

  3. The Conversion of 1-(Malonylamino)cyclopropane-1-Carboxylic Acid to 1-Aminocyclopropane-1-Carboxylic Acid in Plant Tissues.

    Science.gov (United States)

    Jiao, X Z; Philosoph-Hadas, S; Su, L Y; Yang, S F

    1986-06-01

    Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the capability of watercress (Nasturtium officinale R. Br) stem sections and tobacco (Nicotiana tabacum L.) leaf discs to convert exogenously applied MACC to ACC increased with increasing MACC concentrations (0.2-5 millimolar) and duration (4-48 hours) of the treatment. The MACC-induced ethylene production was inhibited by CoCl(2) but not by aminoethoxyvinylglycin, suggesting that the ACC formed is derived from the MACC applied, and not from the methionine pathway. This was further confirmed by the observation that radioactive MACC released radioactive ACC and ethylene. A cell-free extract, which catalyzes the conversion of MACC to ACC, was prepared from watercress stems which were preincubated with 1 millimolar MACC for 24 hours. Neither fresh tissues nor aged tissues incubated without external MACC exhibited enzymic activity, confirming the view that the enzyme is induced by MACC. The enzyme had a K(m) of 0.45 millimolar for MACC and showed maximal activity at pH 8.0 in the presence of 1 millimolar MnSO(4). The present study indicates that high MACC levels in the plant tissue can induce to some extent the capability to convert MACC to ACC.

  4. The Conversion of 1-(Malonylamino)cyclopropane-1-Carboxylic Acid to 1-Aminocyclopropane-1-Carboxylic Acid in Plant Tissues 1

    Science.gov (United States)

    Jiao, Xin-Zhi; Philosoph-Hadas, Sonia; Su, Ling-Yuan; Yang, Shang Fa

    1986-01-01

    Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the capability of watercress (Nasturtium officinale R. Br) stem sections and tobacco (Nicotiana tabacum L.) leaf discs to convert exogenously applied MACC to ACC increased with increasing MACC concentrations (0.2-5 millimolar) and duration (4-48 hours) of the treatment. The MACC-induced ethylene production was inhibited by CoCl2 but not by aminoethoxyvinylglycin, suggesting that the ACC formed is derived from the MACC applied, and not from the methionine pathway. This was further confirmed by the observation that radioactive MACC released radioactive ACC and ethylene. A cell-free extract, which catalyzes the conversion of MACC to ACC, was prepared from watercress stems which were preincubated with 1 millimolar MACC for 24 hours. Neither fresh tissues nor aged tissues incubated without external MACC exhibited enzymic activity, confirming the view that the enzyme is induced by MACC. The enzyme had a Km of 0.45 millimolar for MACC and showed maximal activity at pH 8.0 in the presence of 1 millimolar MnSO4. The present study indicates that high MACC levels in the plant tissue can induce to some extent the capability to convert MACC to ACC. PMID:16664869

  5. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. CO 2 and CO utilization: radiation-induced carboxylation of aqueous chloroacetic acid to malonic acid

    Science.gov (United States)

    Getoff, Nikola

    2003-07-01

    CO 2 and CO in addition to HCOOH/HCOO - can be used to produce the carboxylating radical rad COOH/ rad COO - under the influence of ionizing radiation. The carboxylation of ClCH 2COOH/ClCH 2COO - to malonic acid/malonate was studied at the pH range 2-7. A maximum yield G(malonic acid)=85 at pH=3 was observed by using 5×10 -2 mol dm -3 ClCH 2COOH, 1×10 -2 mol dm -3 HCOOH and 1×10 -3 mol dm -3 CO at a dose of 4.8 kGy. Oxalic and succinic acids were found as byproducts. The yield of the formed Cl - ions passes two maxima, at pH=3 ( G=7.5) and 7 ( G=15). Reaction mechanisms for the carboxylation process are presented.

  7. Disorders of branched chain amino acid metabolism.

    Science.gov (United States)

    Manoli, I; Venditti, C P

    2016-11-07

    The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.

  8. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  9. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  10. nematicidal carboxylic acids and aldehydes from Melia azedarach fruits.

    Science.gov (United States)

    Ntalli, Nikoletta G; Vargiu, Simona; Menkissoglu-Spiroudi, Urania; Caboni, Pierluigi

    2010-11-10

    Melia azedarach is a species gaining scientific interest mostly concerning its range of biological activities against agricultural target pests. The nematicidal melia methanol extract (MME) obtained from the fruits, acting against the phytonematode Meloidogyne incognita , is herein reported to contain hexadecanoic, acetic, and hexanoic acids as well as furfural, 5-hydroxymethylfurfural, 5-methylfurfural, and furfurol. All compounds were tested individually for nematicidal activity against the nematode second-stage juveniles, in paralysis experiments. The nematicidal activity was studied both after nematodes' immersion in treatment solutions and after exposure to test substance vapors. Clear dose and time response relationships were established at the dose ranges of 31.2-500 and 1-100 μg/mL, concerning the aldehydes and carboxylic acids, respectively, implementing analogous predominance of nematicidal activity. Nevertheless, no synergistic effects were observed in respective mixture interaction bioassays among furfural, 5-hydroxymethylfurfural, 5-methylfurfural, and furfurol. Furfural was the most active bionematicidal compound reported herein for the first time as a natural constituent of M. azedarach.

  11. Pd-catalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids

    Science.gov (United States)

    Zhu, Yan; Chen, Xiaolan; Yuan, Chunchen; Li, Guobao; Zhang, Jingyu; Zhao, Yingsheng

    2017-04-01

    α-amino acids bearing aromatic side chains are important synthetic units in the synthesis of peptides and natural products. Although various β-C-H arylation methodologies for amino acid derivatives involving the assistance of directing groups have been extensively developed, syntheses that directly employ N-protected amino acids as starting materials remain rare. Herein, we report an N-acetylglycine-enabled Pd-catalysed carboxylate-directed β-C(sp3)-H arylation of aliphatic acids. In this way, various non-natural amino acids can be directly prepared from phthaloylalanine in one step in good to excellent yields. Furthermore, a series of aliphatic acids have been shown to be amenable to this transformation, affording β-arylated propionic acid derivatives in moderate to good yields. More importantly, this ligand-enabled direct β-C(sp3)-H arylation could be easily scaled-up to 10 g under reflux conditions, highlighting the potential utility of this synthetic method.

  12. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  14. Palladium-catalyzed C-H bond carboxylation of acetanilides: an efficient usage of N,N-dimethyloxamic acid as the carboxylate source.

    Science.gov (United States)

    Wu, Yinuo; Jiang, Cheng; Wu, Deyan; Gu, Qiong; Luo, Zhang-Yi; Luo, Hai-Bin

    2016-01-21

    N,N-Dimethyloxamic acid can be successfully employed as a carboxylate precursor in the palladium-catalyzed direct C-H carboxylation of acetanilides. The reaction proceeds smoothly under mild conditions over a broad range of substrates with high functional group tolerance, affording substituted N-acyl anthranilic acids in moderate to high yields.

  15. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    Science.gov (United States)

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  16. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  17. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl CO, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5 C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 10(8)M(-1)s(-1)) as compared to that for indole (6.8 × 10(7)M(-1)s(-1)) and I2C (2.3 × 10(7)M(-1)s(-1)). The determined bimolecular rate constant for triplet state quenching by iodide [Formula: see text] is equal to 1 × 10(4)M(-1)s(-1); 6 × 10(3)M(-1)s(-1) and 2.7 × 10(4)M(-1)s(-1) for indole, I2 C and I5 C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the

  18. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): Heavy atom effect

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl Cdbnd O, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 108 M-1 s-1) as compared to that for indole (6.8 × 107 M-1 s-1) and I2C (2.3 × 107 M-1 s-1). The determined bimolecular rate constant for triplet state quenching by iodide kqT1 is equal to 1 × 104 M-1 s-1; 6 × 103 M-1 s-1 and 2.7 × 104 M-1 s-1 for indole, I2C and I5C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in

  19. A solid state and solution NMR study of the tautomerism in hydroxyquinoline carboxylic acids.

    Science.gov (United States)

    Gudat, Dietrich; Nycz, Jacek E; Polanski, Jaroslaw

    2008-01-01

    Some hydroxyquinoline carboxylic acids and their conjugate acids and bases were characterized by 13C and 15N NMR spectroscopy in solution and in the solid state. Differences in 13C and, in particular, 15N chemical shift patterns allow to distinguish between individual tautomers and confirm the presence of zwitterionic species in the solid state. Solution NMR spectra in dimethyl sulfoxide (DMSO) show effects resulting as a consequence of dynamic exchange and suggest the presence of an equilibrium mixture of hydroxyquinoline carboxylic acid and zwitterionic hydroxyquinolinium carboxylate tautomers.

  20. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Starr, John N. [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  1. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    Science.gov (United States)

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  2. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    Science.gov (United States)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  3. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    Science.gov (United States)

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.

  4. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole sc...

  5. Simple and Convenient Synthesis of Esters from Carboxylic Acids and Alkyl Halides Using Tetrabutylammonium Fluoride

    National Research Council Canada - National Science Library

    Matsumoto, Kouichi; Shimazaki, Hayato; Miyamoto, Yu; Shimada, Kazuaki; Haga, Fumi; Yamada, Yuki; Miyazawa, Hirotsugu; Nishiwaki, Keiji; Kashimura, Shigenori

    2014-01-01

    A simple and convenient method has been developed for the synthesis of esters from the corresponding carboxylic acids and alkyl halides by using a stoichiometric amount of tetrabutylammonium fluoride (Bu4NF) as the base...

  6. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  7. [Synthesis and luminescence properties of ternary complexes of europium with aromatic carboxylic acid and acrylonitrile].

    Science.gov (United States)

    Guo, Dong-cai; Yi, Li-ming; Shu, Wan-gen; Zhang, Zhen-zhen; Zeng, Zhao-rong; Zhang, Xi-qian

    2006-11-01

    Five ternary complexes were synthesized from europium with aromatic carboxylic acid (p-methylbenzoic acid, methoxybenzoic acid, m-chlorobenzoic acid and benzoic acid, p-hydroxylbenzoic acid) and acrylonitrile, and characterized by means of elemental analysis, thermal analysis, FTIR spectra and UV spectra. The fluorescence spectra show that five ternary complexes have good luminescence properties, and the sequence of the ability of the aromatic carboxylic acids to transfer light energy to europium ion is as follows: p-methylbenzoic acid>benzoic acid>m-chlorobenzoic acid>p-hydroxylbenzoic acid>methoxybenzoic acid. Meanwhile, the ternary europium complexes containing a reactive ligand acrylonitrile will possibly have a potential application to the fabrication of bonding-type europium polymer luminescent materials.

  8. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  9. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    an average speed of 6.8 m s–1. Average temperature was 26.8 ... balance balance Mettler Toledo MX5 (reading precision 1 µg). Before weighing, the filters ..... Table 2 Correlation coefficients for PM mass, carboxylates, selected ions and wind speed in PM2.5 (upper triangle) and PM10 fractions (lower triangle) in Morogoro.

  10. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  11. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  12. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 72, Revision 1 (FGE.72Rev1): Consideration of aliphatic, branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters, evaluated by the JECFA (61st meeting) structurally related to branched- and straight-chain unsaturated carboxylic acids, esters of these and straight-chain aliphatic saturated alcohols evaluated by EFSA in FGE.05Rev2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 23 aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters, evaluated by the JECFA at their 61st meeting. This revision is made due...... threshold of concern, and available data on metabolism and toxicity. The Panel agrees with the application of the Procedure as performed by the JECFA for all 23 substances considered in this FGE and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances...

  13. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family.

    Science.gov (United States)

    Zubieta, Chloe; Ross, Jeannine R; Koscheski, Paul; Yang, Yue; Pichersky, Eran; Noel, Joseph P

    2003-08-01

    Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid.

  14. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives.

    Science.gov (United States)

    Maccari, Rosanna; Ottanà, Rosaria; Ciurleo, Rosella; Rakowitz, Dietmar; Matuszczak, Barbara; Laggner, Christian; Langer, Thierry

    2008-06-01

    In continuation of our studies, we here report a series of non-carboxylic acid containing 2,4-thiazolidinedione derivatives, analogues of previously synthesized carboxylic acids which we had found to be very active in vitro aldose reductase (ALR2) inhibitors. Although the replacement of the carboxylic group with the carboxamide or N-hydroxycarboxamide one decreased the in vitro ALR2 inhibitory effect, this led to the identification of mainly non-ionized derivatives with micromolar ALR2 affinity. The 5-arylidene moiety deeply influenced the activity of these 2,4-thiazolidinediones. Our induced-fit docking studies suggested that 5-(4-hydroxybenzylidene)-substituted derivatives may bind the polar recognition region of the ALR2 active site by means of the deprotonated phenol group, while their acetic chain and carbonyl group at position 2 of the thiazolidinedione ring form a tight net of hydrogen bonds with amino acid residues of the lipophilic specificity pocket of the enzyme.

  15. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba

    2016-06-01

    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.

  16. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    Science.gov (United States)

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  17. Syntheses, structures, photoluminescence and photocatalysis of 2D layered lanthanide-carboxylates with 2, 2′-dithiodibenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai; Sun, Yan-Qiong, E-mail: sunyq@fzu.edu.cn; Chen, Yi-Ping

    2017-02-15

    Two series of lanthanide-carboxylates, [Ln(2,2′-dtba)(2,2′-Hdtba)(EtOH)]{sub n} (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2′-dtba)(2,2′-Hdtba)(4,4′-bpy){sub 0.5}]{sub n} (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2′-H{sub 2}dtba=2,2′-dithiodibenzoic acid, 4,4′-bpy=4,4′-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H{sub 2}dtba organic ligand was generated by in situ S–S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2′-dtba)]{sup +} chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation. - Graphical abstract: Two series of lanthanide-carboxylates have been in situ synthesized under hydrothermal conditions. The lanthanide-carboxylates exhibit strong lanthanide characteristic emission bands and good photocatalytic activity for degradation of Rhodamine-B. - Highlights: • 2D layered lanthanide-carboxylates with 2,2′-dithiodibenzoic acid. • In situ S–S reaction of 2-mercaptobenzoic acid under hydrothermal condition. • The Emission spectra of I and II exhibit the characteristic transition of lanthanide ions. • Compounds 1b and 2a exhibit good photocatalytic activity for degradation of Rhodamine-B.

  18. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    Science.gov (United States)

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  19. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    Energy Technology Data Exchange (ETDEWEB)

    Orazov, Marat; Davis, Mark E.

    2017-11-07

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  20. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  1. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  2. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    The results showed that mean mass concentration of PM2.5 and PM10 were 13 ± 3.5 μg m–3 and 16 ± 2.3 μg m–3, respectively. Mean concentrations of the total carboxylates were 23.7±6.5 ngm–3 in PM2.5 and 36.4 ± 12 ngm–3 in PM10 whereas total water-soluble inorganic ions were 448±88 ngm–3 and 646± 214 ...

  3. (1H-Benzimidazole-5-carboxylic acid-κN3(1H-benzimidazole-6-carboxylic acid-κN3silver(I perchlorate

    Directory of Open Access Journals (Sweden)

    Li Ma

    2011-04-01

    Full Text Available The reaction of 1H-benzimidazole-5-carboxylic acid with silver nitrate in the presence of perchloric acid under hydrothermal conditions yielded the title complex, [Ag(C8H6N2O22]ClO4, which comprises of an [Ag(C8H6N2O22] mononuclear cation and a perchlorate anion. The AgI ion is coordinated by two N atoms from two different neutral 1H-benzimidazole-5-carboxylic acid ligands with an N—Ag—N bond angle of 163.21 (14°, forming an [Ag(C8H6N2O22] mononuclear cation. Although both ligands in the mononuclear cation are monodentate with one N atom coordinated to the metal ion, they are different: one is N3 coordinated to the Ag I ion and the N1 atom protonated, the other with the N1 coordinated to the Ag I ion and the N3 atom protonated (and thus formally a 1H-benzimidazole-6-carboxylic acid rather than a 1H-benzimidazole-5-carboxylic acid ligand. The planes of the two planar ligands are roughly perpendicular, making a dihedral angle of 84.97 (2°. The packing of the ions is stablized by extensive O—H...O, N—H...O and C—H...O hydrogen bonds, and by remote Ag...O interactions [3.002 (3, 3.581 (5 and 3.674 (5 Å].

  4. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. New and simple synthesis of acid azides, ureas and carbamates from carboxylic acids: application of peptide coupling agents EDC and HBTU.

    Science.gov (United States)

    Sureshbabu, Vommina V; Lalithamba, H S; Narendra, N; Hemantha, H P

    2010-02-21

    Conversion of carboxylic acids into acid azides using peptide coupling agents, EDC and HBTU is described. The procedure is efficient, practical and applicable to a diverse range of carboxylic acids including N-protected amino acids. Using the same reagents, one-pot synthesis of ureas, dipeptidyl urea esters and carbamates from acids has also been achieved.

  6. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  7. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides

    Science.gov (United States)

    2015-01-01

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  8. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Science.gov (United States)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-05-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30-80 nm and 0.2-1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV-Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  9. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    Science.gov (United States)

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  10. Low-Molecular Weight Carboxylic Acids in Gas Phase in a Developing Megacity

    Science.gov (United States)

    Khwaja, H. A.; Saied, S.; Hussain, M. M.; Siddique, A.; Butts, C.; Kamran, S. S.; Khan, M. K.

    2013-12-01

    Carboxylic acids are amongst the plethora of pollutants that are currently ubiquitous in the environment. Molecular distributions of carboxylic acids have been studied in the atmosphere of the developing mega city Karachi, Pakistan. As a region the city is experiencing industrial and population growth at an unparallel rate. Karachi served as a great focal point to observe the effects of industrial development on a growing city and how it contributes to the progression of environmental pollution. Results indicate that acetic and formic acids are important components of the Karachi atmosphere. The most abundant acids, by a substantial margin, were acetic acid and formic acid, with concentrations of 0.70 - 14.2 ppb and 0.82 - 11.0 ppb, respectively. On the average acetic acid levels exceeded those of formic acid. Concentrations of propionic acid, pyruvic acid, and glyoxalic acid ranged 0.03 - 1.41, 0.01 - 0.28, and 0.02 - 0.14 ppb, respectively. The gaseous acids showed diurnal cycles, with higher mixing ratios during nighttime. Compared with other metropolitans in the world, the level of acetic and formic acid concentration of Karachi is much higher. The ratio of formic to acetic acid was used to distinguish primary sources from secondary sources. A mean ratio of 0.85 was found. A positive correlation (r = 0.65 - 0.94) was observed between the acid concentrations suggesting that they have similar sources. Carboxylic acid concentrations appear to arise both from direct emissions and from atmospheric oxidation of hydrocarbons.

  11. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  12. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca.

    Science.gov (United States)

    Mitchell, Rebecca J; Myers, Anne L; Mabury, Scott A; Solomon, Keith R; Sibley, Paul K

    2011-11-01

    Perfluorinated acids (PFAs) have elicited significant global regulatory and scientific concern due to their persistence and global pervasiveness. A source of PFAs in the environment is through degradation of fluorotelomer carboxylic acids (FTCAs) but little is known about the toxicity of these degradation products. Previous work found that FTCAs were two to three orders of magnitude more toxic to some freshwater invertebrates than their PFA counterparts and exhibited comparable chain-length-toxicity relationships. In this study, we investigated the toxicity of the 6:2, 8:2, and 10:2 saturated (FTsCA) and unsaturated (FTuCA) fluorotelomer carboxylic acids to two species of freshwater algae, Chlorella vulgaris and Pseudokirchneriella subcapitata, and the amphipod, Hyalella azteca. C. vulgaris was generally the most sensitive species, with EC₅₀s of 26.2, 31.8, 11.1, and 4.2 mg/L for the 6:2 FTsCA, 6:2 FTuCA, 8:2 FTuCA, and 10:2 FTsCA, respectively. H. azteca was most sensitive to the 8:2 FTsCA and 10:2 FTuCA, with LC₅₀s of 5.1 and 3.7 mg/L. The toxicity of the FTCAs generally increased with increasing carbon chain length, and with saturation for most of the species tested, with the exception of P. subcapitata, which did not exhibit any trend. These observations agree with chain-length-toxicity relationships previously reported for the PFCAs and support the greater toxicity of the FTCAs compared to PFCAs. However, the toxicity values are approximately 1000-fold above those detected in the environment indicating negligible risk to aquatic invertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Structure-activity relationship studies of 1-substituted 3-dodecanoylindole-2-carboxylic acids as inhibitors of cytosolic phospholipase A2-mediated arachidonic acid release in intact platelets.

    Science.gov (United States)

    Griessbach, Klaus; Klimt, Monika; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2002-01-01

    A series of 3-dodecanoylindole-2-carboxylic acid derivatives with varied carboxylic acid substituents at the indole 1-position were synthesized and evaluated for their ability to inhibit arachidonic acid release in human platelets mediated by the cytosolic phospholipase A(2). Structure-activity relationship studies revealed that increasing the polarity of these substituents by the introduction of additional polar groups in the proximity of the carboxylic acid moiety reduced activity. Conformational restriction of the indole-1-carboxylic acid substituents in distinct positions as well as extending the length of these residues led to compounds which did not substantially differ in their potencies.

  14. Role of apparent pKa of carboxylic acids in lipase-catalyzed esterifications in biphasic systems

    NARCIS (Netherlands)

    Dominguez de Maria, Pablo; Fernandez-Alvaro, Elena; ten Kate, Antoon; Bargeman, Gerrald

    2009-01-01

    Lipase-catalyzed esterifications in biphasic media (heptane–water, 1:1) were conducted by using Thermomyces lanuginosus lipase (TLL) as biocatalyst. Different carboxylic acids (from acetic to lauric) were thus esterified with 1-butanol at different pH values (2–10). For all carboxylic acids tested,

  15. Substituted Amides of Pyrazine-2-carboxylic acids: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2002-03-01

    Full Text Available Condensation of 6-chloro-, 5-tert-butyl- or 6-chloro-5-tert-butylpyrazine-2-carboxylic acid chloride with ring substituted anilines yielded a series of amides, which were tested for their in vitro antimycobacterial, antifungal and photosynthesis-inhibiting activities. The highest antituberculotic activity (72% inhibition against Mycobacterium tuberculosis and the highest lipophilicity (log P = 6.85 were shown by the 3,5-bistrifluoromethylphenyl amide of 5-tert-butyl-6-chloropyrazine-2-carboxylic acid (2o. The 3-methylphenyl amides of 6-chloro- and 5-tert-butyl-6-chloro-pyrazine-2-carboxylic acid (2d and 2f exhibited only a poor in vitro antifungal effect (MIC = 31.25-500 μmol·dm-3 against all strains tested, although the latter was the most active antialgal compound (IC50 = 0.063 mmol·dm-3. The most active inhibitor of oxygen evolution rate in spinach chloroplasts was the (3,5-bis-trifluoromethylphenylamide of 6-chloropyrazine-2-carboxylic acid (2m, IC50 = 0.026 mmol·dm-3.

  16. Preparation of mono- and diacetyl 4,4′-dimethylbiphenyl and their corresponding carboxylic acids

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.

    2007-01-01

    dimethylbiphenyls. In chloroalkane or carbon disulfide solvent, the yields of isomers were in the order: 2 -> 3-; in nitromethane 3-isomer predominated. On the other hand diacetylation of the hydrocarbon gave only the 2,3′-diacetyl isomer. The mono- and di-ketones are converted to the corresponding carboxylic acids...

  17. New co-crystal and salt form of sulfathiazole with carboxylic acid and ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. New co-crystal and salt form of sulfathiazole with carboxylic acid and amide. Ranita Samanta Shipra Kanaujia C Malla Reddy. Special issue on Chemical Crystallography Volume 126 Issue 5 September ...

  18. 4-(Dimethylamino)pyridine-catalysed iodolactonisation of γ,δ-unsaturated carboxylic acids.

    Science.gov (United States)

    Meng, Chuisong; Liu, Zhihui; Liu, Yuxiu; Wang, Qingmin

    2015-06-28

    4-(Dimethylamino)pyridine functioned as an excellent catalyst for iodolactonisation reactions of γ,δ-unsaturated carboxylic acids, affording γ-lactones, δ-lactones, or both under neutral conditions at room temperature. The effects of substrate structures on the iodolactonisation were investigated, and a catalytic mechanism is proposed.

  19. Synthesis of N-acylurea derivatives from carboxylic acids and N,N ...

    Indian Academy of Sciences (India)

    Synthesis of N-acylurea derivatives from carboxylic acids and. N,N -dialkyl carbodiimides in water. ALI RAMAZANIa,∗, FATEMEH ZEINALI NASRABADIb, ARAM REZAEIa,. MORTEZA ROUHANIc, HAMIDEH AHANKARd, PEGAH AZIMZADEH ASIABIa,. SANG WOO JOOe,∗. , KATARZYNA SLEPOKURAf and TADEUSZ LISf.

  20. Amine vs. carboxylic acid protonation in ortho-, meta-, and para-aminobenzoic acid: An IRMPD spectroscopy study

    Science.gov (United States)

    Cismesia, Adam P.; Nicholls, Georgina R.; Polfer, Nicolas C.

    2017-02-01

    Infrared multiple photon dissociation (IRMPD) spectroscopy and computational chemistry are applied to the ortho-, meta-, and para- positional isomers of aminobenzoic acid to investigate whether the amine or the carboxylic acid are the favored sites of proton attachment in the gas phase. The NH and OH stretching modes yield distinct patterns that establish the carboxylic acid as the site of protonation in para-aminobenzoic acid, as opposed to the amine group in ortho- and meta-aminobenzoic acid, in agreement with computed thermochemistries. The trends for para- and meta-substitutions can be rationalized simplistically by inductive effects and resonant stabilization, and will be discussed in light of computed charge distributions based from electrostatic potentials. In ortho-aminobenzoic acid, the close proximity of the amine and acid groups allow a simultaneous interaction of the proton with both groups, thus stabilizing and delocalizing the charge more effectively, and compensating for some of the resonance stabilization effects.

  1. Precision Morphology in Sulfonic, Phosphonic, Boronic, and Carboxylic Acid Polyolefins

    Science.gov (United States)

    2013-11-15

    Wagener. Effects of Boron-Containing Lewis Acids on Olefin Metathesis , Organometallics, (05 2013): 0. doi: 10.1021/om400257b Michael D. Schulz, Rachel R...SYMPOSIUM ON OLEFIN METATHESIS , July 16, 2013, Nara, Japan “New Methodology For Preparing Precision Acid Polymer Structures” 7) GORDON CONFERENCE ON...Zachary Kean, Kenneth B. Wagener. Synthesis of Poly(3-dodecyl-2,5- thienylene vinylene) by Solid-State Metathesis Polycondensation, Macromolecules, (12

  2. Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2016-09-01

    Full Text Available Cyclopentane carboxylic acid (CPCA is a model compound of Naphthenic acids (NAs. This objective of this paper is to discover total acid number (TAN reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH. The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.

  3. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis

    Science.gov (United States)

    Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang

    2017-01-01

    This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15–75 wt% maleic acid concentrations, 60–120°C temperatures, and 5–300 min reaction...

  4. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase.

    Science.gov (United States)

    Gheibi, N; Saboury, A A; Haghbeen, K; Rajaei, F; Pahlevan, A A

    2009-10-01

    Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2 mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (K(i)=0.14 mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (K(i)) of 0.36, 0.6, 3.6 and 4.5 mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.

  5. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  6. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Science.gov (United States)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  7. Design, Synthesis, Antimycobacterial Evaluation, and In Silico Studies of 3-(Phenylcarbamoyl-pyrazine-2-carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Lucia Semelková

    2017-09-01

    Full Text Available Pyrazinamide, the first-line antitubercular drug, has been regarded the basic component of tuberculosis treatment for over sixty years. Researchers have investigated its effect on Mycobacterium tuberculosis for this long time, and as a result, new potential targets of pyrazinamide or its active form, pyrazinoic acid, have been found. We have designed and prepared 3-(phenyl-carbamoylpyrazine-2-carboxylic acids as more lipophilic derivatives of pyrazinoic acid. We also prepared methyl and propyl derivatives as prodrugs with further increased lipophilicity. Antimycobacterial, antibacterial and antifungal growth inhibiting activity was investigated in all prepared compounds. 3-[(4-Nitrophenylcarbamoyl]pyrazine-2-carboxylic acid (16 exerted high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 1.56 μg·mL−1 (5 μM. Propyl 3-{[4-(trifluoromethylphenyl]carbamoyl}pyrazine-2-carboxylate (18a showed also high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 3.13 μg·mL−1. In vitro cytotoxicity of the active compounds was investigated and no significant cytotoxic effect was observed. Based to structural similarity to known inhibitors of decaprenylphosphoryl-β-d-ribose oxidase, DprE1, we performed molecular docking of the prepared acids to DprE1. These in silico experiments indicate that modification of the linker connecting aromatic parts of molecule does not have any negative influence on the binding.

  8. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  9. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T., E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  10. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  11. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2. A w...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase.......- 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...

  12. High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, L. C.; Sun, T. T.; Byrd, B. L.; Hayes, R. L.; Butler, T. A.; Callahan, A. P.

    1979-01-01

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.

  13. Variations in the saturation magnetization of nanosized NiFe2O4 particles on adsorption of carboxylic acids

    Directory of Open Access Journals (Sweden)

    Ryo Kurosawa

    2014-03-01

    Full Text Available This work investigated magnetization changes in NiFe2O4 nanoparticles induced by the adsorption of a series of carboxylic acids. The application of formic acid resulted in a significant 8.6% decrease in the magnetization of NiFe2O4 nanoparticles at 18,000 Oe. With increasing carbon bond number in the saturated carboxylic acids, reductions in the magnetization of NiFe2O4 nanoparticles became around 4%. All unsaturated carboxylic acids produced approximately equivalent reductions in the magnetization, regardless of their double bond content. Based on these results, the observed NiFe2O4 magnetization changes appear to depend on either the polarity or the molecular size of the carboxylic acids and are believed to be caused by canting or pinning of spins in the vicinity of particle surfaces following adsorption of the acids.

  14. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    Science.gov (United States)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  15. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  16. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High Performance Ion Exclusion Chromatography.

    Science.gov (United States)

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-06-01

    An ion exclusion chromatography (IELC) comparison between a conventional ion exchange column and an ultra-high performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H 2 SO 4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringer's desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 m M H 2 SO 4 (pH 3.93) eluent at a flow rate of 1 mL min -1 and an injection volume of 72 μL. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism.

  17. A comprehensive classification and nomenclature of carboxyl-carboxyl(ate) supramolecular motifs and related catemers: implications for biomolecular systems.

    Science.gov (United States)

    D'Ascenzo, Luigi; Auffinger, Pascal

    2015-04-01

    Carboxyl and carboxylate groups form important supramolecular motifs (synthons). Besides carboxyl cyclic dimers, carboxyl and carboxylate groups can associate through a single hydrogen bond. Carboxylic groups can further form polymeric-like catemer chains within crystals. To date, no exhaustive classification of these motifs has been established. In this work, 17 association types were identified (13 carboxyl-carboxyl and 4 carboxyl-carboxylate motifs) by taking into account the syn and anti carboxyl conformers, as well as the syn and anti lone pairs of the O atoms. From these data, a simple rule was derived stating that only eight distinct catemer motifs involving repetitive combinations of syn and anti carboxyl groups can be formed. Examples extracted from the Cambridge Structural Database (CSD) for all identified dimers and catemers are presented, as well as statistical data related to their occurrence and conformational preferences. The inter-carboxyl(ate) and carboxyl(ate)-water hydrogen-bond properties are described, stressing the occurrence of very short (strong) hydrogen bonds. The precise characterization and classification of these supramolecular motifs should be of interest in crystal engineering, pharmaceutical and also biomolecular sciences, where similar motifs occur in the form of pairs of Asp/Glu amino acids or motifs involving ligands bearing carboxyl(ate) groups. Hence, we present data emphasizing how the analysis of hydrogen-containing small molecules of high resolution can help understand structural aspects of larger and more complex biomolecular systems of lower resolution.

  18. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  19. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    Science.gov (United States)

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  20. Lignosulfonates carboxylated with chloroacetic acid as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-19

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of lignosulfonates carboxylated with chloroacetic acid as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the lignosulfonates carboxylated with chloroacetic acid into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  1. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.

    Science.gov (United States)

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A

    2015-06-07

    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes.

  2. Electron polarizability of molecules of carboxylic acids and their dimers and trimers

    Science.gov (United States)

    Nazarov, A. P.; Barabanova, N. N.; Bogdanov, D. L.; Dadivanyan, A. K.

    2017-11-01

    Components of the tensor of the electron polarizability of molecules of carboxylic acids and their dimers and trimers with conjugated chemical bonds are calculated according the Hartree-Fock method. The dependences of a change in the anisotropy of polarizability on the average polarizability of a molecule and the number of electrons in a conjugated system are determined. An increase in the anisotropy of electron polarizability during the formation of intermolecular associates through hydrogen bonds is observed.

  3. Carboxylic Acids as Directing Groups for C-H Bond Functionalization.

    Science.gov (United States)

    Pichette Drapeau, Martin; Gooßen, Lukas J

    2016-12-23

    The selective transformation of C-H bonds is one of the most desirable approaches to creating complexity from simple building blocks. Several directing groups are efficient in controlling the regioselectivity of catalytic C-H bond functionalizations. Among them, carboxylic acids are particularly advantageous, since they are widely available in great structural diversity and at low cost. The carboxylate directing groups can be tracelessly cleaved or may serve as the anchor point for further functionalization through decarboxylative couplings. This Minireview summarizes the substantial progress made in the last few years in the development of reactions in which carboxylate groups direct C-H bond functionalizations with formation of C-C, C-O, C-N, or C-halogen bonds at specific positions. It is divided into sections on C-C, C-O, C-N, and C-halogen bond formation, each of which is subdivided by reactions and product classes. Particular emphasis is placed on methods that enable multiple derivatizations by combining carboxylate-directed C-H functionalization with decarboxylative couplings. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Accumulation of n-alkanes and carboxylic acids in peat mounds

    Science.gov (United States)

    Gabov, D. N.; Beznosikov, V. A.; Gruzdev, I. V.; Yakovleva, E. V.

    2017-10-01

    The quantitative and qualitative compositions of n-alkanes and carboxylic acids have been identified, and the features of their vertical stratification in peat mound profiles of the forest-tundra zone of Komi Republic have been revealed. The composition of n-alkanes (structures with C23, C25, C27, C29, and C31) and carboxylic acids (C24, C26, and C28) and their proportions make it possible to determine changes in plant communities of peat mounds with time and can be used as markers for the degree of decomposition of organic matter. In cryogenic horizons, the contents of n-alkanes (mainly C23, C25, and C27) and carboxylic acids (C24, C26, and C28) significantly decrease because of the different botanic composition of cryogenic horizons (grass-woody residues) and seasonally thawing horizons (moss-subshrub residues) and the almost complete stopping of the equilibrium accumulation and transformation of organic compounds in permafrost.

  5. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics.

    Science.gov (United States)

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-12-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (ΔΨm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

  6. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    Science.gov (United States)

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. (19)F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  7. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    Science.gov (United States)

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  8. Oxidation of carboxylic acids regenerates hydroxyl radicals in the unpolluted and nighttime troposphere.

    Science.gov (United States)

    da Silva, Gabriel

    2010-07-01

    The hydroxyl radical (OH) controls the removal of organic compounds from the troposphere. Atmospheric chemistry models significantly under-predict OH levels in unpolluted environments, implying that they are regenerated via some unknown mechanism(s). This work uses computational chemistry to demonstrate that the photochemical oxidation of alkyl carboxylic acids can efficiently regenerate the hydroxyl radical via unimolecular decomposition of alpha-carboxyalkylperoxy radicals. For acetic acid and propanoic acid the proposed mechanism is predicted to dominate in the unpolluted lower troposphere, and it may also operate to some extent in the mid to upper troposphere. Alkyl carboxylic acids are also predicted to act as a new source of nighttime OH throughout the planetary boundary layer, where OH levels are also under-predicted. The thermodynamic requirements for reactions of this class are discussed, and some candidate OH-reforming molecules particularly relevant to aromatic photooxidation are identified. Adopting a broader perspective, the alpha-carboxyalkyl radical precursors that react with O(2) to form the unstable alpha-carboxyalkylperoxy type radicals are also expected to form during combustion, in the interstellar medium, and from the gamma-irradiation of glycine and related amino acids, and the potential importance of this new chemistry in these environments is discussed. Master equation simulations suggest that alpha-carboxyalkyl + O(2) reactions provide a prompt OH source during the autoignition and combustion of biodiesel and other oxygenated biofuels, where carboxylic acids are formed as early stage oxidation products. Ketene combustion is also thought to proceed via these OH-reforming alpha-carboxyalkyl radicals. The in vivo formation of alpha-carboxyalkylperoxy radicals followed by oxidation to the highly reactive OH radical may induce oxidative stress in the human body, in a process initiated by gamma-rays. Finally, the reaction of ketenes with OH to

  9. Fluorescence Quenching of a Conjugated Polymer by Synergistic Amine-Carboxylic Acid and π-π Interactions for Selective Detection of Aromatic Amines in Aqueous Solution.

    Science.gov (United States)

    Zhao, Yi-Jia; Miao, Kesong; Zhu, Zhengtao; Fan, Li-Juan

    2017-06-23

    Fluorescence sensing of amine in aqueous solution is challenging. The various basicity and chemical structures of amines may lead to poor selectivity in aqueous solution, and selective fluorescence detection of primary aromatic amine is rarely reported. This paper presents design and synthesis of a fluorescent conjugated polymer for rapid and selective sensing of aromatic amines in aqueous solution. The fluorescent conjugated polymer, poly[fluorenyl-alt-p-phenyleneethynylene] with pendant carboxylic acid groups and long alky chains, is synthesized via palladium-catalyzed Sonogashira coupling reaction. The fluorescence of the polymer is selectively quenched by the aromatic amines in aqueous solution, whereas the aliphatic amines enhance the fluorescence of the polymer. The high selectivity to the aromatic amines, particularly to the environmentally important p-phenylenediamine, likely originates from the amplified π-π fluorescence quenching synergized by amine and carboxylic acid interaction. Our results demonstrate an effective material design strategy that may be extended to fluorescence sensing of other aromatic compounds.

  10. Development of starch biofilms using different carboxylic acids as plasticizers; Desenvolvimento de biofilmes de amido utilizando como plastificantes diferentes acidos carboxilicos

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M., E-mail: uanaconceicaocruz@gmail.com [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Grupo de Energia e Ciencias dos Materiais

    2014-07-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  11. In Vitro Reactivity of Carboxylic Acid-CoA Thioesters with Glutathione

    DEFF Research Database (Denmark)

    Sidenius, Ulrik; Skonberg, Christian; Olsen, Jørgen

    2004-01-01

    was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç- Glu-Cys-Gly).  The  acyl-CoA  thioesters  of  eight  carboxylic  acids  (ibuprofen,  clofibric  acid, indomethacin,  fenbufen,  tolmetin,  salicylic  acid......The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study......,  2-phenoxypropionic  acid,  and  (4-chloro-2-methyl-phenoxy)acetic  acid  (MCPA))  were  synthesized,  and  each  acyl-CoA  (0.5  mM)  was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl...

  12. One-Pot Synthesis of Esters of Cyclopropane Carboxylic Acids via Tandem Vicarious Nucleophilic Substitution-Michael Addition Process.

    Science.gov (United States)

    Mąkosza, Mieczysław; Bester, Karol; Cmoch, Piotr

    2015-06-05

    α-Chlorocarbanions generated via base-induced vicarious nucleophilic substitution reaction of alkyl dichloroacetates with nitroarenes react with Michael acceptors to give esters of cyclopropane carboxylic acids substituted with p-nitroaromatic rings.

  13. Synthesis of carbon-13 labeled aldehydes, carboxylic acids, and alcohols via organoborane chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.; Delgado, M.C.; Kunda, U.S.; Kunda, S.A.

    1984-01-13

    The carbonylation of organoboranes using carbon-13 enriched carbon monoxide to produce labeled aldehydes in excellent yields is described. This same synthesis technique was tested for the production of labeled carboxylic acids with the incorporation of direct oxidation of the initial organoborane adduct; however, yields were not as good as those obtained with silver oxide oxidation of the aldehydes to produce acids. Since higher yields of carbon-13 labeled alcohols were obtained by reduction of the aldehyde with a borane reagent rather than the direct hydrolysis of the initially formed organoborane, the former method is recommended for the production of carbon-13 labeled alcohols.

  14. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    Science.gov (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  15. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  16. Fluorescence Quenching of Two Coumarin-3-carboxylic Acids by Trivalent Lanthanide Ions.

    Science.gov (United States)

    Cisse, Lamine; Djande, Abdoulaye; Capo-Chichi, Martine; Delattre, François; Saba, Adama; Brochon, Jean-Claude; Sanouski, Serguei; Tine, Alphonse; Aaron, Jean-Jacques

    2017-03-01

    The effects of various trivalent lanthanide ions (acetates of Ce3+, Er3+, Eu3+, Nd3+) on the electronic absorption and fluorescence spectra of un-substituted coumarin-3-carboxylic acid (CCA) and 7-N,N-diethylamino-coumarin-3-carboxylic acid (DECCA) have been investigated in dimethylsulfoxide (DMSO) at room temperature. Depending on the lanthanide ion nature and concentration, significant spectral changes of absorption bands occurred for both coumarin derivatives. These spectral changes were attributed to the formation of ground-state complexes between the coumarin carboxylate derivatives and lanthanide ions. The fluorescence quenching of CCA and DECCA upon increasing the lanthanide ion concentration was studied. Different quantitative treatments, including the Stern-Volmer equation, the Perrin equation and a polynomial equation, were applied and compared in order to determine the nature of the quenching mechanisms for both coumarin derivatives. The results suggested the contribution of both dynamic and static quenching. Significant differences of CCA and DECCA fluorescence quenching efficiency were also observed, depending on the lanthanide ion. DECCA fluorescence lifetime measurements, performed in the absence and in the presence of Ln3+, confirmed a contribution of static quenching.

  17. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  18. Access to Alkyl-Substituted Lactone via Photoredox-Catalyzed Alkylation/Lactonization of Unsaturated Carboxylic Acids.

    Science.gov (United States)

    Sha, Wanxing; Ni, Shengyang; Han, Jianlin; Pan, Yi

    2017-11-03

    An efficient photoredox-catalyzed alkylation/lactonization reaction of unsaturated carboxylic acids by using alkyl N-hydroxyphthalimide esters as alkylation reagents has been developed. Varieties of redox-active esters derived from aliphatic carboxylic acids were proved viable in this method, affording alkyl substituted lactones in moderate to good yields. This redox-neutral procedure features mild conditions and operational simplicity, which provides a new strategy for the synthesis of alkyl substituted lactones.

  19. Selective Oxidation of 1,2-Propanediol to Carboxylic Acids Catalyzed by Copper Nanoparticles.

    Science.gov (United States)

    Xue, Wuping; Yin, Hengbo; Lu, Zhipeng; Wang, Aili; Liu, Shuxin; Shen, Lingqin

    2018-05-01

    Copper nanoparticles with different particle sizes were prepared by a wet chemical reduction method in the presence of organic modifiers, such as citric acid (CA), hexadecyl trimethyl ammonium bromide, Tween-80 (Tween), and polyethylene glycol 6000. Selective oxidation of sustainable 1,2-propanediol with O2 to high-valued lactic, formic, and acetic acids catalyzed by the copper nanoparticles in an alkaline medium was investigated. The small-sized CuCA nanoparticles with the average particle size of 15.2 nm favored the formation of acetic and formic acids while the CuTween nanoparticles with the average particle size of 26.9 nm were beneficial to the formation of lactic acid. The size effect of copper nanoparticles on the catalytic oxidation of 1,2-propanediol to the carboxylic acids was obvious.

  20. Molecular structure, hydrogen bonding and spectroscopic properties of the complex of piperidine-4-carboxylic acid with chloroacetic acid

    Science.gov (United States)

    Komasa, A.; Katrusiak, A.; Szafran, M.; Barczyński, P.; Dega-Szafran, Z.

    2008-10-01

    Complex of piperidine-4-carboxylic acid with chloroacetic acid has been studied by X-ray diffraction, FTIR, Raman, 1H and 13C NMR spectroscopy and B3LYP/6-31G(d,p) calculations. In crystal the piperidine ring is protonated and adopts a chair conformation with the COOH group in the equatorial position. The COO - group of chloroacetate unit is engaged in three hydrogen bonds: O(1)-H(1)···O(3) of 2.604(2) Å, N(1)-H(12)···O(3) of 2.753(2) Å and N(1)-H(11)···O(4) of 2.760(2) Å. According to the B3LYP calculations the isolated complexes both in vacuum and H 2O solution have cyclic structures. In vacuum the molecules are connected by two H-bonds: the COOH group of chloroacetic acid is engaged with piperidine-4-carboxylic acid, one with the nitrogen atom, O(4)-H···N(1) of 2.658 Å and the second with carboxyl group, O(1)-H···O(3) of 2.860 Å. In water solution piperidine-4-carboxylic acid is protonated and forms two hydrogen bonds with the chloroacetate unit: N(1)-H···O(4) of 2.690 Å and O(1)-H···O(3) of 2.611 Å. Powder FTIR spectra of the complex and its deuterated analogue are consistent with the X-ray structure. Correlations between the experimental 1H and 13C chemical shifts of the complex investigated and the GIAO/B3LYP/6-31G(d,p) calculated magnetic isotropic shielding tensors ( σcalc) in vacuum and within the conductor-like screening continuum solvation model (COSMO) in H 2O, δexp = a + b σcalc, are reported.

  1. Prediction of protein modification sites of pyrrolidone carboxylic acid using mRMR feature selection and analysis.

    Directory of Open Access Journals (Sweden)

    Lu-Lu Zheng

    Full Text Available Pyrrolidone carboxylic acid (PCA is formed during a common post-translational modification (PTM of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR and incremental feature selection (IFS. We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations.

  2. Can an amine be a stronger acid than a carboxylic acid? The surprisingly high acidity of amine-borane complexes.

    Science.gov (United States)

    Martín-Sómer, Ana; Lamsabhi, Al Mokhtar; Yáñez, Manuel; Dávalos, Juan Z; González, Javier; Ramos, Rocío; Guillemin, Jean-Claude

    2012-12-03

    The gas-phase acidity of a series of amine-borane complexes has been investigated through the use of electrospray mass spectrometry (ESI-MS), with the application of the extended Cooks kinetic method, and high-level G4 ab initio calculations. The most significant finding is that typical nitrogen bases, such as aniline, react with BH(3) to give amine-borane complexes, which, in the gas phase, have acidities as high as those of either phosphoric, oxalic, or salicylic acid; their acidity is higher than many carboxylic acids, such as formic, acetic, and propanoic acid. Indeed the complexation of different amines with BH(3) leads to a substantial increase (from 167 to 195 kJ mol(-1)) in the intrinsic acidity of the system; in terms of ionization constants, this increase implies an increase as large as fifteen orders of magnitude. Interestingly, this increase in acidity is almost twice as large as that observed for the corresponding phosphine-borane analogues. The agreement between the experimental and the G4-based calculated values is excellent. The analysis of the electron-density rearrangements of the amine and the borane moieties indicates that the dative bond is significantly stronger in the N-deprotonated anion than in the corresponding neutral amine-borane complex, because the deprotonated amine is a much better electron donor than the neutral amine. On the top of that, the newly created lone pair on the nitrogen atom in the deprotonated species, conjugates with the BN bonding pair. The dispersion of the extra electron density into the BH(3) group also contributes to the increased stability of the deprotonated species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions.

    Science.gov (United States)

    Stalport, F; Coll, P; Szopa, C; Cottin, H; Raulin, F

    2009-01-01

    The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions.

  4. Recovery of carboxylic acids at pH greater than pKa

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Lisa A. [Univ. of California, Berkeley, CA (United States)

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  5. Activation of carboxylic acids by pyrocarbonates. Synthesis of symmetric anhydrides and esters of N-protected amino acids using dialkyl pyrocarbonates as condensing reagents.

    Science.gov (United States)

    Pozdnev, V F

    1992-11-01

    Activation of carboxylic acids was achieved via dialkyl pyrocarbonates (ROCO)2O, R = C2H5, i-C3H7, sec-C4H9, tert.-C4H9) in aprotic solvents in the presence tertiary amines. A convenient procedure for the preparation of carboxylic acid anhydrides from carboxylic acids and di-tert.-butyl pyrocarbonate in the presence of pyridine is reported. Analogously, di-isopropyl- or diethyl pyrocarbonate may be used in the presence of N-methylmorpholine (triethylamine). With pyridine, di-isopropyl- or diethyl pyrocarbonate carboxylic acids form isopropyl- or ethyl esters, respectively. A wide variety of esters were prepared in good yields in a one-pot procedure from carboxylic acids, including N-protected amino acids, and alcohols or from phenols by means of di-tert.-butyl pyrocarbonate in the presence of pyridine (Boc2O-pyridine system). t-Butyl esters of carboxylic acids were obtained by the same procedure with 4-dimethylaminopyridine. In the absence of carboxylic acid, with 4-dimethylaminopyridine Boc2O and alcohols generate alkyl tert.-butyl carbonates.

  6. Structure of eight molecular salts assembled from noncovalent bonding between carboxylic acids, imidazole, and benzimidazole

    Science.gov (United States)

    Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi

    2015-09-01

    Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.

  7. CO{sub 2} and CO utilization: radiation-induced carboxylation of aqueous chloroacetic acid to malonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola E-mail: nikola.getoff@univie.ac.at

    2003-07-01

    CO{sub 2} and CO in addition to HCOOH/HCOO{sup -} can be used to produce the carboxylating radical {sup {center_dot}}COOH/{sup {center_dot}}COO{sup -} under the influence of ionizing radiation. The carboxylation of ClCH{sub 2}COOH/ClCH{sub 2}COO{sup -} to malonic acid/malonate was studied at the pH range 2-7. A maximum yield G(malonic acid)=85 at pH=3 was observed by using 5x10{sup -2} mol dm{sup -3} ClCH{sub 2}COOH, 1x10{sup -2} mol dm{sup -3} HCOOH and 1x10{sup -3} mol dm{sup -3} CO at a dose of 4.8 kGy. Oxalic and succinic acids were found as byproducts. The yield of the formed Cl{sup -} ions passes two maxima, at pH=3 (G=7.5) and 7 (G=15). Reaction mechanisms for the carboxylation process are presented.

  8. Synthesis of tricyclic indole-2-carboxylic [correction of caboxylic] acids as potent NMDA-glycine antagonists.

    Science.gov (United States)

    Katayama, S; Ae, N; Nagata, R

    2001-05-18

    The practical synthesis of a series of tricyclic indole-2-carboxylic acids, 7-chloro-3-arylaminocarbonylmethyl-1,3,4,5-tetrahydrobenz[cd]indole-2-carboxylic acids, as a new class of potent NMDA-glycine antagonists is described. The synthetic route to the key intermediate 12a comprises a regioselective iodination of 4-chloro-2-nitrotoluene, modified Reissert indole synthesis, Jeffery's Heck-type reaction with allyl alcohol, Wittig-Horner-Emmons reaction, and iodination at the indole C-3 position. The key step in the route is an intramolecular cyclization of 12a to give the tricyclic indole structure. Two methods of cyclization, (1) an intramolecular radical cyclization of 12a and (2) a sequence of intramolecular Heck reaction of 12a followed by a 1,4-reduction, were performed. The resulting tricyclic indole diester 13a was selectively hydrolyzed to afford the desired tricyclic indole monocarboxylic acid 16 on a multihundred gram scale without any chromatographic purifications. Optical resolution of 16 to (-)-isomer 17 and (+)-isomer 18 was carried out, and the resulting isomers were derivatized, respectively. Evaluation of the optically active derivatives for affinity to the NMDA-glycine binding site using the radio ligand binding assay with [(3)H]-5,7-dichlorokynurenic acid revealed that the derivatives of (-)-isomer 17 were more potent than the others and that especially substituted anilide (-)-isomer 24 (K(i) = 0.8 nM) showed high affinity.

  9. Carboxylic acid functionalized sesame straw: A sustainable cost-effective bioadsorbent with superior dye adsorption capacity.

    Science.gov (United States)

    Feng, Yanfang; Liu, Yang; Xue, Lihong; Sun, Haijun; Guo, Zhi; Zhang, Yingying; Yang, Linzhang

    2017-08-01

    This study prepared a carboxylic functionalized bioadsorbent that met the "4-E" criteria: Efficient, Economical, Environmentally friendly, and Easily-produced. Sesame straw (Sesamum indicum L.) was functionalized through treatment with citric acid (SSCA) and tartaric acid (SSTA). The products were examined for adsorption capacity and mechanisms. Langmuir model gave the best fit for the isotherm data, and the maximum monolayer adsorption capacity of SSCA was 650mgg -1 for methylene blue (MB). The excellent dye adsorption capacity of SSCA can be attributed to the introduction of ester groups during citric-acid modification and the tube-like structures (i.e., sesame straw cell wall remnants). At last, the cost of carboxylic acid functionalized bioadsorbents was evaluated, which showed that SSCA would be the most cost-effective bioadsorbent. Additionally, this study presents a thermo-decomposition methodology for contaminant-loaded bioadsorbent. Results showed that SSCA is probably one of the few bioadsorbents that can be produced and applied in industrial scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Science.gov (United States)

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  11. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting of nat...... of naturally-occurring nucleobases and non-naturally-occurring nucleobases attached to a polyamide backbone, and contain alkylamine side chains....

  12. Synthesis and Antimicrobial Activity of Carboxylate Phosphabetaines Derivatives with Alkyl Chains of Various Lengths

    Directory of Open Access Journals (Sweden)

    Irina V. Galkina

    2013-01-01

    Full Text Available The purpose of the present study was to investigate the antibacterial activity of fifteen novel nanosized alkyl esters of carboxylate phosphabetaine: β-(carboxyalkylethyltriphenylphosphonium bromides 4–8, β-(carboxyalkyl-β-methylethyltriphenylphosphonium bromides 9–13, and β-(carboxyalkyl-α-methylethyltriphenylphosphonium bromides 14–18. The in vitro microbiological activity of the synthesized phosphonium bromides against gram-positive and gram-negative bacteria and the yeast Candida albicans was determined in comparison to standard agents. Microbiological results indicate that the synthesized phosphonium salts 4–18 possess a broad spectrum of activity against the tested microorganisms. Every newly synthesized compound was characterized by elemental analyses, IR, 1H NMR, and 31P NMR spectral studies.

  13. Supramolecular architectures in the salt trimethoprimium ferrocene-1-carboxylate and the cocrystal 4-amino-5-chloro-2,6-dimethylpyrimidine-ferrocene-1-carboxylic acid (1/1).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2017-09-01

    In the salt trimethoprimium ferrocenecarboxylate [systematic name: 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidin-1-ium ferrocene-1-carboxylate], (C14H19N4O3)[Fe(C5H5)(C6H4O2)], (I), of the antibacterial compound trimethoprim, the carboxylate group interacts with the protonated aminopyrimidine group of trimethoprim via two N-H...O hydrogen bonds, generating a robust R2(2)(8) ring motif (heterosynthon). However, in the cocrystal 4-amino-5-chloro-2,6-dimethylpyrimidine-ferrocene-1-carboxylic acid (1/1), [Fe(C5H5)(C6H5O2)]·C6H8ClN3, (II), the carboxyl-aminopyrimidine interaction [R2(2)(8) motif] is absent. The carboxyl group interacts with the pyrimidine ring via a single O-H...N hydrogen bond. The pyrimidine rings, however, form base pairs via a pair of N-H...N hydrogen bonds, generating an R2(2)(8) supramolecular homosynthon. In salt (I), the unsubstituted cyclopentadienyl ring is disordered over two positions, with a refined site-occupation ratio of 0.573 (10):0.427 (10). In this study, the two five-membered cyclopentadienyl (Cp) rings of ferrocene are in a staggered conformation, as is evident from the C...Cg...Cg...C pseudo-torsion angles, which are in the range 36.13-37.53° for (I) and 22.58-23.46° for (II). Regarding the Cp ring of the minor component in salt (I), the geometry of the ferrocene ring is in an eclipsed conformation, as is evident from the C...Cg...Cg...C pseudo-torsion angles, which are in the range 79.26-80.94°. Both crystal structures are further stabilized by weak π-π interactions.

  14. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  15. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling

    Directory of Open Access Journals (Sweden)

    Vázquez José

    2011-11-01

    Full Text Available Abstract Background Effects of organic acids on microbial fermentation are commonly tested in investigations about metabolic behaviour of bacteria. However, they typically provide only descriptive information without modelling the influence of acid concentrations on bacterial kinetics. Results We developed and applied a mathematical model (secondary model to capture the toxicological effects of those chemicals on kinetic parameters that define the growth of bacteria in batch cultures. Thus, dose-response kinetics were performed with different bacteria (Leuconostoc mesenteroides, Carnobacterium pisicola, Escherichia coli, Bacillus subtilis and Listonella anguillarum exposed at increasing concentrations of individual carboxylic acids (formic, acetic, propionic, butyric and lactic. In all bioassays the acids affected the maximum bacterial load (Xm and the maximum growth rate (vm but only in specific cases the lag phase (λ was modified. Significance of the parameters was always high and in all fermentations the toxicodynamic equation was statistically consistent and had good predictability. The differences between D and L-lactic acid effects were significant for the growth of E. coli, L. mesenteroides and C. piscicola. In addition, a global parameter (EC50,τ was used to compare toxic effects and provided a realistic characterization of antimicrobial agents using a single value. Conclusions The effect of several organic acids on the growth of different bacteria was accurately studied and perfectly characterized by a bivariate equation which combines the basis of dose-response theory with microbial growth kinetics (secondary model. The toxicity of carboxylic acids was lower with the increase of the molecular weight of these chemicals.

  16. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren

    2014-01-01

    The dielectric properties of several supramolecular ionic polymers and networks, linked by the ammonium salts of hexamethylene diamine (HMDA), tris(2-aminoethyl)amine (TAEA), poly(propylene imine) (PPI) dendrimers and two short bis carboxymethyl ether-terminated poly(ethylene glycol)s (Di......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  18. Enantioselective Synthesis of Acyclic α-Quaternary Carboxylic Acid Derivatives through Iridium-Catalyzed Allylic Alkylation.

    Science.gov (United States)

    Shockley, Samantha E; Hethcox, J Caleb; Stoltz, Brian M

    2017-09-11

    The first highly enantioselective iridium-catalyzed allylic alkylation that provides access to products bearing an allylic all-carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one-pot preparation of α-quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

    Science.gov (United States)

    Zhang, Honglei; Luo, Xiang; Shi, Kaiqi; Wu, Tao; He, Feng; Zhou, Shoubin; Chen, George Z; Peng, Chuang

    2017-09-11

    A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel production. Higher yields of methyl oleate (98 %) and over 3 times higher turnover frequencies (TOFs) were observed for the GO-S dual-acid catalyst, compared to liquid sulfuric acid or other carbon-based solid acid catalysts. The "acidity" of sulfonic acid groups was enhanced by the addition of carboxylic acid groups as the combination of the two acids enhances their inherent activity by associative interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia

    Directory of Open Access Journals (Sweden)

    Benes LB

    2016-12-01

    Full Text Available Lane B Benes1, Nikhil S Bassi2, Michael H Davidson1 1Department of Medicine, Section of Cardiology, 2Department of Medicine, University of Chicago, Chicago, IL, USA Abstract: The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin. Keywords: omega-3 carboxylic acids, non-HDL-C, hypertriglyceridemia, residual risk, statin

  1. Kinetic studies on the carboxylation of 6-amino-penicillanic acid to 8-hydroxy-penillic acid

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Holm, SS; Schipper, D.

    1997-01-01

    The carboxylation in aqueous solution of 6-amino-penicillanic acid (6-APA) to 8-hydroxy-penillic acid (8-HPA) was studied at 25 degrees C and pH 6.5. During sparging with either a citrate buffer or a chemically defined cultivation medium containing 6-APA with mixtures of carbon dioxide and air (2.......7-41% (v/v) CO2), the kinetics for conversion of 6-APA was followed by HPLC. In the citrate buffer 6-APA was converted by two competitive reactions each following first order kinetics with respect to the concentration of 6-APA: 1. carboxylation into 8-HPA; and 2. slow conversion into an unknown compound....... Formation of the unknown compound was not observed in the cultivation medium. The carboxylation of 6-APA was also found to be first order with respect to the concentration of dissolved carbon dioxide. The rate constant for formation of 8-HPA did not differ significantly in the cultivation medium compared...

  2. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  3. Determination of small carboxylic acids by capillary electrophoresis with electrospray-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steve K.; Houk, Linda L.; Johnson, Dennis C.; Houk, R.S. [Ames Laboratory - US Department of Energy, Department of Chemistry, Iowa State University, Ames IA 50011 (United States)

    1999-05-14

    Capillary electrophoresis (CE) is used with electrospray-mass spectrometry (ES-MS) to analyze a mixture of succinic, maleic, malonic, and glutaric acids as the negative parent ions ([M-H]{sup -}). The CE is coupled with the ES-MS via a make-up sheath flow. The CE mobile phase consists of an aqueous solution of naphthalene disulfonate (NDS), pyromellitic acid, and methanol, with diethylene triamine (DETA) as an electroosmotic flow modifier. Compromise experimental parameters for the CE separation and ES-MS detection are evaluated. Detection limits for CE-ES-MS determination of the sample are 1-10ppm or 60-600pg. The carboxylic acid sample is injected directly into the CE column with little or no preparation

  4. Determination of small carboxylic acids by capillary electrophoresis with electrospray-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.K.; Houk, L.L.; Johnson, D.C.; Houk, R.S. [Ames Laboratory - US Department of Energy, Department of Chemistry, Iowa State University, Ames, IA (United States)

    1999-05-14

    Capillary electrophoresis (CE) is used with electrospray-mass spectrometry (ES-MS) to analyze a mixture of succinic, maleic, malonic, and glutaric acids as the negative parent ions ([M-H]{sup -}). The CE is coupled with the ES-MS via a make-up sheath flow. The CE mobile phase consists of an aqueous solution of naphthalene disulfonate (NDS), pyromellitic acid, and methanol, with diethylene triamine (DETA) as an electroosmotic flow modifier. Compromise experimental parameters for the CE separation and ES-MS detection are evaluated. Detection limits for CE-ES-MS determination of the sample are 1-10 ppm or 60-600 pg. The carboxylic acid sample is injected directly into the CE column with little or no preparation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Investigations of the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents.

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR D. MARINKOVIC

    2005-04-01

    Full Text Available Rate constants for the reaction of diazodiphenylmethane with isomeric pyridine carboxylic acids were determined in chosen protic and aprotic solvents at 30 °C, using the well known UV spectrophotometric method. The values of the rate constants of the investigated acids in protic solvents were higher than those in aprotic solvents. The second order rate constants were correlated with solvent parameters using the Kamlet-Taft solvatochromic equation in the form: log k = log k0 + sp* + aa + bb . The correlation of the obtained kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The signs of the equation coefficients were in agreement with the postulated reaction mechanism. The mode of the influence of the solvent on the reaction rate in all the investigated acids are discussed on the basis of the correlation results.

  6. Ligand Exchange Reactions of a Monomeric Zirconium Carbonate Complex with Carboxylic Acids Studied by Extended X-ray Absorption Fine Structure, UV Absorption and Raman Spectrophotometry.

    Science.gov (United States)

    Takasaki, Fumiyuki; Fujiwara, Kazuhiko; Kikuchi, Tomomi; Tanno, Takenori; Nakajima, Yasushi; Toyoda, Yasunori; Ogawa, Nobuaki

    2017-01-01

    Ligand exchange reactions of a monomeric zirconium carbonate complex with carboxylic acids were studied by means of extended X-ray absorption fine structure (EXAFS), UV absorption spectrophotometry and Raman spectrometry. Three carboxylic acids, gluconic acid, and L-tartaric acid and citric acid, which are mono-, di- and tri-carboxylic acids, respectively, were employed in this study. These three carboxylic acids gave different spectral signatures and concentration dependences, respectively. In the gluconic acid system, the peaks on Fourier transform of EXAFS spectrum and Raman spectrum caused by carbonate ion coordinating to zirconium atom were obviously decreased with increasing gluconic acid concentration compared to the other two carboxylic acid systems. This indicates the high association ability of gluconic acid to zirconium, which was revealed by UV spectrophotometric analysis.

  7. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus)

    DEFF Research Database (Denmark)

    Pedersen, Kathrine Eggers; Basu, Niladri; Letcher, Robert J.

    2015-01-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported...... to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate...

  8. Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.

    Science.gov (United States)

    Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin self

  9. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from th...

  10. The effect of methanogenesis inhibition, inoculum and substrate concentration on hydrogen and carboxylic acids production from cassava wastewater.

    Science.gov (United States)

    Amorim, Norma C S; Amorim, Eduardo L C; Kato, Mario T; Florencio, Lourdinha; Gavazza, Savia

    2017-11-11

    Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes. The objective in this work was to evaluate the effects of such factors on byproducts production in anaerobic reactors. Batch experiments were conducted with 2.3-L flasks during two operational phases. In the first phase (P1), inhibition of methanogens in the sludge was evaluated using acetylene (1% v/v of headspace) and heat treatment (120 °C, 1 atm for 30 min). In the second phase (P2), three inoculum types obtained from common anaerobic sludges (bovine rumen and sludges from municipal and textile industrial wastewater treatment plants) were individually assayed. P2 aimed to identify the best inoculum, based on hydrogen production ability, which was tested for three initial concentrations of manipueira in terms of chemical oxygen demand (COD) (10, 20 and 40 g O2/L). Results of P1 indicated that either acetylene or heat treatment efficiently inhibited methanogenesis, with no methane production. However, the maximum H2 production potential by applying heat treatment (~ 563 mL) was more than twice compared with that by acetylene treatment (~ 257 mL); and butyrate was the main carboxylic acid by-product (~ 3 g/L). In P2 experiments after sludge heat treatment, the highest hydrogen yield (1.66 ± 0.07 mol H2/mol glucose) and caproic acid production (~ 2 g/L) were observed at 20 g O2/L of manipueira COD, when bovine rumen was the inoculum. The primary metabolic degradation products in all P2 experiments were ethanol, acetic, butyric, propionic and caproic acids. The finding of caproic acid detection indicated that the applied conditions in manipueira anaerobic degradation

  11. Threshold collision-induced dissociation of hydrogen-bonded dimers of carboxylic acids.

    Science.gov (United States)

    Jia, Beike; Angel, Laurence A; Ervin, Kent M

    2008-02-28

    Energy-resolved competitive collision-induced dissociation is used to investigate the proton-bound heterodimer anions of a series of carboxylic acids (formic, acetic, and benzoic acid) and nitrous acid with their conjugate bases. The dissociation reactions of the complexes [CH3COO.H.OOCH]-, [CH3COO.H.ONO]-, [HCOO.H. ONO]-, [C6H5COO.H.OOCH]-, and [C6H5COO.H.ONO]- are investigated using a guided ion beam tandem mass spectrometer. Cross sections of the two dissociation channels are measured as a function of the collision energy between the complex ions and xenon target gas. Apparent relative gas-phase acidities are found by modeling the cross sections near the dissociation thresholds using statistical rate theory. Internal inconsistencies are found in the resulting relative acidities. These deviations apparently result from the formation of higher-energy conformers of the acids within the complex ions induced by double hydrogen bonding, which impedes the kinetics of dissociation to ground-state product acid conformations.

  12. Mechanism of Amide Bond Formation from Carboxylic Acids and Amines Promoted by 9-Silafluorenyl Dichloride Derivatives.

    Science.gov (United States)

    Jiang, Yuan-Ye; Zhu, Ling; Liang, Yujie; Man, Xiaoping; Bi, Siwei

    2017-09-01

    The couplings of carboxylic acids and amines promoted by dichlorosilane derivatives provide a promising tool for amide synthesis and peptide coupling, in which an unprecedented mechanism was proposed for the amide bond formation process. To investigate this mechanistic proposal and enrich the understanding of this novel reaction, a theoretical study was conducted herein. The formation and interconversion of silylamine and silyl ester intermediates were calculated to be kinetically feasible under the experiment conditions. However, the subsequent amidation via direct elimination on the AcO-Si(L)(L')-NHMe intermediate was found to involve a high energy barrier due to the formation of an unstable silanone. By contrast, the in situ generated salts can promote the amidation process by generating a silanol as the temporary product. Similarly, the anhydride formation mechanism can proceed via direct elimination or salt-assisted elimination on the AcO-Si(L)(L')-OAc intermediate but is less favorable. Finally, we found that the intermolecular nucleophilic addition on the AcO-Si(L)(L')-Cl intermediate is the most favorable mechanism among all the candidates considered. In this mechanism, carboxylic acids or bases can act as self-catalysts to promote the amide bond formation via hydrogen bonding, and the formation of the unstable silanone or anhydride is avoided.

  13. Europium(III) complexes of polyfunctional carboxylic acids: Luminescence probes of possible binding sites in fulvic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H.; Chung, K.H.; Shin, H.S.; Moon, H. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Chemistry; Park, Y.J. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1997-04-15

    The {sup 7}F{sub 0} {r_arrow} {sup 5}D{sub 0} excitation spectra of Eu(III) complexed with polyfunctional dicarboxylic acid containing neutral O, N, and S donors were investigated using Eu(III) luminescence spectroscopy. Three distinct peaks are seen in the excitation spectra in the Eu(III)-diglycolic acid (ODA) and Eu(III)-iminodiacetic acid (IMDA) systems showing the formation of three species, where each tridentate ODA {sup 2{minus}} and IMDA{sup 2{minus}} displace approximately three coordinated water molecules; however, the central S donor of Eu(III)-thiodiglycolate and 2,5-thiophenedicarboxylate are shown to be poor chelators for free Eu{sup 3+} ions. The neutral O and N donors in combination with neighboring carboxylates may form strong metal chelation sites on fulvic acid.

  14. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  15. Conjugates of 1'-Aminoferrocene-1-carboxylic Acid and Proline: Synthesis, Conformational Analysis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Monika Kovačević

    2014-08-01

    Full Text Available Our previous studies showed that alteration of dipeptides Y-Fca-Ala-OMe (III into Y-Ala-Fca-OMe (IV (Y = Ac, Boc; Fca = 1'-aminoferrocene-1-carboxylic acid significantly influenced their conformational space. The novel bioconjugates Y-Fca-Pro-OMe (1, Y = Ac; 2, Y = Boc and Y-Pro-Fca-OMe (3, Y = Boc; 4, Y = Ac have been prepared in order to investigate the influence of proline, a well-known turn-inducer, on the conformational properties of small organometallic peptides with an exchanged constituent amino acid sequences. For this purpose, peptides 1–4 were subjected to detailed spectroscopic analysis (IR, NMR, CD spectroscopy in solution. The conformation of peptide 3 in the solid state was determined. Furthermore, the ability of the prepared conjugates to inhibit the growth of estrogen receptor-responsive MCF-7 mammary carcinoma cells and HeLa cervical carcinoma cells was tested.

  16. Interaction of different metal ions with carboxylic acid group: a quantitative study.

    Science.gov (United States)

    Bala, Tanushree; Prasad, B L V; Sastry, Murali; Kahaly, Mousumi Upadhyay; Waghmare, Umesh V

    2007-07-19

    The binding strength of the carboxylic acid group (-COOH) with different divalent metal ions displays considerable variation in arachidic acid (AA) thin films. It is considered that in AA thin films the metal ions straddle the hydrophilic regions of the stacked bilayers of AA molecules via formation of carboxylates. In this study first the uptake of different divalent cations in films of AA is estimated by atomic absorption spectroscopy (AAS). Through the amount of cation uptake, it is found that the strength of binding of different cations varies as Ca2+>Co2+>Pb2+>Cd2+. Variation in the binding strength of different ions is also manifested in experiments where AA thin films are exposed to metal ion mixtures. The higher binding strength of AA with certain metal ions when exposed individually, as well as the preference over the other metal ions when exposed to mixtures, reveal some interesting deviation from the expected behavior based on considerations of ionic radii. For example, Pb2+ is always found to bind to AA much more strongly than Cd2+ even though the latter has smaller ionic radius, indicating that other factors also play an important role in governing the binding strength trends apart from the effects of ionic radii. Then, to get a more meaningful knowledge regarding the binding capability, first-principles calculations based on density functional theory have been applied to study the interaction of different cations with the simplest carboxylic acid, acetic acid, that can result in formation of metal diacetates. Their electronic and molecular structures, cohesive energies, and stiffness of the local potential energy well at the cation (M) site are determined and attempts are made to understand the diversity in geometry and the properties of binding of different metal ions with -COOH group. We find that the calculated M-O bond energies depend sensitively on the chemistry of M atom and follow the experimentally observed trends quite accurately. The trends

  17. [Low molecular weight carboxylic acids in precipitation during the rainy season in the rural area of Anshun, West Guizhou Province].

    Science.gov (United States)

    Zhang, Yan-Lin; Lee, Xin-Qing; Huang, Dai-Kuan; Huang, Rong-Sheng; Jiang, Wei

    2009-03-15

    40 rainwater samples were collected at Anshun from June 2007 to October 2007 and analysed in terms of pH values, electrical conductivity, major inorganic anions and soluble low molecular weight carboxylic acids. The results showed that pH of individual precipitation events ranged from 3.57-7.09 and the volume weight mean pH value was 4.57. The most abundant carboxylic acids were acetic (volume weight mean concentration 6.75 micromol x L(-1)) and formic (4.61 micromol x L(-1)) followed by oxalic (2.05 micromol x L(-1)). The concentration levels for these three species during summer especially June and July were comparatively high; it implied that organic acids in Anshun may came primarily from emissions from growing vegetations or products of the photochemical reactions of unsaturated hydrocarbons. Carboxylic acids were estimated to account for 32.2% to the free acidity in precipitation. The contribution was higher than in Guiyang rainwater, which indicated contamination by industry in Guiyang was more than in Anshun. The remarkable correlation(p = 0.01) between formic acid and acetic acid suggest that they have similar sources or similar intensity but different sources. And the remarkable correlation (p = 0.01) between and formic acid and oxalic acid showed that the precursors of oxalic acid and formic acid had similar sources. During this period, the overall wet deposition of carboxylic acids were 2.10 mmol/m2. And it appeared mainly in the summer, during which both concentration and contribution to free acidity were also relatively high. Consequently, it was necessary to control emission of organic acids in the summer to reduce frequence of acid rain in Anshun.

  18. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  19. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Jae Gwang Park

    2016-01-01

    Full Text Available Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA, one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA- induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX- 2 in stomach tissues and lipopolysaccharide- (LPS- treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF- κB and activator protein- (AP- 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1, p38, Src, and spleen tyrosine kinase (Syk. Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.

  20. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  1. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  2. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  3. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  4. Characteristic long-chain fatty acid of Pleurocybella porrigens.

    Science.gov (United States)

    Amakura, Yoshiaki; Kondo, Kazunari; Akiyama, Hiroshi; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi; Maitani, Tamio

    2006-08-01

    As part of an investigation on the chemical constituents and contaminants of the basidiomycete Pleurocybella porrigens (Japanese name: Sugihiratake), we analyzed the UV-detected constituents of this mushroom using HPLC. One of the major UV peaks detected was isolated and identified as a-eleostearic acid, a long-chain fatty acid with a conjugated triene moiety, based on the results of spectroscopic methods. alpha-Eleostearic acid was concluded to be a characteristic fatty acid of P. porrigens, because it was not detected in eight other edible mushrooms examined. Free long-chain fatty acids in P. porrigens and other edible mushrooms were analyzed by HPLC after derivatization with acidic 2-nitrophenylhydrazine hydrochloride. Oleic acid was the main fatty acid in P. porrigens, and saturated long-chain fatty acids such as linoleic acid, palmitic acid, and stearic acid, together with a-eleostearic acid, were also detected.

  5. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  6. Determination of Trace Perfluoroalkyl Carboxylic Acids in Edible Crop Matrices: Matrix Effect and Method Development.

    Science.gov (United States)

    Xiang, Lei; Chen, Lei; Xiao, Tao; Mo, Ce-Hui; Li, Yan-Wen; Cai, Quan-Ying; Li, Hui; Zhou, Dong-Mei; Wong, Ming-Hung

    2017-10-04

    A robust method was developed for simultaneous determination of nine trace perfluoroalkyl carboxylic acids (PFCAs) in various edible crop matrices including cereal (grain), root vegetable (carrot), leafy vegetable (lettuce), and melon vegetable (pumpkin) using ultrasonic extraction followed by solid-phase extraction cleanup and high liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The varieties of extractants and cleanup cartridges, the usage of Supelclean graphitized carbon, and the matrix effect and its potential influencing factors were estimated to gain an optimal extraction procedure. The developed method presented high sensitivity and accuracy with the method detection limits and the recoveries at four fortification levels in various matrices ranging from 0.017 to 0.180 ng/g (dry weight) and from 70% to 114%, respectively. The successful application of the developed method to determine PFCAs in various crops sampled from several farms demonstrated its practicability for regular monitoring of PFCAs in real crops.

  7. 1-aminocyclobutane[11C]carboxylic acid, a potential tumor-seeking agent.

    Science.gov (United States)

    Washburn, L C; Sun, T T; Byrd, B; Hayes, R L; Butler, T A

    1979-10-01

    1-Aminocyclobutane[14C]carboxylic acid [C-14) ACBC] was incorporated preferentially by several tumor types in rats and hamsters. The agent was cleared rapidly from rat blood, attaining its maximum tissue concentrations within 30 min after i.v. injection. Carrier ACBC had little effect on the tissue distribution of (C-14) ACBC. This agent showed no affinity for a Staphylococcus aureus abscess in rats. The total excretion was low, 3.6% in 2 hr. (C-11) ACBC was synthesized in amounts up to 415 mCi (55% chemical yield) using our modified Bücherer-Strecker technique. Forty minutes were required for the two-step synthesis and chromatographic purification. ACBC was found to be nontoxic in three animal species. The radiation dose from (C-11) ACBC should be minimal. (C-11) ACBC thus appears to have good potential as a tumor-seeking agent, particularly when used with a positron emission computed tomograph.

  8. Direct synthesis of esters and amides from unprotected hydroxyaromatic and -aliphatic carboxylic acids.

    Science.gov (United States)

    Katritzky, Alan R; Singh, Sanjay K; Cai, Chunming; Bobrov, Sergey

    2006-04-28

    A facile method for the activation of hydroxy-substituted carboxylic acids using benzotriazole chemistry without prior protection of the hydroxy substituents is presented. The N-acylbenzotriazole intermediates 2a-g, 6a-d, and 9a-c have been used for high-yielding synthesis of both aliphatic (3a-l) and aromatic (7a-h, 10a-f) hydroxy carboxamides. High yields of aromatic hydroxy esters 12a-h and 13a-i were obtained using either neat alcohols in neutral microwave conditions or nucleophilic alkoxides and the intermediate N-(arylacyl)benzotriazoles. Moderate yields were obtained in the case of aliphatic hydroxy esters 11a,b and thiolesters 11e-g from the intermediates 2a-c.

  9. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    changes and the redshift favor the Z OH group, matching the results of NBO and AIM calculations. This reflects that the thermochemistry of adduct formation is not a good measure of the hydrogen bond strength in charged adducts, and that the ionic interactions in the E and Z adducts of protonated......It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...

  10. Electrochemiluminescence Study of Europium (III Complex with Coumarin3-Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Stefan Lis

    2008-01-01

    Full Text Available The europium (III complex of coumarin-3-carboxylic acid (C3CA has been prepared and characterized on the basis of elemental analysis, IR, and emission (photoluminescence and electrochemiluminescence spectroscopy. The synthesised complex having a formula Eu(C3CA2(NO3(H2O2 was photophysically characterized in solution and in the solid state. Electrochemiluminescence, ECL, of the system containing the Eu(III/C3CA complex was studied using an oxide-covered aluminium electrode. The goal of these studies was to show the possibility of the use of electrochemical excitation of the Eu(III ion in aqueous solution for emission generation. The generated ECL emission was very weak, and therefore its measurements and spectral analysis were carried out with the use of cut-off filters method. The studies proved a predominate role of the ligand-to-metal energy transfer (LMET in the generated ECL.

  11. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development.

    Science.gov (United States)

    Morrison, Christopher K; Arseneault, Tanya; Novinscak, Amy; Filion, Martin

    2017-03-01

    Phytophthora infestans causes late blight of potato, one of the most devastating diseases affecting potato production. Alternative approaches for controlling late blight are being increasingly sought due to increasing environmental concerns over the use of chemical pesticides and the increasing resistance of P. infestans to fungicides. Our research group has isolated a new strain of Pseudomonas fluorescens (LBUM636) of biocontrol interest producing the antibiotic phenazine-1-carboxylic acid (PCA). Wild-type LBUM636 was shown to significantly inhibit the growth of Phytophthora infestans in in vitro confrontational assays whereas its isogenic mutant (phzC-; not producing PCA) only slightly altered the pathogen's growth. Wild-type LBUM636 but not the phzC- mutant also completely repressed disease symptom development on tubers. A pot experiment revealed that wild-type LBUM636 can significantly reduce P. infestans populations in the rhizosphere and in the roots of potato plants, as well as reduce in planta disease symptoms due to PCA production. The expression of eight common plant defense-related genes (ChtA, PR-1b, PR-2, PR-5, LOX, PIN2, PAL-2, and ERF3) was quantified in tubers, roots, and leaves by reverse-transcription quantitative polymerase chain reaction and revealed that the biocontrol observed was not associated with the induction of a plant defense response by LBUM636. Instead, a direct interaction between P. infestans and LBUM636 is required and PCA production appears to be a key factor for LBUM636's biocontrol ability.

  12. The Effect of Phenazine-1-Carboxylic Acid on Mycelial Growth of Botrytis cinerea Produced by Pseudomonas aeruginosa LV Strain

    Directory of Open Access Journals (Sweden)

    Ane S. Simionato

    2017-06-01

    Full Text Available One of the most important postharvest plant pathogens that affect strawberries, grapes and tomatoes is Botrytis cinerea, known as gray mold. The fungus remains in latent form until spore germination conditions are good, making infection control difficult, causing great losses in the whole production chain. This study aimed to purify and identify phenazine-1-carboxylic acid (PCA produced by the Pseudomonas aeruginosa LV strain and to determine its antifungal activity against B. cinerea. The compounds produced were extracted with dichloromethane and passed through a chromatographic process. The purity level of PCA was determined by reversed-phase high-performance liquid chromatography semi-preparative. The structure of PCA was confirmed by nuclear magnetic resonance and electrospray ionization mass spectrometry. Antifungal activity was determined by the dry paper disk and minimum inhibitory concentration (MIC methods and identified by scanning electron microscopy and confocal microscopy. The results showed that PCA inhibited mycelial growth, where MIC was 25 μg mL-1. Microscopic analysis revealed a reduction in exopolysaccharide (EPS formation, showing distorted and damaged hyphae of B. cinerea. The results suggested that PCA has a high potential in the control of B. cinerea and inhibition of EPS (important virulence factor. This natural compound is a potential alternative to postharvest control of gray mold disease.

  13. A computational study on the mechanism of ynamide-mediated amide bond formation from carboxylic acids and amines.

    Science.gov (United States)

    Zhang, Song-Lin; Wan, Hai-Xing; Deng, Zhu-Qin

    2017-08-02

    This paper reports a computational study elucidating the reaction mechanism for ynamide-mediated amide bond formation from carboxylic acids and amines. The mechanisms have been studied in detail for ynamide hydrocarboxylation and the subsequent aminolysis of the resulting adduct by an amine. Ynamide hydrocarboxylation is kinetically favorable and thermodynamically irreversible, resulting in the formation of a key low-lying intermediate CP1 featuring geminal vinylic acyloxy and sulfonamide groups. The aminolysis of CP1 by the amine is proposed to be catalyzed by the carboxylic acid itself that imparts favourable bifunctional effects. In the proposed key transition state TSaminolysis-acid-iso2, the amine undergoes direct nucleophilic substitution at the acyl of CP1 to replace the enolate group in a concerted way, which is promoted by secondary hydrogen bonding of carboxylic acid with both the amine and CP1. These secondary interactions are suggested to increase the nucleophilicity of the amine and to activate the Cacyl-O bond to be cleaved, thereby stabilizing the aminolysis transition state. The concerted aminolysis mechanism is competitive with the classic stepwise nucleophilic acyl substitution mechanism that features sequential amine addition to acyl/intramolecular proton transfer/C-O bond cleavage and a key tetrahedral intermediate. Based on the mechanistic model, the carboxylic acid substrate effect and studies of more acidic CF3SO3H as the catalyst are in good agreement with the experimental observations, lending further support for the mechanistic model. The bifunctional catalytic effect of the carboxylic acid substrate may widely play a role in related amide bond-forming reactions and peptide formation chemistry.

  14. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Van Vunakis, H.; Freeman, D.S.; Gjika, H.B.

    1975-10-01

    Antibodies that bind an /sup 125/I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 10/sup 4/, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay.

  16. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  17. Liquid chromatographic analysis of carboxylic acids using N-(4-aminobutyl)-N-ethylisoluminol as chemiluminescent label: determination of ibuprofen in saliva

    NARCIS (Netherlands)

    Steijger, O. M.; Lingeman, H.; Brinkman, U. A.; Holthuis, J. J.; Smilde, A. K.; Doornbos, D. A.

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  18. LIQUID-CHROMATOGRAPHIC ANALYSIS OF CARBOXYLIC-ACIDS USING N-(4-AMINOBUTYL)-N-ETHYLISOLUMINOL AS CHEMILUMINESCENT LABEL - DETERMINATION OF IBUPROFEN IN SALIVA

    NARCIS (Netherlands)

    STEIJGER, OM; LINGEMAN, H; BRINKMAN, UAT; HOLTHUIS, JJM; SMILDE, AK; DOORNBOS, DA

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  19. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested...

  20. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  1. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Santilli, Carola; Makarov, Ilya; Fristrup, Peter

    2016-01-01

    Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction...

  2. 7-(3-Chlorophenylamino-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Ghassan F. Shattat

    2010-03-01

    Full Text Available 7-(3-Chlorophenylamino-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (2 was prepared and fully characterized by NMR, IR, and MS. Compound 2 exhibited good antibacterial activity against gram-positive standard and resistant strains.

  3. Contributions of low molecular weight carboxylic acids to aerosols and wet deposition in a natural subtropical broad-leaved forest environment

    Science.gov (United States)

    Tsai, Ying I.; Kuo, Su-Ching

    2013-12-01

    The carboxylic acid component of autumn aerosol and wet deposition (fog water and rainwater) in a broad-leaved forest in central Taiwan was investigated. High levels of low molecular weight carboxylic acids (LMWCAs) were noted in all deposition types. Acetic acid, oxalic acid and formic acid were the most prevalent carboxylic acids, together accounting for 72.2% (fog water), 86.7% (rain water), 77.2% (PM2.5) and 88.3% (PM2.5-10) of total carboxylic acid. The forest fog water contained 2453.9 ± 1030.5 ng mL-1 of carboxylic acid, 2.71 times more than was contained in forest rainwater. In PM, most carboxylic acid existed in the fine PM2.5 aerosol (576.6 ± 254.1 ng m-3 or 6.28 times more than was contained in PM2.5-10. Most carboxylic acids in PM had higher concentrations during the day. Pyruvic acid concentration was higher during the night (2.97 times), however, owing to its rapid photodegradation during the day. Citric acid accounted for 9.1% of the total carboxylic acid in fog water compared with just 1.8% in rainwater, confirming its origin from emissions from leaves. Raman spectroscopy was used to observe the photochemical conversion of citric acid into intermediate products and this observation confirmed that the carboxylic acids identified in the forest dry and wet depositions originated directly from biological emissions in the forest environment.

  4. Carboxylic acids in gas and PM2.5 particulate phase at a rural mountain site in northeastern United States

    Science.gov (United States)

    Hussain, M. M.; Khan, A. R.; Khwaja, H. A.

    2009-12-01

    Low molecular weight carboxylic acids are important constituents of the organic fraction of atmospheric particulate matter in rural and polluted regions. The knowledge on their source is sparse, however, and organic aerosols in general need to better characterized. Atmospheric gas- and particle-phase carboxylic acids (formic, acetic, pyruvic, glyoxalic, benzoaic, adipic, succinic, malonic, and oxalic) and related compounds were measured during August 2002 at a rural site, Whiteface Mountain, NY. Formic and acetic acids were present in the PM2.5 fraction and in the gas phase. Other seven carboxylic acids were below the detection limit in all samples. Formic and acetic acid were present in the atmosphere mostly in the gaseous form with less than 10% in the PM2.5 fraction. Concentrations of formic acid and acetic acid were in the 0.5 - 2.4 ppbv and 0.6 - 1.9 ppbv ranges, respectively. Formic-to-acetic acid ratios less than one (0.88) were recorded, likely due to an increase in acetic acid contribution from direct emissions. In the fine particulate mode (PM2.5 ) the concentrations for acetic acid and formic acid were 120 - 400 and 10 - 180 ng/m3 , respectively. Backward trajectory data indicate that air mass originated at midwestern region on August 5th and gradually moved towards north on August 9th. Correlation of formic acid with sulfate was investigated to interpret their possible secondary formation pathways. A strong correlation (0.73) was observed between formic acid and sulfate in PM2.5 particulates. Since the source of sulfate found at Whiteface Mountain widely accepted as anthropogenic, its association with formic acid indicated that the later might have anthropogenic source.

  5. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  6. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    Science.gov (United States)

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  8. Potamogeton pectinatus Is Constitutively Incapable of Synthesizing Ethylene and Lacks 1-Aminocyclopropane-1-Carboxylic Acid Oxidase.

    Science.gov (United States)

    Summers, J. E.; Voesenek, LACJ.; Blom, CWPM.; Lewis, M. J.; Jackson, M. B.

    1996-07-01

    A highly sensitive laser-driven photoacoustic detector responsive to [less than or equal to]2.1 nmol m-3 ethylene (50 parts per trillion [v/v]) was used for ethylene analysis. Dark-grown plants of Potamogeton pectinatus L. growing from small tubers made no ethylene. Exposure of shoots to white light, wounding, submergence in water followed by desubmergence, partial oxygen shortage, indole acetic acid, or carbon dioxide failed to induce ethylene production, although clear effects were observed in Pisum sativum L. Some ethylene was released after applying high concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC; 10 mol m-3) to P. pectinatus, but the amount was trivial compared with that released by P. sativum. More endogenous ACC was found in P. pectinatus than in P. sativum. Considerable ACC oxidase activity was present in tissue extracts of P. sativum. However, no ACC oxidase activity was found in P. pectinatus, indicating that this is where ethylene production is arrested.

  9. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  10. Selective catalytic oxidative-dehydrogenation of carboxylic acids-acrylate and crotonate formation at the Au/TiO2 interface.

    Science.gov (United States)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2014-04-02

    The oxidative-dehydrogenation of carboxylic acids to selectively produce unsaturated acids at the second and third carbons regardless of alkyl chain length was found to occur on a Au/TiO2 catalyst. Using transmission infrared spectroscopy (IR) and density functional theory (DFT), unsaturated acrylate (H2C═CHCOO) and crotonate (CH3CH═CHCOO) were observed to form from propionic acid (H3CCH2COOH) and butyric acid (H3CCH2CH2COOH), respectively, on a catalyst with ∼3 nm diameter Au particles on TiO2 at 400 K. Desorption experiments also show gas phase acrylic acid is produced. Isotopically labeled (13)C and (12)C propionic acid experiments along with DFT calculated frequency shifts confirm the formation of acrylate and crotonate. Experiments on pure TiO2 confirmed that the unsaturated acids were not produced on the TiO2 support alone, providing evidence that the sites for catalytic activity are at the dual Au-Ti(4+) sites at the nanometer Au particles' perimeter. The DFT calculated energy barriers between 0.3 and 0.5 eV for the reaction pathway are consistent with the reaction occurring at 400 K on Au/TiO2.

  11. Synthesis, Antifungal Activity and QSAR of Some Novel Carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du

    2015-03-01

    Full Text Available A series of novel aromatic carboxylic acid amides were synthesized and tested for their activities against six phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to good activity. Among them N-(2-(1H-indazol-1-ylphenyl-2-(trifluoromethylbenzamide (3c exhibited the highest antifungal activity against Pythium aphanidermatum (EC50 = 16.75 µg/mL and Rhizoctonia solani (EC50 = 19.19 µg/mL, compared to the reference compound boscalid with EC50 values of 10.68 and 14.47 µg/mL, respectively. Comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA were employed to develop a three-dimensional quantitative structure-activity relationship model for the activity of the compounds. In the molecular docking, a fluorine atom and the carbonyl oxygen atom of 3c formed hydrogen bonds toward the hydroxyl hydrogens of TYR58 and TRP173.

  12. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice.

    Science.gov (United States)

    Qi, Jinfeng; Li, Jiancai; Han, Xiu; Li, Ran; Wu, Jianqiang; Yu, Haixin; Hu, Lingfei; Xiao, Yutao; Lu, Jing; Lou, Yonggen

    2016-06-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice. © 2015 Institute of Botany, Chinese Academy of Sciences.

  13. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  14. Solubility and spectroscopic studies of the interaction of palladium with simple carboxylic acids and fulvic acid at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S.A. (Univ. of Idaho, Moscow, ID (United States)); Tait, C.D.; Janecky, D.R. (Los Alamos National Laboratory, NM (United States)); Vlassopoulos, D. (California Institute of Technology, Pasadena, CA (United States))

    1994-01-01

    The interaction of Pd with some O-donor organic acid anions has been investigated using solubility measurements and a variety of spectroscopic techniques (UV-visible, Raman, FTIR, [sup 13]C NMR). Some of the ligands investigated (acetate, oxalate, and fulvic acid) occur naturally in relatively high concentrations, whereas others (phthalate and salicylate) serve as models of potential binding sites on humic and fulvic acids. Solubility measurements show that the presence of acetate, phthalate, salicylate, and fulvic acid (oxalate was not studied via solubility methods) can increase the mobility of Pd over various pH ranges, depending on the organic ligand. In the case of acetate, UV-visible and Raman spectroscopy provide strong evidence for the formation of electrostatically bound, possibly outer-sphere palladium acetate complexes. Oxalate was confirmed by UV-visible and FTIR spectroscopy to compete favorably with chloride (0.56 M NaCl) for Pd even at oxalate concentrations as low as 1 mM at pH = 6-7. Available data from the literature suggest that oxalate may have an influence on Pd mobility at free oxalate concentrations as low as 10[sup [minus]8]=10[sup [minus]9] M. UV-visible spectroscopy provides evidence of an initially rapid, followed by a slower, reaction between PdCl[sup 2-][sub 4] and o-phthalate ion. These findings lend support to the idea that similar bindings sites on fulvic acid may be capable of complexing and solubilizing Pd in the natural environment. Although thermodynamic data are required to fully quantify the extent, it is concluded that simple carboxylic acid anions and/or fulvic and humic acids should be capable of significantly enhancing Pd transport in the surficial environment by forming truly dissolved complexes. On the other hand, flocculation of fulvic/humic acids, owing to changing ionic strengths or pH, or adsorption of these acids onto mineral surfaces, may also provide effective means of immobilizing Pd.

  15. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum.

    Science.gov (United States)

    Radakovits, Randor; Eduafo, Patrick M; Posewitz, Matthew C

    2011-01-01

    Renewable diesel surrogates made from shorter chain length fatty acids have improved cold flow properties. Acyl-ACP thioesterases specific for shorter chain length fatty acids are therefore of considerable interest in the genetic engineering of biofuel producing organisms, both for their ability to increase the production of shorter fatty acids, and for their involvement in fatty acid secretion in bacterial systems. Here we show that the heterologous expression of two thioesterases, biased towards the production of lauric (C12:0) and myristic acid (C14:0), causes increased accumulation of shorter chain length fatty acids in the eukaryotic microalga Phaeodactylum tricornutum. Accumulation of shorter chain length fatty acids corresponds to transgene transcript levels. We achieved levels of C12:0 of up to 6.2% of total fatty acids and C14:0 of up to 15% by weight. Unlike observations in cyanobacteria, no significant secretion of fatty acids was observed. Instead, we found that 75-90% of the shorter chain length fatty acids produced was incorporated into triacylglycerols. Our results demonstrate that overexpression of thioesterases is a valid way to improve the biofuel production phenotype of eukaryotic microalgae. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    Science.gov (United States)

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  17. Salts and Co-Crystalline Assemblies of Tetra(4-PyridylEthylene with Di-Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Moustafa T. Gabr

    2018-01-01

    Full Text Available Tetraarylethylene derivatives are emerging as an increasingly important family of supramolecular building blocks in both solution phase and the solid state. The utility of tetraarylethylenes stems from appealing structural features (rigidity and symmetry and their propensity to exhibit aggregation induced emission (AIE. In an effort to investigate the luminescent sensing ability of heteroaromatic tetraarylethylenes, we previously prepared tetra(4-pyridylethylene and characterized its solution phase AIE properties. We here report the successful incorporation of tetra(4-pyridylethylene into three distinct salts and co-crystalline assemblies with three organic di-carboxylic acids (oxalic acid, malonic acid, and fumaric acid. Interactions between the tetra(pyridylethylene and di-acid components were found to vary from conventional to charge-assisted hydrogen bonding according to the extent of proton transfer between the acid and pyridine groups. Notably, the formation of pyridinium-carboxylate adducts in the salts does not appear to be strongly correlated with acid pKa. Three distinct network topologies were observed, and all featured the bridging of two or three tetra(pyridylethylene groups through di-acid linkers. Crystalline assemblies also retained the AIE activity of tetra(pyridylethylene and were luminescent under UV light. As tetra(4-pyridylethylene features four Lewis basic and potentially metal ligating pyridine rings in a relatively well-defined geometry, this compound represents an attractive building block for the design of additional crystalline organic and metal–organic functional materials.

  18. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake

    Energy Technology Data Exchange (ETDEWEB)

    Motas Guzmàn, Miguel [Área de Toxicología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Clementini, Chiara [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra [Department of Legal Medicine, School of Medicine, University of Murcia & Instituto Murciano de Investigacion Biomedica (IMIB), (IMIB-VIRGEN DE LA ARRIXACA), Murcia (Spain); Cascone, Aurora; Martellini, Tania [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy); Guerranti, Cristiana [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, GR (Italy); Cincinelli, Alessandra, E-mail: acincinelli@unifi.it [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy)

    2016-02-15

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from < LOQ (< 10 ng/L) to 397 ng/L with a mean concentration of 66 ± 68 ng/L and a median of 29 ng/L. The presence of these compounds was revealed in 50 samples out of 67 analyzed. Influence of number of pregnancies and food habits on PFCAs concentrations was also investigated. Statistically significant differences in PFCA levels were found when the women were divided into maternal age classes and into the categories primiparae and multiparae. A greater transfer of PFC during breastfeeding by primiparous was evidenced and thus a higher exposure to these contaminants for the first child. Moreover, it was possible to hypothesize that the content of PFCs is in general correlated to the eating habits of donors and, in particular, with the fish consumption. Finally, PFOA daily intakes and risk index (RI) were estimated for the first six months of life and we found that ingestion rates of PFOA did not exceed the tolerable daily intake (TDI) recommended by the European Food Safety Authority (EFSA). - Graphical abstract: Figure SI 1. Concentrations (ng/L) of PFCs recovered in 67 samples of human breast milk. - Highlights: • Perfluorinated carboxylic acids were analyzed in a set of 67 breast milk samples collected from Spanish women. • PFOA appeared as the major contributor to the total perfluorinated carboxylic acids. • PFOA concentrations were significantly higher in milk of primiparous participants. • PFOA daily intake and risk index were estimated for the firsts six month of life.

  19. Synthesis of 1-Methyl-3-oxo-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gil Valdo José da Silva

    2005-11-01

    Full Text Available A simple and efficient method for the preparation of 1-methyl-3-oxo-7- oxabicyclo[2.2.1]hept-5-en-2-carboxylic acid methyl ester (1 is described. The first step is a highly regioselective Diels-Alder reaction between 2-methylfuran and methyl-3-bromo- propiolate. A remarkably difficult ketal hydrolysis reaction was effected by treatment with HCl, a simple reagent that was shown to be more efficient, in this case, than commonly used more elaborate methods.

  20. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Gameiro, Paulo A; Laviolette, Laura A; Kelleher, Joanne K; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-05-03

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

  1. Importance of medium chain fatty acids in animal nutrition

    Science.gov (United States)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  2. Effect of storage time and natural corrosion inhibitor on carbohydrate and carboxylic acids content in canned tomato puree.

    Science.gov (United States)

    Grassino, A Nincevic; Grabaric, Z; De Sio, F; Cacace, D; Pezzani, A; Squitieri, G

    2012-06-01

    In this research compositional changes of tinplate-canned tomato purées, with or without the addition of essential onion oil were investigated. The study was focused on the analyses of carbohydrates and carboxylic acids in two groups of canned samples (with or without nitrates) to determine whether their chemical composition was affected with storage time. The measurements were performed by high performance liquid chromatography, during six months of storage. The contents of glucose, fructose and two major organic acids, citric and malic, were found in the concentration range 1.77-1.97%, 1.86-2.09%, 0.60-0.75% and 0.23-0.30%, respectively, in all canned samples. Compared to carbohydrates and organic acids, amino acids were found in minor quantities, among them, as most abundant ones were glutamic acid, arginine, aspartic and γ-amino butyric acids. The results show that contents of carbohydrates and carboxylic acids are significantly affected by the change of storage time in majority of analyzed samples. The results also indicated that the influence of essential onion oil on composition of canned tomato purée is within the range of changes due to storage time measured for all other types of cans. Therefore the addition of essential onion oil as natural efficient corrosion inhibitor, as it was found in our previous work, can be recommended for canned tomato purée.

  3. Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Carnielli, Virgilio P.; Simonato, Manuela; Verlato, Giovanna; Luijendijk, Ingrid; De Curtis, Mario; Sauer, Pieter J. J.; Cogo, Paola E.

    2007-01-01

    Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two

  4. Electronically Rich N-Substituted Tetrahydroisoquinoline 3-Carboxylic Acid Esters: Concise Synthesis and Conformational Studies.

    Science.gov (United States)

    Al-Horani, Rami A; Desai, Umesh R

    2012-02-25

    Recent work in our laboratory has shown that the highly substituted, electronically rich 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (THIQ3CA) scaffold is a key building block for a novel class of promising anticoagulants (Al-Horani et al. J. Med. Chem.2011, 54, 6125-6138). The synthesis of THIQ3CA analogs, especially containing specific, electronically rich substituents, has been a challenge and essentially no efficient methods have been reported in the literature. We describe three complementary, glycine donor-based strategies for high yielding synthesis of highly substituted, electronically rich THIQ3CA esters. Three glycine donors studied herein include hydantoin 1, (±)-Boc-α-phosphonoglycine trimethyl ester 2 and (±)-Z-α-phosphonoglycine trimethyl ester 3. Although the synthesis of THIQ3CA analogs could be achieved using either of the three, an optimal, high yielding approach for the desired THIQ3CA esters was best achieved using 3 in three mild, efficient steps. Using this approach, a focused library of advanced N-arylacyl, N-arylalkyl, and bis-THIQ3CA analogs was synthesized. Variable temperature and solvent-dependent NMR chemical shift studies indicated the presence of two major conformational rotamers in 3:1 proportion for N-arylacyl-THIQ3CA analogs, which were separated by a high kinetic barrier of ~17 kcal/mol. In contrast, N-arylalkyl and bis-THIQ3CA variants displayed no rotamerism, which implicates restricted rotation around the amide bond as the origin for high-barrier conformational interconversion. This phenomenon is of major significance because structure-based drug design typically utilizes only one conformation. Overall, the work presents fundamental studies on the synthesis and conformational properties of highly substituted, electronically rich THIQ3CA analogs.

  5. Application of 2-Aminothiazoline-4-carboxylic Acid as a Forensic Marker of Cyanide Exposure.

    Science.gov (United States)

    Rużycka, Monika; Giebułtowicz, Joanna; Fudalej, Marcin; Krajewski, Paweł; Wroczyński, Piotr

    2017-02-20

    Cyanides are infamous for their highly poisonous properties. Accidental cyanide poisoning occurs frequently, but occasionally, intentional poisonings also occur. Inhalation of fumes generated by fire may also cause cyanide poisoning. There are many limitations in direct analysis of cyanide. 2-Aminothiazoline-4-carboxylic acid (ATCA), a cyanide metabolite, seems to be the only surrogate that is being used in the detection of cyanide because of its stability and its cyanide-dependent quality in a biological matrix. Unfortunately, toxicokinetic studies on diverse animal models suggest significant interspecies differences; therefore, the attempt to extrapolate animal models to human models may be unsuccessful. The aim of the present study was to evaluate the use of ATCA as a forensic marker of cyanide exposure. For this purpose, post-mortem materials (blood and organs) from fire victims (n = 32) and cyanide-poisoned persons (n = 3) were collected. The distribution of ATCA in organs and its thermal stability were evaluated. The variability of cyanides in a putrid sample and in the context of their long-term and higher temperature stability was established. The presence of ATCA was detected by using an LC-MS/MS method and that of cyanide was detected spectrofluorimetrically. This is the first report on the endogenous ATCA concentrations and the determination of ATCA distribution in tissues of fire victims and cyanide-poisoned persons. It was found that blood and heart had the highest ATCA concentrations. ATCA was observed to be thermally stable even at 90 °C. Even though the cyanide concentration was not elevated in putrid samples, it was unstable during long-term storage and at higher temperature, as expected. The relationship between ATCA and cyanides was also observed. Higher ATCA concentrations were related to increased levels of cyanide in blood and organs (less prominent). ATCA seems to be a reliable forensic marker of exposure to lethal doses of cyanide.

  6. 1D coordination polymers formed by tetranuclear lead(II) building blocks with carboxylate ligands: In situ isomerization of itaconic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India); Butcher, Raymond J. [Department of Chemistry, Howard University, Washington, DC (United States); Zangrando, Ennio [Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste (Italy); Dalai, Sudipta, E-mail: sudipta@mail.vidyasagar.ac.in [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2013-11-15

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexes have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.

  7. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    Science.gov (United States)

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  8. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    Science.gov (United States)

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-02

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Aziridine-2-carboxylic acid-containing peptides: application to solution- and solid-phase convergent site-selective peptide modification.

    Science.gov (United States)

    Galonić, Danica P; Ide, Nathan D; van der Donk, Wilfred A; Gin, David Y

    2005-05-25

    The development of a method for site- and stereoselective peptide modification using aziridine-2-carboxylic acid-containing peptides is described. A solid-phase peptide synthesis methodology that allows for the rapid generation of peptides incorporating the aziridine residue has been developed. The unique electrophilic nature of this nonproteinogenic amino acid allows for site-selective conjugation with various thiol nucleophiles, such as anomeric carbohydrate thiols, farnesyl thiol, and biochemical tags, both in solution and on solid support. This strategy, combined with native chemical ligation, provides convergent and rapid access to complex thioglycoconjugates.

  10. 2,4,6-Trichloro-1,3,5-triazine (TCT) mediated one pot direct synthesis of N-benzoylthioureas from carboxylic acids

    OpenAIRE

    Somnath Gholap; Navanath Gunjal

    2017-01-01

    An efficient 2,4,6-trichloro-1,3,5-triazine (TCT) mediated synthesis of N-benzoylthiourea derivatives from carboxylic acid has been described. The reaction of TCT (1), triethyl amine in dichloromethane gives tris-quaternary ammonium salt (A), reacted with carboxylic acid to form activated ester as an intermediate (B). Aroylthiocyanate was formed by the reaction of activated ester ‘B’ and ammonium isothiocyanate followed by aliphatic or aromatic amines affording structurally diverse N-benzoylt...

  11. o-Boronato- and o-Trifluoroborato-Phosphonium Salts Supported by L-α-Amino Acid Side Chain.

    Science.gov (United States)

    Bernard, Julie; Malacea-Kabbara, Raluca; Clemente, Gonçalo S; Burke, Benjamin P; Eymin, Marie-Joëlle; Archibald, Stephen J; Jugé, Sylvain

    2015-05-01

    The synthesis of o-boronato- and o-trifluoroborato-phosphonium salts supported by the L-amino acid side chain is described. The synthesis of these new class of amino acid derivatives was achieved by stereoselective quaternization of o-(pinacolato)boronatophenylphosphine with β- or γ-iodo amino acid derivatives which are prepared from L-serine or L-aspartic acid, respectively. The quaternization of the phosphine was performed using either iodo amino ester or carboxylic acid derivatives. In addition, free carboxylic acid and amine derivatives were obtained by saponification or HCl acidolysis of o-boronato-phosphonium amino esters, respectively. The usefulness of these compounds in peptide coupling was demonstrated by coupling an o-boronato-phosphonium amino ester with an aspartic acid moiety. When the o-boronato-phosphonium amino acid or dipeptide derivatives were mixed with fluoride, the corresponding o-trifluoroborated products were cleanly and rapidly obtained in high isolated yields. The hydrolysis of these compounds at room temperature using a phosphate buffer pH 7/CD3CN mixture has shown only traces of free fluoride F(-) after several days. Finally, a preliminary radiolabeling essay has proven the facile [(18)F]-fluoride incorporation and high stability of the radiolabeled product in aqueous conditions. Indeed, this new class of boron-phosphonium amino acid derivatives shows promising properties for their applications in synthesis and labeling of peptides.

  12. Design of pentapeptidic BACE1 inhibitors with carboxylic acid bioisosteres at P1' and P4 positions.

    Science.gov (United States)

    Tagad, Harichandra D; Hamada, Yoshio; Nguyen, Jeffrey-Tri; Hamada, Takashi; Abdel-Rahman, Hamdy; Yamani, Abdellah; Nagamine, Ayaka; Ikari, Hayato; Igawa, Naoto; Hidaka, Koushi; Sohma, Youhei; Kimura, Tooru; Kiso, Yoshiaki

    2010-05-01

    We previously reported potent BACE1 inhibitors KMI-420 and KMI-570 possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. Acidic moieties at the P(1)(') and P(4) positions of KMI inhibitors are thought to be unfavorable in terms of membrane permeability across the blood-brain barrier. Herein, we replaced acidic moieties at the P(4) position with hydrogen bond accepting groups and acidic moieties at the P(1)(') position with less acidic and similar molecular-size moieties (carboxylic acid or tetrazole bioisosteres). These inhibitors exhibited improved BACE1 inhibitory activities and a thorough quantitative structure-activity relationship study was performed. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives.

    Science.gov (United States)

    Puopolo, Gerardo; Masi, Marco; Raio, Aida; Andolfi, Anna; Zoina, Astolfo; Cimmino, Alessio; Evidente, Antonio

    2013-01-01

    Pseudomonas chlororaphis subsp. aureofaciens strain M71 produced two phenazine compounds as main secondary metabolites. These metabolites were identified as phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH P). In this study, the spectrum of the activity of PCA and 2-OH P was evaluated against a group of crop and forestal plant pathogenic fungi by an agar plate bioassay. PCA was active against most of the tested plant pathogens, while 2-OH P slightly inhibited a few fungal species. Furthermore, four semisynthesised derivatives of PCA (phenazine-1-carboxymethyl, phenazine-1-carboxamide, phenazine-1-hydroxymethyl and phenazine-1-acetoxymethyl) were assayed for their antifungal activity against 11 phytopathogenic species. Results showed that the carboxyl group is a structural feature important for the antifungal activity of PCA. Since the activity of phenazine-1-carboxymethyl and phenazine-1-carboxamide, the two more lipophilic and reversible PCA derivatives remained substantially unaltered compared with PCA.

  14. THE EFFECT OF KETAMINE AND ITS COMBINATION WITH INDOL-2-CARBOXYLIC ACID AND CAROVERINE ON SURVIVAL TIME OF MICE WITH EXPERIMENTAL TETANUS

    Directory of Open Access Journals (Sweden)

    Indira Mujezinović

    2017-12-01

    Full Text Available Tetanus, also known as lockjaw, is a very dangerous infectious acute, usually afebrile disease characterized by muscle spasms, affecting humans and various animal species. The causative agent of the disease is bacteria Clostridium tetani. This bacteria produces a specific neurotoxin known as Tetanus toxin, which consists of two components: tetanospasmin and tetanolysin. Light (L chains of tetanospamin cleavage synaptobrevin, an integral membrane component of the synaptic vesicles, which in turn prevent release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA into the synaptic cleft. The α- motor neurons are, therefore, under no inhibitory control as a result of which they undergo sustained excitatory discharge causing the characteristic motor spasms of tetanus. In this research, we attempted to normalize the disorders caused by tetanus toxin by using ketamine, a non-competitive antagonist of aspartate (at doses of 5, 10, 44 and 100 mg/kg of body weight – b.w., alone and in combination with indol-2-carboxylic acid, a competitive antagonist of aspartate (at a dose of 10 mg/kg b.w. and caroverine, a non-competitive antagonist of glutamate (at a dose of 1.2 mg/kg b.w.. Experiments were conducted on the albino mice of both sexes, weighing around 20-25 g. Experimental tetanus was induced by application of tetanus toxin. The administration of ketamine, alone and in combination with indol-2-carboxylic acid and caroverine was carried out 24 hours after administration of tetanus toxin once per day, until the mice died. It was found that ketamine had an effect only at a dose of 10 mg/kg b.w., which slightly prolonged the LD50 periodin experimental group of mice, compared to the control group of mice with experimental tetanus. Thus, it can be concluded that administration of ketamine in this dose proved to be only slightly effective. On the other hand, combination of ketamine with indol-2-carboxylic acid slightly extended the survival time

  15. Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse.

    Science.gov (United States)

    Fu, Zhihong; Holtzapple, Mark T

    2011-06-01

    Wet storage and in situ lime pretreatment (50 °C, 1-atm air, 56 days, excess lime loading of 0.3 g Ca(OH)(2)/g dry biomass) of sugarcane bagasse (4,000 g dry weight) was performed in a bench-scale pile pretreatment system. Under thermophilic conditions (55 °C, NH(4)HCO(3) buffer, methane inhibitors), air-lime-treated bagasse (80 wt.%) and chicken manure (20 wt.%) were anaerobically co-digested in 1-L rotary fermentors by a mixed culture of marine microorganisms (Galveston, TX). During four-stage countercurrent fermentation, the resulting carboxylic acids consisted of primarily acetate (average 87.7 wt.%) and butyrate (average 9.0 wt.%). The experimental fermentation trains had the highest yield (0.47 g total acids/g volatile solids (VS) fed) and highest selectivity (0.79 g total acids/g VS digested) at a total acid concentration of 28.3 g/L, which is equivalent to an ethanol yield of 105.2 gal/(tonne VS fed). Both high total acid concentrations (>44.7 g/L) and high substrate conversions (>77.5%) are predicted for countercurrent fermentations of bagasse at commercial scale, allowing for an efficient conversion of air-lime-treated biomass to liquid transportation fuels and chemicals via the carboxylate platform.

  16. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many

  17. Short Communication Effects of short chain fatty acid (SCFA ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of supplementing the diet of breeder hens with a short-chain fatty acid (SCFA) premix, containing 509 g fatty acid salts/kg of which 285 g were calcium butyrate, on their eggshell characteristics and the hatching percentage of the eggs. One thousand six hundred 66-week old ...

  18. Carboxylic acids in PM 2.5 over Pinus morrisonicola forest and related photoreaction mechanisms identified via Raman spectroscopy

    Science.gov (United States)

    Kuo, Su-Ching; Tsai, Ying I.; Tsai, Cheng-Hsien; Hsieh, Li-Ying

    2011-12-01

    The PM 2.5 aerosol from within an area of Pinus morrisonicola Hayata in Taiwan was collected and analyzed for its low molecular weight carboxylic acid (LMWCAs) content. Oxalic acid was the major LMWCA in the aerosol, followed by acetic, tartaric and maleic acids. This differs significantly from the LMWCA composition of PM 2.5 aerosol reported for a southern Taiwan suburban region (oxalic > succinic > malonic) [Atmospheric Environment 42, 6836-6850 (2008)]. P. morrisonicola Hayata emits oxalic, malic and formic acids and yet there was an abundance of maleic and tartaric acids in the PM 2.5 forest aerosol, indicating that tartaric acid is derived from the transformation of other P. morrisonicola Hayata emissions. Raman spectroscopy was applied and 28 species of LMWCAs and inorganic species were identified. The photochemical mechanisms of maleic and tartaric acids were studied and it was found that the abundant tartaric acid in forest aerosol is most probably the photochemical product from reactions of maleic acid. Furthermore, tartaric acid is photochemically transformed into formic acid and ultimately into CO 2.

  19. Synthesis Characterization and Biological Activities of Coordination Compounds of 4-Hydroxy-3-nitro-2H-chromen-2-one and Its Aminoethanoic Acid and Pyrrolidine-2-carboxylic Acid Mixed Ligand Complexes

    National Research Council Canada - National Science Library

    Aiyelabola, Temitayo; Akinkunmi, Ezekiel; Obuotor, Efere; Olawuni, Idowu; Isabirye, David; Jordaan, Johan

    2017-01-01

      Coordination compounds of 4-hydroxy-3-nitro-2H-chromen-2-one and their mixed ligand complexes with aminoethanoic acid and pyrrolidine-2-carboxylic acid were synthesized by the reaction of Cu(II) and Zn(II...

  20. Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation

    NARCIS (Netherlands)

    Arslan, D.; Steinbusch, K.J.J.; Diels, L.; Wever, De H.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    This study investigated the carboxylate spectrum from mixed culture fermentation of three organic waste streams after supplying 2 bar hydrogen and carbon dioxide or a mixture of these two gases to the headspace. Under any modified headspace, propionate production was ceased and butyrate, caproate

  1. Exploring the reductive capacity of Pyrococcus furiosus : the reduction of carboxylic acids and pyridine nucleotides

    NARCIS (Netherlands)

    Ban, van den E.C.D.

    2001-01-01

    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic

  2. Measurement of long-chain fatty acid uptake into adipocytes

    OpenAIRE

    Dubikovskaya, Elena; Chudnovskiy, Rostislav; Karateev, Grigory; Park, Hyo Min; Stahl, Andreas

    2014-01-01

    The ability of white and brown adipose tissue to efficiently take up long-chain fatty acids is key to their physiological functions in energy storage and thermogenesis respectively. Several approaches have been taken to determine uptake rates by cultured cells as well as primary adipocytes including radio- and fluorescently labeled fatty acids. In addition, the recent description of activatable bioluminescent fatty acids has opened the possibility for expanding these in vitro approaches to re...

  3. Predictions of the fluorine NMR chemical shifts of perfluorinated carboxylic acids, CnF(2n+1)COOH (n = 6-8).

    Science.gov (United States)

    Liu, Zizhong; Goddard, John D

    2009-12-17

    Perfluorinated carboxylic acids (PFCAs) are a class of persistent environmental pollutants. Commercially available PFCAs are mixtures of linear and branched isomers, possibly with impurities. Different isomers have different physical and chemical properties and toxicities. However, little is known about the properties and the finer details of the structures of the individual branched isomers. Full geometry optimizations for the linear n-alkane (C(6)-C(27)) PFCAs indicated that all have helical structures. The helical angle increases slightly with increasing chain length, from 16.3 degrees in C(6)F(13)COOH to 17.0 degrees in C(27)F(55)COOH. This study predicts (19)F NMR parameters for 69 linear and branched isomers of the perfluoro carboxylic acids C(6)F(13)COOH, C(7)F(15)COOH, and C(8)F(17)COOH. B3LYP-GIAO/6-31++G(d,p)//B3LYP/6-31G(d,p) was used for the NMR calculations with analysis of the chemical shifts by the natural bond orbital method. The predictions of the (19)F chemical shifts revealed the differences among the CF(3), CF(2), and CF groups. In general, the absolute values for the chemical shifts for the CF(3) group are smaller than 90 ppm, for the CF larger than 160 ppm, and for the CF(2) between 110 and 130 ppm. The chemical shifts of the branched isomers are smaller in magnitude than the linear ones. The decrease is correlated with the steric hindrance of the CF(3) groups, the more hindered the CF(3), the greater the decrease in the (19)F chemical shifts. The predicted (19)F chemical shifts are similar to those for analogous perfluoro compounds with other terminal functional groups such as -SO(3)H or -SO(3)NH(2)CH(2)CH(3).

  4. Predictions of the Fluorine NMR Chemical Shifts of Perfluorinated Carboxylic Acids, CnF2n+1COOH (n = 6-8)

    Science.gov (United States)

    Liu, Zizhong; Goddard, John D.

    2009-10-01

    Perfluorinated carboxylic acids (PFCAs) are a class of persistent environmental pollutants. Commercially available PFCAs are mixtures of linear and branched isomers, possibly with impurities. Different isomers have different physical and chemical properties and toxicities. However, little is known about the properties and the finer details of the structures of the individual branched isomers. Full geometry optimizations for the linear n-alkane (C6-C27) PFCAs indicated that all have helical structures. The helical angle increases slightly with increasing chain length, from 16.3° in C6F13COOH to 17.0° in C27F55COOH. This study predicts 19F NMR parameters for 69 linear and branched isomers of the perfluoro carboxylic acids C6F13COOH, C7F15COOH, and C8F17COOH. B3LYP-GIAO/6-31++G(d,p)//B3LYP/6-31G(d,p) was used for the NMR calculations with analysis of the chemical shifts by the natural bond orbital method. The predictions of the 19F chemical shifts revealed the differences among the CF3, CF2, and CF groups. In general, the absolute values for the chemical shifts for the CF3 group are smaller than 90 ppm, for the CF larger than 160 ppm, and for the CF2 between 110 and 130 ppm. The chemical shifts of the branched isomers are smaller in magnitude than the linear ones. The decrease is correlated with the steric hindrance of the CF3 groups, the more hindered the CF3, the greater the decrease in the 19F chemical shifts. The predicted 19F chemical shifts are similar to those for analogous perfluoro compounds with other terminal functional groups such as -SO3H or -SO3NH2CH2CH3.

  5. Trace Amounts of Furan-2-Carboxylic Acids Determine the Quality of Solid Agar Plates for Bacterial Culture

    Science.gov (United States)

    Hara, Shintaro; Isoda, Reika; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2012-01-01

    Background Many investigators have recognised that a significant proportion of environmental bacteria exist in a viable but non-culturable state on agar plates, and some researchers have also noticed that some of such bacteria clearly recover their growth on matrices other than agar. However, the reason why agar is unsuitable for the growth of some bacteria has not been addressed. Methodology/Principal Findings According to the guide of a bioassay for swarming inhibition, we identified 5-hydroxymethylfuran-2-carboxylic acid (5-HMFA) and furan-2-carboxylic acid (FA) as factors that inhibit bacterial swarming and likely inhibit extracellular polysaccharide production on agar. The furan-2-carboxylic acids 5-HMFA and FA effectively inhibited the swarming and swimming of several environmental bacteria at concentrations of 1.8 and 2.3 µg L−1 (13 and 21 nmol L−1), respectively, which are equivalent to the concentrations of these compounds in 0.3% agar. On Luria-Bertani (LB) plates containing 1.0% agar that had been previously washed with MeOH, a mixture of 5-HMFA and FA in amounts equivalent to their original concentrations in the unwashed agar repressed the swarming of Escherichia coli K12 strain W3110, a representative swarming bacterium. Conclusions/Significance Agar that contains trace amounts of 5-HMFA and FA inhibits the proliferation of some slow-growing or difficult-to-culture bacteria on the plates, but it is useful for single colony isolation due to the ease of identification of swarmable bacteria as the non-swarmed colonies. PMID:22848437

  6. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  7. Measurement of long-chain fatty acid uptake into adipocytes.

    Science.gov (United States)

    Dubikovskaya, Elena; Chudnovskiy, Rostislav; Karateev, Grigory; Park, Hyo Min; Stahl, Andreas

    2014-01-01

    The ability of white and brown adipose tissue to efficiently take up long-chain fatty acids is key to their physiological functions in energy storage and thermogenesis, respectively. Several approaches have been taken to determine uptake rates by cultured cells and primary adipocytes including radio- and fluorescently labeled fatty acids. In addition, the recent description of activatable bioluminescent fatty acids has opened the possibility for expanding these in vitro approaches to real-time monitoring of fatty acid uptake kinetics by adipose depots in vivo. Here, we will describe some of the most useful experimental paradigms to quantitatively determine long-chain fatty acid uptake by adipocytes in vitro and provide the reader with detailed instruction on how bioluminescent probes for in vivo imaging can be synthesized and used in living mice. © 2014 Elsevier Inc. All rights reserved.

  8. Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids.

    Science.gov (United States)

    Wu, Hao-Yiang; Shieh, Fa-Kuen; Kao, Hsien-Ming; Chen, Yi-Wen; Deka, Juti Rani; Liao, Shih-Hsiang; Wu, Kevin C-W

    2013-05-10

    Highly ordered benzene-bridged periodic mesoporous organosilicas (PMOs) that were functionalized with exceptionally high loadings of carboxylic acid groups (COOH), up to 80 mol % based on silica, have been synthesized and their use as adsorbents for the adsorption of methylene blue (MB), a basic dye pollutant, and for the loading and release of doxorubicin (DOX), an anticancer drug, is demonstrated. These COOH-functionalized benzene-silicas were synthesized by the co-condensation of 1,4-bis(triethoxysilyl) benzene (BTEB) and carboxyethylsilanetriol sodium salt (CES), an organosilane that contained a carboxylic acid group, in the presence of non-ionic oligomeric surfactant Brij 76 in acidic medium. The materials thus obtained were characterized by a variety of techniques, including powder X-ray diffraction (XRD), nitrogen-adsorption/desorption isotherms, TEM, and (13)C and (29)Si solid-state NMR spectroscopy. Owing to the exceptionally high loadings of COOH groups, their high surface areas, and possible π-π-stacking interactions, these adsorbents have very high adsorption capacities and extremely rapid adsorption rates for MB removal and for the controlled loading/release of DOX, thus manifesting their great potential for environmental and biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells

    Science.gov (United States)

    Akal, Z. Ü.; Alpsoy, L.; Baykal, A.

    2016-08-01

    In this study, carboxylated quercetin (CQ) was conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) which were modified by (3-aminopropyl) triethoxysilane (APTES), Folic acid (FA) and carboxylated Polyethylene glycol (PEG); (SPION@APTES@FA-PEG@CQ), nanodrug has been synthesized via polyol and accompanying by various chemical synthesis routes. The characterization of the final product was done via X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetric analysis (TGA), Transmission electron spectroscopy (TEM) and Vibrating sample magnetometer (VSM). Its cytotoxic and apoptotic activities on over expressed folic acid receptor (FR +) (MCF-7, HeLa) and none expressed folic acid receptor (FR-) (A549) cancer cell lines were determined by using MTT assay, Real-Time Cell Analysis, TUNEL assay, Annexin assay and RT-PCR analysis for Caspase3/7 respectively. SPION@APTES@FA-PEG@CQ nanodrug showed higher cytotoxicity against HeLa and MCF-7 cell lines as compared with A549 cell line. Moreover, SPION@APTES@FA-PEG@CQ nanodrug also caused higher apoptotic and necrotic effects in 100 μg/mL HeLa and MCF-7 cells than A549 cells. The findings showed that SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 which are FR over expressed cell lines and can be potentially used for the delivery of quercetin to cervical and breast cancer cells.

  10. Supported L-pyrrolidine-2-carboxylic acid-4-hydrogen sulphate on ...

    Indian Academy of Sciences (India)

    of β-acetamido ketones in good to excellent yields. Keywords. β-Acetamido ketones; L-pyrrolidine-2-carboxylic ..... significant effect on the outcome of reaction. Also, both. O. O. H. +. CH3CN, CH3COCl reflux. NHAc. O. (Cat.) N. H. HO3SO. COOH/SiO2. Cl. Cl. Scheme 2. Effect of catalyst on the outcome of the reaction.

  11. Development of a mixed culture chain elongation process based on municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.

    2013-01-01

    Keywords: mixed culture fermentation; Carboxylates; Caproate; Heptanoate; ethanol; OFMSW To reduce dependence on oil, alternative fuel and chemical production processes are investigates. In this thesis, we investigated the production of medium chain fatty acids (MCFAs) using an anaerobic chain

  12. The influence of the substrate structure in the telluro-cyclo-functionalization reaction of {gamma}, {delta}-unsaturated carboxylic acids and their corresponding benzyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Denilson N.; Santos, Rute A.; Comasseto, Joao V. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1998-07-01

    {gamma},{delta}-Unsaturated carboxylic acids containing mono substituted double bonds react with aryl tellurium trichlorides to give the expected telluro lactone. Reaction of the corresponding benzyl esters gives the addition product of the aryl tellurium trichlorides to the double bond {gamma}, {delta}-Unsaturated carboxylic acids containing 1,1-disubstituted double bonds lead to a mixture of the expected telluro lactone and the product of hydrochloric acid addition to the double bond; the corresponding benzyl ester gives the telluro lactone as the only product. The stereoselectivity of the reaction is low; mixtures of the two possible diastereomeric lactones are formed in approximately 1:1 ratios. (author)

  13. Copolymers Based on Indole-6-Carboxylic Acid and 3,4-Ethylenedioxythiophene as Platinum Catalyst Support for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2015-10-01

    Full Text Available Indole-6-carboxylic acid (ICA and 3,4-ethylenedioxythiophene (EDOT are copolymerized electrochemically on a stainless steel (SS electrode to obtain poly(indole-6-carboxylic acid-co-3,4-ethylenedioxythiophenes (P(ICA-co-EDOTs. The morphology of P(ICA-co-EDOTs is checked using scanning electron microscopy (SEM, and the SEM images reveal that these films are composed of highly porous fibers when the feed molar ratio of ICA/EDOT is greater than 3/2. Platinum particles can be electrochemically deposited into the P(ICA-co-EDOTs and PICA films to obtain P(ICA-co-EDOTs-Pt and PICA-Pt composite electrodes, respectively. These composite electrodes are further characterized using X-ray photoelectron spectroscopy (XPS, SEM, X-ray diffraction analysis (XRD, and cyclic voltammetry (CV. The SEM result indicates that Pt particles disperse more uniformly into the highly porous P(ICA3-co-EDOT2 fibers (feed molar ratio of ICA/EDOT = 3/2. The P(ICA3-co-EDOT2-Pt nanocomposite electrode exhibited excellent catalytic activity for the electrooxidation of methanol in these electrodes, which reveals that P(ICA3-co-EDOT2-Pt nanocomposite electrodes are more promising for application in an electrocatalyst as a support material.

  14. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Directory of Open Access Journals (Sweden)

    Saikat Dutta

    2014-11-01

    Full Text Available This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs functionalized with carboxylic acid (–COOH group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  15. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32054, Taiwan (China)

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  16. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.

    Science.gov (United States)

    Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel

    2017-04-22

    Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  18. Clipboard: A branched chain fatty acid promotes cold adaptation in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 28; Issue 4. Clipboard: A branched chain fatty acid promotes cold adaptation in bacteria. M K Chattopadhyay M V Jagannadham. Volume 28 Issue 4 June 2003 pp 363-364. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Significance of long chain polyunsaturated fatty acids in human health

    Czech Academy of Sciences Publication Activity Database

    Zárate, R.; El Jaber-Vazdekis, Nabil; Tejera, N.; Pérez, J.A.; Rodrígues, C.

    2017-01-01

    Roč. 6, JUL 27 (2017), s. 1-19, č. článku 25. ISSN 2001-1326 R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Lipidomics * Lipids * Long chain polyunsaturated fatty acids Subject RIV: EE - Microbiology, Virology

  20. Inactivation of Gram-Positive Bacteria by Novel Phenolic Branched-Chain Fatty Acids.

    Science.gov (United States)

    Fan, Xuetong; Wagner, Karen; Sokorai, Kimberly J B; Ngo, Helen

    2017-01-01

    Novel phenolic branched-chain fatty acids (PBC-FAs) were evaluated for their antimicrobial properties against both gram-positive ( Listeria innocua , Bacillus subtilis , Enterococcus faecium ) and gram-negative ( Escherichia coli , Salmonella Typhimurium, and Pseudomonas tolaasii ) bacteria. In addition, PBC-FA derivatives, such as PBC-FA methyl ester mixture, methyl-branched fatty acid mixtures, and trimethylsilyl-PBC-FA methyl esters, were synthesized to study the structure activity relationship. Results showed that PBC-FAs were a potent antimicrobial against gram-positive bacteria with MICs of 1.8 to 3.6 μg/ml. The compounds were less effective against gram-negative bacteria. Derivatives of PBC-FAs and an equimolar mixture of oleic acid and phenol all had MICs above 233 μg/ml against both gram-positive and gram-negative bacteria. Comparison of antimicrobial activities of the PBC-FAs with those of the derivatives suggests that the carboxylic group in the fatty acid moiety and the hydroxyl group on the phenol moiety were responsible for the antimicrobial efficacy. Growth curves of L. innocua revealed that PBC-FAs prevented bacterial growth, while MBC-FAs only delayed the onset of rapid growth of L. innocua . Our results demonstrated that the novel PBC-FAs have potential for use as antimicrobials against gram-positive bacteria.

  1. Capillary electrophoresis for the analysis of short-chain organic acids in coffee.

    Science.gov (United States)

    Galli, Verónica; Barbas, Coral

    2004-04-02

    A simple and rapid capillary electrophoresis method for low-molecular mass carboxylic acids measurement in coffee has been optimised and validated. Regarding separation conditions, phosphate concentration in the background electrolyte, surfactant type [cetyltrimethylammonium bromide (CTAB), tetradecyltri methylammonium bromide (TTAB) and hexadimethrine bromide (HDB)], percentages of organic modifier and pH were assayed. The best conditions were: 500 mM phosphate buffer at pH 6.25 with CTAB 0.5 mM. The separation was carried out with an uncoated fused-silica capillary (57 cm x 50 microm i.d.) which was operated at -10 kV potential. Detection was performed at 200 nm. In such conditions 17 short-chain organic acids: oxalic, formic, fumaric, mesaconic, succinic, maleic, malic, isocitric, citric, acetic, citraconic, glycolic, propionic, lactic, furanoic, pyroglutamic, quinic acids plus nitrate were separated, identified and measured. Validation parameters of the method allow us to consider it lineal, accurate and precise and, therefore, reliable for its employment in food composition studies or for quality control. Results in coffees with different industrial treatment allow the detection of important differences in the organic acid profile.

  2. 5-Amino-1-phenyl-3-trifluoro?methyl-1H-pyrazole-4-carboxylic acid

    OpenAIRE

    Caruso, Francesco; Raimondi, Maria Valeria; Daidone, Giuseppe; Pettinari, Claudio; Rossi, Miriam

    2009-01-01

    In the title compound, C11H8F3N3O2, there are two molecules in the asymmetric unit wherein the phenyl rings make dihedral angles of 65.3 (2) and 85.6 (2)° with the pyrazole rings. In the crystal, pairs of molecules are held together by O—H...O hydrogen bonds between the carboxyl groups, forming a centrosymmetric dimer with an R22(8) motif. Intramolecular N—H...O interactions are also present.

  3. 5-Amino-1-phenyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Francesco Caruso

    2009-09-01

    Full Text Available In the title compound, C11H8F3N3O2, there are two molecules in the asymmetric unit wherein the phenyl rings make dihedral angles of 65.3 (2 and 85.6 (2° with the pyrazole rings. In the crystal, pairs of molecules are held together by O—H...O hydrogen bonds between the carboxyl groups, forming a centrosymmetric dimer with an R22(8 motif. Intramolecular N—H...O interactions are also present.

  4. 5-Amino-1-phenyl-3-trifluoro­methyl-1H-pyrazole-4-carboxylic acid

    Science.gov (United States)

    Caruso, Francesco; Raimondi, Maria Valeria; Daidone, Giuseppe; Pettinari, Claudio; Rossi, Miriam

    2009-01-01

    In the title compound, C11H8F3N3O2, there are two mol­ecules in the asymmetric unit wherein the phenyl rings make dihedral angles of 65.3 (2) and 85.6 (2)° with the pyrazole rings. In the crystal, pairs of mol­ecules are held together by O—H⋯O hydrogen bonds between the carboxyl groups, forming a centrosymmetric dimer with an R 2 2(8) motif. Intra­molecular N—H⋯O inter­actions are also present. PMID:21577579

  5. Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2015-10-15

    Design and synthesis of a series of isostructural lanthanide metal-organic frameworks (LnMOFs) serving as phosphors by coordinate the H{sub 2}TIPA (5-(1H-tetrazol-5-yl)isophthalic acid) ligands and lanthanide ions is reported. The color of the luminescence can be tuned by adjusting the relative concentration of the lanthanide ions in the host framework GdTIPA, and near-pure-white light emission can be achieved. - Graphical abstract: Lanthanide metal-organic frameworks (LnMOFs) with tunable luminescence were synthesized using an azole-containing carboxylic acid as ligand. - Highlights: • A series of isostructural LnMOFs serving as phosphor is reported. • We model the GdTIPA: Tb{sup 3+}, Eu{sup 3+} which can tune color and emit white light. • The scheme and mechanism of luminescent LnMOFs are also presented and discussed.

  6. Adding more weight to a molecular recognition unit: the low-frequency modes of carboxylic acid dimers

    Science.gov (United States)

    Xue, Zhifeng; Suhm, Martin A.

    2010-09-01

    By tuning the alkyl substituent of a carboxylic acid, the intermolecular modes in its hydrogen-bonded dimer can be reordered. These modes are detected at low vibrational congestion for formic, acetic, propiolic and pivalic acid using Raman jet spectroscopy. By probing the shock zone between the free jet and the background gas, a continuous evolution of the dimer spectra between cryogenic and ambient temperatures is achieved. Analysis of the dimer stretching mode within a pseudo-diatomic model quantifies substitution effects on the hydrogen-bond force constant. They do not correlate with effects on predicted overall dimer binding energies. The evolution of the spectra with increasing cluster size reveals the stacking structure of supra-dimeric aggregates.

  7. Synthesis of α-(Pentafluorosulfanyl)- and α-(Trifluoromethyl)-Substituted Carboxylic Acid Derivatives by Ireland-Claisen Rearrangement.

    Science.gov (United States)

    Dreier, Anna-Lena; Beutel, Bernd; Mück-Lichtenfeld, Christian; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2017-02-03

    Earlier studies have shown that [3,3]-sigmatropic rearrangements of allyl esters are useful for the construction of fluorine-containing carboxylic acid derivatives. This paper describes the synthesis of 3-aryl-pent-4-enoic acid derivatives bearing either a pentafluorosulfanyl (SF5) or a trifluoromethyl (CF3) substituent in the 2-position by treatment of corresponding SF5- or CF3-acetates of p-substituted cinnamyl alcohols with triethylamine followed by trimethylsilyl triflate (TMSOTf). This Ireland-Claisen rearrangement delivered approximate 1:1 mixtures of syn/anti diastereoisomers due to tiny differences (sigmatropic rearrangement and subsequent oligomerization of the intermediately formed cinnamyl esters. When Et3N was added first followed by TMSOTf, no further reaction of the formed ester was detected.

  8. Zeolite-catalysed preparation of alpha-hydroxy carboxylic acids and esters thereof

    DEFF Research Database (Denmark)

    2010-01-01

    A process for the production of lactic acid and 2-hydroxy-3-butenoic acid or esters thereof by conversion of glucose, fructose, sucrose, xylose and glycolaldehyde dissolved in a solvent in presence of a solid Lewis acidic catalyst.......A process for the production of lactic acid and 2-hydroxy-3-butenoic acid or esters thereof by conversion of glucose, fructose, sucrose, xylose and glycolaldehyde dissolved in a solvent in presence of a solid Lewis acidic catalyst....

  9. Infrared study of some 2-substituted-6-hydroxy-4-pyrimidine carboxylic acids. Correlation with MO-calculations

    Directory of Open Access Journals (Sweden)

    IVAN O. JURANIC

    2000-06-01

    Full Text Available The IR spectra of a series of 2-substituted-6-hydroxy-4-pyrimidine carboxylic acids (substituent = OH, SH, CH3, CH3S and NH2 were studied from the aspect of the influence of the subsitutent on the polarizability of some bonds, keto-enol tautomerism and hydrogen bond formation. The spectra were taken using solids due to the low solubility of the acids. Theoretical calculations were done using the MNDO-AM1 semiempirical molecular-orbital method. The stabilities of various tautomers were calculated simulating the dielectric continuum using the COSMO facility of the MOPAC program package. Theoretical calculations were made for all the possible tautomers of the 2-substituted-6-hydroxy-4-pyrimidine carboxylic acids. For the most stable isomers, the vibrational spectra were calculated. For the majority of the compounds the most stable isomer was identified having the structure 2-Y-6-oxo-4-carboxy-3H-pyrimidine. Besides this structure, for the 2-amino-, and 2-methyl- derivatives the zwitterionic forms have very similar stability. The 2-hydroxy compound is most stable as the 2,6-dioxo-1H, 3H isomer. The calculated vibrations for the compounds with a single stable structure correlate very well with the experimental frequencies. For the 2-methyl- and 2-amino- compounds the correlation is considerably less satisfactory. The most probable reason for this deviation is the existence of two or more tautomets in equilibrium. The correlation of the measured frequencies and the pKa values of the acids, indicate that the same tautomers exist in the solid state and in the solution.

  10. Structure and photoluminescence property of complexes of aromatic carboxylic acid-functionalized polysulfone with Eu(Ⅲ) and Tb(Ⅲ)

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Baojiao, E-mail: gaobaojiao@126.com; Qiao, Zongwen; Chen, Tao

    2014-02-14

    With chloromethylated polysulfone as starting substance, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polysulfone (PSF) via polymer reactions, obtaining two kinds of aromatic carboxyl acid-functionalized polysulfone, PSFNA and PSFBA. Subsequently, the luminescent binary and ternary polymer-rare earth complexes of Eu(Ⅲ) and Tb(Ⅲ) were prepared through coordination reactions, respectively, with PSFNA and PSFBA as macromolecule ligands and with 1,10-phenanthroline (Phen) and 4,4′-bipyridine (Bipy) as small-molecule co-ligands. This work focuses on investigating the relationship between structure and photoluminescence property of these complexes. The experimental results indicate that the macromolecule ligands PSFNA and PSFBA can strongly sensitize the fluorescence emissions of Eu{sup 3+} ion or Tb{sup 3+} ion, and the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions. The fluorescence emission of the binary complex PSF–(NA){sub 3}–Eu(Ⅲ) is stronger than that PSF–(BA){sub 3}–Eu(Ⅲ), suggesting the bonded ligand NA has stronger sensitization action for Eu{sup 3+} ion than ligand BA; The binary complex PSF–(BA){sub 3}–Tb(Ⅲ) emit very strong characteristic fluorescence of Tb{sup 3+} ion, displaying that ligand BA can strongly sensitize Tb{sup 3+} ion, whereas PSF–(NA){sub 3}–Tb(Ⅲ) does not emit the characteristic fluorescence of Tb{sup 3+} ion, showing that the bonded ligand NA does not sensitize Tb{sup 3+} ion. The fluorescence intensity of the ternary complexes is stronger than that of the binary complexes in the same series. The solid films of these complexes also emit the strong characteristic fluorescence of Eu{sup 3+} ion or Tb{sup 3+} ion. - Highlights: • We prepared two kinds of aromatic carboxyl acid-functionalized polysulfone, PSFNA and PSFBA via polymer reaction. • Various binary and ternary luminescent polymer-rare earth complexes of

  11. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.

    Science.gov (United States)

    Jennifer, Samson Jegan; Muthiah, Packianathan Thomas

    2014-01-01

    The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The

  12. Second-sphere tethering of rare-earth ions to cucurbit[6]uril by iminodiacetic acid involving carboxylic group encapsulation.

    Science.gov (United States)

    Thuéry, Pierre

    2010-10-04

    The reaction of rare-earth nitrates with iminodiacetic acid (H(2)IDA) in the presence of cucurbit[6]uril (CB6) in water at room temperature yields a family of isomorphous complexes, [M(H(2)IDA)(NO(3))(H(2)O)(6)](NO(3))(2)·CB6·14H(2)O with M = Y (1), Ce (2), Nd (3), Eu (4), Dy (5), Er (6), Tm (7), and Yb (8). In these compounds, the trivalent metal ion is bound to one nitrate ion, six water molecules, and one zwitterionic H(2)IDA molecule. The latter is further partly included in the CB6 cavity, with the ammonium group forming two hydrogen bonds with oxygen atoms of one portal. The uncoordinated carboxylic group is thus encapsulated in CB6 and hydrogen-bonded to the other portal via a water molecule. CB6 is a second-sphere ligand in these complexes, but direct bonding of the metal ion to CB6 can be enforced by using a ligand more deeply imbedded in the cavity, such as 2-pyridylacetate (PA) in [Eu(PA)(CB6)(NO(3))(H(2)O)(5)](NO(3))·10H(2)O (11). When the reaction with H(2)IDA is performed with Lu(III) or Cu(II), no metal complex is isolated, but the inclusion compounds [(H(3)IDA)(2)(CB6)](NO(3))(2)·xH(2)O with x = 6 (9) or 8 (10) are obtained instead, in which the two H(3)IDA(+) cations are attached to the CB6 portals by ammonium-carbonyl hydrogen bonds and are linked to one another inside the cavity by hydrogen bonding between the carboxylic groups. These complexes are compared to that comprising a dicarboxylic acid devoid of an ammonium functionality, [(H(2)AZ)(CB6)]·6H(2)O (12), where H(2)AZ is azelaic acid. The metal ion complexes 1-8 and the organic complexes 9 and 10 display the unprecedented feature of inclusion of carboxylic groups inside the CB6 cavity, with the CB6/acid stoichiometry and the finer details of the host-guest interactions being dependent on the presence of the metal ion.

  13. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    1998-01-01

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  14. Chain Multiplication of Fatty Acids to Precise Telechelic Polyethylene.

    Science.gov (United States)

    Witt, Timo; Häußler, Manuel; Kulpa, Stefanie; Mecking, Stefan

    2017-06-19

    Starting from common monounsaturated fatty acids, a strategy is revealed that provides ultra-long aliphatic α,ω-difunctional building blocks by a sequence of two scalable catalytic steps that virtually double the chain length of the starting materials. The central double bond of the α,ω-dicarboxylic fatty acid self-metathesis products is shifted selectively to the statistically much-disfavored α,β-position in a catalytic dynamic isomerizing crystallization approach. "Chain doubling" by a subsequent catalytic olefin metathesis step, which overcomes the low reactivity of this substrates by using waste internal olefins as recyclable co-reagents, yields ultra-long-chain α,ω-difunctional building blocks of a precise chain length, as demonstrated up to a C48 chain. The unique nature of these structures is reflected by unrivaled melting points (Tm =120 °C) of aliphatic polyesters generated from these telechelic monomers, and by their self-assembly to polyethylene-like single crystals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  16. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent.

  17. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Z.Ü., E-mail: zulker@fatih.edu.tr [Department of Biology, 34500 Büyükçekmece, Istanbul (Turkey); Alpsoy, L. [Department of Biology, 34500 Büyükçekmece, Istanbul (Turkey); Department of Medical Biology, 34500 Büyükçekmece, Istanbul (Turkey); Baykal, A. [Department of Chemistry, Fatih University, 34500 Büyükçekmece, Istanbul (Turkey)

    2016-08-15

    Highlights: • SPION has been synthesized via Reflux synthesis route. • SPION@APTES@FA-PEG@CQ nanodrug has super paramagnetic property. • SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 cells. • SPION@APTES@FA-PEG@CQ nanodrug can be potentially used for the delivery of quercetin to cervical and breast cancer cells. - Abstract: In this study, carboxylated quercetin (CQ) was conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) which were modified by (3-aminopropyl) triethoxysilane (APTES), Folic acid (FA) and carboxylated Polyethylene glycol (PEG); (SPION@APTES@FA-PEG@CQ), nanodrug has been synthesized via polyol and accompanying by various chemical synthesis routes. The characterization of the final product was done via X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetric analysis (TGA), Transmission electron spectroscopy (TEM) and Vibrating sample magnetometer (VSM). Its cytotoxic and apoptotic activities on over expressed folic acid receptor (FR + ) (MCF-7, HeLa) and none expressed folic acid receptor (FR-) (A549) cancer cell lines were determined by using MTT assay, Real-Time Cell Analysis, TUNEL assay, Annexin assay and RT-PCR analysis for Caspase3/7 respectively. SPION@APTES@FA-PEG@CQ nanodrug showed higher cytotoxicity against HeLa and MCF-7 cell lines as compared with A549 cell line. Moreover, SPION@APTES@FA-PEG@CQ nanodrug also caused higher apoptotic and necrotic effects in 100 μg/mL HeLa and MCF-7 cells than A549 cells. The findings showed that SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 which are FR over expressed cell lines and can be potentially used for the delivery of quercetin to cervical and breast cancer cells.

  18. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol–gel driven NiFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hessien, M.M. [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Advanced Materials Dept, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87, Helwan, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2016-01-15

    Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4} using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400–1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} with considerable amount of α-Fe{sub 2}O{sub 3} at 400 °C. Increase in the annealing temperature caused reaction of α-Fe{sub 2}O{sub 3} with iron-deficient ferrite phase. The amount of initially formed α-Fe{sub 2}O{sub 3} is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe{sub 2}O{sub 3}. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C. - Highlights: • Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4}. • Carboxylic acid type affects the produced powders. • At low temperatures all carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} and α-Fe{sub 2}O{sub 3}. • α-Fe{sub 2}O{sub 3} is correlated with the decomposition of Fe(III) carboxylate precursors.

  19. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  20. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes

    Science.gov (United States)

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J.

    2016-01-01

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label ‘amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides. PMID:27282773

  1. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.

    Science.gov (United States)

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J

    2016-06-10

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label 'amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides.

  2. SO2 F2 -Mediated One-Pot Synthesis of Aryl Carboxylic Acids and Esters from Phenols through a Pd-Catalyzed Insertion of Carbon Monoxide.

    Science.gov (United States)

    Fang, Wan-Yin; Leng, Jing; Qin, Hua-Li

    2017-09-05

    A one-pot Pd-catalyzed carbonylation of phenols into their corresponding aryl carboxylic acids and esters through the insertion of carbon monoxide has been developed. This procedure offers a direct synthesis of aryl carboxylic acids and esters from inexpensive and abundant starting materials (phenols, SO2 F2 and CO) under mild conditions. This method tolerates a broad range of functional groups and is also applicable for the modification of complicated natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 2,4,6-Trichloro-1,3,5-triazine (TCT mediated one pot direct synthesis of N-benzoylthioureas from carboxylic acids

    Directory of Open Access Journals (Sweden)

    Somnath Gholap

    2017-05-01

    Full Text Available An efficient 2,4,6-trichloro-1,3,5-triazine (TCT mediated synthesis of N-benzoylthiourea derivatives from carboxylic acid has been described. The reaction of TCT (1, triethyl amine in dichloromethane gives tris-quaternary ammonium salt (A, reacted with carboxylic acid to form activated ester as an intermediate (B. Aroylthiocyanate was formed by the reaction of activated ester ‘B’ and ammonium isothiocyanate followed by aliphatic or aromatic amines affording structurally diverse N-benzoylthiourea derivatives 3. The synthesized compounds were characterized by IR, 1H NMR and mass spectral data.

  4. Regio- and stereoselective C-2 and C-3 cleavage of 2-(1-aminoalkyl)aziridines with alcohols, carboxylic acids, and sodium iodide.

    Science.gov (United States)

    Concellón, José M; Riego, Estela; Suárez, José Ramón

    2003-11-28

    Ring opening of nonactivated aziridines 1 using several nucleophiles, such as alcohols, carboxylic acids, and sodium iodide, is described. Depending on the nucleophile used, aziridines 1 are cleaved at C-3 or C-2 with total regio- and stereoselectivity, affording chiral 2-alkoxy-1,3-diamines 2 with alcohols, or O-acylated-1-hydroxy-2,3-diamines 6 with carboxylic acids in moderate or high yield. In the case of the aziridines derived from phenylalanine, treatment with NaI afford trans-4-phenylbut-3-en-1,2-diamines 9, generating the alkene with total diastereoselectivity. Mechanisms have been proposed to explain these reactions.

  5. Synthesis of new derivatives of 1-(3-aminophenyl-4-benzoyl-5-phenyl-1H-pyrazole-3-carboxylic acid

    Directory of Open Access Journals (Sweden)

    RAHMI KASIMOGULLAR

    2010-12-01

    Full Text Available 1-(3-Aminophenyl-4-benzoyl-5-phenyl-1H-pyrazole-3-carboxylic acid (1 was synthesized according to the literature. 2-(3-Aminophenyl-2,6-dihydro-3,4-diphenyl-7H-pyrazolo[3,4-d]pyridazin-7-one (5 was obtained by the cyclocondensation reaction of 1 with hydrazine hydrate. New pyrazole derivatives of compounds 1 and 5 were synthesized by their reaction with β-diketones, β-ketoesters, β-naphthol, phenol and various other reagents. The structures of the synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR and mass spectroscopy, as well as elemental analysis.

  6. 1-aminocyclobutane(/sup 11/C)carboxylic acid, a potential tumor-seeking agent. [Rats, hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.

    1979-10-01

    1-aminocyclobutane(/sup 14/C)carboxylic acid ((C-14) ACBC) was incorporated preferentially by several tumor types in rats and hamsters. The agent was cleared rapidly from rat blood, attaining its maximum tissue concentrations within 30 min after i.v. injection. Carrier ACBC had little effect on the tissue distribution of (C-14) ACBC. This agent showed no affinity for a Staphylococcus aureus abscess in rats. The total excretion was low, 3.6% in 2 hr. (C-11) ACBC was synthesized in amounts up to 415 mCi (55% chemical yield) using our modified Buecherer-Strecker technique. Forty minutes were required for the two-step synthesis and chromatographic purification. ACBC was found to be nontoxic in three animal species. The radiation dose from (C-11) ACBC should be minimal. (C-11) ACBC thus appears to have good potential as a tumor-seeking agent, particularly when used with a positron emission computed tomograph.

  7. Non-carboxylic analogues of aryl propionic acid: synthesis, anti-inflammatory, analgesic, antipyretic and ulcerogenic potential.

    Science.gov (United States)

    Eissa, S I; Farrag, A M; Galeel, A A A

    2014-09-01

    As a part of ongoing studies in developing new potent anti-inflammatory and analgesic agents, a series of novel 6-methoxy naphthalene derivatives was efficiently synthesized and characterized by spectral and elemental analyses. The newly synthesized compounds were evaluated for their anti-inflammatory activities using carrageenin-induced rat paw edema model, analgesic activities using acetic acid induced writhing model in mice and anti-pyretic activity using yeast induced hyperpyrexia method as well as ulcerogenic effects. Among the synthesized compounds, thiourea derivative (6a, e) exhibited higher anti-inflammatory activity than the standard drug naproxen in reduction of the rat paw edema (88.71, 89.77%) respectively. All of the non-carboxylic tested compounds were found to have promising anti-inflammatory, analgesic and antipyretic activity, while were devoid of any ulcerogenic effects. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Conjugate addition of isocyanides to chromone 3-carboxylic acid: an efficient one-pot synthesis of chroman-4-one 2-carboxamides.

    Science.gov (United States)

    Neo, Ana G; Díaz, Jesús; Marcaccini, Stefano; Marcos, Carlos F

    2012-05-07

    We report a novel Lewis acid catalysed tandem reaction of isocyanides, chromone 3-carboxylic acid and nucleophiles. An experimentally very simple procedure, involving the use of microwave irradiation in the presence of a Lewis acid catalyst, affords a representative collection of chromone-2-carboxamides and chromone-2-carboxamido-3-esters in high yields, in just a few minutes. Such an unprecedented strategy is formally equivalent to a conjugate addition of isocyanides to Michael acceptors.

  9. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2017-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. Objectives: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. Search methods: We identified trials through...... included randomised clinical trials, irrespective of the bias control, language, or publication status. Data collection and analysis: The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update...

  10. Long chain fatty acids in early human brain development

    OpenAIRE

    Gina Fernanda Lenis-Zamudio; Mario Delgado-Noguera

    2012-01-01

    The Long Chain Polyunsaturated Fatty Acids (LCPUFA) are essential substances for brain growth period, it have also potential effects on the prevention of chronic diseases, allergic and immune system modulation. The maternal diet, genetical predisposition and geographical variability, influence the levels of these substances transferred to the children during pregnancy and lactation. Until now, the evidence is controversial with regard to supplementation with these substances to improve child´...

  11. Synthesis and spectroscopic exploration of carboxylic acid derivatives of 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole: Hydrogen bond sensitive fluorescent probes

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mitra, Amrit [Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073 (India); Ghosh, Sujay [Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Chakraborty, Suchandra [Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073 (India); Basu, Samita [Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha, Chandan, E-mail: katichandan@yahoo.co.in [Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073 (India)

    2013-11-15

    Two new fluorescent carboxylic acid derivatives having 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole moiety, 2-(1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yloxy)acetic acid [OTHCA] and 2-(7-methoxy-1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yloxy)acetic acid [MOTHCA] were synthesized by Japp–Klingemann reaction followed by Fischer indole cyclization. Extensive spectroscopic investigation has been carried out on the compounds in sixteen different aprotic and protic solvents as well as in binary solvent mixtures using absorption, steady-state and time-resolved fluorescence techniques. Fluorescence maxima of the compounds have shifted consistently to longer wavelength in mediums of higher polarity and hydrogen bonding ability. Dipole moment change of the molecules upon photoexcitation has been calculated using Lippert–Mataga theory of solvatochromic shifts. Kamlet–Taft solvatochromic comparison method has been used to determine the dependence of spectral shifts upon empirical solvent parameters. Formation of intermolecular hydrogen bonding of both OTHCA and MOTHCA with protic solvents has been proved by comparing their spectral responses in toluene–acetonitrile and toluene–methanol solvent mixtures. -- Highlights: • The compounds have similar electronic distribution in ground and excited state. • Emission maxima shift towards red with increase in the E{sub T}(30) value of the solvents. • Dipole moment change in the excited state is different in protic and aprotic solvents. • OTHCA and MOTHCA form intermolecular hydrogen bond with protic solvents. • Fluorescence lifetime decays are bi-exponential in long chain alcoholic solvents.

  12. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study

    DEFF Research Database (Denmark)

    Rasmussen, H S; Holtug, K; Mortensen, P B

    1988-01-01

    Short-chain fatty acids (SCFA) originate mainly in the colon through bacterial fermentation of polysaccharides. To test the hypothesis that SCFA may originate from polypeptides as well, the production of these acids from albumin and specific amino acids was examined in a faecal incubation system....... Albumin was converted to all C2-C5-fatty acids, whereas amino acids generally were converted to specific SCFA, most often through the combination of a deamination and decarboxylation of the amino acids, although more complex processes also took place. This study indicates that a part of the intestinal...

  13. Seven new Zn(II)/Cd(II) coordination polymers with 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid: Synthesis, structures and properties

    Science.gov (United States)

    Wang, Xin-Fang; Zhou, Sheng-Bin; Du, Ceng-Ceng; Wang, Duo-Zhi; Jia, Dianzeng

    2017-08-01

    Using a new simi-rigid multitopic ligand 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L), seven new coordination polymers [Zn3(L)2(μ2-OH)2]n (1), {[Zn2(HL)2(H2O)2]·SiF6}n (2), [Zn(HL)(SCN)]n (3), {[Zn2(HL)2(SO4)]·(4,4‧-bpy)}n (4) [4,4‧-bpy =4,4‧-bipyridine], {[Zn(HL)2]·2H2O}n (5), {[Cd(HL)2]·2H2O}n (6) and [Cd2(HL)2(H2O)2(SO4)]n (7) have been successfully obtained from H2L ligand under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. In addition, UV-vis diffuse-reflectance spectra demonstrate wide band gaps. Complex 1 features a 3D topological net of {412·63} with the stoichiometry (6-c), contains 1D channels with the accessible solvent volume of 42.1%. 3, 4, 5 and 6 have a 1D chain structure, 5 and 6 further assemble to form 2D sheet and 3D supramolecular frameworks by hydrogen-bonding interactions, respectively. Complexes 2 and 7 possess a 2D layered structure, and the 2D supramolecular network of 2 can be rationalized to be four-connected {44·62} topological sql network with the dinuclear units, while 7 shows a 3-nodal 2D net with a point symbol of {63}. Moreover, the fluorescent emission, fluorescence lifetimes of 1-7 have been investigated and discussed. Interesting enough, complex 1 showed high efficiency for catalyzing the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile as selective heterogeneous catalyst. The CPs combining catalytic and fluorescent properties could further meet the requirement as a multifunctional material. Seven new Zn(II)/Cd(II) coordination polymers with simi-rigid multitopic ligand, [(2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid) (H2L)] have been successfully obtained and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR

  14. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    Science.gov (United States)

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  15. One pot direct synthesis of amides or oxazolines from carboxylic acids using Deoxo-Fluor reagent

    OpenAIRE

    Kangani, Cyrous O.; Kelley, David E.

    2005-01-01

    A mild and highly efficient one pot–one step condensation and/or condensation–cyclization of various acids to amides and/or oxazolines using Deoxo-Fluor reagents is described. Parallel syntheses of various free fatty acids with 2-amino-2, 2-dimethyl-1-propanol resulted with excellent yields.

  16. One pot direct synthesis of amides or oxazolines from carboxylic acids using Deoxo-Fluor reagent.

    Science.gov (United States)

    Kangani, Cyrous O; Kelley, David E

    2005-12-19

    A mild and highly efficient one pot-one step condensation and/or condensation-cyclization of various acids to amides and/or oxazolines using Deoxo-Fluor reagents is described. Parallel syntheses of various free fatty acids with 2-amino-2, 2-dimethyl-1-propanol resulted with excellent yields.

  17. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    Science.gov (United States)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  18. Modeling of the selective pertraction of carboxylic acids obtained by citric fermentation

    Directory of Open Access Journals (Sweden)

    Cascaval Dan

    2004-01-01

    Full Text Available Facilitated pertraction was applied for the selective separation of citric, maleic and succinic acids from a mixture obtained by citric fermentation. The pertraction equipment included a U-shaped cell containing 1,2-dichloro-ethane as the liquid membrane and Amberlite LA-2 as the carrier. The experimental data indicated that maleic and succinic acids can be initially selectively separated from citric acid, followed by the selectively separation of maleic acid from succinic acid. Using statistical analysis and a second order factorial experiment, two mathematical correlations describing the influence of the main process variables on pertraction selectivity were established. For both extraction systems, the considered variables controlled the extraction process to an extent of 92.9-99.9%, the carrier concentration inside the liquid membrane exhibiting the most important influence.

  19. Heterocycles [h]-Fused Onto 4-Oxoquinoline-3-Carboxylic Acid, Part VIII [1]. Convenient Synthesis and Antimicrobial Properties of Substituted Hexahydro[1,4]diazepino[2,3-h]quinoline-9-carboxylic acid and Its Tetrahydroquino[7,8-b]benzodiazepine Analog

    Directory of Open Access Journals (Sweden)

    Yusuf M. Al-Hiari

    2008-11-01

    Full Text Available [1,4]Diazepino[2,3-h]quinolone carboxylic acid 3 and its benzo-homolog tetrahydroquino[7,8-b]benzodiazepine-3-carboxylic acid 5 were prepared via PPAcatalyzed thermal lactamization of the respective 8-amino-7-substituted-1,4-dihydroquinoline-3-carboxylic acid derivatives 8, 10. The latter compounds were obtained by reduction of their 8-nitro-7-substituted-1,4-dihydroquinoline-3-carboxylic acid precursors 7, 9 which, in turn, were prepared by reaction of 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-1,4-dihydroquinoline-3-carboxylic acid (6 with each of β-alanine and anthranilic acid. All intermediates and target compounds were characterized using elemental analysis, NMR, IR and MS spectral data. The prepared targets and the intermediates have shown interesting antibacterial activity mainly against Gram positive strains. In particular, compound 8 showed good activity against S. aureus (MIC = 0.39 μg/mL and B. subtilis (MIC = 0.78 μg/mL. Compounds 5a and 9 have also displayed good antifungal activity against C. albicans (MIC = 1.56 μg/mL and 0.78 μg/mL, respectively. None of the compounds tested showed any anticancer activity against solid breast cancer cell line MCF-7 cells or a human breast adenocarcinoma cell line.

  20. Mechanism of Alkene, Alkane, and Alcohol Oxidation with H2O2 by an in Situ Prepared Mn-II/Pyridine-2-carboxylic Acid Catalyst

    NARCIS (Netherlands)

    Saisaha, Pattama; Dong, Jia Jia; Meinds, Tim G.; de Boer, Johannes W.; Hage, Ronald; Mecozzi, Francesco; Kasper, Johann B.; Browne, Wesley R.

    The oxidation of alkenes, alkanes, and alcohols with H2O2 is catalyzed efficiently using an in situ prepared catalyst comprised of a MnII salt and pyridine-2-carboxylic acid (PCA) together with a ketone in a wide range of solvents. The mechanism by which these reactions proceed is elucidated, with a

  1. Difference between Extra- and IntracellularT1Values of Carboxylic Acids Affects the Quantitative Analysis of Cellular Kinetics by Hyperpolarized NMR

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Jensen, Pernille Rose; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    , theintracellular T1of the carboxylic acid moiety of acetate, keto-isocaproate, pyruvate, and butyrate was determined. Theintracellular T1is shown to be up to four-fold shorter thanthe extracellular T1. Such a large difference in T1valuesbetween the inside and the outside of the cell has significantinfluence...

  2. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  3. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  4. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols.

    Science.gov (United States)

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2014-01-01

    Higher alcohols such as n-butanol and n-hexanol have higher energy density than ethanol, are more compatible with current fuel infrastructure, and can be upgraded to jet and diesel fuels. Several organisms are known to convert syngas to ethanol, but very few can produce higher alcohols alone. As a potential solution, mixed culture fermentation between the syngas fermenting Alkalibaculum bacchi strain CP15 and propionic acid producer Clostridium propionicum was studied. The monoculture of CP15 produced only ethanol from syngas without initial addition of organic acids to the fermentation medium. However, the mixed culture produced ethanol, n-propanol and n-butanol from syngas. The addition of propionic acid, butyric acid and hexanoic acid to the mixed culture resulted in a 50% higher conversion efficiency of these acids to their respective alcohols compared to CP15 monoculture. These findings illustrate the great potential of mixed culture syngas fermentation in production of higher alcohols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A Novel Strategy Towards the Asymmetric Synthesis of Orthogonally Funtionalised 2-N-Benzyl-N-α-methylbenzylamino- 5-carboxymethyl-cyclopentane-1-carboxylic acid.

    Directory of Open Access Journals (Sweden)

    Julio G. Urones

    2004-04-01

    Full Text Available The asymmetric synthesis of the orthogonally funtionalised compounds tert-butyl 2-N-benzyl-N-α-methylbenzylamino-5-methoxycarbonylmethylcyclopentane- 1-carboxylate and methyl 2-N-benzyl-N-α-methylbenzylamino-5–carboxymethylcyclo- pentane-1-carboxylate by a domino reaction of tert-butyl methyl (E,E-octa-2,6- diendioate with lithium N-α-methylbenzyl-N-benzylamide initiated by a Michael addition, subsequent 5-exo-trig intramolecular cyclisation and posterior selective hydrolysis with trifluoroacetic acid is reported.

  6. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma.

    Science.gov (United States)

    Lyngby, Janne G; Court, Michael H; Lee, Pamela M

    2017-08-01

    The clopidogrel active metabolite (CAM) is unstable and challenging to quantitate. The objective was to validate a new method for stabilization and quantitation of CAM, clopidogrel, and the inactive metabolites clopidogrel carboxylic acid and 2-oxo-clopiodgrel in feline plasma. Two healthy cats administered clopidogrel to demonstrate assay in vivo utility. Stabilization of CAM was achieved by adding 2-bromo-3'methoxyacetophenone to blood tubes to form a derivatized CAM (CAM-D). Method validation included evaluation of calibration curve linearity, accuracy, and precision; within and between assay precision and accuracy; and compound stability using spiked blank feline plasma. Analytes were measured by high performance liquid chromatography with tandem mass spectrometry. In vivo utility was demonstrated by a pharmacokinetic study of cats given a single oral dose of 18.75mg clopidogrel. The 2-oxo-clopidogrel metabolite was unstable. Clopidogrel, CAM-D, and clopidogrel carboxylic acid appear stable for 1 week at room temperature and 9 months at -80°C. Standard curves showed linearity for CAM-D, clopidogrel, and clopidogrel carboxylic acid (r > 0.99). Between assay accuracy and precision was ≤2.6% and ≤7.1% for CAM-D and ≤17.9% and ≤11.3% for clopidogrel and clopidogrel carboxylic acid. Within assay precision for all three compounds was ≤7%. All three compounds were detected in plasma from healthy cats receiving clopidogrel. This methodology is accurate and precise for simultaneous quantitation of CAM-D, clopidogrel, and clopidogrel carboxylic acid in feline plasma but not 2-oxo-clopidogrel. Validation of this assay is the first step to more fully understanding the use of clopidogrel in cats. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Morphological control of layered double hydroxide through a biomimetic approach using carboxylic and sulfonic acids

    Directory of Open Access Journals (Sweden)

    Taishi Yokoi

    2015-09-01

    Full Text Available Layered double hydroxides (LDHs have intercalation properties and are used in various applications. The performances of the LDH materials can be improved by controlling crystal morphology. Morphology of inorganic crystals is controlled by organic molecules in biomineralization. Inspired by biomineralization, we investigated the effect of the addition of mono, di and triacids as morphological control agents on crystal morphology of LDH synthesized by the homogeneous precipitation method. Morphology of LDH was changed from hexagonal plate to stacked disc by addition of monoacids, namely acetic acid and methanesulfonic acid, in the reaction solution. Flower-shaped LDH crystals were formed in the presence of diacids and a triacid, namely succinic acid, 1,2-ethanedisulfonic acid and 1,2,3-propanetricarboxylic acid. We found that the morphology of the LDH crystals was controlled by the number of functional group on the morphological control agent rather than the type of functional group. These findings can contribute for the development of novel and functional LDH materials with precisely controlled morphology.

  8. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ruth; Bhaumik, Asim [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dutta, Saikat [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state {sup 13}C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N{sub 2} sorption, HR-TEM, and NH{sub 3} temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  9. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  10. Electronic and magnetic properties of infinite 1D chains of paddlewheel carboxylates M2(COOR)4 (M = Mo, W, Ru, Rh, Ir, Cu)

    KAUST Repository

    Peskov, Maxim

    2013-03-14

    Dinuclear complexes of transition metals bridged by four carboxylate-groups are examples of stable atomic configurations serving as fundamental building blocks of catalysts and prototypical molecular electronic devices. The electronic structure and magnetic properties of many molecular tetracarboxylate complexes were meticulously studied; however, the properties of the one-dimensional (1D) polymeric chain of associated tetracarboxylates have so far evaded much attention. Using periodic density-functional theory calculations, we analyze the electronic structure of condensed tetracarboxylates Mo(II), W(II), Ru(II), Rh(II), Ir(II), and Cu(II). The relationship between crystal structure of the polymerized tetracarboxylates and the electronic properties of the metal-metal bond in the M24+ core is studied. The electronic effects emanating from the association of dinuclear transition metal tetracarboxylates are important for designing molecular electronic devices. In this study, its influence on both direct and indirect metal-metal interactions, and the electronic structure, in particular transport properties, is discussed. © 2013 American Chemical Society.

  11. Ionic networks derived from the protonation of dendritic amines with carboxylic acid end‐functionalized PEGs

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2013-01-01

    weights (Mn ∼ 250 and Mn ∼ 600) are reported. Likewise, an ionic network based on PPI G1 and a long αω‐dicarboxylic acid functionalized PEG (Mn ∼ 4800) were evaluated. Simpler ionic structures based on tris(2‐aminoethyl)amine or hexamethylene diamine and the short DiCOOH‐PEGs are also investigated...

  12. Malic Acid Production by Saccharomyces cerevisiae : Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Van Winden, W.A.; De Waard, P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  13. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...... control, language, or publication status. DATA COLLECTION AND ANALYSIS: The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update of the review to include mortality (all cause), hepatic...

  14. Long chain fatty acids in early human brain development

    Directory of Open Access Journals (Sweden)

    Gina Fernanda Lenis-Zamudio

    2012-03-01

    Full Text Available The Long Chain Polyunsaturated Fatty Acids (LCPUFA are essential substances for brain growth period, it have also potential effects on the prevention of chronic diseases, allergic and immune system modulation. The maternal diet, genetical predisposition and geographical variability, influence the levels of these substances transferred to the children during pregnancy and lactation. Until now, the evidence is controversial with regard to supplementation with these substances to improve child´s neurodevelopment. Therefore, from the systematic review conducted by one of the authors in 2010, this article reviews the current evidence on the subject.

  15. Scanning thermal lithography of tailored tert-butyl ester protected carboxylic acid functionalized (meth)acrylate polymer platforms.

    Science.gov (United States)

    Duvigneau, Joost; Schönherr, Holger; Vancso, G Julius

    2011-10-01

    In this paper, we report on the development of tailored polymer films for high-resolution atomic force microscopy based scanning thermal lithography (SThL). In particular, full control of surface chemical and topographical structuring was sought. Thin cross-linked films comprising poly(tert-butyl methacrylate) (MA(20)) or poly(tert-butyl acrylate) (A(20)) were prepared via UV initiated free radical polymerization. Thermogravimetric analysis (TGA) and FTIR spectroscopy showed that the heat-induced thermal decomposition of MA(20) by oxidative depolymerization is initially the primary reaction followed by tert-butyl ester thermolysis. By contrast, no significant depolymerization was observed for A(20). For A(20) and MA(20) (at higher temperatures and/or longer reaction times) the thermolysis of the tert-butyl ester liberates isobutylene and yields carboxylic acid groups, which react further intramolecularly to cyclic anhydrides. The values of the apparent activation energies (E(a)) for the thermolysis were calculated to be 125 ± 13 kJ mol(-1) and 116 ± 7 kJ mol(-1) for MA(20) and A(20), respectively. Both MA(20) and A(20) films showed improved thermomechanical stability during SThL compared to non cross-linked films. Carboxylic acid functionalized lines written by SThL in A(20) films had a typically ~10 times smaller width compared to those written in MA(20) films regardless of the tip radius of the heated probe and did not show any evidence for thermochemically or thermomechanically induced modification of film topography. These observations and the E(a) of 45 ± 3 kJ mol(-1) for groove formation in MA(20) estimated from the observed volume loss are attributed to oxidative thermal depolymerization during SThL of MA(20) films, which is considered to be the dominant reaction mechanism for MA(20). The smallest line width values obtained for MA(20) and A(20) films with SThL were 83 ± 7 nm and 21 ± 2 nm, whereas the depth of the lines was below 1 nm, respectively.

  16. Adsorption of Carboxylic Acids on Reservoir Minerals from Organic and Aqueous Phase

    DEFF Research Database (Denmark)

    Madsen, Lene; Lind, Ida

    1998-01-01

    Adsorption of organic acids onto North Sea chalk and pure minerals from a hydrocarbon phase and an aqueous phase show that the maximum adsorption is larger for calcite than for silicate surfaces in the hydrocarbon phase. The opposite is observed, however, in the aqueous phase. This suggests that ...... that the available silicate surfaces and oil/water ratio may play a role in the wettability of chalk.......Adsorption of organic acids onto North Sea chalk and pure minerals from a hydrocarbon phase and an aqueous phase show that the maximum adsorption is larger for calcite than for silicate surfaces in the hydrocarbon phase. The opposite is observed, however, in the aqueous phase. This suggests...

  17. Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C, on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Anahí Magdaleno

    Full Text Available It is well established that L-proline has several roles in the biology of trypanosomatids. In Trypanosoma cruzi, the etiological agent of Chagas' disease, this amino acid is involved in energy metabolism, differentiation processes and resistance to osmotic stress. In this study, we analyzed the effects of interfering with L-proline metabolism on the viability and on other aspects of the T. cruzi life cycle using the proline analogue L- thiazolidine-4-carboxylic acid (T4C. The growth of epimastigotes was evaluated using different concentrations of T4C in standard culture conditions and at high temperature or acidic pH. We also evaluated possible interactions of this analogue with stress conditions such as those produced by nutrient starvation and oxidative stress. T4C showed a dose-response effect on epimastigote growth (IC(50 = 0.89+/-0.02 mM at 28 degrees C, and the inhibitory effect of this analogue was synergistic (p<0.05 with temperature (0.54+/-0.01 mM at 37 degrees C. T4C significantly diminished parasite survival (p<0.05 in combination with nutrient starvation and oxidative stress conditions. Pre-incubation of the parasites with L-proline resulted in a protective effect against oxidative stress, but this was not seen in the presence of the drug. Finally, the trypomastigote bursting from infected mammalian cells was evaluated and found to be inhibited by up to 56% when cells were treated with non-toxic concentrations of T4C (between 1 and 10 mM. All these data together suggest that T4C could be an interesting therapeutic drug if combined with others that affect, for example, oxidative stress. The data also support the participation of proline metabolism in the resistance to oxidative stress.

  18. Copper nanoparticles supported on permeable monolith with carboxylic acid surface functionality: Stability and catalytic properties under reductive conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, Romain; Le Droumaguet, Benjamin, E-mail: ledroumaguet@icmpe.cnrs.fr; Guerrouache, Mohamed; Carbonnier, Benjamin, E-mail: carbonnier@icmpe.cnrs.fr

    2015-08-01

    This work reported on the immobilization of copper metallic nanoparticles at the interface of mercaptosuccinic acid-functionalized N-acryloxysuccinimide-based monoliths. Upon photochemically-mediated free radical copolymerization of N-acryloxysuccinimide reactive monomer with ethylene glycol dimethacrylate cross-linker, reactive monoliths were obtained. Nucleophilic substitution of the N-hydroxysuccinimide moieties with allylamine, allowed for the synthesis of an olefin-functionalized monolith, as demonstrated by Raman spectroscopy. Mercaptosuccinic acid was anchored at the surface of the porous polymeric material through photochemically-driven thiol-ene “click” addition. In a final step, adsorption of copper nanoparticles at the surface of the resulting carboxylic acid functionalized monolith was achieved via two distinct pathways. It was either realized by percolation of a suspension of pre-formed copper nanoparticles through the capillary or by in situ reduction of Cu{sup (II)}Br{sub 2} salt solution preliminary flown through the monolith. After characterization of the resulting hybrids by scanning electron microscopy and energy-dispersive X-ray spectroscopy, investigations were further pursued regarding the catalytic behavior of such hybrid materials. The possibility to reduce 2-nitrophenol into the corresponding 2-aminophenol within a few minutes via a flow-through process inside the hybrid monolithic capillary was notably successfully demonstrated. - Graphical abstract: Display Omitted - Highlights: • Monolithic micro-reactors with surface immobilized copper nanoparticle for flow through catalytic processes. • Porous polymer-stabilized copper nanoparticles. • Photothiol-ene click chemistry for the effective surface functionalization of porous monolithic polymers. • Surface adsorption of copper nanoparticles through in-situ and ex-situ strategies.

  19. Synthesis of the new immunostimulating agent pidotimod (3-L-pyroglutamyl-L-thiazolidine-4-carboxylic acid) labelled with [sup 14]C-and [sup 35]S-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ferraboschi, Patrizia; Grisenti, Paride; Santaniello, Enzo (Milan Univ. (Italy). Dip. di Chimica e Biochimica Medica); Giachetti, Claudio; Zanolo, Giovanni (Biomedical Research Inst. ' ' Antoine Marxer' ' , Turin (Italy)); Signorelli, Giovanni; Coppi, Germano (Poli Industrial Center, Milan (Italy). Research Center)

    1992-12-01

    3-l-pyroglutamyl-l-thiazolidine-4-carboxylic acid (PIDOTIMOD), a new immunostimulating agent, has been prepared labelled with [sup 14]C and [sup 35]S isotopes starting from L-[U-[sup 14]C]-glutamic acid 5 and L-[[sup 35]S]-cysteine hydrochloride 6, respectively. In the first synthesis, L-[U-[sup 14]C]-5 is converted into L-[U-[sup 14]C]-pyroglutamic acid 2, which was reacted with ethyl l-thiazolidine-4-carboxylate 3 to afford the ester 4, in turn hydrolyzed to ([sup 14]C)-PIDOTIMOD 1. In the second synthesis, L-[[sup 35]S]-6 reacted with formaldehyde to give L-[[sup 35]S]-thiazolidine-4-carboxylic acid 7, which was coupled with the activated ester of pyroglutamic acid, compound 8, to afford [[sup 35]S]-PIDOTIMOD 1. The total activity of ([sup 14]C)-PIDOTIMOD was 1.2 MCI (specific activity 5.52 MCI/mmol) and that of ([sup 35]S)-PIDOTIMOD was 1.0 MCI (specific activity 9.43 MCI/mmol). (Author).

  20. Uranyl Ion Complexation by Cucurbiturils in the Presence of Perrhenic, Phosphoric, or Poly-carboxylic Acids. Novel Mixed-Ligand Uranyl-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Thuery, Pierre [CEA, IRAMIS, SIS2M - CNRS URA 331, LCCEf, Bat. 125, F-91191 Gif-sur-Yvette (France); Masci, Bernardo [Dipartimento di Chimica, Universita ' La Sapienza' , Box 34, Roma 62, P.le Aldo Moro 5, 00185 Roma (Italy)

    2010-07-01

    Six novel complexes formed under hydrothermal conditions by reaction of uranium trioxide or uranyl nitrate with cucurbit[6]uril (CB6), or cucurbit[7]uril (CB7) in one case, in the presence of additional ligands, either tetrahedral oxo-anions or poly-carboxylic acids, have been structurally characterized. In [(UO{sub 2}){sub 2}(CB6)(ReO{sub 4}){sub 4}(H{sub 2}O){sub 3}]center dot 2HReO{sub 4}.5H{sub 2}O (1), three perrhenate ions are bound to uranyl ions and one is encapsulated in the CB6 cavity, while perrhenate acts as a counter-ion only in the CB7 complex [UO{sub 2}(CB7)(NO{sub 3})(H{sub 2}O){sub 2}](ReO{sub 4}).5H{sub 2}O (2). 1 is a molecular complex and 2 a one-dimensional polymer. Complex 3, [UO{sub 2}(H{sub 2}PO{sub 4}){sub 2}(H{sub 2}O)]{sub 2}.CB6.H{sub 3}PO{sub 4}center dot 6H{sub 2}O, obtained in the presence of orthophosphoric acid, comprises one-dimensional uranyl dihydrogen phosphate chains, and the CB6 molecules are uncoordinated, as in [(UO{sub 2}){sub 4}(C{sub 2}O{sub 4}){sub 3}(NO{sub 3}){sub 2}(H{sub 2}O){sub 6}]center dot CB6.6H{sub 2}O (4), which displays an unprecedented tetra-nuclear uranyl oxalate moiety hydrogen bonded to the CB6 molecules. With pyrazine-tetracarboxylic acid (H{sub 4}PZTC), a one-dimensional polymer with alternate PZTC(4-) and CB6 ligands is formed, [(UO{sub 2}){sub 2}(PZTC)(CB6)(H{sub 2}O){sub 2}].12H{sub 2}O (5). Finally, the complex [(UO{sub 2})(5)(cit){sub 2}(CB6)(NO{sub 3}){sub 2}(H{sub 2}O)(6)].7H{sub 2}O (6), synthesized in the presence of citric acid (H{sub 4}cit), is an intricate three-dimensional framework in which the uranyl citrate part builds a three-dimensional subunit defining cage like spaces where the CB6 ligands are located. These results evidence the interest of cucurbiturils as structure-directing agents (complexes 3 and 4) and as auxiliary ligands in mixed-ligand uranyl-organic frameworks (5 and 6). (authors)

  1. Regulation of Inflammation by Short Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Renato T. Nachbar

    2011-10-01

    Full Text Available The short chain fatty acids (SCFAs acetate (C2, propionate (C3 and butyrate (C4 are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43 and inhibiton of histone deacetylase (HDAC. SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10, eicosanoids and chemokines (e.g., MCP-1 and CINC-2. The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.

  2. Regulation of amantadine hydrochloride binding with IIA subdomain of human serum albumin by fatty acid chains.

    Science.gov (United States)

    Yang, Feng; Lee, Philbert; Ma, Zhiyuan; Ma, Li; Yang, Guoping; Wu, Xiaoyang; Liang, Hong

    2013-01-01

    Human serum albumin (HSA) is a major protein component of blood plasma that has been exploited to bind and transport a wide variety of endogenous and exogenous organic compounds. Although anionic drugs readily associate with the IIA subdomain of HSA, most cationic drugs poorly associate with HSA at this subdomain. In this study, we propose to improve the association between cationic drugs and HSA by modifying HSA with fatty acid chains. For our experiments, we tested amantadine hydrochloride, a cationic drug with antiviral and antiparkinsonian effects. Our results suggest that extensive myristoylation of HSA can help stabilize the interaction between amantadine and HSA in vitro. Our X-ray crystallography data further elucidate the structural basis of this regulation. Additionally, our crystallography data suggest that anionic drugs, with a functional carboxylate group, may enhance the association between amantadine and HSA by a mechanism similar to myristoylation. Ultimately, our results provide critical structural insight into this novel association between cationic drugs and the HSA IIA subdomain, raising the tempting possibility to fully exploit the unique binding capacity of HSA's IIA subdomain to achieve simultaneous delivery of anionic and cationic drugs. Copyright © 2012 Wiley Periodicals, Inc.

  3. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    Science.gov (United States)

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol.

    Science.gov (United States)

    Castro, D O; Tabary, N; Martel, B; Gandini, A; Belgacem, N; Bras, J

    2016-12-01

    Current investigations deal with new surface functionalization strategy of nanocrystalline cellulose-based substrates to impart active molecule release properties. In this study, cellulose nanocrystals (CNC) were surface-functionalized with β-cyclodextrin (β-CD) using succinic acid (SA) and fumaric acid (FA) as bridging agents. The main objective of this surface modification performed only in aqueous media was to obtain new active materials able to release antibacterial molecules over a prolonged period of time. The reactions were conducted by immersing the CNC film into a solution composed of β-CD, SA and FA, leading to CNC grafting. The materials were characterized by infrared spectroscopy (FT-IR), Quartz crystal microbalance-dissipation (QCM-D), AFM and phenolphthalein (PhP) was used to determine the efficiency of CNC grafting with β-CD. The results indicated that β-CD was successfully attached to the CNC backbone through the formation of ester bonds. Furthermore, carvacrol was entrapped by the attached β-CD and a prolonged release was confirmed. In particular, CNC grafted to β-CD in the presence of FA was selected as the best solution. The antibacterial activity and the controlled release were studied for this sample. Considerably longer bacterial activity against B. subtilis was observed for CNC grafted to β-CD compared to CNC and CNC-FA, confirming the promising impact of the present strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The effect of the proline analogue l-azetidine-2-carboxylic acid (LACA) on epidermal and dermal wound repair.

    Science.gov (United States)

    Alvarez, O M; Mertz, P M; Eaglstein, W H

    1982-02-01

    To evaluate epidermal-dermal interdependency during the wound-healing process, the proline analogue L-azetidine-2-carboxylic acid (LACA) was topically applied to split-thickness skin wounds in young domestic pigs. LACA is incorporated into collagen and the collagen containing this analogue is extruded from the cell at a decreased rate. Wounds were assigned to one of three treatment groups: control (no treatment), LACA (0.2 mg in 0.1ml of water), and placebo (0.1 ml of water). On days 2 through 10 after wounding, several wounds from each treatment group were excised and the epidermis was separated from the dermis. The epidermal sheet containing the wound was evaluated for integrity and the underlying dermis was assayed for hydroxyproline. LACA was found to decrease both the rate of reepithelialization and the hydroxyproline levels. LACA did not seem to directly affect the epidermis, since epidermal collagen did not differ markedly. These results suggest that during wound healing, the migrating epithelium is partially dependent on the underlying connective tissue.

  6. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    Science.gov (United States)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  7. Chamazulene carboxylic acid and matricin: a natural profen and its natural prodrug, identified through similarity to synthetic drug substances.

    Science.gov (United States)

    Ramadan, Mai; Goeters, Susanne; Watzer, Bernhard; Krause, Eva; Lohmann, Klaus; Bauer, Rudolf; Hempel, Bernd; Imming, Peter

    2006-07-01

    Chamazulene carboxylic acid (1) is a natural profen with anti-inflammatory activity and a degradation product of proazulenic sesquiterpene lactones, e.g., matricin. Both 1 and proazulenes occur in chamomile (Matricaria recutita), yarrow (Achillea millefolium), and a few other Asteraceae species. It was isolated in improved yields, characterized physicochemically, and found to be an inhibitor of cyclooxygenase-2, but not of cyclooxygenase-1. It had anti-inflammatory activity in several animal models with local and systemic application. When human volunteers were given matricin orally, plasma levels of 1 were found to be in the micromolar range. Matricin was converted to 1 in artificial gastric fluid, but not in artificial intestinal fluid. Matricin and the yarrow proazulenes are proposed to be anti-inflammatory through conversion to 1. Intriguingly, the biological activity of the natural compound 1 was found because of its similarity to fully synthetic drug substances. This is the reverse process of the common lead function of natural compounds in drug discovery.

  8. Complete Genome Sequence of Pseudomonas Parafulva PRS09-11288, a Biocontrol Strain Produces the Antibiotic Phenazine-1-carboxylic Acid.

    Science.gov (United States)

    Zhang, Yu; Chen, Ping; Ye, Guoyou; Lin, Haiyan; Ren, Deyong; Guo, Longbiao; Zhu, Bo; Wang, Zhongwei

    2018-01-22

    Rhizoctonia solani is a plant pathogenic fungus, which can infect a wide range of economic crops including rice. In this case, biological control of this pathogen is one of the fundmental way to effectively control this pathogen. The Pseudomonas parafulva strain PRS09-11288 was isolated from rice rhizosphere and shows biocontrol ability against R. solani. Here, we analyzed the P. parafulva genome, which is ~ 4.7 Mb, with 4310 coding sequences, 76 tRNAs, and 7 rRNAs. Genome analysis identified a phenazine biosynthetic pathway, which can produce antibiotic phenazine-1-carboxylic acid (PCA). This compound is responsible for biocontrol ability against R. solani Kühn, which is one of the most serious fungus disease on rice. Analysis of the phenazine biosynthesis gene mutant, ΔphzF, which is very important in this pathway, confirmed the relationship between the pathway and PCA production using LC-MS profiles. The annotated full genome sequence of this strain sheds light on the role of P. parafulva PRS09-11288 as a biocontrol bacterium.

  9. The Role of Carboxyl and Hydroxyl Groups of Humic Acid in Removing AuCl4- from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Sri Sudiono

    2017-04-01

    Full Text Available Humic acid (HA extracted from peat soil according to the recommended procedure of the International Humic Substances Society (IHSS has been tested to remove AuCl4- from aqueous solution. The removal was optimum at pH 2.0 and it was mainly dictated by attachment through hydrogen bonding to unionized carboxyl (–COOH groups and reduction by the action of the hydroxyl (–OH groups to gold (Au metal. The removal of AuCl4- improved after HA was purified through repeated immersion and shaking in a mixed solution containing 0.1 M HCl and 0.3 M HF. When the purification led to the sharp decrease in ash content from 39.34 to 0.85% (w/w and significant increase in both the –COOH and –OH contents from 3240 to 3487 mmol/kg and from 4260 to 4620 mmol/kg, respectively; the removal of AuCl4- improved from 0.105 to 0.133 mmol/g. This improvement of AuCl4- removal by the purified HA was accompanied by higher ability in reduction to Au metal. The attached AuCl4- on –COOH groups of both crude and purified HAs was qualitatively observed by the characterization result of FT-IR spectroscopy, while the presence of Au metal on the surface of those HAs was verified by the characterization result of XRD.

  10. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201.

    Science.gov (United States)

    Sun, Shuang; Zhou, Lian; Jin, Kaiming; Jiang, Haixia; He, Ya-Wen

    2016-07-26

    Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production.

  11. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fluorescent labeling of a carboxyl group of sialic acid for MALDI-MS analysis of sialyloligosaccharides and ganglioside.

    Science.gov (United States)

    Endo, Shin-ichi; Morita, Minoru; Ueno, Masaki; Maeda, Tadakazu; Terabayashi, Takashi

    2009-01-23

    We developed a modified method enabling stable MALDI-MS analysis and fluorescent detection of sialyl-compounds. The modification involved the amidation of sialic acid (Neu5Ac) at the position of the carboxyl group using the fluorescent reagent, 2-(2-pyridilamino)ethylamine (PAEA). In this study the following sialyl-compounds were amidated, 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), and ganglioside GM3. Yields of PAEA-3'-SL, PAEA-6'-SL, and PAEA-GM3 were 45%, 60%, and 30%, respectively. The PAEA-amidation enabled fluorescence detection of structural isomers using HPLC and TLC at sensitivity levels as low as pmol. In MALDI-TOF-MS and/or MS/MS analysis in positive ion mode, PAEA-amidation provided the following advantages: suppression of preferential cleavage of Neu5Ac; enhancement of molecular-related ion intensities; simplification of MS spectra; and finally, since PAEA-amidation did not cleave the linkage between sugar and aglycon of sialylglycoconjugate, MALDI-TOF-MS and MS/MS analyses revealed the complete structure of the molecule.

  13. Effectiveness of 5-Pyrrolidone-2-carboxylic Acid and Copper Sulfate Pentahydrate Association against Drug Resistant Staphylococcus Strains.

    Science.gov (United States)

    Governa, Paolo; Miraldi, Elisabetta; De Fina, Gianna; Biagi, Marco

    2016-04-01

    Bacterial resistance is an ongoing challenge for pharmacotherapy and pharmaceutical chemistry. Staphylococcus aureus is the bacterial species which makes it most difficult to treat skin and soft tissue infections and it is seen in thousands of hospitalization cases each year. Severe but often underrated infectious diseases, such as complicated nasal infections, are primarily caused by MRSA and S. epidermidis too. With the aim of studying new drugs with antimicrobial activity and effectiveness on drug resistant Staphylococcus strains, our attention in this study was drawn on the activity of a new association between two natural products: 5-pyrrolidone-2-carboxylic acid (PCA), naturally produced by certain Lactobacillus species, and copper sulfate pentahydrate (CS). The antimicrobial susceptibility test was conducted taking into account 12 different Staphylococcus strains, comprising 6 clinical isolates and 6 resistant strains. PCA 4%, w/w, and CS 0.002%, w/w, association in distilled water solution was found to have bactericidal activity against all tested strains. Antimicrobial kinetics highlighted that PCA 4%, w/w, and CS 0.002% association could reduce by 5 log10 viable bacterial counts of MRSA and oxacillin resistant S. epidennidis in less than 5 and 3 minutes respectively. Microscopic investigations suggest a cell wall targeting mechanism of action. Being very safe and highly tolerated, the natural product PCA and CS association proved to be a promising antimicrobial agent to treat Staphylococcus related infections.

  14. Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Xu, Shu; Pan, Xiayan; Luo, Jianying; Wu, Jian; Zhou, Zehua; Liang, Xiaoyu; He, Yawen; Zhou, Mingguo

    2015-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the casual agent of bacterial blight, which is one of the most serious diseases of rice. The antibiotic phenazine-1-carboxylic acid (PCA), which is primarily produced by Pseudomonas spp., was found and previously reported very effective against Xoo. However, the biological effects of PCA on Xoo remain unclear. In this study, we found that PCA increased the accumulation of reactive oxygen species (ROS) and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) in Xoo. Xoo was more sensitive to H2O2 than Xanthomonas oryzae pv. oryzicola (Xoc), and had a much lower expression of CAT genes. In addition, proteomic analysis indicated that PCA inhibited carbohydrate metabolism and nutrient uptake in Xoo, and analysis of carbon source utilization further confirmed that carbohydrate metabolism in Xoo was repressed by PCA. In conclusion, PCA acted as a redox-cycling agent that disturbed the redox balance in Xoo and reduced CAT and SOD activities, resulting in higher accumulation of ROS, altered carbohydrate metabolism, and lower energy production and nutrient uptake. Moreover, a deficient antioxidant system in Xoo made it very sensitive to PCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    Science.gov (United States)

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Determination of perfluorinated carboxylic acids in fish fillet by micro-solid phase extraction, followed by liquid chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Lashgari, Maryam; Lee, Hian Kee

    2014-11-21

    In the current study, a simple, fast and efficient combination of protein precipitation and micro-solid phase extraction (μ-SPE) followed by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) was developed for the determination of perfluorinated carboxylic acids (PFCAs) in fish fillet. Ten PFCAs with different hydrocarbon chain lengths (C5-C14) were analysed simultaneously using this method. Protein precipitation by acetonitrile and μ-SPE by surfactant-incorporated ordered mesoporous silica were applied to the extraction and concentration of the PFCAs as well as for removal of interferences. Determination of the PFCAs was carried out by LC-MS/MS in negative electrospray ionization mode. MS/MS parameters were optimized for multiple reaction monitoring of the analytes. (13)C mass labelled PFOA as a stable-isotopic internal standard, was used for calibration. The detection limits of the method ranged from 0.97 ng/g to 2.7 ng/g, with a relative standard deviation of between 5.4 and 13.5. The recoveries were evaluated for each analyte and were ranged from 77% to 120%. The t-test at 95% confidence level showed that for all the analytes, the relative recoveries did not depend on their concentrations in the explored concentration range. The effect of the matrix on MS signals (suppression or enhancement) was also evaluated. Contamination at low levels was detected for some analytes in the fish samples. The protective role of the polypropylene membrane used in μ-SPE in the elimination of matrix effects was evaluated by parallel experiments in classical dispersive solid phase extraction. The results evidently showed that the polypropylene membrane was significantly effective in reducing matrix effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    Science.gov (United States)

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  18. Selective synthesis of thiodiglycol dicarboxylic acid esters via p ...

    Indian Academy of Sciences (India)

    The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via -TsOH/C-catalysed direct esterification afforded thiodiglycol dicarboxylic acid esters in good yields and chemoselectivity. The use of immobilized -TsOH on activated carbon as catalyst is ...

  19. Selective synthesis of thiodiglycol dicarboxylic acid esters via p ...

    Indian Academy of Sciences (India)

    Abstract. The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via p-TsOH/C-catalysed direct esterification afforded thiodiglycol dicar- boxylic acid esters in good yields and chemoselectivity. The use of immobilized p-TsOH on activated carbon.

  20. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Tran, Toan Trong; Aharonovich, Igor [School of Physics and Advanced Materials, University of Technology Sydney, Ultimo, NSW 2007 (Australia); Fanna, Daniel J.; Shepherd, Nicholas D. [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lu, Kim [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Li, Feng [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-02-15

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.

  1. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jie-Cen [College of Chemistry, Fuzhou University, Fuzhou 350002 (China); Wan, Fang [College of Chemistry, Fuzhou University, Fuzhou 350002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Sun, Yan-Qiong, E-mail: sunyq@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou 350002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen, Yi-Ping [College of Chemistry, Fuzhou University, Fuzhou 350002 (China)

    2015-01-15

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)

  2. CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality.

    Science.gov (United States)

    Varga, Krisztina; Tannir, Shambhavi; Haynie, Benjamin E; Leonard, Brian M; Dzyuba, Sergei V; Kubelka, Jan; Balaz, Milan

    2017-10-24

    Functionalization of colloidal quantum dots (QDs) with chiral cysteine derivatives by phase-transfer ligand exchange proved to be a simple yet powerful method for the synthesis of chiral, optically active QDs regardless of their size and chemical composition. Here, we present induction of chirality in CdSe by thiol-free chiral carboxylic acid capping ligands (l- and d-malic and tartaric acids). Our circular dichroism (CD) and infrared experimental data showed how the presence of a chiral carboxylic acid capping ligand on the surface of CdSe QDs was necessary but not sufficient for the induction of optical activity in QDs. A chiral bis-carboxylic acid capping ligand needed to have three oxygen-donor groups during the phase-transfer ligand exchange to successfully induce chirality in CdSe. Intrinsic chirality of CdSe nanocrystals was not observed as evidenced by transmission electron microscopy and reverse phase-transfer ligand exchange with achiral 1-dodecanethiol. Density functional theory geometry optimizations and CD spectra simulations suggest an explanation for these observations. The tridentate binding via three oxygen-donor groups had an energetic preference for one of the two possible binding orientations on the QD (111) surface, leading to the CD signal. By contrast, bidentate binding was nearly equienergetic, leading to cancellation of approximately oppositely signed corresponding CD signals. The resulting induced CD of CdSe functionalized with chiral carboxylic acid capping ligands was the result of hybridization of the (achiral) QD and (chiral) ligand electronic states controlled by the ligand's absolute configuration and the ligand's geometrical arrangement on the QD surface.

  3. Antimicrobial activity of different sodium and potassium salts of carboxylic acid against some common foodborne pathogens and spoilage-associated bacteria.

    Science.gov (United States)

    Cabezas-Pizarro, Jorge; Redondo-Solano, Mauricio; Umaña-Gamboa, Christian; Arias-Echandi, María Laura

    2017-09-22

    Cleaning and disinfection represent the most important activities associated with the elimination of dirt and microorganisms at food processing plants. Improper procedures may lead to cross contamination of food leading to its spoilage or even the transmission of foodborne pathogens. Several strategies have been used in order to achieve a good disinfection of surfaces and products; nevertheless, microbial resistance to common-use-products has developed lately. Due to this fact, the development of new non-toxic-food compatible chemical agents that reduce the impact of foodborne pathogens and spoilage causing microorganisms is desirable for the food industry. The objective of the present study was to evaluate the antimicrobial activity of different sodium and potassium salts of aliphatic and aromatic carboxylic acid on the growth of common food spoilage and pathogenic microorganisms. Growth curves were determined for Leuconostoc mesenteroides, Lactobacillus plantarum, Enterococcus faecalis, Candida albicans, Pseudomonas aeruginosa, Salmonella Enteritidis, and Listeria monocytogenes in contact with different concentrations of carboxylic acid salts. The inhibitory effect of both aliphatic and aromatic carboxylic acid salts, in accordance with concentration levels, was 100>50>25mg/ml. The inhibitory effect of aliphatic salts was butanoic>hexanoic> octanoic>decanoic and, benzoic>gallic>caffeic acid salts for aromatic salts. In general, sodium salts were more inhibitory than potassium salts (p≤0.05). Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity.......03 Torr(-1), 0.41 +/- 0.04 Torr(-1), and 0.46 +/- 0.05 Torr(-1) for n = 1, 2, 3. 4, respectively. Atmospheric lifetimes of F(CF2)(n)COOH with respect to reaction with OH radicals are estimated to be approximately 230 days for n = 1 and 130 days for n > 1. Reaction with OH radicals is a minor atmospheric...... of the molecule. For n = 1, k(OH + F(CF2)(n)COOH) = (9.35 +/- 2.08) x 10(-14) cm(3) molecule(-1) s(-1). For n = 2-4, k(OH + F(CF2)(n)COOH) = (1.69 +/- 0.22) x 10(-13) cm(3) molecule(-1) s(-1). Dimerization constants for 2F(CF2)(n)COOH = (F(CF2)(n)COOH)(2) were determined to be 0.32 +/- 0.03 Torr(-1), 0.30 +/- 0...

  5. Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes.

    Science.gov (United States)

    Queirós, Odília; Pereira, Leonor; Paiva, Sandra; Moradas-Ferreira, Pedro; Casal, Margarida

    2007-03-01

    The present work describes a detailed physiological and molecular characterization of the mechanisms of transport of carboxylic acids in Kluyveromyces lactis. This yeast species presents two homologue genes to JEN1 of Saccharomyces cerevisiae: KlJEN1 encodes a monocarboxylate permease and KlJEN2 encodes a dicarboxylic acid permease. In the strain K. lactis GG1888, expression of these genes does not require an inducer and activity for both transport systems was observed in glucose-grown cells. To confirm their key role for carboxylic acids transport in K. lactis, null mutants were analyzed. Heterologous expression in S. cerevisiae has been performed and chimeric fusions with GFP showed their proper localization in the plasma membrane. S. cerevisiae jen1delta cells transformed with KlJEN1 recovered the capacity to use lactic acid, as well as to transport labeled lactic acid by a mediated mechanism. When KlJEN2 was heterologously expressed, S. cerevisiae transformants gained the ability to transport labeled succinic and malic acids by a mediated mechanism, exhibiting, however, a poor growth in malic acid containing media. The results confirmed the role of KlJen1p and KlJen2p as mono and dicarboxylic acids permeases, respectively, not subjected to glucose repression, being fully functional in S. cerevisiae.

  6. Branched-chain amino acids alter neurobehavioral function in rats

    Science.gov (United States)

    Coppola, Anna; Wenner, Brett R.; Ilkayeva, Olga; Stevens, Robert D.; Maggioni, Mauro; Slotkin, Theodore A.; Levin, Edward D.

    2013-01-01

    Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders. PMID:23249694

  7. Branched chain amino acid profile in early chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M Anil Kumar

    2012-01-01

    Full Text Available The nutritional status in chronic kidney disease (CKD patients is a predictor of prognosis during the first period of dialysis. Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid profile. Of these, the plasma levels of branched chain amino acids (BCAA, especially valine and leucine, correlate well with nutritional status. Plasma BCAAs were evaluated along with albumin and C-reactive protein in 15 patients of early stages of CKD and 15 age- and sex-matched healthy controls. A significant decrease in plasma valine, leucine and albumin levels was observed in CKD patients when compared with the controls (P <0.05. No significant difference in C-reactive protein (CRP levels was observed between the two groups. Malnutrition seen in our CKD patients in the form of hypoalbuminemia and decreased concentrations of BCAA points to the need to evaluate the nutritional status in the early stages itself. Simple measures in the form of amino acid supplementation should be instituted early to decrease the morbidity and mortality before start of dialysis in these patients.

  8. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    Science.gov (United States)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  9. Structure of the PLP Degradative Enzyme 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase from Mesorhizobium loti MAFF303099 and Its Mechanistic Implications

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.; Cornell

    2009-06-12

    A vitamin B{sub 6} degradative pathway has recently been identified and characterized in Mesorhizobium loti MAFF303099. One of the enzymes on this pathway, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO), is a flavin-dependent enzyme and catalyzes the oxidative ring-opening of 2-methyl-3-hydroxypyridine-5-carboxylic acid to form E-2-(acetamino-methylene)succinate. The gene for this enzyme has been cloned, and the corresponding protein has been overexpressed in Escherichia coli and purified. The crystal structure of MHPCO has been solved to 2.1 {angstrom} using SAD phasing with and without the substrate MHPC bound. These crystal structures provide insight into the reaction mechanism and suggest roles for active site residues in the catalysis of a novel oxidative ring-opening reaction.

  10. Synthesis and crystal structure of Cu(II and Co(II complexes with 1,3-dimethyl-pyrazole-5-carboxylic acid ligand

    Directory of Open Access Journals (Sweden)

    Jaćimović Željko K.

    2015-01-01

    Full Text Available In the reaction of 1,3-dimethyl-pyrazole-5-carboxylic acid (HL with M(OAc2•4H2O, (M = Cu, Co two novel complexes have been prepared, square-planar [CuL2(H2O2] and octahedral [CoL2(MeOH4]. The crystal structures have been determined by single-crystal X-ray diffraction. In both complexes the deprotonated acid displays monodentate coordination to the metal ions. According to the results of CSD survey this is the first structural report on the metal complexes with N1-substituted pyrazole-5-carboxylic ligand. [Projekat Ministarstva nauke Republike Srbije, br. 172014 i br. 172035

  11. Investigations and design of pyridine-2-carboxylic acid thiazol-2-ylamide analogs as methionine aminopeptidase inhibitors using 3D-QSAR and molecular docking

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian

    2014-01-01

    -dimensional quantitative structure–activity relationship (3D-QSAR) studies were carried out on a series of pyridine-2-carboxylic acid thiazol-2-ylamide-based MetAP inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The models were....... These inhibitors were docked into MetAP active site. The CoMFA and CoMSIA field contour maps correlate well with the structural characteristics of the binding pocket of MetAP active site. Using the knowledge of structure–activity relationship and receptor–ligand interactions from 3D-QSAR model and the docked...... complexes, four new pyridine-2-carboxylic acid thiazol-2-ylamide analogs were designed. These analogs exhibit significantly better predicted activity than the reported molecules. The present work has implications for the development of novel antibiotics as potent MetAP inhibitors....

  12. Influence of Different Carboxylic Acid Ligands on Luminescent Properties of Eu(Lc3phen (Lc = MAA, AA, BA, SA Complexes

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2013-01-01

    Full Text Available A series of rare earth europium complexes with different carboxylic acid ligands Eu(Lc3phen (Lc = MAA, AA, BA, SA were synthesized. The complexes were characterized by FTIR, TG-DSC, XRD, UV absorption spectra, and photoluminescence spectra (PL to study the structure, thermal stability, the energy absorption, and luminescent properties of the complexes. The results showed that the series complexes are all with good crystallization and relatively high thermal stability. The differences of the luminescent properties of complexes are caused by the different ligand structures. The absorption intensity of the carboxylic acid ligands, BA, was the strongest, followed by the MAA and AA and SA was the weakest. Therefore, the fluorescence intensity of the Eu(BA3phen was the strongest, followed by the Eu(MAA3phen and Eu(AA3phen and the Eu2(SA3phen2 was the weakest. All complexes showed good luminescence properties.

  13. A novel one-pot three-step synthesis of 2-(1-Benzofuran-2-yl)quinoline-3-carboxylic acid derivatives

    OpenAIRE

    Gao,Wentao; Zhang,Chaohua; Li,Yang

    2010-01-01

    A facile and efficient one-pot three-step procedure for the preparation of 2-(1-benzofuran-2-yl)quinoline-3-carboxylic acid derivatives is described, featuring three different synthetic transformations, namely Williamson ether synthesis, hydrolysis of an ester group at the quinoline ring C-3 position, and intramolecular electrophilic cyclization reaction between the aldehyde group of salicylaldehyde and the methylene at the quinoline ring C-2 position. Neste trabalho é descrito um protocol...

  14. Plasma long-chain free fatty acids predict mammalian longevity.

    Science.gov (United States)

    Jové, Mariona; Naudí, Alba; Aledo, Juan Carlos; Cabré, Rosanna; Ayala, Victoria; Portero-Otin, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-11-28

    Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a specie-specific lipidomic profile that accurately predicts the animal longevity. The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity.

  15. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    Science.gov (United States)

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  16. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  17. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte

    2015-01-01

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal...... carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD...... and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate...

  18. Efficient and convenient synthesis of symmetrical carboxylic ...

    African Journals Online (AJOL)

    An efficient and convenient procedure for the synthesis of symmetrical carboxylic anhydrides from carboxylic acids with sulfated zirconia by PEG-1000 phase transfer catalysis has been developed. The reactions proceeded under mild and solvent-free conditions to provide the carboxylic anhydrides in good to excellent ...

  19. efficient and convenient synthesis of symmetrical carboxylic

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. An efficient and convenient procedure for the synthesis of symmetrical carboxylic anhydrides from carboxylic acids with sulfated zirconia by PEG-1000 phase transfer catalysis has been developed. The reactions proceeded under mild and solvent-free conditions to provide the carboxylic anhydrides in good to.

  20. Biodistribution and human dosimetry of enantiomer-1 of the synthetic leucine analog anti-1-amino-2-fluorocyclopentyl-1-carboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Jonathon A., E-mail: jnye@emory.edu; Jarkas, Nashwa; Schuster, David M.; Savir-Baruch, Bital; Voll, Ronald J.; Camp, Vernon M.; Goodman, Mark M.

    2011-10-15

    Introduction: The enantiomerically enriched (ee=90%, enantiomer 1) synthetic amino acid (R,S)-anti-1-amino-2-fluorocyclopentyl-1-carboxylic acid (anti-2-[{sup 18}F]FACPC-1) accumulates in malignant cells by elevated transport through the sodium-independent system-L (leucine preferring) amino acid transporter. The purpose of this study was to evaluate in vivo uptake and single-dose toxicity of anti-2-[{sup 18}F]FACPC-1 in animals as well as the individual organ and whole-body dose in humans. Methods: A DU145 xenograft rodent model was used to measure anti-2-[{sup 18}F]FACPC-1 uptake at 15, 30 and 60 min post-injection. Animals were sacrificed and organs harvested to measure the percent injected activity per organ and to calculate residence time. Anti-2-[{sup 18}F]FACPC-1 toxicity was assessed using a single microdose (37-74 MBq/kg) in nonhuman primates. Their vital signs were monitored for 2 h post-injection for drug-related effects. Human biodistribution studies were collected by sequential whole-body PET/CT scans on six healthy volunteers (three male and three female) for 120 min following a single 247{+-}61 MBq bolus injection of anti-2-[{sup 18}F]FACPC-1. Estimates of radiation dose from anti-2-[{sup 18}F]FACPC-1 to the human body were calculated using recommendations of the MIRD committee and MIRDOSE 3.0 software. Results: High anti-2-[{sup 18}F]FACPC-1 residence time was observed in the pancreas of the rodent model compared to the human data. No abnormal treatment-related observations were made in the nonhuman primate toxicity studies. Human venous blood showed no metabolites of anti-2-[{sup 18}F]FACPC-1 in the first 60 min post-injection. All volunteers showed initially high uptake in the kidneys followed by a rapid washout phase. The estimated effective dose equivalent was 0.0196 mSv/MBq. Conclusion: Anti-2-[{sup 18}F]FACPC-1 showed low background uptake in the brain, thoracic and abdominal cavities of humans, suggesting a possible use for detecting

  1. Enzymes involved in branched-chain amino acid metabolism in humans.

    Science.gov (United States)

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  2. Crystal and molecular structures of sixteen charge-assisted hydrogen bond-mediated diisopropylammonium salts from different carboxylic acids

    Science.gov (United States)

    Lin, Zhihao; Hu, Kaikai; Jin, Shouwen; Ding, Aihua; Wang, Yining; Dong, Lingfeng; Gao, Xingjun; Wang, Daqi

    2017-10-01

    Cocrystallization of the commonly available organic amine, diisopropylamine, with a series of carboxylic acids gave a total of sixteen molecular salts with the compositions: diisopropylaminium 2-methyl-2-phenoxypropanate [(Hdpa)+ · (mpa-), mpa- = 2-methyl-2-phenoxypropanoate] (1), diisopropylaminium 2-methyl-2-(naphthalen-2-yloxy)-propionate [(Hdpa)+ · (npa-), npa- = 2-methyl-2-(naphthalen-2-yloxy)-propionate] (2), diisopropylaminium indole-3-acetate [(Hdpa)+ · (iaa-), iaa- = indole-3-acetate] (3), diisopropylaminium 4-chlorophenoxyacetate [(Hdpa)+ · (cpa-), cpa- = 4-chlorophenoxyacetate] (4), diisopropylaminium 2,4-dichlorophenoxyacetate [(Hdpa)+ · (dcpa-), dcpa- = 2,4-dichlorophenoxyacetate] (5), diisopropylaminium 4-hydroxybenzoate [(Hdpa)+ · (hba-), hba- = 4-hydroxybenzoate] (6), diisopropylaminium 4-aminobenzoate [(Hdpa)+ · (aba-), aba- = 4-aminobenzoate] (7), tetra(diisopropylaminium) tetra(1-hydroxy-2-naphthoate) trihydrate [(Hdpa)44+ · (2-hnpa)44- · 3H2O, 2-hnpa = 1-hydroxy-2-naphthoate] (8), diisopropylaminium 2-hydroxy-3-naphthoate [(Hdpa)+ · (3-hnpa-), 3-hnpa- = 2-hydroxy-3-naphthoate] (9), diisopropylaminium 5-bromosalicylate [(Hdpa)+ · (bsa-), bsa- = 5-bromosalicylate] (10), diisopropylaminium 3,5-dinitrobenzoate [(Hdpa)+ · (dna-), dna- = 3,5-dinitrobenzoate] (11), diisopropylaminium 3,5-dinitrosalicylate [(Hdpa)+ · (3,5-dns-), 3,5-dns- = 3,5-dinitrosalicylate] (12), tetra(diisopropylaminium) bis(m-phthalate) monohydrate [(Hdpa+)4 · (mpta2-)2 · H2O, mpta2- = m-phthalate] (13), bis(diisopropylaminium) dihydrogen 1,2,3,4-butane tetracarboxylate [(Hdpa+)2 · (H2Bta2-), H2Bta2- = dihydrogen 1,2,3,4-butane tetracarboxylate] (14), bis(diisopropylaminium) mucate [(Hdpa+)2 · (muc2-), muc2- = mucate] (15), and diisopropylaminium hydrogen 1,2-phenylenediacetate [(Hdpa) · (Hpda-), Hpda- = hydrogen 1,2-phenylenediacetate] (16). The sixteen salts have been characterised by XRD technique, IR, and elemental analysis, and the melting points of all the

  3. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    Directory of Open Access Journals (Sweden)

    Kamran Jawed

    Full Text Available Short-chain fatty acids (SCFAs, such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.

  4. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  5. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  6. Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models.

    Science.gov (United States)

    Bhandari, Raj K; Oda, Robert P; Petrikovics, Ilona; Thompson, David E; Brenner, Matthew; Mahon, Sari B; Bebarta, Vikhyat S; Rockwood, Gary A; Logue, Brian A

    2014-05-01

    Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN(-). Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN(-) t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN(-) concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN(-) in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.

  7. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A M; Lauritsen, F R

    2004-01-01

    Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the correspo......Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from...

  8. Self-assembly of long chain fatty acids: Effect of a methyl branch

    DEFF Research Database (Denmark)

    Liljeblad, Jonathan F. D.; Tyrode, Eric; Thormann, Esben

    2014-01-01

    chains of the straight chain fatty acids appear to be oriented perpendicular to the sample surface, based on an orientational analysis of VSFS data and the odd/even effect. In addition, the selection of the subphase (neat water or CdCl2 containing water buffered to pH 6.0) used for the LB-deposition has......The morphology and molecular conformation of Langmuir-Blodgett deposited and floating monolayers of a selection of straight chain (eicosanoic acid, EA), iso (19-methyl eicosanoic acid, 19-MEA), and anteiso (18-methyl eicosanoic acid, 18-MEA) fatty acids have been investigated by Vibrational Sum...... Frequency Spectroscopy (VSFS), AFM imaging, and the Langmuir trough. While the straight chain fatty acid forms smooth, featureless monolayers, all the branched chain fatty acids display 10-50 nm sized domains (larger for 19-MEA than the 18-MEA) with a homogeneous size distribution. A model is suggested...

  9. Self-assembled carboxylate complexes of zinc, nickel and copper

    Science.gov (United States)

    Deka, Kaustavmoni; Barooah, Nilotpal; Sarma, Rupam Jyoti; Baruah, Jubaraj B.

    2007-02-01

    A metallo-organic hybrid acid namely tetra-aquo bis-4-carboxy- N-phthaloylglycinato zinc(II) dihydrate is prepared and characterised. In this complex the hydrogen bonding by free carboxylic acid group and π-π interactions between the rings in crystal lattice contributes to the formation of self-assembled structure. A monomeric nickel complex from 2-carbomethoxy benzoic acid ( L2H) and pyridine [Ni( L2)(py) 3(H 2O) 2] L2 is prepared (where py = pyridine). This complex has ionic as well as monodentate carboxylates. It forms self-assembly by C-H⋯π as well as hydrogen-bonding interactions. The 2-carbomethoxy benzoic acid ( L2H) forms dimeric copper complex [Cu 2( L2) 4(H 2O) 2]2H 2O which has an extended chain structure through hydrogen-bond interactions.

  10. Suspect screening of halogenated carboxylic acids in drinking water using ion exchange chromatography - high resolution (Orbitrap) mass spectrometry (IC-HRMS).

    Science.gov (United States)

    Gallidabino, Matteo D; Hamdan, Laurence; Murphy, Bronagh; Barron, Leon P

    2018-02-01

    Retrospective in silico screening of analytical data for the identification of new or emerging disinfection by-products in drinking waters could be useful to assess quality and potential hazards, as well as help implement mitigation procedures more rapidly. Herein, the first study coupling ion exchange chromatography (IC) with high resolution mass spectrometry (HRMS) for the determination of halogenated carboxylic acid disinfectant by-products is reported. Separation was achieved using a Metrohm A Supp 5 column and a Na2CO3/NaHCO3 gradient eluent from 1/0.31 to 10/3.1mM. A variety of solid phase extraction (SPE) sorbents were tested for added selectivity to organic ions and Isolute ENV+ cartridges were selected because of their best overall extraction performance. Method LODs were in the μgL-1 concentration range, with R2 ≥ 0.99 for all the analytes, and isobaric ions could be easily discriminated using HRMS. The method was applied to municipal drinking water. Targeted quantitative analysis revealed the presence of 10 haloacetic acids at levels not exceeding the limits set by WHO and USEPA. Furthermore, suspect screening for additional halogenated carboxylic acids via retrospective HRMS data analysis also indicated the presence of other iodinated HAAs and chlorinated propionic acids, of which one (i.e. monochloropropionic acid) is discussed here for the first time. Most importantly, several potential suspects could be eliminated from further consideration through HRMS data analysis alone. To our knowledge, this represents the first time that a retrospective IC-HRMS screen of halogenated carboxylic acids in drinking water has been reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Syntheses of Four Enantiomers of 2,3-Diendo- and 3-Endo-aminobicyclo[2.2.2]oct-5-ene-2-exo-carboxylic Acid and Their Saturated Analogues

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2013-12-01

    Full Text Available Ethyl 2,3-diendo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylate ((±-1 was resolved with O,O'-dibenzoyltartaric acid via diastereomeric salt formation. The efficient synthesis of the enantiomers of 2,3-diendo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid ((+-7 and (–-7, 3-endo-aminobicyclo[2.2.2]oct-5-ene-2-exo-carboxylic acid ((+-5 and (–-5, cis- and trans-3-aminobicyclo[2.2.2]octane-2-carboxylic acid ((+-6, (–-6, (+-8 and (–-8 was achieved via isomerization, hydrogenation and hydrolysis of the corresponding esters (–-1 and (+-1. The stereochemistry and relative configurations of the synthesized compounds were determined by NMR spectroscopy (based on the 3J(H,H coupling constants and X-ray crystallography.

  12. Discovery of a New Class of Ionotropic Glutamate Receptor Antagonists by the Rational Design of (2S,3R)-3-(3-Carboxyphenyl)-pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Larsen, Ann Møller; Venskutonyte, Raminta; Valadés, Elena Antón

    2011-01-01

    The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/ or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1......-5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic...

  13. Lewis acid-promoted stereoselective Diels-Alder cycloaddition of captivated olefins acetylvinyl carboxylates and NMR structural study of their cyclopentadiene adducts

    Energy Technology Data Exchange (ETDEWEB)

    Garica de Alba, O.; Chanona, J.; Delgado, F.; Zepeda, G.; Labarrior, F.; Bates, R.W.; Bott, S.; Juaristi, E.; Tamariz, J. [Departament of organic chemistry, Escuela nacional de Ciencias Biologicas, IPN, Mexico (Mexico)

    1996-08-01

    A study of Lewis acid-promoted Diels-Alder cycloaddition of the captivated olefins 1-acetylvinyl 1 carboxylates 1 with cyclopentadiene is described. Catalyst, temperature and solvent were the assessed variables, the exo/endo ratio being more significantly modified by the first one. ZnI{sub 2} and TiCl{sub 4} showed the most remarkable effect with olefin 1a. giving very high and opposite stereoselectivity, since exo isomer 3 and endo 4 were the major adducts respectively. the steric effect of the carboxylate substituent of 1 could participate in controlling the stereoselectivity. Structural characterization of the adducts was made by NMR and X-ray analysis. Electronic and anisotropic effects are probably involved in unusual proton chemical shifts of the norbornene structure of the adducts. (Author) 28 refs.

  14. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  15. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structure of organic and metal-organic networks based on a bifunctional m-terphenyl carboxylic acid.

    Science.gov (United States)

    Dickie, Diane A; Schatte, Gabriele; Jennings, Michael C; Jenkins, Hilary A; Khoo, Sarah Y L; Clyburne, Jason A C

    2006-02-20

    A series of metal-organic frameworks (MOFs) based upon the ligand 2,6-diphenyl-1,4-dibenzoic acid [Ph2C6H2(CO2H)2]infinity have been prepared and characterized by X-ray crystallography. The networks exhibit a variety of topologies and coordination modes at the metal center. The reaction of the ligand with cobalt(II) nitrate or zinc(II) nitrate in methanol/pyridine results in the formation of isostructural 1-D chains [(Ph2C6H2(CO2)2)M(py)2(MeOH)]infinity, where M = Zn, Co; however, in the presence of ethanol and triethylamine, Zn(NO3)2 reacts to form a 2-D clay-like network, [(Ph2C6H2(CO2)2)Zn(EtOH)2]infinity. 2-D networks are also formed in similar reactions with copper(II) nitrate or silver(I) nitrate to give [(Ph2C6H2(CO2)(CO2H))2Cu(py)2]infinity, [(Ph2C6H2(CO2)CO2H))2Cu(py)4.2H2O](infinity), and [(Ph2C6H2(CO2)2)Ag2]infinity, respectively. The hydrogen-bonded chains formed by the ligand alone and with 4,4'-dipyridyl are also described.

  17. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Guo, Hui-Lin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Song, Juan; Xu, Bing; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China)

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zinc units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.

  18. Branched-chain amino acids as biomarkers in diabetes.

    Science.gov (United States)

    Giesbertz, Pieter; Daniel, Hannelore

    2016-01-01

    Numerous human studies have consistently demonstrated that concentrations of branched-chain amino acids (BCAAs) in plasma and urine are associated with insulin resistance and have the quality to predict diabetes development. However, it is not known how altered BCAA levels link to insulin action and diabetes. This review addresses some recent findings in BCAA metabolism and discusses their role as reporter molecules of insulin sensitivity and diabetes and their possible contribution to disease progression. Changes in plasma and urine levels result mainly from altered metabolism in tissues and recent studies have thus focused on organ-specific changes in BCAA handling using animal models and human tissue samples. A decreased mitochondrial oxidation has been demonstrated in peripheral tissues and that was shown to be associated with an increased inflammatory tone and changes in adipokine levels (adiponectin and leptin). These changes appear already before insulin resistance is established. Key findings demonstrating the discordance between changes in BCAA and insulin resistance are derived from studies using insulin sensitizers and from data collected in patients undergoing Roux-en-Y bypass bariatric surgery. Intermediates derived from BCAA breakdown rather than BCAA itself were recently proposed to contribute to the development of insulin resistance and studies now explore the biomarker qualities of these metabolites. Understanding the mechanisms and putative causalities in the alterations in BCAA levels as found in obesity, metabolic syndrome and diabetes is crucial for any intervention options but also for the use of BCAA and derivatives as biomarkers in clinical routine.

  19. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid

  20. In-situ carboxylate recovery and simultaneous pH control with tailor-configured bipolar membrane electrodialysis during continuous mixed culture fermentation

    NARCIS (Netherlands)

    Arslan, D.; Zhang, Y.; Steinbusch, K.J.J.; Diels, L.; Hamelers, Hubertus V.M.; Buisman, C.J.N.; Wever, de H.

    2017-01-01

    Anaerobic fermentation of organic waste streams by mixed culture generates a mixture of short chain carboxylic acids. To avoid inhibitory effects of the acids or their consumption in internal conversion reactions in the mixed culture environment, in-situ recovery of acids can be beneficial. In

  1. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    Science.gov (United States)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  2. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes

    OpenAIRE

    Heimann, Emilia; Nyman, Margareta; P?lbrink, Ann-Ki; Lindkvist-Petersson, Karin; Degerman, Eva

    2016-01-01

    ABSTRACT Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid, are generated by fermentation of branched amino acids, generated from undigested protein reaching col...

  3. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    Science.gov (United States)

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  4. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  5. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  6. Intracellular scavenging activity of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) in the fission yeast, Schizosaccharomyces pombe

    OpenAIRE

    Hamad, Ismail; Arda, Nazl?; Pekmez, Murat; Karaer, Semian; Temizkan, G?ler

    2010-01-01

    The ability of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), a water-soluble vitamin E analogue, to prevent oxidative damages is well characterized, but the mechanisms underlying it remain unclear. The protective effect of Trolox pre-treatment on H2O2-induced toxicity might be attributed to the decreased cellular permeability to H2O2 or in vitro scavenging activity of Trolox, induction of antioxidant enzymes or the direct scavenging activity of Trolox. The results obtained...

  7. Supramolecular interactions in the 1:2 co-crystal of 4,4′-bipyridine and 3-chlorothiophene-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Olakkandiyil Prajina

    2016-10-01

    Full Text Available The asymmetric unit of the title compound, 2C5H3ClO2S·C10H8N2, is comprised of a molecule of 3-chlorothiophene-2-carboxylic acid (3TPC and half of a molecule of 4,4′-bipyridine (BPY. A distinctive O—H...N-based synthon is present. Cl...Cl and π–π stacking interactions further stabilize the crystal structure, forming a two-dimensional network parallel to the bc plane.

  8. Heterocyclic-2-carboxylic Acid (3-Cyano-1,4-di-N-oxidequinoxalin-2-ylamide Derivatives as Hits for the Development of Neglected Disease Drugs

    Directory of Open Access Journals (Sweden)

    Antonio Monge

    2009-06-01

    Full Text Available Neglected diseases represent a major health problem. It is estimated that one third of the world population is infected with tuberculosis (TB. Besides TB, Chagas disease, affects approximately 20 million people. Quinoxalines display great activities against TB and Chagas. Forty new quinoxaline 1,4-di-N-oxide derivatives have been prepared and tested against M. tuberculosis and T. cruzi. Carboxylic acid quinoxaline 1,4-di-N-oxides (CAQDOs 5 and 17 showed MIC values on the same order as the reference antituberculosis drug, rifampicin. Meanwhile, CAQDOs 12 and 22 presented IC50 values in the same order as the anti-chagasic drug, nifurtimox.

  9. Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Bertel, Linda

    2016-01-01

    The orientation of pterin-6-carboxylic acid on gold nanopillars was investigated by surface enhanced Raman spectroscopy and density functional theory methods. The experimentally vibrations from pterin-6-COOH free and attached to the Au surface display vibration features indicating chemical...... interaction of the pterin with the metal surface. The spectral feature evidenced that the pterin would adsorb on gold surface with a "lying down" configuration through the high intensity vibration of NH scissoring and rocking OH modes. The orientation study of pterins on gold nanopillars presented herein...

  10. Aziridine Carboxylates, Carboxamides and Lactones: New Methods for Their Preparation and Their Transformation into α- and β-Amino Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Robert H. Dodd

    2000-03-01

    Full Text Available The preparation of a variety of novel aziridine-γ-lactones (3 from carbohydrates is described. In contrast to aziridine-2-carboxylates, the lactones react regiospecifically at C-2 with soft nucleophiles to provide optically pure substituted β-amino acid precursors. Hard nucleophiles react exclusively at the C-3 position to provide α-amino acid precursors. The utility of this methodology was demonstrated by the preparation of (3S,4S-dihydroxy-L-glutamic acid (DHGA from the appropriate aziridine-γ-lactone. DHGA was subsequently shown to be a selective partial agonist of mGluR1 receptors. A more concise preparation of aziridine-γ-lactones was achieved by 1,4-Michael addition of benzylamine to 2-O-triflylbutenolides. Use of a 2-O-mesylbutenolide led, under the same conditions, to the corresponding aziridine-2-carboxamides or 2-carboxylates. Finally, a new Evanstype aziridinating agent, Ses-iminoiodinane, was developed and shown to react efficiently with unsaturated substrates to give the corresponding aziridines, whose N-Ses protecting groups can be removed under mild conditions.

  11. Liquid Chromatographic Investigation of Spontaneous Oscillatory In Vitro Chiral Conversion and Spontaneous Oscillatory Condensation of Simple Carboxylic Acids in Aqueous and Nonaqueous Media

    Directory of Open Access Journals (Sweden)

    Mieczyslaw Sajewicz

    2011-01-01

    Full Text Available Oscillatory reactions are a narrow reaction type among the entity of chemical reactions and those involving purely organic compounds make a small contribution to an overall number of all known oscillatory reactions. The most abundant type is purely inorganic and mixed inorganic-organic oxidation-reduction reactions, basically because monitoring them is relatively easy (e.g., with use of potentiometric measurements. Investigation of the organic reactions can be more demanding, and then chromatography is an analytical technique of choice. In this paper, we provide an overview of chromatographic evidence with oscillatory reactions discovered in our laboratory in the course of the last several years that involve the low-molecular-weight carboxylic acids (profen drugs, amino acids, and hydroxy acids. The investigated processes comprise the oscillatory chiral conversion and the oscillatory condensation, spontaneously running in the aqueous and nonaqueous abiotic media, and they were traced with use of TLC and HPLC coupled with different detector types.

  12. Mechanistic implications of the active species involved in the oxidation of hydrocarbons by Iron complexes of pyrazine-2-carboxylic acid

    NARCIS (Netherlands)

    Tanase, Stefania; Marques-Gallego, Patricia; Browne, Wesley R.; Hage, Ronald; Bouwman, Elisabeth; Feringa, Ben L.; Reedijk, Jan

    2008-01-01

    The reactivity towards H2O2 of the complexes [Fe(pca)(2)(py)(2)]center dot py (1) and Na-2{[Fe(pca(3))](2)O}center dot 2H(2)O center dot CH3CN (2) (where pca(-) is pyrazine-2-carboxylate) and their catalytic activity in the oxidation of hydrocarbons is reported. Addition of H2O2 to 1 results in the

  13. Effects of Food on the Pharmacokinetics of Omega-3-Carboxylic Acids in Healthy Japanese Male Subjects: A Phase I, Randomized, Open-label, Three-period, Crossover Trial.

    Science.gov (United States)

    Shimada, Hitoshi; Nilsson, Catarina; Noda, Yoshinori; Kim, Hyosung; Lundström, Torbjörn; Yajima, Toshitaka

    2017-09-01

    Omega-3-carboxylic acids (OM3-CA) contain omega-3 free fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as carboxylic acids. Food intake is known to affect the bioavailability of ethyl ester fatty acid formulations. We conducted a phase I study to investigate the effects of the timing of OM3-CA administration relative to food intake on the pharmacokinetics of EPA and DHA. In this randomized, open-label, three-period crossover study, Japanese healthy male subjects were administered 4×1 g OM3-CA capsules with continued fasting, before a meal, or after a meal. All subjects fasted for ≥10 h prior to drug/meal administration. The primary objective was to examine the effect of meal timing on the pharmacokinetics of EPA and DHA after OM3-CA administration. The secondary objectives were to examine the safety and tolerability of OM3-CA. A total of 42 Japanese subjects was enrolled in the study. The baseline-adjusted maximum concentration and area under the concentration-time curve from 0 to 72 h for EPA, DHA, and EPA +DHA were lower in the fasting and before meal conditions than in the after meal condition. The maximum total EPA, total DHA, and total EPA+DHA concentrations were reached later when administered in fasting conditions than in fed conditions, indicating slower absorption in fasting conditions. Diarrhea was reported by five, six, and no subjects in the fasting, before meal, and after meal conditions, respectively. The timing of OM3-CA administration relative to food intake influences the systemic bioavailability of EPA and DHA in healthy Japanese male subjects. NCT02372344.

  14. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    by increasing SID Leu:Lys in the diet were plasma Phe, α-ketoisovaleric acid, creatine, Ile, 3-methyl-oxovaleric acid, Trp and urinary Ile, glutamate, choline, cytosine, 3-hydroxy-2-methyl-[S-(R,R)]-butanoic acid, acetyl-DL-valine, L-2-aminoadipic acid, 2-methylbutyrylglycine, Tyr, and L-ascorbic acid. Among...... the identified metabolites, those that could be linked to the animal growth performance were plasma glycocholic acid and taurocholic acid which were concluded as biomarkers of the optimum dietary Ile level. Plasma creatine, urinary 2-aminoadipic acid, ascorbic acid, and choline were identified as biomarkers......There is an interest to reduce the dietary crude protein (CP) level to promote the gut health of piglets, eliminate the environmental nitrogen load from intensive pig farming, and to reduce diet costs. This is possible by estimating individual amino acid (AA) requirements and by optimizing the diet...

  15. Odd- and branched-chain fatty acids in milk fat – characteristic and health properties

    Directory of Open Access Journals (Sweden)

    Agata Adamska

    2014-08-01

    Full Text Available This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat. For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  16. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    Science.gov (United States)

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  17. 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid: activity against Gram-positive and Gram-negative pathogens including Vibrio cholerae

    Science.gov (United States)

    Maji, Krishnendu; Haldar, Debasish

    2017-10-01

    We report a new synthetic aromatic ε-amino acid containing a triazole moiety with antimicrobial potential against Gram-positive, Gram-negative and pathogenic bacteria including Vibrio cholerae. Structure-property relationship studies revealed that all the functional groups are essential to enhance the antimicrobial activity. The 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid was synthesized by click chemistry. From X-ray crystallography, the amino acid adopts a kink-like structure where the phenyl and triazole rings are perpendicular to each other and the amine and acid groups maintain an angle of 60°. The agar diffusion test shows that the amino acid has significant antibacterial activity. The liquid culture test exhibits that the minimum inhibitory concentration (MIC) value for Bacillus subtilis and Vibrio cholerae is 59.5 µg ml-1. FE-SEM experiments were performed to study the morphological changes of bacterial shape after treatment with compound 1. The antimicrobial activity of the amino acid was further studied by DNA binding and degradation study, protein binding, dye-binding assay and morphological analysis. Moreover, the amino acid does not have any harmful effect on eukaryotes.

  18. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit.

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini

    2014-06-19

    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  19. RNA Interference of 1-Aminocyclopropane-1-carboxylic Acid Oxidase (ACO1 and ACO2 Genes Expression Prolongs the Shelf Life of Eksotika (Carica papaya L. Papaya Fruit

    Directory of Open Access Journals (Sweden)

    Rogayah Sekeli

    2014-06-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6. Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  20. In situ electrochemical-transmission surface plasmon resonance spectroscopy for poly(pyrrole-3-carboxylic acid) thin-film-based biosensor applications.

    Science.gov (United States)

    Janmanee, Rapiphun; Baba, Akira; Phanichphant, Sukon; Sriwichai, Saengrawee; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2012-08-01

    In this study, we describe the combination of transmission surface plasmon resonance (TSPR) and electrochemical techniques for the application to biosensors with conducting polymers. Electropolymerization was employed to construct poly(pyrrole-3-carboxylic acid) (PP3C) film on a gold-coated grating substrate using pyrrole-3-carboxylic acid (P3C) monomer solution in 0.5 M H(2)SO(4). In situ electrochemical-transmission surface plasmon resonance (EC-TSPR) measurements were carried out to study the kinetic and electroactivity properties of PP3C film. Immobilization of antihuman IgG on the activated surface and the binding process of human IgG and antihuman IgG in neutral solution could be detected in situ by EC-TSPR measurement. The surface modification steps on the PP3C layer led to an increase in intensity of the transmission peak. The performance, sensitivity, and utility of EC-TSPR spectroscopy showed obvious advantages for the detection of binding process with the simple experimental setup, and could be applied to the study of biomolecular interactions in various systems.

  1. Simultaneous determination of Δ9-tetrahydrocannabinol, cannabidiol, cannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in hair using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Dulaurent, S; Gaulier, J M; Imbert, L; Morla, A; Lachâtre, G

    2014-03-01

    For several years, hair analyses have become a powerful tool to investigate past exposure towards xenobiotics. In the case of illicit drugs and more precisely of cannabis exposure, four compounds are usually investigated: Δ(9)-tetrahydrocannabinol (THC), the main active compound of cannabis, one of its metabolites [11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH)] and two cannabinoids (cannabinol and cannabidiol). Up until now, the hair determination of the carboxylic metabolite of THC, which has been described as the only marker allowing distinguishing consumption and passive exposure, has been performed using a gas chromatography-tandem mass spectrometry method. The aim of this study was to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantitative determination of the four markers. The sample preparation was based on an alkaline hydrolysis of hair samples followed by a liquid-liquid extraction of compounds in acidic conditions using a hexane/ethyl acetate mixture. The method was validated and the results were satisfactory: intra- and inter-assay accuracies below 9% and relative standard deviation below 15% for the four compounds. Moreover, the limit of quantification for THC-COOH, the most challenging compound, was validated at 0.2 pg/mg. This concentration is in accordance with the recommendations made by a scientific society which specializes in hair testing. It makes it possible to distinguish the kind of exposure to cannabis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009.

    Science.gov (United States)

    Rotander, Anna; Kärrman, Anna; van Bavel, Bert; Polder, Anuschka; Rigét, Frank; Auðunsson, Guðjón Atli; Víkingsson, Gísli; Gabrielsen, Geir Wing; Bloch, Dorete; Dam, Maria

    2012-01-01

    Temporal variations in concentrations of perfluorinated carboxylic acids (PFCAs) and sulfonic acids (PFSAs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) structural isomers, were examined in livers of pilot whale (Globicephala melas), ringed seal (Phoca hisida), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), Atlantic white-sided dolphin (Lagenorhynchus acutus) and in muscle tissue of fin whales (Balaenoptera physalus). The sampling spanned over 20 years (1984-2009) and covered a large geographical area of the North Atlantic and West Greenland. Liver and muscle samples were homogenized, extracted with acetonitrile, cleaned up using hexane and solid phase extraction (SPE), and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). In general, the levels of the long-chained PFCAs (C9-C12) increased whereas the levels of PFOS remained steady over the studied period. The PFOS isomer pattern in pilot whale liver was relatively constant over the sampling years. However, in ringed seals there seemed to be a decrease in linear PFOS (L-PFOS) with time, going from 91% in 1984 to 83% in 2006. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp. Rehd

    Directory of Open Access Journals (Sweden)

    Xu Kuanyong

    2010-07-01

    Full Text Available Abstract Background Many studies have been done to find out the molecular mechanism of systemic acquired resistance (SAR in plants in the past several decades. Numbers of researches have been carried out in the model plants such as arabidopsis, tobacco, rice and so on, however, with little work done in woody plants especially in fruit trees such as apple. Components of the pathway of SAR seem to be extremely conserved in the variety of species. Malus hupehensis, which is origin in China, is strong resistance with rootstock. In the study, we attempted to make the expression pattern of pathogenesis related (PR genes which were downstream components of the SAR pathway in response to salicylic acid(SA, methyl jasmonate(MeJA and 1-aminocyclopropane-1-carboxylic acid(ACC in Malus hupehensis. Findings In order to analyze the expression pattern, the partial sequence of three PR genes from Malus hupehensis, MhPR1, MhPR5 and MhPR8 was isolated. These three PR genes were induced by SA, MeJA and ACC. However, MhPR1, MhPR5 and MhPR8 performed a distinct pattern of expression in different plant organs. MhPR5 and MhPR8 were basal expression in leaves, stems and roots, and MhPR1 was basal expression only in stems. The expression of MhPR1, MhPR5 and MhPR8 was enhanced during the first 48 h post-induced with SA, MeJA and ACC. Conclusions The results showed that a distinct pattern of expression of PR genes in Malus hupehensis which differed from the previous reports on model plants arabidopsis, tobacco and rice. MhPR1, MhPR5 and MhPR8 were induced by SA, MeJA and ACC, which were regarded as the marker genes in the SAR response in Malus hupehensis. In contrast with herbal plants, there could be specific signal pathway in response to SA, JA and ET for woody plants.

  4. A copper(II) paddle-wheel structure of tranexamic acid: di-chloro-tetra-kis-[μ-4-(ammonio-meth-yl)cyclo-hexane-1-carboxyl-ato-O,O']dicopper(II) dichloride hexa-hydrate.

    Science.gov (United States)

    Altaf, Muhammad; Stoeckli-Evans, Helen

    2017-10-01

    Tranexamic acid [systematic name: trans -4-(amino-meth-yl)cyclo-hexane-1-carb-oxy-lic acid], is an anti-fibrinolytic amino acid that exists as a zwitterion [ trans -4-(ammonio-meth-yl)cyclo-hexane-1-carboxyl-ate] in the solid state. Its reaction with copper chloride leads to the formation of a compound with a copper(II) paddle-wheel structure that crystallizes as a hexa-hydrate, [Cu 2 Cl 2 (C 8 H 15 NO 2 ) 4 ] 2+ ·2Cl - ·6H 2 O. The asymmetric unit is composed of a copper(II) cation, two zwitterionic tranexamic acid units, a coordinating Cl - anion and a free Cl - anion, together with three water mol-ecules of crystallization. The whole structure is generated by inversion symmetry, with the Cu⋯Cu axle of the paddle-wheel dication being located about a center of symmetry. The cyclo-hexane rings of the zwitterionic tranexamic acid units have chair conformations. The carboxyl-ate groups that bridge the two copper(II) cations are inclined to one another by 88.4 (8)°. The copper(II) cation is ligated by four carboxyl-ate O atoms in the equatorial plane and by a Cl - ion in the axial position. Hence, it has a fivefold O 4 Cl coordination sphere with a perfect square-pyramidal geometry and a τ 5 index of zero. In the crystal, the paddle-wheel dications are linked by a series of N-H⋯Cl hydrogen bonds, involving the coordinating and free Cl - ions, forming a three-dimensional network. This network is strengthened by a series of N-H⋯O water , O water -H⋯Cl and O water -H⋯O hydrogen bonds.

  5. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  6. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Hauenschild A

    2003-11-01

    Full Text Available Abstract Background The amount and quality of dietary fatty acids can modulate the fat metabolism. Objective This dietary intervention is based on the different metabolic pathways of long-chain saturated fatty acids (LCFA, which are mostly stored in adipocytic triacylglycerols, medium-chain fatty acids (MCFA which are preferentially available for hepatic mitochondrial β-oxidation and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA suggested to modulate fat oxidation and storage by stimulating the peroxisomal β-oxidation. Combined dietary MCFA and n-3 LCPUFA without LCFA may synergistically stimulate fatty acid oxidation resulting in blood lipid clearance and LCFA release from adipocytes. Design In a short term, parallel, randomized, double-blind trial effects on the fatty acid metabolism of 10 healthy volunteers (Body Mass Index 25–30 of a formula containing 72% MCFA and 22% n-3 LCPUFA without LCFA (intake: 1.500 kcal/day; fat: 55.5% of energy were measured in comparison to an isoenergetic formula with equal fat amount and LCFA dominated lipid profile. Results The plasma triacylglycerol (p Conclusion Combined dietary 72% MCFA and 22% n-3 LCPUFA without LCFA stimulate the fatty acid oxidation and release from adipocytes without affecting any safety parameters measured.

  7. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Nybo, L.; Xu, Xuebing

    2003-01-01

    after consumption of specific structured triacylglycerol, consisting of a mixture of medium-chain fatty acids and long-chain fatty acids, to prevent the adverse effects observed by MCT (pure medium-chain fatty acids) regarding gastrointestinal distress. Seven well-trained subjects cycled 3 h at 55...

  8. Research Advances in the Inhibition of Long Chain Fatty Acid to Methanogenic Activity in Anaeroic Digestion System

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article reviewed the inhibition mechanism of long chain fatty acid on the formation of anaerobic system, then thoroughly analyzed the inhibition factors of long chain fatty acid, and summarized the remission method to its inhibition, finally proposed some suggestions to further study on the influence of long chain fatty acid on anaerobic digestion system.

  9. Comparative analysis of chemical compositions between non-transgenic soybean seeds and those from plants over-expressing AtJMT, the gene for jasmonic acid carboxyl methyltransferase.

    Science.gov (United States)

    Nam, Kyong-Hee; Kim, Do Young; Pack, In-Soon; Park, Jung-Ho; Seo, Jun Sung; Choi, Yang Do; Cheong, Jong-Joo; Kim, Chung Ho; Kim, Chang-Gi

    2016-04-01

    Transgenic overexpression of the Arabidopsis gene for jasmonic acid carboxyl methyltransferase (AtJMT) is involved in regulating jasmonate-related plant responses. To examine its role in the compositional profile of soybean (Glycine max), we compared the seeds from field-grown plants that over-express AtJMT with those of the non-transgenic, wild-type (WT) counterpart. Our analysis of chemical compositions included proximates, amino acids, fatty acids, isoflavones, and antinutrients. Overexpression of AtJMT in the seeds resulted in decreased amounts of tryptophan, palmitic acid, linolenic acid, and stachyose, but increased levels of gadoleic acid and genistein. In particular, seeds from the transgenic soybeans contained 120.0-130.5% more genistein and 60.5-82.1% less stachyose than the WT. A separate evaluation of ingredient values showed that all were within the reference ranges reported for commercially available soybeans, thereby demonstrating the substantial equivalence of these transgenic and non-transgenic seeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Planar chiral (η6-arene)Cr(CO)3 containing carboxylic acid derivatives: synthesis and use in the preparation of organometallic analogues of the antibiotic platensimycin.

    Science.gov (United States)

    Patra, Malay; Merz, Klaus; Metzler-Nolte, Nils

    2012-01-07

    With more and more organometallic compounds receiving attention for applications in medicinal organometallic chemistry, the need arises for stereoselective syntheses of more complicated structures containing organometallic moieties, for example as isosteric substitutes for organic drug candidates. Herein, the synthesis and characterization of both diastereomers of a planar chiral (η(6)-arene)Cr(CO)(3) containing carboxylic acid derivative, namely, 3-{η(6)-(1, 2, 3, 4-tetrahydro-1-endo/exo-methyl-2-oxonaphthalen-1-yl)-tricarbonylchromium(0)}propanoic acid (7 and 8) is reported. The molecular structures of both were confirmed by single crystal X-ray diffraction. The degree of diastereoselectivity in Cr(CO)(3) complexation with methyl/tert-butyl-3-(1,2,3,4-tetrahydro-1-methyl-2-oxonaphthalen-1-yl)propanoate (4a/4b) vs. the Michael addition of methyl/tert-butyl acrylate to (η(6)-1-methyl-2-tetralone)Cr(CO)(3) (9) was also examined. In the latter case the alkylation was found to be completely diastereoselective and gave methyl/tert-butyl-3-{η(6)-(1, 2, 3, 4-tetrahydro-1-endo-methyl-2-oxonaphthalen-1-yl)-tricarbonylchromium (0)}propanoate (5a and 5b) in excellent yield. Both the carboxylic acids 7 and 8 were coupled with the aminoresorcyclic acid core to achieve diastereomeric bioorganometallics 15a and 15b based on the naturally occurring antibiotic platensimycin lead structure (1a, see Fig. 1). The newly synthesized bioorganometallics were tested against various Gram-positive and Gram-negative bacterial strains but show no promising antibacterial activity.

  11. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole as a reactivity probe for the investigation of the thiol proteinases. evidence that ficin and bromelain may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain.

    Science.gov (United States)

    Shipton, M; Stuchbury, T; Brocklehurst, K

    1976-01-01

    1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed. PMID:11778

  12. From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.

    Science.gov (United States)

    Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M

    2004-04-30

    A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  13. From Labdanes to Drimanes. Degradation of the Side Chain of Dihydrozamoranic Acid.

    Directory of Open Access Journals (Sweden)

    Pedro M. Rocha

    2004-04-01

    Full Text Available A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  14. Synthesis, characterization and metal coordination of a potential β-lactamase inhibitor: 5-Methyl-2-phenoxymethyl-3-H-imidazole-4-carboxylic acid (PIMA

    Directory of Open Access Journals (Sweden)

    Chiara Romagnoli

    2017-12-01

    Full Text Available Among relevant metal ions in biological systems, zinc and iron play a key role as active partners of the catalytic machinery. In particular, the inhibition of metal enzymes that are involved in physiological and pathological processes has been deeply investigated for the rational design of selective and efficient drugs based on chelators. Since imidazole histidine residue is one of the most versatile sites in proteins, especially in enzymes acting in the presence of metal ions as cofactors, in this work the synthesis and characterization of a new imidazole derivative, namely 5-methyl-2-phenoxymethyl-3-H-imidazole-4-carboxylic acid (PIMA is reported. PIMA was designed as metallo-β-lactamase inhibitor thanks to its similarity with penicillin V, a β-lactam antibiotic inactivated by metallo-β-lactamase, for which there are no commercially available inhibitors. The evaluation of PIMA coordinating ability toward iron, zinc, and gallium, these latter selected as a non-paramagnetic probe for iron, is performed by theoretical DFT calculations and in solution by experimental techniques, i.e. potentiometry, UV–vis and NMR spectroscopy. PIMA exhibits an efficient metal chelating ability; the prevailing species in physiological condition are ML3 for Fe3+ and Ga3+ and ML2 for Zn2+, in which chelation is due to deprotonated carboxylic oxygen and imidazole nitrogen in the N,O donor set. The demonstrated ability of PIMA to chelate zinc ion, combined with its structure similarity with penicillin V, supports further exploration of this imidazole-4-carboxylate as metallo-β-lactamase inhibitor.

  15. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    Science.gov (United States)

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  16. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; Keiser, James R.

    2018-01-01

    Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.

  17. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    Science.gov (United States)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  18. An exposed carboxyl group on sialic acid is essential for gangliosides to inhibit calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase: relevance to gangliosidoses.

    Science.gov (United States)

    Ginzburg, Luba; Li, Su-Chen; Li, Yu-Teh; Futerman, Anthony H

    2008-01-01

    We previously observed that gangliosides GM2, GM1, and GM3 inhibit Ca2+-uptake via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in neurons and in brain microsomes. We now systematically examine the effect of various gangliosides and their analogs on Ca2+-uptake via SERCA and demonstrate that an exposed carboxyl group on the ganglioside sialic acid residue is required for inhibition. Thus, asialo-GM2 and asialo-GM1 have no inhibitory effect, and modifications of the carboxyl group of GM1 and GM2 into a hydroxymethyl residue (CH2OH), a methyl ester (COOCH3) or a taurine-conjugated amide (CONHCH2CH2SO3H) drastically diminish their inhibitory activities. We also demonstrate that the saccharides must be attached to a ceramide backbone in order to inhibit SERCA as the ceramide-free ganglioside saccharides only inhibit SERCA to a minimal extent. Finally, we attempted to use the ceramide-free ganglioside saccharides to antagonize the effects of the gangliosides on SERCA; although some reversal was observed, the inhibitory effects of the gangliosides were not completely abolished.

  19. Selective adsorption of aromatic acids by a nanocomposite based on magnetic carboxylic multi-walled carbon nanotubes and novel metal-organic frameworks

    Science.gov (United States)

    Li, Wen-kui; Zhang, Hai-xia; Shi, Yan-ping

    2017-09-01

    A novel magnetic adsorbent was designed and synthesized for adsorption and determination of hazardous aromatic acids (AAs) based on the zeolite imidazolate frameworks of Eu (ZIF-Eu), Fe3O4 and carboxyl multi-walled carbon nanotubes (MWCNTs-COOH). ZIF-Eu was fabricated for the first time, and Fe3O4 nanoparticles were encapsulated in MWCNTs-COOH, which made the separation procedure simple and easy-realizable. Adsorption experiments indicated that the adsorbent had superior affinity and selectivity to adsorbates with multi-ring, multi-carboxylic and electron-withdrawing group substituted structures, and it can achieve the selective adsorption of AAs from the aromatic mixture, the mechanism of which was evaluated and attributed to the intermolecular π-π electron-donor-acceptor (EDA) and hydrogen-bonding interactions. Seven AAs with different substituents were selected as target adsorbates to investigate the influences of critical experimental conditions on the adsorption efficiencies. Adsorption isotherms and kinetics were investigated and indicated that Dubinin-Ashtakhov model and pseudo-second-order model could well describe the adsorption of AAs on the nanocomposite. Adsorption thermodynamics study suggested that the adsorption reactions were spontaneous, endothermic and thermodynamically favorable. In addition, desorption conditions for AAs, and reusability of the novel adsorbent was evaluated, which confirmed the recyclability of the novel adsorbent.

  20. Inactivation of Ascaris suum by short-chain fatty acids

    Science.gov (United States)

    Ascaris suum eggs were inactivated in distilled water and digested sludge by butanoic, pentanoic and hexanoic acids. The fatty acids (FA) were only effective when protonated and at sufficient concentration. The conjugate bases were not effective at the concentrations evaluated. Predictions from an ...

  1. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  2. Experimental and Theoretical Studies on the Functionalization Reactions of 4-Benzoyl-1,5-Diphenyl-1H-Pyrazole-3-Carboxylic Acid and Acid Chloride with 2,3-Diaminopyridine

    Directory of Open Access Journals (Sweden)

    Elif Demir

    2005-03-01

    Full Text Available The 1H-pyrazole-3-carboxylic acid 2 was converted in good yield (69% into the corresponding 1H-pyrazole-3-carboxamide 5 via reaction of the acid chloride 3 with 2,3- diaminopyridine (4. A different product, the 3H-imidazo[4,5-b] pyridine derivative 6, was formed from the reaction of 3 with 4 and base in benzene for 5 hours. The structures of the synthesized compounds were determined spectroscopically. The mechanism of the reaction between 3 and 4 was examined theoretically.

  3. Determination of higher carboxylic acids in snow samples using solid-phase extraction and LC/MS-TOF.

    Science.gov (United States)

    Kippenberger, Matthias; Winterhalter, Richard; Moortgat, Geert K

    2008-12-01

    The objective of this work was to develop a method to determine the concentrations of higher organic acids in snow samples. The target species are the homologous aliphatic alpha,omega-dicarboxylic acids from C(5) to C(13), pinonic acid, pinic acid and phthalic acid. A preconcentration procedure utilizing solid phase extraction was developed and optimized using solutions of authentic standards. The influences of different parameters such as flow rate during extraction and the concentration of the eluent on the efficiency of the extraction procedure were investigated. The compounds of interest were separated by HPLC and detected by a quadrupole time-of-flight mass spectrometer (qTOF-MS). The recovery rate (extraction efficiency) of the extraction procedure was found to vary between 41% for tridecanedioic acid and 102% for adipic acid. The limits of detection were determined for all compounds and were between 0.9 nmol/L (dodecanedioic acid) and 29.5 nmol/L (pinonic acid). An exception is pinic acid, for which a considerably higher detection limit of 103.9 nmol/L was calculated. Snow samples were collected in December 2006 and January 2007 at the Fee glacier (Switzerland) from locations at heights from 3056 to 3580 m asl and from different depths within the snow layer. In total, the analysis of 61 single snow samples was performed, and the following compounds could be quantified: homologous aliphatic alpha,omega-dicarboxylic acids with 5-12 carbon atoms and phthalic acid. Tridecanedioic acid, pinonic and pinic acid were identified in the samples but were not quantified due to their low concentrations. The three most abundant acids found in the molten snow samples were glutaric acid (C(5)-di; 3.90 nmol/L), adipic acid (C(6)-di; 3.35 nmol/L) and phthalic acid (Ph; 3.04 nmol/L).

  4. Immune Modulation in Normal Human Peripheral Blood Mononuclear Cells (PBMCs) (Lymphocytes) in Response to Benzofuran-2-Carboxylic Acid Derivative KMEG during Spaceflight

    Science.gov (United States)

    Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu

    2017-08-01

    Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects

  5. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  6. Synthesis and structural characterization of derivatives of 2- and 3-benzo[b]furan carboxylic acids with potential cytotoxic activity.

    Science.gov (United States)

    Kossakowski, Jerzy; Ostrowska, Kinga; Hejchman, Elzbieta; Wolska, Irena

    2005-01-01

    Derivatives of 2- and 3-benzo[b]furancarboxylic acids were prepared and evaluated for their cytotoxic potential in the National Cancer Institute, Bethesda, USA. Six compounds: 7-acetyl-6-hydroxy-3-methyl-2-benzofurancarboxylic acid (2), 6-hydroxy-7-(p-methoxycinnamoyl)-3-methyl-2-benzofurancarboxylic acid (4), 5-bromo-7-hydroxy-6-methoxy-2-benzofurancarboxylic acid methyl ester (6a), 6-acetyl-5-(O-ethyl-2'-diethylamino)-2-methyl-3-benzofurancarboxylic acid methyl ester (1f), 6-(O-ethyl-2'-diethylamino)-7-p-methoxycinnamoyl)-3-methyl-2-benzofurancarboxylic acid methyl ester hydrochloride (4b), 5-bromo-7-(O-ethyl-2'-diethylamino)-6-methoxy-2-benzofurancarboxylic acid methyl ester (6b) showed significant cytotoxic activities against human cancer cell lines. In addition the crystal structures of 7-methoxy-2-benzofurancarboxylic acid methyl ester (7a) has been solved by X-ray structure analysis of single crystals.

  7. Long-Chain Perfluoroalkyl acids (PFAAs) Affect the Bioconcentration and Tissue Distribution of Short-Chain PFAAs in Zebrafish (Danio rerio).

    Science.gov (United States)

    Wen, Wu; Xia, Xinghui; Hu, Diexuan; Zhou, Dong; Wang, Haotian; Zhai, Yawei; Lin, Hui

    2017-11-07

    Short- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11). The results showed that the concentrations of the short-chain PFAAs in zebrafish tissues increased with exposure time until steady states reached in the absence of long-chain PFAAs. However, in the presence of long-chain PFAAs, these short-chain PFAAs in tissues increased until peak values reached and then decreased until steady states, and the uptake and elimination rate constants of short-chain PFAAs declined in all tissues and their BCF ss decreased by 24-89%. The inhibitive effect of long-chain PFAAs may be attributed to their competition for transporters and binding sites of proteins in zebrafish with short-chain PFAAs. These results suggest that the effect of long-chain PFAAs on the bioconcentration of short-chain PFAAs should be taken into account in assessing the ecological and environmental effects of short-chain PFAAs.

  8. Branched-chain amino acids for people with hepatic encephalopathy.

    Science.gov (United States)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo; Marchesini, Giulio; Borre, Mette; Aagaard, Niels Kristian; Vilstrup, Hendrik

    2017-05-18

    Hepatic encephalopathy is a brain dysfunction with neurological and psychiatric changes associated with liver insufficiency or portal-systemic shunting. The severity ranges from minor symptoms to coma. A Cochrane systematic review including 11 randomised clinical trials on branched-chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. We identified trials through manual and electronic searches in The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded and Conference Proceedings Citation Index - Science, and LILACS (May 2017). We included randomised clinical trials, irrespective of the bias control, language, or publication status. The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update of the review to include mortality (all cause), hepatic encephalopathy (number of people without improved manifestations of hepatic encephalopathy), and adverse events. The analyses included random-effects and fixed-effect meta-analyses. We performed subgroup, sensitivity, regression, and trial sequential analyses to evaluate sources of heterogeneity (including intervention, and participant and trial characteristics), bias (using The Cochrane Hepato-Biliary Group method), small-study effects, and the robustness of the results after adjusting for sparse data and multiplicity. We graded the quality of the evidence using the GRADE approach. We found 16 randomised clinical trials including 827 participants with hepatic encephalopathy classed as overt (12 trials) or minimal (four trials). Eight trials assessed oral BCAA supplements and seven trials assessed intravenous

  9. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit.

    Science.gov (United States)

    Shi, Hai-Yan; Zhang, Yu-Xing

    2014-06-01

    In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.

  10. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    Science.gov (United States)

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  11. Arabidopsis GUX Proteins Are Glucuronyltransferases Responsible for the Addition of Glucuronic Acid Side Chains onto Xylan

    Science.gov (United States)

    Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...

  12. The Effect of Acid-Base Interactions on Conformation of Adsorbed Polymer Chains

    Science.gov (United States)

    Dhopatkar, Nishad; Zhu, He; Dhinojwala, Ali

    Adsorption of polymer chains from solutions is of fundamental interest in polymer science. This absorption process is governed by the complex interplay between the solvent-polymer, polymer-substrate, and solvent-substrate interaction energies. In early 1970's, Fowkes and his coworkers have introduced the concept of acid base interactions in explaining why PMMA (basic) adsorption was extremely low on acidic substrates from acidic solvents. The acidic solvent molecules compete with the surface for binding with the basic polymer sites and this reduces the adsorption of PMMA. Here, by using interface-selective sum frequency generation spectroscopy (SFG) and attenuated-total-reflectance (ATR)-FTIR spectroscopy we directly measure whether the solvent or polymer molecules interact with the substrate in acidic, basic, and neutral solvents. Surprisingly, we find that the surface acidic site (hydroxyl) groups are still covered with PMMA chains in acidic solvent. The PMMA chains in acidic solvent adsorb with much higher fraction of chains as trains in comparison to loops and tails. Such differences in the static and dynamic conformations have consequences in understanding the exchange kinetics, colloidal stabilization, chromatographic separations, adhesion and friction, and stabilization of nanocomposites.

  13. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Science.gov (United States)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  14. Polyethylene Glycols as Efficient Media for Decarboxylative Nitration of α,β-Unsaturated Aromatic Carboxylic Acids by Ceric Ammonium Nitrate in Acetonitrile Medium: A Kinetic and Mechanistic Study

    Directory of Open Access Journals (Sweden)

    K. Ramesh

    2013-01-01

    Full Text Available Polyethylene glycols (PEGs were found to be efficient media for decarboxylative nitration of α,β-unsaturated aromatic carboxylic acids by ceric ammonium nitrate (CAN in acetonitrile to give β-nitrostyrene derivatives. Kinetics of the reaction exhibited second order kinetics with a first order dependence on [CAN] and [substrate]. Reactions were too sluggish to be studied in the absence of PEG; therefore detailed kinetics were not taken up. Reaction times were reduced from 24 hrs to few hours. The catalytic activity was found to be in the increasing order PEG-300 > PEG-400 > PEG-600 > PEG-200. Mechanism of PEG-mediated reactions was explained by Menger-Portnoy's scheme as applied in micellar kinetics.

  15. Influence of intramolecular hydrogen bonding interaction on the molecular properties of N-p-tolyl-5-oxo pyrrolidine-3-carboxylic acid: A theoretical and experimental study

    Science.gov (United States)

    Muthuraja, P.; Shanmugavadivu, T.; Joselin Beaula, T.; Bena Jothy, V.; Dhandapani, M.

    2018-01-01

    N-p-tolyl-5-oxo pyrrolidine-3-carboxylic acid (TOPCA) was synthesized by Michael addition-cyclo condensation. The molecular structure of TOPCA was optimized by B3LYP method with 6-311G(d,p) and aug-cc-pVDZ (Dunning) basis sets as well as CAM-B3LYP method with 6-311G(d,p) basis set. In addition, MEP, CHELPG and NBO analyses were carried out to understand the influence of hydrogen bonding interactions. The molecular structure of TOPCA is governed by intramolecular hydrogen bonding interactions (Csbnd H…O) which influence charge transfer in TOPCA. The Csbnd H…O interactions stimulate the emission property of TOPCA excited at 380 nm. Intramolecular H- bonding and charge transfer induce the second hyperpolarizability in TOPCA.

  16. Simple Formation of C60 and C60-Ferrocene Conjugated Monolayers Anchored onto Silicon Oxide with Five Carboxylic Acids and Their Transistor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Y Itoh; B Kim; R Gearba; N Tremblay; R Pindak; Y Matsuo; E Nakamura; C Nuckolls

    2011-12-31

    C{sub 60} and C{sub 60}-ferrocene conjugated molecule bearing five carboxylic acids successfully anchor onto a silicon oxide surface as a monolayer through a simple method of simply dipping an amino-terminated surface into the solution of the C{sub 60} derivatives. The monolayer structure was characterized by UV-vis spectroscopy, X-ray reflectivity, X-ray photoelectron spectroscopy, and IR spectroscopy to reveal that the molecules are standing presenting its C{sub 60} spherical face at the surface. The electronic effect of the C{sub 60} monolayer and the ferrocene-functionalized C{sub 60} monolayer in OFET devices was investigated. When an n-type OFET was fabricated on the ferrocene functionalized monolayer, we see an enhancement in the mobility. When a p-type OFET was made the ferrocene-functionalized C{sub 60} monolayer showed a lowering of the carrier mobility.

  17. Synthesis and structure activity relationship studies of 3-biaryl-8-oxa-bicyclo[3.2.1]octane-2-carboxylic acid methyl esters

    Science.gov (United States)

    Torun, Lokman; Madras, Bertha K.; Meltzer, Peter C.

    2012-01-01

    Stille cross coupling protocols were utilized for the synthesis of 3-(biaryl)-8-oxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid methyl esters, which furnished products in high yields where in some cases Suzuki coupling under the conditions utilized provided complex reaction mixture. Samarium iodide reduction of the resulting coupling products produced both of the 2β-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers and the 2α-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers. Among the series synthesized, the benzothiophene substituted compounds demonstrated significant binding profiles of inhibition of WIN 35,438 with 177 fold selectivity for DAT vs. SERT. PMID:22398259

  18. Synthesis and structure-activity relationship studies of 3-biaryl-8-oxabicyclo[3.2.1]octane-2-carboxylic acid methyl esters.

    Science.gov (United States)

    Torun, Lokman; Madras, Bertha K; Meltzer, Peter C

    2012-04-15

    Stille cross coupling protocols were utilized for the synthesis of 3-(biaryl)-8-oxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid methyl esters, which furnished products in high yields where in some cases Suzuki coupling under the conditions utilized provided complex reaction mixture. Samarium iodide reduction of the resulting coupling products produced both of the 2β-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers and the 2α-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers. Among the series synthesized, the benzothiophene substituted compounds demonstrated significant binding profiles of inhibition of WIN 35,438 with 177-fold selectivity for DAT versus SERT. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Efficient Aryl Migration from an Aryl Ether to a Carboxylic Acid Group To Form an Ester by Visible-Light Photoredox Catalysis.

    Science.gov (United States)

    Wang, Shao-Feng; Cao, Xiao-Ping; Li, Yang

    2017-10-23

    We have developed a highly efficient aryl migration from an aryl ether to a carboxylic acid group through retro-Smiles rearrangement by visible-light photoredox catalysis at ambient temperature. Transition metals and a stoichiometric oxidant and base are avoided in the transformation. Inspired by the high efficiency of this transformation and the fundamental importance of C-O bond cleavage, we developed a novel approach to the C-O cleavage of a biaryl ether to form two phenolic compounds, as demonstrated by a one-pot, two-step gram-scale reaction under mild conditions. The aryl migration exhibits broad scope and can be applied to the synthesis of pharmaceutical compounds, such as guacetisal. Primary mechanistic studies indicate that the catalytic cycle occurs by a reductive quenching pathway. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du

    2015-05-01

    Full Text Available A series of novel 3-(difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-ylphenyl-3-(difluoro-methyl-1-methyl-1H-pyrazole-4-carboxamide (9m exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  1. Synthesis and biological evaluation of 2-(phenyl-3H-benzo[d]imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents

    Directory of Open Access Journals (Sweden)

    Chandrabose Karthikeyan

    2017-05-01

    Full Text Available A series of novel substituted 2-(phenyl-3H-benzo[d]imidazole-5-carboxylic acids (1a–1j and its methyl esters (2a–2f were synthesized and examined for their antiproliferative effects against three breast cancer cell lines (MDA-MB231, MDA-MB468 and MCF7 in vitro. Most of the compounds exhibited comparable or greater antiproliferative effects than the reference compound cisplatin. Compound 2e bearing 5-fluoro-2-hydroxyphenyl substituent was found to be the most active derivative of the series with GI50 values of 6.23, 4.09 and 0.18 μM against MDA-MB468, MDA-MB231 and MCF7 breast cancer cell lines, respectively. Our findings described here exemplify the usefulness of the title compounds as a lead for the development of more effective cancer therapeutics for the treatment of breast cancer.

  2. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    Science.gov (United States)

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  4. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  5. 2-Amino-4-methylpyrimidine: A simple supramolecular scaffold for carboxylic acid complexes both in solid and solution states

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Mahapatra, Ajit, E-mail: mahapatra574@gmail.co [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Sahoo, Prithidipa; Goswami, Shyamaprosad [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Fun, Hoong-Kun [X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2011-01-15

    Studies concentrating on hydrogen bonding interactions between 2-amino-4-methylpyrimidine (AMPY) with selected dicarboxylic acids have been investigated in the solid state. Two pyrimidinium-dicarboxylate organic salts with stoichiometry 1:1 [AMPY: maleic acid] and 2:1 [AMPY:D(+)-malic acid] have been prepared and characterized by X-ray crystallographic analysis. Maleic and D(+)-malic acids were found to exhibit unique supramolecular polymeric structures with AMPY involving proton transfer to the specific ring nitrogen of AMPY. As an extension, AMPY has been used to build a receptor structure 1. Receptor 1 shows binding of dicarboxylic acids in CH{sub 3}CN and represents a marginal selectivity with D(+)-malic acid. Binding interactions were investigated by UV-vis and fluorescence studies.

  6. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Travis Nemkov

    2017-10-01

    Full Text Available State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome, though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.

  7. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    Science.gov (United States)

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  8. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny.

    Directory of Open Access Journals (Sweden)

    Emre Koyuncu

    Full Text Available Human cytomegalovirus hijacks host cell metabolism, increasing the flux of carbon from glucose to malonyl-CoA, the committed precursor to fatty acid synthesis and elongation. Inhibition of acetyl-CoA carboxylase blocks the production of progeny virus. To probe further the role of fatty acid metabolism during infection, we performed an siRNA screen to identify host cell metabolic enzymes needed for the production of infectious cytomegalovirus progeny. The screen predicted that multiple long chain acyl-CoA synthetases and fatty acid elongases are needed during infection, and the levels of RNAs encoding several of these enzymes were upregulated by the virus. Roles for acyl-CoA synthetases and elongases during infection were confirmed by using small molecule antagonists. Consistent with a role for these enzymes, mass spectrometry-based fatty acid analysis with ¹³C-labeling revealed that malonyl-CoA is consumed by elongases to produce very long chain fatty acids, generating an approximately 8-fold increase in C26-C34 fatty acid tails in infected cells. The virion envelope was yet further enriched in C26-C34 saturated fatty acids, and elongase inhibitors caused the production of virions with lower levels of these fatty acids and markedly reduced infectivity. These results reveal a dependence of cytomegalovirus on very long chain fatty acid metabolism.

  9. Dietary a-linolenic acid, linoleic acid, and n-3 long-chain PUFA and risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Vedtofte, Mia Sadowa; Jakobsen, Marianne Uhre; Lauritzen, Lotte

    2011-01-01

    n-3 (omega-3) PUFA has been proposed as having health-promoting effects, primarily in relation to ischemic heart disease (IHD). Whether these benefits can be achieved by both α-linolenic acid (ALA, 18:3n-3) and n-3 long-chain PUFA (LC-PUFA) is debatable.......n-3 (omega-3) PUFA has been proposed as having health-promoting effects, primarily in relation to ischemic heart disease (IHD). Whether these benefits can be achieved by both α-linolenic acid (ALA, 18:3n-3) and n-3 long-chain PUFA (LC-PUFA) is debatable....

  10. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  11. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez-Carrio

    2017-07-01

    Full Text Available A growing body of evidence highlights the relevance of free fatty acids (FFA for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1 in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.

  12. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  13. An organocatalytic Michael-cyclization cascade of 4-oxa-α,β-unsaturated carboxylic acids with aldehydes: facile synthesis of chiral γ-lactols and trisubstituted γ-lactones.

    Science.gov (United States)

    Lin, Jun-Bing; Xu, Shi-Ming; Xie, Ji-Kang; Li, Hong-Yu; Xu, Peng-Fei

    2015-02-28

    An organocatalytic Michael-cyclization cascade of aldehydes with 4-oxa-α,β-unsaturated carboxylic acids has been developed, giving functionalized γ-lactols with high yields and enantioselectivities. The products could be easily transformed into complex trisubstituted γ-lactones and γ-lactams.

  14. Solubilization of amphiphilic carboxylic acids in nonionic micelles: determination of partition coefficients from pKa measurements and NMR experiments.

    Science.gov (United States)

    Dupont-Leclercq, Laurence; Giroux, Sébastien; Henry, Bernard; Rubini, Patrice

    2007-10-09

    The solubilization of octylamidotartaric acid (C8T) and octanoic acid (C8C) in Triton X-100 and Brij 58 nonionic micelles has been studied by pHmetric and 1H NMR self-diffusion experiments. As both C8C and C8T exhibit acid-base properties, a distinction between the partition of the neutral acidic form, in terms of the partition coefficient KPH, and the partition of the charged basic form, in terms of the partition coefficient KP-, has been made. The acidity constants, Ka, of C8T and C8C in the presence of micelles have been evaluated from pHmetric experiments. For both solutes, an increase in the pKa is observed in micellar media due to the difference in the partition of acidic and basic forms of the solutes. A model has been developed to determine KPH and KP- from the pKa shifts observed. The values obtained by this pKa shift modeling method and those from self-diffusion coefficient measurements are in good agreement. The acidic form of C8C is incorporated to a larger extent into the Brij 58 micelles than the acidic form of C8T, whereas the opposite trend is observed for the basic forms. Both the acidic and basic forms of C8T are more easily incorporated into Brij 58 micelles than into Triton X-100 micelles. The influence of the structure of the polar head on the solubilization properties is demonstrated. Moreover, evidence for the localization of the solutes in the micelles is obtained from the comparison of the partition coefficients and from 1H NMR data.

  15. Main chain acid-degradable polymers for the delivery of bioactive materials

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  16. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.

    Science.gov (United States)

    Parsons, Cassandra V; Harris, Danielle M M; Patten, Cheryl L

    2015-09-01

    The soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine. Regulation of the IAA synthesis pathway by both aromatic and branched-chain amino acids suggests a broader role for this pathway in bacterial physiology, beyond plant interactions. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Structure--activity relationships in cephalosporins prepared from penicillins. 1. 7beta-Acylamino derivatives of 3-benzyl- and 3-(3-pyridylmethyl)ceph-3-em-4-carboxylic acids.

    Science.gov (United States)

    Brain, E G; Eglington, A J; Nayler, J H; Osborne, N F; Pearson, M J; Smale, T C; Southgate, R; Tolliday, P; Basker, M J; Sutherland, R

    1977-08-01

    tert-Butyl 7beta-aminoceph-3-em-4-carboxylates carrying either benzyl or 3-pyridylmethyl substituents at position 3 have been prepared by a multistep modification of the penicillin nucleus. Acylation of either amine, followed by deprotection, gave a range of new cephalosporins. The relationship between structure and antibacterial activity is discussed. D-Phenylglycine proved to be a preferred side chain in both series.

  18. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  19. Preparation of Higher Molecular Weight Poly (L-lactic Acid by Chain Extension

    Directory of Open Access Journals (Sweden)

    Chenguang Liu

    2013-01-01

    Full Text Available High molecular weight poly (lactic acid (PLA was obtained by chain extending with hexamethylene diisocyanate (HDI. The influences of the amount of chain extender, reaction time, and molecular weight changes of prepolymers on the poly(lactic acid were investigated. PLA prepolymer with a viscosity, average molecular weight (Mη of 2 × 104 g/mol was synthesized from l-lactide using stannous octoate as the catalyst. After 20 min of chain extension at 175°C, the resulting polymer had Mw of 20.3 × 104 g/mol and Mn of 10.5 × 104 g/mol. Both FT-IR and 1H-NMR verified that the structure of PLA did not change either before chain extending or after. The optically active characterized that the chain extending-product was left handed. DSC and XRD results showed that both the Tg and the crystallinity of PLA were lowered by chain-extension reaction. The crystalline transformation happened in PLA after chain extending, crystalline α′ form to α form.

  20. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes.

    Science.gov (United States)

    Hutson, Susan M; Sweatt, Andrew J; Lanoue, Kathryn F

    2005-06-01

    There are several features of the metabolism of the indispensable BCAAs that set them apart from other indispensable amino acids. BCAA catabolism involves 2 initial enzymatic steps that are common to all 3 BCAAs; therefore, the dietary intake of an individual BCAA impacts on the catabolism of all 3. The first step is reversible transamination followed by irreversible oxidative decarboxylation of the branched-chain alpha-keto acid transamination products, the branched chain alpha-keto acids (BCKAs). The BCAA catabolic enzymes are distributed widely in body tissues and, with the exception of the nervous system, all reactions occur in the mitochondria of the cell. Transamination provides a mechanism for dispersing BCAA nitrogen according to the tissue's requirements for glutamate and other dispensable amino acids. The intracellular compartmentalization of the branched-chain aminotransferase isozymes (mitochondrial branched-chain aminotransferase, cytosolic branched-chain aminotransferase) impacts on intra- and interorgan exchange of BCAA metabolites, nitrogen cycling, and net nitrogen transfer. BCAAs play an important role in brain neurotransmitter synthesis. Moreover, a dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their derivatives (e.g., BCKAs) results in neural dysfunction. The relatively low activity of catabolic enzymes in primates relative to the rat may make the human more susceptible to excess BCAA intake. It is hypothesized that the symptoms of excess intake would mimic the neurological symptoms of hereditary diseases of BCAA metabolism.

  1. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    Science.gov (United States)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  2. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.

    Science.gov (United States)

    Barany, George; Han, Yongxin; Hargittai, Balazs; Liu, Rong-Qiang; Varkey, Jaya T

    2003-01-01

    Many naturally occurring peptide acids, e.g., somatostatins, conotoxins, and defensins, contain a cysteine residue at the C-terminus. Furthermore, installation of C-terminal cysteine onto epitopic peptide sequences as a preliminary to conjugating such structures to carrier proteins is a valuable tactic for antibody preparation. Anchoring of N(alpha)-Fmoc, S-protected C-terminal cysteine as an ester onto the support for solid-phase peptide synthesis is known to sometimes occur in low yields, has attendant risks of racemization, and may also result in conversion to a C-terminal 3-(1-piperidinyl)alanine residue as the peptide chain grows by Fmoc chemistry. These problems are documented for several current strategies, but can be circumvented by the title anchoring strategy, which features the following: (a). conversion of the eventual C-terminal cysteine residue, with Fmoc for N(alpha)-amino protection and tert-butyl for C(alpha)-carboxyl protection, to a corresponding S-xanthenyl ((2)XAL(4)) preformed handle derivative; and (b). attachment of the resultant preformed handle to amino-containing supports. This approach uses key intermediates that are similar to previously reported Fmoc-XAL handles, and builds on earlier experience with Xan and related protection for cysteine. Implementation of this strategy is documented here with syntheses of three small model peptides, as well as the tetradecapeptide somatostatin. Anchoring occurs without racemization, and the absence of 3-(1-piperidinyl)alanine formation is inferred by retention of chains on the support throughout the cycles of Fmoc chemistry. Fully deprotected peptides, including free sulfhydryl peptides, are released from the support in excellent yield by using cocktails containing a high concentration (i.e., 80-90%) of TFA plus appropriate thiols or silanes as scavengers. High-yield release of partially protected peptides is achieved by treatment with cocktails containing a low concentration (i.e., 1-5%) of TFA. In

  3. Plasma phospholipid long-chain n-3 polyunsaturated fatty acids and body weight change

    DEFF Research Database (Denmark)

    Jakobsen, Marianne Uhre; Dethlefsen, Claus; Due, Karen Margrete

    2011-01-01

    We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers.......We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers....

  4. Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids

    Directory of Open Access Journals (Sweden)

    Todorov K.

    2009-12-01

    Full Text Available This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  5. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L.

    Science.gov (United States)

    Agrawal, V P; Lessire, R; Stumpf, P K

    1984-05-01

    The elongation system present in leek epidermal cells functions to synthesize very long chain fatty acids which, in turn, are the precursors to alkanes. The elongation system is microsomal, employs only saturated acyl components of the endogenous lipid pool as acceptors, utilizes malonyl-CoA as the C2 donor, has an absolute requirement for ATP, and is markedly inhibited by acetyl-ACP. Only saturated acyl-CoAs are readily elongated to very long chain fatty acids by malonyl-CoA in the absence of ATP. ACP is not required by the microsomal system.

  6. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  7. Dietary branched-chain amino acid (BCAA) and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  8. Diphenyl-benzo[1,3]dioxole-4-carboxylic acid pentafluorophenyl ester: a convenient catechol precursor in the synthesis of siderophore vectors suitable for antibiotic Trojan horse strategies.

    Science.gov (United States)

    Baco, Etienne; Hoegy, Françoise; Schalk, Isabelle J; Mislin, Gaëtan L A

    2014-02-07

    Catechols are components of many metal-chelating compounds, including siderophores that are naturally occurring iron(III) chelators excreted by microorganisms. Catechol derivatives are poorly soluble in organic media and the synthesis of catechol-containing molecules requires the use of protected catechol precursors with improved organic solubility. We therefore developed 2,2-diphenyl-benzo[1,3]dioxole-4-carboxylic acid pentafluorophenyl ester. This activated ester reacts with an amine functionalized scaffold to generate chelators in which the catechol functions are protected in the form of diphenyl-benzodioxole moieties. The catechol can subsequently be deprotected, at the end of the synthesis, with trifluoroacetic acid (TFA). This strategy was applied to the synthesis of two catechol compounds functionalized with a terminal propargyl extension. These two compounds were shown to promote iron uptake in Escherichia coli and Pseudomonas aeruginosa. These two compounds are suitable for use as vectors in antibiotic Trojan horse approaches, as they could be conjugated with azide-functionalized antibiotics using the Huisgen dipolar 1,3-cycloaddition.

  9. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives.

    Science.gov (United States)

    Mert, Samet; Kasımoğulları, Rahmi; İça, Tuba; Çolak, Ferdağ; Altun, Ahmet; Ok, Salim

    2014-05-06

    A series of pyrazole-3-carboxylic acid and pyrazole-3,4-dicarboxylic acid derivatives were synthesized, the structures were confirmed by their NMR ((1)H and (13)C) and FT-IR spectra, and elemental analyses. The antibacterial and antifungal activities of the compounds against five bacterial and five fungal pathogens were screened using modified agar well diffusion assay. Most of the molecules have inhibitory effects on both standard and clinical Candida albicans strains. However, only the molecules 8, 10, 21, and 22 demonstrate some inhibitory effects on Candida parapsilosis, Candida tropicalis, and Candida glabrata strains. The structure-antifungal activity relationships of the compounds on the C. albicans strains were investigated by electron-conformational method. The pharmacophores and antipharmacophores responsible for the inhibition and non-inhibition of the C. albicans strains were obtained by electronic and geometrical characteristics of the reactive fragments of the molecules. These fragments along with the associated parameters can be used in designing the future more potent antifungal agents. It has been shown that both the positions of electronegative atoms like F and O in the pyrazole substituents and the amount of the associated charges on such atoms are crucial in regulating the strength of antifungal activity for the C. albicans strain. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4-thiazolidine-carboxylic acid treatments: effect in the proteome.

    Science.gov (United States)

    Clemente-Moreno, María José; Díaz-Vivancos, Pedro; Rubio, Manuel; Fernández-García, Nieves; Hernández, José A

    2013-03-01

    Sharka, a disease caused by plum pox virus (PPV), has a significant economic impact on fruit tree production. In this work, we analysed the effect of (2,1,3)-benzothiadiazole (BTH) and L-2-oxo-4-thiazolidine-carboxylic acid (OTC) on plant growth and virus content. OTC reduced sharka symptom, stimulated plant growth and alleviated PPV-induced oxidative stress, indicated by a lack of changes in some oxidative stress parameters. PPV infection reduced chloroplast electron transport efficiency. However, in the presence of BTH or OTC, no changes in the chlorophyll fluorescence parameters were observed. PPV produced an alteration in chloroplast ultrastructure, giving rise to a decrease in starch contents that was less dramatic in OTC-treated plants. Furthermore, PPV reduced the abundance of proteins associated with photosynthesis, carbohydrate and amino acid metabolism and photorespiration. These changes did not take place in OTC-treated plants, and increases in the expression of proteins related with the aforementioned processes, including ADP-glucose pyrophosphorylase, were produced, which correlated with the lower decrease in starch contents observed in PPV-infected plants treated with OTC. The results suggested that OTC treatment provides protection to the photosynthetic machinery and/or the chloroplast metabolism in PPV-infected peaches. Thus, OTC could have practical implications in agriculture in improving the vigour of different plant species as well as in immunizing plants against pathogens. © 2012 Blackwell Publishing Ltd.

  11. The cellulose synthase 3 (CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides.

    Science.gov (United States)

    Blum, Mathias; Gamper, Hannes A; Waldner, Maya; Sierotzki, Helge; Gisi, Ulrich

    2012-04-01

    Proper disease control is very important to minimize yield losses caused by oomycetes in many crops. Today, oomycete control is partially achieved by breeding for resistance, but mainly by application of single-site mode of action fungicides including the carboxylic acid amides (CAAs). Despite having mostly specific targets, fungicidal activity can differ even in species belonging to the same phylum but the underlying mechanisms are often poorly understood. In an attempt to elucidate the phylogenetic basis and underlying molecular mechanism of sensitivity and tolerance to CAAs, the cellulose synthase 3 (CesA3) gene was isolated and characterized, encoding the target site of this fungicide class. The CesA3 gene was present in all 25 species included in this study representing the orders Albuginales, Leptomitales, Peronosporales, Pythiales, Rhipidiales and Saprolegniales, and based on phylogenetic analyses, enabled good resolution of all the different taxonomic orders. Sensitivity assays using the CAA fungicide mandipropamid (MPD) demonstrated that only species belonging to the Peronosporales were inhibited by the fungicide. Molecular data provided evidence, that the observed difference in sensitivity to CAAs between Peronosporales and CAA tolerant species is most likely caused by an inherent amino acid configuration at position 1109 in CesA3 possibly affecting fungicide binding. The present study not only succeeded in linking CAA sensitivity of various oomycetes to the inherent CesA3 target site configuration, but could also relate it to the broader phylogenetic context. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea.

    Science.gov (United States)

    Deng, Wei-Wei; Wang, Rongxiu; Yang, Tianyuan; Jiang, Li'na; Zhang, Zheng-Zhu

    2017-12-20

    Methyl salicylate (MeSA) is one of the volatile organic compounds (VOCs) that releases floral scent and plays an important role in the sweet flowery aroma of tea. During the withering process for white tea producing, MeSA was generated by salicylic acid carboxyl methyltransferase (SAMT) with salicylic acid (SA), and the specific floral scent was formed. In this study, we first cloned a CsSAMT from tea leaves (GenBank accession no. MG459470) and used Escherichia coli and Saccharomyces cerevisiae to express the recombinant CsSAMT. The enzyme activity in prokaryotic and eukaryotic expression systems was identified, and the protein purification, substrate specificity, pH, and temperature optima were investigated. It was shown that CsSAMT located in the chloroplast, and the gene expression profiles were quite different in tea organs. The obtained results might give a new understanding for tea aroma formation, optimization, and regulation and have great significance for improving the specific quality of white tea.

  13. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications.

    Science.gov (United States)

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.

  14. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.

    Science.gov (United States)

    Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M

    2017-02-01

    New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC50=1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Temperature and pH responsiveness of poly-(DMAA-co-unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kakinoki, Sachiro; Kaetsu, Isao E-mail: kaetsu@ned.kindai.ac.jp; Nakayama, Masashi; Sutani, Kouichi; Uchida, Kumao; Yukutake, Kouji

    2003-07-01

    Stimuli-responsive polyampholyte hydrogels were synthesized by the copolymerization of dimethylaminoethyl methacrylate (DMAA) and acrylic acid (AAc) or itaconic acid (IAc) by UV-irradiation. Temperature and pH responsiveness of these hydrogels were studied. The temperature responsiveness of poly-(DMAA-co-AAc, IAc) hydrogels shown in change of water content became dull compared to that of DMAA homo-polymer hydrogel. The water content of the poly-(DMAA-co-AAc, IAc) hydrogels showed a minimum at pH 8, and increased in more acidic and alkaline regions. This fact can be attributed to the coexistence of anions and cations in the poly-(DMAA-co-AAc, IAc) hydrogels. The poly-(DMAA-co-AAc, IAc) hydrogels were polyampholyte having both temperature responsiveness and pH responsiveness.

  16. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability......Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...

  17. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  18. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  19. Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design.

    Science.gov (United States)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel; Ballet, Steven; Tourwé, Dirk

    2016-12-22

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors.

  20. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of carboxylic acid derivatives as Histone Deacetylase inhibitors and cytotoxic agents.

    Science.gov (United States)

    Abdel-Atty, Mona M; Farag, Nahla A; Kassab, Shaymaa E; Serya, Rabah A T; Abouzid, Khaled A M

    2014-12-01

    In this study, five series of (E)-6-(4-substituted phenyl)-4-oxohex-5-enoic acids IIb-f (E), (E)-3-(4-(substituted)-phenyl)acrylic acids IIIa-g (E), 4-(4-(substituted)phenylamino)-4-oxobutanoic acids VIa,b,e, 5-(4-(substituted)phenylamino)-5-oxopentanoic acids VIIa,f and 2-[(4-(substituted)phenyl) carbamoyl]benzoic acids VIIIa,e were designed and synthesized. Selected compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumor cell lines. Compound IIf (E) displayed significant inhibitory activity against NCI Non-Small Cell Lung A549/ATCC Cancer cell line (68% inhibition) and NCI-H460 Cancer cell line (66% inhibition). Moreover, the final compounds were evaluated in vitro for their cytotoxic activity on HepG2 Cancer cell line in which histone deacetylase (HDAC) is overexpressed. Compounds IIc (E), IIf (E), IIIb (E), and IIIg (E) exhibited the highest cytotoxic activity against HepG2 human cancer cell lines with IC50 ranging from 2.27 to 10.71μM. In addition, selected compounds were tested on histone deacetylase isoforms (HDAC1-11). Molecular docking simulation was also carried out for HDLP enzyme to investigate their HDAC binding affinity. In addition, generation of 3D-pharmacophore model and quantitative structure activity relationship (QSAR) models were combined to explore the structural requirements controlling the observed cytotoxic properties. Copyright © 2014 Elsevier Inc. All rights reserved.