WorldWideScience

Sample records for chain 1h 13c

  1. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    Science.gov (United States)

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  2. Accurate Determination of Leucine and Valine Side-chain Conformations using U-[15N/13C/2H]/[1H-(methine/methyl)-Leu/Val] Isotope Labeling, NOE Pattern Recognition, and Methine Cγ-Hγ/Cβ-Hβ Residual Dipolar Couplings

    International Nuclear Information System (INIS)

    Tang, Chun; Iwahara, Junji; Clore, G. Marius

    2005-01-01

    An isotope labeling scheme is described in which specific protonation of methine and methyl protons of leucine and valine is obtained on a 15 N/ 13 C labeled background with uniform deuteration of all other non-exchangeable protons. The presence of a protonated methine group has little effect on the favorable relaxation properties of the methyl protons of Leu and Val. This labeling scheme permits the rotameric state of leucine side-chains to be readily determined by simple inspection of the pattern of Hγ(i)-H N (i) and Hγ(i)-H N (i+1) NOEs in a 3D 15 N-separated NOE spectrum free of complications arising from spectral overlap and spin-diffusion. In addition, one-bond residual dipolar couplings for the methine 13 C- 1 H bond vectors of Leu and Val can be accurately determined from an intensity J-modulated constant-time HCCH-COSY experiment and used to accurately orient the side-chains of Leu and Val. Incorporation of these data into structure refinement improves the accuracy with which the conformations of Leu and Val side-chains can be established. This is important to ensure optimal packing both within the protein core and at intermolecular interfaces. The impact of the method on protein structure determination is illustrated by application to enzyme IIA Chitobiose , a 34 kDa homotrimeric phosphotransferase protein

  3. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    Science.gov (United States)

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  4. 13C, 1H spin-spin coupling constants. Pt. 4

    International Nuclear Information System (INIS)

    Aydin, R.; Guenther, H.

    1979-01-01

    One-bond, geminal, and vicinal 13 C, 1 H coupling constants have been determined for adamantane using α-and β-[D]adamantane and the relation sup(n)J( 13 C, 1 H)=6,5144sup(n)J( 13 C, 2 H) for the conversion of the measured sup(n)J( 13 C, 2 H) values. It is shown that the magnitude of 3 Jsub(trans) is strongly influenced by the substitution pattern. Relative H,D isotope effects for 13 C chemical shifts are given. (orig.) [de

  5. 1H, 15N and 13C backbone and side-chain resonance assignments of a family 32 carbohydrate-binding module from the Clostridium perfringens NagH.

    Science.gov (United States)

    Grondin, Julie M; Chitayat, Seth; Ficko-Blean, Elizabeth; Boraston, Alisdair B; Smith, Steven P

    2012-10-01

    The Gram-positive anaerobe Clostridium perfringens is an opportunistic bacterial pathogen that secretes a battery of enzymes involved in glycan degradation. These glycoside hydrolases are thought to be involved in turnover of mucosal layer glycans, and in the spread of major toxins commonly associated with the development of gastrointestinal diseases and gas gangrene in humans. These enzymes employ multi-modularity and carbohydrate-binding function to degrade extracellular eukaryotic host sugars. Here, we report the full (1)H, (15)N and (13)C chemical shift resonance assignments of the first family 32 carbohydrate-binding module from NagH, a secreted family 84 glycoside hydrolase.

  6. Detailed {sup 1}H and {sup 13}C NMR spectral data assignment for two dihydrobenzofuran neolignans

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M., E-mail: millercrotti@ffclrp.usp.br [Universidade de São Paulo (USP), Ribeirão Preto, SP (Brazil). Faculdade de Filosofia, Ciências e Letras. Departamento de Química

    2016-07-01

    In this work we present a complete proton ({sup 1}H) and carbon 13 ({sup 13}C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled {sup 13}C ({sup 13}C{"1H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the {sup 1}H and {sup 13}C chemical shifts and showed good agreement with the trans configuration of the substituents at C{sub 7} and C{sub 8}. (author)

  7. Detailed 1H and 13C NMR spectral data assignment for two dihydrobenzofuran neolignans

    International Nuclear Information System (INIS)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M.

    2016-01-01

    In this work we present a complete proton ( 1 H) and carbon 13 ( 13 C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled 13 C ( 13 C{ 1 H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the 1 H and 13 C chemical shifts and showed good agreement with the trans configuration of the substituents at C 7 and C 8 . (author)

  8. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  9. Pectins from apple pomace - characterization by 13C and 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Marcon, M.V.; Carneiro, P.I.B.; Wosiacki, G.; Beleski-Carneiro, E.; Petkowicz, C.L.O.

    2005-01-01

    Pectins were extracted from apple pomace flour with 5% (w/v) aqueous citric acid solutions under different time and temperature according to an experimental design (factorial 2 2 with triplicate of central point). Monosaccharide composition of fractions was determined by colorimetric analysis and gas chromatography. The structure of pectins was studied by NMR spectroscopy. The degree of esterification (DE=30.5-55.9), determined by FT-IR spectroscopy, was indirectly correlated with increasing temperature and time of extraction, showing that drastic conditions for extraction promote hydrolysis of esterified units. High content of galacturonic acid is consistent with the smooth region of the polysaccharide. 13 C and 1 H NMR spectroscopy confirmed the presence of uronic acids in the free and methyl ester forms. NMR data also showed the presence of arabinan and galactan as side chains. (author)

  10. Perdeuteration and methyl-selective 1H, 13C-labeling by using a Kluyveromyces lactis expression system

    International Nuclear Information System (INIS)

    Miyazawa-Onami, Mayumi; Takeuchi, Koh; Takano, Toshiaki; Sugiki, Toshihiko; Shimada, Ichio; Takahashi, Hideo

    2013-01-01

    The production of stable isotope-labeled proteins is critical in structural analyses of large molecular weight proteins using NMR. Although prokaryotic expression systems using Escherichia coli have been widely used for this purpose, yeast strains have also been useful for the expression of functional eukaryotic proteins. Recently, we reported a cost-effective stable isotope-labeled protein expression using the hemiascomycete yeast Kluyveromyces lactis (K. lactis), which allow us to express exogenous proteins at costs comparable to prokaryotic expression systems. Here, we report the successful production of highly deuterated (>90 %) protein in the K. lactis system. We also examined the methyl-selective 1 H, 13 C-labeling of Ile, Leu, and Val residues using commonly used amino acid precursors. The efficiency of 1 H- 13 C-incorporation varied significantly based on the amino acid. Although a high level of 1 H- 13 C-incorporation was observed for the Ile δ1 position, 1 H, 13 C-labeling rates of Val and Leu methyl groups were limited due to the mitochondrial localization of enzymes involved in amino acid biosynthesis and the lack of transporters for α-ketoisovalerate in the mitochondrial membrane. In line with this notion, the co-expression with branched-chain-amino-acid aminotransferase in the cytosol significantly improved the incorporation rates of amino acid precursors. Although it would be less cost-effective, addition of 13 C-labeled valine can circumvent problems associated with precursors and achieve high level 1 H, 13 C-labeling of Val and Leu. Taken together, the K. lactis system would be a good alternative for expressing large eukaryotic proteins that need deuteration and/or the methyl-selective 1 H, 13 C-labeling for the sensitive detection of NMR resonances

  11. Direct 13C-1H coupling constants in the vinyl group of 1-vinylpyrazoles

    International Nuclear Information System (INIS)

    Afonin, A.V.; Voronov, V.K.; Es'kova, L.A.; Domnina, E.S.; Petrova, E.V.; Zasyad'ko, O.V.

    1987-01-01

    In a continuation of a study of the rotational isomerism of 1-vinylpyrazoles, they studied the direct 13 C- 1 H coupling constants in the vinyl group of 1-vinylpyrazole, 1-vinyl-4-bromopyrazole, 1-vinyl-3-methylpyrazole, 1-vinyl-5-methylpyrazole, 1-vinyl-3,5-dimethylpyrazole, and 1-vinyl-4-nitro-3,5-dimethylpyrazole. The 13 C- 1 H direct coupling constants in the vinyl group of 1-vinylpyrazoles are stereo-specific and vary with change in the conformer ratio

  12. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  13. (1 H, 13 C and 31 P) NMR of phosphonic acid derivatives

    International Nuclear Information System (INIS)

    Campos, Valdevino; Costa, Valentim E. Uberti

    1991-01-01

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. 1 H, 13 C and mainly 31 P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes

  14. Mono terpenes characterization by {sup 1} H and {sup 13} C-1 NMR; Caracterizacao de monoterpenos por RMN - {sup 1} H e de {sup 13} C-1

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Martha T. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Fisico-Quimica; Silveira, Carmen L.P. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Quimica Organica; Mcchesney, James D [Mississippi Univ., University, MS (United States). Research Inst. of Pharmaceutical Sciences

    1992-12-31

    Artemisinine, a new lactone sesquiterpene containing one peroxide binding, is the main anti malarial agent obtained from the Artemisia annua L. Viewing to obtain a simple synthetic route for artemisinic acid preparation, which is the key intermediary for total synthesis of this type of anti malarial agent, R-carvone has been chosen as starting material. The S-carvone was used as model for reaction optimization and preparation of derivatives to be used for NMR studies. The main objective of this work is the signalling of the {sup 13} C and {sup 1} H NMR spectra, using the 2 D-COSY and 2 D-Hector spectra 4 refs., 3 figs., 1 tab

  15. Characterization of two minor saponins from Cordia piauhiensis by 1H and 13C NMR spectroscopy.

    Science.gov (United States)

    Santos, Renata P; Silveira, Edilberto R; Lemos, Telma Leda G; Viana, Francisco Arnaldo; Braz-Filho, Raimundo; Pessoa, Otília Deusdênia L

    2005-06-01

    A careful NMR analysis with full assignment of the 1H and 13C spectral data for two minor saponins isolated from stems of Cordia piauhiensis is reported. These saponins were isolated by high-performance liquid chromatography and characterized as 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]pomolic acid 28-O-[beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (1) and 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]oleanolic acid 28-O-[beta-D-xylopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (2). Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, NOESY, gs-HMQC and gs-HMBC) NMR techniques, electrospray ionization mass spectrometry and chemical evidence. Copyright 2005 John Wiley & Sons, Ltd.

  16. 1H and 13C NMR spectral data of new saponins from Cordia piauhiensis.

    Science.gov (United States)

    Santos, Renata P; Silveira, Edilberto R; Uchôa, Daniel Esdras de A; Pessoa, Otília Deusdênia L; Viana, Francisco Arnaldo; Braz-Filho, Raimundo

    2007-08-01

    Two new bidesmoside triterpenoid saponins were isolated from stems of Cordia piauhiensis. Their structures, characterized as 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl pomolic acid 28-O-beta-D-glucopyranosyl ester (1) and 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (2), were unequivocally established after extensive NMR (1H, 13C, DEPT 135 degrees, COSY, HSQC, HMBC, TOCSY, and NOESY) studies. Copyright 2007 John Wiley & Sons, Ltd.

  17. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    Science.gov (United States)

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  18. Accurate Determination of Leucine and Valine Side-chain Conformations using U-[{sup 15}N/{sup 13}C/{sup 2}H]/[{sup 1}H-(methine/methyl)-Leu/Val] Isotope Labeling, NOE Pattern Recognition, and Methine C{gamma}-H{gamma}/C{beta}-H{beta} Residual Dipolar Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Iwahara, Junji; Clore, G. Marius [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2005-10-15

    An isotope labeling scheme is described in which specific protonation of methine and methyl protons of leucine and valine is obtained on a {sup 15}N/{sup 13}C labeled background with uniform deuteration of all other non-exchangeable protons. The presence of a protonated methine group has little effect on the favorable relaxation properties of the methyl protons of Leu and Val. This labeling scheme permits the rotameric state of leucine side-chains to be readily determined by simple inspection of the pattern of H{gamma}(i)-H{sub N}(i) and H{gamma}(i)-H{sub N}(i+1) NOEs in a 3D {sup 15}N-separated NOE spectrum free of complications arising from spectral overlap and spin-diffusion. In addition, one-bond residual dipolar couplings for the methine {sup 13}C-{sup 1}H bond vectors of Leu and Val can be accurately determined from an intensity J-modulated constant-time HCCH-COSY experiment and used to accurately orient the side-chains of Leu and Val. Incorporation of these data into structure refinement improves the accuracy with which the conformations of Leu and Val side-chains can be established. This is important to ensure optimal packing both within the protein core and at intermolecular interfaces. The impact of the method on protein structure determination is illustrated by application to enzyme IIA{sup Chitobiose}, a 34 kDa homotrimeric phosphotransferase protein.

  19. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail...... of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized 1H-13C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer...... samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for down-stream process output such as ethanol production from starch. Thus, high...

  20. Complete 1H and 13C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    International Nuclear Information System (INIS)

    Johann, Susana; Smania Junior, Artur; Branco, Alexsandro

    2007-01-01

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ( 1 H NMR, { 1 H} -13 C NMR, and APT -13 C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete 1 H and 13 C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  1. Magnetic field dependent 13C and 1H CIDNP from biradicals. The role of the hyperfine coupling constant

    International Nuclear Information System (INIS)

    Kanter, F.J.J. de; Sagdeev, R.Z.

    1978-01-01

    Magnetic field dependent biradical CIDNP has been observed in the natural abundance 13 C and 1 H NMR spectra taken immediately after irradiation of cyclic ketones in an auxillary magnet. The 13 C field dependence curves differ from the corresponding 1 H curves: The maxima of the curves for the C 11 and C 12 biradicals appear at a higher magnetic field strength, and the 13 C curves are broader than the 1 H curves. These differences are due to the different magnitudes of the hyperfine coupling constants for 13 C and 1 H and can be accounted for by a model based on a stochastic Liouville method which incorporates the dynamics of the biradicals. (Auth.)

  2. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance 13C chemical shift editing of 1H-1H COSY spectra

    International Nuclear Information System (INIS)

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P.

    1989-01-01

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with 13 C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs

  3. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  4. Measurement of {sup 1}H-{sup 15}N and {sup 1}H-{sup 13}C residual dipolar couplings in nucleic acids from TROSY intensities

    Energy Technology Data Exchange (ETDEWEB)

    Ying Jinfa [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Wang Jinbu [National Cancer Institute, National Institutes of Health, Structural Biophysics Laboratory (United States); Grishaev, Alex [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Yu Ping; Wang Yunxing [National Cancer Institute, National Institutes of Health, Structural Biophysics Laboratory (United States); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2011-09-15

    Analogous to the recently introduced ARTSY method for measurement of one-bond {sup 1}H-{sup 15}N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base {sup 13}C-{sup 1}H and {sup 15}N-{sup 1}H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in {sup 1}H-{sup 15}N and {sup 13}C-{sup 1}H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional frequency-based measurements in terms of completeness and convenience of use. The ARTSY method derives the size of the coupling from the ratio of intensities observed in two TROSY-HSQC spectra recorded with different dephasing delays, thereby minimizing potential resonance overlap problems. Precision of the RDC measurements is limited by the signal-to-noise ratio, S/N, achievable in the 2D TROSY-HSQC reference spectrum, and is approximately given by 30/(S/N) Hz for {sup 15}N-{sup 1}H and 65/(S/N) Hz for {sup 13}C-{sup 1}H. The signal-to-noise ratio of both {sup 1}H-{sup 15}N and {sup 1}H-{sup 13}C spectra greatly benefits when water magnetization during the experiments is not perturbed, such that rapid magnetization transfer from bulk water to the nucleic acid, mediated by rapid amino and hydroxyl hydrogen exchange coupled with {sup 1}H-{sup 1}H NOE transfer, allows for fast repetition of the experiment. RDCs in the mutated helix 1 of the riboswitch are compatible with nucleotide-specifically modeled, idealized A-form geometry and a static orientation relative to the helix 2/3 pair, which differs by ca 6 Degree-Sign relative to the X-ray structure of the native riboswitch.

  5. Biosynthetic studies of the glycopeptide teicoplanin by 1H and 13C NMR

    DEFF Research Database (Denmark)

    Heydorn, Arne; Petersen, Bent O.; Duus, Jens Øllgaard

    2000-01-01

    The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-13C]glucose or 9.7% [U- 13C]glucose. The fractional enrichment pattern of teicoplanin produced in th...

  6. ({sup 1} H, {sup 13} C and {sup 31} P) NMR of phosphonic acid derivatives; Ressonancia magnetica nuclear ({sup 1} H, {sup 13} C, {sup 31} P) de derivados do acido fosfonico

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Valdevino; Costa, Valentim E. Uberti [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Quimica

    1992-12-31

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. {sup 1} H, {sup 13} C and mainly {sup 31} P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes 2 refs., 4 figs., 1 tab.

  7. Prototropic tautomerism of 5-nitrobenzimidazole derivatives in {sup 1}H, {sup 13}C and {sup 15}N NMR spectra; Tautomeria prototropowa pochodnych 5-nitrobenzimidazolu w widmach {sup 1}H, {sup 13}C, {sup 15}N NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wiench, J W; Bocian, W; Stefaniak, L [Inst. Chemii Organicznej, Polska Akademia Nauk, Warsaw (Poland)

    1994-12-31

    NMR spectra of 5-nitrobenzimidazole derivatives in DMSO solution show the fast exchange of protons. The line broadening in {sup 1}H,{sup 13}C and {sup 15}N spectra have been observed. The interpretation of the spectra has been done basing on chemical shifts values and couplings between nuclei in the investigated derivatives. 3 refs, 2 figs, 3 tabs.

  8. Complete {sup 1}H and {sup 13}C NMR structural assignments for a group of four goyazensolide-type furanoheliangolides

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Carolina Ferreira; Silva, Aline Nazare; Matos, Priscilla Mendonca; Silva, Eder Henrique da; Heleno, Vladimir Constantino Gomes [Universidade de Franca, Franca, SP (Brazil). Nucleo de Pesquisas em Ciencias Exatas e Tecnologicas; Lopes, Norberto Peporine; Lopes, Joao Luis Callegari [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas de Ribeirao Preto. Dept. de Quimica e Fisica; Sass, Daiane Cristina, E-mail: vheleno_05@yahoo.com.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Quimica

    2012-07-01

    Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. {sup 1}H NMR, {sup 13}C NMR {l_brace}{sup 1}H{r_brace}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables (author)

  9. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes

    Science.gov (United States)

    Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da

    2018-04-01

    The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.

  10. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  11. Complexation of rhodium(II) tetracarboxylates with aliphatic diamines in solution: 1H and 13C NMR and DFT investigations.

    Science.gov (United States)

    Jaźwiński, Jarosław; Sadlej, Agnieszka

    2013-10-01

    The complexation of rhodium(II) tetraacetate, tetrakistrifluoroaceate and tetrakisoctanoate with a set of diamines (ethane-1,diamine, propane-1,3-diamine and nonane-1,9-diamine) and their N,N'-dimethyl and N,N,N',N'-tetramethyl derivatives in chloroform solution has been investigated by (1) H and (13) C NMR spectroscopy and density functional theory (DFT) modelling. A combination of two bifunctional reagents, diamines and rhodium(II) tetracarboxylates, yielded insoluble coordination polymers as main products of complexation and various adducts in the solution, being in equilibrium with insoluble material. All diamines initially formed the 2 : 1 (blue), (1 : 1)n oligomeric (red) and 1 : 2 (red) axial adducts in solution, depending on the reagents' molar ratio. Adducts of primary and secondary diamines decomposed in the presence of ligand excess, the former via unstable equatorial complexes. The complexation of secondary diamines slowed down the inversion at nitrogen atoms in NH(CH3 ) functional groups and resulted in the formation of nitrogenous stereogenic centres, detectable by NMR. Axial adducts of tertiary diamines appeared to be relatively stable. The presence of long aliphatic chains in molecules (adducts of nonane-1,9-diamines or rhodium(II) tetrakisoctanoate) increased adduct solubility. Hypothetical structures of the equatorial adduct of rhodium(II) tetraacetate with ethane-1,2-diamine and their NMR parameters were explored by means of DFT calculations. Copyright © 2013 John Wiley & Sons, Ltd.

  12. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete 1H and 13C chemical shift assignments.

    Science.gov (United States)

    Almeida, Macia C S DE; Souza, Luciana G S; Ferreira, Daniele A; Pinto, Francisco C L; Oliveira, Débora R DE; Santiago, Gilvandete M P; Monte, Francisco J Q; Braz-Filho, Raimundo; Lemos, Telma L G DE

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the 1H and 13C NMR spectra.

  13. Tunable 13C/1H dual channel matching circuit for dynamic nuclear polarization system with cross-polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    In this paper we report initial results of design and practical implementation of tuning and matching circuit to estimate a performance of Dynamic Nuclear Polarization (DNP) at a magnetic field of 6.7 T. It is shown that developed circuit for signal observation is compact, easy to make and provides....... Measurement results with a tuning and matching circuit prototype are presented including obtained spectra (13C and 1H) and estimation of the signal-to-noise ratio....

  14. /sup 1/H and /sup 13/C nuclear magnetic resonance study of the complexation of uranyl ion with malic acid

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, M T [Junta de Energia Nuclear, Sacavem (Portugal). Lab. de Fisica e Engenharia Nucleares; Gil, V M.S. [Aveiro Univ. (Portugal). Dept. of Chemistry; Xavier, A V [Departamento de Quimica e Biotecnia, FCT, UNL, (Portugal)

    1982-04-15

    A full pH range /sup 1/H and /sup 13/C nmr study was performed of the complexation of UO/sub 2//sup 2 +/ with malic acid, for variable concentrations and molar ratios. Spectral evidence for the existence of at least five complexes was found, and their stoichiometry and dependence on pH were investigated. Information on the bound ligand molecules was also obtained.

  15. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†

    Science.gov (United States)

    Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.

    2016-01-01

    The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  16. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    Science.gov (United States)

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.

  17. 1H and 13C NMR studies of palladium(2) and platinium(2) complexes with S-Methyl-L-Cysteine

    International Nuclear Information System (INIS)

    Allain, A.; Jezowska-Trzebiatowska, B.; Kozlowski, H.

    1979-01-01

    Our recent 1 H NMR studies on Pd(2)-S-Methyl-L-Cysteine(SMC) complexes have shown that the use of a conformational analysis to establish the complexed species existing in solution may provide clearer results than considering the proton chemical shift only. However, the use of the vicinal coupling constant of ABC spectrum of αCH-βCH 2 proton unit to estimate the rotational isomer fractions, may contain some ambiguity, especially on the proton assignment of the methylene group. For this reason 13 C NMR method has been applied to study these systems. (author)

  18. Assessing raw materials for carbon black production using 1H- and 13C-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bekarek, V.; Meic, Z.

    1980-01-01

    1 H and 13 C NMR spectroscopy in combination with elemental analysis and/or infrared spetroscopy were used in evaluating raw materials for the preparation of carbon black. Three models and seven industrial mixtures were analysed. The evaluation of experimental results by the Brown-Ladner method yielded information on the basic chemical characteristics of the raw material, ie., the contents of carbon and other elements, the contents of aromatic and aliphatic components and the nature of the aromatic compounds present. The obtained results are in good agreement with theoretical results for the model mixtures and with results of gas chromatography for the industrial mixtures

  19. Estimates of methyl 13C and 1H CSA values (Δσ) in proteins from cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Tugarinov, Vitali; Scheurer, Christoph; Brueschweiler, Rafael; Kay, Lewis E.

    2004-01-01

    Simple pulse schemes are presented for the measurement of methyl 13 C and 1 H CSA values from 1 H- 13 C dipole/ 13 C CSA and 1 H- 13 C dipole/ 1 H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13 C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1 H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1 H CSA in dimethylmalonic acid

  20. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    Science.gov (United States)

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  2. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: 1H and 13C chemical shift assignments

    International Nuclear Information System (INIS)

    Facundo, Valdir A.; Morais, Selene M.; Braz Filho, Raimundo

    2004-01-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete 1 H and 13 C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  3. Two flavonoids from Iboza riparia and the unambiguous assignments of the 1H and 13C NMR signals of their methoxyle groups

    International Nuclear Information System (INIS)

    Haider, A.; Matida, A.; Zelnik, R.

    1988-01-01

    Two rare flavonoids, salvigenin and cirsimaritin, were isolated from the leaves of Iboza riparia. The 1 H and 13 C NMR spectra as well as non-quaternary carbon signals shift are analysed. (M.J.C.) [pt

  4. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.

    Science.gov (United States)

    Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick

    2018-02-06

    The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.

  5. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daley, Margaret E.; Sykes, Brian D. [University of Alberta, Department of Biochemistry, CIHR Group in Protein Structure and Function and Protein Engineering Network of Centres of Excellence (Canada)

    2004-06-15

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance {sup 13}C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the {sup 1}H-{sup 13}C NOE were determined in this study. The C{alpha}H relaxation measurements were compared to the previously measured {sup 15}N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the {chi}{sub 1} dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than {+-}25 deg.

  6. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Daley, Margaret E.; Sykes, Brian D.

    2004-01-01

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance 13 C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the 1 H- 13 C NOE were determined in this study. The CαH relaxation measurements were compared to the previously measured 15 N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the χ 1 dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than ±25 deg

  7. Complete {sup 1}H and {sup 13}C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Susana; Smania Junior, Artur [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Microbiologia e Parasitologia. Lab. de Antibioticos; Pizzolatti, Moacir G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica; Schripsema, Jan; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Branco, Alexsandro [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Saude. Lab. de Fitoquimica]. E-mail: branco@uefs.br

    2007-06-15

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ({sup 1}H NMR, {l_brace}{sup 1}H{r_brace} {sup -13}C NMR, and APT{sup -13}C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete {sup 1}H and {sup 13}C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  8. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  9. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of 1 H and 13 C of monoterpenes using computational methods

    International Nuclear Information System (INIS)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L.

    2000-01-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and α-pinene. The 1 H and 13 C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of 1 H nuclei and qualitatively in the case of 13 C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  10. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino; Braz-Filho, Raimundo; Carvalho, Mario G. de

    2012-01-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1 H, 13 C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1 H and 13 C NMR chemical shift assignments. (author)

  11. Positional enrichment by proton analysis (PEPA). A one-dimensional "1H-NMR approach for "1"3C stable isotope tracer studies in metabolomics

    International Nuclear Information System (INIS)

    Vinaixa, Maria; Yanes, Oscar; Rodriguez, Miguel A.; Capellades, Jordi; Aivio, Suvi; Stracker, Travis H.; Gomez, Josep; Canyellas, Nicolau

    2017-01-01

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of "1"3C-satellite peaks using 1D-"1H-NMR spectra. In comparison with "1"3C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of "1"3C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of "1H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  12. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  13. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study

  14. Spectroscopic effects in 1H and 13C NMR spectra of 4,4'-di-substituted 3,3'-diquinolines sulfides

    International Nuclear Information System (INIS)

    Pluta, K.

    1994-01-01

    The 1 H and 13 C NMR spectra of 4,4'-disubstituted sulfides of 3,3'-quinolines have been studied in CDCl 3 solutions. The observed spectroscopic effects have been interpreted in terms of molecule structure and configuration. The factors being responsible for the value of spectroscopic effects have been discussed

  15. Calculation of average molecular parameters, functional groups, and a surrogate molecule for heavy fuel oils using 1H and 13C NMR spectroscopy

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2016-04-22

    Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.

  16. Calculation of average molecular parameters, functional groups, and a surrogate molecule for heavy fuel oils using 1H and 13C NMR spectroscopy

    KAUST Repository

    Abdul Jameel, Abdul Gani; Elbaz, Ayman M.; Emwas, Abdul-Hamid M.; Roberts, William L.; Sarathy, Mani

    2016-01-01

    Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.

  17. 1H, 15N, and 13C resonance assignments of the third domain from the S. aureus innate immune evasion protein Eap.

    Science.gov (United States)

    Herrera, Alvaro I; Ploscariu, Nicoleta T; Geisbrecht, Brian V; Prakash, Om

    2018-04-01

    Staphylococcus aureus is a widespread and persistent pathogen of humans and livestock. The bacterium expresses a wide variety of virulence proteins, many of which serve to disrupt the host's innate immune system from recognizing and clearing bacteria with optimal efficiency. The extracellular adherence protein (Eap) is a multidomain protein that participates in various protein-protein interactions that inhibit the innate immune response, including both the complement system (Woehl et al in J Immunol 193:6161-6171, 2014) and Neutrophil Serine Proteases (NSPs) (Stapels et al in Proc Natl Acad Sci USA 111:13187-13192, 2014). The third domain of Eap, Eap3, is an ~ 11 kDa protein that was recently shown to bind complement component C4b (Woehl et al in Protein Sci 26:1595-1608, 2017) and therefore play an essential role in inhibiting the classical and lectin pathways of complement (Woehl et al in J Immunol 193:6161-6171, 2014). Since structural characterization of Eap3 is still incomplete, we acquired a series of 2D and 3D NMR spectra of Eap3 in solution. Here we report the backbone and side-chain 1 H, 15 N, and 13 C resonance assignments of Eap3 and its predicted secondary structure via the TALOS-N server. The assignment data have been deposited in the BMRB data bank under accession number 27087.

  18. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    Science.gov (United States)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  20. Total assignment of 1 H and 13 C NMR of Cordiachrome C, a terpenoid benzoquinone from Cordia trichotoma

    International Nuclear Information System (INIS)

    Alencar, Jane Eire; Pessoa, Otilia Deusdenia Loiola; Lemos, Tlema Leda Gomes de; Silveira, Edilberto Rocha; Braz Filho, Raimundo

    1999-01-01

    1 D and 2 D NMR techniques were applied for establishing of the complete assignment of hydrogen and carbon-13 NMR of cordiachrome C. Th results were also used to confirm 1 H NMR data already published, as well as to define the relative stereochemistry, which has not been completely established for cordiachrome C, previously isolated from C. millenii

  1. Total assignment of {sup 1} H and {sup 13} C NMR of Cordiachrome C, a terpenoid benzoquinone from Cordia trichotoma

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Jane Eire; Pessoa, Otilia Deusdenia Loiola; Lemos, Tlema Leda Gomes de; Silveira, Edilberto Rocha [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais

    1999-05-01

    1 D and 2 D NMR techniques were applied for establishing of the complete assignment of hydrogen and carbon-13 NMR of cordiachrome C. Th results were also used to confirm {sup 1} H NMR data already published, as well as to define the relative stereochemistry, which has not been completely established for cordiachrome C, previously isolated from C. millenii.

  2. Liquid state sup1H and sup13C-NMR studies on polymerisation reaction of 2,2'-difurfuryloxy-2- silapropane

    International Nuclear Information System (INIS)

    Rusli bin Omar

    1994-01-01

    The purpose of this study was to prepare the copolymer of 2,2'-difurfuryloxy-2-silapropane (DFS) and 1,1'-(methylenedi-4, 1-phenylene) bismaleimide (BM). DFS was prepared at 0 degC through the reaction of 2 moles of furfuryl alcohol (FA) with 1 mole of dichlorodimethylsilane (DCMS) in the presence of pyridine and chloroform as a solvent. The formation of this compound was characterized by the sup1H and sup13C-NMR spectroscopy and mass spectrometry. DFS has the ability to undergo the Diels-Alder reaction. The furan end groups of DFS could react with dienophile groups of other materials. The adduct of DFS-BM was prepared by the reaction of DFS with BM at room temperature (18degC) in chloroform (CDClsub3). Characterization of the adduct was carried out through a study of the sup1H and sup13C-NMR spectra of the adduct

  3. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    Science.gov (United States)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  4. Unified integration intervals for the structural characterization of oil, coal or fractions there of by 1h NMR and 13c NMR

    International Nuclear Information System (INIS)

    Avella, Eliseo; Fierro, Ricardo

    2010-01-01

    Based on an analysis of publications reported between 1972 and 2006, it became clear that there are inaccuracies in the limits of the ranges of integration that the authors assigned to signals in nuclear magnetic resonance (NMR) to the structural characterization of petroleum, coals and their derived fractions, from their hydrogen (1H NMR) and carbon (13C NMR) spectra. Consequently, consolidated limits were determined for the integration of 1H NMR spectra and 13C NMR of these samples using a statistical treatment applied to the limits of integration intervals already published. With these unified limits, correlation NMR charts were developed that are useful for the allocation of the integral at such intervals, and at smaller intervals defined in terms of the intersection between different assignments. Also raised equations needed to establish the integral attributable to specific fragments in an attempt to make a more accurate structural characterization from NMR spectra of oil, coal or fractions derived.

  5. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete "1H and "1"3C chemical shift assignments

    International Nuclear Information System (INIS)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G.; Oliveira, Debora R. de; Braz-Filho, Raimundo

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the "1H and "1"3C NMR spectra. (author)

  6. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete {sup 1}H and {sup 13}C chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G., E-mail: fmonte@dqoi.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Oliveira, Debora R. de; Braz-Filho, Raimundo [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Departamento de Quimica

    2017-09-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the {sup 1}H and {sup 13}C NMR spectra. (author)

  7. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower...... to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite...

  8. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    Science.gov (United States)

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  9. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of {sup 1} H and {sup 13} C of monoterpenes using computational methods; Asignacion inequivoca de las senales del espectro de resonancia magnetica nuclear de {sup 1} H y {sup 13} C de monoterpenos empleando metodos computacionales

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L. [Universidad Nacional Autonoma de Mexico, Instituto de Quimica, A.P. 70213, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and {alpha}-pinene. The {sup 1} H and {sup 13} C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of {sup 1} H nuclei and qualitatively in the case of {sup 13} C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  11. Deuterium isotope shifts for backbone {sup 1}H, {sup 15}N and {sup 13}C nuclei in intrinsically disordered protein {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, Alexander S.; Ying Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-10-15

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise {sup 2}H isotope shift measurements for {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 15}N, and {sup 1}H{sup N} have been obtained by using a mixed sample of protonated and uniformly perdeuterated {alpha}-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil {sup 2}H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  12. INTERVALOS DE INTEGRACIÓN UNIFICADOS PARA LA CARACTERIZACIÓN ESTRUCTURAL DE PETRÓLEOS, CARBONES O SUS FRACCIONES POR RMN 1H Y RMN 13C

    Directory of Open Access Journals (Sweden)

    Avella Eliseo

    2010-09-01

    Full Text Available Con base en la revisión de publicaciones, hechas entre 1972 y 2006, se evidenció que hay imprecisiones en los límites de los intervalos de integración que los autores asignan a las señales en resonancia magnética nuclear (RMN para hacer la caracterización estructural de petróleos, carbones o sus fracciones derivadas, a partir de sus espectros de hidrógeno (RMN 1H o de carbono (RMN 13C. En consecuencia, se determinaron límites unificados para la integración de los espectros RMN 1H y RMN 13C de tales muestras mediante un tratamiento estadístico aplicado a los límites de los intervalos de integración ya publicados. Con esos límites unificados se elaboraron cartas de correlación en RMN útiles para la asignación de la integral en esos intervalos, y aun en otros de menor extensión definidos en función de la intersección entre asignaciones diferentes. Además se plantearon ecuaciones necesarias para establecer la integral atribuible a fragmentos más específicos en un intento por hacer una caracterización estructural más exacta a partir de los espectros RMN de petróleos, carbones o sus fracciones derivadas.

  13. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    Science.gov (United States)

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  14. 13C and 1H nuclear magnetic resonance of methyl-substituted acetophenones and methyl benzoates: steric hindrance and inhibited conjugation.

    Science.gov (United States)

    Budesínský, Milos; Kulhánek, Jirí; Böhm, Stanislav; Cigler, Petr; Exner, Otto

    2004-10-01

    The 1H and 13C NMR spectra of 14 methyl-substituted acetophenones and 14 methyl-substituted methyl benzoates were assigned and interpreted with respect to the conformation of the C(ar)-C(O) bond. The substituent effects are proportional in the two series and can be divided into polar and steric: each has different effects on the 13C SCS of the individual atoms. In the case of C atoms C(O), C(1) and CH3(CO), the steric effects were quantitatively separated by comparing SCS in the ortho and para positions. The steric effects are proportional for the individual C atoms and also to steric effects estimated from other physical quantities. However, they do not depend simply on the angle of torsion phi of the functional group as anticipated hitherto. A better description distinguishes two classes of compounds: sterically not hindered or slightly hindered planar molecules and strongly sterically hindered, markedly non-planar. In order to confirm this reasoning without empirical correlations, the J(C,C) coupling constants were measured for three acetophenone derivatives labeled with 13C in the acetyl methyl group. The constants confirm unambiguously the conformation of 2-methylacetophenone; their zero values are in accord with the conformation of 2,6-dimethylacetophenone. The zero values in the unsubstituted acetophenone are at variance with previous erroneous report but all J(C,C) values are in accord with calculations at the B3LYP/6-311++G(2d,2p)//B3LYP/6-311+G(d,p) level. Copyright 2004 John Wiley & Sons, Ltd.

  15. 1H NMR, 13C NMR and Computational Daft Study of the Solution Structure of 2-Formylcyclohexane-1,3-Dione and its Alkali Metal Salts

    International Nuclear Information System (INIS)

    Szczecinski, P.; Gryff-Keller, A.; Molchanov, S.

    2005-01-01

    Triketones have been known for many years to be efficient inhibitors of (4-hydroxyphenyl)pyruvate dioxygenase (HPPD), an enzyme very important for plants and animals, which catalyzes the tyrosine catabolism. Inhibition of this process has been used for both herbicidal and medical purposes. The mechanism of inhibition of HPPD by triketones is still under investigation. Recently, an almost complete mechanistic model of interaction between the mentioned enzyme and its inhibitor has been proposed. However, some arguments used by the authors to rationalize the proposed mechanism cannot be accepted. Therefore further developing of the investigation in this field is justified. In the present work the solution structure of 2-formylcyclohexane-1,3-dione, a simple molecular model of HPPD inhibitors, has been investigated using 1 H and 13 C NMR spectroscopic methods and theoretical DFT-based calculations. (author)

  16. /sup 1/H- and /sup 13/C-NMR spectroscopic study of glucose metabolism in eggs of Angiostrongylus cantonensis during their development

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M.; Kato, K.; Ohsaka, A.; Nishina, M.; Hori, E.; Matsushita, K.

    1987-02-01

    /sup 1/H- and /sup 13/C-nuclear magnetic resonance (NMR) spectroscopy was used to study aerobic glucose metabolism in eggs of Angiostrongylus cantonensis in an NCTC-109 medium supplemented with fetal calf serum. Without any pretreatment of the spent medium, we were able to identify and quantitate, by NMR, the end-products of glucose metabolism in eggs after cultivation for 2, 4, and 8 days. We demonstrated that A. cantonensis eggs took up glucose rapidly; among the major end products were found lactic acid, acetic acid and alanine. The eggs are parasitic in a sense that the energy metabolism in them is dependent mainly upon the energy source present in outer medium.

  17. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  18. Primidone--an antiepileptic drug--characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Subramanian, S; Mohan, S

    2013-05-15

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR spectra were recorded and the chemical shifts of the molecule were calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis, spectral investigation (/sup 1/H, /sup 13/C) of new (N, O and S based) schiff bases and evaluation of their antimicrobial activities

    International Nuclear Information System (INIS)

    Khosa, M.K.; Nisar, M.; Jamal, M.A.; Yousaf, M.; Chatha, S.A.S.; Zia, K.M.

    2011-01-01

    Three new series of biologically active amino substituted Schiff bases (1-12) with general formula, R/sub 1/N=CHR/sub 2/ (R/sub 1/ 2-amino-benzthiazole, 4-amino-salicylic acid and 4-aminophenol; R/sub 2/ benzaldehyde, 2-chloro-benzaldehyde, 4-chloro-benzaldehyde, salicylaldehyde and vanillin) were synthesized by the reaction of three different amino substituted compounds and substituted aldehydes in ethanol. The synthesized compounds were characterized by different physico-chemical techniques like, melting point, elemental analysis, multinuclear NMR (/sup 1/H, /sup 13/C). The compounds were subjected for bioassay screening and showed promising antibacterial and antifungal activities using Amoxicillin and Ciprofloxacin as standard drugs. (author)

  20. 2D 1H -13C Heteronuclear Shift Correlation Of 2a - Hydroxy Aiantolactone From Pulicaria Undulata C.A. Mey

    Directory of Open Access Journals (Sweden)

    A. Rustaiyan

    1992-07-01

    Full Text Available We have reported recently the isolation and characterization of several sesquiterpene lactones from Pulicaria undulata (1."nThe lactones were isolated from an Et20 - Petrol (1:3 fraction by different chromatographic techniques including HPLC (RP 8, MeOH - H2O, 13:7."nIn this way three eudesmanolides 1 - 3, a guaianolide 4, a nor -guaianolide 5, as well as the pseudoguaianolide 6 and the xanthanolide 7 were isolated. One of the eudesmanolides (2a - hydroxy aiantolactone, 1, was present as the main component."nSuch lactones being known as biologically active substances, we have decided to describe for the first time a detailed interpretation of proton, 1H -NMR, 13C - NMR and 2D lH -13C - heteronuclear shift correlation spectra of 2a - hydroxy aiantolactone. The stereochemistry of C - 2 , C - 7 and C - 8 was determined by the NOESY experiments, H - 7 and H - 8 are in the a configuration and H - 2 is in the b configuration.

  1. NMR (1H and 13C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    International Nuclear Information System (INIS)

    Bag, Swarnendu; Banerjee, Deb Ranjan; Basak, Amit; Das, Amit Kumar; Pal, Mousumi; Banerjee, Rita; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2015-01-01

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using 1 H and 13 C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ( 1 H and 13 C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate

  2. 1H and 13C NMR coordination-induced shifts in a series of tris(α-diimine)ruthenium(II) complexes containing pyridine, pyrazine, and thiazole moieties

    International Nuclear Information System (INIS)

    Orellana, G.; Ibarra, C.A.; Santoro, J.

    1988-01-01

    1 H and 13 C NMR chemical shifts of a series of ruthenium(II) tris chelates containing the heterocyclic ligands 2,2'-bipyridine, 2-(2-pyridyl)thiazole, 2-(2-pyrazyl)thiazole, and 2,2'-bithiazole are reported and compared to those of the corresponding free ligands. Calculated coordination-induced shifts (CIS, δ complexed - δ free ) range from +0.41 to -1.00 ppM for 1 H and from +5.8 to -3.7 ppM for 13 C nuclei. These values are discussed on the basis of the various effects (charge perturbation and field interactions) that arise upon chelation: electronic σ-donation to the metallic center via the nitrogen lone pair, d-π* back-donation to the ligand, van der Waals interactions, and magnetic anisotropy of the spectator ligands. Semiquantitative values of each effect at the different positions have been proposed, taking theoretical calculations of steric and anisotropic contributions as the starting point. Shielding van der Waals interaction between proximate atoms influences only the H(3') CIS of six-membered moieties, but to a very low extent (<0.15 ppM). Magnetic anisotropy of proximate ring currents practically determines the CIS of the α positions for all the complexed ligands examined (upfield shifts from -0.8 to -1.0 ppm), has a lower influence on external β positions (< 0.2 ppM), and is negligible for γ-protons. σ-donation deshields all the positions, its contribution increasing as protons separate from the coordinated nitrogen atom (up to 0.4 ppM). Π-back-bonding is a weaker effect (< 0.2 ppM upfield contribution) that operates mainly on the γ position of the pyridine and α and β positions of the pyrazine rings. 36 refs., 3 figs., 4 tabs

  3. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Swarnendu, E-mail: Swarna.bag@gmail.com [School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Banerjee, Deb Ranjan, E-mail: debranjan2@gmail.com [Department of Chemistry, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Basak, Amit, E-mail: absk@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Das, Amit Kumar, E-mail: amitk@hijli.iitkgp.ernet.in [Department of Biotechnology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Pal, Mousumi, E-mail: drmpal62@gmail.com [Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal (India); Banerjee, Rita, E-mail: ritabanerjee@outlook.com [Department of Science and Technology, New Mehrauli Road, New Delhi 110016 (India); Paul, Ranjan Rashmi, E-mail: dr_rsspaul@yahoo.co.in [Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal (India); Chatterjee, Jyotirmoy, E-mail: jchatterjee.iitkgp@gmail.com [School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India)

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  4. Synthesis of biodiesel from rocket seed oil and its characterization by FT-IR, NMR (/sup 1/H and /sup 13/C) and GC-MS

    International Nuclear Information System (INIS)

    Khalid, N.

    2012-01-01

    The limited resources of fossil fuel, increasing prices of crude oils and environmental concerns have motivated the researcher for alternate fuels, such as bio diesel that is obtained from vegetable oils. Therefore, bio diesel was synthesized from Rocket seed oil by base catalyzed transesterification with methanol. The physical parameters like dynamic viscosity (3.88 cp), specific gravity (0.893 g cm/sup 3/), kinematic viscosity (5.85 mm/sup 2/s/sup 1/)), density (0.877 g cm/sup 3/), cloud point (3 deg. C), flash point (110 deg. C) and acid number (0.07 mg KOH g/sup 1/) of the synthesized rocket seed oil bio diesel (RSOB) were determined and were found to be comparable with ASTM recommended values for diesels. Chemical composition of the bio diesels formed was determined by various techniques like Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy (/sup 1/H, 13/C) and gas chromatography-mass spectrometry (GCMS). The /sup 1/H NMR spectrum of RSOB is given. (Orig./A.B.)

  5. 1H, 15N and 13C resonance assignments of the J-domain of co-chaperone Sis1 from Saccharomyces cerevisiae.

    Science.gov (United States)

    Pinheiro, Glaucia M S; Amorim, Gisele C; Iqbal, Anwar; Ramos, C H I; Almeida, Fabio C L

    2018-04-30

    Protein folding in the cell is usually aided by molecular chaperones, from which the Hsp70 (Hsp = heat shock protein) family has many important roles, such as aiding nascent folding and participating in translocation. Hsp70 has ATPase activity which is stimulated by binding to the J-domain present in co-chaperones from the Hsp40 family. Hsp40s have many functions, as for instance the binding to partially folded proteins to be delivered to Hsp70. However, the presence of the J-domain characterizes Hsp40s or, by this reason, as J-proteins. The J-domain alone can stimulate Hsp70 ATPase activity. Apparently, it also maintains the same conformation as in the whole protein although structural information on full J-proteins is still missing. This work reports the 1 H, 15 N and 13 C resonance assignments of the J-domain of a Hsp40 from Saccharomyces cerevisiae, named Sis1. Secondary structure and order parameter prediction from chemical shifts are also reported. Altogether, the data show that Sis1 J-domain is highly structured and predominantly formed by α-helices, results that are in very good agreement with those previously reported for the crystallographic structure.

  6. CORRELATION ANALYSIS OF IR, 1 H- AND 13 C-NMR SPECTRAL DATA OF N-ALKYL AND N-CYCLOALKYL CYANOACETAMIDES

    Directory of Open Access Journals (Sweden)

    Aleksandar D. Marinković

    2011-09-01

    Full Text Available Linear free energy relationships (LFER were applied to the IR, 1H- and 13C--NMR spectral data in N-alkyl and N-cycloalkyl cyanoacetamides. N-alkyl and N-cycloalkyl cyanocetamides were synthesized from corresponding amine and ethyl cyanoacetate. A number of substituents were employed for alkyl substitution, and fairly good correlations were obtained, using simple Hammett equation. In N-alkyl and N-cycloalkyl cyanoacetamides substituent cause SCS of N-H hydrogen primarily by steric interaction, polar subtituent effect influences SCS shift of C=O carbon, while steric effect of N-alkyl substituent causes IR stretching frequencies of N-H, C=O and CN group. The conformations of investigated compounds have been studied by the use of semiempirical PM6 method, and together with LFER analysis, give a better insight into the influence of such a structure on the transmission of electronic substituent effects. Negative ρ values for several correlations (reverse substituent effect were found.

  7. "1H and "1"3C NMR Data on Hydroxy/methoxy Flavonoids and the Effects of Substituents on Chemical Shifts

    International Nuclear Information System (INIS)

    Yoon, Hyuk; Eom, Sung Lock; Hyun, Ji Ye; Jo, Geun Hyeong; Hwang, Do Seok; Lee, Sun Hee; Yong, Yeon Joong; Lee, Young Han; Lim, Yoong Ho; Park, Jun Cheol

    2011-01-01

    Polyphenols have recently been examined for such applications, and they are classified based on their carbon skeletons: phenolic acids with C6-C1 skeleton, hydrocinammates with C6-C_3 skeleton, stilbenes with C6-C2-C6 skeleton, and flavonoids with C6-C_3-C6 skeleton.2 Of these compounds, flavonoids are ubiquitously found in most plants. Since flavonoids belong to polyphenols, they have many hydroxy groups. From a bioavailability point of view, hydroxy groups prevent cell membrane transport, and hydroxyflavonoids can be metabolized by O-methyltransferases. However, methoxylated flavonoids may not have these problems. Hydroxylated or methoxylated flavonoids are found from natural sources. Nuclear magnetic resonance (NMR) spectroscopy is widely used to identify different compounds including hydroxylated or methoxylated flavonoids. Because the position and the number of substituted hydroxy or/and methoxy groups will change the "1H and "1"3C chemical shifts, it is important to understand these changes so that the structures of newly isolated hydroxy/methoxy-flavonoids can be easily identified

  8. Benchmarking of density functionals for a soft but accurate prediction and assignment of (1) H and (13)C NMR chemical shifts in organic and biological molecules.

    Science.gov (United States)

    Benassi, Enrico

    2017-01-15

    A number of programs and tools that simulate 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Structural investigation of 18-crown-6 complexes of Tri organotin carboxylate by 1H, 13C, 19F and 119Sn nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Foladi, S.; Yousefi, M.; Mohammadpour Ammini, M. M.

    2002-01-01

    Single crystal structure determination of several 18-crown 6 complexes of orga nation derivatives reveals formation of aqua complex through hydrogen bonding to 18-crown-6, which is an important feature in their structure. In the majority of those studies, mono- and dichloro organotin have been used for complexation of them with crown ethers. In the present work, several 18-crown 6 complexes of tri organotin acetate[(C 6 H 5 ) 3 SnOCOCX 3 ] 2 , 18 C6 ], X=F, Cl, and H, have been prepared. The Lewis acidity of tin moiety in tri organotin carboxylate have been tailored by replacing hydrogen atoms of acetate group with chlorine and fluorine and influence of them in the formation of aqua complex with 18 C6 have been studied by infrared. 1 H, 13 C, 19 F and 119 Sn nuclear magnetic resonance spectroscopes. The effects of coordinating and non-coordinating solvent in status of structure in solution have been explored

  10. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  11. 1H diffusion-weighted, 13C and 17O NMR spectroscopy: methodological developments to study brain structure and function in vivo

    International Nuclear Information System (INIS)

    Najac, Chloe

    2014-01-01

    Magnetic Resonance Spectroscopy is a unique tool that allows acquiring brain biochemical profiles and quantifying many cellular parameters in vivo. During this thesis, three different techniques have been developed: (i) 1 H diffusion-weighted, (ii) carbon-13 ( 13 C) and (iii) oxygen-17 ( 17 O) NMR spectroscopy to study brain structure and function in vivo. Brain metabolites are cell-specific endogenous tracers of the intracellular space whose translational diffusion depends on many cellular properties (e.g.: cytosol viscosity and intracellular restriction). Studying the variation of the diffusion coefficient (ADC) as a function of diffusion time (td) allows untangling and quantifying those parameters. In particular, measuring metabolites ADC at long diffusion times gives information about the metabolites compartmentation in cells. In a first study, we measured neuronal and astrocytic metabolites ADC over a large time window (from 80 ms to 1 s) in a large voxel in the macaque brain. No dependence of all metabolites ADC on td was observed suggesting that metabolites primarily diffuse in neuronal (dendrites and axons) and astrocytic processes and are not confined inside the cell body and organelles (nucleus, mitochondria). The large size of the voxel, due to low detection sensitivity, did not allow us to study metabolites compartmentation in pure white (WM) and grey matters (GM). Therefore, we performed a new study in the human brain. Results showed that in both WM and GM metabolites diffuse in fiber-like cell structure. Finally, using an even larger time window (up to 2 s) in the macaque brain and analytical models mimicking the cell structure, we estimated the length of neuronal (∼110 μm) and astrocytic (∼70 μm) processes. ATP (adenosine triphosphate), the main source of energy in the organism, is produced thanks to glucose oxidation inside the mitochondria. 13 C NMR spectroscopy is a well-known technique to study brain energy metabolism and can be used to

  12. Identification of solution products of lanthanoid (3) diethyldithiocarbamatohexamethyl phosphotriamide compounds from IR, electron and sup 1 H, sup 13 C, sup 31 P NMR absorption spectra. Identifikatsiya produktov rastvoreniya diehtilditiokarbamatogeksametil fosfotriamidnykh soedinenij lantanoidov (3) po IK, ehlektronnym i YaMR sup 1 H, sup 13 C, sup 31 P spektram pogloshcheniya

    Energy Technology Data Exchange (ETDEWEB)

    Skopenko, V V; Savost' yanova, A F; Trachevskij, V V; Gorbalyuk, A D; Sukhan, T A [Kievskij Gosudarstvennyj Univ., Kiev (Ukrainian SSR)

    1991-01-01

    By the methods of conductometry, IR, electron and {sup 1}H, {sup 13}C, {sup 31}P NMR spectroscopy nonaqueous solutions of the compounds (La(S{sub 2}CNEt{sub 2})Hmpa{sub 5})(BPh{sub 4}){sub 2}, Hmpa=OP(NMe{sub 2}){sub 3}; (Ln(S{sub 2}CNEt{sub 2}){sub 2}Hmpa{sub 3})BPh{sub 4}, Ln=Y, La-Lu; (Ln(S{sub 2}CNEt{sub 2}){sub 3}Hmpa{sub 2}), Ln=La-Gd, have been investigated. It is ascertained that bis-dithiocarbamate compounds are dissolved in all the studied solvents with preservation of composition and structure of lanthanide (3) inner coordination sphere. Tris-dithiocarbamates in nonaqueous solutions are subjected to reactions of ligand redistribution according to schemes depending on the solvent nature. In the process of dissolving of lanthanum monodithiocarbamate bond isomerization of dithiocarbamate groups occurs, which is pronounced in splitting of {sup 1}H and {sup 13}C NMR signals.

  13. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  14. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  15. [Study of hydrogen bonds in the "catalytic triad" of trypsin by NMR spectra at 1H, 13C, and 15N nuclei].

    Science.gov (United States)

    Golubeb, N S; Gindin, V A; Ligaĭ, S S; Smirnov, S N

    1994-05-01

    The 1H and 13C NMR of trypsin stabilized by chemical modification with a hydrophilic polymer have been obtained in a wide range of pH (1.0-11.0). The spectral features referred to some nuclei of the "catalytic triad" have been identified using different NMR techniques as well as chemical modification with selective reagents. It was found that the monoprotonation of this system results in a quasi-symmetrical hydrogen bond formed between the basic groups which provided explanation for the discrepancies between the experimental findings obtained by different authors concerning the protonation site in this catalytic system. Simulation of the catalytic triad by a 15N-labelled low molecular model suggests that an increase in the OH-group acidity is unaccompanied by a discrete double proton transfer; however, a smooth shift of the bridging protons from one basic atom to another occurs with quasi-symmetrical hydrogen bonds formed in intermediate cases. On the basis of experimental data a new concept has been proposed for the mechanism of acid-base catalysis performed by pains of weak basic groups, such as His-Im and Asp(Glu)-COO- (pKa = 3-7) which are not capable of proton abstraction from alcoholic or water OH-groups (pKa > 13). The catalysis may consist in changing the charge densities on the reacting groups due to strong H-bonding and, on the other hand, in facilitating the free movement of a proton in the field of several basic atoms when going along the reaction coordinate. The energy of very strong hydrogen bonds thus formed diminishes the activation energy of the reaction.

  16. {sup 15}N and {sup 13}C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [{sup 1}H,{sup 13}C]-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: rossip@umn.edu; Xia, Youlin; Khanra, Nandish; Veglia, Gianluigi, E-mail: vegli001@umn.edu; Kalodimos, Charalampos G., E-mail: ckalodim@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States)

    2016-12-15

    The ongoing NMR method development effort strives for high quality multidimensional data with reduced collection time. Here, we apply ‘SOFAST-HMQC’ to frequency editing in 3D NOESY experiments and demonstrate the sensitivity benefits using highly deuterated and {sup 15}N, methyl labeled samples in H{sub 2}O. The experiments benefit from a combination of selective T{sub 1} relaxation (or L-optimized effect), from Ernst angle optimization and, in certain types of experiments, from using the mixing time for both NOE buildup and magnetization recovery. This effect enhances sensitivity by up to 2.4× at fast pulsing versus reference HMQC sequences of same overall length and water suppression characteristics. Representative experiments designed to address interesting protein NMR challenges are detailed. Editing capabilities are exploited with heteronuclear {sup 15}N,{sup 13}C-edited, or with diagonal-free {sup 13}C aromatic/methyl-resolved 3D-SOFAST-HMQC–NOESY–HMQC. The latter experiment is used here to elucidate the methyl-aromatic NOE network in the hydrophobic core of the 19 kDa FliT-FliJ flagellar protein complex. Incorporation of fast pulsing to reference experiments such as 3D-NOESY–HMQC boosts digital resolution, simplifies the process of NOE assignment and helps to automate protein structure determination.

  17. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    Science.gov (United States)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the

  18. Pyrrolophenanthridines. I. Synthesis of 2!H and 13C NMR spectra of 1H-pyrrolo[2,3-c]- and 1H-pyrrolo[3,2-i]-phenanthridines

    International Nuclear Information System (INIS)

    Frolova, E.P.; Akhvlediani, R.N.; Krasnokut-skii, S.N.; Kurkovskaya, L.N.; Suvorov, N.N.

    1987-01-01

    A preparative method is proposed for the synthesis of 3- and 8-aminophenanthridines, from which the new heterocyclic systems 1H-pyrrolo[2,3-c]- and 1H-pyrrolo[3,2-i]phenanthridines were synthesized by means of the Fischer reaction

  19. Structure of pyridine and quinoline vinyl ethers according to data from 1H and 13C NMR spectra and quantum-chemical calculations

    International Nuclear Information System (INIS)

    Afonin, A.V.; Voronov, V.K.; Andriankov, M.A.; Danovich, D.K.

    1987-01-01

    A systematic investigation of the structure of the vinyl ethers of heterocyclic compounds has not been undertaken. The present work was devoted to investigation of the stereochemical and electronic structure of the vinyl ethers of pyridine and quinoline. The PMR spectra of the samples were recorded for 5% solutions in deuterochloroform on a Tesla BS-497 spectrometer at 100 MHz. The 13 C NMR spectra were recorded on a Tesla BS-567A spectrometer at 25.1 MHz in deuterochloroform with the samples at concentrations of 30%. The internal standard was HMDS. The vinyl ethers of pyridine and quinoline exist preferentially in the nonplanar S-trans conformation. In the vinyl esters of pyridine and quinoline the p-π conjugation is concurrent in nature and depends on the position of the vinyloxy group in the heterocycle

  20. Possibilities and limitations of sup 1 H and sup 13 C nuclear magnetic resonance spectroscopy for the identification and the quantitative determination of some naturally occurring carcinogenic risk factors. [Senecio vulgaris; Senecio vernalis; Senecio jacobaea; Euphorbia ingens

    Energy Technology Data Exchange (ETDEWEB)

    Pieters, L.

    1988-01-01

    The aim of this work was to develop a phytochemical screening method for some selected carcinogenic or tumor-promoting principles in higher plants. The pyrrolizidine alkaloids from some Senecio species (Compositae or Asteraceae), and the diterpene ester from Croton tiglium L. and Euphorbia ingens E. Mey (Euphorbiaceae) were chosen as representatives of both groups. The possibilities and limitations of {sup 1}H and {sup 13}C nuclear magnetic resonance spectroscopy ({sup 1}H and {sup 13}C NMR) for the analysis of mixtures of carcinogenic pyrrolizidine alkaloids were compared with high performance liquid chromatography, and gas chromatography with high performance liquid chromatography, and gas chromatography was well as gas chromatography - mass spectrometry. Senecio vulgaris L., Senecio vernalis Waldst. and Kit. and Senecio jacobaea L. were investigated.

  1. Intervalos de integración unificados para la caracterización estructural de petróleos, carbones o sus fracciones por rmn 1h y rmn 13c

    OpenAIRE

    Eliseo, Avella; Fierro, Ricardo

    2010-01-01

    Con base en la revisión de publicaciones, hechas entre 1972 y 2006, se evidenció que hay imprecisiones en los límites de los intervalos de integración que los autores asignan a las señales en resonancia magnética nuclear (RMN) para hacer la caracterización estructural de petróleos, carbones o sus fracciones derivadas, a partir de sus espectros de hidrógeno (RMN 1H) o de carbono (RMN 13C). En consecuencia, se determinaron límites unificados para la integración de los espectros RMN 1H y RMN 13C...

  2. 1H, 13C and 31P-NMR spectroscopic study of glucose metabolism of muscle larva Trichinella spiralis (U.S.A. strain), and the effects of the end-products on the host (mouse)

    International Nuclear Information System (INIS)

    Nishina, Masami

    1988-01-01

    1 H- and 13 C-nuclear magnetic resonance (NMR) spectroscopy was used to identify and quantitate metabolites excreted by muscle larva Trichinella spiralis maintained aerobically in the presence of D- ( 13 C 6 ) glucose and (1, 1'- 13 C 2 ) succinate. End-products of glucose metabolism studied by 1 H-NMR were lactate, acetate, succinate, proionate, n-valerate and alanine, at the molar ratio of 1:2:1:0.6:0.5:0.6. 13 C-NMR measurement proved that all the products originated from the glucose in the medium via the phosphoenolpyruvate carboxykinase-succinate pathway and the tricarboxylic acid cycle. In vivo 31 P-NMR spectra were also taken by the surface coil method from the leg muscle of mice which had been infected with T. spiralis. Intracelluar pH and relative amount of ATP in the leg muscle of the infected mice were found to decrease significantly as compared with that of control mice. (author)

  3. /sup 1/H, /sup 13/C and /sup 31/P-NMR spectroscopic study of glucose metabolism of muscle larva Trichinella spiralis (U. S. A. strain), and the effects of the end-products on the host (mouse)

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Masami

    1988-11-01

    /sup 1/H- and /sup 13/C-nuclear magnetic resonance (NMR) spectroscopy was used to identify and quantitate metabolites excreted by muscle larva Trichinella spiralis maintained aerobically in the presence of D- (/sup 13/C/sub 6/) glucose and (1, 1'-/sup 13/C/sub 2/) succinate. End-products of glucose metabolism studied by /sup 1/H-NMR were lactate, acetate, succinate, proionate, n-valerate and alanine, at the molar ratio of 1:2:1:0.6:0.5:0.6. /sup 13/C-NMR measurement proved that all the products originated from the glucose in the medium via the phosphoenolpyruvate carboxykinase-succinate pathway and the tricarboxylic acid cycle. In vivo /sup 31/P-NMR spectra were also taken by the surface coil method from the leg muscle of mice which had been infected with T. spiralis. Intracelluar pH and relative amount of ATP in the leg muscle of the infected mice were found to decrease significantly as compared with that of control mice.

  4. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Structural analysis of the carbohydrate chains of glycoproteins by 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Mutsaers, J.H.G.M.

    1986-01-01

    This thesis deals with the structural analysis by 500-MHz 1 H-NMR spectroscopy of carbohydrate chains obtained from glycoproteins. In the chapters 1 to 6 the structural analysis of N-glycosidically linked carbohydrate chains is described. The chapters 7 to 10 describe the structural analysis of O-glycosidically linked carbohydrate chains. 381 refs.; 44 figs.; 24 tabs.; 7 schemes

  6. 1H, 15N and 13C assignments of domain 5 of Dictyostelium discoideum gelation factor (ABP-120) in its native and 8M urea-denatured states.

    Science.gov (United States)

    Hsu, Shang-Te Danny; Cabrita, Lisa D; Christodoulou, John; Dobson, Christopher M

    2009-06-01

    The gelation factor from Dictyostelium discoideum (ABP-120) is an actin binding protein consisting of six immunoglobulin (Ig) domains in the C-terminal rod domain. We have recently used the pair of domains 5 and 6 of ABP-120 as a model system for studying multi-domain nascent chain folding on the ribosome. Here we present the NMR assignments of domain 5 in its native and 8M urea-denatured states.

  7. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    Science.gov (United States)

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

  8. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  9. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition......, in the solution state the 2-bond and 3-bond J(1H–13C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl......-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl...

  10. Synergistic effect of the simultaneous chemometric analysis of {sup 1}H NMR spectroscopic and stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data: Application to wine analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monakhova, Yulia B., E-mail: yul-monakhova@mail.ru [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012 (Russian Federation); Godelmann, Rolf [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Hermann, Armin [Landesuntersuchungsamt -Institut für Lebensmittelchemie und Arzneimittelprüfung, Emy-Roeder-Straße 1, Mainz 55129 (Germany); Kuballa, Thomas [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred [Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Rutledge, Douglas N. [AgroParisTech, UMR 1145, Ingénierie Procédés Aliments, 16 rue Claude Bernard, Paris F-75005 (France)

    2014-06-23

    Highlights: • {sup 1}H NMR profilings of 718 wines were fused with stable isotope analysis data (SNIF-NMR, {sup 18}O, {sup 13}C). • The best improvement was obtained for prediction of the geographical origin of wine. • Certain enhancement was also obtained for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data). • Independent component analysis was used as an alternative chemometric tool for classification. - Abstract: It is known that {sup 1}H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when {sup 1}H NMR profiles are fused with stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data. Variable selection based on clustering of latent variables was performed on {sup 1}H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with {sup 1}H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60–70% correct prediction and {sup 1}H NMR data alone in 82–89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of {sup 1}H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.

  11. Heteronuclear 2D (1H-13C) MAS NMR Resolves the Electronic Structure of Coordinated Histidines in Light-Harvesting Complex II: Assessment of Charge Transfer and Electronic Delocalization Effect

    International Nuclear Information System (INIS)

    Matysik, Joerg; Boer, Ido de; Gast, Peter; Gorkom, Hans J. van; Groot, Huub J.M. de

    2004-01-01

    In a recent MAS NMR study, two types of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila were resolved: Type 1 (neutral) and Type 2 (positively charged) (Alia et al. J. Am. Chem. Soc.). The isotropic 13 C shifts of histidines coordinating to B850 BChl a are similar to fully positively charged histidine, while the 15 N shift anisotropy shows a predominantly neutral character. In addition the possibility that the ring currents are quenched by overlap in the superstructure of the complete ring of 18 B850 molecules in the LH2 complex could not be excluded. In the present work, by using two-dimensional heteronuclear ( 1 H- 13 C) dipolar correlation spectroscopy with phase-modulated Lee-Goldburg homonuclear 1 H decoupling applied during the t 1 period, a clear and unambiguous assignment of the protons of histidine interacting with the magnesium of a BChl a molecule is obtained and a significant ring current effect from B850 on the coordinating histidine is resolved. Using the ring current shift on 1 H, we refine the 13 C chemical shift assignment of the coordinating histidine and clearly distinguish the electronic structure of coordinating histidines from that of fully positively charged histidine. The DFT calculations corroborate that the coordinating histidines carry ∼0.2 electronic equivalent of positive charge in LH2. In addition, the data indicate that the ground state electronic structures of individual BChl a/His complexes is largely independent of supermolecular π interactions in the assembly of 18 B850 ring in LH2

  12. Creatinine and creatininium cation in water solution. Tautomerism and quantitative interpretation of the solution acidity effect on 1H, 13C and 1:4N NMR chemical shifts

    International Nuclear Information System (INIS)

    Kotsyubynskyy, D.; Molchanov, S.; Gryff-Keller, A.

    2004-01-01

    1 H, 13 C and 1 :4N NMR chemical shifts for creatinine in water solution of various acidity have been measured. Analysis of these data enabled determination of the acidity constant of creatininium cation and the chemical shifts of the neutral and protonated forms of creatinine. Molecular energies and carbon and nitrogen magnetic shielding constants for various tautomeric structures of the investigated species have been calculated using the quantum chemistry method GIAO DFT B3LYP/6-311++G(2d,p). Compilation of the available experimental and theoretical results has provided additional information on the problem of tautomerism of this important biological molecule. (author)

  13. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  14. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    Science.gov (United States)

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  15. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    Science.gov (United States)

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  16. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    Science.gov (United States)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  17. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    Science.gov (United States)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  18. A conformational study of the adducts of 2'-deoxythymidine and 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl by sup(1)H and sup(13)C nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hruska, F.E.; Berger, Maurice; Cadet, Jean; Remin, Mieczyslaw

    1985-01-01

    γ-Irradiation of oxygen-free, aqueous solutions of 2'-deoxythymidine in the presence of the organic nitroxide free radical, 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl (TAN) leads to a complex mixture of products in which the TAN moiety is linked to the C5 or C6 position of a 5,6-saturated thymine ring. Extensive sup(1)H and sup(13)C nmr data are provided for the eight TAN-dT adducts which are produced in the largest amounts. The results show that the conformational properties of the sugar moiety are dependent on the point of attachment of the TAN group and the configuration of the standard thymine ring

  19. Iboga alkaloids from Peschiera affinis (Apocynaceae) - unequivocal {sup 1}H and {sup 13}C chemical shift assignments: antioxidant activity; Alcaloides iboga de Peschiera affinis (Apocynaceae) - atribuicao inequivoca dos deslocamentos quimicos dos atomos de hidrogenio e carbono: atividade antioxidante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allana Kellen L.; Magalhaes, Ticiane S.; Monte, Francisco Jose Q.; Mattos, Marcos Carlos de; Oliveira, Maria Conceicao F. de; Almeida, Maria Mozarina B.; Lemos, Telma L.G.; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica], e-mail: tlemos@dqoi.ufc.br

    2009-07-01

    Six known alkaloids iboga type and the triterpene {alpha}- and {beta}-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal {sup 1}H and {sup 13}C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on {beta}-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical. (author)

  20. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method

    Science.gov (United States)

    Diwaker

    2014-07-01

    The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the 1H and 13C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods.

  1. Main component analysis of nuclear magnetic resonance /sup 1/H and /sup 13/C quantitative spectra of hydrogenation products of tars from Kansk-Achinsk Achinsk and Cheremkhovsk coals

    Energy Technology Data Exchange (ETDEWEB)

    Kushnarev, D.F.; Polonov, V.M.; Donskikh, V.I.; Rokhina, E.F.; Kalabin, G.A.

    1986-03-01

    Possibility is discussed of examining nuclear magnetic resonance /sup 1/H and /sup 13/C quantitative spectra of coal tar hydrogenation products using main component factorial analysis and applying special mathematical methods of processing experimental data. Nuclear magnetic resonance spectra of hydrogenation products of low temperature Cheremkhovsk coal carbonization tar and rapid pyrolysis Kansk-Achinsk coal tar were obtained on a WP-200SY (Bruker) spectrometer at 50.3 and 200.1 MHz, respectively. Data processing was carried out on an ODRA-1304 computer. Comparative correlation of parameters are given of tars and hydrogenation products which consist of hydrogenation of aromatic cycles and destruction of alkyl substituents, and factorial loads on structural parameters of tar hydrogenation products. 11 references.

  2. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    Energy Technology Data Exchange (ETDEWEB)

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  3. Optimized strategy of 1H and 13C solid-state NMR methods to investigate water dynamics in soil organic matter as well as the influence of crystallinity of poly(methylene) segments

    Science.gov (United States)

    Bertmer, Marko; Jaeger, Alexander; Schwarz, Jette; Schaumann, Gabriele

    2010-05-01

    Water plays a crucial role in soil organic matter (SOM) having various different functions such as transport of material, elution of ,e. g., pollutants in soil, and also the sequestration of humic substances. Furthermore, the generation and quantification of hydrophilic and hydrophobic regions in soil has several effects on SOM which can also include the storage amount and time of certain material, especially chemical pollutants. The importance of water in soil is also documented by the multitude of scientific approaches to characterize soils including diffusion NMR to study the water channel structure in soil. Our focus is on the study of water dynamics and soil structure to elucidate mechanisms of physicochemical aging. The approach uses the application of various solid-state NMR techniques - including 1H and 13C NMR - to get a multitude of information on SOM. In non-rotating samples, 1H lines are usually very broad and unstructured. Nevertheless, this rather simple technique allows for a differentiation of 1H containing chemicals based on their dynamics in soil. This includes rather solid soil components and solid as well as mobile water molecules. Based on an optimized 1H solid-state NMR strategy to study soil material together with a straightforward lineshape analysis, a series of soils and peats are characterized. Although even 1H NMR with sample spinning (MAS) often gives only limited information on different structures, we present results on the application of 2D 1H-1H phase-modulated Lee-Goldburg sequences (PMLG), that show already at medium spinning speeds the separation of functional groups. Their quantification can be correlated with sample composition, type of sample conditioning, and other parameters such as cation type or concentration and heat treatment. We are especially interested to correlate NMR data with DSC measurements based on a certain heat treatment of the soils. Our proposed model describes the presence of water in soil as a matrix

  4. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR insights, electronic profiling and DFT computations on ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene] amino}oxy(4-nitrophenylmethanone, an imidazole-bearing anti-Candida agent

    Directory of Open Access Journals (Sweden)

    Al-Wahaibi Lamya H.

    2018-02-01

    Full Text Available The anti-Candida agent, ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amnio}oxy(4-nitropheny methanone (IPAONM, was subjected to comprehensive spectroscopic (FT-IR, FT-Raman, UV–Vis 1H and 13C NMR characterization as well as Hartree Fock and density functional theory computation studies. The selected optimized geometric bond lengths and bond angles of the IPAONM molecule were compared with the experimental values. The calculated wavenumbers have been scaled and compared with the experimental spectra. Mulliken charges and natural bond orbital analysis of the title molecule were calculated and interpreted. The energy and oscillator strengths of the IPAONM molecule were calculated by time-dependent density functional theory (TD-DFT. In addition, frontier molecular orbitals and molecular electrostatic potential diagram of the title compound were computed and analyzed. A study on the electronic properties, such as HOMO, HOMO-1, LUMO and LUMO+1 energies was carried out using TD-DFT approach. The 1H and 13C NMR chemical shift values of the title compound were calculated by the gauge independent atomic orbital method and compared with the experimental results.

  5. HN-NCA heteronuclear TOCSY-NH experiment for {sup 1}H{sup N} and {sup 15}N sequential correlations in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany)

    2015-10-15

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue ‘i’ with that of residues ‘i−1’ and ‘i+1’ in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of {sup 1}J{sub CαN} and {sup 2}J{sub CαN} couplings to transfer the {sup 15}N{sub x} magnetisation from amino acid residue ‘i’ to adjacent residues via the application of a band-selective {sup 15}N–{sup 13}C{sup α} heteronuclear cross-polarisation sequence of ∼100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.

  6. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR, Theoretical and Microbiological Study of trans o-Coumaric Acid and Alkali Metal o-Coumarates

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowczyk-Sadowy

    2015-02-01

    Full Text Available This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR, Raman (FT-Raman, ultraviolet-visible (UV-VIS and nuclear magnetic resonance (1H- and 13C-NMR were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  7. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR

    Science.gov (United States)

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate. PMID:26083431

  8. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  9. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  10. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol--an analgesic drug.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Marchewka, M K; Mohan, S

    2014-03-25

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G(**) and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecule have been anlysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, (1)H, (13)C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane.

    Science.gov (United States)

    Arjunan, V; Anitha, R; Devi, L; Mohan, S; Yang, Haifeng

    2015-01-25

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G(**) and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecules have been analysed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Site-selective 13C labeling of proteins using erythrose

    International Nuclear Information System (INIS)

    Weininger, Ulrich

    2017-01-01

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with 13 C and/or 1 H, which is achieved in the most general way by using site-selectively 13 C-enriched glucose (1- and 2- 13 C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively 13 C-enriched erythrose (1-, 2-, 3- and 4- 13 C) as a suitable precursor for 13 C labeled aromatic side chains. We quantify 13 C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the 13 C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated 13 C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective 13 C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  13. Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), first order hyperpolarizabilities, NBO and TD-DFT analysis of the 4-methyl-2-cyanobiphenyl.

    Science.gov (United States)

    Sebastian, S; Sundaraganesan, N; Karthikeiyan, B; Srinivasan, V

    2011-02-01

    The Fourier transform infrared (FT-IR) and FT-Raman of 4-methyl-2-cyanobiphenyl (4M2CBP) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2CBP are calculated using HF/6-311G(d,p) method on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection

    DEFF Research Database (Denmark)

    Weininger, Ulrich; Brath, Ulrika; Modig, Kristofer

    2014-01-01

    Protein dynamics on the microsecond-millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications...... on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because...... they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R 1ρ experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively (13)C...

  15. Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshiki; Kato, Koichi; Shindo, Mitsuru; Aoki, Shin; Furusho, Kumiko; Koga, Kenji; Takahashi, Noriko; Arata, Yoji; Shimada, Ichio

    1998-01-01

    A systematic method for 13 C labeling of the glycan of immunoglobulin G for NMR study has been developed. A mouse immunoglobulin of subclass IgG2b has been used for the experiment. On the basis of chemical shift and linewidth data, it has been concluded that (1) the mobility of the carbohydrate chain in IgG2b is comparable to that of the backbone polypeptide chain with the exception of the galactose residue at the nonreducing end of the Man α 1-3 branch, which is extremely mobile and (2) agalactosylation does not induce any significant change in the mobility. The results obtained indicate that even in the agalactosyl form the glycans are buried in the protein. Biological significance of the NMR results obtained is also briefly discussed

  16. A First Laboratory Utilizing NMR for Undergraduate Education: Characterization of Edible Fats and Oils by Quantitative [superscript 13]C NMR

    Science.gov (United States)

    Fry, Charles G.; Hofstetter, Heike; Bowman, Matthew D.

    2017-01-01

    Quantitative [superscript 13]C NMR provides a straightforward method of analyzing edible oils in undergraduate chemistry laboratories. [superscript 13]C spectra are relatively easy to understand, and are much simpler to analyze and workup than corresponding [superscript 1]H spectra. Average chain length, degree of saturation, and average…

  17. Chemical Constituents from Bombacopsis glabra (Pasq. A. Robyns: Complete 1H and 13C NMR Assignments and X Ray Structure of 5-Hydroxy-3,6,7,8,4'-pentamethoxyflavone

    Directory of Open Access Journals (Sweden)

    Paula Vanderlúcia F.

    2002-01-01

    Full Text Available The flavone 5-hydroxy-3,6,7,8,4'-pentamethoxyflavone (1 and the triterpenes lupenone, 9,19-cyclolanost-23-ene-3beta,25-diol (2, (24R-9,19-cyclolanost-25-ene-3beta,24-diol (3 and (24S-9,19-cyclolanost-25-ene-3beta,24-diol (4 were isolated from the hexane extract of the stem bark of Bombacopsis glabra (Bombacaceae. The structures were determined by 13C and ¹H NMR (1D and 2D and mass spectrometry, and by comparison with literature data for triterpenes. The structure of the flavone 1 was unambiguously confirmed by a X-ray diffraction study. The five substances were isolated for the first time from Bombacaceae species.

  18. Detection of kestoses and kestose-related oligosaccharides in extracts of Festuca arundinacea, Dactylis glomerate L., and Asparagus officinalis L. root cultures and invertase by 13C and 1H nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Forsythe, K.L.; Feather, M.S.; Gracz, H.; Wong, T.C.

    1990-01-01

    Previous studies show that 13 C nuclear magnetic resonance spectroscopy can be used to detect and identify mixtures of 1-kestose and neokestose after conversion to the acetate derivatives. In this study, unequivocal assignments are made for the anomeric carbon and proton signals for the above two trisaccharide acetates as well as for 6-kestose hendecaacetate and for nystose tetradecaacetate (a 1-kestose-derived tetrasaccharide). A number of oligosaccharide fractions were isolated from several plant species, converted to the acetates, and nuclear magnetic resonance spectra obtained. Using the above reference data, the following information was obtained. The trisaccharide fraction from Dactylis gomerata L. stem tissue and Asparagus officinalis L. roots contain both 1-kestose and neokestose, and the tetrasaccharide fractions contain three components, one of which is nystose. Penta- and hexasaccharide acetates were also isolated from A. officinalis L. roots and were found to contain, respectively, four and at least five components. All components of both of the above species appear to contain a kestose residue and to be produced by the sequential addition of fructofuranosyl units to these. The trisaccharide fraction from Festuca arundinacea is complex, and contains at least five different components, two of which appear to be 1-kestose and neokestose

  19. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Englander, S.W.; Wand, A.J.

    1987-01-01

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub α/H-C/sub β/H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step

  20. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    International Nuclear Information System (INIS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-01-01

    The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived

  1. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    Science.gov (United States)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15

  2. Site-selective {sup 13}C labeling of proteins using erythrose

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Ulrich, E-mail: ulrich.weininger@physik.uni-halle.de [Lund University, Department of Biophysical Chemistry, Center for Molecular Protein Science (Sweden)

    2017-03-15

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with {sup 13}C and/or {sup 1}H, which is achieved in the most general way by using site-selectively {sup 13}C-enriched glucose (1- and 2-{sup 13}C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively {sup 13}C-enriched erythrose (1-, 2-, 3- and 4-{sup 13}C) as a suitable precursor for {sup 13}C labeled aromatic side chains. We quantify {sup 13}C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the {sup 13}C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated {sup 13}C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective {sup 13}C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  3. Synthesis of 1-13C-1-indanone and 2-13C-1,2,3,4-tetrahydroquinoline

    International Nuclear Information System (INIS)

    Pickering, R.E.; Wysocki, M.A.; Eisenbraun, E.J.

    1985-01-01

    The synthesis of 2- 13 C-1,2,3,4-tetrahydroquinoline (5) via 1- 13 C-3-phenylpropanoic acid (1), 1- 13 C-1-indanone (2), 1- 13 C-1-indanone hydrazone (3) and 2- 13 C-3,4-dihydro-2(1H)-quinolinone (4) proceeded in 78, 96, 95, 79, and 85% individual yields respectively for 1, 2, 3, 4, 5 and 61% overall yield of the latter from 1. (author)

  4. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    Science.gov (United States)

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2-(trifluoromethyl)benzoic acid: Experimental and computational study

    Science.gov (United States)

    Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf

    2017-09-01

    FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.

  6. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  7. Novel spin dynamics in ferrimagnetic molecular chains from {sup 1}H NMR and {mu}SR spin-lattice relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L

    2004-05-01

    The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15

  8. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    Science.gov (United States)

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Backbone and side-chain 1H, 15N and 13C resonance assignments of two Sac10b family members Mvo10b and Mth10bTQQA from archaea.

    Science.gov (United States)

    Xuan, Jinsong; Yao, Hongwei; Feng, Yingang; Wang, Jinfeng

    2017-10-01

    The Sac10b family proteins, also named as Alba, are small, basic, nucleic acid-binding proteins widely distributed in archaea. They possess divergent physiological functions such as binding to both DNA and RNA with a high affinity and involving in genomic DNA compaction, RNA transactions and transcriptional regulations. The structures of many Sac10b family proteins from hyperthermophilic archaea have been reported, while those from thermophilic and mesophilic archaea are largely unknown. As was pointed out, the homologous members from thermophilic and mesophilic archaea may have functions different from the hyperthermophilic members. Therefore, comparison of these homologous members can provide biophysical and structural insight into the functional diversity and thermal adaptation mechanism. The present work mainly focused on the NMR study of two Sac10b family members, Mvo10b and Mth10b, from the mesophilic and thermophilic archaea, respectively. To overcome the difficulties caused by the oligomerization and conformation heterogeneity of Mth10b, a M13T/L17Q/I20Q/P56A mutant Mth10b (Mth10bTQQA) was constructed and used together with Mvo10b for multi-dimensional NMR experiments. The resonance assignments of Mvo10b and Mth10bTQQA are reported for further structural determination which is a basis for understanding the functional diversity and their thermal adaption mechanisms.

  10. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    Science.gov (United States)

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  11. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    Science.gov (United States)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  12. Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4

    Directory of Open Access Journals (Sweden)

    Kristina Zlatina

    2017-12-01

    Full Text Available Neutrophils are able to neutralize pathogens by phagocytosis, by the release of antimicrobial components, as well as by the formation of neutrophil extracellular traps (NETs. The latter possibility is a DNA-meshwork mainly consisting of highly concentrated extracellular histones, which are not only toxic for pathogens, but also for endogenous cells triggering several diseases. To reduce the negative outcomes initiated by extracellular histones, different approaches like antibodies against histones, proteases, and the polysaccharide polysialic acid (polySia were discussed. We examined whether each of the individual histones is a binding partner of polySia, and analyzed their respective cytotoxicity in the presence of this linear homopolymer. Interestingly, all of the histones (H1, H2A, H2B, H3, and H4 seem to interact with α2,8-linked sialic acids. However, we observed strong differences regarding the required chain length of polySia to bind histone H1, H2A, H2B, H3, and H4. Moreover, distinct degrees of polymerization were necessary to act as a cytoprotective agent in the presence of the individual histones. In sum, the outlined results described polySia-based strategies to bind and/or to reduce the cytotoxicity of individual histones using distinct polySia chain length settings.

  13. Synthesis of [5,6-13C2, 1-14C]olivetolic acid, methyl [1'-13C]olivetolate and [5,6-13C2, 1-14C]cannabigerolic acid

    International Nuclear Information System (INIS)

    Porwoll, J.P.; Leete, E.

    1985-01-01

    Potential advanced intermediates in the biosynthesis of delta 9 -tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous 13 C atoms and 14 C. Methyl [5,6- 13 C 2 , 1- 14 C]olivetolate was prepared from lithium [ 13 C 2 ]acetylide and dimethyl [2- 14 C]malonate. Reaction with geranyl bromide afforded methyl [5,6- 13 C 2 , 1- 14 C]cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The 13 C- 13 C couplings observable in the 13 C NMR spectra of these 13 C-enriched compounds and their synthetic precursors are recorded. Methyl [1'- 14 C]olivetolate was prepared from 13 CO 2 to confirm assignments of the 13 C chemical shifts in the pentyl side chain of these compounds. (author)

  14. Sequence determination and resonance assignments of an Azomonas siderophore using 13C natural abundance 13C-1H HNCA experiment

    Czech Academy of Sciences Publication Activity Database

    Wasielewski, E.; Abdallah, M. A.; Kyslík, Pavel; Kieffer, B.

    2001-01-01

    Roč. 4, - (2001), s. 765-770 ISSN 1387-1609 Institutional research plan: CEZ:AV0Z5020903 Keywords : determination * resonance * assignments Subject RIV: EE - Microbiology, Virology Impact factor: 0.555, year: 2001

  15. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  16. Correlation between the 12C+12C, 12C+13C, and 13C+13C fusion cross sections

    Science.gov (United States)

    Notani, M.; Esbensen, H.; Fang, X.; Bucher, B.; Davies, P.; Jiang, C. L.; Lamm, L.; Lin, C. J.; Ma, C.; Martin, E.; Rehm, K. E.; Tan, W. P.; Thomas, S.; Tang, X. D.; Brown, E.

    2012-01-01

    The fusion cross section for 12C+13C has been measured down to Ec.m.=2.6 MeV, at which the cross section is of the order of 20 nb. By comparing the cross sections for the three carbon isotope systems, 12C+12C, 12C+13C, and 13C+13C, it is found that the cross sections for 12C+13C and 13C+13C provide an upper limit for the fusion cross section of 12C+12C over a wide energy range. After calibrating the effective nuclear potential for 12C+12C using the 12C+13C and 13C+13C fusion cross sections, it is found that a coupled-channels calculation with the ingoing wave boundary condition (IWBC) is capable of predicting the major peak cross sections in 12C+12C. A qualitative explanation for this upper limit is provided by the Nogami-Imanishi model and by level density differences among the compound nuclei. It is found that the strong resonance found at 2.14 MeV in 12C+12C exceeds this upper limit by a factor of more than 20. The preliminary result from the most recent measurement shows a much smaller cross section at this energy, which agrees with our predicted upper limit.

  17. Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins

    International Nuclear Information System (INIS)

    Jacob, Jaison; Louis, John M.; Nesheiwat, Issa; Torchia, Dennis A.

    2002-01-01

    Analysis of 2D [ 13 C, 1 H]-HSQC spectra of biosynthetic fractionally 13 C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13 C labeling yields aromatic rings in which some of the 13 C- 13 C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the δ-, ε- and ζ-carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13 C constant-time period in 2D [ 13 C, 1 H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13 C CSA and 13 C- 1 H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13 C constant-time spectra with good sensitivity

  18. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi

    International Nuclear Information System (INIS)

    Werner, I.; Bacher, A.; Eisenreich, W.

    1997-01-01

    The biosynthesis of gallic acid was studied in cultures of the fungus Phycomyces blakesleeanus and in leaves of the tree Rhus typhina. Fungal cultures were grown with [1-13C]glucose or with a mixture of unlabeled glucose and [U-13C6]glucose. Young leaves of R. typhina were kept in an incubation chamber and were supplied with a solution containing a mixture of unlabeled glucose and [U-13C6]glucose via the leaf stem. Isotope distributions in isolated gallic acid and aromatic amino acids were analyzed by one-dimensional 1H and 13C NMR spectroscopy. A quantitative analysis of the complex isotopomer composition of metabolites was obtained by deconvolution of the 13C13C coupling multiplets using numerical simulation methods. This approach required the accurate analysis of heavy isotope chemical shift effects in a variety of different isotopomers and the analysis of long range 13C13C coupling constants. The resulting isotopomer patterns were interpreted using a retrobiosynthetic approach based on a comparison between the isotopomer patterns of gallic acid and tyrosine. The data show that both in the fungus and in the plant all carbon atoms of gallic acid are biosynthetically equivalent to carbon atoms of shikimate. Notably, the carboxylic group of gallic acid is derived from the carboxylic group of an early intermediate of the shikimate pathway and not from the side chain of phenylalanine or tyrosine. It follows that the committed precursor of gallic acid is an intermediate of the shikimate pathway prior to prephenate or arogenate, most probably 5-dehydroshikimate. A formation of gallic acid via phenylalanine, the lignin precursor, caffeic acid, or 3,4, 5-trihydroxycinnamic acid can be ruled out as major pathways in the fungus and in young leaves of R. typhina. The incorporation of uniformly 13C-labeled glucose followed by quantitative NMR analysis of isotopomer patterns is suggested as a general method for biosynthetic studies. As shown by the plant experiment, this

  19. Robust refocusing of 13C magnetization in multidimensional NMR experiments by adiabatic fast passage pulses

    International Nuclear Information System (INIS)

    Zweckstetter, Markus; Holak, Tad A.

    1999-01-01

    We show that adiabatic fast passage (AFP) pulses are robust refocusing elements of transverse 13 C magnetization in multidimensional NMR experiments. A pair of identical AFP pulses can refocus selected parts or a complete 13 C chemical shift range in 13 C spectra. In the constant time 13 C- 1 H HSQC, replacement of attenuated rectangular pulses by selective AFP pulses results in a sensitivity enhancement of up to a factor of 1.8. In the 3D CBCA(CO)NH the signal-to-noise ratio is increased by a factor of up to 1.6

  20. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  1. 1H and 13C NMR spectral assignments of four dammarane triterpenoids from carnauba wax.

    Science.gov (United States)

    Cysne, Juliana de Brito; Braz-Filho, Raimundo; Assunção, Marcus Vinícius; Uchoa, Daniel E de Andrade; Silveira, Edilberto R; Pessoa, Otília Deusdênia L

    2006-06-01

    The phytochemical investigation of carnauba wax led to the isolation of three new dammarane triterpenoids 1, 2 and 4, together with the known triterpene 3. The structures of the new compounds were determined by 1D and 2D NMR spectroscopy and by comparison with published data for closely related compounds. 2006 John Wiley & Sons, Ltd.

  2. Structural and dynamical characterization of piroxicam by 1H- and 13C-NMR relaxation studies

    International Nuclear Information System (INIS)

    Rossi, C.; Casini, A.; Picchi, M.P.; Laschi, F.; Calabria, A.; Marcolongo, R.

    1987-01-01

    Carbon spin-lattice relaxation rates of anti-inflammatory drug, piroxicam, have been measured. These results have been used in determining the reorientational rates of the proton carbon vectors. An analysis of internal motions within the pyridinyl moiety of piroxicam was carried out. Selective proton-carbon nuclear Overhauser effect (NOE) measurements were made in order to determine the solution structure of piroxicam. The effect of indirect NOE arising from exchangeable protons has been analyzed and considered. 20 refs.; 4 figs.; 3 tabs

  3. 1H and 13C NMR assignments for two new cordiaquinones from roots of Cordia leucocephala.

    Science.gov (United States)

    Diniz, Jaécio Carlos; Viana, Francisco Arnaldo; Oliveira, Odaci Fernandes; Maciel, Maria Aparecida M; Torres, Maria da Conceição de Menezes; Braz-Filho, Raimundo; Silveira, Edilberto R; Pessoa, Otília Deusdênia L

    2009-02-01

    From the roots of Cordia leucocephala (Boraginaceae), two new meroterpenoid naphthoquinones, 6-[10-(12,12-dimethyl-13alpha-hydroxy-16-methenyl-cyclohexyl)ethyl]-1,4-naphthalenedione (cordiaquinone L) and 5-methyl-6-[10-(12,12-dimethyl-13beta-hydroxy-16-methenyl-cyclohexyl)methyl-1,4-naphthalenedione (cordiaquinone M) were isolated. Their structures were elucidated after detailed 1D and 2D NMR (COSY, HSQC, HMBC and NOESY) data analyses and comparison with literature data for analogous compounds. 2008 John Wiley & Sons, Ltd.

  4. 1H NMR analysis of long-chain-branched strong polyelectrolytes obtained by vinyl/divinyl monomer copolymerization in aqueous medium

    Czech Academy of Sciences Publication Activity Database

    Podešva, Jiří; Spěváček, Jiří; Kratochvíl, Pavel; Netopilík, Miloš

    2013-01-01

    Roč. 18, č. 7 (2013), s. 557-565 ISSN 1023-666X Institutional support: RVO:61389013 Keywords : long-chain branching * NMR * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.487, year: 2013

  5. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  6. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  7. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.; Silks, L.A. III

    1994-01-01

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13 C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U- 13 C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13 C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U- 13 C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13 C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  8. Bacterial production of site specific {sup 13}C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L., E-mail: robert.mcfeeters@uah.edu [University of Alabama in Huntsville, Department of Chemistry (United States)

    2017-01-15

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific {sup 13}C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct {sup 13}C chemical shifts and multiple magnetically equivalent {sup 1}H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with {sup 13}C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated {sup 1}H-{sup 13}C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

  9. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins

    International Nuclear Information System (INIS)

    Lee, Andrew L.; Urbauer, Jeffrey L.; Wand, A. Joshua

    1997-01-01

    Selective incorporation of 13 C into the methyl groups of protein side chains is described as a means for simplifying the measurement and interpretation of 13 C relaxation parameters.High incorporation (>90%) is accomplished by using pyruvate(3- 13 C, 99%) as the sole carbon source in the growth media for protein overexpression in E. coli. This improved labeling scheme increases the sensitivity of the relaxation experiments by approximately fivefold when compared to randomly fractionally 13 C-labeled protein, allowing high-quality measurements on relatively dilute (<1 mM)protein samples at a relatively low cost

  10. Structural determination of the carbohydrate chains from arthropod and mollusc hemocyanin by means of 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Kuik, J.A. van.

    1987-01-01

    In this thesis carbohydrate structures of hemocyanins of arthropods and molluscs are studied. Hemocyanins are high-molecular-mass, copper-containing oxygen-transport proteins. The function of these carbohydrate chains are yet still unknown. It is not probable that they play a role in the oxygen-binding processes. They are rather thought to have a function in the build-up of the hemocyanin molecules. 286 refs.; 30 figs.; 25 tabs

  11. Synthesis of C-13 labeled vitamin E, [4' a-13C]all-rac-α-tocopherol

    International Nuclear Information System (INIS)

    Urano, Shiro; Muto, Riko; Matsuo, Mitsuyoshi

    1985-01-01

    Vitamin E with a 13 C-labeled isoprenoid side chain, [4' a- 13 C]-all-rac-α-tocopherol, was synthesized by the coupling reaction of 6-4-methoxymethoxy-2-([methyl- 13 C]5-bromo-4-methyl-pent-1-yl)chroman (8) with 3,7-dimethyl-1-(thiazolin-2-yl)thio-2,6-octadiene. Compound 8 was prepared using 2-(4,4-di-ethoxycarbonylbut-1-yl)-6-methoxymethoxy-2,5,7,8-tetramethyl-chroman as a key intermediate and [ 13 C]methyl iodide as a 13 C source. The total yield of the labeled α-tocopherol based on [ 13 C]methyl iodide was 58.7%. (author)

  12. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  13. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    Science.gov (United States)

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  14. Alpha Resonant States in 13C

    International Nuclear Information System (INIS)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Souza, M. A.; Miyake, H.; Cunsolo, A.; Cappuzzello, F.; Ukita, G. M.

    2011-01-01

    The 9 Be( 6 Li,d) 13 C reaction was used to investigate alpha resonant states in 13 C up to 15 MeV of excitation. The reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. An energy resolution of 50 keV was obtained. Several narrow alpha resonant states not previously measured were detected, in particular the one at the (3α+n) threshold populated by an L = 2 transfer, revealing a 9 Be+α component for the 1/2 - cluster state candidate at this threshold. Experimental angular distributions are presented in comparison with DWBA predictions.

  15. Property-based design and synthesis of new chloroquine hybrids via simple incorporation of 2-imino-thiazolidine-4-one or 1h-pyrrol-2, 5-dione fragments on the 4-amino-7-chloroquinoline side chain

    International Nuclear Information System (INIS)

    Rojas, Fernando A.; Kouznetsov, Vladimir V.

    2011-01-01

    In the present work, the syntheses of new 4-amino-7-chloroquinoline N-derivatives were performed by selective modification of the side chain amino group of N-(7-chloroquinoline-4-yl) alkyldiamines, basis framework of chloroquine (CQ) drug through the incorporation of heterocyclic 2-imino-thiazolidine-4-one and 1 H-pyrrol-2,5-dione systems. These potential activity modulators were selected thanks to their characteristic properties, and evaluated by virtual screening employing the OSIRIS and Molinspirations platforms. Designed and synthesized quinolinic derivatives could increase the antimalarial activity of CQ analogues without affecting the lipophilicity as described in literature, suggesting them as candidates for further biological assessments. (author)

  16. Property-based design and synthesis of new chloroquine hybrids via simple incorporation of 2-imino-thiazolidine-4-one or 1h-pyrrol-2, 5-dione fragments on the 4-amino-7-chloroquinoline side chain

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Fernando A; Kouznetsov, Vladimir V., E-mail: kouznet@uis.edu.co [Laboratorio de Quimica Organica y Biomolecular, Escuela de Quimica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-09-15

    In the present work, the syntheses of new 4-amino-7-chloroquinoline N-derivatives were performed by selective modification of the side chain amino group of N-(7-chloroquinoline-4-yl) alkyldiamines, basis framework of chloroquine (CQ) drug through the incorporation of heterocyclic 2-imino-thiazolidine-4-one and {sup 1}H-pyrrol-2,5-dione systems. These potential activity modulators were selected thanks to their characteristic properties, and evaluated by virtual screening employing the OSIRIS and Molinspirations platforms. Designed and synthesized quinolinic derivatives could increase the antimalarial activity of CQ analogues without affecting the lipophilicity as described in literature, suggesting them as candidates for further biological assessments. (author)

  17. Determination of urea 13C in urea 13C mixed powder by HPLC

    International Nuclear Information System (INIS)

    Zhong Jianguo; Song Tianqi

    2006-01-01

    A HPLC method is developed for determination of Urea 13 C in Urea 13 C Mixed Powder. A Alltech Econosphere NH2 column (250 mm x 4.6 mm, 5 μm)is used as stationary phrase, a mixture of V(acetonitrile): V(methanol): V(water) = 900 : 100: 10 is used as mobile phase and the flow rate is l mL·min -1 , UV detection wavelength is performed at 200 nm. The calibration curve shows good linearity in the range of 0.2-1.0 g·L -1 of Urea 13 C, y=2.548 x 10 6 x + 4.005 x 10 4 , r=0.9999, and the averaged recovery is 100.6%. The method is simple and accurate, and can be used for the quality control of Urea 13C Mixed Powder. (authors)

  18. 1H NMR study of effects of synergistic anion and metal ion binding on pH titration of the histidinyl side-chain residues of the half-molecules of ovotransferrin

    International Nuclear Information System (INIS)

    Woodworth, R.C.; Butcher, N.D.; Brown, S.A.; Brown-Mason, A.

    1987-01-01

    Separation of ovotransferrin into C-terminal (OTf/2C) and N-terminal (OTf/2N) half-molecules has made possible the resolution of all expected histidinyl C(2)H resonances by proton nuclear magnetic resonance at 250 MHz. The chemical shift of many of the resonances decreases with increasing pH, allowing construction of titration curves, whereas a few resonances fail to titrate. On formation of the Ga/sup III/OTf/2(C 2 O 4 ) ternary complexes, two of the low-field C(2)H resonances in each half-molecule fail to titrate. This behavior implicates the imidazole groups giving rise to these resonances as ligands to the bound metal ion. A third C(2)H resonance in each half-molecule undergoes a marked reduction in pK'/sub a/ on formation of the ternary complex. The imidazole group displaying this resonance is implicated in a proton-relay scheme involved in binding the synergistic anion, oxalate, and a water of hydration on the bound metal ion. The titration curves for the various imidazole resonances have been fit to a four-parameter equation involving estimation of the pK'/sub a/, the limiting chemical shift values, and a Hill constant n. Hill constants of 1, which suggests positive cooperativity in the titration of this residue. The basis for this behavior cannot be rationalized at this time. 13 C NMR studies of [zeta- 13 C]Arg-OTf suggest the Arg side chains may not be intimately involved in formation of the ternary complex

  19. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  20. Multi site Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    International Nuclear Information System (INIS)

    Damian, P.A.G.; Sperl, J.I.; Janich, M.A.; Wiesinger, F.; Schulte, R.F.; Menzel, M.I.; Damian, P.A.G.; Damian, P.A.G.; Haase, A.; Janich, M.A.; Schwaiger, M.; Janich, M.A.; Khegai, O.; Glaser, S.J.

    2014-01-01

    Hyperpolarized 13 C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1- 13 C]pyruvate and downstream metabolites [1- 13 C]alanine, [1- 13 C]lactate, and [ 13 C] bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multi site, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multi site model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multi site model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

  1. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Directory of Open Access Journals (Sweden)

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  2. (13)C-(15)N correlation via unsymmetrical indirect covariance NMR: application to vinblastine.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J

    2007-12-01

    Unsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC). The application of unsymmetrical indirect covariance processing to spectra of vinblastine is now reported, specifically the algorithmic extraction of (13)C- (15)N correlations via the unsymmetrical indirect covariance processing of the combination of (1)H- (13)C GHSQC and long-range (1)H- (15)N GHMBC to produce the equivalent of a (13)C- (15)N HSQC-HMBC correlation spectrum. The elimination of artifact responses with aromatic solvent-induced shifts (ASIS) is shown in addition to a method of forecasting potential artifact responses through the indirect covariance processing of the GHSQC spectrum used in the unsymmetrical indirect covariance processing.

  3. CACA-TOCSY with alternate {sup 13}C-{sup 12}C labeling: a {sup 13}C{sup {alpha}} direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology (AIST), Biomedicinal Information Research Center (BIRC) (Japan); Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian; Wagner, Gerhard, E-mail: gerhard_wagner@hms.harvard.ed [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2010-05-15

    We present a {sup 13}C direct detection CACA-TOCSY experiment for samples with alternate {sup 13}C-{sup 12}C labeling. It provides inter-residue correlations between {sup 13}C{sup {alpha}} resonances of residue i and adjacent C{sup {alpha}s} at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C{sup {alpha}} nuclei separated by more than one residue. The experiment also provides C{sup {alpha}}-to-side chain correlations, some amino acid type identifications and estimates for {psi} dihedral angles. The power of the experiment derives from the alternate {sup 13}C-{sup 12}C labeling with [1,3-{sup 13}C] glycerol or [2-{sup 13}C] glycerol, which allows utilizing the small scalar {sup 3}J{sub CC} couplings that are masked by strong {sup 1}J{sub CC} couplings in uniformly {sup 13}C labeled samples.

  4. Solid-state 13C NMR characterization of polyanilines

    International Nuclear Information System (INIS)

    Kaplan, S.

    1988-01-01

    13 C solid-state nuclear magnetic resonance measurements are reported for the leucoemeraldine base, emeraldine base, and emeraldine hydrochloride forms of polyaniline in order to characterize the structures of these three distinct polymers. Chemical shift assignments are facilitated by use of the cross-depolarization technique to distinguish carbons with and without directly bonded hydrogens. Comparison of the spectra of emeraldine base with those of leucoemeraldine base and air-oxidized leucoemeraldine (which partially converts to emeraldine base) establishes that emeraldine base is essentially an alternating copolymer of reduced 1A (-(C 6 H 4 )N(H)(C 6 H 4 )N(H)-) and oxidized 2A (-(C 6 H 4 )N double-bond(C 6 H 4 )double-bond N-) repeat units. The 8-12 ppm spectral line widths measured for both emeraldine base and leucoemeraldine base are attributed to local fluctuations in conformational and configurational geometries, a distribution in chain packing, and compositional defects. 13 C spin-echo measurements establish that the 60 ppM wide line from the conducting emeraldine hydrochloride is inhomogeneously broadened. It is postulated that this line width is due to local variations in charge density along the polymer backbone arising from polymer structural heterogeneity. 47 refs., 5 figs., 1 tab

  5. Neutron orbital radii in {sup 13} C; Radios orbitales neutronicos en {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.J.; Avila, O.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1988-01-15

    In this work its were carried out experimental measurements of the reaction {sup 12}C(d,p) {sup 13}C at low energy. Preliminary results of a DWBA analysis of the data are presented, and the possibility of using this reaction to obtain the orbital radius of the transferred neutron is investigated. (Author)

  6. Stereoselective synthesis of L-[4-13C]carnitine

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Ehler, D.S.

    1991-01-01

    The stereoselective synthesis of L-[4- 13 C]carnitine was achieved in 5 steps. The label was introduced from K 13 CN into an easily separated diastereomeric pair of 3-deoxy-D-[1- 13 C]aldohexoses. Reductive amination of the labeled aldohexose yielded the corresponding D-1-(dimethylamino)[1- 13 C]alditol which was oxidized in two steps and alkylated with iodomethane to yield L-[4- 13 C]carnitine. The stereochemical integrity at C-2 of the 3-deoxy-D-[1- 13 C]glucose precursor was maintained throughout the synthesis of L-[4- 13 C]carnitine. (author)

  7. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C (15)N HSQC-IMPEACH and (13)C (15)N HMBC-IMPEACH correlation spectra.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.

  8. Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues† †Electronic supplementary information (ESI) available: Synthesis of TEG–BA, Gluen–BA, mGluen–BA and Gluen–Ph; 1H NMR, 13C NMR, MALDI-TOF MS, electronic absorption, and CD spectra; zeta potential distributions; SLS plots; DLS histograms; and related experimental procedures. See DOI: 10.1039/c5sc00524h Click here for additional data file.

    Science.gov (United States)

    Mogaki, Rina

    2015-01-01

    Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Gluen–BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Gluen–BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10–BA and Glue29–BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG–BA). Most importantly, Glue10–BA inhibited the protease activity of trypsin 13-fold more than TEG–BA. In sharp contrast, mGlue27–BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG–BA for trypsin, was inferior even to TEG–BA for trypsin inhibition. PMID:28706668

  9. Synthesis of [21-13C]-cholesterol

    International Nuclear Information System (INIS)

    Caballero, G.M.; Gros, E.G.

    1994-01-01

    The synthesis of [21- 13 C]-cholesterol from 3β-O-(t-butyldimethylsilyl)-17β-cyano-androst-5-ene is described. Labelled carbon-atom was introduced by Grignard reaction of nitrile derivative with [ 13 C]-methylmagnesium iodide. Location of label was confirmed by 13 C-NMR spectroscopy. (author)

  10. Synthesis and characterization of "1"3C_3-tristearin

    International Nuclear Information System (INIS)

    Wu Hangyu; Lin Lin; Li Lei; Chen Dazhou

    2011-01-01

    A highly efficient synthesis of "1"3C_3 labeled triglycerides of stearic acids from "1"3C_3-glycerol and stearic acids, by immobilized lipase-catalyzed in solvent-free medium was described. The structure of the product were characterized by fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), mass spectra (MS). The results showed that triglycerides of stearic acids contained three "1"3C atoms. The isotope abundance of "1"3C_3-tristearin was more than 99% and the yield was 80% of "1"3C_3-tristearin through calculation. Chemical purity (> 98%) was obtained by differential scanning calorimetry (DSC). (authors)

  11. Experiments and strategies for the assignment of fully13 C/15N-labelled polypeptides by solid state NMR

    International Nuclear Information System (INIS)

    Straus, Suzana K.; Bremi, Tobias; Ernst, Richard R.

    1998-01-01

    High-resolution heteronuclear NMR correlation experiments and strategies are proposed for the assignment of fully 13 C/ 15 N-labelled polypeptides in the solid state. By the combination of intra-residue and inter-residue 13 C- 15 N correlation experiments with 13 C- 13 C spin-diffusion studies, it becomes feasible to partially assign backbone and side-chain resonances in solid proteins. The performance of sequences using 15 N instead of 13 C detection is evaluated regarding sensitivity and resolution for a labelled dipeptide (L-Val-L-Phe). The techniques are used for a partial assignment of the 15 N and 13 C resonances in human ubiquitin

  12. Side-chain dynamics of a detergent-solubilized membrane protein: Measurement of tryptophan and glutamine hydrogen-exchange rates in M13 coat protein by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    O'Neil, J.D.J.; Sykes, B.D.

    1989-01-01

    M13 coat protein is a small (50 amino acids) lipid-soluble protein that becomes an integral membrane protein during the infection stage of the life cycle of the M13 phage and is therefore used as a model membrane protein. To study side-chain dynamics in the protein, the authors have measured individual hydrogen-exchange rates for a primary amide in the side chain of glutamine-15 and for the indole amine of tryptophan-26. The protein was solubilized with the use of perdeuteriated sodium dodecyl sulfate (SDS), and hydrogen-exchange rates were measured by using 1 H nuclear magnetic resonance spectroscopy. The glutamine-15 syn proton exchanged at a rate identical with that in glutamine model peptides except that the pH corresponding to minimum exchange was elevated by about 1.5 pH units. The tryptophan-26 indole amine proton exchange was biphasic, suggesting that two populations of tryptophan-26 exist. It is suggested that the two populations may reflect protein dimerization or aggregation in the SDS micelles. The pH values of minimum exchange for tryptophan-26 in both environments were also elevated by 1.3-1.9 pH units. This phenomenon is reproduced when small tryptophan- and glutamine-containing hydrophobic peptides are dissolved in the presence of SDS micelles. The electrostatic nature of this phenomenon is proven by showing that the minimum pH for exchange can be reduced by dissolving the hydrophobic peptides in the positively charged detergent micelle dodecyltrimethylammonium bromide

  13. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  14. Millimetre-wave spectrum of anti-13C1 and 13C2 isotopologues of ethanol

    International Nuclear Information System (INIS)

    Bouchez, Aurelia; Walters, Adam; Müller, Holger S.P.; Ordu, Matthias; Lewen, Frank; Koerber, Monika; Bottinelli, Sandrine; Endres, Christian P.; Schlemmer, Stephan

    2012-01-01

    The rotational spectra of the two monosubstituted 13 C isotopologues of the anti conformer of ethanol have been measured between 80-800 GHz using three different spectrometers at the Cologne Laboratory Astrophysics group. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states showing significant perturbation with the gauche states and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first astrophysical research for which an appropriate set of predictions is given.

  15. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  16. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Xiao, Yiling; Nishiyama, Yusuke; Long, Fei; Matsuda, Isamu; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  17. Structural characterization of heat treated pitch by solid state /sup 13/C nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sfihi, H.; Tougne, P.; Legrand, A.P.; Couderc, P.; Saint-Romain, J.L.

    1988-12-01

    The objective of this paper is to determine structural parameters (aromaticity factor, fractions of protonated and non-protonated aromatic carbons) of some pitches, and to follow their evolution as a function of the heat treatment duration. For such a determination, /sup 13/C-/sup 1/H cross polarization combined with magic angle spinning and dipolar dephasing (CP/MAS/DD) NMR was used. 15 refs., 4 figs., 1 tab.

  18. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    Science.gov (United States)

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  19. Synthesis and purification of 13C labelled xanthine derivatives

    International Nuclear Information System (INIS)

    Boukraa, M.S.; Deruaz, D.; Bannier, A.; Desage, M.; Brazier, J.L.

    1995-01-01

    3-[Methyl- 13 )C]xanthine, 7-[Methyl- 13 )C]xanthine, 1,3-[Dimethyl- 13 )C 2 ]xanthine (theophylline-1,3-[ 13 )CH 3 ] 2 ), 1,7-[Dimethyl- 13 )C 2 ]xanthine (paraxanthine-1,7[ 13 )CH 3 ] 2 ), and 3,7-[Dimethyl- 13 )C 2 ]xanthine (theobromine-3,7-[ 13 )CH 3 ] 2 were synthesized by nucleophilic substitution reaction(SN 2 ) from xanthine (X) and iodomethane-[ 13 C]. The 3-isobutylparaxanthine-7-[ 13 CH 3 ] was prepared from 3-isobutyl-1-methylxanthine (IBMX). The compounds were purified by reverse phase semipreparative liquid chromatography and their chemical structure and purity verified by GC-MS. (Author)

  20. Synthesis of edatrexate (2-13C-glutamate)

    International Nuclear Information System (INIS)

    DeGraw, J.I.; Colwell, W.T.; Jue, Thomas

    1997-01-01

    The experimental antitumor drug Edatrexate, labeled with 99% 13 C at the 2-position of the glutamate acid group was required for 13 C-magnetic resonance spectroscopy studies in biological media. Coupling of 2,4-diamino-4-deoxy-10-ethyl-10-deazapteroic acid with diethyl L-2- 13 C-glutamate as promoted by BOP reagent afforded Edatrexate (2- 13 C-glu) diethyl ester in 60% yield following purification by column chromatography. Saponification by aqueous NaOH in 2-methoxyethanol gave the target molecule in 44% yield or 26% overall. (author)

  1. NMR study of 1,4-dihydropyridine derivatives endowed with long alkyl and functionalized chains

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Margarita; Salfran, Esperanza; Rodriguez, Hortensia; Coro, Julieta, E-mail: msuarez@fq.uh.c [Universidad de La Habana (Cuba). Facultad de Quimica. Lab. de Sintesis Organica; Molero, Dolores; Saez, Elena [Universidad Complutense, Madrid (Spain). CAI-RMN; Martinez-Alvarez, Roberto; Martin, Nazario [Universidad Complutense, Madrid (Spain). Facultad de Quimica. Dept. de Quimica Organica I

    2011-07-01

    The {sup 1}H , {sup 13}C and {sup 15}N NMR spectroscopic data for 1,4-dihydropyridine endowed with long alkyl and functionalized chain on C-3 and C-5, have been fully assigned by combination of one- and two dimensional experiments (DEPT, HMBC, HMQC, COSY, nOe). (author)

  2. Ring-Substituted Benzohydroxamic Acids: 1H, 13C and 15N NMR Spectra and NHOH Proton Exchange

    Czech Academy of Sciences Publication Activity Database

    Schraml, Jan; Tkadlecová, M.; Pataridis, S.; Soukupová, Ludmila; Blechta, Vratislav; Roithová, Jana; Exner, Otto

    2005-01-01

    Roč. 43, č. 7 (2005), s. 535-542 ISSN 0749-1581 R&D Projects: GA ČR(CZ) GA203/03/1566; GA AV ČR(CZ) IAA4072605; GA AV ČR(CZ) IAA4072005; GA MŠk(CZ) LB98233 Institutional research plan: CEZ:AV0Z40720504 Keywords : proton exchange * substituent effects * chemical shifts Subject RIV: CC - Organic Chemistry Impact factor: 1.553, year: 2005

  3. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  4. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C

    International Nuclear Information System (INIS)

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-01-01

    Highlights: • 13 C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled 13 C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ 13 C value). However, 13 C labeled standards can be used to control the δ 13 C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the 13 C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ 13 C values between Andro and ANAD (Δδ 13 C Andro–ANAD , ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different 13 C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ 13 C Andro–ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ 13 C Andro–ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3- 13 C labeled standards

  5. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    Science.gov (United States)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  6. Synthesis of (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolic acid, methyl (1'-/sup 13/C)olivetolate and (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Porwoll, J P; Leete, E [Minnesota Univ., Minneapolis (USA). Dept. of Chemistry

    1985-03-01

    Potential advanced intermediates in the biosynthesis of delta/sup 9/-tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous /sup 13/C atoms and /sup 14/C. Methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolate was prepared from lithium (/sup 13/C/sub 2/)acetylide and dimethyl (2-/sup 14/C)malonate. Reaction with geranyl bromide afforded methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The /sup 13/C-/sup 13/C couplings observable in the /sup 13/C NMR spectra of these /sup 13/C-enriched compounds and their synthetic precursors are recorded. Methyl (1'-/sup 14/C)olivetolate was prepared from /sup 13/CO/sub 2/ to confirm assignments of the /sup 13/C chemical shifts in the pentyl side chain of these compounds.

  7. Synthesis of (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolic acid, methyl (1'-/sup 13/C)olivetolate and (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Porwoll, J.P.; Leete, E. (Minnesota Univ., Minneapolis (USA). Dept. of Chemistry)

    1985-03-01

    Potential advanced intermediates in the biosynthesis of delta/sup 9/-tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous /sup 13/C atoms and /sup 14/C. Methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolate was prepared from lithium (/sup 13/C/sub 2/)acetylide and dimethyl (2-/sup 14/C)malonate. Reaction with geranyl bromide afforded methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The /sup 13/C-/sup 13/C couplings observable in the /sup 13/C NMR spectra of these /sup 13/C-enriched compounds and their synthetic precursors are recorded. Methyl (1'-/sup 14/C)olivetolate was prepared from /sup 13/CO/sub 2/ to confirm assignments of the /sup 13/C chemical shifts in the pentyl side chain of these compounds.

  8. Preparation of 15N-13C-fulminic acid

    International Nuclear Information System (INIS)

    Wilmes, R.; Winnewisser, M.

    1993-01-01

    The precursor for the title compound was prepared in a three-step synthesis. The 13 C-label was incorporated in the first step employing 2- 13 C-ethyl acetate and the 15 N-label in the last step, using 15 N-sodium nitrite. Upon pyrolysis the precursor forms three fragments, one of them being the title compound. (Author)

  9. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  10. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  11. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  12. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    International Nuclear Information System (INIS)

    Zanatta, N.; Borer, P.N.; Levy, G.C.

    1986-01-01

    The unique spectral properties of 13 C-NMR for studying nucleic acids and some of the important features of 13 C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13 C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13 C-NMR spectra, T 1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG) 3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13 C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.) [pt

  13. Characterization of methacetin-methoxy-"1"3C

    International Nuclear Information System (INIS)

    Lu Weijing; Lu Hao; Yang Weicheng; Liu Weixia; Li Shuai; Xu Zhongjie; Guan Liang; Zhu Chengmo; Chen Suyun; Jiang Lei

    2010-01-01

    Methacetin-methoxy-"1"3C was synthesized by using methanol-"1"3C with a novel method, and the characterization of it was performed using HPLC, LC-MS and "1HMNR. The results indicated that the synthetic was right. And the yield of methacetin-methoxy-"1"3C was 70.0% with 99% "1"3C abundance and 99.8% purity. Compared with the classical method, there was more benefit. The methacetin "1"3C-breath test was performed with the synthetic on the live mice, which showed a precise reflection of alteration of liver function in liver injury and functional recovery. (authors)

  14. Synthesis of 13C-labeled vitamin E and interaction between vitamin E and phospholipid in liposome

    International Nuclear Information System (INIS)

    urano, S.; Matsuo, M.

    1986-01-01

    Vitamin E with a 13 C-labeled isoprenoid side chain, [4'a- 13 C], [6'- 13 C], [8'a- 13 C] and [12'a and 13'- 13 C]α-tocopherols were synthesized. These compounds were incorporated into three kinds of lecithin liposomes from dipalmitoyl phosphatidyl cholin, egg lecithin and rat liver lecithin, of which arachidonic acid contents are 0, 2.6 and 19.0%, respectively. T 1 values, which were measured by NMR for the labeled carbons, indicate that the segmental motion tends to increase with the increase of the distance from the chroman ring. This tendency is not affected with the arachidonic acid contents of phospholipids. This result can not be explained by Lucy's hypothesis. 1 figure; 1 table

  15. To be certain about the uncertainty: Bayesian statistics for 13 C metabolic flux analysis.

    Science.gov (United States)

    Theorell, Axel; Leweke, Samuel; Wiechert, Wolfgang; Nöh, Katharina

    2017-11-01

    13 C Metabolic Fluxes Analysis ( 13 C MFA) remains to be the most powerful approach to determine intracellular metabolic reaction rates. Decisions on strain engineering and experimentation heavily rely upon the certainty with which these fluxes are estimated. For uncertainty quantification, the vast majority of 13 C MFA studies relies on confidence intervals from the paradigm of Frequentist statistics. However, it is well known that the confidence intervals for a given experimental outcome are not uniquely defined. As a result, confidence intervals produced by different methods can be different, but nevertheless equally valid. This is of high relevance to 13 C MFA, since practitioners regularly use three different approximate approaches for calculating confidence intervals. By means of a computational study with a realistic model of the central carbon metabolism of E. coli, we provide strong evidence that confidence intervals used in the field depend strongly on the technique with which they were calculated and, thus, their use leads to misinterpretation of the flux uncertainty. In order to provide a better alternative to confidence intervals in 13 C MFA, we demonstrate that credible intervals from the paradigm of Bayesian statistics give more reliable flux uncertainty quantifications which can be readily computed with high accuracy using Markov chain Monte Carlo. In addition, the widely applied chi-square test, as a means of testing whether the model reproduces the data, is examined closer. © 2017 Wiley Periodicals, Inc.

  16. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    Science.gov (United States)

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  17. The anomalous substituent effect of the ethyl group in the 13 C NMR and IR data of some aliphatic nitriles

    International Nuclear Information System (INIS)

    Garcia, Janaina C.; Barbarini, Jose E.; Rittner, Roberto; Rocco, Silvana A.; Tormena, Claudio F.

    1999-01-01

    This work reports a full assignment of 13 C and 1 H chemical shifts for some aliphatic nitriles from acetonitrile to octanonitrile and the observed shieldings for the carbon cyano group are correlated with the ν CN and with the electronic and steric parameters

  18. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.

    Science.gov (United States)

    Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles

    2014-01-01

    The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.

  19. Detection and assignment of phosphoserine and phosphothreonine residues by {sup 13}C-{sup 31}P spin-echo difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Lawrence P., E-mail: mcintosh@chem.ubc.ca; Kang, Hyun-Seo; Okon, Mark [University of British Columbia, Department of Biochemistry (Canada); Nelson, Mary L.; Graves, Barbara J. [University of Utah, Department of Oncological Sciences, Huntsman Cancer Institute (United States); Brutscher, Bernhard [CNRS, CEA, UJF, Institut de Biologie Structurale Jean-Pierre Ebel (France)], E-mail: bernhard.brutscher@ibs.fr

    2009-01-15

    A simple NMR method is presented for the identification and assignment of phosphorylated serine and threonine residues in {sup 13}C- or {sup 13}C/{sup 15}N-labeled proteins. By exploiting modest ({approx}5 Hz) 2- and 3-bond {sup 13}C-{sup 31}P scalar couplings, the aliphatic {sup 1}H-{sup 13}C signals from phosphoserines and phosphothreonines can be detected selectively in a {sup 31}P spin-echo difference constant time {sup 1}H-{sup 13}C HSQC spectrum. Inclusion of the same {sup 31}P spin-echo element within the {sup 13}C frequency editing period of an intraHNCA or HN(CO)CA experiment allows identification of the amide {sup 1}H{sup N} and {sup 15}N signals of residues (i) for which {sup 13}C{sup {alpha}}(i) or {sup 13}C{sup {alpha}}(i - 1), respectively, are coupled to a phosphate. Furthermore, {sup 31}P resonance assignments can be obtained by applying selective low power cw {sup 31}P decoupling during the spin-echo period. The approach is demonstrated using a PNT domain containing fragment of the transcription factor Ets-1, phosphorylated in vitro at Thr38 and Ser41 with the MAP kinase ERK2.

  20. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    Science.gov (United States)

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    DEFF Research Database (Denmark)

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnet...... & Metabolism advance online publication, 28 March 2012; doi:10.1038/jcbfm.2012.34....

  2. 13C-NMR of diterpenes with pimarane skeleton

    International Nuclear Information System (INIS)

    Garcez, W.S.; Pereira, A.L.; Silva Queiroz, P.P. da; Silva, R.S. da; Valente, L.M.M.; Peixoto, E.M.; Cunha Pinto, A. da

    1981-01-01

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 ( 13 C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC) [pt

  3. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  4. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier; Lefort, Laurent; Vidal, Vé ronique; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2010-01-01

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction

  5. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition

    Science.gov (United States)

    Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.

    2011-01-01

    The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids – D1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690

  6. The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment.

    Science.gov (United States)

    Bouzier, A K; Thiaudiere, E; Biran, M; Rouland, R; Canioni, P; Merle, M

    2000-08-01

    Lactate metabolism in the adult rat brain was investigated in relation with the concept of lactate trafficking between astrocytes and neurons. Wistar rats were infused intravenously with a solution containing either [3-(13)C]lactate (534 mM) or both glucose (750 mM) and [3-(13)C]lactate (534 mM). The time courses of both the concentration and (13)C enrichment of blood glucose and lactate were determined. The data indicated the occurrence of [3-(13)C]lactate recycling through liver gluconeogenesis. The yield of glucose labeling was, however, reduced when using the glucose-containing infusate. After a 20-min or 1-h infusion, perchloric acid extracts of the brain tissue were prepared and subsequently analyzed by (13)C- and (1)H-observed/(13)C-edited NMR spectroscopy. The (13)C labeling of amino acids indicated that [3-(13)C]lactate was metabolized in the brain. Based on the alanine C3 enrichment, lactate contribution to brain metabolism amounted to 35% under the most favorable conditions used. By contrast with what happens with [1-(13)C]glucose metabolism, no difference in glutamine C2 and C3 labeling was evidenced, indicating that lactate was metabolized in a compartment deprived of pyruvate carboxylase activity. This result confirms, for the first time from an in vivo study, that lactate is more specifically a neuronal substrate.

  7. Detection of antisymmetric tensor contribution to the magnetic screening of 13C nuclei

    International Nuclear Information System (INIS)

    Kuhn, W.

    1983-01-01

    In the present thesis for the first time a practicable way for the detection of antisymmetric contributions to the tensor of the magnetic screening of atomic nuclei is indicated. The detection is based on the relaxation efficiency of the antisymmetric screening. The measurements were performed on the 13 C nuclei of phthalic acid anhydride. Measured were the spin-lattice relaxation times of all 13 C nuclei of the molecule at field strengths between 4.69 T and 11.74 T, this corresponds to 1 H resonance frequencies in the range from 200 MHz to 500 MHz. From this the interaction-specific relaxation rates could be determined without problems. The space-group of the crystal and the molecule geometry were determined by X-ray structure analysis. For the accurate determination of the hydrogen position on a deuterated monocrystal by means of deuterium nuclear resonance measurements the electric field gradient tensors were measured and from the orientation of the main axes of these tensors the bonding angles calculated. On a monocrystal enriched in the C(7) respectively C(8) position with 13 C the symmetric part of the tensor of the magnetic screening of these two nuclei was measured. With these values and the relaxation rates of the 13 C nuclei by an iterative procedure from the equations for the theoretical relaxation rates of all 13 C nuclei of the molecule the main values of the rotation-diffusion tensor could be determined. On the base of the plane molecule geometry from this the tensor element sigmasub(xz)sup(A) could be explicety detected according to an amount of 11.7 ppm. (orig.) [de

  8. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  9. Fourier spectroscopy of the 12C2, 13C2, and 12C13C (0-0) swan bands

    International Nuclear Information System (INIS)

    Amiot, C.

    1983-01-01

    The (0-0) band of the C 2 Swan electronic system d 3 Pi/sub g/→a 3 Pi/sub u/ has been recorded by Fourier spectroscopy. The three isotopes species 12 C 2 , 13 C 2 , and 12 C 13 C were investigated. The observed wavenumbers were reduced to molecular parameters using a nonlinear least-square fitting procedure. Well-known perturbations at N' = 47 and N' = 51 again observed in the e 12 C 2 d 3 Pi/sub g/ (v = 0) level. Perturbations of the same kind are present in the 13 C 2 spectrum at N' = 34 and N' = 44,48,52. The 12 C 13 C spectrum exhibits in the observed spectral range a unique perturbation for N' = 41

  10. Delta /sup 13/C fractionation in Tarbela dam fish

    International Nuclear Information System (INIS)

    Latif, Z.; Sajjad, M.I.; Bilal, R.; Tasneem, M.A.; Khan, I.H.; Ali, M.

    1998-01-01

    The paper focuses on the study of naturally occurring /sup 13/C fractionation in Tarbela dam fish. Craig noted that gamma /sup 13/C values for animal tissues fall in the range as their food supply. DeNiro and Epstein demonstrated clearly that the carbon isotope composition of an animal greatly depends on its diet. The above mentioned statements were observed while studying the isotopic composition of carbon in different parts of the fish. Living fish was purchased from the Haripur side of the Tarbela lake. Different portions were separated and fish diet was collected from the fish stomach. Samples were dried in the oven at 40-50 deg. C for five days. Ground, homogenized and ignited with research grade oxygen at 900-1000 deg. C. CO and CO /sub 2/ were produced and CO was converted to CO/sub 2/ by circulation over CuO gauge furnace at 900 deg. C. CO/sub 2/ was purified using 70 deg. C slush and analyzed on Varian Mat (GD-150) mass spectrometer for gamma /sup 13/C measurements. The results show that fish flesh sup/13 C value is nearly similar to fish diet gamma /sup 13/C. gamma /sup 13/C values to different parts of the fish departed from that of the diet in the sequence: fish swim bladder (-22.04) >ribs (2-22.26)>skin (122.91)>diet (123.22)>flesh (-23.40)> vertebral column (-24.07). It is concluded that diet is easily metabolized in the fish flesh and skin tissues through blood streams without causing any pronounced fractionation. Fractionation was observed in the fish endo skeleton system due to which fish ribs become enriched in gamma /sup 13/C than vertebral column. Fractionation was also detected in visceral muscles (swim bladder) of the fish as comparison with somatic axial trunk muscle (fish flesh). (author)

  11. 1H-1H correlations across N-H···N hydrogen bonds in nucleic acids

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Gosser, Yuying; Patel, Dinshaw J.

    2001-01-01

    In 2H J NN -COSY experiments, which correlate protons with donor/acceptor nitrogens across N d ···HN a bonds, the receptor nitrogen needs to be assigned in order to unambiguously identify the hydrogen bond. For many situations this is a non-trivial task which is further complicated by poor dispersion of (N a ,N d ) resonances. To address these problems, we present pulse sequences to obtain direct, internucleotide correlations between protons in uniformly 13 C/ 15 N labeled nucleic acids containing N d ···HN a hydrogen bonds. Specifically, the pulse sequence H2(N1N3)H3 correlates H2(A,ω 1 ):H3(U,ω 2 ) protons across Watson-Crick A-U and mismatched G·A base pairs, the sequences H5(N3N1)H1/H6(N3N1)H1 correlate H5(C,ω 1 )/H6(C,ω 1 ):H1(G,ω 2 ) protons across Watson-Crick G-C base pairs, and the H 2 (N2N7)H8 sequence correlates NH 2 (G,A,C;ω 1 ):H8(G,A;ω 2 ) protons across G·G, A·A, sheared G·A and other mismatch pairs. These 1 H- 1 H connectivities circumvent the need for independent assignment of the donor/acceptor nitrogen and related degeneracy issues associated with poorly dispersed nitrogen resonances. The methodology is demonstrated on uniformly 13 C/ 15 N labeled samples of (a) an RNA regulatory element involving the HIV-1 TAR RNA fragment, (b) a multi-stranded DNA architecture involving a G·(C-A) triad-containing G-quadruplex and (c) a peptide-RNA complex involving an evolved peptide bound to the HIV-1 Rev response element (RRE) RNA fragment

  12. Simultaneous PET/MRI with 13C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification

    DEFF Research Database (Denmark)

    Hansen, Adam E.; Andersen, Flemming L.; Henriksen, Sarah T.

    2016-01-01

    Background: Integrated PET/MRI with hyperpolarized 13C magnetic resonance spectroscopic imaging (13C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented...... for a clinical whole-body system using simultaneous 1 H-MRI and PET but never for 13C-MRSI and PET. Here, the feasibility of simultaneous PET and 13C-MRSI as well as hyperpolarized 13C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Methods: Combined PET and 13C......-MRSI phantoms including a NEMA [18F]-FDG phantom, 13C-acetate and 13C-urea sources, and hyperpolarized 13C-pyruvate were imaged repeatedly with PET and/or 13C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET...

  13. Catalytic dehydration of ethanol for poly 13 C compounds synthesis

    International Nuclear Information System (INIS)

    Almasan, Valer; Marginean, Petru; Lazar, Mihaela; Tusa, Florina

    2003-01-01

    Classical methods for the synthesis of organic compounds are not very well applied in the case of 13 C labeled compounds. One of the principal demands is to find the best method to transform a small quantity of isotopic reagent with a very high yield. In this case to obtain 13 C 2 chloroethanol from 13 C 2 ethanol there are two synthesis steps: - catalytic dehydration of ethanol to ethylene; - ethylene double bounding saturation: either via ethylene oxide (30% yield) or in diluted solution of chlorine. For the first step of synthesis we choose the thermal dehydration over alumina catalyst at 400 deg C. There were tested 2 samples of g alumina with 255 m 2 /g and 355 m 2 /g with very good results. In the second step of the synthesis we used the chlorine addition to ethylene in very diluted water solution. We have built a reactor which combined the two steps of this synthesis method to produce 13 C 2 chloroethanol from 13 C 2 ethanol. The global yield of method was 42%. (authors)

  14. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  15. (2E-3-(3-Methoxy-1-phenyl-1H-pyrazol-4-yl-2-propenal

    Directory of Open Access Journals (Sweden)

    Algirdas Šačkus

    2009-12-01

    Full Text Available The palladium-catalyzed reaction of 4-bromo-3-methoxy-1-phenyl-1H-pyrazole with acrolein diethyl acetal gives the title compound in good yield. Detailed spectroscopic data (1H NMR, 13C NMR, 15N NMR, IR, MS are presented.

  16. {sup 13}C relaxation in an RNA hairpin

    Energy Technology Data Exchange (ETDEWEB)

    King, G.C. [Univ. of South Wales, Kensington (Australia)]|[Rice Univ., Houston, TX (United States); Akratos, C. [Univ. of South Wales, Kensington (Australia); Xi, Z.; Michnica, M.J. [Rice Univ., Houston, TX (United States)

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  17. 13C and 31P NMR studies of myocardial metabolism

    International Nuclear Information System (INIS)

    Laughlin, M.R.

    1988-01-01

    The fluxes through two enzyme systems have been measured in perfused or in in vivo heart using NMR: phosphocreatine kinase, and glycogen synthase and phosphorylase. The rates of synthesis and degradation of glycogen were monitored in vivo in fed, fasted, and diabetic rat heart during infusions of 13 C-1-glucose and insulin using proton-decoupled 13 C-NMR at 1.9 and 4.7 tesla. The enzyme activities of glycogen synthase and glycogen phosphorylase were also measured in this tissue which had been freeze clamped at the end of the experiment, for comparison with the synthetic rates. For normal fed, fasted, and diabetic animals, synthesis rates were 0.28, 0.16, and 0.15 μmol/min.gww respectively. Glycogen synthase i activity was 0.23, 0.14, and 0.14 μmol/min.gww in these hearts at the end of the experiment, when measured at appropriate substrate and activator concentrations, and follow activation time courses that are consistent with being the main rate determinant for net synthesis in all cases. Turnover of glycogen was studied by observing the preformed 13 C-1-glycogen signal during infusion of 12 C-glucose and insulin, and was found to be close to zero. Extracted phosphorylase a activity was approximately ten times that of synthase i under these circumstances. In order to fully interpret the turnover studies, glycogenolysis of preformed 13 C-glycogen was observed after a bolus of glucagon. The glycogen had either been synthesized from 13 C-1-glucose for a single hour, or during an hour of 13 C-glucose and a subsequent hour of 12 C-glucose infusion. The author observed that breakdown follows an exponential time course related to the phosphorylase a activation state and that the last synthesized glycogen breaks down at the rate of 2.5 μmol/min.gww, five times faster than that synthesized an hour earlier

  18. 13C/12C ratios in human urine concrementes

    International Nuclear Information System (INIS)

    Hoefs, J.; Armbruster, T.

    1978-01-01

    Oxalate, uric acid, and phosphate stones have been analyzed for their carbon isotope composition. The oxalate stones show delta 13 C values between -17.0 and -19.5 pro mille, the uric acid stones between -14.9 and -19.4 pro mille, and the phosphate stones between -13.0 and -23.9 pro mille. It is proposed that endogenic rather than exogenic sources are responsible for the 13 C/ 12 C ratios of the stones. The isotopic composition of the phosphate stones seems to be influenced primarily by bacterial activity. (orig.) [de

  19. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  20. Direct 13C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA

    International Nuclear Information System (INIS)

    Fürtig, Boris; Schnieders, Robbin; Richter, Christian; Zetzsche, Heidi; Keyhani, Sara; Helmling, Christina; Kovacs, Helena; Schwalbe, Harald

    2016-01-01

    In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond 1 H detection. Here, we develop 13 C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for 13 C direct detection allows correlations of donor–acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed 13 C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.

  1. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

    2007-01-01

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  2. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  3. 13C-NMR spectra and bonding situation in ketenimines

    International Nuclear Information System (INIS)

    Firl, J.; Runge, W.; Hartmann, W.; Utikal, H.P.

    1975-01-01

    13 C-NMR spectra of a series of substituted ketenimines are reported. The terminal carbon resonances are found at unusual high fields between delta 37 and 78, while the central carbon signals appear around delta 189 - 196. On the basis of these results, the bonding situation in ketenimines has been discussed. (auth.)

  4. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  5. A new, 13C-based material for neutron targets

    International Nuclear Information System (INIS)

    Romanenko, A.I.; Anikeeva, O.B.; Gorbachev, R.V.; Zhmurikov, E.I.; Gubin, K.V.; Logachev, P.V.; Avilov, M.S.; Tsybulya, S.V.; Kryukova, G.N.; Burgina, E.B.; Tecchio, L.

    2005-01-01

    A 13 C-based neutron-target material is investigated using X-ray diffraction, IR absorption and Raman scattering spectroscopies, transmission electron microscopy, and electrical (conductivity, magnetoresistance, and Hall effect) measurements before and after high-power electron irradiation for various lengths of time [ru

  6. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification.

    Science.gov (United States)

    Hansen, Adam E; Andersen, Flemming L; Henriksen, Sarah T; Vignaud, Alexandre; Ardenkjaer-Larsen, Jan H; Højgaard, Liselotte; Kjaer, Andreas; Klausen, Thomas L

    2016-12-01

    Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and

  7. {sup 13}C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI)

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Kumamoto University, Department of Structural BioImaging, Faculty of Life Sciences (Japan); Miyanoiri, Yohei [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Terauchi, Tsutomu [Tokyo Metropolitan University, Graduate School of Science and Engineering (Japan); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2016-09-15

    Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14–Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D {sup 13}C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically {sup 13}C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14–Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m{sub c14} and m{sub c38}). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for {sup 13}C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m{sub c38} isomerization, the {sup 1}H-{sup 13}C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.

  8. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  9. In vivo {sup 13}C MRS studies of carbohydrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Jane

    2003-07-01

    The work described in this thesis was performed by the author, except where indicated, within the Magnetic Resonance Centre at the University of Nottingham during the period between October 1999 and October 2002. Although much is known about the major pathways of carbohydrate metabolism, there is still much to be learnt about the exact mechanisms of many of these pathways. Of particular interest is how these pathways are modified under different physiological conditions and in diseased states. {sup 13}C NMR spectroscopy provides a non-invasive means for studying carbohydrate metabolism in vivo, and the work presented within this thesis gives two such examples of this in human subjects. Natural abundance {sup 13}C NMR spectroscopy was used to measure glycogen levels in gastrocnemius muscle. The diurnal changes in response to mixed meals were measured in both type 2 diabetic subjects and age and weight matched controls. Metabolic studies were performed to complement the NMR measurements. The data obtained in these studies show the effect of the failure of muscle glucose storage upon post-prandial hyperglycaemia despite a supra-normal increase in plasma insulin in type 2 diabetes. {sup 13}C NMR spectroscopy was also used to study cerebral metabolism. Accumulation of {sup 13}C label into glutamate and glutamine following infusion of [1{sup 13}C] glucose allows the determination of the rates of the TCA cycle (F{sub TCA}) and neurotransmitter cycling (F{sub cyc}). These rates were measured in the visual cortex under control and activated conditions. The increases seen in F{sub TCA} upon activation, together with the lack of label accumulation in lactate, suggest that cerebral glucose metabolism is oxidative, even during strong activation. No conclusion can be made as to whether or not a similar increase is seen in F{sub cyc} due to the large associated errors in these values. (author)

  10. 13C separation by IRMPD of halogenated difluoromethanes

    International Nuclear Information System (INIS)

    Ma Peihua; Chen Guancheng; Wu Bin; Liu Julin; Jing Yan; Chu Minxiong; Arai, Shigeyoshi.

    1995-01-01

    Isotopically-selective consecutive two-stage infrared multiphoton dissociation (IRMPD) of halogenated difluoromethanes in the presence of scavengers produces carbon-13 over 95 %. The reaction mechanism for the IRMPD of mixture of CHClF 2 and HI can be explained by a series of first-order dissociation reactions and followed radical-scavenger reactions occurred in a continuous irradiation procedure. Furthermore, 13 C enrichment at laboratory scaling-up level by the 13 C selective IRMPD of CHClF 2 /Br 2 mixture has been investigated in a flow reactor. The 13 C production rates, 13 C atomic fractions in the CBr 2 F 2 products and 13 C depletions in the CHClF 2 reactants at different flow rates and laser repetition frequencies were examined to optimize the parameters suitable for large-scale production of carbon isotope. The data obtained from the flow tests demonstrated a 40 mg h -1 production rate for CB 2 F 2 at 65 % carbon-13 by using a 40 W (4J, 10 Hz) laser beam focused with a lens of focal length 120 cm. If a reliable TEA CO 2 laser can be operated with 100 W (10 J, 10 Hz) output, the production rate of CBr 2 F 2 for carbon-13 at 60 % can attain 200 mg h -1 . The measurements of spatial profile of focused laser beam imply a 2 g h -1 production rate for the 60 % carbon-13 product for an incident power of 200 W (20 J, 10 Hz). (author)

  11. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Rodolfo A. (Santa Fe, NM), Unkefer; Clifford J. (Los Alamos, NM), Alvarez; Marc, A [Santa Fe, NM

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  12. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase-F

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Koorevaar, A.; Kamerling, J.P.

    1991-01-01

    The N-linked carbohydrate chains of porcine thyroglobulin were released by peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase-F (PNGase- F). The resulting oligosaccharides were fractionated by a combination of fast protein liquid chromatography and high performance liquid chromatography and

  13. Biosynthesis of quinolizidine alkaloids. Incorporation of [1-amino-15N, 1-13C] cadaverine into lupanine, 13-hydroxylupanine, and angustifoline

    International Nuclear Information System (INIS)

    Rana, J.; Robins, D.J.

    1985-01-01

    The labelling patterns in (+)-lupanine, (+)-13-hydroxylupanine, and (+)-angustifoline derived biosynthetically from [1-amino- 15 N,1- 13 C]-1,5-diaminopentane (cadaverine) have been established by 13 C n.m.r. spectroscopy. Three cadaverine units are incorporated to about the same extent into each of these three alkaloids. The presence of two doublets due to 13 C- 15 N coupling in the 13 C brace 1 H brace n.m.r. spectra associated with C-2 and C-15 of lupanine and 13-hydroxylupanine, and one 13 C- 15 N doublet at C-2 of angustifoline, indicate that two of the cadaverine units are converted into the outer rings of the tetracyclic quinolizidine alkaloids in a specific fashion. (author)

  14. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    Science.gov (United States)

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  15. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  16. Studies of the pH dependence of 13C shifts and carbon-carbon coupling constants of [U-13C]aspartic and -glutamic acids

    International Nuclear Information System (INIS)

    London, R.E.; Walker, T.E.; Kollman, V.H.; Matwiyoff, N.A.

    1978-01-01

    13 C NMR studies of the chemical shifts and carbon--carbon spin--spin coupling constants of 90% [U- 13 C]aspartic and -glutamic acids are reported. Effects of titration of the two carboxyl groups are separated computationally and the results compared with those for asparagine and glutamine, aspartate and glutamate containing peptides, and a series of amino-n-butyric acids. The results indicate that the carboxyl carbon shift resulting from titration of the carboxyl group is strongly dependent on its distance (number of bonds) from an amino group. Alternatively, remote methyl groups exhibit a much smaller titration induced shift than carboxyl groups in the corresponding position. Significant remote effects of pH titration on the one-bond carbon-carbon coupling are also observed, particularly for couplings involving the side-chain carboxyl carbons. These results are discussed in terms of polarization of the C--O bonds in response to titration of a remote carboxyl group. Values of 3 J/sub CC/ in asparate and glutamate indicate a strong conformational dependence. Rotamer populations predicted on the basis of the observed couplings and theoretical INDO calculations are in good agreement with values based on analysis of the 3 J/sub HH/ and 3 J/sub CH/ couplings. For a given conformation of glutamic acid, it is found that 3 J 14 is considerably smaller than 3 J 25 . This result is consistent with obsrvations on a number of other 13 C-labeled amino acids. 5 figures, 4 tables

  17. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Very-long-chain fatty acid biosynthesis is inhibited by cafenstrole, N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide and its analogs

    International Nuclear Information System (INIS)

    Takahashi, H.; Ohki, A.; Sato, Y.; Wakabayashi, K.; Tanaka, A.; Matthes, B.; Boeger, P.

    2001-01-01

    The rice herbicide cafenstrole and its analogs inhibited the incorporation of [1- 14 C]-oleate and [2- 14 C]-malonate into very-long-chain fatty acids (VLCFAs), using Scenedesmus cells and leek microsomes from Allium porrum. Although the precise mode of interaction of cafenstrole at the molecular level is not completely clarified by the present study, it is concluded that cafenstrole acts as a specific inhibitor of the microsomal elongase enzyme involved in the biosynthesis of fatty acids with alkyl chains longer than C 18 . For a strong VLCFA biosynthesis inhibition an -SO 2 - linkage of the 1,2,4-triazole-1-carboxamides was required. Furthermore, N,N-dialkyl substitution of the carbamoyl nitrogen and electron-donating groups such as methyl at the benzene ring of 1,2,4-triazole-1-carboxamides produced a strong inhibition of VLCFA formation. A correlation was found between the phytotoxic effect against barnyardgrass (Echinochloa oryzicola) and impaired VLCFA formation. (orig.)

  19. In vivo 13C MRS studies of carbohydrate metabolism

    International Nuclear Information System (INIS)

    Halliday, Jane

    2003-01-01

    The work described in this thesis was performed by the author, except where indicated, within the Magnetic Resonance Centre at the University of Nottingham during the period between October 1999 and October 2002. Although much is known about the major pathways of carbohydrate metabolism, there is still much to be learnt about the exact mechanisms of many of these pathways. Of particular interest is how these pathways are modified under different physiological conditions and in diseased states. 13 C NMR spectroscopy provides a non-invasive means for studying carbohydrate metabolism in vivo, and the work presented within this thesis gives two such examples of this in human subjects. Natural abundance 13 C NMR spectroscopy was used to measure glycogen levels in gastrocnemius muscle. The diurnal changes in response to mixed meals were measured in both type 2 diabetic subjects and age and weight matched controls. Metabolic studies were performed to complement the NMR measurements. The data obtained in these studies show the effect of the failure of muscle glucose storage upon post-prandial hyperglycaemia despite a supra-normal increase in plasma insulin in type 2 diabetes. 13 C NMR spectroscopy was also used to study cerebral metabolism. Accumulation of 13 C label into glutamate and glutamine following infusion of [1 1 3 C] glucose allows the determination of the rates of the TCA cycle (F TCA ) and neurotransmitter cycling (F cyc ). These rates were measured in the visual cortex under control and activated conditions. The increases seen in F TCA upon activation, together with the lack of label accumulation in lactate, suggest that cerebral glucose metabolism is oxidative, even during strong activation. No conclusion can be made as to whether or not a similar increase is seen in F cyc due to the large associated errors in these values. (author)

  20. Deconvolution of the tree ring based delta13C record

    International Nuclear Information System (INIS)

    Peng, T.; Broecker, W.S.; Freyer, H.D.; Trumbore, S.

    1983-01-01

    We assumed that the tree-ring based 13 C/ 12 C record constructed by Freyer and Belacy (1983) to be representative of the fossil fuel and forest-soil induced 13 C/ 12 C change for atmospheric CO 2 . Through the use of a modification of the Oeschger et al. ocean model, we have computed the contribution of the combustion of coal, oil, and natural gas to this observed 13 C/ 12 C change. A large residual remains when the tree-ring-based record is corrected for the contribution of fossil fuel CO 2 . A deconvolution was performed on this residual to determine the time history and magnitude of the forest-soil reservoir changes over the past 150 years. Several important conclusions were reached. (1) The magnitude of the integrated CO 2 input from these sources was about 1.6 times that from fossil fuels. (2) The forest-soil contribution reached a broad maximum centered at about 1900. (3) Over the 2 decade period covered by the Mauna Loa atmospheric CO 2 content record, the input from forests and soils was about 30% that from fossil fuels. (4) The 13 C/ 12 C trend over the last 20 years was dominated by the input of fossil fuel CO 2 . (5) The forest-soil release did not contribute significantly to the secular increase in atmospheric CO 2 observed over the last 20 years. (6) The pre-1850 atmospheric p2 values must have been in the range 245 to 270 x 10 -6 atmospheres

  1. Electronic structure and physical properties of 13C carbon composite

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Author was focused on the properties of graphite composites based on carbon isotope 13C. Generally, the review relies on the original results and concentrates...

  2. EDGE2D Simulations of JET 13C Migration Experiments

    International Nuclear Information System (INIS)

    Strachan, J.D.; Coad, J.P.; Corrigan, G.; Matthews, G.F.; Spence, J.

    2004-01-01

    Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET 13 C tracer migration experiment. The role of SOL flows upon the migration patterns is identified

  3. PEDOGENIC CARBONATE δ13C AND ENVIRONMENTAL PRECIPITATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcella Catoni

    2011-12-01

    Full Text Available Carbon isotopic analysis is a useful tool for investigating paleoenvironments, as the pedogenic carbonate δ13C is related to δ13CSOM and to the proportions of C3/C4 plants. In this work we interpreted the paleoenvironmental conditions at the time of carbonate precipitation in soils formed under different climates and during different geological ages. Samples were taken from a Bk (PR1, Holocene and from two Bkm horizons (PR2 and PR3, Pleistocene. When the mean δ13C plant values and the most plausible paleotemperatures were used in the evaluation, PR1 showed a lower percentage of C4 plants (48% than Pleistocene soils (~53%, in agreement with paleoclimate changes. When instead the δ13C values of current plants were used for PR1, C4 plants ranged from 59 (12°C to 66% (18°C, suggesting two possible interpretations: either plant species changed during the Holocene, or the plant mean values normally used in the literature are not suitable for Pleistocene reconstructions

  4. Trans and surface membrane bound zervamicin IIB: 13C-MAOSS-NMR at high spinning speed

    International Nuclear Information System (INIS)

    Raap, J.; Hollander, J.; Ovchinnikova, T. V.; Swischeva, N. V.; Skladnev, D.; Kiihne, S.

    2006-01-01

    Interactions between 15 N-labelled peptides or proteins and lipids can be investigated using membranes aligned on a thin polymer film, which is rolled into a cylinder and inserted into the MAS-NMR rotor. This can be spun at high speed, which is often useful at high field strengths. Unfortunately, substrate films like commercially available polycarbonate or PEEK produce severe overlap with peptide and protein signals in 13 C-MAOSS NMR spectra. We show that a simple house hold foil support allows clear observation of the carbonyl, aromatic and C α signals of peptides and proteins as well as the ester carbonyl and choline signals of phosphocholine lipids. The utility of the new substrate is validated in applications to the membrane active peptide zervamicin IIB. The stability and macroscopic ordering of thin PC10 bilayers was compared with that of thicker POPC bilayers, both supported on the household foil. Sidebands in the 31 P-spectra showed a high degree of alignment of both the supported POPC and PC10 lipid molecules. Compared with POPC, the PC10 lipids are slightly more disordered, most likely due to the increased mobilities of the shorter lipid molecules. This mobility prevents PC10 from forming stable vesicles for MAS studies. The 13 C-peptide peaks were selectively detected in a 13 C-detected 1 H-spin diffusion experiment. Qualitative analysis of build-up curves obtained for different mixing times allowed the transmembrane peptide in PC10 to be distinguished from the surface bound topology in POPC. The 13 C-MAOSS results thus independently confirms previous findings from 15 N spectroscopy [Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O'Neil, J.D.J. and Raap, J. (2001) Biochemistry, 40, 9428-9437]. In summary, application of house hold foil opens the possibility of measuring high resolution 13 C-NMR spectra of peptides and proteins in well ordered membranes, which are required to determine the secondary and

  5. Very-long-chain fatty acid biosynthesis is inhibited by cafenstrole, N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide and its analogs

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.; Ohki, A.; Sato, Y.; Wakabayashi, K. [Tamagawa Univ., Tokyo (Japan). Graduate School of Agricultural Science; Kanzaki, M. [Regulatory Affairs Dept., Chugai Pharmaceutical Co. Ltd., Tokyo (Japan); Tanaka, A. [Showa Univ., Tokyo (Japan). School of Pharmaceutical Sciences; Matthes, B.; Boeger, P. [Konstanz Univ. (Germany). Lehrstuhl fuer Physiologie und Biochemie der Pflanzen

    2001-10-01

    The rice herbicide cafenstrole and its analogs inhibited the incorporation of [1-{sup 14}C]-oleate and [2-{sup 14}C]-malonate into very-long-chain fatty acids (VLCFAs), using Scenedesmus cells and leek microsomes from Allium porrum. Although the precise mode of interaction of cafenstrole at the molecular level is not completely clarified by the present study, it is concluded that cafenstrole acts as a specific inhibitor of the microsomal elongase enzyme involved in the biosynthesis of fatty acids with alkyl chains longer than C{sub 18}. For a strong VLCFA biosynthesis inhibition an -SO{sub 2}- linkage of the 1,2,4-triazole-1-carboxamides was required. Furthermore, N,N-dialkyl substitution of the carbamoyl nitrogen and electron-donating groups such as methyl at the benzene ring of 1,2,4-triazole-1-carboxamides produced a strong inhibition of VLCFA formation. A correlation was found between the phytotoxic effect against barnyardgrass (Echinochloa oryzicola) and impaired VLCFA formation. (orig.)

  6. Evidencias espectroscópicas de RMN de ¹H y 13C en la formación inusual de un "carbonilo inorgánico", derivado de la lactona costunólida

    OpenAIRE

    Díaz, Eduardo; Barrios, Héctor; Fuentes, Aydeé; Corona, David; Guzmán, Ángel

    2002-01-01

    El uso de la RMN de ¹H y 13C permitió determinar la estructura inusual de un "carbonilo inorgánico" derivado de la lactona dehidrocostus. 1H and 13C NMR of an unusual "inorganic carbonyl" derived from costunolide lactone are described.

  7. Data of evolutionary structure change: 1ONAD-1H9PA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-1H9PA 1ONA 1H9P D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLK--TNALHFMFNQFSKDQKDLILQGDATTGTD...tryChain> 1ONA D 1ONAD

  8. Data of evolutionary structure change: 1ONAD-1H9WA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-1H9WA 1ONA 1H9W D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLK-TNALHFMFNQFSKDQKDLILQGDATTGTDG...yChain> 1ONA D 1ONAD

  9. Syntheses of DL-[2-13C]leucine and its use in the preparation of [3-DL-[2-13C]leucine]oxytocin and [8-DL-[2-13C]leucine]oxytocin

    International Nuclear Information System (INIS)

    Viswanatha, V.; Larsen, B.; Hruby, V.J.

    1979-01-01

    DL-[2- 13 C]Leucine was prepared by condensing the sodium salt of ethyl acetamido-[2- 13 C]cyanoacetate with isobutylbromide in hexamethylphosphoroustriamide followed by acid hydrolysis. N-BOC-DL-[2- 13 C]Leucine was prepared and incorporated into [8-DL-[2- 13 C]leucine]oxytocin by total synthesis. The 13 C-labeled hormone derivative [8-[2- 13 C]leucine]oxytocin was separated from its 8-position diastereoisomer by partition chromatography. The specifically 13 C-labeled peptide hormone diastereoisomeric analog [3-DL-[2- 13 C]leucine]oxytocin also was prepared by solid phase peptide synthesis. No suitable solvent system for partition chromatography separation of the latter diastereoisomeric peptide mixture could be found. However an excellent preparative separation of the diastereoisomers could be obtained by reverse phase high pressure liquid chromatography on a partisil 10 M9 ODS column using the solvent system 0.05 M ammonium acetate (pH 4.0), acetonitrile (81:19, v/v) to give pure [3-[2- 13 C]leucine]oxytocin and [3-D-[2- 13 C]leucine]oxytocin. An excellent separation of [8-[2- 13 C]leucine]oxytocin and the corresponding delata-D-leucine diastereoisomer derivative could also be accomplished by high pressure liquid chromatography. (author)

  10. Galactose oxidation using 13C in healthy and galactosemic children

    Directory of Open Access Journals (Sweden)

    D.R. Resende-Campanholi

    2015-03-01

    Full Text Available Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  11. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Directory of Open Access Journals (Sweden)

    Marin de Mas Igor

    2011-10-01

    Full Text Available Abstract Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate. The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose

  12. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced nonpersistent radicals

    DEFF Research Database (Denmark)

    Bastiaansen, Jessica A M; Yoshihara, Hikari A I; Capozzi, Andrea

    2018-01-01

    dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Ultraviolet irradiation created nonpersistent radicals in a mixture containing......To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13 C-labeled substrate mixture prepared using photo-induced nonpersistent radicals. Droplets of mixed [1-13 C]pyruvic and [1-13 C]butyric acids were frozen...... into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization in a 7T polarizer, the beads were...

  13. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  14. M1 suppression in pion photoproduction on 13C

    International Nuclear Information System (INIS)

    Tiator, L.

    1983-02-01

    Recently measured anomalously low cross sections for 13 C(γ,π - ) 13 N at low energy and theta sub(π)sup(lab) = 90 degrees have been analyzed in a DWIA calculation. It has been found that the EO contribution alone is able to explain the data, so that the MI cross section is expected to vanish. Using constraints from recent magnetic electron scattering, an explanation is possible by assuming a significantly lower reduced density matrix element for spin-flip isovector transitions with angular momentum L = 2 than predicted by Cohen-Kurath

  15. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  16. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  17. 13C and 29Si NMR as a probe to investigate polysiloxanes used in dental applications

    International Nuclear Information System (INIS)

    Silva, Naira Machado da; Tavares, Maria Ines B.

    2001-01-01

    The properties of dental mould polymeric materials are strongly influenced by the chemical structure of both the polymer and the catalyst used in the crosslink reaction between them. In order to characterize and suggest some modifications on the materials interfacial interactions, mixtures of Polymer-catalyst were prepared. The polymer and the catalyst chemical structures were obtained by 13 C, 1 H and 129 Si NMR analysis in solution state. From the solution NMR results it was obtained the structure of the polymer and the catalyst and also the kind of the crosslink reaction taken. The CPMAS 1 '3C NMR analysis in the solid state were used to identify chemical structure of the polymeric dental moulded sample. (author)

  18. Near-threshold charged pion photoproduction from 13C

    International Nuclear Information System (INIS)

    LeRose, J.J.

    1981-01-01

    Differential cross sections to discrete final states have been measured for both positive and negative pion photo-production on 13 C at 90 0 in the lab at pion energies of 18, 29, and 41 MeV. Measurements were made using a fixed angle magnetic spectrometer located in the 14 0 area of the MIT Bates linear accelerator. Pions were detected using a 90 channel multi-wire proportional counter in the focal plane along with a backup array consisting of three 1/16'' thick plastic scintillator detectors and a 1/2'' thick Cerenkov detector. Positive pion photo-production cross sections were obtained for the excitation of the 3/2 - ground state and for the 3.45 MeV first excited state of 13 B. Negative pion photo-production cross sections were obtained for the excitation of the 1/2 - ground state, and the 3/2 to 3.51 MeV and 5/2 to 7.39 MeV excited states of 13 N. The measured positive pion photo-production ground state cross sections are in reasonable agreement wth theoretical calculations. However, there is a large discrepancy between the measured negative pion photoproduction ground state cross sections and the theoretical values. There are no theoretical calculations available for comparison with the excited state measurements in either positive or negative pion photoproduction on 13 C

  19. 5-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-03-01

    Full Text Available The title compound, 5-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione, has been synthesized by condensation of 1,3-diethyl-2-thiobarbituric acid and 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR and EI-MS spectral analysis.

  20. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  1. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  2. Noninvasive brain metabolism measurement using carbon-13 magnetic resonance spectroscopy ({sup 13}C-MRS); Tanso 13 jiki kyomei spectroscopy ({sup 13}C-MRS) ni yoru mushinshuteki notaisha keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Tsukada, Y. [Toshiba Corp., Tokyo (Japan)

    1998-10-10

    Carbon-13 magnetic resonance spectroscopy ({sup 13}C-MRS) and research and development efforts for brain metabolism measurement are described. Brain metabolism is a process characterized in that it not only extracts energy by disintegrating grape sugar that is the practically sole source of energy into H2O, CO2, etc., but also vigorously synthesizes amino acids that perform important functions in neural transmission, such as glutamic acid, glutamine, and {gamma}-amino acid. MRS is a technique that utilizes the magnetic resonance, which is generated when an atomic nucleus with a spin is placed in a magnetic field, for the isolation and identification of chemicals in a living body through examining the delicate difference in the magnetic resonance frequencies of the nuclei under observation. Since the signals from {sup 13}C are low in intensity as compared with those from other nuclides, a method was contrived around 1980, which observes {sup 1}H combined with {sup 13}C in grape sugar and amino acids, named the HSQC (heteronuclear single quantum coherence) method. The author et al., combining gradient magnetic pulses with HSQC, actually measure Homo sapiens brain metabolism using {sup 13}C-MRS, and now believe that the technology will be put to practical application. 7 refs., 10 figs., 1 tab.

  3. 1H-NMR urinalysis

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-01-01

    In an effort to examine the usefulness of 1 H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. 1 H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.)

  4. Synthesis of ring-13C-labelled and ring-demethylated retinals

    International Nuclear Information System (INIS)

    Courtin, J.M.L.

    1988-01-01

    Efficient synthetic schemes are described for the preparation of the required mono- and di- 13 C labelled retinals based on simple 13 C labelled starting materials. Results from solid-state 13 C-NMR spectroscopic studies of the various ring- 13 C labelled bacteriorhodopsins and rhodopsins are discussed. 404 refs.; 74 figs.; 16 tabs

  5. Routing of Fatty Acids from Fresh Grass to Milk Restricts the Validation of Feeding Information Obtained by Measuring (13)C in Milk.

    Science.gov (United States)

    Auerswald, Karl; Schäufele, Rudi; Bellof, Gerhard

    2015-12-09

    Dairy production systems vary widely in their feeding and livestock-keeping regimens. Both are well-known to affect milk quality and consumer perceptions. Stable isotope analysis has been suggested as an easy-to-apply tool to validate a claimed feeding regimen. Although it is unambiguous that feeding influences the carbon isotope composition (δ(13)C) in milk, it is not clear whether a reported feeding regimen can be verified by measuring δ(13)C in milk without sampling and analyzing the feed. We obtained 671 milk samples from 40 farms distributed over Central Europe to measure δ(13)C and fatty acid composition. Feeding protocols by the farmers in combination with a model based on δ(13)C feed values from the literature were used to predict δ(13)C in feed and subsequently in milk. The model considered dietary contributions of C3 and C4 plants, contribution of concentrates, altitude, seasonal variation in (12/13)CO2, Suess's effect, and diet-milk discrimination. Predicted and measured δ(13)C in milk correlated closely (r(2) = 0.93). Analyzing milk for δ(13)C allowed validation of a reported C4 component with an error of information. However, the error was not random but varied seasonally and correlated with the seasonal variation in long-chain fatty acids. This indicated a bypass of long-chain fatty acids from fresh grass to milk.

  6. Foliar δ13C Showed No Altitudinal Trend in an Arid Region and Atmospheric Pressure Exerted a Negative Effect on Plant δ13C

    Directory of Open Access Journals (Sweden)

    Zixun Chen

    2017-07-01

    Full Text Available Previous studies have suggested foliar δ13C generally increases with altitude. However, some observations reported no changes or even decreased trends in foliar δ13C. We noted that all the studies in which δ13C increased with elevation were conducted in the human regions, whereas those investigations in which δ13C did not vary or decreased were conducted in areas with water stress. Thus, we proposed that the pattern of increasing δ13C with elevation is not a general one, and that δ13C may remain unchanged or decrease in plants grown in arid environments. To test the hypothesis, we sampled plants along altitude gradients on the shady and sunny slopes of Mount Tianshan characterized by arid and semiarid climates. The measurements of foliar δ13C showed no altitudinal trends for the plants grown on either of the slopes. Therefore, this study supported our hypothesis. In addition, the present study addressed the effect of atmospheric pressure on plant δ13C by accounting for the effects of temperature and precipitation on δ13C. This study found that the residual foliar δ13C increased with increasing altitude, suggesting that atmospheric pressure played a negative role in foliar δ13C.

  7. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Regional origin assignment of red wines from Valencia (Spain) by (2)H NMR and (13)C IRMS stable isotope analysis of fermentative ethanol.

    Science.gov (United States)

    Giménez-Miralles, J E; Salazar, D M; Solana, I

    1999-07-01

    The use of the stable hydrogen and carbon isotope ratios of fermentative ethanol as suitable environmental fingerprints for the regional origin identification of red wines from Valencia (Spain) has been explored. Monovarietal Vitis vinifera L. cvs. Bobal, Tempranillo, and Monastrell wines have been investigated by (2)H NMR and (13)C IRMS for the natural ranges of site-specific (2)H/(1)H ratios and global delta(13)C values of ethanol over three vintage years. Statistically significant interregional and interannual (2)H and (13)C abundance differences have been noticed, which are interpreted in terms of environmental and ecophysiological factors of isotope content variation. Multivariate discriminant analysis is shown to provide a convenient means for integration of the classifying information, high discriminating abilities being demonstrated for the (2)H and (13)C fingerprints of ethanol. Reasonable differentiation results are achieved at a microregional scale in terms of geographic provenance and even grapevine genotypic features.

  9. 13C GIAO DFT calculation as a tool for configuration prediction of N-O group in saturated heterocyclic N-oxides

    Czech Academy of Sciences Publication Activity Database

    Pohl, Radek; Potmischil, F.; Dračínský, Martin; Vaněk, Václav; Slavětínská, Lenka; Buděšínský, Miloš

    2012-01-01

    Roč. 50, č. 6 (2012), s. 415-423 ISSN 0749-1581 R&D Projects: GA ČR GA203/09/1919 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * 13C * 1H * saturated heterocyclic N-oxides * chemical shift calculations * DFT Subject RIV: CC - Organic Chemistry Impact factor: 1.528, year: 2012

  10. Comparison of 15N- and 13C-determined parameters of mobility in melittin

    International Nuclear Information System (INIS)

    Zhu Lingyang; Prendergast, Franklyn G.; Kemple, Marvin D.

    1998-01-01

    Backbone and tryptophan side-chain mobilities in the 26-residue, cytolytic peptide melittin (MLT) were investigated by 15 N and 13 C NMR. Specifically, inverse-detected 15 N T 1 and steady-state NOE measurements were made at 30 and 51 MHz on MLT at 22 deg. C enriched with 15 N at six amide positions and in the Trp 19 side chain. Both the disordered MLT monomer (1.2 mM peptide at pH 3.6 in neat water) and α-helical MLT tetramer (4.0 mM peptide at pH 5.2 in 150 mM phosphate buffer) were examined. The relaxation data were analyzed in terms of the Lipari and Szabo model-free formalism with three parameters: τ m , the correlation time for the overall rotation; S 2 , a site-specific order parameter which is a measure of the amplitude of the internal motion; and τ e , a local, effective correlation time of the internal motion. A comparison was made of motional parameters from the 15 N measurements and from 13 C measurements on MLT, the latter having been made here and previously [Kemple et al. (1997) Biochemistry, 36, 1678-1688]. τ m and τ e values were consistent from data on the two nuclei. In the MLT monomer, S 2 values for the backbone N-H and Cα-H vectors in the same residue were similar in value but in the tetramer the N-H order parameters were about 0.2 units larger than the Cα-H order parameters. The Trp side-chain N-H and C-H order parameters, and τ e values were generally similar in both the monomer and tetramer. Implications of these results regarding the dynamics of MLT are examined

  11. {sup 13} C-NMR of mesquite gum

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cristina T; Garcia, Rosangela B [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1992-12-31

    Mesquite and guar gums are galactomannans extracted from the seeds of Proposis Juliflora and Cyamopsis tetragonolobus, respectively. An experimental sample of mesquite gum and a commercial sample of guar gum were partially depolymerized by ultrasonic radiation and the produce analysed by high resolution {sup 13} C-NMR spectroscopy. The different carbon lines were resolved and their assignments were done as those reported in the literature. The galactose to mannose ratios (G/M) were estimated from the relative peak areas of the C-1 lines as G/M=61 for mesquite and G/M=0.54 for guar gum. The next nearest-neighbour probabilities (diad frequencies) of the D-galactosyl substitution to the D-mannose backbone were evaluated by integrating C-4 mannose splitted peaks. (author) 9 refs., 2 figs., 2 tabs.

  12. Isotopic separation of 13C by selective photodissociation of formaldehyde

    International Nuclear Information System (INIS)

    Mussillon, T.

    1998-01-01

    The aim of this work is to study the feasibility of the 13 C isotopic separation by UV laser spectroscopy. The spectra of H 2 12 CO and H 2 13 CO have been recorded by a Fourier transform spectrometer between 28000 and 34000 cm -1 . From these data has been carried out a systematic study of some lines by laser spectroscopy. The selectivity measurements have been compared with the obtained enrichment factors. Thus has been revealed in a quantitative way, the importance of the isotopic re-mixture phenomena and of the selectivity loss. The best enrichment factor has been measured at 29935,56 cm -1 (band: (2,14,1)). A final percentage of 42,1 % has been obtained in a reproducible way for 13 C. The evolution of the enrichment factor has been characterized for a pressure range between 4,4 and 43 mbar. Above the radical dissociation threshold, it has not be possible to show a positive effect of NO on the enrichment factor. This negative result has been explained by a detailed kinetic study of the radical reactions (available literature). This experimental study has been completed by a bibliographic synthesis for understanding the formaldehyde photochemistry. All the processes able to influence the performance of this isotopic separation process have been gathered in this work in an exhaustive way. The radical dissociation threshold of H 2 13 CO have been calculated from molecular constants of the literature and from known thermodynamic data for H 2 12 CO. (O.M.)

  13. 4-{[(1-Phenyl-1H-pyrazol-3-yloxy]methyl}-1,3-dioxolan-2-one

    Directory of Open Access Journals (Sweden)

    Algirdas Šačkus

    2012-11-01

    Full Text Available The title compound was obtained by the reaction of tosylated glycerol carbonate with 1-phenyl-1H-pyrazol-3-ol in a good 71% yield. Detailed spectroscopic data (1H-NMR, 13C-NMR, 15N-NMR, IR, MS are presented.

  14. Liquid-phase characterization of molecular interactions in polyunsaturated and n-fatty acid methyl esters by (1)H low-field nuclear magnetic resonance.

    Science.gov (United States)

    Meiri, Nitzan; Berman, Paula; Colnago, Luiz Alberto; Moraes, Tiago Bueno; Linder, Charles; Wiesman, Zeev

    2015-01-01

    To identify and develop the best renewable and low carbon footprint biodiesel substitutes for petroleum diesel, the properties of different biodiesel candidates should be studied and characterized with respect to molecular structures versus biodiesel liquid property relationships. In our previous paper, (1)H low-field nuclear magnetic resonance (LF-NMR) relaxometry was investigated as a tool for studying the liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (FAMEs). The technological potential was demonstrated with oleic acid and methyl oleate standards having similar alkyl chains but different head groups. In the present work, molecular organization versus segmental and translational movements of FAMEs in their pure liquid phase, with different alkyl chain lengths (10-20 carbons) and degrees of unsaturation (0-3 double bonds), were studied with (1)H LF-NMR relaxometry and X-ray, (1)H LF-NMR diffusiometry, and (13)C high-field NMR. Based on density values and X-ray measurements, it was proposed that FAMEs possess a liquid crystal-like order above their melting point, consisting of random liquid crystal aggregates with void spaces between them, whose morphological properties depend on chain length and degree of unsaturation. FAMEs were also found to exhibit different degrees of rotational and translational motions, which were rationalized by chain organization within the clusters, and the degree and type of molecular interactions and temperature effects. At equivalent fixed temperature differences from melting point, saturated FAME molecules were found to have similar translational motion regardless of chain length, expressed by viscosity, self-diffusion coefficients, and spin-spin (T 2) (1)H LF-NMR. T 2 distributions suggest increased alkyl chain rigidity, and reduced temperature response of the peaks' relative contribution with increasing unsaturation is a direct result of the alkyl chain's morphological packing and molecular

  15. Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U13-C] glucose.

    Science.gov (United States)

    Bartnik-Olson, Brenda L; Ding, Daniel; Howe, John; Shah, Amul; Losey, Travis

    2017-10-01

    Focal metabolic dysfunction commonly observed in temporal lobe epilepsy (TLE), and is associated with the development of medical intractability and neurocognitive deficits. It has not been established if this dysfunction is due to cell loss or biochemical dysfunction in metabolic pathways. To explore this question, dynamic 1 H MRS following an infusion of [U 13 - C] glucose was performed to measure glutamate (Glu) metabolism. Subjects (n=6) showed reduced Glu levels (ptemporal lobe (MTL) compared with controls (n=4). However, the rate of 13 C incorporation into Glu did not differ between those with epilepsy and controls (p=0.77). This suggests that reduced Glu concentrations in the region of the seizure focus are not due to disruptions in metabolic pathways, but may instead be due to neuronal loss or simplification. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  17. [1-13C]Glucose entry in neuronal and astrocytic intermediary metabolism of aged rats. A study of the effects of nicergoline treatment by 13C NMR spectroscopy.

    Science.gov (United States)

    Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo

    2003-03-14

    Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.

  18. Study of the metabolism of 13C labeled substrates by 13C NMR spectroscopy of intact cells, tissues, and organs

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; London, R.E.; Hutson, J.Y.

    1982-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy, in conjunction with carbon-13 labeling, has become an important analytical technique for the study of biological systems and biologically important molecules. The growing list of its well established applications to isolated molecules in solution includes the investigation of: metabolic pathways; the microenvironments of ligands bound to proteins; the architecture and dynamics of macromolecules; the structures of coenzymes and other natural products; and the mechanisms of reactions. Recently interest has been reawakened in the use of the technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The promise and problems in the use of 13 C labeling in such investigations can be illustrated by the results on suspensions of the yeast, Candida utilis

  19. Comparison of bolus versus fractionated oral applications of [13C]-linoleic acid in humans.

    Science.gov (United States)

    Demmelmair, H; Iser, B; Rauh-Pfeiffer, A; Koletzko, B

    1999-07-01

    The endogenous conversion of linoleic acid into long-chain polyunsaturated fatty acids is of potential importance for meeting substrate requirements, particularly in young infants. After application of [13C]-linoleic acid, we estimated its conversion to dihomo-gamma-linolenic and arachidonic acids from only two blood samples. Oral tracer doses were given to five healthy adults as a single bolus. In four subjects the tracer was given in nine equal portions over 3 days. Concentration and 13C content of fatty acids from serum phospholipids were analysed by gas chromatography combustion isotope ratio-mass spectrometry. Areas under the tracer-concentration curves were calculated, and fractional transfer and turnover rates estimated from compartmental models. The median fractional turnover of linoleic acid was 93.7% per day (interquartile range 25.3) in the bolus group and 80. 0% per day (6.3) in the fraction group (NS). Fractional conversion of linoleic to dihomo-gamma-linolenic acid was 1.5% (0.9) vs. 2.1% (0.7) (bolus vs. fraction, P /= 0.94, P < 0.05) with the ratio of areas under the curve. Using areas under the curve overestimates the conversion, because different residence times are not considered. Estimation of conversion intensity appears possible with only one blood sample obtained after tracer application.

  20. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  1. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  2. Inelastic pion scattering by 13C at low energies

    International Nuclear Information System (INIS)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in 13 C at an incident energy of 65 MeV. The data include results from both π + and π - measurements. In addition, π - measurements were made at T/sub π/ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2 + state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs

  3. 13C CPMAS NMR Studies of Anthocyanidins and their Glucosides

    International Nuclear Information System (INIS)

    Wolniak, M.; Wawer, I.

    2005-01-01

    Anthocyanins are responsible for red, purple or blue colours of flower petals and can be found in red or black fruits and berries. Many foods, especially red grapes and wines, aronia or blueberries contain large amounts of anthocyanins. Their health beneficial effects are related to antioxidant and radical scavenging properties. Structural analysis of anthocyanins by NMR are few, owing to the difficulty in obtaining analysable spectra for unstable, interconverting compounds, available in small amounts. Compounds studied by us were isolated from fruits and berries. 13 C CPMAS NMR spectra were recorded on a Bruker DSX-400 spectrometer for solid chlorides of: cyanidin, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin and pelargonidin 3-O-glucoside. Dipolar dephased and short contact pulse sequences were used as an aid in the assignment of resonances in CPMAS spectra of solids. Inspection of the spectra indicates that anthocyanidins are in the form of flavylium (cationic) and not in form of the chalcone.: the resonance of C2 appears at ca. 160 ppm and C3 at ca. 135 ppm, whereas C ring opening produces C2 = O, for which chemical shift of ca. 180 ppm can be expected. A comparison of experimental (CPMAS) and predicted (GIAO DFT) shielding constants for cyanidin provided information about the orientation of OH groups, twist angle of aromatic ring B and the localization of the chloride anion.(author)

  4. IRMS detection of testosterone manipulated with {sup 13}C labeled standards in human urine by removing the labeled {sup 13}C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingzhu, E-mail: wangjingzhu@chinada.cn [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China); Yang, Rui [Sport Science College, Beijing Sport University Beijing, Beijing (China); Yang, Wenning [School of Pharmacy, Beijing University of Chinese Medicine, Beijing (China); Liu, Xin; Xing, Yanyi; Xu, Youxuan [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China)

    2014-12-10

    Highlights: • {sup 13}C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled {sup 13}C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ{sup 13}C value). However, {sup 13}C labeled standards can be used to control the δ{sup 13}C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the {sup 13}C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ{sup 13}C values between Andro and ANAD (Δδ{sup 13}C{sub Andro–ANAD}, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different {sup 13}C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ{sup 13}C{sub Andro–ANAD} post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ{sup 13}C{sub Andro–ANAD} for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-{sup 13}C labeled standards.

  5. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  6. [13C] GC-C-IRMS analysis of methylboronic acid derivatives of glucose from liver glycogen after the ingestion of [13C] labeled tracers in rats.

    Science.gov (United States)

    Luengo, Catherine; Azzout-Marniche, Dalila; Fromentin, Claire; Piedcoq, Julien; Lemosquet, Sophie; Tomé, Daniel; Gaudichon, Claire

    2009-11-01

    We developed a complete method to measure low [(13)C] enrichments in glycogen. Fourteen rats were fed a control diet. Six of them also ingested either [U-(13)C] glucose (n=2) or a mixture of 20 [U-(13)C] amino acids (n=4). Hepatic glycogen was extracted, digested to glucose and purified on anion-cation exchange resins. After the optimization of methylboronic acid derivatization using GC-MS, [(13)C] enrichment of extracted glucose was measured by GC-C-IRMS. The accuracy was addressed by measuring the enrichment excess of a calibration curve, which observed values were in good agreement with the expected values (R=0.9979). Corrected delta values were -15.6+/-1.6 delta(13)C (per thousand) for control rats (n=8) and increased to -5 to 8 delta(13)C (per thousand) per thousand and 12-14 delta(13)C (per thousand) per thousand after the ingestion of [U-(13)C] amino acids or [U-(13)C] glucose as oral tracers, respectively. The method enabled the determination of dietary substrate transfer into glycogen. The sequestration of dietary glucose in liver glycogen 4 h after the meal was 35% of the ingested dose whereas the transfer of carbon skeletons from amino acids was only 0.25 to 1%.

  7. Determination of Isotopic Abundance of 2H, 13C, 18O, and 37Cl in Biofield Energy Treated Dichlorophenol Isomers

    OpenAIRE

    Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Trivedi, Mahendra; Saikia, Gunin; Jana, Snehasis

    2016-01-01

    2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) are two isomers of dichlorophenols, have been used as preservative agents for wood, paints, vegetable fibers and as intermediates in the production of pharmaceuticals and dyes. The aim of the study was to evaluate the impact of biofield energy treatment on the isotopic abundance ratios of 2H/1H or 13C/12C, and 18O/16O or 37Cl/35Cl, in dichlorophenol isomers using gas chromatography-mass spectrometry (GC-MS). The 2,4-DCP and 2,6-DCP...

  8. 13C and 31P NMR [Nuclear Magnetic Resonance] studies of prostate tumor metabolism

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Halliday, K.R.; Freyer, J.P; Griffey, R.H.; Fenoglio-Preiser, C.

    1989-01-01

    The current research on prostate cancer by NMR spectroscopy and microscopy will most significantly contribute to tumor diagnosis and characterization only if sound biochemical models of tumor metabolism are established and tested. Prior searches focused on universal markers of malignancy, have to date, revealed no universal markers by any method. It is unlikely that NMRS will succeed where other methods have failed, however, NMR spectroscopy does provide a non-invasive means to analyze multiple compounds simultaneously in vivo. In order to fully evaluate the ability of NMRS to differentiate non-malignant from malignant tissues it is necessary to determine sufficient multiple parameters from specific, well-diagnosed, histological tumor types that, in comparison to normal tissue and non-neoplastic, non-normal pathologies from which the given neoplasm must be differentiated, one has enough degrees of freedom to make a mathematically and statistically significant determination. Confounding factors may consist of tumor heterogeneity arising from regional variations in differentiation, ischemia, necrosis, hemorrhage, inflammation and the presence of intermingled normal tissue. One related aspect of our work is the development of { 13 C}- 1 H metabolic imaging of 13 C for metabolic characterization, with enhanced spatial localization (46). This should markedly extend the range of potential clinical NMR uses because the spatial variation in prostate metabolism may prove to be just as important in tumor diagnoses as bulk (volume-averaged) properties themselves. It is our hope that NMRS and spectroscopic imaging will reveal a sound correlation between prostate metabolism and tumor properties that will be clinically straightforward and useful for diagnosis

  9. Investigations on the isoprenoid biosynthesis in the green alga Scenedesmus obliquus by using the 13C-labelling technique

    International Nuclear Information System (INIS)

    Schwender, J.

    1995-01-01

    The biosynthesis of several prenyllipids (isoprenoid lipids) of the green alga Scendesmus obliquus was investigated. The aim was to verify, whether the biosynthesis of isopentenyl diphosphate (IPP) in Scenedesmus proceeds according to the classical acetate mevalonate pathway or to an alternative pathway. An alternative pathway for IPP formation has recently been detected in some eubacteria by the group of Prof. M. Rohmer. Some inhibition tests were performed with mevinolin, a specific inhibitor of HMG-CoA reductase which yields mevalonic acid. Mevinolin should block the biosynthesis of such isoprenoids which are formed via the acetate mevalonate pathway. Scenedesmus was grown heterotrophically on 13 C-labelled glucose or acetate. After isolation and purification of 13 C-labelled phytol (side chains of chlorophylls), β-carotene, lutein, plastoquinone-9 and three sterol compounds, the enrichment of 13 C at different carbon-positions of the labelled compounds was determined. This was achieved by the 13 C-NMR technique in cooperation with Miriam Seemann of the group of Prof. M. Rohmer in Mullhouse/France. (orig.) [de

  10. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole

    Science.gov (United States)

    Saglam, S.; Disli, A.; Erdogdu, Y.; Marchewka, M. K.; Kanagathara, N.; Bay, B.; Güllüoğlu, M. T.

    2015-01-01

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, 1H NMR, 13C-APT and LC-MS spectroscopy techniques. The FT-IR, 1H NMR and 13C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G** basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities.

  11. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  12. 13C and 31P NMR study of gluconeogenesis: utilization of 13C-labeled substrates by perfused liver from streptozotocin-diabetic and untreated rats

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    The metabolism of 13 C-labeled substrates was followed by 13 C and 31 P NMR in perfused liver from the streptozotocin-treated rat model of insulin-dependent diabetes. Comparison was made with perfused liver from untreated littermates, fasted either 24 or 12 h. The major routes of pyruvate metabolism were followed by a 13 C NMR approach that provided for the determination of the metabolic fate of several substances simultaneously. The rate of gluconeogenesis was 2-4-fold greater and β-hydroxybutyrate production was 50% greater in liver from the chronically diabetic rats as compared with the control groups. Large differences in the distribution of 13 C label in hepatic alanine were measured between diabetic and control groups. The biosyntheses of 13 C-labeled glutathione and N-carbamoylaspartate were monitored in time-resolved 13 C NMR spectra of perfused liver. Assignments for the resonances of glutathione and N-carbamoylaspartate were made with the aid of 13 C NMR studies of perchloric acid extracts of the freeze-clamped livers. 13 C NMR spectroscopy of the perfusates provided a convenient, rapid assay of the rate of oxidation of [2- 13 C]ethanol, the hepatic output of [2- 13 ]acetaldehyde, and the accumulation of [2- 13 C]acetate in the perfusate. By 31 P NMR spectroscopy, carbamoyl phosphate was measured in all diabetic livers and an unusual P,P'-diesterified pyrophosphate was observed in one-fourth of the diabetic livers examined. Neither of these phosphorylated metabolites was detected in control liver. Both 13 C and 31 P NMR were useful in defining changes in hepatic metabolism in experimental diabetes

  13. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Chrestensen, Inge Byg; Damager, Iben

    2011-01-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by 13C single-pulse (SP) magic-angle-spinning (MAS) and 13C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by 2H SP/MAS NMR experiments. The study shows that the arabinan side chains...... hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side...... chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose...

  14. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    OpenAIRE

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride gave [2-13C]2-nitropropane in 14,3% overall yield.

  15. 15N and 13C abundances in marine environments with emphasis on biogeochemical structure of food networks

    International Nuclear Information System (INIS)

    Wada, E.

    1987-01-01

    Distributions of δ 15 N and δ 13 C for biogenic substances in the Antarctic Ocean and in the Otsuchi River estuary in Japan were investigated to construct isotope biogeochemical framework for assessing marine ecosystems. The isotopic compositions of phytoplankton were particularly low in the Antarctic Ocean. High nitrate and CO 2 concentrations in the surface sea waters, and the low light intensity seem to enhance the kinetic isotope fractionations that preferred the depletion of 15 N and 13 C in the algal body. A clear-cut linear relationship between animal δ 15 N and its trophic level was obtained in the Antarctic system. In the estuary, the variation of isotope ratios were principally governed by the mixing of land-derived organic matter, marine phytoplankton, and seagrasses. A food-chain effect of 15 N enrichment was also confirmed. An isotopically ordered structure was presented for a marine estuarine ecosystem. The isotopic abundances in a food network vary mainly because of the variation in 15 N and 13 C contents of primary producers grown under different environmental conditions and because of the enrichment of 15 N along food chains. (author)

  16. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    Science.gov (United States)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  17. Espiritu Santo, Vanuatu Stable Isotope (delta 18O, delta 13C) Data for 1806 to 1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site: Espiritu Santo Island, Vanuatu, 15S, 167E. 173 year record of d18O and d13C. Variable names: QSR Age, QSR 13C, QSR 18O, GRL Age, GRL Qtrly 13C, GRL Qtrly 18O,...

  18. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  19. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    NARCIS (Netherlands)

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride

  20. Synthesis and Physicochemical Properties of [19,20-13C]-17α-Ethinylestradiol

    NARCIS (Netherlands)

    Kraan, G.P.B.; Drayer, N.M.; Kruizinga, W.H.; Vaalburg, W.; Hummelen, J.C.

    1989-01-01

    13C2-17α-ethinylestradiol (13C2-EE2) was synthesized from estrone and 13C2-C2H2-gas to measure the metabolic clearance rate and the plasma concentration of 17α-ethinylestradiol (EE2) in tall girls, who are treated with high dosages of this estrogen. Interesting characteristics determined by (i) MS:

  1. Direct {sup 13}C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Fürtig, Boris, E-mail: fuertig@nmr.uni-frankfurt.de; Schnieders, Robbin; Richter, Christian; Zetzsche, Heidi; Keyhani, Sara; Helmling, Christina [Johann Wolfgang Goethe Universität Frankfurt, Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology (Germany); Kovacs, Helena [Bruker BioSpin (Switzerland); Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de [Johann Wolfgang Goethe Universität Frankfurt, Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology (Germany)

    2016-03-15

    In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond {sup 1}H detection. Here, we develop {sup 13}C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for {sup 13}C direct detection allows correlations of donor–acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed {sup 13}C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.

  2. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A 13C NMR study using [U-13C]fructose

    International Nuclear Information System (INIS)

    Gopher, A.; Lapidot, A.; Vaisman, N.; Mandel, H.

    1990-01-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-[U- 13 C]fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of 13 C NMR spectra of plasma glucose. Significantly lower values (∼3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from 13 C NMR measurement of plasma [ 13 C]glucose isotopomer populations. The finding of isotopomer populations of three adjacent 13 C atoms at glucose C-4 ( 13 C 3 - 13 C 4 - 13 C 5 ) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only ∼50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of [ 13 C]glucose formation from a trace amount of [U- 13 C]fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism

  3. Conditions to obtain precise and true measurements of the intramolecular {sup 13}C distribution in organic molecules by isotopic {sup 13}C nuclear magnetic resonance spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Kevin [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Gilbert, Alexis [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Julien, Maxime [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Silvestre, Virginie; Robins, Richard J.; Akoka, Serge [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France)

    2014-10-10

    Highlights: • Evaluation of the trueness and precision criteria of isotopic {sup 13}C NMR spectrometry. • Use of bi-labelled [1,2-{sup 13}C{sub 2}]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the {sup 13}C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular {sup 13}C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic {sup 13}C NMR spectrometry provides a general tool for measuring the position-specific {sup 13}C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal {sup 13}C distribution, and (ii) an approach to determining the “absolute” position-specific {sup 13}C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the {sup 13}C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the {sup 13}C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH{sub 3} by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was

  4. Acetylenes bearing Aromatic Terminal Groups. : II 13C-NMR Spectra of Monosubstituted Diphenylacetylenes

    OpenAIRE

    野本, 健雄; Nomoto, Takeo

    1986-01-01

    Six monosubstituted diphenylacetylenes, p-X-C6H4-C≡C-C6H5 1 (Ⅹ=NMe2, NH2, OMe, Cl, and NO2), were synthesized, and 13C-NMR spectra of their acetylenic carbons were measured. Hammett plots of the chemical shifts of the acetylenic α-13C and β-13C (against substituent constants σ) respectively showed a linear relationship, eXCept for β-13C on NMe2 and NH2 groups. The effects of substituents on 13C-Chemical shifts of diphenylacetylenes and effeciency of the C≡C bonds in transmitting the substitue...

  5. Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Petersen, Kitt Mia Falck; Befroy, Douglas E; Dufour, Sylvie

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and there is great interest in understanding the potential role of alterations in mitochondrial metabolism in its pathogenesis. To address this question, we assessed rates of hepatic mitochondrial oxidation...... in subjects with and without NAFLD by monitoring the rate of (13)C labeling in hepatic [5-(13)C]glutamate and [1-(13)C]glutamate by (13)C MRS during an infusion of [1-(13)C]acetate. We found that rates of hepatic mitochondrial oxidation were similar between NAFLD and control subjects. We also assessed rates...

  6. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    Science.gov (United States)

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sensitivity enhancement of 13C nuclei in 2D J-resolved NMR spectroscopy using a recycled-flow system

    International Nuclear Information System (INIS)

    Ha, S.T.K.; Lee, R.W.K.; Wilkins, C.L.

    1987-01-01

    Recycled-flow nuclear magnetic resonance for sensitivity enhancement in 1/2 spin nuclei has been reported previously, achieving several-fold signal enhancement. The success of the method depends upon premagnetization of nuclei prior to flowing into the detector region, obviating the need for delays following data acquisition to allow spin-lattice relaxation and reduce experiment time. The actual gains of sensitivity enhancement for 13 C- 1 H 2D J-resolved NMR using a recycled-flow method are evaluated. Possible enhancements for two types of J-resolved measurements, namely, one-bond 13 C- 1 H and long range J-resolved spectroscopy, are estimated using a simple Carr-Purcell spin-echo approach to quantify the 13 C signals. The pulse sequence is simply 90 0 -t /sub 1/2/-180 0 -t/sub 1/2/-AT-t/sub d/, where t/sub 1/2/ is half the evolution time, AT is the acquisition time, and t/sub d/ the experiment repetition time. In a static 2D NMR experiment, t/sub d/ usually must be the same order of the longest spin-lattice relaxation time (T 1 ) of nuclei. Quantitative measurements using a recycled-flow system indicate t/dub d/ can be reduced to a fraction of T 1 ; hence significant time savings can be achieved. Time-savings of between 2 and 25 can be anticipated for 2D spectroscopy under flow measurement conditions used in the present study. Other types of 2D NMR spectroscopy (autocorrelation and double quantum NMR) are discussed

  8. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    Science.gov (United States)

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  9. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    Science.gov (United States)

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  10. Site-specific 13C content by quantitative isotopic 13C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    International Nuclear Information System (INIS)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S.

    2013-01-01

    Graphical abstract: -- Highlights: •First ring test on isotopic 13 C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic 13 C NMR spectrometry, which is able to measure intra-molecular 13 C composition, is of emerging demand because of the new information provided by the 13 C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic 13 C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular 13 C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic 13 C NMR was then assessed on vanillin from three different origins associated with specific δ 13 C i profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ 13 C i in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results

  11. Site-specific {sup 13}C content by quantitative isotopic {sup 13}C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst [Firmenich SA, Corporate R and D Division, P.O. Box 239, 1211 Geneva 8 (Switzerland); Gilbert, Alexis; Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Pagelot, Alain [Bruker Biospin SAS, 34 rue de l‘Industrie, 67166 Wissembourg Cedex (France); Moskau, Detlef; Moreno, Aitor [Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden (Switzerland); Schleucher, Jürgen [Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå (Sweden); Reniero, Fabiano; Holland, Margaret; Guillou, Claude [European Commission, Joint Research Centre – Institute for Health and Consumer Protection, via E. Fermi 2749, I-21027 Ispra (Italy); Silvestre, Virginie; Akoka, Serge [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France)

    2013-07-25

    Graphical abstract: -- Highlights: •First ring test on isotopic {sup 13}C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic {sup 13}C NMR spectrometry, which is able to measure intra-molecular {sup 13}C composition, is of emerging demand because of the new information provided by the {sup 13}C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic {sup 13}C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular {sup 13}C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic {sup 13}C NMR was then assessed on vanillin from three different origins associated with specific δ{sup 13}C{sub i} profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ{sup 13}C{sub i} in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  12. Assignment of solid-state 13C and 1H NMR spectra of paramagnetic Ni(II) acetylacetonate complexes aided by first-principles computations

    DEFF Research Database (Denmark)

    Rouf, Syed Awais; Jakobsen, Vibe Boel; Mareš, Jiří

    2017-01-01

    Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin of the par......Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin...

  13. Theoretical predictions of the two-dimensional solid-state NMR spectra: a case study of the 13C-1H correlations in metergoline

    Czech Academy of Sciences Publication Activity Database

    Czernek, Jiří; Brus, Jiří

    2013-01-01

    Roč. 586, 24 October (2013), s. 56-60 ISSN 0009-2614 Institutional support: RVO:61389013 Keywords : NMR * shielding * metergoline Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.991, year: 2013

  14. {sup 1} H and {sup 13} C NMR of phenyl barbiturilidene; RMN de H-1 e C-13 de fenil barbiturilidenos

    Energy Technology Data Exchange (ETDEWEB)

    Villar, Jose Daniel Figueroa; Santos, Nedina Lucia dos; Cruz, Elizabete Rangel [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Quimica

    1991-12-31

    The condensation of barbituric acids with aromatic aldehydes gives the phenyl barbiturilidenes, which are studied as intermediary compounds in the synthesis of new heterocyclic compounds for pharmaceutical use. One of the most characteristic reactions of these compounds is the Michael type addition reaction, in the exocyclic carbon-carbon double binding. The reaction with 2,4-di nitrophenyl hydrazine reaction is been used as a test of this type of reactivity, which supplies the respective hydrazone and barbituric acid. In this work, preliminary studies have been performed for establishing correlations between the Brown parameter ({sigma}{sup +}), the chemical shifts ({delta}) of the barbiturilidene atoms involved in the reaction, and their reactivities 3 refs., 1 fig., 6 tabs.

  15. Determination of average molecular parameters of vacuum residues and asphalt by elementary analysis and 1 H NMR and comparison with 13 C NMR results

    International Nuclear Information System (INIS)

    Teixeira, Marco Antonio; Marques, Rosana Garrido

    1995-01-01

    This work proposes a new approach for determining average molecular parameters in petroleum fractions, from some approximation based on consideration about average composition of petroleum heavy fractions. A comparative evaluation between the proposed method and the traditional one has been carried out, showing 60 hours saving in time spent at analysis. The results were present and discussed

  16. New ruthenium (II) complexes derived from pyridinopyrazoline and pyridinopyrazole: /sup 1/H, /sup 13/C and /sup 99/Ru NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Marzin, C.; Budde, F.; Steel, P.J.; Lerner, D.

    1987-01-01

    A series of RuL/sub 3//sup 2+/(A), Ru(bpy) L/sub 2//sup 2+/(B) and Ru(bpy)/sub 2/L/sup 2+/(C) complexes with pyridinopyrazole and pyridinopyrazoline ligands L have been prepared; their study allows the evaluation of the ligand ..pi..-acceptor ability on the complex properties; especially /sup 99/Ru and Ru/sup 2//Ru/sup 3+/ oxidation potential measurements show a good ..pi..-acceptor behavior of one of the pyridinopyrazoline ligands. All the B and C type complexes and most of the RuL/sub 3//sup 2+/ ones, emit at 77 K which is rather unusual; one of these gives rise to a double emission, possibly from two isomers. NMR studies show the presence of geometric isomers for A and B type complexes and of diastereoisomeric ones for complexes A, B and C when L includes a pyrazoline unit. 37 refs.

  17. 1H, 13C and 15N backbone resonance assignment of the arsenate reductase from Staphylococcus aureus in its reduced state

    NARCIS (Netherlands)

    Jacobs, D.M.; Messens, J.; Wechselberger, R.W.|info:eu-repo/dai/nl/304829005; Brosens, E.; Willem, R.; Wyns, L.; Martins, J.C.

    2001-01-01

    In S. aureus, resistance to the metal(III)oxyanions arsenite As(III)O− 2 and antimonite Sb(III)O− 2 is mediated by two proteins, ArsB and ArsR, encoded in the ars operon of plasmid pI258 (Silver, 1999). ArsR acts as the transcription repressor, which is de-repressed in the presence of intracellular

  18. {sup 1} H and {sup 13} C NMR of phenyl barbiturilidene; RMN de H-1 e C-13 de fenil barbiturilidenos

    Energy Technology Data Exchange (ETDEWEB)

    Villar, Jose Daniel Figueroa; Santos, Nedina Lucia dos; Cruz, Elizabete Rangel [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Quimica

    1992-12-31

    The condensation of barbituric acids with aromatic aldehydes gives the phenyl barbiturilidenes, which are studied as intermediary compounds in the synthesis of new heterocyclic compounds for pharmaceutical use. One of the most characteristic reactions of these compounds is the Michael type addition reaction, in the exocyclic carbon-carbon double binding. The reaction with 2,4-di nitrophenyl hydrazine reaction is been used as a test of this type of reactivity, which supplies the respective hydrazone and barbituric acid. In this work, preliminary studies have been performed for establishing correlations between the Brown parameter ({sigma}{sup +}), the chemical shifts ({delta}) of the barbiturilidene atoms involved in the reaction, and their reactivities 3 refs., 1 fig., 6 tabs.

  19. Generation of Gaussian 09 Input Files for the Computation of 1H and 13C NMR Chemical Shifts of Structures from a Spartan’14 Conformational Search

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Spencer Reisbick & Patrick Willoughby ### Abstract This protocol describes an approach to preparing a series of Gaussian 09 computational input files for an ensemble of conformers generated in Spartan’14. The resulting input files are necessary for computing optimum geometries, relative conformer energies, and NMR shielding tensors using Gaussian. Using the conformational search feature within Spartan’14, an ensemble of conformational isomers was obtained. To convert the str...

  20. Organometallic derivatives of furan. LII. Synthesis of carbofunctional furylsilanes and their 1H, 13C, and 29Si NMR spectroscopic and quantum-chemical investigation

    International Nuclear Information System (INIS)

    Lukevits, E.; Erchak, N.P.; Castro, I.; Popelis, Yu.Yu.; Kozyrev, A.K.; Anoshkin, V.I.; Kovalev, I.F.

    1986-01-01

    Under the standard conditions for the synthesis of furan compounds it is possible to obtain the carbofunctional derivatives of silylated furfural with retention of the trimethylsilyl group in the ring. By NMR and CNDO/2 LCAO MO methods and also as a result of the investigation of the chemical characteristics of silylated furfural and its carbofunctional derivatives it was established that the introduction of a trimethylsilyl group at position 5 of the furan ring does not change the reactivity of the carbofunctional substituents at position 2. The electronic effects of the substituents are hardly transmitted through the furan ring at all. The effect of substituents in the carbofunctional furylsilanes on the electronic structure of the ring is additive

  1. 1H, 13C, and 15N resonance assignment of the N-terminal domainof Mason-Pfizer monkey virus capsid protein, CA 1-140

    Czech Academy of Sciences Publication Activity Database

    Macek, Pavel; Žídek, L.; Rumlová, Michaela; Pichová, Iva; Sklenář, V.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 43-45 ISSN 1874-2718 R&D Projects: GA MŠk LC545; GA MŠk(CZ) LC06030; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40550506 Keywords : nmr * assignment * capsid protein Subject RIV: EE - Microbiology, Virology Impact factor: 0.015, year: 2008

  2. Assignment of 1H, 13C, and 15N resonances of WT matrix protein and its R55F mutant from Mason-Pfizer monkey virus

    Czech Academy of Sciences Publication Activity Database

    Vlach, J.; Lipov, J.; Veverka, V.; Rumlová, Michaela; Ruml, T.; Hrabal, R.

    2005-01-01

    Roč. 31, - (2005), s. 381-382 ISSN 0925-2738 R&D Projects: GA ČR GA203/03/0490 Institutional research plan: CEZ:AV0Z4055905 Keywords : Mason-Pfizer monkey virus * NMR resonance assignment * matrix protein Subject RIV: CE - Biochemistry Impact factor: 2.180, year: 2005

  3. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  4. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: A feasibility study in pregnant guinea pigs.

    Science.gov (United States)

    Friesen-Waldner, Lanette J; Sinclair, Kevin J; Wade, Trevor P; Michael, Banoub; Chen, Albert P; de Vrijer, Barbra; Regnault, Timothy R H; McKenzie, Charles A

    2016-03-01

    To test the feasibility of hyperpolarized [1-(13) C]pyruvate magnetic resonance imaging (MRI) for noninvasive examination of guinea pig fetoplacental metabolism and nutrient transport. Seven pregnant guinea pigs with a total of 30 placentae and fetuses were anesthetized and scanned at 3T. T1 -weighted (1) H images were obtained from the maternal abdomen. An 80 mM solution of hyperpolarized [1-(13) C]pyruvate (hereafter referred to as pyruvate) was injected into a vein in the maternal foot. Time-resolved 3D (13) C images were acquired starting 10 seconds after the beginning of bolus injection and every 10 seconds after to 50 seconds. The pregnant guinea pigs were recovered after imaging. Regions of interest (ROIs) were drawn around the maternal heart and each placenta and fetal liver in all slices in the (1) H images. These ROIs were copied to the (13) C images and were used to calculate the sum of the pyruvate and lactate signal intensities for each organ. The signal intensities were normalized by the volume of the organ and the maximum signal in the maternal heart. No adverse events were observed in the pregnant guinea pigs and natural pupping occurred at term (∼68 days). Pyruvate signal was observed in all 30 placentae, and lactate, a by-product of pyruvate metabolism, was also observed in all placentae. The maximum pyruvate and lactate signals in placentae occurred at 20 seconds. In addition to the observation of pyruvate and lactate signals in the placentae, both pyruvate and lactate signals were observed in all fetal livers. The maximum pyruvate and lactate signals in the fetal livers occurred at 10 seconds and 20 seconds, respectively. This work demonstrates the feasibility of using hyperpolarized [1-(13) C]pyruvate MRI to noninvasively examine fetoplacental metabolism and transport of pyruvate in guinea pigs. Hyperpolarized (13) C MRI may provide a novel method for longitudinal studies of fetoplacental abnormalities. © 2015 Wiley Periodicals, Inc.

  5. 1-Propyl-1H-indole-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C11H11NO2, the 1H-indole-2,3-dione unit is essentially planar, with an r.m.s. deviation of 0.0387 (13 Å. This plane makes a dihedral angle of 72.19 (17° with the plane of the propyl substituent. In the crystal, chains propagating along the b axis are formed through C—H...O hydrogen bonds.

  6. What is hiding behind ontogenic d13C variations in mollusk shells: New insights from scallops.

    Science.gov (United States)

    Chauvaud, L.; Lorrain, A.; Gillikin, D. P.; Thebault, J.; Paulet, Y.; Strand, O.; Blamart, D.; Guarini, J.; Clavier, J.

    2008-12-01

    We examined d13Ccalcite variations along scallop shells (Pecten maximus) sampled in Norway, France and Spain. Time series of shell calcite d13C show a consistent pattern of decreasing d13C with age. This almost linear d13C trend reflects an increasing contribution of metabolic CO2 to skeletal carbonate throughout ontogeny. We have removed this ontogenic trend to try to extract other information from our shell calcite d13C dataset. Scallops from the Bay of Brest (western Brittany, France) were then used to interpret the data as many environmental parameters were available for this site. d13Ccalcite variations were compared to d13C of dissolved inorganic carbon (DIC) and Chl a. The detrended calcite d13C profiles seem to follow a seasonal pattern, but surprisingly are inversely related to the d13C DIC and chlorophyll a concentrations measured within the water column. Theses results suggest that shell d13C variations are not controlled by isotopic variation of DIC. Since scallops eat phytoplankton and microphytobenthos cells, and, as a consequence respire organic mater largely depleted in 13C, we therefore suggest that in mollusk suspension feeders the shell d13Ccalcite might still be used to track the annual number of phytoplankton blooms when d13C values of calcite are detrended. We must consider this trend as a potential biological filter hiding precious environmental records.

  7. Effect of the nitrogen unshared electron pair on the direct /sup 13/C-/sup 13/C spin-spin coupling constant of a neighboring bond in oximes

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, V.V.; Krivdin, L.B.; Kalabin, G.A.; Trofimov, B.A.

    1986-11-20

    The authors have previously established that the direct /sup 13/C-/sup 13/C coupling constants are stereospecific relative to the orientation of unshared electron pairs (UEP) of nitrogen and oxygen atoms. Here they show that the nitrogen UEP produces a positive contribution to the direct /sup 13/C-/sup 13/C coupling constant of an adjacent syn-periplanar carbon-carbon bond and not to a negative contribution of the corresponding constant of the anti-periplanar bond. Thus, the observed effect is not a consequence of the interaction of the heteroatom UEP with the anti-bonding orbital of the adjacent anti-periplanar bond (n/sub o-o/* interaction) as in the case of anomeric and related effects.

  8. Metabolic pathways for ketone body production. 13C NMR spectroscopy of rat liver in vivo using 13C-multilabeled fatty acids

    International Nuclear Information System (INIS)

    Pahl-Wostl, C.; Seelig, J.

    1986-01-01

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with 13 C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of 13 C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the 13 C signal intensities were enhanced by using doubly labeled [1,3- 13 C]butyrate as a substrate. Different 13 C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The 13 C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of 13 C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded β-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. 13 C-labeled glucose could be detected in vivo in the liver of diabetic rats

  9. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    Science.gov (United States)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  10. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  11. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. V. The direct carbon-carbon coupling constants in the vinyl group

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1988-03-10

    The direct spin-spin coupling constants in the vinyl group were measured in 100 mono-substituted ethylene derivatives. The inductive effect of the substituent was found to be the major factor in the variation of this constant and, in some cases, the stereospecific effect of the unshared electron pairs of heteratoms makes a significant contribution to the /sup 13/C-/sup 13/C coupling constants.

  12. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C]methacetin- and [methyl-13C]methionine-breath tests.

    Science.gov (United States)

    Wutzke, Klaus D; Forberger, Anke; Wigger, Marianne

    2008-06-01

    The aim of this study was to investigate the hepatic microsomal and mitochondrial functions by using the 13CO2-breath test in healthy subjects either before or after the consumption of red wine. Fourteen adults received [13C]methacetin and [methyl-13C]methionine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol/kg/day together with dinner over a 10-day period. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2-enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery (CPDR) after administration of [13C]methacetin and [methyl-13C]methionine either without or with red wine consumption amounted to 38.2+/-6.3 vs. 36.3+/-6.7% (p=0.363) and 9.5+/-3.3 vs. 8.8+/-2.5% (p=0.47), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the mitochondrial functions of the human liver in healthy subjects.

  13. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C2]aminopyrine and L-[1-13C]phenylalanine breath tests.

    Science.gov (United States)

    Wutzke, Klaus D; Wigger, Marianne

    2009-09-01

    The aim of this study was to investigate the hepatic microsomal and cytosolic functions by using the 13CO2 breath test in healthy subjects either before or after consumption of red wine. Twelve adults received [13C2]aminopyrine and L-[1-13C]phenylalanine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol per kg per day together with dinner over a 7.5-day period on average. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2 enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery after administration of [13C2]aminopyrine and L-[1-13C]phenylalanine either without or with red wine consumption amounted to 17.0+/-4.4 vs. 14.7+/-3.1% (p=0.170) and 14.0+/-2.8 vs. 11.5+/-3.9% (p=0.084), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the cytosolic function of the human liver in healthy subjects.

  14. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  15. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    Science.gov (United States)

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  16. Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: Quantification and application to antamanide

    International Nuclear Information System (INIS)

    Detken, Andreas; Hardy, Edme H.; Ernst, Matthias; Kainosho, Masatsune; Kawakami, Toru; Aimoto, Saburo; Meier, Beat H.

    2001-01-01

    The application of adiabatic polarization-transfer experiments to resonance assignment in solid, uniformly 13 C- 15 N-labelled polypeptides is demonstrated for the cyclic decapeptide antamanide. A homonuclear correlation experiment employing the DREAM sequence for adiabatic dipolar transfer yields a complete assignment of the C α and aliphatic side-chain 13 C resonances to amino acid types. The same information can be obtained from a TOBSY experiment using the recently introduced P9 1 12 TOBSY sequence, which employs the J couplings as a transfer mechanism. A comparison of the two methods is presented. Except for some aromatic phenylalanine resonances, a complete sequence-specific assignment of the 13 C and 15 N resonances in antamanide is achieved by a series of selective or broadband adiabatic triple-resonance experiments. Heteronuclear transfer by adiabatic-passage Hartmann-Hahn cross polarization is combined with adiabatic homonuclear transfer by the DREAM and rotational-resonance tickling sequences into two- and three-dimensional experiments. The performance of these experiments is evaluated quantitatively

  17. Quantifying the Contribution of Grape Hexoses to Wine Volatiles by High-Precision [U13C]-Glucose Tracer Studies

    Science.gov (United States)

    Nisbet, Mark A.; Tobias, Herbert J.; Brenna, J. Thomas; Sacks, Gavin L.; Mansfield, Anna Katharine

    2016-01-01

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision 13C/12C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01–1 APE) of uniformly labeled [U-13C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of 13C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor–product relationships. PMID:24960193

  18. Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13C and (2)H labeling studies.

    Science.gov (United States)

    Steliopoulos, Panagiotis; Wüst, Matthias; Adam, Klaus-Peter; Mosandl, Armin

    2002-05-01

    The biogenetic origin of the isoprenoid building blocks of the sesquiterpene germacrene D was studied in Solidago canadensis. Feeding experiments were carried out with 1-[5,5-D(2)]deoxy-D-xylulose-5-phosphate (D(2)-DOXP), [5-13C]mevalonolactone (13C-MVL) and [1-13C]-D-glucose. The hydrodistillate of a cut shoot fed with D(2)-DOXP was investigated by enantio-MDGC-MS and the volatile fraction of a shoot supplied with 13C-MVL was examined by GC-C-IRMS. The incorporation of [1-13C]-D-glucose was analyzed by quantitative 13C NMR spectroscopy after isolation of germacrene D from the essential oil. Our labeling studies revealed that the biosynthesis of the C-15 skeleton of sesquiterpene germacrene D in Solidago canadensis proceeds predominantly via the methylerythritol phosphate pathway.

  19. Unexpected relationships between δ13C and wine grape performance in organic farming

    Directory of Open Access Journals (Sweden)

    Edoardo Antonio Costantino Costantini

    2013-12-01

    Significance and impact of the study: Water nutrition is crucial for wine grape performance. δ13C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ13C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ13C to predict vine performance.

  20. Biokinetics of 13C in the human body after oral administration of 13C-labeled glucose as an index for the biokinetics of 14C.

    Science.gov (United States)

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of 13 C in the human body after oral administration of 13 C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for 13 C as an index of the committed dose of the radioisotope 14 C. After administration of 13 C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic 13 C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for 13 C/ 12 C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the 13 C administered was excreted in breath, whereas    0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for 13 C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of 13 C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and therefore should be studied further to clarify the fate of carbon in the human body. In addition to excreta, data for serum and blood cell samples were also collected from the subjects to examine the metabolism of 13 C in human body.

  1. Measurement of imino {sup 1}H-{sup 1}H residual dipolar couplings in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Michael P. [University of Toronto, Department of Molecular Genetics (Canada); Pardi, Arthur [University of Colorado, Department of Chemistry and Biochemistry, 215 UCB (United States)], E-mail: arthur.pardi@colorado.edu

    2009-02-15

    Imino {sup 1}H-{sup 15}N residual dipolar couplings (RDCs) provide additional structural information that complements standard {sup 1}H-{sup 1}H NOEs leading to improvements in both the local and global structure of RNAs. Here, we report measurement of imino {sup 1}H-{sup 1}H RDCs for the Iron Responsive Element (IRE) RNA and native E. coli tRNA{sup Val} using a BEST-Jcomp-HMQC2 experiment. {sup 1}H-{sup 1}H RDCs are observed between the imino protons in G-U wobble base pairs and between imino protons on neighboring base pairs in both RNAs. These imino {sup 1}H-{sup 1}H RDCs complement standard {sup 1}H-{sup 15}N RDCs because the {sup 1}H-{sup 1}H vectors generally point along the helical axis, roughly perpendicular to {sup 1}H-{sup 15}N RDCs. The use of longitudinal relaxation enhancement increased the signal-to-noise of the spectra by {approx}3.5-fold over the standard experiment. The ability to measure imino {sup 1}H-{sup 1}H RDCs offers a new restraint, which can be used in NMR domain orientation and structural studies of RNAs.

  2. A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone

    Directory of Open Access Journals (Sweden)

    Al-Wabli Reem I.

    2017-11-01

    Full Text Available (5-Methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone (MIMIM is a bis-indolic derivative that can be used as a precursor to a variety of melatonin receptor ligands. In this work, the energetic and spectroscopic profiles of MIMIM were studied by a combined DFT and experimental approach. The IR, Raman, UV-Vis, 1H NMR and 13C NMR spectra were calculated by PBEPBE and B3LYP methods, and compared with experimental ones. Results showed good agreement between theoretical and experimental values. Mulliken population and natural bond orbital analysis were also performed by time-dependent DFT approach to evaluate the electronic properties of the title molecule.

  3. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs

    International Nuclear Information System (INIS)

    France, R.L.; Peters, R.H.

    1997-01-01

    Data from 35 published studies were collated to examine patterns in the trophic enrichment of 13 C of consumers. Because both δ 13 C and δ 14 N vary systematically across ecosystems, it was necessary to standardize for such differences before combining data from numerous sources. Relationships of these measures of ecosystem-standardized δ 13 C to ecosystem-standardized trophic position (Δδ 15 N) for freshwater, estuarine, coastal, and open-ocean and for all aquatic ecosystems yielded regression equations of low predictive capability (average of 20% explained variance in δ 13 C). However, differences were observed in the slopes between δ 13 C and standardized trophic position when data were examined study-specifically: the average trophic fractionation of 13 C was found to increase from +0.2micron for freshwater to +0.5micron for estuarine to +0.8micron for coastal, and to +1.1micron for open-ocean food webs. This ecosystem-specific gradient in 13 C enrichment for consumers supports previous findings of a similar continuum existing for zooplankton - particulate organic matter differences in δ 13 C. Possible mechanisms to explain these ecosystem-specific patterns in 13 C enrichment may be related to the relative importance of detritus, heterotrophic respiration, partial reliance on alternative food sources, and lipid influences in the different ecosystems. (author)

  4. The synthesis of 13C-bilirubin and its use in the validation of bilirubin kinetic studies in rats

    International Nuclear Information System (INIS)

    Sturrock, E.D.

    1994-04-01

    The total synthesis of [10- 13 C] bilirubin IXα], the principal waste product of haem degradation, is described. Site specific labelling was accomplished by the Vilsmeier formulation of one of the dipyrrolic fragments using [1- 13 C] dimethylformamide. The penultimate dehydrohalogenation reaction was complicated by a competing elimination reaction which yielded a bridged biliverdin derivative. The base catalysed reaction affords a novel [10- 13 C]-8,12-bis(2-methoxycarbonylethyl)-7,13,17-trimethyl-2,18-propano-3-vinylbilin-1,19(21H,24H)-dione in which the 2 and 18 positions of the macrocycle are bridged with a propano tether, the structure has been established using single crystal X-ray and 1 H nuclear Overhauser effect studies. [ 14 C]bilirubin was prepared, bio synthetically, using [ 14 C]aminolevulinic acid. Bilirubin kinetics in 4 rats were measured by the analysis of the plasma disappearance of [ 14 C]bilirubin in a two-compartment model. The plasma half-life of the first and second exponentials were 1.97 and 32.8 minutes respectively. The data were used to determine model independent parameters k 12 , k 21 , and k 20 . In the proposed model, plasma unconjugated bilirubin exchanges with a hepatic unconjugated bilirubin pool. Bilirubin is eliminated from the system via the proposed hepatic pool. These studies provide an analysis of the kinetics of unconjugated bilirubin in rates and are intended to serve as a reference point for studies using a stable isotope of bilirubin. The plasma disappearance of [10- 13 C]bilirubin IXα in three rats was studied using mass spectrometry to measure the bilirubin δ 13 C. Validation of the experimental procedure in terms of range and reproducibility of the detection method was carried out. The half lives of the initial and terminal exponentials were 2.27±2.5 and 22.8±12.9 minutes. Despite the large 95% confidence limits calculated for these clearance curves they serve as an important foundation for future bilirubin kinetic

  5. Synthesis of 2-azetidinone derivatives of 6-nitro-1H-indazole and their biological importance

    Directory of Open Access Journals (Sweden)

    Pushkal Samadhiya

    2012-01-01

    Full Text Available A new series of 3-chloro-1-{[2-(6-nitro-1H-indazol-1-ylethyl]amino}-4-(substituted phenyl-2-azetidinones (4a-j was synthesized in four steps from 6-nitro-1H-indazole and characterized by IR, ¹H NMR, 13C NMR, FAB-mass spectrometry and chemical methods. Compounds 4(a-j were screened in vitro for their antibacterial, antifungal and antitubercular activities against some selected microorganism and for their antiinflammatory activity (in vivo against albino rats (either sex. All above activities of compounds 4(a-j showed acceptable results.

  6. 2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]indane-1,3-dione

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2011-02-01

    Full Text Available The title compound 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-indane-1,3-dione (3 was synthesized in high yield by reaction of 3,5-dimethyl-1-phenyl-pyrazole-4-carbaldehyde and indane-1,3-dione in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and GC-MS spectral analysis.

  7. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    Science.gov (United States)

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  8. Identification of degradation routes of metamitron in soil microcosms using 13C-isotope labeling.

    Science.gov (United States)

    Wang, Shizong; Miltner, Anja; Nowak, Karolina M

    2017-01-01

    Metamitron is one of the most commonly used herbicide in sugar beet and flower bulb cultures. Numerous laboratory and field studies on sorption and degradation of metamitron were performed. Detailed biodegradation studies in soil using 13 C-isotope labeling are still missing. Therefore, we aimed at providing a detailed turnover mass balance of 13 C 6 -metamitron in soil microcosms over 80 days. In the biotic system, metamitron mineralized rapidly, and 13 CO 2 finally constituted 60% of the initial 13 C 6 -metamitron equivalents. In abiotic control experiments CO 2 rose to only 7.4% of the initial 13 C 6 -metamitron equivalents. The 13 C label from 13 C 6 -metamitron was incorporated into microbial amino acids that were ultimately stabilized in the soil organic matter forming presumably harmless biogenic residues. Finally, 13 C label from 13 C 6 -metamitron was distributed between the 13 CO 2 and the 13 C-biogenic residues indicating nearly complete biodegradation. The parallel increase of 13 C-alanine, 13 C-glutamate and 13 CO 2 indicates that metamitron was initially biodegraded via the desamino-metamitron route suggesting its relevance in the growth metabolism. In later phases of biodegradation, the "Rhodococcus route" was indicated by the low 13 CO 2 evolution and the high relevance of the pyruvate pathway, which aims at biomolecule synthesis and seems to be related to starvation. This is a first report on the detailed degradation route of metamitron in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. NMR study of conjugation effects. 15. /sup 13/C-/sup 13/C spin-spin coupling constants in phenylalkyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A. (Siberian Branch of the Academy of Sciences of the USSR); Krivdin, L.B.; Trofimov, B.A.

    1982-07-20

    In order to elucidate the /sup 13/C-/sup 13/-C SSCC (spin-spin coupling constants) segment with the electronic excitations induced by the R group, a series of phenyl alkyl ethers, PhOAlk, where Alk = Me(I), Et(II), i-Pr(III), and t-Bu(IV), were studied. This series was chosen because in studying the /sup 13/C CS in monosubstituted benzenes it was observed that the intensity of the ..pi..-electron interaction of the unshared electron pairs of oxygen with the ..pi.. system of the benzene ring was practically the same in some compounds, but increased by 30% in others. This is related to the fact that the latter is characterized by an average noncoplanar conformation, with a dihedral angle between the benzene-ring plane and the C-O-C bond of approx. 45/sup 0/, whereas some compounds have an angle < 20/sup 0/. The reason for the difference is significant steric interaction of the alkyl hydrogens with the o-position of the ring. Thus, consideration of the /sup 13/C-/sup 13/C SSCC of a series of quite similar compounds, especially when compared to the whole set of such SSCC for other monosubstituted benzenes, shows that their relationship to the structure of the substituent R is extremely complex.

  10. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons.

    Science.gov (United States)

    Brekke, Eva M F; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula

    2012-09-01

    The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of (13)C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ~6% of glucose metabolism in cortical neurons and ~4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that (13)C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.

  11. Energy metabolism of medium-chain triglycerides versus carbohydrates during exercise.

    Science.gov (United States)

    Décombaz, J; Arnaud, M J; Milon, H; Moesch, H; Philippossian, G; Thélin, A L; Howald, H

    1983-01-01

    Medium-chain triglycerides (MCT) are known to be rapidly digested and oxidized. Their potential value as a source of dietary energy during exercise was compared with that of maltodextrins (MD). Twelve subjects exercised for 1 h on a bicycle ergometer (60% VO2 max), 1 h after the test meal (1MJ). The metabolism of MCT was followed using 1-13C-octanoate (Oc) as tracer and U-13C-glucose (G) was added to the 13C-naturally enriched MD. After MCT ingestion no insulin peak was observed with some accumulation of ketone bodies (KB), blood levels not exceeding 1 mM. Total losses of KB during exercise in urine, sweat and as breath acetone were small (less than 0.2 mmol X h-1). Hence, the influence of KB loss and storage on gas exchange data was negligible. The partition of fat and carbohydrate utilization during exercise as obtained by indirect calorimetry was practically the same after the MCT and the CHO meals. Oxidation over the 2-h period was 30% of dose for Oc and 45% for G. Glycogen decrements in the Vastus lateralis muscle were equal. It appears that with normal carbohydrate stores, a single meal of MCT or CHO did not alter the contribution of carbohydrates during 1 h of high submaximal exercise. The moderate ketonemia after MCT, despite substantial oxidation of this fat, led to no difference in muscle glycogen sparing between the diets.

  12. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    Science.gov (United States)

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn 2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13 C ENDOR then reveals the locations of 13 C10 and reactive 13 C11 of linoleic acid relative to the metal; 1 H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  13. N,N',N"-Tris[(5-methoxy-1H-indol-3-ylethyl]benzene-1,3,5-tricarboxamide

    Directory of Open Access Journals (Sweden)

    Ute Schmidt

    2015-03-01

    Full Text Available The title indole-based compound that enforces tripodal topology and is potential applicable for the use as artificial receptor, was prepared by a simple reaction of 1,3,5-benzenetricarbonyl trichloride with 5-methoxytryptamine. The compound was characterized by elemental analysis, 1H-NMR, 13C-NMR and mass spectrometry.

  14. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized...

  15. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  16. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    Science.gov (United States)

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. © 2015 John Wiley & Sons Ltd.

  17. 13C NMR for the assessment of human brain glucose metabolism in vivo

    International Nuclear Information System (INIS)

    Beckman, N.; Seelig, J.; Turkalj, I.; Keller, U.

    1991-01-01

    Proton-decoupled 13 C NMR spectra of the human head were obtained during hyperglycemic glucose clamping using intravenous infusions of [1- 13 C]glucose in normal volunteers. In addition to 13 C signals of mobile lipids, a variety of new metabolite resonances could be resolved for the first time in the human brain. At an enrichment level of 20% [1- 13 C]glucose, the signals of α- and β-glucose at 92.7 and 96.6 ppm, respectively, could be detected in the human brain after only an infusion period of 15 minutes. The spatial localization of the different regions of interest was confirmed by 13 C NMR spectroscopic imaging with a time resolution of 9 minutes. Increasing the enrichment level to 99% [1- 13 C]glucose not only improved the time resolution but allowed the detection of metabolic breakdown products of [1- 13 C]glucose. The time course of 13 C label incorporation into the C 2 , C 3 , and C 4 resonances of glutamate/glutamine and into lactate could be recorded in the human brain. These results suggest the possibility of obtaining time-resolved, spatially selective, and chemically specific information on the human body

  18. Evaluation of carbon transfers in cattle and humans using 13C

    International Nuclear Information System (INIS)

    Masuda, Tsuyoshi; Tako, Yasuhiro; Nakamura, Yuji

    2010-01-01

    In the safety assessment made around the spent nuclear fuel reprocessing plant in Rokkasho, Aomori, among radioactive nuclides released from the plant, 14 C is expected to be the largest contributor to radiation dose received by the neighboring population through agricultural and dairy products. The objectives of this study are to clarify the transfer of 14 C from grass to beef and milk and its metabolism in the human body experimentally. (1) 13 C-labeled grass was fed for 28 days to beef cattle and cows. 13 C isotopic ratio was measured in serum and other samples including muscle of beef cattle and milk of dairy cow. The 13 C rations in milk, breath air, urine and feces decreased very rapidly within 3 day after cessation of the administration of 13 C-labeled feed. However, a slow decrease in 13 C ratio was observed in muscle and serum. (2) 13 C isotopic ratios were measured in breath air, urine, feces and serum over 16 weeks in humans who were orally administered of 13 C labeled leucine, palmitic acid, glucose, boiled rice and soymilk, respectively. Residual 13 C in their bodies experimentally observed were lower than the estimates by the ICRP metabolic model for organic carbon ingestion. (author)

  19. Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla.

    NARCIS (Netherlands)

    Klomp, D.W.J.; Renema, W.K.J.; Graaf, M. de; Galan, B.E. de; Kentgens, A.P.M.; Heerschap, A.

    2006-01-01

    A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous

  20. Intracellular PHB conversion in a type II methanotroph studied by 13 C NMR

    NARCIS (Netherlands)

    Vecherskaya, M.; Dijkema, C.; Stams, A.J.M.

    2001-01-01

    Poly-g-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of

  1. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  2. HNCA-TOCSY-CANH experiments with alternate 13C-12C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Gal, Maayan; Takahashi, Hideo; Shimada, Ichio; Wagner, Gerhard

    2011-01-01

    Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3 J(C α C α ) coupling. These pulse sequences, which resemble recently described 13 C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1 H 2 O, and use 1 H excitation and detection. These experiments require alternate 13 C- 12 C labeling together with perdeuteration, which allows utilizing the small 3 J(C α C α ) scalar coupling that is otherwise masked by the stronger 1 J CC couplings in uniformly 13 C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 13 (C α ) of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i−1, i + 1 and i−2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15 N- 1 H spin pair of residue i to adjacent amide protons and nitrogens at positions i−2, i−1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.

  3. NMR characterization of HtpG, the E. coli Hsp90, using sparse labeling with 13C-methyl alanine.

    Science.gov (United States)

    Pederson, Kari; Chalmers, Gordon R; Gao, Qi; Elnatan, Daniel; Ramelot, Theresa A; Ma, Li-Chung; Montelione, Gaetano T; Kennedy, Michael A; Agard, David A; Prestegard, James H

    2017-07-01

    A strategy for acquiring structural information from sparsely isotopically labeled large proteins is illustrated with an application to the E. coli heat-shock protein, HtpG (high temperature protein G), a 145 kDa dimer. It uses 13 C-alanine methyl labeling in a perdeuterated background to take advantage of the sensitivity and resolution of Methyl-TROSY spectra, as well as the backbone-centered structural information from 1 H- 13 C residual dipolar couplings (RDCs) of alanine methyl groups. In all, 40 of the 47 expected crosspeaks were resolved and 36 gave RDC data. Assignments of crosspeaks were partially achieved by transferring assignments from those made on individual domains using triple resonance methods. However, these were incomplete and in many cases the transfer was ambiguous. A genetic algorithm search for consistency between predictions based on domain structures and measurements for chemical shifts and RDCs allowed 60% of the 40 resolved crosspeaks to be assigned with confidence. Chemical shift changes of these crosspeaks on adding an ATP analog to the apo-protein are shown to be consistent with structural changes expected on comparing previous crystal structures for apo- and complex- structures. RDCs collected on the assigned alanine methyl peaks are used to generate a new solution model for the apo-protein structure.

  4. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Fish Movement and Dietary History Derived from Otolith (delta)13C

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Finlay, J C; Power, M E; Phillis, C C; Ramon, C E; Eaton, G F; Ingram, B L

    2005-09-08

    Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith {sup 13}C/{sup 12}C ratio (i.e. {delta}{sup 13}C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon {delta}{sup 13}C is the primary source of carbon in otoliths, the downstream change in food {delta}{sup 13}C in this watershed appears to be the primary control on otolith {delta}{sup 13}C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location.

  6. Clinical value of 13C-UBT diagnosing infection of the Hp

    International Nuclear Information System (INIS)

    Xu Changde; Chen Shaoliang; Liu Wenguan

    2004-01-01

    100 dyspeptic patients are performed an endoscopy with biopsy for histology, rapid urease test, 13 C-urea breath test( 13 C-UBT) and ASSURE TM Hp rapid Test(HpRT). Patients are considered to be infected if both histology and biopsies yield positive results, and not infected when both tests are negative. The pathology and persons responsible for endoscopy, urease test and 13 C-UBT are unaware of the results from the other diagnostic methods. The 13 C-UBT has the following results: sensitivity 96% ,specificity 95%; rapid urease test has the following results: sensitivity 79%, specificity 76%; HpRT has the following results: sensitivity 86%, specificity 88%. 13 C-UBT provides excellent sensitivity and specificity for the diagnosis of Hp. Pylori infected Hp, it can be the first choice for detecting the infection of the Hp. (authors)

  7. 13C nuclear magnetic resonance study of the complexation of calcium by taurine

    International Nuclear Information System (INIS)

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    13 C Nuclear magnetic resonance chemical shifts, 1 J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-[1, 2 13 C] and a taurine-[1 13 C] and taurine-[2 13 C] mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their 13 C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex

  8. Overexpression of a homogeneous oligosaccharide with {sup 13}C labeling by genetically engineered yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yukiko; Yamamoto, Sayoko [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan); Chiba, Yasunori; Jigami, Yoshifumi [National Institute of Advanced Industrial Science and Technology, Research Center for Medical Glycoscience (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan)

    2011-08-15

    This report describes a novel method for overexpression of {sup 13}C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly {sup 13}C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man{sub 8}GlcNAc{sub 2} oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, {sup 13}C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific {sup 13}C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The {sup 13}C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  9. Synthesis of (+-)-[1,1'-15N2, 2'-13C]-trans-3'-methylnicotine

    International Nuclear Information System (INIS)

    Sirimanne, S.R.; Maggio, V.L.; Patterson, D.G. Jr.

    1992-01-01

    The synthesis of (±)- [1,1'- 15 N 2 , 2'- 13 C]-trans-3'-methylnicotine is reported. 15 N-3-Bromopyridine obtained from bromination of pyridine was formylated with nBuLi/[carbonyl- 13 C]-methyl formate. The resulting 15 n-Pyridine-3-[ 13 C-carbonyl]-carboxaldehyde was reacted with 15 N-methylamine and then the resulting Schiff's base was condensed with succinic anhydride to give (±)- [1,1'- 15 N 2 , 5'- 13 C]-trans-4'-carboxycotinine. Reduction with lithium aluminum hydride and mesylation followed by reduction with Zn/NaI gave (±)-[1,1'- 15 N 2 , 2'- 13 C]-trans-3'-methylnicotine. (Author)

  10. Synthesis of [sup 13]C warfarin labelled at the hemiketal carbon, and its resolution

    Energy Technology Data Exchange (ETDEWEB)

    Savell, V.H. Jr.; Valente, E.J. (Mississippi College, Clinton. MS (United States). Dept. of Chemistry); Eggleston, D.S. (Smith, Kline and French Labs., King of Prussia, PA (United States). Physical and Structural Chemistry)

    1989-06-01

    Warfarin (cyclic hemiketal form: 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benz opyran-5-one) is labeled with 98+% [sup 13]C at the anomeric carbon (C2) and resolved into its enantiomers. Acetone-2-[sup 13]C(98.6%) condenses with benzaldehyde in aqueous base to produce 4-phenyl-3-buten-2-one-2-[sup 13]C(98+%). Michael-type addition of this to 4-hydroxycoumarin in methanol produces the labeled diastereomeric warfarin methyl ketals which on deprotection form racemic warfarin-2-[sup 13]C(98+%). Classical resolution of labeled warfarin with quinidine produces partly resolved (S)-(-)-warfarin-2-[sup 13]C(98+%). Labeled warfarin is a suitable probe for warfarin configuration for which three distinct isomeric forms are known. (Author).

  11. Synthesis of 13C warfarin labelled at the hemiketal carbon, and its resolution

    International Nuclear Information System (INIS)

    Savell, V.H. Jr.; Valente, E.J.; Eggleston, D.S.

    1989-01-01

    Warfarin (cyclic hemiketal form: 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benz opyran-5-one) is labeled with 98+% 13 C at the anomeric carbon (C2) and resolved into its enantiomers. Acetone-2- 13 C(98.6%) condenses with benzaldehyde in aqueous base to produce 4-phenyl-3-buten-2-one-2- 13 C(98+%). Michael-type addition of this to 4-hydroxycoumarin in methanol produces the labeled diastereomeric warfarin methyl ketals which on deprotection form racemic warfarin-2- 13 C(98+%). Classical resolution of labeled warfarin with quinidine produces partly resolved (S)-(-)-warfarin-2- 13 C(98+%). Labeled warfarin is a suitable probe for warfarin configuration for which three distinct isomeric forms are known. (Author)

  12. The /sup 13/C-/sup 13/C spin-spin coupling constants and the conformational equilibrium of alkyl phenyl sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Krividin, L.B.; Kalabin, G.A.

    1985-08-10

    The authors measure the direct geminal and vicinal spinspin coupling constants between the C-13 nuclei of the phenyl group in the series of alkyl phenyl sulfides C/sub 6/H/sub 5/SR. It was shown that the variation in most of the discussed constants is determined by the ratio of the planar and orthogonal conformers. Linear relationships were obtained between the C-13-C-13 constants and the fractions of the planar conformer. The C-13-C-13 spin-spin coupling constants in the planar and orthogonal conformers of the compounds were calculated by means of empirical relationships.

  13. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional 1H NMR analyses fo the antigen-antibody interactions

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji

    1991-01-01

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C H 1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides 1 H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2'-H and Tyr C3',5'-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed

  14. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional sup 1 H NMR analyses fo the antigen-antibody interactions

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-03-19

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C{sub H}1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides {sup 1}H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2{prime}-H and Tyr C3{prime},5{prime}-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed.

  15. (13)C MR spectroscopy study of lactate as substrate for rat brain.

    Science.gov (United States)

    Qu, H; Håberg, A; Haraldseth, O; Unsgård, G; Sonnewald, U

    2000-01-01

    In order to address the question whether lactate in blood can serve as a precursor for cerebral metabolites, fully awake rats were injected intravenously with [U-(13)C]lactate or [U-(13)C]glucose followed 15 min later by decapitation. Incorporation of label from [U-(13)C]glucose was seen mainly in glutamate, GABA, glutamine, aspartate, alanine and lactate. More label was found in glutamate than glutamine, underscoring the predominantly neuronal metabolism of pyruvate from [U-(13)C]glucose. It was estimated that the neuronal metabolism of acetyl CoA from glucose accounts for at least 66% and the glial for no more than 34% of the total glucose consumption. When [U-(13)C]lactate was the precursor, label incorporation was similar to that observed from [U-(13)C]glucose, but much reduced. Plasma analysis revealed the presence of approximately equal amounts of [1,2,3-(13)C]- and [1,2-(13)C]glucose, showing gluconeogenesis from [U-(13)C]lactate. It was thus possible that the labeling seen in the cerebral amino acids originated from labeled glucose, not [U-(13)C]lactate. However, the presence of significantly more label in [U-(13)C]- than in [2,3-(13)C]alanine demonstrated that [U-(13)C]lactate did indeed cross the blood-brain barrier, and was metabolized further in the brain. Furthermore, contributions from pyruvate carboxylase (glial enzyme) were detectable in glutamine, glutamate and GABA, and were comparatively more pronounced in the glucose group. This indicated that relatively more pyruvate from lactate than glucose was metabolized in neurons. Surprisingly, the same amount of lactate was synthesized via the tricarboxylic acid cycle in both groups, indicating transfer of neurotransmitters from the neuronal to the astrocytic compartment, as previous studies have shown that this lactate is synthesized primarily in astrocytes. Taking into consideration that astrocytes take up glutamate more avidly than GABA, it is conceivable that neuronal lactate metabolism was more

  16. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  17. (13)C enrichment of the CO2 in breast milk and in the breath is rapidly modified by changes in the (13)C content of the diet.

    Science.gov (United States)

    Villalpando, Salvador; Del Prado, Martha; Cienfuego, Edith; Morales, Pedro

    2014-01-01

    C4 plants (e.g. corn and sugar cane) have greater (13)C enrichment than C3 plants (e.g. wheat and sugar beet). To assess whether (13)C enrichment of CO2 in the breath and breast milk of women on diets based on C3 and C4 foods changes from one diet to the other. Six breast-feeding women were studied at 5-6 months postpartum. They ate a controlled C4 diet on days 1 and 2 followed by a C3 diet on days 3 and 4. Diet duplicates, breast milk on days 2 and 4 and hourly breath samples were collected over 4 days. (13)C enrichment was measured by isotope-ratio mass spectrometry. Values of δ(13)C were calculated from the international PDBV standard (δ(13)CPDBV). Differences between means were compared by paired t test or t test for repeated measurements. δ(13)CPDBV values were significantly higher in the C4 diet than in the C3 diet composites (p value was greater on days 1 and 2 (range -15.4 to -13.2, respectively) and declined on days 3 and 4 (range -20.0 to -21.8, respectively, p value in the breath and breast milk fractions, which diminish rapidly on a C3 diet. Further studies focusing on individual nutrients are warranted.

  18. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, J.K.

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  19. Inference of past atmospheric delta13C and P/sub CO2/ from 13C/12C measurements in tree rings

    International Nuclear Information System (INIS)

    Leavitt, S.W.

    1982-01-01

    Carbon dioxide release from fossil-fuel burning is significant enough that we may soon experience perceptible changes in climate with important human consequences. An accurate reconstruction of past 13 C/ 12 C ratios of atmospheric CO 2 may provide key constraints on the historical activity of the biosphere as CO 2 source or sink. Tree rings appear to be a repository of this information but there is much noise in the collection of previous reconstructions, presumably associated with site selection, radial variability, choice of representative wood chemical constituent, and subtle effects of climate on fractionation. This study attempts to avoid these pitfalls and develop a 50-yr delta 13 C/sub ATM/ record from juniper trees (genus Juniperus), in fact, by taking advantage of the influence of climate on fractionation. Trees were harvested from suitable sites in close proximity to weather stations with monthly records of temperature and precipitation. The most useful relationships for at most 7 of the 10 sites were delta 13 C with December temperature or precipitation, because the coefficients were nearly constant from one interval to the next and the intercepts differed. Local pollution effects are believed responsible for the three anomalous sites. The separation of these regression lines of different intervals is interpreted as the response of the trees to the changing delta 13 C of atmospheric CO 2 so that delta 13 C/sub ATM/ curves are constructed from this spacing. The shape of the best-fit reconstruction suggests the biosphere has acted as CO 2 source to about 1965 and may now be a net sink

  20. 13C/12C ratio variations in Pinus longaeva (bristlecone pine) cellulose during the last millennium

    International Nuclear Information System (INIS)

    Grinsted, M.J.; Wilson, A.T.; Ferguson, C.W.

    1979-01-01

    Delta 13 C values are presented for cellulose samples prepared from two dendrochronologically dated Pinus longaeva (bristlecone pine) trees which grew during the last 1000 years. Delta 13 C variations for these forest border trees are similar to upper tree line ring-width variations for the same species and English high summer temperature variations for the same time period. However, the delta 13 C variations appear to be unrelated to lower forest border ring-width variations and cellulose deltaD variations for the same specimens. (Auth.)

  1. Synthesis of {sup 14}C-labeled levamisole and {sup 13}C-labeled tetramisole

    Energy Technology Data Exchange (ETDEWEB)

    Feil, V.J. [US Department of Agriculture, Agricultural Research Service, Biosciences Research Lab., Fargo, ND (United States)

    1996-12-01

    The syntheses of {sup 14}C-ring labeled levamisole ([-]-2,3,5,6-tetrahydro-6-phenyl [{sup 14}C]-UL imidazo[2,1-b]thiazole) from acetophenone-ring-UL-{sup 14}C in 5 steps plus resolution with a 7.5% overall yield, and {sup 13}C{sub 6}-ring labeled tetramisole ([{+-}]-2,3,5,6-tetrahydro-6-phenyl [{sup 13}C{sub 6}]imidazo[2,1-b]thiazole) from benzene-{sup 13}C{sub 6} in 6 steps with a 9.0% overall yield are described. (author).

  2. 2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

    Directory of Open Access Journals (Sweden)

    YuanQi Yu

    2011-10-01

    Full Text Available The asymmetric unit of the title compound, C8H9N2+·C8H5O4−, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intramolecular O—H...O bond forms an S(7 graph-set motif. In the crystal, the components are linked by N—H...O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H...O hydrogen bonds.

  3. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    Science.gov (United States)

    Grottoli, A. G.

    2004-12-01

    Scleractinian corals obtain fixed carbon via photosynthesis by their endosymbiotic algae (zooxanthellae) and via hetertrophy (injestion of zooplankton, δ 13C ≈ -17 to -22‰ ). Carbon dioxide (CO2) used for photosynthesis is obtained from seawater (δ 13C ≈ 0%) or from respired CO2 within the coral host. The δ 13C of the carbon used in the formation of the underlying coral skeleton is fractionated as a result of both of these metabolic processes. Here I have pooled evidence from several field and tank experiments on the effect of photosynthesis and heterotrophy of coral skeletal δ 13C. In the experiments, decreases in light levels due to shading or depth resulted in a significant decrease in skeletal δ 13C in all species studied (Pavona gigantea, Pavona clavus, Porites compressa). Decreases in photosynthesis in bleached corals also resulted in a decrease in skeletal δ 13C compared to non-bleached corals growing under the same conditions and at the same location. Skeletal δ 13C also decreased at higher than normal light levels most likely due to photoinhibition. Thus, decreases in photosynthesis due to reduced light levels, due to bleaching-induced decreases in chlorophyll a concentrations, or due to photodamage-induced decreases in functional cholorphyll a, results in significant δ 13C decreases. Comprehensive interpretation of all of the data showed that changes in photosynthesis itself can drive the changes in δ 13C. In field experiments, the addition of natural concentrations of zooplankton to the diet resulted in decreases in skeletal δ 13C. Such a decrease was more pronounced with depth and in P. gigantea compared to P. clavus. In situ feeding experiments have since confirmed these findings. However under tank conditions with unaturally high feeding rates, enhanced nitrogen supply in the diet can disrupt the coral-algal symbiosis, stimlate zooxanthellae growth and photosynthesis, and cause an incrase in skeletal δ 13C. It is proposed that under

  4. Synthesis of [2-13C, 2-14C] 2-aminoethanol, [1-13C, 1-14C] 2-chloroethylamine, N,N'-bis([1-13C, 1-14C] 2-chloroethyl)-N-nitrosourea(BCNU) and N-([1-13C, 1-14C] 2-chloroethyl)-N-nitrosourea(CNU)

    International Nuclear Information System (INIS)

    Narayan, R.; Chang, C-j.

    1982-01-01

    [2- 13 C, 2- 14 C]2-Aminoethanol hydrochloride was prepared in good yield from Na*CN in a two step sequence by first converting the Na*CN to OHCH 2 *CN and then reducing the nitrile directly with a solution of borane-tetrahydrofuran complex. The reaction procedure was simple and the pure product could be obtained readily. Using this specifically labelled precursor, the synthesis of [1- 13 C, 1- 14 C]2-chloroethylamine hydrochloride, N-([1- 13 C, 1- 14 C]2-chloroethyl)-N-nitrosourea(CNU) and N,N'-bis([1- 13 C, 1- 14 C]2-chloroethyl)-N-nitrosourea(BCNU) in good yield without isotope scrambling was also reported. (author)

  5. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR.

    Science.gov (United States)

    Tenailleau, Eve J; Lancelin, Pierre; Robins, Richard J; Akoka, Serge

    2004-12-29

    The use of 13C isotopic distribution as an efficient means to determine the origin of vanillin has been substantiated. Using quantitative 13C NMR, the 13C/12C ratios at all eight carbon positions can be exploited. On a set of 21 samples of vanillin from five different origins, complete discrimination can be achieved. It is shown that, for many purposes, a rapid analysis in which only five sites are used is sufficient. However, improved discrimination using all eight sites is preferable to differentiate between different methods of production from natural ferulic acid or between natural and lignin-derived vanillin on the basis of the 13C/12C ratios characteristic of different origins. The C1 and C8 positions are demonstrated to be the most significant sites for discrimination using principle component analysis. However, aromatic carbon positions make an essential contribution, notably in differentiating between natural and lignin-derived vanillin.

  6. Speculations about the upper Miocene change in abyssal Pacific dissolved bicarbonate delta13C

    International Nuclear Information System (INIS)

    Bender, M.L.; Keigwin, L.D. Jr

    1979-01-01

    New data from three Tasman Sea cores support Kleigwin's observation that the delta 13 C of Pacific benthic foraminifera (and by inference bottom-water TCO 2 ) decreased by 0.7 per thousand at about 6.5 Myr B.P. Simple box models are developed and used to test several hypotheses about the cause of the delta 13 C decrease. The authors favor the idea that the delta 13 C shift was due to a rapid change in TCO 2 cycling within the oceans (such as would result from either a decrease in upwelling rate, or an increase in the fraction of PO 4 3- reaching the deep oceans in particulate organic matter and a corresponding drop in the performed PO 4 3- concentration). The delta 13 C decrease across the shift might reflect either a global decrease in upwelling rate, or a different abyssal circulation pattern before the shift. (Auth.)

  7. A procedure to validate and correct the {sup 13}C chemical shift calibration of RNA datasets

    Energy Technology Data Exchange (ETDEWEB)

    Aeschbacher, Thomas; Schubert, Mario, E-mail: schubert@mol.biol.ethz.ch; Allain, Frederic H.-T., E-mail: allain@mol.biol.ethz.ch [ETH Zuerich, Institute for Molecular Biology and Biophysics (Switzerland)

    2012-02-15

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of {sup 13}C NMR data of RNAs. Our procedure uses five {sup 13}C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the {sup 13}C calibration and detect errors or inconsistencies in RNA {sup 13}C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-{sup 13}C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable {sup 13}C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of {sup 13}C chemical shift data. This is demonstrated by a clear relationship between ribose {sup 13}C shifts and the sugar pucker, which can be used to predict a C2 Prime - or C3 Prime -endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  8. Relationships between tobacco leaf δ"1"3C and physiological characteristics

    International Nuclear Information System (INIS)

    Wang Yi; Song Pengfei; Yan Kan; Tan Shuwen; Wu Xiaoxiao; Chen Zongyu

    2013-01-01

    In this paper, the flue-cured tobacco K326 was employed to study the abundance of carbon isotope composition, photosynthetic pigment content, soluble protein content and leaf mass per area (LMA) of tobacco leaf which were grown at four testing sites of different altitude (T_1, T_2, T_3, T_4). The correlations of carbon isotope composition with altitude, leaf position and physiological measures were understood as well. Results showed that δ"1"3C of those samples varied from -27.4‰ to -23.4‰. The δ"1"3C of samples from T_1, T_2and T_3 were increased with rising of the leaf position. δ"1"3C of middle and upper leaves from T_1, T_2and T_3 were positively correlated with altitude. However, δ"1"3C of samples from T_4 ranging from -26.8‰ to -26.4‰ was lower than the values from previous samples. The δ"1"3C also decreased with the increasing of leaf position, and was significantly negatively correlated with chlorophyll content and chlorophyll/carotinoid ratio (P < 0.05). The δ"1"3C was not significantly correlated with carotinoid content and chlorophyll a/b ratio. Meanwhile, it was positively correlated with soluble protein content and LMA significantly (P < 0.01). Generally, our findings indicated that chlorophyll content, chlorophyll/carotenoid ratio, soluble protein content, and LMA had strong relationships with δ"1"3C, whereas the relationship of δ"1"3C with altitude and leaf position was still unclear. (authors)

  9. Methodology and application of 13C breath test in gastroenterology practice

    International Nuclear Information System (INIS)

    Yan Weili; Jiang Yibin

    2002-01-01

    13 C breath test has been widely used in research of nutrition, pharmacology and gastroenterology for its properties such as safety, non-invasion and so on. The author describes the principle, methodology of 13 C breath test and its application in detection to Helico-bacteria pylori infection in stomach and small bowl bacterial overgrowth, measurement of gastric emptying, pancreatic exocrine function and liver function with various substrates

  10. Flavonoids from Lonchocarpus araripensis (Leguminoseae): isolation, unequivocal assignment of NMR signals {sup 1}H and {sup 13}C and conformational analysis; Flavonoides de Lonchocarpus araripensis (Leguminoseae): isolamento, atribuicao inequivoca dos sinais de RMN {sup 1}H e {sup 13}C e analise conformacional

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Almi F.; Ferreira, Daniele A.; Monte, Francisco Jose Q., E-mail: fmonte@dqoi.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Ciencias. Departamento de Quimica Organica e Inorganica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campo dos Goytacazes, RJ (Brazil). Centro de Ciencias Tecnologicas. Laboratorio de Ciencias Quimicas

    2014-07-01

    In a continuing investigation for potentially bioactive natural products, flavonoids were isolated from Lonchocarpus araripensis (Leguminoseae) and identified as 3-methoxy-6-O-prenyl-6'',6''-dimethylchromene-[7,8,2'',3'']-flavone (1), 3,6-dimethoxy-6'',6''-dimethylchromene-[7,8,2'',3'']-flavone (2) and 3,5,8-trimethoxy-[6,7,2{sup ,}3{sup ]}-furanoflavone (3). This is the first time compound 3 has been described. Compound 2 has been previously isolated from roots while this is the first time 1 is reported in this species. Complete NMR assignments are given for 1 ,2 and 3 together with the determination of conformation for 1. (author)

  11. Fate of free amino acids in paddy and upland soils by using 13C and 15N tracer techniques

    International Nuclear Information System (INIS)

    Yamamuro, Shigekazu; Ueno, Hideto; Takahashi, Shigeru

    1999-01-01

    Direct and indirect (=through decomposition) uptakes of free amino acids (FAA) by rice and tomato plants were investigated by using 13 C- and 15 N-labeled aspartic and glutamic acids, serine, leusine and ammonium as tracers. 1) One week after the surface application of amino acid-N or NH 4 -N to paddy soil, the amounts of ammonium remaining in the soil, assimilated ammonium, denitrificated ammonium and amounts taken up by plants were similar. 2) From 5.5 to 7.7% of the FAA applied was absorbed directly by rice plants, and from 42.5 to 47.2% of that was indirectly absorbed as ammonium after decomposition. It is suggested that the FAA degraded to ammonium around 2 or 3 d and the 1- 13 C absorption rates of the FAA (RCH(NH 2 ) 13 COOH) were high in proportion to the number of carbon atoms of the R side-chain. 3) The absorption rate of N derived from the FAA by tomato plants was lower than that by rice plants, namely, from 0.4 to 1.9% in direct-uptake and from 16.0 to 29.8% in indirect-uptake. Percentage of direct-uptake of the FAA in upland soil was much lower than that in the paddy field. (author)

  12. Search for biological effects of 13C-enrichment in developing mammalian systems

    International Nuclear Information System (INIS)

    Gregg, C.; Ott, D.; Deaven, L.; Spielmann, H.; Krowke, R.; Neubert, D.

    1975-01-01

    Increasing diagnostic use of stable isotopes, especially in children and pregnant women, enhances the importance of studies on the biological isotope effects in sensitive mammalian systems. Experimental data on animal systems are meager. The mouse embryos was studied at various stages and mouse limb buds were studied in organ culture. Limb bud development in vitro was unaffected by incubation with 82 mol percent 13 C-glucose as judged by either morphological or biochemical criteria. Of 271 preimplantation embryos incubated in vitro, 95.2 percent developed normally; in 13 C-enriched medium, 96.5 percent showed normal development. 13 C-Enrichment of the embryos in vitro is over 60 percent. Administration of 1.2 g glucose-U- 13 C to pregnant mice during organogenesis leads to enrichment of maternal liver glycogen to over 17 mol percent 13 C, about one-third this level in the embryo, and a lower level in maternal blood. The absolute 13 C content of the embryo continues to increase for several days after the end of isotope administration, while the enrichment in maternal tissues falls. The lipid fraction of the fetus is most highly labeled shortly after the end of isotope administration []These studies on developing mammalian systems have not yet revealed any alteration of normal development due to stable isotope enrichment. (auth)

  13. Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades.

    Science.gov (United States)

    Wieloch, Thomas; Ehlers, Ina; Yu, Jun; Frank, David; Grabner, Michael; Gessler, Arthur; Schleucher, Jürgen

    2018-03-22

    Measurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on 13 C/ 12 C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in 13 C/ 12 C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In a Pinus nigra tree-ring archive formed from 1961 to 1995, we found novel 13 C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants' responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a 13 C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular 13 C signature. In conclusion, intramolecular 13 C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.

  14. Rapid measurement of 13C-enrichment of acetic, propionic and butyric acids in plasma with solid phase microextraction coupled to gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Moreau, N.M.; Delepee, R.; Maume, D.; Le Bizec, B.; Nguyen, P.G.; Champ, M.M.; Martin, L.J.; Dumon, H.J.

    2004-01-01

    An analytical procedure based on solid phase microextraction (SPME) has been developed to quantify [1- 13 C]-labelled short-chain fatty acids (SCFAs)--mainly acetic, propionic and butyric acids--in a small volume (120 μl) of deproteinised plasma (corresponding to 200 μl of raw plasma) by gas chromatography-mass spectrometry (GC-MS) analysis. Simultaneous SCFA extraction was optimal after 5 min using a 75 μm Carboxen/polydimethylsiloxane-coated fiber. The base peak of the three analytes has been characterised by middle-resolution mass spectrometry (R>6000). All these data allowed the specificity reinforcement of the measure. The validation of the method also considered the linearity and the repeatability of the [ 13 C]SCFA measurements by SPME-GC-MS. Results were linear in a range from 5 to 100 mol% of [ 13 C]SCFA enrichment and the method provided a good intra-day (R.S.D. 13 C]butyric acid) by cecal infusion before blood sampling in portal vein. Results of [1- 13 C]butyric acid enrichment showed an excellent correlation (r 2 =0.9832; n=30) with data obtained on the same samples using a previously published procedure based on diethyl extraction and derivatisation before GC-MS analyses. SPME coupled to GC-MS appears to be a powerful analytical tool for the direct isotopic measurements of low deproteinised plasma volume avoiding consequently preliminary treatment such as extraction or derivatisation. The presented method could be of great interest for real time [ 13 C]SCFA plasma determination of in metabolic in vivo studies in small animal models

  15. Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study

    International Nuclear Information System (INIS)

    Guenneugues, Marc; Gilquin, Bernard; Wolff, Nicolas; Menez, Andre; Zinn-Justin, Sophie

    1999-01-01

    Motions of the backbone CαHα and threonine CβHβ bonds of toxin α were investigated using natural abundance 13C NMR and molecular dynamics. Measurement of the 13C longitudinal and transverse relaxation rates employed ACCORDION techniques together with coherence selection by pulsed field gradients and sensitivity enhancement through the use of preservation of equivalent pathway, thus allowing a considerable reduction of the required spectrometer time. 13C R1, R2, 1H13C NOE were obtained, as well as the variations of R1ρ(90 deg.) as a function of the rf field strength. These data were compared to those recorded by 1H and 15N NMR on a labelled sample of the toxin [Guenneugues et al. (1997) Biochemistry, 36, 16097-16108]. Both sets of data showed that picosecond to nanosecond time scale motions are well correlated to the secondary structure of the protein. This was further reinforced by the analysis of a 1 ns molecular dynamics simulation in water. Several CαHα and threonine CβHβ experimentally exhibit fast motions with a correlation time longer than 500 ps, that cannot be sampled along the simulation. In addition, the backbone exhibits motions on the microsecond to millisecond time scale on more than half of its length. Thus, toxin α, a highly stable protein (Tm=75 deg. C at acidic pH) containing 61 amino acids and 4 disulfides, shows important internal motions on time scales ranging from 0.1-0.5 ps, to 10-100 ps, 1 ns, and about 30 μs to 10 ms

  16. 12C(d,p) 13C reaction at Esub(d) = 30 MeV to the positive-parity states in 13C

    International Nuclear Information System (INIS)

    Ohnuma, H.; Hoshino, N.; Mikoshiba, O.

    1985-07-01

    The 12 C(d, p) 13 C reaction has been studied at Esub(d) = 30 MeV. All the known positive-parity states of 13 C below 10 MeV in excitation energy, including the 7/2 + and 9/2 + states, are observed in this reaction. The angular distributions for these positive-parity bound and unbound states are analyzed in CCBA frame work. The 13 C wave functions, which reproduce the resonant and non-resonant scattering of neutrons from 12 C, also give good accounts of the experimentally observed angular distributions and energy spectra of outgoing protons in the 12 C(d, p) 13 C reaction. In most cases the cross section magnitude and the angular distribution shape are primarily determined by the 0 + x j component, even if it is only a small fraction of the total wave function. An exception is the 7/2 + state, where the main contribution comes from the 2 + x dsub(5/2) component. The inclusion of the 4 + state in 12 C and the gsub(9/2) and gsub(7/2) neutron components in the n + 12 C system has very small effects on the low-spin states, but is indispensable for a good fit to the 7/2 + and 9/2 + angular distributions. The transitions to the negative-parity states, 1/2 1 - , 3/2 1 - , 5/2 - , 7/2 - and 1/2 3 - , are also observed experimentally, and analyzed by DWBA. (author)

  17. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    International Nuclear Information System (INIS)

    Baldock, J.A.; Oades, J.M.

    1990-01-01

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13 C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m -3 . Solid state CP/MAS 13 C n.m.r. (cross polarization/magic angle spinning 13 C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13 C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  18. Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Hakola, A; Aho-Mantila, L; Groth, M; Kurki-Suonio, T; Makkonen, T; Likonen, J; Koivuranta, S; Krieger, K; Mayer, M; Mueller, H W; Neu, R; Rohde, V

    2010-01-01

    The migration of carbon in low-density, low-confinement plasmas of ASDEX Upgrade was studied by injecting 13 C into the main chamber of the torus at the end of the 2007 experimental campaign. A selection of standard tungsten-coated lower-divertor and main-chamber tiles as well as a complete set of lower-divertor tiles with an uncoated poloidal marker stripe were removed from one poloidal cross section and analysed using secondary ion mass spectrometry. The poloidal deposition profiles of 13 C on both the tungsten-coated tiles and on the uncoated graphite areas of the marker tiles were measured and compared. For the W-coated lower-divertor tiles, 13 C was deposited mainly on the high-field side tiles, while barely detectable amounts of 13 C were observed on low-field side samples. In contrast, on the uncoated marker stripes the deposition was equally pronounced in the high-field and low-field side divertor. The marker-tile results are in agreement with those obtained from graphite tiles after the 2003 and 2005 13 C experiments in ASDEX Upgrade. In the case of W-coated tiles, the 13 C measurements were complemented by determining the total amount of deposited carbon ( 12 C) on the tiles, which also shows strong deposition at the inner parts of the lower divertor. The estimated deposition of 13 C on W at the divertor areas was less than 1.5% of the injected amount of 13 C atoms. The 13 C analyses of the main-chamber tiles and small silicon samples mounted in remote areas revealed significant deposition in the upper divertor, in upper parts of the heat shield, in the limiter region close to the injection valve, and below the roof baffle. Approximately 8% of the injected 13 C is estimated to have accumulated in these regions. Possible reasons for the different deposition patterns on W and on graphite in different regions of the torus are discussed.

  19. 13C n.m.r. study of solvation mechanisms in the radiation-induced polymerization of vinyl ethers

    International Nuclear Information System (INIS)

    Deffieux, A.; Subira, F.; Stannett, V.T.

    1984-01-01

    A 13 C n.m.r. study of the microstructure of ethyl vinyl ether (EVE) and isopropyl vinyl ether (IPVE) polymers prepared under various experimental conditions and using chemical or γ-ray initiation has been made. Long stereo-sequence assignments were conducted for poly EVE allowing determination of the configurational statistics of propagation in the radiation-induced polymerization of EVE in low polar solvents. Stereo-sequence intensities are found in good agreement with the Markovian model. The results are considered as further support for the occurrence of a specific interaction between the growing active centres and the polymer chains. In the case of IPVE polymers much more important overlappings of the resonance patterns are observed thus preventing any similar detailed study. (author)

  20. Comparison of Australasian tertiary coals based on resolution- enhanced solid-state /sup 13/C NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R H; Davenport, S J

    1986-04-01

    /sup 13/C solid-state nuclear magnetic resonance spectroscopy was used to characterize 32 low-rank coals from New Zealand and Australia. A combination of high magnetic field (4.7 T) and resolution enhancement was used to extract spectral details beyond those seen in published spectra of coals of similar rank. Signal heights were used to characterize organic functional distributions. The spectra showed close similarities between Australian brown coals and low-rank New Zealand subbituminous coals, particularly those mined in the North Island. The spectra of New Zealand lignites all showed stronger signals from cellulose, methoxyl groups and phenols. Almost all of the New Zealand coals showed a relatively strong signal from polymethylene chains, compared with the Australian brown coals. This led to a prediction of higher alkene yields from pyrolysis of the New Zealand coals. Variations in phenolic substitution patterns were attributed to variations in the relative proportions of tannins and lignins in the depositional environments.

  1. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    Science.gov (United States)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  2. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    Science.gov (United States)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  3. Abundance and δ13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations

    Science.gov (United States)

    Stötter, Tabea; Bastviken, David; Bodelier, Paul L. E.; van Hardenbroek, Maarten; Rinta, Päivi; Schilder, Jos; Schubert, Carsten J.; Heiri, Oliver

    2018-07-01

    Proxy-indicators in lake sediments provide the only approach by which the dynamics of in-lake methane cycling can be examined on multi-decadal to centennial time scales. This information is necessary to constrain how lacustrine methane production, oxidation and emissions are expected to respond to global change drivers. Several of the available proxies for reconstructing methane cycle changes of lakes rely on interpreting past changes in the abundance or relevance of methane oxidizing bacteria (MOB), either directly (e.g. via analysis of bacterial lipids) or indirectly (e.g. via reconstructions of the past relevance of MOB in invertebrate diet). However, only limited information is available about the extent to which, at the ecosystem scale, variations in abundance and availability of MOB reflect past changes in in-lake methane concentrations. We present a study examining the abundances of fatty acids (FAs), particularly of 13C-depleted FAs known to be produced by MOB, relative to methane concentrations in 29 small European lakes. 39 surface sediment samples were obtained from these lakes and FA abundances were compared with methane concentrations measured at the lake surface, 10 cm above the sediments and 10 cm within the sediments. Three of the FAs in the surface sediment samples, C16:1ω7c, C16:1ω5c/t, and C18:1ω7c were characterized by lower δ13C values than the remaining FAs. We show that abundances of these FAs, relative to other short-chain FAs produced in lake ecosystems, are related with sedimentary MOB concentrations assessed by quantitative polymerase chain reaction (qPCR). We observed positive relationships between methane concentrations and relative abundances of C16:1ω7c, C16:1ω5c/t, and C18:1ω7c and the sum of these FAs. For the full dataset these relationships were relatively weak (Spearman's rank correlation (rs) of 0.34-0.43) and not significant if corrected for multiple testing. However, noticeably stronger and statistically significant

  4. Study of the magnetic form factor of 13C by measurement of radiative pion capture at high momentum transfer: search for precursors to pion condensation

    International Nuclear Information System (INIS)

    Crowe, K.M.

    1982-01-01

    By studying radiative capture in flight, information can be obtained on the energy and momentum transfer dependence of nuclear transition densities containing the spin. These are of interest from a nuclear structure point of view, as well as in connection with discussions of exotic phenomena such as pion condensation and opalescence. This report presents preliminary results of measurements of 1 H(π - ,γ)n at T = 113 MeV and 13 C(π + ,γ) 13 N g.s. at T = 115 MeV. (Auth.)

  5. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  6. A synthesis of marine sediment core δ13C data over the last 150 000 years

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2010-10-01

    Full Text Available The isotopic composition of carbon, δ13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of δ13C measurements taken from foraminifera in marine sediment cores over the last 150 000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common δ18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between δ13C of calcite and of dissolved inorganic carbon (DIC in seawater. This will assist comparison with δ13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation. High global deep ocean δ13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS 1, 3, 5a, c and e, and low δ13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical δ13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale δ13C during the last interglacial (MIS 5e is not clearly distinguishable from the Holocene (MIS 1 or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2

  7. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    Science.gov (United States)

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  8. A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems

    Science.gov (United States)

    Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.

    2017-12-01

    Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.

  9. Synthesis of [13C6]-labelled phenethylamine derivatives for drug quantification in biological samples.

    Science.gov (United States)

    Karlsen, Morten; Liu, HuiLing; Berg, Thomas; Johansen, Jon Eigill; Hoff, Bård Helge

    2014-05-15

    The availability of high-quality (13)C-labelled internal standards will improve accurate quantification of narcotics and drugs in biological samples. Thus, the synthesis of 10 [(13)C6]-labelled phenethylamine derivatives, namely amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, 4-methoxyamphetamine, 4-methoxymethamphetamine, 3,5-dimethoxyphenethylamine 4-bromo-2,5-dimethoxyphenethylamine and 2,5-dimethoxy-4-iodophenethylamine, have been undertaken. [(13)C6]-Phenol proved to be an excellent starting material for making (13)C-labelled narcotic substances in the phenethylamine class, and a developed Stille-type coupling enabled an efficient synthesis of the 3,4-methylenedioxy and 4-methoxy derivatives. The pros and cons of alternative routes and transformations are also discussed. The [(13)C6]-labelled compounds are intended for use as internal standards in forensic analysis, health sciences and metabolomics studies by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations

    International Nuclear Information System (INIS)

    Hong, M.; Jakes, K.

    1999-01-01

    The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated

  11. SRS-sensor 13C/12C isotops measurements for detecting Helicobacter Pylori

    Science.gov (United States)

    Grishkanich, Aleksandr; Chubchenko, Yan; Elizarov, Valentin; Zhevlakov, Aleksandr; Konopelko, Leonid

    2018-02-01

    We developed SRS-sensor 13C/12C isotops measurements detecting Helicobacter Pylori for medical diagnostics of human health. Measuring of absolute 13C/12C isotope amount ratios allows to explore the topical problems of the modern world, alcoholic beverages and tobacco, medical diagnostics of human health. SRS method is used to measure the ratio of carbon isotopes in the exhaled carbon dioxide, which is used to diagnose the human infection of Helicobacter pylori and the influence of the Helicobacter pylori bacterium on the occurrence of gastritis, gastric and duodenal ulcers. A method for the analysis of human infection with Helicobacter pylori was developed on the basis of measurements of the ratio of 13C / 12C carbon isotopes in human exhaled air with a high level of measurement accuracy. The article reviews the work in the field of provision comparability of absolute 13C/12C isotope amount ratios in the environment and food. The analysis of the technical and metrological characteristics of traditional and perspective instruments for measuring isotope ratios is presented. The provision of comparability of absolute 13C/12C isotope amount ratios is carried by gravimetrically prepared reference standards. The key features and emerging issues are discussed.

  12. Late pleistocene-recent atmospheric δ13C record in C4 grasses

    International Nuclear Information System (INIS)

    Toolin, L.J.; Eastoe, C.

    1993-01-01

    Samples of Setaria species from packrat middens, herbarium specimens and modern plants preserve a record of δ 13 C of atmospheric CO 2 from 12,600 Bp to the present. No secular trend is detected between 12,600 and 1,800 Bp, when the mean value of δ 13 C during that period was -6.5 ± 0.1 per-thousand (the error is the standard deviation of the mean). The value agrees with δ 13 C averages of pre-industrial CO 2 from polar ice cores, and differs significantly from modern regional (-8.2 ± 0.1 per-thousand) and global (-7.7 per-thousand) values, which are higher because of fossil fuel burning

  13. 13C and 18O isotope enrichment by vibrational energy exchange pumping of CO

    International Nuclear Information System (INIS)

    Bergman, R.C.; Homicz, G.F.; Rich, J.W.; Wolk, G.L.

    1983-01-01

    Measurements of preferential vibration-to-vibration (V--V) pumping of high vibrational states of 13 C 16 O and 12 C 18 O in optically excited CO gas are reported. It is found that the v = 22, 25, 27, 30, and 32 states of 13 C 16 O and the v = 8, 10, and 12 states of 12 C 18 O are substantially overpopulated compared to the same states in 12 C 16 O in strongly V--V pumped CO. Such mixtures are observed to react, forming products enriched in 13 C. The results are in reasonable agreement with an analytical kinetic model of V--V pumping in binary mixtures of diatomic gases

  14. Resonant states in 13C and 16,17O at high excitation energy

    International Nuclear Information System (INIS)

    Rodrigues, M R D; Borello-Lewin, T; Miyake, H; Duarte, J L M; Rodrigues, C L; Horodynski-Matsushigue, L B; Ukita, G M; Cappuzzello, F; Foti, A; Cavallaro, M; Agodi, C; Cunsolo, A; Carbone, D; Bondi, M; Napoli, M De; Roeder, B T; Linares, R; Lombardo, I

    2014-01-01

    The 9 Be( 6 Li,d) 13 C and 12,13 C( 6 Li,d) 16,17 O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13 C and 15-30 keV for 16 O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θ d = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility

  15. 13C trend in an Egyptian recent tree as a record for global carbon dioxide behaviour

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Belacy, N.; Abou El-Nour, F.

    1988-01-01

    The record of the 13 C content in tree rings of an Egyptian tree is used as indication for the increase of the atmospheric carbon dioxide concentration. A decrease of the 13 C isotopic content of the tree rings is observed starting from 1940 coinciding with a significant increase in the global production of CO 2 due to combustion of fossil fuel depleted in 13 C with respect to the atmosphere. Considering the local as well as the global CO 2 production rates together with the measured isotopic data, it may be concluded that the behaviour of carbon dioxide in the investigated Eastern Delta province in Egypt reflects mainly a global rather than a local effect. (author)

  16. The synthesis of Org 3770 labelled with 3H, 13C and 14C

    International Nuclear Information System (INIS)

    Kaspersen, F.M.; Rooij, F.A.M. van; Sperling, E.G.M.; Wieringa, J.H.

    1989-01-01

    The syntheses of 1,2,3,4,10,14b-hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benazepine (Org 3770) labelled with 3 H (and 2 H), 13 C and 14 C are described. Tritiated Org 3770 was prepared either by exchange under alkaline conditions with tritiated water or catalytic reductive dehalogenation of a chloro analogue with 3 H 2 . 13 C-labelled material was obtained in a seven-step synthesis starting from 13 C-labelled benzene whereas 14 C-Org 3770 was prepared in a three-step synthesis starting with 14 CO 2 . All labelled compounds were analyzed by TLC, HPLC, MS and NMR. (author)

  17. 14C and 13C in the atmosphere and soil air at two localities of Slovakia

    International Nuclear Information System (INIS)

    Sivo, A.; Simon, J.; Richtarikova, M.; Holy, K.; Polaskova, A.; Bulko, M.; Hola, O.

    2006-01-01

    In this paper there are presented the long-term measurements of 13 R and 14 R in urban and countryside atmosphere. The different conditions and particularities of both the localities which influence on the mentioned characteristics are pointed out. The existence of δ 13 C and δ 14 C variations and their phase correlation were confirmed as well as their origin were qualitatively explained. By means of the non-linear regression and harmonic analysis the trends of δ 13 C and δ 14 C variations was found. The study of δ 13 C and δ 14 C courses has shown that it can be used as an effective tool to determine the level of the anthropogenic CO 2 pollution of the atmosphere. (authors)

  18. The 12C/13C ratio in stellar atmospheres. VI. Five luminous cool stars

    International Nuclear Information System (INIS)

    Hinkle, K.H.; Lambert, D.L.; Snell, R.L.

    1976-01-01

    The isotopic abundance ratio, 12 C/ 13 C, is derived from the CO vibration rotation lines at 1.6 and 2.3 μ for five cool luminous stars by a simple curve-of-growth technique. A new analysis of CN lines at 8000 A is also described for α Sco and α Ori. Results derived independently from CO and CN are in agreement. Final results are 12 C/ 13 C=7 +- 2(α Ori), 12 +- 3(α Sco), 7 +- 3(β Peg), 25 +- 7(chi Cyg), 17 +- 4(α Her), and 7 +- 1.5(α Boo). The α Boo analysis provides a check on the CO curve-of-growth technique; the 12 C/ 13 C ratio from the 2.3 μ CO lines is in good agreement with the previously determined ratio from CN and CH lines

  19. Resonant states in 13C and 16,17O at high excitation energy

    Science.gov (United States)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Agodi, C.; Cunsolo, A.; Carbone, D.; Bondi, M.; De Napoli, M.; Roeder, B. T.; Linares, R.; Lombardo, I.

    2014-12-01

    The 9Be(6Li,d)13C and 12,13C(6Li,d)16,17O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13C and 15-30 keV for 16O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θd = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility.

  20. Investigation of α-cluster states in 13C via the (6Li,d) reaction

    CERN Document Server

    Rodrigues, M R D; Horodynski-Matsushigue, L B; Cunsolo, A; Cappuzzello, F; Duarte, J L M; Rodrigues, C L; Ukita, G M; Souza, M A; Miyake, H

    2010-01-01

    The 9Be(6Li,d)13C reaction was used to investigate possible α-cluster states in 13C. The reaction was measured at 25.5 MeV incident energy, employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Ten out of sixteen known levels of 13C, up to 11 MeV of excitation, were observed and, due to the much improved energy resolution of 50 keV, at least three doublets could be resolved. This work presents a preliminary analysis of five of the most intensely populated states, also in comparison with the results of former transfer studies.

  1. 13C(α,n)16O reaction as the knock-out exchange process

    International Nuclear Information System (INIS)

    Kim, G.; Khajdarov, R.R.; Zaparov, Eh.A.

    2000-01-01

    S-factor for the 13 C(α,n) 16 O reaction is studied. In the framework of the simple phenomenological model this reaction is analysed as neutron knocked-out by α-particle exchange process. The analysis demonstrates the importance of taking into account 2p-state in 13 C. The 13 C(α,n) 16 O cross section is considered both as the knock-out exchange process and as it's combination with process through a compound nucleus. It was shown that for E α s value extrapolated to low energies is found to be noticeably larger that of R-matrix analysis. Different ways of improving the proposed model are discussed. (author)

  2. Confirmation of Fructans biosynthesized in vitro from [1-13C]glucose in asparagus tissues using MALDI-TOF MS and ESI-MS.

    Science.gov (United States)

    Suzuki, Takashi; Maeda, Tomoo; Grant, Suzanne; Grant, Gordon; Sporns, Peter

    2013-05-15

    Accumulation of Fructans was confirmed in asparagus tissues that had been cultured for 2 days on media supplemented with glucose. It is very common that Fructans are biosynthesized from sucrose. We hypothesized however that Fructans could also be biosynthesized from glucose. Stem tissues of in vitro-cultured asparagus were subcultured for 72 h on a medium containing 0.5M of [1-(13)C]glucose. A medium containing 0.5M of normal ((12)C) glucose was used as control. Carbohydrates were extracted from the tissues and analyzed using HPLC, MALDI-TOF MS and ESI-MS. HPLC results indicated that the accumulation of short-chain Fructans was similar in both (13)C-labelled and control samples. Short-chain Fructans of DP=3-7 were detected using MALDI-TOF MS. The molecular mass of each oligomer in the (13)C-labelled sample was higher than the mass of the natural sample by 1 m/z unit per sugar moiety. The results of ESI-MS on the HPLC fractions of neokestose and 1-kestose showed that these oligomers (DP=3) were biosynthesized from exogenous glucose added to the medium. We conclude that not only exogenous sucrose but glucose can induce Fructan biosynthesis; fructans of both inulin type and inulin neoseries are also biosynthesized from glucose accumulated in asparagus tissues; the glucose molecules (or its metabolic products) were incorporated into Fructans as structural monomers. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    Science.gov (United States)

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside.

  4. Oceanic uptake of CO2 re-estimated through δ13C in WOCE samples

    International Nuclear Information System (INIS)

    Lerperger, Michael; McNichol, A.P.; Peden, J.; Gagnon, A.R.; Elder, K.L.; Kutschera, W.; Rom, W.; Steier, P.

    2000-01-01

    In addition to 14 C, a large set of δ 13 C data was produced at NOSAMS as part of the World ocean circulation experiment (WOCE). In this paper, a subset of 973 δ 13 C results from 63 stations in the Pacific Ocean was compared to a total number of 219 corresponding results from 12 stations sampled during oceanographic programs in the early 1970s. The data were analyzed in light of recent work to estimate the uptake of CO 2 derived from fossil fuel and biomass burning in the oceans by quantifying the δ 13 C Suess effect in the oceans. In principle, the δ 13 C value of dissolved inorganic carbon (DIC) allows a quantitative estimate of how much of the anthropogenic CO 2 released into the atmosphere is taken up by the oceans, because the δ 13 C of CO 2 derived from organic matter (∼2.7 percent) is significantly different from that of the atmosphere (∼0.8 percent). Our new analysis indicates an apparent discrepancy between the old and the new data sets, possibly caused by a constant offset in δ 13 C values in a subset of the data. A similar offset was reported in an earlier work by Paul Quay et al. for one station that was not included in their final analysis. We present an estimate for this assumed offset based on data from water depths below which little or no change in δ 13 C over time would be expected. Such a correction leads to a significantly reduced estimate of the CO 2 uptake, possibly as low as one half of the amount of 2.1 GtC yr -1 (gigatons carbon per year) estimated previously. The present conclusion is based on a comparison with a relatively small data set from the 70s in the Pacific Ocean. The larger data set collected during the GEOSECS program was not used because of problems reported with the data. This work suggests there may also be problems in comparing non-GEOSECS data from the 1970s to the current data. The calculation of significantly lower uptake estimates based on an offset-related problem appears valid, but the exact figures are

  5. Minimally invasive (13)C-breath test to examine phenylalanine metabolism in children with phenylketonuria.

    Science.gov (United States)

    Turki, Abrar; Murthy, Gayathri; Ueda, Keiko; Cheng, Barbara; Giezen, Alette; Stockler-Ipsiroglu, Sylvia; Elango, Rajavel

    2015-01-01

    Phenylketonuria (PKU) is an autosomal recessive disorder caused by deficiency of hepatic phenylalanine hydroxylase (PAH) leading to increased levels of phenylalanine in the plasma. Phenylalanine levels and phenylalanine hydroxylase (PAH) activity monitoring are currently limited to conventional blood dot testing. 1-(13)C-phenylalanine, a stable isotope can be used to examine phenylalanine metabolism, as the conversion of phenylalanine to tyrosine occurs in vivo via PAH and subsequently releases the carboxyl labeled (13)C as (13)CO2 in breath. Our objective was to examine phenylalanine metabolism in children with PKU using a minimally-invasive 1-(13)C-phenylalanine breath test ((13)C-PBT). Nine children (7 M: 2 F, mean age 12.5 ± 2.87 y) with PKU participated in the study twice: once before and once after sapropterin supplementation. Children were provided 6 mg/kg oral dose of 1-(13)C-phenylalanine and breath samples were collected at 20 min intervals for a period of 2h. Rate of CO2 production was measured at 60 min post-oral dose using indirect calorimetry. The percentage of 1-(13)C-phenylalanine exhaled as (13)CO2 was measured over a 2h period. Prior to studying children with PKU, we tested the study protocol in healthy children (n = 6; 4M: 2F, mean age 10.2 ± 2.48 y) as proof of principle. Production of a peak enrichment (Cmax) of (13)CO2 (% of dose) in all healthy children occurred at 20 min ranging from 17-29% of dose, with a subsequent return to ~5% by the end of 2h. Production of (13)CO2 from 1-(13)C-phenylalanine in all children with PKU prior to sapropterin treatment remained low. Following sapropterin supplementation for a week, production of (13)CO2 significantly increased in five children with a subsequent decline in blood phenylalanine levels, suggesting improved PAH activity. Sapropterin treatment was not effective in three children whose (13)CO2 production remained unchanged, and did not show a reduction in blood phenylalanine levels and improvement

  6. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    Science.gov (United States)

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  7. DARC PLURIDATA system: the /sup 13/C-N. M. R. data bank

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J E; Bonnet, J C [Paris-7 Univ., 75 (France)

    1979-09-15

    The capabilities of the DARC system are discussed and illustrated by the storage and retrieval functions of the /sup 13/C-N.M.R. data bank of the DARC PLURIDATA system. The data covered by the bank, as well as the input stream to the bank and validation of the spectra, are described. Particular stress is laid on the DARC structural retrieval system, which illustrates the interactive interrogration of a chemical bank by means of the structural diagram of a molecule, i.e. the universal language in chemistry. The potential of the /sup 13/C-N.M.R. data bank in computer-aided structural elucidation is outlined.

  8. Automated 13CO2 analyzing system for the 13C breath test

    International Nuclear Information System (INIS)

    Suehiro, Makiko; Kuroda, Akira; Maeda, Masahiro; Hinaga, Kou; Watanabe, Hiroyuki.

    1987-01-01

    An automated 13 CO 2 analyzing system for the 13 C breath test was designed, built and evaluated. The system, which was designed to be controlled by a micro-computer, includes CO 2 purification, 13 CO 2 abundance measurement, data processing and data filing. This article gives the description of the whole system with flow charts. This system has proved to work well and it has become feasible to dispose of 5 to 6 CO 2 samples per hour. With such a system, the 13 C breath test will be carried out much more easily and will obtain much greater popularity. (author)

  9. Nuclear critical opalescence and the M1 form factors of 12C and 13C

    International Nuclear Information System (INIS)

    Delorme, J.; Figureau, A.; Guichon, P.

    1981-01-01

    It is shown that core polarization by the nuclear pion field has opposite effects on the M1 form factors of 12 C(15.11 MeV) and 13 C(g.s.). New data on 13 C are found to agree with this prediction and a common interpretation of the experiments is shown to be possible for the two nuclei in terms of critical opalescence. Discrimination from alternative explanations of the observed anomalies should await further experiments, especially photopion reactions. (orig.)

  10. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The desi...... throughout the volume of interest for cardiac imaging in pig. Experimental SNR-vs-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), permitted to highlight the performance of the proposed coils configuration. © 2013 Elsevier Ltd. All rights reserved....

  11. Quantitative measurement of exchange dynamics in proteins via {sup 13}C relaxation dispersion of {sup 13}CHD{sub 2}-labeled samples

    Energy Technology Data Exchange (ETDEWEB)

    Rennella, Enrico; Schuetz, Anne K.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2016-06-15

    Methyl groups have emerged as powerful probes of protein dynamics with timescales from picoseconds to seconds. Typically, studies involving high molecular weight complexes exploit {sup 13}CH{sub 3}- or {sup 13}CHD{sub 2}-labeling in otherwise highly deuterated proteins. The {sup 13}CHD{sub 2} label offers the unique advantage of providing {sup 13}C, {sup 1}H and {sup 2}H spin probes, however a disadvantage has been the lack of an experiment to record {sup 13}C Carr–Purcell–Meiboom–Gill relaxation dispersion that monitors millisecond time-scale dynamics, implicated in a wide range of biological processes. Herein we develop an experiment that eliminates artifacts that would normally result from the scalar coupling between {sup 13}C and {sup 2}H spins that has limited applications in the past. The utility of the approach is established with a number of applications, including measurement of ms dynamics of a disease mutant of a 320 kDa p97 complex.

  12. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate.

    Science.gov (United States)

    Xu, He N; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim; Li, Lin Z

    2016-02-01

    Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  13. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    Science.gov (United States)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  14. Whey and casein labelled with L-[1-13C]-leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2011-01-01

    to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass......), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments......, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after...

  15. 4-Methyl-5-phenyl-1H-pyrazol-3-ol

    Directory of Open Access Journals (Sweden)

    Tara Shahani

    2010-07-01

    Full Text Available The title compound, C10H10N2O, crystallizes with two independent molecules in the asymmetric unit, having closely comparable geometries. The dihedral angles between the 1H-pyrazole and benzene rings in the two molecules are 39.57 (14 and 41.95 (13°. The two molecules are each connected to neighbouring molecules by pairs of intermolecular O—H...N hydrogen bonds, forming dimers with R22(8 ring motifs. These dimers are further linked into R44(10 ring motifs by intermolecular N—H...O hydrogen bonds, forming chains along [101]. The crystal structure is further stabilized by a C—H...π interaction.

  16. Fluorescence tuning of 2-(1H-Benzimidazol-2-yl)phenol-ESIPT process

    International Nuclear Information System (INIS)

    Prakash, S.M.; Jayamoorthy, K.; Srinivasan, N.; Dhanalekshmi, K.I.

    2016-01-01

    Catalytic synthesis of potential chemosensor 2-(1H-Benzimidazol-2-yl)phenol (HBYP) has been prepared by three components cyclization reaction. It can behaves as a selective fluorescent sensor for the detection of Fe 3+ metal ion. HBYP has been characterized by 1 H NMR, 13 C NMR, mass spectral studies and elemental analysis. Single crystal XRD analysis has been carried out to confirm the structure of HBYP and it shows the imidazole ring is essentially planar and monoclinic crystal. Addition and increasing concentration of Fe 3+ ions into HBYP results dramatic fluorescence quenching. Other cations, including Ca 2+ , Co 2+ , Ni 2+ , Cd 2+ , Pb 2+ , Zn 2+ and Mg 2+ had little influence in the fluorescence intensity. Surprisingly reversible fluorescence enhancement has been observed with the addition of H 3 PO 4 due to the deactivation of iron complex.

  17. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Belyakov, Alexei Ye; Burygin, Gennady L; Arbatsky, Nikolai P; Shashkov, Alexander S; Selivanov, Nikolai Yu; Matora, Larisa Yu; Knirel, Yuriy A; Shchyogolev, Sergei Yu

    2012-11-01

    This is the first report to have identified an O-linked repetitive glycan in bacterial flagellin, a structural protein of the flagellum. Studies by sugar analysis, Smith degradation, (1)H and (13)C NMR spectroscopy, and mass spectrometry showed that the glycan chains of the polar flagellum flagellin of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 are represented by a polysaccharide with a molecular mass of 7.7 kDa, which has a branched tetrasaccharide repeating unit of the following structure: Copyright © 2012. Published by Elsevier Ltd.

  18. Excitation functions of the systems 12C+14C and 13C+12C

    International Nuclear Information System (INIS)

    Haindl, E.

    1975-01-01

    The excitation functions of the systems 12 C+ 14 C and 13 C+ 12 C are investigated for different exit channels. The excitation functions measured do not show correlated structures as in the system 12 C+ 12 C. (WL/AK) [de

  19. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    DEFF Research Database (Denmark)

    Vinding, Mads Sloth; Laustsen, Christoffer; Maximov, Ivan I.

    2013-01-01

    . This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region...

  20. Measurement of the natural variation of 13C/12C isotope ratio in organic samples

    International Nuclear Information System (INIS)

    Ducatti, C.

    1977-01-01

    The isotopic ratio analysis for 13 C/ 12 C by mass spectrometry using a 'Working standard' allows the study of 13 C natural variation in organic material, with a total analytical error of less than 0,2%. Equations were derived in order to determine 13 C/ 12 C and 18 O/ 16 O ratios related to the 'working standard' CENA-std and to the international standard PDB. Isotope ratio values obtained with samples prepared in two different combustion apparatus were compared; also the values obtained preparing samples by acid decomposition of carbonaceous materials were compared with the values obtained in different international laboratories. Utilizing the methodology proposed, several leaves collected at different heights of different vegetal species, found 'inside' and 'outside' of the Ducke Forest Reserve, located in the Amazon region, are analysed. It is found that the 13 C natural variation depends upon metabolic process and environmental factors, both being factors which may be qualified as parcial influences on the CO 2 cycle in the forest. (author) [pt

  1. Microstructure study of ethylene, propylene and 1-decene terpolymers by 13C-NMR

    International Nuclear Information System (INIS)

    Ferreira, Marcio; Escher, Fernanda Nunes; Galland, Griselda Barrera

    2001-01-01

    Terpolymers of ethylene-propylene-1-decene with different composition of monomers were obtained using the metallocenes catalyst rac-EtInd 2 ZrCl 2 . The complete 13 C-NMR characterization of these terpolymers was done qualitatively and quantitatively. Chemical shifts, carbon assignments and corresponding integrals for each triad sequence are presented. (author)

  2. Diagnostic Limitations of 13C-Mixed Triglyceride Breath Test in Patients after Cholecystectomy

    Directory of Open Access Journals (Sweden)

    V.I. Rusyn

    2014-09-01

    Full Text Available The results of a comprehensive examination of 136 patients after cholecystectomy are provided. High efficiency and informativeness of the 13C-mixed triglyceride breath test for determining exocrine pancreatic insufficiency at its early stages was noted in patients after cholecystectomy.

  3. 13C Kinetic isotopic effect of polymerization on monomers with multiple bond

    International Nuclear Information System (INIS)

    Berman, E.L.; Polyakov, V.B.; Makovetskij, K.L.; Golenko, T.G.; Galimov, Eh.M.; AN SSSR, Moscow. Inst. Organicheskoj Khimii; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1988-01-01

    13 C kinetic isotopic effect (KIE) of anionic and radical polymerization and metathesis reaction of monomers with multiple bonds are studied and correlation between the found KIE values of polymerization and the structure of transition state is established. 13 C KIE of polymerization reactions are investigated using monomers with natural content of the isotope. Polymerization was carried out using high-vacuum equipment: radical polymerization of methyl acrylate (MA) and vinyl acetate in benzene solution under the effect of benzoyl peroxide (60 deg C); anionic polymerization of MA, initiated by potassium butyl cellosolvolate, was realized in mass at 25 deg C; cyclopentene metathesis reaction was conducted in benzene under the effect of initiating system WCl 6 - (C 3 H 5 ) 2 Si(CH 3 ) 2 at -30 deg C; phenylacetylene polymers were prepared by polymerization in benzene solution at 20 deg C under the effect of WCl 6 . It is ascertained that 13 C KIE of radical and anionic polymerization of olefins and cycloolefin metathesis constitutes 2.0 -2.4%. Polymerization of compound with ternary bond is accompanied by a lower value of 13 C KIE (<1%), which is explained by double bond of reacting bond in transition state

  4. Probing the possibility of a 12C13C abundance gradient from observations of interstellar CH+

    International Nuclear Information System (INIS)

    Hawkins, I.

    1987-01-01

    I have performed high signal-to-noise (SN /equals/ 300 to 500) observations of interstellar CH/sup /plus// at Lick Observatory and at CTIO of the reddened, early-type stars HD 183143, HD 24432, and HD 157038 in an effort to probe the existence of a 12 C 13 C abundance gradient in our Galaxy

  5. Astrophysical S factor for 13C(p,γ)14N and asymptotic normalization coefficients

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Azhari, A.; Gagliardi, C.A.; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.

    2002-01-01

    We reanalyze the 13 C(p,γ) 14 N radiative capture reaction within the R-matrix approach. The low-energy astrophysical S factor has important contributions from both resonant and onresonant captures. The normalization of the nonresonant component of the transition to a particular 14 N bound state is expressed in terms of the asymptotic normalization coefficient (ANC). In the analysis we use the experimental ANC's inferred from the 13 C( 14 N, 13 C) 14 N and 13 C( 3 He,d) 14 N reactions. The fits of the calculated S factors to the experimental data are sensitive to the ANC values and are used to test the extracted ANC's. We find that for transitions to all the states in 14 N, except the third excited state, the ANC's determined from the transfer reactions provide the best fit. The astrophysical factor we obtain, S(0)=7.7±1.1 keV b, is in excellent agreement with previous results

  6. Experimental and theoretical investigation of scattering of alpha particles from 13C nuclei

    International Nuclear Information System (INIS)

    Burtebayev, N.; Burtebayeva, D.T.; Baktybayev, M.K.; Duisebayev, B.A.; Ogloblin, A.A.; Demyanova, A.S.; Sakuta, Sh.; Hamada, C.B.; Janseitov, D.M.; Nassurlla, M.; Artemov, S.V.

    2015-01-01

    13 C is a good example of a “normal” nucleus well described by the shell model. Its level scheme is reliably determined up to the excitation energies ~ 10 MeV (see e.g. [1]). However, some new approaches such as the hypothesis of the α-particle condensation suggest that cluster states with an enhanced radius can appear. The famous Hoyle state (0 2 + , E* = 7.65 MeV) in 12 C was considered as the most probable candidate for having such structure. It was also expected that the analogues of the Hoyle state would reveal themselves in some neighboring nuclei, e.g., the ½- (E*= 8.86MeV) state in 13 C. The analysis of the 13 C + α scattering data measured at E (α) = 388 MeV really demonstrated a considerable enhancement of the radius of this particular state. However, the method of extracting the radii used may not be quite adequate at high energies (≥ 100 MeV) when nuclei are too transparent. The existence in 13 C of some states with enhanced dimensions but of different structure was discussed as well. Thus, a neutron halo was identified in the first excited state 3.09 MeV (1/2 + ) by two independent and complementary methods. Consequently, new measurements especially at lower energies are highly desirable

  7. Configurations and conformations in acyclic, unsaturated hydrocarbons. A 13C NMR study

    NARCIS (Netherlands)

    Haan, de J.W.; Ven, van de L.J.M.

    1973-01-01

    13C NMR (CMR) spectra of a number of di- and trisubstituted ethylenes have been measured. Very consistent values are found for the differential shieldings of allylic carbons in a number of linear, (Z)- and (E)-disubstituted ethylenes. The discrepancies between the several structural elements are

  8. IMPROVED LINE DATA FOR THE SWAN SYSTEM 12C13C ISOTOPOLOGUE

    International Nuclear Information System (INIS)

    Ram, Ram S.; Brooke, James S. A.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara

    2014-01-01

    We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the 12 C 13 C isotopologue Swan d 3 Π-a 3 Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the 12 C 13 C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The 12 C 13 C line data were combined with similar data for 12 C 2, reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C 2 Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the 12 C 13 C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C 2 lines of the bright red giant Arcturus were also synthesized in the band head regions

  9. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    Science.gov (United States)

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  10. 13C NMR spectra and bonding situation of the B-C bond in alkynylboranes

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinori; Moritani, Ichiro

    1975-01-01

    13 C NMR spectra of boron substituted alkynes reveal that the β-carbon is deshielded by ca. 21 ppm by a B(O-n-C 4 H 9 ) 2 group. This clearly indicates the presence of a B-C π-bonding in alkynylboranes. (auth.)

  11. 13C NMR and relaxation studies of the nanomagnet Mn12-acetate

    Science.gov (United States)

    Achey, Randall M.; Kuhns, Philip L.; Reyes, Arneil P.; Moulton, William G.; Dalal, Naresh S.

    2001-08-01

    The nanomagnet [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O, also known as Mn12, has been synthesized with 13C labeling at the CH3 groups, and investigated by 13C NMR at fields up to 23 T. Using oriented samples, it is possible to resolve four distinct 13C peaks at room temperature, located on both sides of the unshifted Larmor frequency. These peaks were assigned to the four hyperfine-shifted, magnetically inequivalent sets of 13CH3 groups in the Mn12 lattice, based on a comparison with the crystal structure and point-dipole and spin-density calculations. These results establish that the unpaired electron spin density of the S=10 system in this cluster extends over the entire molecular framework, not just the core. These results are discussed in relationship to inelastic neutron scattering measurements. The temperature and field dependence of the 13C nuclear-spin-lattice-relaxation time T1 on the least shifted peak was measured. A single weakly field-dependent minimum at about 60 K is observed in the temperature dependence of the measured T1. The relaxation mechanism responsible for the T1 minimum is ascribed mainly to hindered rotation of the methyl group of the acetate ligand at higher temperature, and to electronic spin fluctuations at lower temperature.

  12. Iminium ion chemistry of mitosene DNA alkylating agents. Enriched 13C NMR and isolation studies.

    Science.gov (United States)

    Ouyang, A; Skibo, E B

    2000-05-16

    Described herein is a study of the reductive alkylation chemistry of mitosene antitumor agents. We employed a 13C-enriched electrophilic center to probe the fate of the iminium ion resulting from reductive activation. The 13C-labeled center permitted the identification of complex products resulting from alkylation reactions. In the case of DNA reductive alkylation, the type and number of alkylation sites were readily assessed by 13C NMR. Although there has been much excellent work done in the area of mitosene chemistry and biochemistry, the present study provides a number of new findings: (1) The major fate of the iminium ion is head-to-tail polymerization, even in dilute solutions. (2) Dithionite reductive activation results in the formation of mitosene sulfite esters as well as the previously observed sulfonate adducts. (3) The mitosene iminium ion alkylates the adenosine 6-amino group as well as the guanosine 2-amino group. The identification of the latter adduct was greatly facilitated by the 13C-label at the electrophilic center. (4) The mitosene iminium ion alkylates DNA at both nitrogen and oxygen centers without any apparent base selectivity. The complexity of mitosene reductive alkylation of DNA will require continued adduct isolation studies.

  13. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    Science.gov (United States)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  14. Aspects of reaction of N-oxide radical with ethers in 13C NMR spectrum

    International Nuclear Information System (INIS)

    Kolodziejski, W.

    1980-01-01

    The stable radical N-oxide 2,2,6,6-tetramethylpiperidine was dissolved in ethers. The 13 C NMR spectra were recorded in the temperature 313K at the frequency 22,625 MHz on the spectrometers with Fourier transformation. The dissolution of the radical in ether caused the contact shifts in NMR spectra. The shifts were measured. (A.S.)

  15. In vivo single-shot (13)C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    DEFF Research Database (Denmark)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas

    2014-01-01

    are necessary. Several approaches have been customized for hyperpolarized (13)C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based...... temporal) data sets were obtained at 7T from a murine lymphoma tumor model....

  16. Solid state 13 C NMR quantitative study of wood tar pitches

    International Nuclear Information System (INIS)

    Prauchner, Marcos Juliano; Pasa, Vanya Marcia Duarte; Menezes, Sonia Maria Cabral de

    1999-01-01

    In this work, solid-state 13 C NMR is used with other techniques to characterize Eucalyptus tar pitches and to follow their polymerization reactions. The pitches are the residues of distillation (about 50% m;m) of the tar generated in Eucalyptus slow pyrolysis for charcoal production in metal industry

  17. Simulation and comparison of coils for Hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Hartwig, V.; Frijia, Francesca

    2015-01-01

    , by permitting metabolic activity mapping, a number of technological problems still limit this technology and need innovative solutions such as the design of suitable radiofrequency (RF) coils, capable to provide a large sensitivity region. This work describes the simulation and the comparison of different 13C...

  18. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbona...

  19. Soil carbon inventories and d 13C along a moisture gradient in Botswana

    NARCIS (Netherlands)

    Bird, M.I.; Veenendaal, E.M.; Lloyd, J.

    2004-01-01

    We present a study of soil organic carbon (SOC) inventories and d 13C values for 625 soil cores collected from well-drained, coarse-textured soils in eight areas along a 1000 km moisture gradient from Southern Botswana, north into southern Zambia. The spatial distribution of trees and grass in the

  20. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  1. Detection of Helicobacter pylori in rural school children using 13C ...

    African Journals Online (AJOL)

    ulcer, gastric ulcer, non-ulcer dyspepsia and gastritis. Several diagnostic methods are available for the detection of H. pylori, with direct methods based on gastric biopsies. The 13C- Urea Breath Test (UBT) used in this study has advantage over the other methods in that, it is easy to perform, specific (100%), highly sensitive ...

  2. Synthesis of 13C-labelled lactose for metabolic studies in subjects with gastrointestinal disorders

    International Nuclear Information System (INIS)

    Moyna, P.

    1993-01-01

    The long-range goals included development of a 13 C-labelled lactose method for measuring lactose malabsorption in patients with diarrhea. The short-term goals included assembling a nuclear magnetic resonance system and a computer system for spectra analysis. The latter results are the subject of the report. (author)

  3. Hyperpolarized 1-13C Pyruvate Imaging of Porcine Cardiac Metabolism shift by GIK Intervention

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Mikkelsen, Emmeli

    to evaluate the general feasibility to detect an imposed shift in metabolic substrate utilization during metabolic modulation with glucose, insulin and potassium (GIK) infusion. This study demonstrates that hyperpolarized 13C-pyruvate, in a large animal, is a feasible method for cardiac studies, and...

  4. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA

    International Nuclear Information System (INIS)

    Bush, S.E.; Pataki, D.E.; Ehleringer, J.R.

    2007-01-01

    The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO 2 . In C budget studies, the isotopic composition of crude petroleum and CH 4 are often used as a proxy for the isotopic composition of CO 2 emissions from combustion. In this study, the C isotope composition (δ 13 C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH 4 . Vehicle-specific factors such as engine load and operation time had no effect on δ 13 C of vehicle exhaust. A small difference was found between the mean δ 13 C of vehicle exhaust collected randomly from different vehicles and the mean δ 13 C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ 13 C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ 13 C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ 13 C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO 2 emissions from fossil fuel combustion varied by almost 3 per mille over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows

  5. Stable carbon isotope analysis (δ13C values) of polybrominated diphenyl ethers and their UV-transformation products

    International Nuclear Information System (INIS)

    Rosenfelder, Natalie; Bendig, Paul; Vetter, Walter

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the δ 13 C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in 13 C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in 13 C because of more stable bonds between 13 C and bromine. As a result, the δ 13 C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the δ 13 C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios 1) is typical of transformation products. - Highlights: → δ 13 C values of PBDEs were determined by means of compound specific isotope analysis. → PBDEs in technical mixtures were the more depleted in 13 C the higher they were brominated. → Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. → δ 13 C values of irradiated PBDEs and technical PBDEs progressed diametrically. → Ratios of the δ 13 C values were used to distinguish native from transformed PBDEs. - Diametrically progressing δ 13 C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  6. 1-13C; methyl-2H3 methionine kinetics in humans: Methionine conservation and cystine sparing

    International Nuclear Information System (INIS)

    Storch, K.J.; Wagner, D.A.; Burke, J.F.; Young, V.R.

    1990-01-01

    Methionine (Met) conservation in healthy young adult men (4/diet group) was explored by supplying one of the following three L-amino acid based diets: (1) adequate Met but no cystine; (2) neither Met nor cystine; or (3) no Met but cystine supplementation. After 5 days, subjects received a continuous intravenous infusion of L-[1-13C; methyl-2H3]Met for 5 h while the diet was given as small isocaloric isonitrogenous meals. Estimates were made of rates of Met incorporation into protein synthesis (S) and release from body proteins (B), transmethylation (TM), remethylation of homocysteine (RM), and transsulfuration (TS). For the adequate Met diet, the rates were S = 24 +/- 2, B = 18 +/- 1, TM = 12.4 +/- 1.7, RM = 4.7 +/- 1.1, and TS = 7.6 +/- 0.6 (SE) mumol.kg-1.h-1. The sulfur amino acid-devoid diet significantly (P less than 0.05) reduced S, TM, RM, and TS. Supplementation of this diet with cystine reduced Met oxidation (P = 0.05). Therefore, two loci are quantitatively important regulatory points in Met conservation in vivo: (1) the distribution of Met between the pathways of protein anabolism and TM (Met locus) and (2) the distribution of homocysteine between RM and TS (homocysteine locus)

  7. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.

    Science.gov (United States)

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S

    2013-01-02

    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.

  8. Turnover of carbon in the 13C-urea breath test for the detection of Helicobacter pylori infection

    International Nuclear Information System (INIS)

    Costa, Vladimir E.; Andreazzi, Mariana; Cury, Caio S.; Bassetto Junior, Carlos A.Z.; Rodrigues, Maria A.M.; Ducatti, Carlos

    2013-01-01

    To obtain a standard protocol for the application of 13 C-urea breath test ( 13 C-UBT) analyzed by Isotope Ratio Mass Spectrometer (IRMS) to detect helicobacter pylori infection in the population is necessary to know the behavior of the turnover of 13 C during the test in different individuals. The aims of this study was to find out a pattern for the turnover of the 13 C in the 13 C-UBT, analyzed by IRMS, in patients infected with H. pylori, in a Brazilian population, to define a protocol test application. We found that the isotopic ratio 13 C/ 12 C in expired CO 2 from patients infected with H. pylori and subjected to 13 C-UBT does not follow a single pattern of behavior. However this behavior can be similar in subjects having the same maximum values following an inverse proportional relationship between the maximum value and the time of appearance in the curve. (author)

  9. 1-[3-(2-Methyl-4-phenylquinolin-3-yl-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-propane-1-one

    Directory of Open Access Journals (Sweden)

    Allaoua Kedjadja

    2015-06-01

    Full Text Available A novel compound, 1-[3-(2-methyl-4-phenylquinolin-3-yl-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-propane-1-one (3 has been synthesized by cyclocondensation of (E-1-(2-methyl-4-phenylquinolin-3-yl-3-phenylprop-2-en-1-one (2 and hydrazine hydrate in propionic acid. The structure of this compound was established by elemental analysis, IR, 1H-NMR, 13C-NMR and MS data.

  10. Quantification of the "global" authigenic carbonate δ13C value and implications for carbon cycling

    Science.gov (United States)

    Loyd, S. J.

    2017-12-01

    Relationships among early Earth ocean chemistry, atmospheric chemistry and the evolution/radiation of life have been inferred from carbon isotope compositions (δ13C) of marine carbonates. Under steady-state conditions, the isotope compositions of marine carbonates reflect both the amount and δ13C of carbon entering and leaving the oceans. Recently the traditional "two-output" (marine carbonate and organic matter) mass-balance equation has been modified to include a third, authigenic carbonate output term. However, the formation mechanisms of authigenic carbonates remain poorly understood, particularly from a global prospective. The utility of the new mass-balance approach will be limited until authigenic carbonates are better characterized (e.g., through δ13C analyses). Authigenic carbonates form largely as a result of 1) the respiratory degradation of organic matter (e.g., sulfate reduction), 2) the oxidation of methane and 3) the production of methane. These major reaction pathways can produce authigenic carbonates with highly variable δ13C compositions (δ13Cac). Spatiotemporal variation in the extent and prevalence of different pathways therefore exert a first order control on "global" δ13Cac. Here, values are compiled from new and existing data sets and a modern, global δ13Cac is calculated. When calculated as an average of all data or an averaged mean of individual sites, this value is very similar to normal marine sedimentary organic matter. This finding suggests that marine sediments behave largely as closed systems in the context of organic matter degradation and carbonate authigenesis. In addition, the lack of significant difference between authigenic and organic δ13C implies that these two mass-balance output terms can be considered collectively in more recent time intervals. It may be appropriate to separate these two terms when characterizing more ancient settings when redox characteristics promoted more reducing organic matter degradation