WorldWideScience

Sample records for cftr depletion results

  1. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells.

    Directory of Open Access Journals (Sweden)

    Geneviève Mailhot

    , LXRalpha, LXRbeta and RXRalpha. CONCLUSIONS/SIGNIFICANCE: Collectively, our results indicate that CFTR depletion may disrupt FA homeostasis in intestinal cells through alterations in FA uptake and transport combined with stimulation of lipogenesis that occurs by an LXR/RXR-independent mechanism. These findings exclude a contributing role of CFTR in CF-associated fat malabsorption.

  2. Defective CFTR-dependent CREB activation results in impaired spermatogenesis and azoospermia.

    Directory of Open Access Journals (Sweden)

    Wen Ming Xu

    Full Text Available Cystic fibrosis (CF is the most common life-limiting recessive genetic disease among Caucasians caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR with over 95% male patients infertile. However, whether CFTR mutations could affect spermatogenesis and result in azoospermia remains an open question. Here we report compromised spermatogenesis, with significantly reduced testicular weight and sperm count, and decreased cAMP-responsive element binding protein (CREB expression in the testes of CFTR knockout mice. The involvement of CFTR in HCO(3 (- transport and the expression of the HCO(3 (- sensor, soluble adenylyl cyclase (sAC, are demonstrated for the first time in the primary culture of rat Sertoli cells. Inhibition of CFTR or depletion of HCO(3 (- could reduce FSH-stimulated, sAC-dependent cAMP production and phosphorylation of CREB, the key transcription factor in spermatogenesis. Decreased CFTR and CREB expression are also observed in human testes with azoospermia. The present study reveals a previously undefined role of CFTR and sAC in regulating the cAMP-CREB signaling pathway in Sertoli cells, defect of which may result in impaired spermatogenesis and azoospermia. Altered CFTR-sAC-cAMP-CREB functional loop may also underline the pathogenesis of various CF-related diseases.

  3. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  4. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Science.gov (United States)

    Ferru-Clément, Romain; Fresquet, Fleur; Norez, Caroline; Métayé, Thierry; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed on the apical plasma membrane (PM) of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD) and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o-) expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i) Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii) it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii) it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  5. Simple image-based no-wash method for quantitative detection of surface expressed CFTR.

    Science.gov (United States)

    Larsen, Mads Breum; Hu, Jennifer; Frizzell, Raymond A; Watkins, Simon C

    2016-03-01

    Cystic fibrosis (CF) is the most common lethal genetic disease among Caucasians. It is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, which encodes an apical membrane anion channel that is required for regulating the volume and composition of epithelial secretions. The most common CFTR mutation, present on at least one allele in >90% of CF patients, deletes phenylalanine at position 508 (F508del), which causes the protein to misfold. Endoplasmic reticulum (ER) quality control elicits the degradation of mutant CFTR, compromising its trafficking to the epithelial cell apical membrane. The absence of functional CFTR leads to depletion of airway surface liquid, impaired clearance of mucus and bacteria from the lung, and predisposes to recurrent infections. Ultimately, respiratory failure results from inflammation and bronchiectasis. Although high throughput screening has identified small molecules that can restore the anion transport function of F508del CFTR, they correct less than 15% of WT CFTR activity, yielding insufficient clinical benefit. To date, most primary CF drug discovery assays have employed measurements of CFTR's anion transport function, a method that depends on the recruitment of a functional CFTR to the cell surface, involves multiple wash steps, and relies on a signal that saturates rapidly. Screening efforts have also included assays for detection of extracellularly HA-tagged or HRP-tagged CFTR, which require multiple washing steps. We have recently developed tools and cell lines that report the correction of mutant CFTR trafficking by currently available small molecules, and have extended this assay to the 96-well format. This new and simple no-wash assay of F508del CFTR at the cell surface may permit the discovery of more efficacious drugs, and hopefully thereby prevent the catastrophic effects of this disease. In addition, the modular design of this platform should make it useful for other diseases where loss

  6. Increased efficacy of VX-809 in different cellular systems results from an early stabilization effect of F508del-CFTR.

    Science.gov (United States)

    Farinha, Carlos M; Sousa, Marisa; Canato, Sara; Schmidt, André; Uliyakina, Inna; Amaral, Margarida D

    2015-08-01

    Cystic fibrosis (CF), the most common recessive autosomal disease among Caucasians, is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to CFTR impaired plasma membrane trafficking. Therapies modulating CFTR basic defect are emerging, such as VX-809, a corrector of F508del-CFTR traffic which just succeeded in a Phase III clinical trial. We recently showed that VX-809 is additive to two other correctors (VRT-325 and compound 4a). Here, we aimed to determine whether the differential rescuing by these compounds results from cell-specific factors or rather from distinct effects at the early biogenesis and/or processing. The rescuing efficiencies of the above three correctors were first compared in different cellular models (primary respiratory cells, cystic fibrosis bronchial epithelial and baby hamster kidney [BHK] cell lines) by functional approaches: micro-Ussing chamber and iodide efflux. Next, biochemical methods (metabolic labeling, pulse-chase and immunoprecipitation) were used to determine their impact on CFTR biogenesis / processing. Functional analyses revealed that VX-809 has the greatest rescuing efficacy and that the relative efficiencies of the three compounds are essentially maintained in all three cellular models tested. Nevertheless, biochemical data show that VX-809 significantly stabilizes F508del-CFTR immature form, an effect that is not observed for C3 nor C4. VX-809 and C3 also significantly increase accumulation of immature CFTR. Our data suggest that VX-809 increases the stability of F508del-CFTR immature form at an early phase of its biogenesis, thus explaining its increased efficacy when inducing its rescue. PMID:26171232

  7. ΔF508 CFTR surface stability is regulated by DAB2 and CHIP-mediated ubiquitination in post-endocytic compartments.

    Science.gov (United States)

    Fu, Lianwu; Rab, Andras; Tang, Li ping; Bebok, Zsuzsa; Rowe, Steven M; Bartoszewski, Rafal; Collawn, James F

    2015-01-01

    The ΔF508 mutant form of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR) that is normally degraded by the ER-associated degradative pathway can be rescued to the cell surface through low-temperature (27°C) culture or small molecular corrector treatment. However, it is unstable on the cell surface, and rapidly internalized and targeted to the lysosomal compartment for degradation. To understand the mechanism of this rapid turnover, we examined the role of two adaptor complexes (AP-2 and Dab2) and three E3 ubiquitin ligases (c-Cbl, CHIP, and Nedd4-2) on low-temperature rescued ΔF508 CFTR endocytosis and degradation in human airway epithelial cells. Our results demonstrate that siRNA depletion of either AP-2 or Dab2 inhibits ΔF508 CFTR endocytosis by 69% and 83%, respectively. AP-2 or Dab2 depletion also increases the rescued protein half-life of ΔF508 CFTR by ~18% and ~91%, respectively. In contrast, the depletion of each of the E3 ligases had no effect on ΔF508 CFTR endocytosis, whereas CHIP depletion significantly increased the surface half-life of ΔF508 CFTR. To determine where and when the ubiquitination occurs during ΔF508 CFTR turnover, we monitored the ubiquitination of rescued ΔF508 CFTR during the time course of CFTR endocytosis. Our results indicate that ubiquitination of the surface pool of ΔF508 CFTR begins to increase 15 min after internalization, suggesting that CFTR is ubiquitinated in a post-endocytic compartment. This post-endocytic ubiquination of ΔF508 CFTR could be blocked by either inhibiting endocytosis, by siRNA knockdown of CHIP, or by treating cells with the CFTR corrector, VX-809. Our results indicate that the post-endocytic ubiquitination of CFTR by CHIP is a critical step in the peripheral quality control of cell surface ΔF508 CFTR.

  8. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation.

    Science.gov (United States)

    De Stefano, Daniela; Villella, Valeria R; Esposito, Speranza; Tosco, Antonella; Sepe, Angela; De Gregorio, Fabiola; Salvadori, Laura; Grassia, Rosa; Leone, Carlo A; De Rosa, Giuseppe; Maiuri, Maria C; Pettoello-Mantovani, Massimo; Guido, Stefano; Bossi, Anna; Zolin, Anna; Venerando, Andrea; Pinna, Lorenzo A; Mehta, Anil; Bona, Gianni; Kroemer, Guido; Maiuri, Luigi; Raia, Valeria

    2014-01-01

    Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in Cftr(F508del) homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.

  9. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  10. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  11. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa

    Directory of Open Access Journals (Sweden)

    Tucker Torry A

    2012-09-01

    Full Text Available Abstract Background Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer. Results Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR, inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD recordings and in Ussing chamber recordings of short-circuit current (ISC in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/− heterozygotes had no difference in their responses versus +/+ wild-type mice. Conclusions Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER. As a consequence, ΔF-CFTR slows WT-CFTR

  12. Detection of CFTR protein in human leukocytes by flow cytometry.

    Science.gov (United States)

    Johansson, Jan; Vezzalini, Marzia; Verzè, Genny; Caldrer, Sara; Bolognin, Silvia; Buffelli, Mario; Bellisola, Giuseppe; Tridello, Gloria; Assael, Baroukh Maurice; Melotti, Paola; Sorio, Claudio

    2014-07-01

    Leukocytes have previously been shown to express detectable levels of the protein cystic fibrosis transmembrane conductance regulator (CFTR). This study aims to evaluate the application of flow cytometric (FC) analysis to detect CFTR expression, and changes thereof, in these cells. Aliquots (200 μL) of peripheral whole blood from 12 healthy control volunteers (CTRLs), 12 carriers of a CFTR mutation (CFC), and 40 patients with cystic fibrosis (CF) carrying various combinations of CFTR mutations were incubated with specific fluorescent probes recognizing CFTR protein expressed on the plasma membrane of leukocytes. FC was applied to analyze CFTR expression in monocytes, lymphocytes, and polymorphonuclear (PMN) cells. CFTR protein was detected in monocytes and lymphocytes, whereas inconclusive results were obtained from the analysis of PMN cells. Mean fluorescence intensity (MFI) ratio value and %CFTR-positive cells above a selected threshold were the two parameters selected to quantify CFTR expression in cells. Lowest variability and the highest reproducibility were obtained when analyzing monocytes. ANOVA results indicated that both parameters were able to discriminate monocytes of healthy controls and CF individuals according to CFTR mutation classes with high accuracy. Significantly increased MFI ratio values were recorded in CFTR-defective cells that were also able to improve CFTR function after ex vivo treatment with PTC124 (Ataluren), an investigative drug designed to permit the ribosome to read through nonsense CFTR mutations. The method described is minimally invasive and may be used in the monitoring of responses to drugs whose efficacy can depend on increased CFTR protein expression levels. © 2014 International Society for Advancement of Cytometry.

  13. CFTR and Wnt/beta-catenin signaling in lung development

    Directory of Open Access Journals (Sweden)

    Love Damon

    2008-07-01

    Full Text Available Abstract Background Cystic fibrosis transmembrane conductance regulator (CFTR was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing β-galactosidase under a canonical Wnt/β-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. Results A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. Conclusion These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/β-Catenin signaling required for lung organogenesis.

  14. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    Directory of Open Access Journals (Sweden)

    Ali J Vetter

    Full Text Available The majority of cystic fibrosis (CF-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein.

  15. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    Science.gov (United States)

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein.

  16. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    Science.gov (United States)

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein. PMID:27182737

  17. Evaluation of CFTR gene mutations in Adana

    OpenAIRE

    Ozlem Goruroglu Ozturk; Filiz Kibar; Esin Damla Ziyanoglu Karacor; Salih Cetiner; Gulhan Sahin; Akgun Yaman

    2013-01-01

    ABSTRACT Objective: Cystic fibrosis is the most common autosomal recessive inherited disorder seen in the white populations. It develops in result of mutations of cystic fibrosis transmembrane regulator (CFTR) gene. Rate of these mutations vary in different geographical regions. In this study, we aimed to determine the frequency of CFTR gene mutations in Adana. Methods: DNA samples of 63 subjects (21 women, 42 men) who were diagnosed as cystic fibrosis at Balcali Hospital of Cukurova Universi...

  18. Evaluation of CFTR gene mutations in Adana

    OpenAIRE

    Öztürk, Özlem Görüroğlu; Filiz KIBAR; Karaçor, Esin Damla Ziyanoğlu; Çetiner, Salih; Şahin, Gülhan; Yaman, Akgün

    2013-01-01

    ABSTRACT Objective: Cystic fibrosis is the most common autosomal recessive inherited disorder seen in the white populations. It develops in result of mutations of cystic fibrosis transmembrane regulator (CFTR) gene. Rate of these mutations vary in different geographical regions. In this study, we aimed to determine the frequency of CFTR gene mutations in Adana. Methods: DNA samples of 63 subjects (21 women, 42 men) who were diagnosed as cystic fibrosis at Balcalı Hospital of Çukurova Unive...

  19. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction.

    Science.gov (United States)

    Tabeling, Christoph; Yu, Hanpo; Wang, Liming; Ranke, Hannes; Goldenberg, Neil M; Zabini, Diana; Noe, Elena; Krauszman, Adrienn; Gutbier, Birgitt; Yin, Jun; Schaefer, Michael; Arenz, Christoph; Hocke, Andreas C; Suttorp, Norbert; Proia, Richard L; Witzenrath, Martin; Kuebler, Wolfgang M

    2015-03-31

    Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca(2+) mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca(2+) mobilization. Ca(2+) mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction. PMID:25829545

  20. Optimal depletion of exhaustible resources: existence and characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, T.

    1980-09-01

    A model of intertemporal allocation is considered in which there is a produced good (which can be used for consumption or for further production), and an exhaustible resource (which is essential for production), the total initial stock of which is given. The use of the resource over the (infinite) planning horizon must not exceed this available stock. A planner is assumed to evaluate consumption in each period, in terms of a utility function, and to maximize the undiscounted sum of these one-period utilities, to obtain, simultaneously, the optimal depletion of the exhaustible resource, and the optimal investment pattern. 20 references.

  1. Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif.

    Science.gov (United States)

    Estell, Kim; Braunstein, Gavin; Tucker, Torry; Varga, Karoly; Collawn, James F; Schwiebert, Lisa M

    2003-01-01

    Despite the identification of 1,000 mutations in the cystic fibrosis gene product CFTR, there remains discordance between CFTR genotype and lung disease phenotype. The study of CFTR, therefore, has expanded beyond its chloride channel activity into other possible functions, such as its role as a regulator of gene expression. Findings indicate that CFTR plays a role in the expression of RANTES in airway epithelia. RANTES is a chemokine that has been implicated in the regulation of mucosal immunity and the pathogenesis of airway inflammatory diseases. Results demonstrate that CFTR triggers RANTES expression via a mechanism that is independent of CFTR's chloride channel activity. Neither pharmacological inhibition of CFTR nor activation of alternative chloride channels, including hClC-2, modulated RANTES expression. Through the use of CFTR disease-associated and truncation mutants, experiments suggest that CFTR-mediated transcription factor activation and RANTES expression require (i) insertion of CFTR into the plasma membrane and (ii) an intact CFTR C-terminal PDZ-interacting domain. Expression of constructs encoding wild-type or dominant-negative forms of the PDZ-binding protein EBP50 suggests that EBP50 may be involved in CFTR-dependent RANTES expression. Together, these data suggest that CFTR modulates gene expression in airway epithelial cells while located in a macromolecular signaling complex at the plasma membrane. PMID:12509457

  2. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    Directory of Open Access Journals (Sweden)

    Sonawane Nitin D

    2010-05-01

    Full Text Available Abstract Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content.

  3. Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction.

    Science.gov (United States)

    Brewington, John J; McPhail, Gary L; Clancy, John P

    2016-01-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR), leading to significant morbidity and mortality. CFTR is a chloride and bicarbonate channel at the epithelial cell membrane. The most common CFTR mutation is F508del, resulting in minimal CFTR at the plasma membrane. Current disease management is supportive, whereas an ultimate goal is to develop therapies to restore CFTR activity. We summarize experience with lumacaftor, a small molecule that increases F508del-CFTR levels at the plasma membrane. Lumacaftor in combination with ivacaftor, a modulator of CFTR gating defects, improves clinical outcome measures in patients homozygous for the F508del mutation. Lumacaftor represents a significant advancement in the treatment of biochemical abnormalities in CF. Further development of CFTR modulators will improve upon current therapies, although it remains unclear whether this approach will provide therapies for all CFTR mutations. PMID:26581802

  4. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  5. An image analysis method to quantify CFTR subcellular localization.

    Science.gov (United States)

    Pizzo, Lucilla; Fariello, María Inés; Lepanto, Paola; Aguilar, Pablo S; Kierbel, Arlinet

    2014-08-01

    Aberrant protein subcellular localization caused by mutation is a prominent feature of many human diseases. In Cystic Fibrosis (CF), a recessive lethal disorder that results from dysfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the most common mutation is a deletion of phenylalanine-508 (pF508del). Such mutation produces a misfolded protein that fails to reach the cell surface. To date, over 1900 mutations have been identified in CFTR gene, but only a minority has been analyzed at the protein level. To establish if a particular CFTR variant alters its subcellular distribution, it is necessary to quantitatively determine protein localization in the appropriate cellular context. To date, most quantitative studies on CFTR localization have been based on immunoprecipitation and western blot. In this work, we developed and validated a confocal microscopy-image analysis method to quantitatively examine CFTR at the apical membrane of epithelial cells. Polarized MDCK cells transiently transfected with EGFP-CFTR constructs and stained for an apical marker were used. EGFP-CFTR fluorescence intensity in a region defined by the apical marker was normalized to EGFP-CFTR whole cell fluorescence intensity, rendering "apical CFTR ratio". We obtained an apical CFTR ratio of 0.67 ± 0.05 for wtCFTR and 0.11 ± 0.02 for pF508del. In addition, this image analysis method was able to discriminate intermediate phenotypes: partial rescue of the pF508del by incubation at 27 °C rendered an apical CFTR ratio value of 0.23 ± 0.01. We concluded the method has a good sensitivity and accurately detects milder phenotypes. Improving axial resolution through deconvolution further increased the sensitivity of the system as rendered an apical CFTR ratio of 0.76 ± 0.03 for wild type and 0.05 ± 0.02 for pF508del. The presented procedure is faster and simpler when compared with other available methods and it is therefore suitable as a screening method to identify

  6. Potentiators exert distinct effects on human, murine, and Xenopus CFTR.

    Science.gov (United States)

    Cui, Guiying; Khazanov, Netaly; Stauffer, Brandon B; Infield, Daniel T; Imhoff, Barry R; Senderowitz, Hanoch; McCarty, Nael A

    2016-08-01

    VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR. PMID:27288484

  7. Evaluation of CFTR gene mutations in Adana

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available ABSTRACT Objective: Cystic fibrosis is the most common autosomal recessive inherited disorder seen in the white populations. It develops in result of mutations of cystic fibrosis transmembrane regulator (CFTR gene. Rate of these mutations vary in different geographical regions. In this study, we aimed to determine the frequency of CFTR gene mutations in Adana. Methods: DNA samples of 63 subjects (21 women, 42 men who were diagnosed as cystic fibrosis at Balcali Hospital of Cukurova University, were studied for 19 different CFTR mutations by the strip assay method which is based on reverse hybridization. Results: In cystic fibrosis diagnosed patients, 19 mutations were observed of which 9 were homozygous and 10 were heterozygous. ∆F508 frequency was found as 11.9%, and rate of homozygous was found as 66.7%. Mutation frequencies of W1282X and N1303K were found as 2.40% and 4.80% respectively and rate of homozygous mutations were 50% for both. I148T mutation frequency was found as 3.20% and all were heterozygous. For the whole 19 mutations, frequency of mutation in 63 subjects was 22.3%. Conclusion: Detection of CFTR gene mutations by the strip assay method by reverse hybridization is an easy, fast and informative method. However, due to improvability of the common mutations in probable cystic fibrosis patients because of heterogenity in this region, it is still a major problem and does not exclude cystic fibrosis diagnosis. But this problematic issue can be overcome by evaluating the whole exons of CFTR mutations by advanced molecular tecniques. Key words: CFTR, cystic fibrosis, molecular diagnosis, reverse hibridisation [Cukurova Med J 2013; 38(2.000: 202-208

  8. Activation of G551D-CFTR by Bicyclooctane Compounds Is cAMP-dependent and Exhibits Low Sensitivity to Thiazolidinone CFTR Inhibitor CFTRinh-172

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; ZHAO Lu; HE Cheng-yan; XU Li-na; YANG Hong

    2005-01-01

    The G551D-CFTR mutation causing cystic fibrosis (CF) results from a missense mutation at codon 551(G551D) in the gene encoding of the cystic fibrosis transmembrane conductance regulator (CFTR). The G551D mutation in CFTR results in a reduced functional channel but G551D-CFTR is appropriately inserted in the apical membrane. In previous studies we discovered a class of high-affinity bicyclooctane (BCO)G551D-CFTR activators(G551DBCOs) with Kd down to 1μmol/L. In this study, we analyzed the pharmacological activation of G551D-CFTR by the G551DBcos by means of short circuit current analysis and cell-based fluorescence quenching assay. The G551DBCOs-induced G551D-CFTR activation is cAMP-dependent and is less sensitive to thiazolidinone CFTR inhibitor CFTRinh-172. These data suggest that (1) the phosphorylation of G551D-CFTR by protein kinase A is required for the activation by G551DBcos; (2) G551DBCos and CFTRinh-172 may act at the same site on the G551D-CFTR molecule.

  9. Islet-intrinsic effects of CFTR mutation.

    Science.gov (United States)

    Koivula, Fiona N Manderson; McClenaghan, Neville H; Harper, Alan G S; Kelly, Catriona

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population

  10. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis.

    Science.gov (United States)

    Hegyi, Péter; Wilschanski, Michael; Muallem, Shmuel; Lukacs, Gergely L; Sahin-Tóth, Miklós; Uc, Aliye; Gray, Michael A; Rakonczay, Zoltán; Maléth, József

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis. PMID:26856995

  11. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.

    Science.gov (United States)

    Pankow, Sandra; Bamberger, Casimir; Calzolari, Diego; Martínez-Bartolomé, Salvador; Lavallée-Adam, Mathieu; Balch, William E; Yates, John R

    2015-12-24

    Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (∆F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue ∆F508 CFTR cellular processing defects and function. A favourable change of ∆F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and ∆F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a ∆F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote ∆F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of ∆F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.

  12. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability.

    Science.gov (United States)

    Liu, Xuehong; Dawson, David C

    2014-09-01

    The G551D cystic fibrosis transmembrane conductance regulator (CFTR) mutation is associated with severe disease in ∼5% of cystic fibrosis patients worldwide. This amino acid substitution in NBD1 results in a CFTR chloride channel characterized by a severe gating defect that can be at least partially overcome in vitro by exposure to a CFTR potentiator. In contrast, the more common ΔF508 mutation is associated with a severe protein trafficking defect, as well as impaired channel function. Recent clinical trials demonstrated a beneficial effect of the CFTR potentiator, Ivacaftor (VX-770), on lung function of patients bearing at least one copy of G551D CFTR, but no comparable effect on ΔF508 homozygotes. This difference in efficacy was not surprising in view of the established difference in the molecular phenotypes of the two mutant channels. Recently, however, it was shown that the structural defect introduced by the deletion of F508 is associated with the thermal instability of ΔF508 CFTR channel function in vitro. This additional mutant phenotype raised the possibility that the differences in the behavior of ΔF508 and G551D CFTR, as well as the disparate efficacy of Ivacaftor, might be a reflection of the differing thermal stabilities of the two channels at 37 °C. We compared the thermal stability of G551D and ΔF508 CFTR in Xenopus oocytes in the presence and absence of CTFR potentiators. G551D CFTR exhibited a thermal instability that was comparable to that of ΔF508 CFTR. G551D CFTR, however, was protected from thermal instability by CFTR potentiators, whereas ΔF508 CFTR was not. These results suggest that the efficacy of VX-770 in patients bearing the G551D mutation is due, at least in part, to the ability of the small molecule to protect the mutant channel from thermal instability at human body temperature.

  13. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    signaling was defective in Cftr-/- murine calvarial osteoblasts. These results support that genetic inactivation of CFTR in osteoblasts contributes to low bone mass and that targeting osteoblasts may represent an effective strategy to treat CFBD.

  14. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.

    OpenAIRE

    Jessica LaRusch; Jinsei Jung; General, Ignacio J.; Lewis, Michele D; Hyun Woo Park; Brand, Randall E.; Andres Gelrud; Anderson, Michelle A.; Banks, Peter A; Darwin Conwell; Christopher Lawrence; Joseph Romagnuolo; John Baillie; Samer Alkaade; Gregory Cote

    2014-01-01

    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev ) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize tha...

  15. CFTR protein repair therapy in cystic fibrosis.

    Science.gov (United States)

    Quintana-Gallego, Esther; Delgado-Pecellín, Isabel; Calero Acuña, Carmen

    2014-04-01

    Cystic fibrosis is a single gene, autosomal recessive disorder, in which more than 1,900 mutations grouped into 6 classes have been described. It is an example a disease that could be well placed to benefit from personalised medicine. There are currently 2 very different approaches that aim to correct the basic defect: gene therapy, aimed at correcting the genetic alteration, and therapy aimed at correcting the defect in the CFTR protein. The latter is beginning to show promising results, with several molecules under development. Ataluren (PTC124) is a molecule designed to make the ribosomes become less sensitive to the premature stop codons responsible for class i mutations. Lumacaftor (VX-809) is a CFTR corrector directed at class ii mutations, among which Phe508del is the most frequent, with encouraging results. Ivacaftor (VX-770) is a potentiator, the only one marketed to date, which has shown good efficacy for the class iii mutation Gly551Asp in children over the age of 6 and adults. These drugs, or a combination of them, are currently undergoing various clinical trials for other less common genetic mutations. In the last 5 years, CFTR has been designated as a therapeutic target. Ivacaftor is the first drug to treat the basic defect in cystic fibrosis, but only provides a response in a small number of patients. New drugs capable of restoring the CFTR protein damaged by the most common mutations are required.

  16. Regulated recycling of mutant CFTR is partially restored by pharmacological treatment.

    Science.gov (United States)

    Holleran, John P; Zeng, Jianxin; Frizzell, Raymond A; Watkins, Simon C

    2013-06-15

    Efficient trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) to and from the cell surface is essential for maintaining channel density at the plasma membrane (PM) and ensuring proper physiological activity. The most common mutation, F508del, exhibits reduced surface expression and impaired function despite treatment with currently available pharmacological small molecules, called correctors. To gain more detailed insight into whether CFTR enters compartments that allow corrector stabilization in the cell periphery, we investigated the peripheral trafficking itineraries and kinetics of wild type (WT) and F508del in living cells using high-speed fluorescence microscopy together with fluorogen activating protein detection. We directly visualized internalization and accumulation of CFTR WT from the PM to a perinuclear compartment that colocalized with the endosomal recycling compartment (ERC) markers Rab11 and EHD1, reaching steady-state distribution by 25 minutes. Stimulation by protein kinase A (PKA) depleted this intracellular pool and redistributed CFTR channels to the cell surface, elicited by reduced endocytosis and active translocation to the PM. Corrector or temperature rescue of F508del also resulted in targeting to the ERC and exhibited subsequent PKA-stimulated trafficking to the PM. Corrector treatment (24 hours) led to persistent residence of F508del in the ERC, while thermally destabilized F508del was targeted to lysosomal compartments by 3 hours. Acute addition of individual correctors, C4 or C18, acted on peripheral trafficking steps to partially block lysosomal targeting of thermally destabilized F508del. Taken together, corrector treatment redirects F508del trafficking from a degradative pathway to a regulated recycling route, and proteins that mediate this process become potential targets for improving the efficacy of current and future correctors.

  17. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.

    Science.gov (United States)

    Palma, Alejandra G; Galizia, Luciano; Kotsias, Basilio A; Marino, Gabriela I

    2016-05-01

    Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases.

  18. CFTR: a hub for kinases and crosstalk of cAMP and Ca2+.

    Science.gov (United States)

    Kunzelmann, Karl; Mehta, Anil

    2013-09-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). The resulting disease is pleiotropic consistent with the idea that CFTR acts as a node within a network of signalling proteins. CFTR is not only a regulator of multiple transport proteins and controlled by numerous kinases but also participates in many signalling pathways that are disrupted after expression of its commonest mutant (F508del-CFTR). It operates in membrane compartments creating a scaffold for cytoskeletal elements, surface receptors, kinases and phosphodiesterases. CFTR is exposed to membrane-local second messengers such that a CFTR-interacting, low cellular energy sensor kinase (AMP- and ADP-activated kinase, AMPK) signals through a high energy phosphohistidine protein kinase (nucleoside diphosphate kinase, NDPK). CFTR also translocates a Ca(2+)-dependent adenylate cyclase to its proximity so that a rigid separation between cAMP-dependent and Ca(2+)-dependent regulation of Cl(-) transport becomes obsolete. In the presence of wild-type CFTR, parallel activation of CFTR and outwardly rectifying anoctamin 6 Cl(-) channels is observed, while the Ca(2+)-activated anoctamin 1 Cl(-) channel is inhibited. In contrast, in CF cells, CFTR is missing/mislocalized and the outwardly rectifying chloride channel is attenuated while Ca(2+)-dependent Cl(-) secretion (anoctamin 1) appears upregulated. Additionally, we consider the idea that F508del-CFTR when trapped in the endoplasmic reticulum augments IP3-mediated Ca(2+) release by providing a shunt pathway for Cl(-). CFTR and the IP3 receptor share the characteristic that they both assemble their partner proteins to increase the plasticity of their hub responses. In CF, the CFTR hub fails to form at the plasma membrane, with widespread detrimental consequences for cell signalling.

  19. Synonymous codon usage affects the expression of wild type and F508del CFTR.

    Science.gov (United States)

    Shah, Kalpit; Cheng, Yi; Hahn, Brian; Bridges, Robert; Bradbury, Neil A; Mueller, David M

    2015-03-27

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508 (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic-reticulum-associated degradation. This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements was expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady-state levels of the mRNA varied by as much as 30-fold. Experiments support that this apparent inconsistency is attributed to nonsense mediated decay independent of exon junction complex. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high-expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped endoplasmic-reticulum-associated degradation resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that codon usage has an effect on mRNA levels and protein expression, for CFTR, and likely on chaperone-assisted folding pathway, for F508del CFTR.

  20. CHD6 regulates the topological arrangement of the CFTR locus.

    Science.gov (United States)

    Sancho, Ana; Li, SiDe; Paul, Thankam; Zhang, Fan; Aguilo, Francesca; Vashisht, Ajay; Balasubramaniyan, Natarajan; Leleiko, Neal S; Suchy, Frederick J; Wohlschlegel, James A; Zhang, Weijia; Walsh, Martin J

    2015-05-15

    The control of transcription is regulated through the well-coordinated spatial and temporal interactions between distal genomic regulatory elements required for specialized cell-type and developmental gene expression programs. With recent findings CFTR has served as a model to understand the principles that govern genome-wide and topological organization of distal intra-chromosomal contacts as it relates to transcriptional control. This is due to the extensive characterization of the DNase hypersensitivity sites, modification of chromatin, transcription factor binding sites and the arrangement of these sites in CFTR consistent with the restrictive expression in epithelial cell types. Here, we identified CHD6 from a screen among several chromatin-remodeling proteins as a putative epigenetic modulator of CFTR expression. Moreover, our findings of CTCF interactions with CHD6 are consistent with the role described previously for CTCF in CFTR regulation. Our results now reveal that the CHD6 protein lies within the infrastructure of multiple transcriptional complexes, such as the FACT, PBAF, PAF1C, Mediator, SMC/Cohesion and MLL complexes. This model underlies the fundamental role CHD6 facilitates by tethering cis-acting regulatory elements of CFTR in proximity to these multi-subunit transcriptional protein complexes. Finally, we indicate that CHD6 structurally coordinates a three-dimensional stricture between intragenic elements of CFTR bound by several cell-type specific transcription factors, such as CDX2, SOX18, HNF4α and HNF1α. Therefore, our results reveal new insights into the epigenetic regulation of CFTR expression, whereas the manipulation of CFTR gene topology could be considered for treating specific indications of cystic fibrosis and/or pancreatitis.

  1. Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells

    Directory of Open Access Journals (Sweden)

    Droogmans Guy

    2001-05-01

    Full Text Available Abstract Background This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC. Results MAEC cells express CFTR transcripts as shown by RT-PCR analysis. Application of a phosphorylating cocktail activated a Cl- current with characteristics similar to those of CFTR mediated currents in other cells types (slow activation by cAMP, absence of rectification, block by glibenclamide. The current is present in trp4 +/+ MAEC, but not in trp4 -/- cells, although the expression of CFTR seems unchanged in the trp4 deficient cells as judged from RT-PCR analysis. Conclusions It is concluded that TRP4 is necessary for CFTR activation in endothelium, possibly by providing a scaffold for the formation of functional CFTR channels.

  2. Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Crane

    2015-04-01

    Full Text Available Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources—potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC lines. We then utilized zinc-finger nucleases (ZFNs, designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR. We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.

  3. Toxicity of Depleted Uranium Dust Particles: Results of a New Model

    International Nuclear Information System (INIS)

    Depleted uranium (DU) is mostly composed of U-238, a naturally radioactive isotope. Concerning chemical toxicity, uranium, being a heavy metal, is known to have toxic effects on specific organs in the body, the kidneys in particular. Its effects are similar to those of other heavy metals, such as lead and cadmium. Scientific evidence resulting both from in vitro and in vivo analyses shows that current models of the mechanisms of toxicity of uranium dust are not fully satisfactory. They should be refined in order to obtain more effective responses and predictions regarding health effects. In particular, radiotoxicity potential of Depleted Uranium dust originated by military use of this material for ammunition must be re-evaluated taking into account the bystander effect, the dose enhancing effect and other minor phenomena. Uranium dust has both chemical and radiological toxicity: the synergistic aspect of the two effects has to be accounted for, in order to arrive to a complete description of the phenomenon. The combination of the two different toxicities (chemical and radiological) of depleted uranium is attempted here for the first time, approaching the long-term effects of Depleted Uranium, and in particular the carcinogenetic effects. A case study (Balkan war, 1999) is discussed. (Author)

  4. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions.

    Science.gov (United States)

    Wong, Marty Kwok-Shing; Pipil, Supriya; Kato, Akira; Takei, Yoshio

    2016-09-01

    Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney. PMID:27322796

  5. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR.

    Science.gov (United States)

    Trzcińska-Daneluti, Agata M; Chen, Anthony; Nguyen, Leo; Murchie, Ryan; Jiang, Chong; Moffat, Jason; Pelletier, Lawrence; Rotin, Daniela

    2015-06-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.

  6. Targeting the intracellular environment in cystic fibrosis: restoring autophagy as a novel strategy to circumvent the CFTR defect

    Directory of Open Access Journals (Sweden)

    Valeria Rachela Villella

    2013-01-01

    Full Text Available Cystic fibrosis (CF patients harboring the most common deletion mutation of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the plasma membrane even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1, a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the plasma membrane. We focus on the relationship between the improvement of peripheral proteostasis and CFTR plasma membrane stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent preclinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.

  7. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity.

    Science.gov (United States)

    Luz, Simão; Kongsuphol, Patthara; Mendes, Ana Isabel; Romeiras, Francisco; Sousa, Marisa; Schreiber, Rainer; Matos, Paulo; Jordan, Peter; Mehta, Anil; Amaral, Margarida D; Kunzelmann, Karl; Farinha, Carlos M

    2011-11-01

    Previously, the pleiotropic "master kinase" casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear impact on its processing and trafficking. Here, we investigated the effects of mutating these CK2 sites on CFTR abundance, maturation, and degradation coupled to effects on ion channel activity and surface expression. We report that CK2 inhibition significantly decreased processing of wild-type (wt) CFTR, with no effect on F508del CFTR. Eliminating phosphorylation at S422 and T1471 revealed antagonistic roles in CFTR trafficking: S422 activation versus T1471 inhibition, as evidenced by a severe trafficking defect for the T1471D mutant. Notably, mutation of Y512, a consensus sequence for the spleen tyrosine kinase (SYK) possibly acting in a CK2 context adjacent to the common CF-causing defect F508del, had a strong effect on both maturation and CFTR currents, allowing the identification of this kinase as a novel regulator of CFTR. These results reinforce the importance of CK2 and the S422 and T1471 residues for regulation of CFTR and uncover a novel regulation of CFTR by SYK, a recognized controller of inflammation.

  8. Targeting the Intracellular Environment in Cystic Fibrosis: Restoring Autophagy as a Novel Strategy to Circumvent the CFTR Defect.

    Science.gov (United States)

    Villella, Valeria Rachela; Esposito, Speranza; Bruscia, Emanuela M; Maiuri, Maria Chiara; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2013-01-01

    Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation. PMID:23346057

  9. Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Zhi-wei CAI; Jia LIU; Hong-yu LI; David N SHEPPARD

    2011-01-01

    The mutation F508del is the commonest cause of the genetic disease cystic fibrosis (CF). CF disrupts the function of many organs in the body, most notably the lungs, by perturbing salt and water transport across epithelial surfaces. F508del causes harm in two principal ways. First,the mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to its correct cellular location,the apical(lumen-facing) membrane of epithelial cells. Second, F508del perturbs the Cl- channel function of CFTR by disrupting channel gating. Here, we discuss the development of rational new therapies for CF that target F508del-CFTR.We highlight how structural studies provide new insight into the role of F508 in the regulation of channel gating by cycles of ATP binding and hydrolysis. We emphasize the use of high-throughput screening to identify lead compounds for therapy development.These compounds include CFTR correctors that restore the expression of F508del-CFTR at the apical membrane of epithelial cells and CFTR potentiators that rescue the F508del-CFTR gating defect. Initial results from clinical trials of CFTR correctors and potentiators augur well for the development of small molecule therapies that target the root cause of CF: mutations in CFTR.

  10. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Andreas; Hinterdorfer, Peter [Institute for Biophysics, University of Linz, A-4040 Linz (Austria); Nikova, Dessy; Lange, Tobias; Bruns, Reimer; Oberleithner, Hans; Schillers, Hermann [Institute of Physiology II, University of Muenster, D-48149 Muenster (Germany); Haeberle, Johannes; Falk, Sabine; Duebbers, Angelika [Department of Pediatrics, University Hospitals of Muenster, D-48149 Muenster (Germany)], E-mail: schille@uni-muenster.de

    2008-09-24

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl{sup -}) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  11. Advancing clinical development pathways for new CFTR modulators in cystic fibrosis.

    Science.gov (United States)

    Mayer-Hamblett, Nicole; Boyle, Michael; VanDevanter, Donald

    2016-05-01

    Cystic fibrosis (CF) is a life-shortening genetic disease affecting approximately 70,000 individuals worldwide. Until recently, drug development efforts have emphasised therapies treating downstream signs and symptoms resulting from the underlying CF biological defect: reduced function of the CF transmembrane conductance regulator (CFTR) protein. The current CF drug development landscape has expanded to include therapies that enhance CFTR function by either restoring wild-type CFTR protein expression or increasing (modulating) the function of mutant CFTR proteins in cells. To date, two systemic small-molecule CFTR modulators have been evaluated in pivotal clinical trials in individuals with CF and specific mutant CFTR genotypes that have led to regulatory review and/or approval. Advances in the discovery of CFTR modulators as a promising new class of therapies have been impressive, yet work remains to develop highly effective, disease-modifying modulators for individuals of all CF genotypes. The objectives of this review are to outline the challenges and opportunities in drug development created by systemic genotype-specific CFTR modulators, highlight the advantages of sweat chloride as an established biomarker of CFTR activity to streamline early-phase development and summarise options for later phase clinical trial designs that respond to the adoption of approved genotype-specific modulators into standard of care. An optimal development framework will be needed to move the most promising therapies efficiently through the drug development pipeline and ultimately deliver efficacious and safe therapies to all individuals with CF.

  12. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.

    Science.gov (United States)

    Odolczyk, Norbert; Fritsch, Janine; Norez, Caroline; Servel, Nathalie; da Cunha, Melanie Faria; Bitam, Sara; Kupniewska, Anna; Wiszniewski, Ludovic; Colas, Julien; Tarnowski, Krzysztof; Tondelier, Danielle; Roldan, Ariel; Saussereau, Emilie L; Melin-Heschel, Patricia; Wieczorek, Grzegorz; Lukacs, Gergely L; Dadlez, Michal; Faure, Grazyna; Herrmann, Harald; Ollero, Mario; Becq, Frédéric; Zielenkiewicz, Piotr; Edelman, Aleksander

    2013-10-01

    The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.

  13. RNA interference for CFTR attenuates lung fluid absorption at birth in rats

    Directory of Open Access Journals (Sweden)

    Folkesson Hans G

    2008-07-01

    Full Text Available Abstract Background Small interfering RNA (siRNA against αENaC (α-subunit of the epithelial Na channel and CFTR (cystic fibrosis transmembrane conductance regulator was used to explore ENaC and CTFR function in newborn rat lungs. Methods Twenty-four hours after trans-thoracic intrapulmonary (ttip injection of siRNA-generating plasmid DNA (pSi-0, pSi-4, or pSi-C2, we measured CFTR and ENaC expression, extravascular lung water, and mortality. Results αENaC and CFTR mRNA and protein decreased by ~80% and ~85%, respectively, following αENaC and CFTR silencing. Extravascular lung water and mortality increased after αENaC and CFTR-silencing. In pSi-C2-transfected isolated DLE cells there were attenuated CFTR mRNA and protein. In pSi-4-transfected DLE cells αENaC mRNA and protein were both reduced. Interestingly, CFTR-silencing also reduced αENaC mRNA and protein. αENaC silencing, on the other hand, only slightly reduced CFTR mRNA and protein. Conclusion Thus, ENaC and CFTR are both involved in the fluid secretion to absorption conversion around at birth.

  14. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    Science.gov (United States)

    Ebner, Andreas; Nikova, Dessy; Lange, Tobias; Häberle, Johannes; Falk, Sabine; Dübbers, Angelika; Bruns, Reimer; Hinterdorfer, Peter; Oberleithner, Hans; Schillers, Hermann

    2008-09-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl-) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  15. SNaPshot assay for the detection of the most common CFTR mutations in infertile men.

    Directory of Open Access Journals (Sweden)

    Predrag Noveski

    Full Text Available Congenital bilateral absence of vas deferens (CBAVD is the most common CFTR-related disorder (CFTR-RD that explains about 1-2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA and 1717-1G->A and IVS8polyT variants. The assay was validated on 50 previously genotyped samples and was used to screen a total of 369 infertile men with different impairment of spermatogenesis and 136 fertile controls. Our results show that double heterozygosity of cystic fibrosis (CF and CFTR-related disorder (CFTR-RD mutations are found in a high percentage (22.7% of infertile men with obstructive azoospermia, but not in other studied groups of infertile men. The SNaPshot assay described here is an inexpensive, fast and robust method for primary screening of the most common CFTR mutations both in patients with classical CF and CFTR-RD. It can contribute to better understanding of the role of CFTR mutations in impaired spermatogenesis, ultimately leading to improved management of infertile men.

  16. Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-04-28

    The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolyte (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.

  17. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Sunny Yang XIANG; Linda L YE; LI-lu Marie DUAN; Li-hui LIU; Zhi-dong GE; John A AUCHAMPACH; Garrett J GROSS; Dayue Darrel DUAN

    2011-01-01

    Aim: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postcondtioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury.Methods: CFTR knockout (CFTR-/-) mice and age- and gender-matched wild-type (CFTR+/+) and heterozygous (CFTR+/-) mice were used.In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined.Results: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR+/+) (from 40.4%±5.3% to 10.4%±2.0%, n=8, P<0.001) and heterozygous (CFTR+/-) littermates (from 39.4%±2.4% to 15.4%±5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR-/-) mice from I/R induced myocardial infarction (46.9%±6.2% vs 55.5%±7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTRgene abolished the protective effects of IPC against I/R-induced apoptosis.Conclusion: These results provide compelling evidence for a critical role for CFTR Cl- channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.

  18. Investigating CFTR and KCa3.1 Protein/Protein Interactions.

    Science.gov (United States)

    Klein, Hélène; Abu-Arish, Asmahan; Trinh, Nguyen Thu Ngan; Luo, Yishan; Wiseman, Paul W; Hanrahan, John W; Brochiero, Emmanuelle; Sauvé, Rémy

    2016-01-01

    In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on

  19. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    Directory of Open Access Journals (Sweden)

    Bates Jason HT

    2004-07-01

    Full Text Available Abstract Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung.

  20. Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator.

    Science.gov (United States)

    Tripathi, Rashmi; Benz, Nathalie; Culleton, Bridget; Trouvé, Pascal; Férec, Claude

    2014-01-01

    The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is

  1. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins.

    Science.gov (United States)

    Gee, Heon Yung; Kim, Joo Young; Lee, Min Goo

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic transmembrane protein that functions as a cAMP-activated anion channel at the apical membrane of epithelial cells. Mutations in CFTR cause cystic fibrosis and are also associated with monosymptomatic diseases in the lung, pancreas, intestines, and vas deferens. Many disease-causing CFTR mutations, including the deletion of a single phenylalanine residue at position 508 (ΔF508-CFTR), result in protein misfolding and trafficking defects. Therefore, intracellular trafficking of wild-type and mutant CFTR has been studied extensively, and results from these studies significantly contribute to our general understanding of mechanisms involved in the cell-surface trafficking of membrane proteins. CFTR is a glycoprotein that undergoes complex N-glycosylation as it passes through Golgi-mediated conventional exocytosis. Interestingly, results from recent studies revealed that CFTR and other membrane proteins can reach the plasma membrane via an unconventional alternative route that bypasses Golgi in specific cellular conditions. Here, we describe methods that have been used to investigate the conventional and unconventional surface trafficking of CFTR. With appropriate modifications, the protocols described in this chapter can also be applied to studies investigating the intracellular trafficking of other plasma membrane proteins.

  2. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    Science.gov (United States)

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  3. Contamination with radionuclides and depleted uranium as a result of NATO aggression against Yugoslavia

    International Nuclear Information System (INIS)

    It appears that the amount of depleted uranium (DU) is approaching 106 tons at world level. Depleted uranium is a by-product in uranium enrichment process. As such, and at the same time being low radioactive, DU has legal status of low-level radioactive waste. On the other hand, DU is natural present in nature. This is the reason why many claim that it cannot produce major damage if discharged in the environment and that it can be used for ammunition construction material. To regret, DU due to its remarkable physical and mechanical properties has been widely used for the military purposes only. Nowadays many armies have it as a part of standard ammunition stock. To much less extend, it has been used as a shield for various types of armored vehicles. So far, DU has been extensively used on a large scale at several locations on the globe. The most important ones are the test area in Mohave Desert, USA, Gulf War, Iraq, Bosnia and Herzegovina and most recently NATO aggression on Yugoslavia. As a result of extensive DU use, there are many pro and contras regarding DU harmful effects on the environment and life in general. On the subject expert opinion strongly disagree, while public opinion is very much against its use, in particular for military purpose.From the existing experience on the DU impact on the life and environment it is evident that DU can create harmful effects. So far, humans were of prime importance and most of the observations, results and discussions refer to humans, but also there is a growing concern for the biota in general. This paper summarizes some of the known facts regarding depleted uranium, its use as a material for ammunition manufacturing and possible harmful affects in connection with it. Paper also suggests some of the measures that could be considered to follow and remedy the current DU contamination of Kosovo and Metohija, and some other spots in FR Yugoslavia. (author)

  4. Tgf-β1 inhibits Cftr biogenesis and prevents functional rescue of ΔF508-Cftr in primary differentiated human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Steven M Snodgrass

    Full Text Available CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(- channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508 leads to a biosynthetic processing defect of CFTR. Correction of the defect and delivery of ΔF508-CFTR to the cell surface has been highly anticipated as a disease modifying therapy. Compared to promising results in cultured cell this approach was much less effective in CF patients in an early clinical trial. Although the cause of failure to rescue ΔF508-CFTR in the clinical trial has not been determined, presence of factor(s that interfere with the rescue in vivo could be considered. The cytokine TGF-β1 is frequently elevated in CF patients. TGF-β1 has pleiotropic effects in different disease models and genetic backgrounds and little is known about TGF-β1 effects on CFTR in human airway epithelial cells. Moreover, there are no published studies examining TGF-β1 effects on the functional rescue of ΔF508-CFTR. Here we found that TGF-β1 inhibits CFTR biogenesis by reducing mRNA levels and protein abundance in primary differentiated human bronchial epithelial (HBE cells from non-CF individuals. TGF-β1 inhibits CFTR biogenesis without compromising the epithelial phenotype or integrity of HBE cells. TGF-β1 also inhibits biogenesis and impairs the functional rescue of ΔF508-CFTR in HBE cells from patients homozygous for the ΔF508 mutation. Our data indicate that activation of TGF-β1 signaling may inhibit CFTR function in non-CF individuals and may interfere with therapies directed at correcting the processing defect of ΔF508-CFTR in CF patients.

  5. Involvement of CFTR in Uterine Bicarbonate Secretion and the Fertilizing Capacity of Sperm

    Institute of Scientific and Technical Information of China (English)

    WangXiao,Fei; ZhouChen-Xi; ShiQi-Xian; YuanYu-Ying; YuMei-Kuen; LouisChukwuemekaAjonuma

    2005-01-01

    Cystic fibrosis transmembrane conductance regulator (CFFR)is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells,mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis(CF).Although CFTR has been implicated in bicarbonate secretion,its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown.We demonstrate here that endometriaI epithelial ceils possess a CFTR-mediated bicarbonate transport mechanism.Co-culture of sperm with endometrial ceils treated with antisense oligonucleotide against CFTR,or with bicarbonate secretion-defective CF epithelial cells,resulted in lower sperm capacitation and egg-fertilizing ability.These results are consistent with a critical role of CFTR in controlling uterine bicarbonate secretion and the fertilizing capacity of sperm,providing a link between defective CFTR and lower female fertility in CF.

  6. Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer.

    Science.gov (United States)

    Sun, Ting Ting; Wang, Yan; Cheng, Hong; Xiao, Hu Zhang; Xiang, Juan Juan; Zhang, Jie Ting; Yu, Siu Bun Sydney; Martin, Tracey Amanda; Ye, Lin; Tsang, Lai Ling; Jiang, Wen Guo; Xiaohua, Jiang; Chan, Hsiao Chang

    2014-03-01

    How mutations or dysfunction of CFTR may increase the risk of malignancies in various tissues remains an open question. Here we report the interaction between CFTR and an adherens junction molecule, AF-6/afadin, and its involvement in the development of colon cancer. We have found that CFTR and AF-6/afadin are co-localized at the cell-cell contacts and physically interact with each other in colon cancer cell lines. Knockdown of CFTR results in reduced epithelial tightness and enhanced malignancies, with increased degradation and reduced stability of AF-6/afadin protein. The enhanced invasive phenotype of CFTR-knockdown cells can be completely reversed by either AF-6/afadin over-expression or ERK inhibitor, indicating the involvement of AF-6/MAPK pathway. More interestingly, the expression levels of CFTR and AF-6/afadin are significantly downregulated in human colon cancer tissues and lower expression of CFTR and/or AF-6/afadin is correlated with poor prognosis of colon cancer patients. The present study has revealed a previously unrecognized interaction between CFTR and AF-6/afadin that is involved in the pathogenesis of colon cancer and indicated the potential of the two as novel markers of metastasis and prognostic predictors for human colon cancer.

  7. Solar Wind Effects on Plasma Density Depletions: C/NOFS Results with Related Observations from DMSP

    Science.gov (United States)

    Burke, W. J.; Gentile, L. C.; Roddy, P. A.; Retterer, J. M.; Wilson, G. R.; de La Beaujardiere, O.; Su, Y.

    2010-12-01

    Before C/NOFS, the prevailing wisdom was that equatorial plasma bubbles (EPBs) were primarily a post-sunset phenomenon. Changes in the ionosphere after sunset create conditions favorable for instability formation as polarization electric fields increase near the terminator. Plasma irregularities that develop in the bottomside of the F-layer grow into large depletions that rise rapidly into the topside ionosphere. By two hours in local time after sunset the initial upward drift of the ionosphere reverses suppressing further development of instabilities. Tsunoda’s [1985] seasonal-longitudinal model predicted that EPB rates should peak near times when the equatorial declination and the dusk terminator are closely aligned. Under these conditions E-layer conductance vanishes at both ends of flux tubes simultaneously, allowing EPBs to grow most rapidly. We validated this model during the recent solar maximum. In this unusual solar minimum, however, C/NOFS has encountered very few post-sunset depletions. They commonly appear between local midnight and dawn. We trace the energy flow from the Sun to the Earth to demonstrate that C/NOFS measurements are providing key insights into the dynamics of the Ionosphere-Thermosphere system. Results suggest that systematic effects of solar wind / IMF on dynamics of equatorial plasmas and electric fields may allow long-term alerts about impending ionospheric disturbances that lead to scintillation activity. Reference: Tsunoda, R. T. (1985), J. Geophys. Res., 90, 447.

  8. Regulation of Plasma Membrane Recycling by CFTR

    Science.gov (United States)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  9. Ileal mucosal bile acid absorption is increased in Cftr knockout mice

    Directory of Open Access Journals (Sweden)

    Somasundaram Sivagurunathan

    2001-10-01

    Full Text Available Abstract Background Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis. Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid malabsorption in these individuals. However, the molecular basis of this defect is unknown. This study examines the expression of the ileal bile acid transporter protein (IBAT and rates of diffusional (sodium independent and active (sodium dependent uptake of the radiolabeled bile acid taurocholate in mice with targeted disruption of the cftr gene. Methods Wild-type, heterozygous cftr (+/- and homozygous cftr (-/- mice were studied. Five one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel rods and incubated in buffer containing tracer 3H-taurocholate. Simultaneously, adjacent segments of terminal ileum were taken and processed for immunohistochemistry and Western blots using an antibody against the IBAT protein. Results In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/- and two-fold higher in cftr (+/- mice compared to wild-type mice. Passive uptake was not significantly higher in cftr (-/- mice than in controls. IBAT protein was comparably increased. Immuno-staining revealed that the greatest increases occurred in the crypts of cftr (-/- animals. Conclusions In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in cftr (-/- mice > cftr (+/- > wild-type mice. These findings indicate that bile acid malabsorption in cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function.

  10. The K+ channel opener 1-EBIO potentiates residual function of mutant CFTR in rectal biopsies from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Eva K Roth

    Full Text Available BACKGROUND: The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF. Previous studies demonstrated that the K⁺ channel opener 1-ethyl-2-benzimidazolone (1-EBIO potentiates CFTR-mediated Cl⁻ secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown. METHODS: We studied the effects of 1-EBIO on CFTR-mediated Cl⁻ secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl⁻ secretion. RESULTS: Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl⁻ secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl⁻ secretion by 39.2±6.7% (P<0.001 via activation of basolateral Ca²⁺-activated and clotrimazole-sensitive KCNN4 K⁺ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl⁻ secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001, but had no effect on tissues lacking CFTR-mediated Cl⁻ conductance. CONCLUSIONS: We conclude that 1-EBIO potentiates Cl⁻secretion in native CF tissues expressing CFTR mutants with residual Cl⁻ channel function by activation of basolateral KCNN4 K⁺ channels that increase the driving force for luminal Cl⁻ exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.

  11. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  12. The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR function.

    Directory of Open Access Journals (Sweden)

    Angel G Valdivieso

    Full Text Available Cystic fibrosis (CF is a frequent and lethal autosomal recessive disease. It results from different possible mutations in the CFTR gene, which encodes the CFTR chloride channel. We have previously studied the differential expression of genes in CF and CF corrected cell lines, and found a reduced expression of MTND4 in CF cells. MTND4 is a mitochondrial gene encoding the MTND4 subunit of the mitochondrial Complex I (mCx-I. Since this subunit is essential for the assembly and activity of mCx-I, we have now studied whether the activity of this complex was also affected in CF cells. By using Blue Native-PAGE, the in-gel activity (IGA of the mCx-I was found reduced in CFDE and IB3-1 cells (CF cell lines compared with CFDE/6RepCFTR and S9 cells, respectively (CFDE and IB3-1 cells ectopically expressing wild-type CFTR. Moreover, colon carcinoma T84 and Caco-2 cells, which express wt-CFTR, either treated with CFTR inhibitors (glibenclamide, CFTR(inh-172 or GlyH101 or transfected with a CFTR-specific shRNAi, showed a significant reduction on the IGA of mCx-I. The reduction of the mCx-I activity caused by CFTR inhibition under physiological or pathological conditions may have a profound impact on mitochondrial functions of CF and non-CF cells.

  13. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  14. Unravelling druggable signalling networks that control F508del-CFTR proteostasis.

    Science.gov (United States)

    Hegde, Ramanath Narayana; Parashuraman, Seetharaman; Iorio, Francesco; Ciciriello, Fabiana; Capuani, Fabrizio; Carissimo, Annamaria; Carrella, Diego; Belcastro, Vincenzo; Subramanian, Advait; Bounti, Laura; Persico, Maria; Carlile, Graeme; Galietta, Luis; Thomas, David Y; Di Bernardo, Diego; Luini, Alberto

    2015-12-23

    Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether 'classical' signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect.

  15. CFTR Deletion in Mouse Testis Induces VDAC1 Mediated Inflammatory Pathway Critical for Spermatogenesis

    Science.gov (United States)

    Huijuan, Liao; Jiang, Xie; Ming, Yang; Huaqin, Sun; Wenming, Xu

    2016-01-01

    Cystic fibrosis is the most common genetic disease among Caucasians and affects tissues including lung, pancreas and reproductive tracts. It has been shown that Endoplasmic Reticulum (ER) stress and heat shock response are two major deregulated functional modules related to CFTR dysfunction. To identify the impact of CFTR deletion during spermatogenesis, we examined the expression of spermiogenesis-related genes in the testis of CFTR mutant mice (CF mice). We confirmed expression changes of MSY2, a germ cell specific RNA binding protein, resulting from deletion of CFTR in testis. Furthermore, real time PCR and Western blot results showed that an inflammatory response was activated in CF mice testis, as reflected by the altered expression of cytokines. We demonstrate for the first time that expression of MSY2 is decreased in CF mice. Our results suggest that CFTR deletion in testis influences inflammatory responses and these features are likely to be due to the unique environment of the seminiferous tubule during the spermatogenesis process. The current study also suggests avenues to understand the pathophysiology of CFTR during spermatogenesis and provides targets for the possible treatment of CFTR-related infertility. PMID:27483469

  16. CFTR Deletion in Mouse Testis Induces VDAC1 Mediated Inflammatory Pathway Critical for Spermatogenesis.

    Science.gov (United States)

    Yan, Chen; Lang, Qin; Huijuan, Liao; Jiang, Xie; Ming, Yang; Huaqin, Sun; Wenming, Xu

    2016-01-01

    Cystic fibrosis is the most common genetic disease among Caucasians and affects tissues including lung, pancreas and reproductive tracts. It has been shown that Endoplasmic Reticulum (ER) stress and heat shock response are two major deregulated functional modules related to CFTR dysfunction. To identify the impact of CFTR deletion during spermatogenesis, we examined the expression of spermiogenesis-related genes in the testis of CFTR mutant mice (CF mice). We confirmed expression changes of MSY2, a germ cell specific RNA binding protein, resulting from deletion of CFTR in testis. Furthermore, real time PCR and Western blot results showed that an inflammatory response was activated in CF mice testis, as reflected by the altered expression of cytokines. We demonstrate for the first time that expression of MSY2 is decreased in CF mice. Our results suggest that CFTR deletion in testis influences inflammatory responses and these features are likely to be due to the unique environment of the seminiferous tubule during the spermatogenesis process. The current study also suggests avenues to understand the pathophysiology of CFTR during spermatogenesis and provides targets for the possible treatment of CFTR-related infertility. PMID:27483469

  17. Depleted uranium in Kosovo: results of a survey by gamma spectrometry on soil samples.

    Science.gov (United States)

    Uyttenhove, J; Lemmens, M; Zizi, M

    2002-10-01

    The presence of depleted uranium in the soil of former Yugoslavia after the 1999 conflict raised great public concern all over the world. The so-called Balkan-syndrome is often linked with depleted uranium contamination. An excellent compilation of data about DU and its possible impact on health and environment can be found in the 1999 UNEP report and publications from the Swedish Radiation Protection Institute. Unfortunately, very few systematic and reliable data on the possible depleted uranium concentrations were until now available. Some of these rare data are only available on the web, without adequate information about the experimental procedure used. To clarify the situation, a systematic survey was started in the summer of 2000 as a collaborative effort between Ghent University (Physics Laboratory) and the Belgian Ministry of Defense (Medical Service). From 50 sites selected all over Kosovo, 150 soil samples were measured in the laboratory with a high-resolution gamma-spectrometer. Some sites (14) were explicitly selected based on military information on the use of depleted uranium munitions in the vicinity. After careful analysis we can conclude that there is no indication of any depleted uranium contamination on these 50 sites with a minimal detectable activity of 15 Bq; this corresponds approximately to 1 mg depleted uranium in a typical sample (100-150 g). PMID:12240731

  18. MAST205 competes with cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand for binding to CFTR to regulate CFTR-mediated fluid transport.

    Science.gov (United States)

    Ren, Aixia; Zhang, Weiqiang; Yarlagadda, Sunitha; Sinha, Chandrima; Arora, Kavisha; Moon, Chang-Suk; Naren, Anjaparavanda P

    2013-04-26

    The PDZ (postsynaptic density-95/discs large/zona occludens-1) domain-based interactions play important roles in regulating the expression and function of the cystic fibrosis transmembrane conductance regulator (CFTR). Several PDZ domain-containing proteins (PDZ proteins for short) have been identified as directly or indirectly interacting with the C terminus of CFTR. To better understand the regulation of CFTR processing, we conducted a genetic screen and identified MAST205 (a microtubule-associated serine/threonine kinase with a molecular mass of 205 kDa) as a new CFTR regulator. We found that overexpression of MAST205 increased the expression of CFTR and augmented CFTR-mediated fluid transport in a dose-dependent manner. Conversely, knockdown of MAST205 inhibited CFTR function. The PDZ motif of CFTR is required for the regulatory role of MAST205 in CFTR expression and function. We further demonstrated that MAST205 and the CFTR-associated ligand competed for binding to CFTR, which facilitated the processing of CFTR and consequently up-regulated the expression and function of CFTR at the plasma membrane. More importantly, we found that MAST205 could facilitate the processing of F508del-CFTR mutant and augment its quantity and channel function at the plasma membrane. Taken together, our data suggest that MAST205 plays an important role in regulating CFTR expression and function. Our findings have important clinical implications for treating CFTR-associated diseases such as cystic fibrosis and secretory diarrheas.

  19. Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR.

    Science.gov (United States)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-07-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.

  20. COMMD1-mediated ubiquitination regulates CFTR trafficking.

    Directory of Open Access Journals (Sweden)

    Loïc Drévillon

    Full Text Available The CFTR (cystic fibrosis transmembrane conductance regulator protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.

  1. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  2. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer.

    Science.gov (United States)

    Xie, C; Jiang, X H; Zhang, J T; Sun, T T; Dong, J D; Sanders, A J; Diao, R Y; Wang, Y; Fok, K L; Tsang, L L; Yu, M K; Zhang, X H; Chung, Y W; Ye, L; Zhao, M Y; Guo, J H; Xiao, Z J; Lan, H Y; Ng, C F; Lau, K M; Cai, Z M; Jiang, W G; Chan, H C

    2013-05-01

    Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is expressed in the epithelial cells of a wide range of organs/tissues from which most cancers are derived. Although accumulating reports have indicated the association of cancer incidence with genetic variations in CFTR gene, the exact role of CFTR in cancer development and the possible underlying mechanism have not been elucidated. Here, we report that CFTR expression is significantly decreased in both prostate cancer cell lines and human prostate cancer tissue samples. Overexpression of CFTR in prostate cancer cell lines suppresses tumor progression (cell growth, adhesion and migration), whereas knockdown of CFTR leads to enhanced malignancies both in vitro and in vivo. In addition, we demonstrate that CFTR knockdown-enhanced cell proliferation, cell invasion and migration are significantly reversed by antibodies against either urokinase plasminogen activator (uPA) or uPA receptor (uPAR), which are known to be involved in various malignant traits of cancer development. More interestingly, overexpression of CFTR suppresses uPA by upregulating the recently described tumor suppressor microRNA-193b (miR-193b), and overexpression of pre-miR-193b significantly reverses CFTR knockdown-enhanced malignant phenotype and abrogates elevated uPA activity in prostate cancer cell line. Finally, we show that CFTR gene transfer results in significant tumor repression in prostate cancer xenografts in vivo. Taken together, the present study has demonstrated a previously undefined tumor-suppressing role of CFTR and its involvement in regulation of miR-193b in prostate cancer development. PMID:22797075

  3. Personalized medicine in cystic fibrosis: genistein supplementation as a treatment option for patients with a rare S1045Y-CFTR mutation.

    Science.gov (United States)

    Arora, Kavisha; Yarlagadda, Sunitha; Zhang, Weiqiang; Moon, ChangSuk; Bouquet, Erin; Srinivasan, Saumini; Li, Chunying; Stokes, Dennis C; Naren, Anjaparavanda P

    2016-08-01

    Cystic fibrosis (CF) is a life-shortening disease caused by the mutations that generate nonfunctional CF transmembrane conductance regulator (CFTR) protein. A rare serine-to-tyrosine (S1045Y) CFTR mutation was earlier reported to result in CF-associated fatality. We identified an African-American patient with the S1045Y mutation in CFTR, as well as a stop-codon mutation, who has a mild CF phenotype. The underlying mechanism of CF caused by S1045Y-CFTR has not been elucidated. In this study, we determined that S1045Y-CFTR exhibits twofold attenuated function compared with wild-type (WT)-CFTR. We report that serine-to-tyrosine mutation leads to increased tyrosine phosphorylation of S1045Y-CFTR, followed by recruitment and binding of E3-ubiquitin ligase c-cbl, resulting in enhanced ubiquitination and passage of S1045Y-CFTR in the endosome/lysosome degradative compartments. We demonstrate that inhibition of tyrosine phosphorylation partially rescues S1045Y-CFTR surface expression and function. Based on our findings, it could be suggested that consuming genistein (a tyrosine phosphorylation inhibitor) would likely ameliorate CF symptoms in individuals with S1045Y-CFTR, providing a unique personalized therapy for this rare CF mutation. PMID:27261451

  4. CFTR protein expression in human primary cells

    NARCIS (Netherlands)

    Meegen, M.A. van

    2016-01-01

    Subjects with cystic fibrosis (CF) display a great variability in clinical manifestations, even when they share the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype. CFTR genotyping has enabled the stratification of subjects associated with mild or severe CF disease. However,

  5. Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells.

    Science.gov (United States)

    Favia, Maria; Mancini, Maria T; Bezzerri, Valentino; Guerra, Lorenzo; Laselva, Onofrio; Abbattiscianni, Anna C; Debellis, Lucantonio; Reshkin, Stephan J; Gambari, Roberto; Cabrini, Giulio; Casavola, Valeria

    2014-07-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) carrying the F508del mutation is retained in endoplasmic reticulum and fails to traffic to the cell surface where it functions as a protein kinase A (PKA)-activated chloride channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect; however, the rescued F508del CFTR still displays reduced chloride permeability. Therefore, a combined administration of correctors and potentiators of the gating defect is ideal. We recently found that 4,6,4'-trimethylangelicin (TMA), besides inhibiting the expression of the IL-8 gene in airway cells in which the inflammatory response was challenged with Pseudomonas aeruginosa, also potentiates the cAMP/PKA-dependent activation of wild-type CFTR or F508del CFTR that has been restored to the plasma membrane. Here, we demonstrate that long preincubation with nanomolar concentrations of TMA is able to effectively rescue both F508del CFTR-dependent chloride secretion and F508del CFTR cell surface expression in both primary or secondary airway cell monolayers homozygous for F508del mutation. The correction effect of TMA seems to be selective for CFTR and persisted for 24 h after washout. Altogether, the results suggest that TMA, besides its anti-inflammatory and potentiator activities, also displays corrector properties.

  6. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition.

    Science.gov (United States)

    Luciani, Alessandro; Villella, Valeria Rachela; Esposito, Speranza; Brunetti-Pierri, Nicola; Medina, Diego; Settembre, Carmine; Gavina, Manuela; Pulze, Laura; Giardino, Ida; Pettoello-Mantovani, Massimo; D'Apolito, Maria; Guido, Stefano; Masliah, Eliezer; Spencer, Brian; Quaratino, Sonia; Raia, Valeria; Ballabio, Andrea; Maiuri, Luigi

    2010-09-01

    Accumulation of unwanted/misfolded proteins in aggregates has been observed in airways of patients with cystic fibrosis (CF), a life-threatening genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show how the defective CFTR results in defective autophagy and decreases the clearance of aggresomes. Defective CFTR-induced upregulation of reactive oxygen species (ROS) and tissue transglutaminase (TG2) drive the crosslinking of beclin 1, leading to sequestration of phosphatidylinositol-3-kinase (PI(3)K) complex III and accumulation of p62, which regulates aggresome formation. Both CFTR knockdown and the overexpression of green fluorescent protein (GFP)-tagged-CFTR(F508del) induce beclin 1 downregulation and defective autophagy in non-CF airway epithelia through the ROS-TG2 pathway. Restoration of beclin 1 and autophagy by either beclin 1 overexpression, cystamine or antioxidants rescues the localization of the beclin 1 interactome to the endoplasmic reticulum and reverts the CF airway phenotype in vitro, in vivo in Scnn1b-transgenic and Cftr(F508del) homozygous mice, and in human CF nasal biopsies. Restoring beclin 1 or knocking down p62 rescued the trafficking of CFTR(F508del) to the cell surface. These data link the CFTR defect to autophagy deficiency, leading to the accumulation of protein aggregates and to lung inflammation.

  7. Cystic fibrosis transmembrane conductance regulator (CFTR gene abnormalities in Indian males with congenital bilateral absence of vas deferens & renal anomalies

    Directory of Open Access Journals (Sweden)

    Rahul Gajbhiye

    2016-01-01

    Results: Three potential regulatory CFTR gene variants (c.1540A>G, c.2694T>G and c.4521G>A were detected along with IVS8-5T mutation in three infertile males with CBAVD-URA. Five novel CFTR gene variants (c.621+91A>G, c.2752+106A>T, c.2751+85_88delTA, c.3120+529InsC and c.4375-69C>T, four potential regulatory CFTR gene variants (M470V, T854T, P1290P, Q1463Q and seven previously reported CFTR gene variants (c.196+12T>C, c.875+40A>G, c.3041-71G>C, c.3271+42A>T, c.3272-93T>C, c.3500-140A>C and c.3601-65C>A were detected in infertile men having CBAVD and renal anomalies Interpretation & conclusions: Based on our findings, we speculate that CBAVD-URA may also be attributed to CFTR gene mutations and can be considered as CFTR-related disorder (CFTR-RD. The CFTR gene mutation screening may be offered to CBAVD-URA men and their female partners undergoing ICSI. Further studies need to be done in a large sample to confirm the findings.

  8. Rare large homozygous CFTR gene deletion in an Iranian patient with cystic fibrosis

    OpenAIRE

    Farjadian, Shirin; Moghtaderi, Mozhgan; Zuntini, Roberta; Ferrari, Simona

    2014-01-01

    Cystic fibrosis, a common autosomal recessive genetic disorder among Caucasians, is caused by defects in the transmembrane conductance regulatory (CFTR) gene. The analysis of CFTR gene mutations is useful to better characterize the disease, and for preconceptional screening, prenatal and preimplantation genetic diagnosis. Here we report the results of a genetic analysis in a 16-year-old boy from southwestern Iran diagnosed as having cystic fibrosis in infancy based on gastrointestinal and pul...

  9. Side chain and backbone contributions of Phe508 to CFTR folding

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  10. Endocytic Trafficking of CFTR in Health and Disease

    OpenAIRE

    Ameen, Nadia; Silvis, Mark; Bradbury, Neil A.

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the debilitating genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR. Understanding how these complexes regulate the trafficking and fate of CFTR, provides a singular insight not only in...

  11. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome.

    Science.gov (United States)

    Chen, Hui; Guo, Jing Hui; Zhang, Xiao Hu; Chan, Hsiao Chang

    2015-05-01

    Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.

  12. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect.

    Science.gov (United States)

    Pizzo, Lucilla; Iriarte, Andrés; Alvarez-Valin, Fernando; Marín, Mónica

    2015-05-01

    Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease.

  13. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    Science.gov (United States)

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  14. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR.

    Directory of Open Access Journals (Sweden)

    Lavanya Rishishwar

    Full Text Available Cystic fibrosis (CF is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%, along with the best set of paired sensitivity (58% and specificity (60% values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly

  15. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Institute of Scientific and Technical Information of China (English)

    Hong YANG; Li-na XU; Cheng-yan HE; Xin LIU; Rou-yu FANG; Tong-hui MA

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants.Methods: A cell-based fluorescent assay to measure I- influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl- current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo.Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated l- influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay,the three compound enhanced Cl- currents in epithelia formed by CFTR-expressing FRT cells with EC5o values of 73±1.4, 56±1.7, and 50±0.5 μmol/L, respectively, and Rhein also enhanced Cl- current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimu-lated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity.Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potsntiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs.

  16. Experimental depletion of CD8+ cells in acutely SIVagm-Infected African Green Monkeys results in increased viral replication

    Directory of Open Access Journals (Sweden)

    Apetrei Cristian

    2010-05-01

    Full Text Available Abstract Background In vivo CD8+ cell depletions in pathogenic SIV infections identified a key role for cellular immunity in controlling viral load (VL and disease progression. However, similar studies gave discordant results in chronically-infected SMs, leading some authors to propose that in natural hosts, SIV replication is independent of cellular immunity. To assess the role of cellular immune responses in the control of SIV replication in natural hosts, we investigated the impact of CD8+ cell depletion during acute SIV infection in AGMs. Results Nine AGMs were infected with SIVagm.sab and were followed up to day 225 p.i. Four were intravenously infused with the cM-T807 antibody on days 0 (50 mg/kg, 6, and 13 (10 mg/kg, respectively post infection (p.i.. CD8+ cells were depleted for up to 28 days p.i. in peripheral blood and LNs in all treated AGMs. Partial CD8+ T cell depletion occurred in the intestine. SIVagm VLs peaked at similar levels in both groups (107-108 RNA copies/ml. However, while VLs were controlled in undepleted AGMs, reaching set-point levels (104-105 RNA copies/ml by day 28 p.i., high VLs (>106 RNA copies/ml were maintained by day 21 p.i. in CD8-depleted AGMs. By day 42 p.i., VLs were comparable between the two groups. The levels of immune activation and proliferation remained elevated up to day 72 p.i. in CD8-depleted AGMs and returned to preinfection levels in controls by day 28 p.i. None of the CD8-depleted animals progressed to AIDS. Conclusion CD8+ cells are responsible for a partial control of postacute viral replication in SIVagm.sab-infected AGMs. In contrast to macaques, the SIVagm-infected AGMs are able to control viral replication after recovery of the CD8+ T cells and avoid disease progression.

  17. A truncated CFTR protein rescues endogenous ΔF508-CFTR and corrects chloride transport in mice

    OpenAIRE

    Cormet-Boyaka, Estelle; Jeong S Hong; Berdiev, Bakhram K.; James A Fortenberry; Rennolds, Jessica; Clancy, J. P.; Benos, Dale J.; Boyaka, Prosper N.; Sorscher, Eric J.

    2009-01-01

    Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (ΔF508) in the CF transmembrane conductance regulator (CFTR) protein. The ΔF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of end...

  18. Pharmacological correctors of mutant CFTR mistrafficking

    Directory of Open Access Journals (Sweden)

    Nicoletta ePedemonte

    2012-10-01

    Full Text Available The lack of phenylalanine 508 (∆F508 mutation in the CFTR Cl- channel represents the most frequent cause of cystic fibrosis (CF, a genetic disease affecting multiple organs such lung, pancreas, and liver. ∆F508 causes instability and misfolding of CFTR protein leading to early degradation in the endoplasmic reticulum and accelerated removal from the plasma membrane. Pharmacological correctors of mutant CFTR protein have been identified by high-throughput screening of large chemical libraries, by in silico docking of virtual compounds on CFTR structure models, or by using compounds that affect the whole proteome (e.g. histone deacetylase inhibitors or a single CFTR-interacting protein. The presence of multiple defects caused at the CFTR protein level by ∆F508 mutation and the redundancy of quality control mechanisms detecting ∆F508-CFTR as a defective protein impose a ceiling to the maximal effect that a single compound (corrector may obtain. Therefore, treatment of patients with the most frequent CF mutation may require the optimized combination of two drugs having additive or synergic effects.

  19. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

    Science.gov (United States)

    Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J

    2016-01-22

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.

  20. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  1. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

    Science.gov (United States)

    Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.

    2016-01-01

    BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673

  2. Activation of CFTR-mediated Cl- Transport by Magnolin

    Institute of Scientific and Technical Information of China (English)

    JIN Ling-ling; LIU Xin; SUN Yan; LIN Sen; ZHOU Na; XU Li-na; YU BO; HOU Shu-guang; YANG Hong

    2008-01-01

    Magnolin is a herbal compound from Magnolia biondii Pamp.It possesses numerous biological activities.Cystic fibrosis transmembrane conductance regulator(CFTR)is all epithelial chloride channel that plays a key role in the fluid secretion of various exocrine organs.In the present study,the activation of CFTR-mediated chloride transport by magnolin is indentified and characterized.In CFTR stably trailsfected FRT cells.magnolin increases CFTR Cl- currents in a concentration-dependent manner.The activation of magnolin on CFTR is rapid,reversible,and cAMP-dependent.Magnolin does not elevate cellular cAMP level.indicating that it activates CFTR by direct binding and interaction with CFTR protein.Magnolin selectively activates wildtype CFTR rather than mutant CFTIL Magnolin may present a novel class of therapeutic lead compound for the treatment of diseases associated with reduced CFTR function such as keratoconjunctivitis sicca,idiopathic chronic pancreatiti,and chromc constipation.

  3. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  4. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jessica LaRusch

    2014-07-01

    Full Text Available CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev cause complete loss of CFTR function and result in cystic fibrosis (CF, a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002. Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005 and male infertility (OR 395, p<<0.0001. WNK1-SPAK pathway-activated increases in

  5. CFTR, PRSS1 und SPINK1 Varianten bei chronischer Pankreatitis

    OpenAIRE

    Rosendahl, Jonas

    2010-01-01

    Chronic pancreatitis (CP) is defined as a continuing or relapsing inflammatory disease of the pancreas, leading to endocrine and/or exocrine insufficiency and irreversible morphological changes. Currently, it is thought that the imbalance of pancreatic proteases and their inhibitors results in the development of chronic pancreatitis. Until now, genetic variations of four genes have been associated to chronic pancreatitis: PRSS1, PRSS2, SPINK1 and CFTR. Since direct DNA-sequencing has becom...

  6. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis.

    Science.gov (United States)

    Ernst, Wayne L; Shome, Kuntala; Wu, Christine C; Gong, Xiaoyan; Frizzell, Raymond A; Aridor, Meir

    2016-03-01

    Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.

  7. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.

    Science.gov (United States)

    Cui, Guiying; Rahman, Kazi S; Infield, Daniel T; Kuang, Christopher; Prince, Chengyu Z; McCarty, Nael A

    2014-08-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1-6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5'-(β,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues. PMID:25024266

  8. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Pignatti, P.F.; Bombien, C.; Marigo, C. [and others

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

  9. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.

    Science.gov (United States)

    Kim, Yonjung; Anderson, Marc O; Park, Jinhong; Lee, Min Goo; Namkung, Wan; Verkman, A S

    2015-10-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP.

  10. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Directory of Open Access Journals (Sweden)

    Dinić Jelena

    2007-01-01

    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  11. The GAP Portion of Pseudomonas Aeruginosa Type III Secreted Toxin ExoS Upregulates Total and Surface Levels of Wild Type CFTR

    Directory of Open Access Journals (Sweden)

    Deepali N. Tukaye

    2013-02-01

    Full Text Available Background: Pseudomonas aeruginosa (PA infections account for a large percentage of fatal hospital acquired pneumonias. One of the PA Type III secreted toxin (TTST ExoS, a bifunctional protein with N-terminal GTPase activating protein (GAP and C-terminal ADP rybosyl transferase (ADPRT activities, significantly contributes to PA virulence by targeting small molecular weight G-proteins (SMWGP. In this study, we have looked at one of the mechanisms by which the GAP portion of ExoS (ExoS-GAP mediates cellular toxicity. Methods: The effects of ExoS-GAP on CFTR trafficking were studied in CFBE41o- Kir 2.2 and MDCK cell lines stably expressing CFTR using a transient transfection system. Results: Transient transfection of ExoS-GAP increased the total and surface protein levels of mature wild type CFTR in epithelial cells stably expressing wild type (WT CFTR. The effect of ExoS-GAP was specific to CFTR in bronchial epithelial cells since it did not affect the total protein levels of Na+/K+ATPase, another membrane protein. A point mutation in the ExoS GAP domain (R146K, known to disrupt its catalytic GAP activity, abolished the effect of ExoS-GAP on WT CFTR. Lysosomal inhibition studies with Bafilomycin A1 indicate that ExoS-GAP decreased lysosomal degradation of the mature WT CFTR with concomitant increase in the total levels of mature WT CFTR. However, ExoS-GAP did not increase the total protein levels of ∆F508CFTR. Conclusion: The GAP portion of the PA TTST ExoS increases the total and surface levels of wild type CFTR in vitro mammalian cell system. The effect of ExoS-GAP on WT CFTR total protein levels provides new insight into understanding the virulent pathophysiology of PA infections.

  12. Dexamethasone regulates CFTR expression in Calu-3 cells with the involvement of chaperones HSP70 and HSP90.

    Directory of Open Access Journals (Sweden)

    Luiz Felipe M Prota

    Full Text Available BACKGROUND: Dexamethasone is widely used for pulmonary exacerbation in patients with cystic fibrosis, however, not much is known about the effects of glucocorticoids on the wild-type cystic fibrosis channel transmembrane regulator (CFTR. Our aim was to determine the effects of dexamethasone treatment on wild-type CFTR expression. METHODS AND RESULTS: Dose-response (1 nM to 10 µM and time course (3 to 48 h curves were generated for dexamethasone for mRNA expression in Calu-3 cells using a real-time PCR. Within 24 h, dexamethasone (10 nM showed a 0.3-fold decrease in CFTR mRNA expression, and a 3.2-fold increase in αENaC mRNA expression compared with control groups. Dexamethasone (10 nM induced a 1.97-fold increase in the total protein of wild-type CFTR, confirmed by inhibition by mifepristone. To access surface protein expression, biotinylation followed by Western blotting showed that dexamethasone treatment led to a 2.35-fold increase in the amount of CFTR in the cell surface compared with the untreated control groups. Once protein translation was inhibited with cycloheximide, dexamethasone could not increase the amount of CFTR protein. Protein stability was assessed by inhibition of protein synthesis with cycloheximide (50 µg/ml at different times in cells treated with dexamethasone and in untreated cells. Dexamethasone did not alter the degradation of wild-type CFTR. Assessment of the B band of CFTR within 15 min of metabolic pulse labeling showed a 1.5-fold increase in CFTR protein after treatment with dexamethasone for 24 h. Chaperone 90 (HSP90 binding to CFTR increased 1.55-fold after treatment with dexamethasone for 24 h, whereas chaperone 70 (HSP70 binding decreased 0.30 fold in an immunoprecipitation assay. CONCLUSION: Mature wild-type CFTR protein is regulated by dexamethasone post transcription, involving cotranslational mechanisms with HSP90 and HSP70, which enhances maturation and expression of wild-type CFTR.

  13. Modulation of CFTR gating by permeant ions.

    Science.gov (United States)

    Yeh, Han-I; Yeh, Jiunn-Tyng; Hwang, Tzyh-Chang

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is unique among ion channels in that after its phosphorylation by protein kinase A (PKA), its ATP-dependent gating violates microscopic reversibility caused by the intimate involvement of ATP hydrolysis in controlling channel closure. Recent studies suggest a gating model featuring an energetic coupling between opening and closing of the gate in CFTR's transmembrane domains and association and dissociation of its two nucleotide-binding domains (NBDs). We found that permeant ions such as nitrate can increase the open probability (Po) of wild-type (WT) CFTR by increasing the opening rate and decreasing the closing rate. Nearly identical effects were seen with a construct in which activity does not require phosphorylation of the regulatory domain, indicating that nitrate primarily affects ATP-dependent gating steps rather than PKA-dependent phosphorylation. Surprisingly, the effects of nitrate on CFTR gating are remarkably similar to those of VX-770 (N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide), a potent CFTR potentiator used in clinics. These include effects on single-channel kinetics of WT CFTR, deceleration of the nonhydrolytic closing rate, and potentiation of the Po of the disease-associated mutant G551D. In addition, both VX-770 and nitrate increased the activity of a CFTR construct lacking NBD2 (ΔNBD2), indicating that these gating effects are independent of NBD dimerization. Nonetheless, whereas VX-770 is equally effective when applied from either side of the membrane, nitrate potentiates gating mainly from the cytoplasmic side, implicating a common mechanism for gating modulation mediated through two separate sites of action. PMID:25512598

  14. Pathophysiologic consequences following inhibition of a CFTR-dependent developmental cascade in the lung

    Directory of Open Access Journals (Sweden)

    Larson Janet E

    2005-02-01

    Full Text Available Abstract Background Examination of late gestation developmental genes in vivo may be limited by early embryonic lethality and compensatory mechanisms. This problem is particularly apparent in evaluating the developmental role of the cystic fibrosis transmembrane conductance regulator (CFTR gene in the cystic fibrosis (CF phenotype. A previously described transient in utero knockout (TIUKO technology was used to address the developmental role of CFTR in the rat lung. Results Rat fetuses transiently treated with antisense cftr in utero developed pathology that replicated aspects of the human CF phenotype. The TIUKO CF rat developed lung fibrosis, chronic inflammation, reactive airway disease, and the CF Antigen (MRP8/14, a marker for CF in human patients, was expressed. Conclusions The transient in utero antisense technology can be used to evaluate genes that exhibit either early lethality or compensating gene phenotypes. In the lung CFTR is part of a developmental cascade for normal secretory cell differentiation. Absence of CFTR results in a constitutive inflammatory process that is involved in some aspects of CF pathophysiology.

  15. CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development

    Institute of Scientific and Technical Information of China (English)

    Yong Chao Lu; Alvin Chun Hang Ma; Anskar Yu Hung Leung; He Feng Huang; Hsiao Chang Chan; Hui Chen; Kin Lam Fok; Lai Ling Tsang; Mei Kuen Yu; Xiao Hu Zhang; Jing Chen; Xiaohua Jiang; Yiu Wa Chung

    2012-01-01

    Although HCO3-is known to be required for early embryo development,its exact role remains elusive.Here we report that HCO3-acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development.The results show that the effect of HCO3-on preimplantation embryo development can be suppressed by interfering the function of a HCO3--conducting channel,CFTR,by a specific inhibitor or gene knockout.Removal of extracellular HCO3-or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos.Knockdown of miR-125b mimics the effect of HCO3-removal and CFTR inhibition,while injection of miR-125b precursor reverses it.Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos.The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-KB.These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3-to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.

  16. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR.

    Science.gov (United States)

    Tosco, A; De Gregorio, F; Esposito, S; De Stefano, D; Sana, I; Ferrari, E; Sepe, A; Salvadori, L; Buonpensiero, P; Di Pasqua, A; Grassia, R; Leone, C A; Guido, S; De Rosa, G; Lusa, S; Bona, G; Stoll, G; Maiuri, M C; Mehta, A; Kroemer, G; Maiuri, L; Raia, V

    2016-08-01

    We previously reported that the combination of two safe proteostasis regulators, cysteamine and epigallocatechin gallate (EGCG), can be used to improve deficient expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients homozygous for the CFTR Phe508del mutation. Here we provide the proof-of-concept that this combination treatment restored CFTR function and reduced lung inflammation (Ptreatment in vitro. We assessed individual responses to cysteamine plus EGCG in a single-centre, open-label phase-2 trial. The combination treatment decreased sweat chloride from baseline, increased both CFTR protein and function in nasal cells, restored autophagy in such cells, decreased CXCL8 and TNF-α in the sputum, and tended to improve respiratory function. These positive effects were particularly strong in patients carrying Phe508del CFTR mutations in homozygosity or heterozygosity. However, a fraction of patients bearing other CFTR mutations failed to respond to therapy. Importantly, the same patients whose primary nasal brushed cells did not respond to cysteamine plus EGCG in vitro also exhibited deficient therapeutic responses in vivo. Altogether, these results suggest that the combination treatment of cysteamine plus EGCG acts 'on-target' because it can only rescue CFTR function when autophagy is functional (in mice) and improves CFTR function when a rescuable protein is expressed (in mice and men). These results should spur the further clinical development of the combination treatment. PMID:27035618

  17. Eicosanoid release is increased by membrane destabilization and CFTR inhibition in Calu-3 cells.

    Directory of Open Access Journals (Sweden)

    Florence Borot

    Full Text Available The antiinflammatory protein annexin-1 (ANXA1 and the adaptor S100A10 (p11, inhibit cytosolic phospholipase A2 (cPLA2alpha by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2alpha. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM induced by TNF-alpha. This was concomitant with increased IL-8 synthesis and cPLA2alpha activation, ultimately resulting in eicosanoid (PGE2 and LTB4 overproduction. DRM destabilizing agent methyl-beta-cyclodextrin induced further cPLA2alpha activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-alpha-induced relocalization to DRM. These results show that (i CFTR may form a complex with cPLA2alpha and ANXA1 via interaction with p11, (ii CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-alpha-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the

  18. CFTR anion channel modulates expression of human transmembrane mucin MUC3 through the PDZ protein GOPC.

    Science.gov (United States)

    Pelaseyed, Thaher; Hansson, Gunnar C

    2011-09-15

    The transmembrane mucins in the enterocyte are type 1 transmembrane proteins with long and rigid mucin domains, rich in proline, threonine and serine residues that carry numerous O-glycans. Three of these mucins, MUC3, MUC12 and MUC17 are unique in harboring C-terminal class I PDZ motifs, making them suitable ligands for PDZ proteins. A screening of 123 different human PDZ domains for binding to MUC3 identified a strong interaction with the PDZ protein GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein). This interaction was mediated by the C-terminal PDZ motif of MUC3, binding to the single GOPC PDZ domain. GOPC is also a binding partner for cystic fibrosis transmembrane conductance regulator (CFTR) that directs CFTR for degradation. Overexpression of GOPC downregulated the total levels of MUC3, an effect that was reversed by introducing CFTR. The results suggest that CFTR and MUC3 compete for binding to GOPC, which in turn can regulate levels of these two proteins. For the first time a direct coupling between mucins and the CFTR channel is demonstrated, a finding that will shed further light on the still poorly understood relationship between cystic fibrosis and the mucus phenotype of this disease.

  19. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    Science.gov (United States)

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  20. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.

    Science.gov (United States)

    Micoud, Julien; Chauvet, Sylvain; Scheckenbach, Klaus Ernst Ludwig; Alfaidy, Nadia; Chanson, Marc; Benharouga, Mohamed

    2015-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.

  1. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability.

    Science.gov (United States)

    Hutt, Darren M; Roth, Daniela Martino; Chalfant, Monica A; Youker, Robert T; Matteson, Jeanne; Brodsky, Jeffrey L; Balch, William E

    2012-06-22

    Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.

  2. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

    Science.gov (United States)

    He, Lihua; Kota, Pradeep; Aleksandrov, Andrei A; Cui, Liying; Jensen, Tim; Dokholyan, Nikolay V; Riordan, John R

    2013-02-01

    Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

  3. Some results on the optimal depletion of exhaustible resources under negative discounting

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, T.

    1981-07-01

    This paper is concerned with finding necessary, and sufficient, conditions for the existence of a valuation finite optimal program for developing exhaustible resources. Three conditions are used for the existence theorem (Theorem 1). The first condition states that the effect of technical progress outweighs the effect of population growth (B.1). The second states that the utility function is bounded (B.2). The third essentially amounts to a condition on the rate at which utility must approach its upper bound as consumption goes to infinity, in relation to the consumption growth possibilities given by the production function, population growth and technical progress (B.3). Three necessary conditions are established for the existence of a valuation finite optimal program (Theorem 2). First, it is shown that if an optimal program exists (whether it is valuation finite or not) then the effect of technical progress must outweigh the effect of population growth. Second, if an optimal program exists, the utility function must be bounded (Condition B.2). The third condition expresses much the same restriction as (B.3), but in slightly weaker form. Examples are given which illustrate how Theorems 1 and 2 can be applied to cases where the utility function assumes parametric forms. Remarks following the Theorems relate the necessary, and sufficient conditions for existence of a valuation finite optimal program to the results on this issue in the existing literature. 10 references.

  4. Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR.

    Science.gov (United States)

    Zhang, W; Zhang, X; Zhang, Y H; Strokes, D C; Naren, A P

    2016-04-01

    Cystic fibrosis (CF) is a life-shortening inherited disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel activity resulting from mutations in the CFTR gene. Phe508del is the most prevalent mutation, with approximately 90% of all CF patients carrying it on at least one allele. Over the past two or three decades, significant progress has been made in understanding the pathogenesis of CF, and in the development of effective CF therapies. The approval of Orkambi® (lumacaftor/ivacaftor) marks another milestone in CF therapeutics development, which, with the advent of personalized medicine, could potentially revolutionize CF care and management. This article reviews the rationale, progress and future direction in the development of lumacaftor/ivacaftor combination to treat CF patients homozygous for the Phe508del-CFTR mutation.

  5. Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR.

    Science.gov (United States)

    Zhang, W; Zhang, X; Zhang, Y H; Strokes, D C; Naren, A P

    2016-04-01

    Cystic fibrosis (CF) is a life-shortening inherited disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel activity resulting from mutations in the CFTR gene. Phe508del is the most prevalent mutation, with approximately 90% of all CF patients carrying it on at least one allele. Over the past two or three decades, significant progress has been made in understanding the pathogenesis of CF, and in the development of effective CF therapies. The approval of Orkambi® (lumacaftor/ivacaftor) marks another milestone in CF therapeutics development, which, with the advent of personalized medicine, could potentially revolutionize CF care and management. This article reviews the rationale, progress and future direction in the development of lumacaftor/ivacaftor combination to treat CF patients homozygous for the Phe508del-CFTR mutation. PMID:27252987

  6. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  7. Cystic fibrosis transmembrane conductance regulator (CFTR) gene abnormalities in Indian males with congenital bilateral absence of vas deferens & renal anomalies

    Science.gov (United States)

    Gajbhiye, Rahul; Kadam, Kaushiki; Khole, Aalok; Gaikwad, Avinash; Kadam, Seema; Shah, Rupin; Kumaraswamy, Rangaswamy; Khole, Vrinda

    2016-01-01

    Background & objectives: The role of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in congenital bilateral absence of vas deferens and unilateral renal agenesis (CBAVD-URA) has been controversial. Here, we report the cases of five Indian males with CBAVD-URA. The objective was to evaluate the presence or absence of CFTR gene mutations and variants in CBAVD-URA. The female partners of these males were also screened for cystic fibrosis (CF) carrier status. Methods: Direct DNA sequencing of CFTR gene was carried out in five Indian infertile males having CBAVD-URA. Female partners (n=5) and healthy controls (n=32) were also screened. Results: Three potential regulatory CFTR gene variants (c.1540A>G, c.2694T>G and c.4521G>A) were detected along with IVS8-5T mutation in three infertile males with CBAVD-URA. Five novel CFTR gene variants (c.621+91A>G, c.2752+106A>T, c.2751+85_88delTA, c.3120+529InsC and c.4375-69C>T), four potential regulatory CFTR gene variants (M470V, T854T, P1290P, Q1463Q) and seven previously reported CFTR gene variants (c.196+12T>C, c.875+40A>G, c.3041-71G>C, c.3271+42A>T, c.3272-93T>C, c.3500-140A>C and c.3601-65C>A) were detected in infertile men having CBAVD and renal anomalies Interpretation & conclusions: Based on our findings, we speculate that CBAVD-URA may also be attributed to CFTR gene mutations and can be considered as CFTR-related disorder (CFTR-RD). The CFTR gene mutation screening may be offered to CBAVD-URA men and their female partners undergoing ICSI. Further studies need to be done in a large sample to confirm the findings. PMID:27488005

  8. Regulation of CFTR Expression and Arginine Vasopressin Activity Are Dependent on Polycystin-1 in Kidney-Derived Cells

    Directory of Open Access Journals (Sweden)

    Carolina Monteiro de Lemos Barbosa

    2016-01-01

    Full Text Available Background: Autosomal dominant polycystic kidney disease (ADPKD is characterized by the development of multiple, progressive, fluid-filled renal cysts that distort the renal parenchyma, leading to end-stage renal failure, mainly after the fifth decade of life. ADPKD is caused by a mutation in the PKD1 or PKD2 genes that encode polycystin-1 (PC-1 and polycystin-2 (PC-2, respectively. PC-1 is an important regulator of several signaling pathways and PC-2 is a nonselective calcium channel. The CFTR chloride channel is responsible for driving net fluid secretion into the cysts, promoting cyst growth. Arginine vasopressin hormone (AVP, in turn, is capable of increasing cystic intracellular cAMP, contributing to cell proliferation, transepithelial fluid secretion, and therefore to disease progression. The aim of this study was to assess if AVP can modulate CFTR and whether PC-1 plays a role in this potential modulation. Methods: M1 cells, derived from mouse cortical collecting duct, were used in the current work. The cells were treated with 10-7 M AVP hormone and divided into two main groups: transfected cells superexpressing PC-1 (Transf and cells not transfected (Ctrl. CFTR expression was assessed by immunodetection, CFTR mRNA levels were quantified by quantitative reverse transcription-polymerase chain reaction, and CFTR net ion transport was measured using the Ussing chamber technique. Results: AVP treatment increased the levels of CFTR protein and mRNA. CFTR short-circuit currents were also increased. However, when PC-1 was overexpressed in M1 cells, no increase in any of these parameters was detected. Conclusions: CFTR chloride channel expression is increased by AVP in M1 cells and PC-1 is capable of regulating this modulation.

  9. A novel CFTR mutation found in a Chinese patient with cystic fibrosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Cystic fibrosis (CF) is rare in Chinese. We investigated the mutations in the gene of cystic fibrosis transmembrane conductance regulator (CFTR) in a Chinese CF patient and reviewed the clinical features, gene mutations in Chinese CF cases. Methods Blood samples were collected from a previously reported CF girl and her parents. The 24 coding exons of CFTR of the proband were amplified and sequenced. Results A Chinese girl of 16 years old was diagnosed as CF at the age of 14. She had recurrent productive cough with bronchiectasis in bilateral upper lobes, parasinusitis and otitis media, but without pancreatic involvement. Her sweat chloride was (108.9 ±3.3) mmol/L. A heterozygous novel missense mutation of 699 C→A which results in the amino acid change of N189K was identified in exon 5. In addition, a heterozygous 3821-3823 delT mutation in exon 19 was found in CFTR. The mutation 699C→A was inherited from her father, and the 3821-3823delT mutation was from her mother. Twenty patients with CF in Chinese reported from 1974 to 2004 were also reviewed. DelF508 mutation was not found in the nine cases whose CFTR mutations were analyzed. Conclusions The CF proband carries two heterozygous mutations (699C→A and 3821-3823delT) in CFTR. 699C→A mutation is a novel mutation which is not reported previously. Review of reported Chinese cases suggests that the genotype of Chinese CF may be different from those of white cases. More studies are needed to understand the spectra of CFTR and clinical CF features in Chinese.

  10. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Science.gov (United States)

    Veit, Guido; Oliver, Kathryn; Apaja, Pirjo M; Perdomo, Doranda; Bidaud-Meynard, Aurélien; Lin, Sheng-Ting; Guo, Jingyu; Icyuz, Mert; Sorscher, Eric J; Hartman Iv, John L; Lukacs, Gergely L

    2016-05-01

    The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

  11. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Directory of Open Access Journals (Sweden)

    Guido Veit

    2016-05-01

    Full Text Available The most common cystic fibrosis (CF causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del, results in functional expression defect of the CF transmembrane conductance regulator (CFTR at the apical plasma membrane (PM of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER. Deletion of phenylalanine 670 (ΔF670 in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

  12. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Science.gov (United States)

    Veit, Guido; Oliver, Kathryn; Apaja, Pirjo M; Perdomo, Doranda; Bidaud-Meynard, Aurélien; Lin, Sheng-Ting; Guo, Jingyu; Icyuz, Mert; Sorscher, Eric J; Hartman Iv, John L; Lukacs, Gergely L

    2016-05-01

    The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect. PMID:27168400

  13. Capturing the Direct Binding of CFTR Correctors to CFTR by Using Click Chemistry.

    Science.gov (United States)

    Sinha, Chandrima; Zhang, Weiqiang; Moon, Chang Suk; Actis, Marcelo; Yarlagadda, Sunitha; Arora, Kavisha; Woodroofe, Koryse; Clancy, John P; Lin, Songbai; Ziady, Assem G; Frizzell, Raymond; Fujii, Naoaki; Naren, Anjaparavanda P

    2015-09-21

    Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX-809 has been reported to facilitate the folding and trafficking of F508del-CFTR and augment its channel function. The mechanism of action of VX-809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX-809: does it bind CFTR directly in order to exert its action? We synthesized two VX-809 derivatives, ALK-809 and SUL-809, that possess an alkyne group and retain the rescue capacity of VX-809. By using Cu(I) -catalyzed click chemistry, we provide evidence that the VX-809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.

  14. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease.

    Science.gov (United States)

    Flores, Alyssa M; Casey, Scott D; Felix, Christian M; Phuan, Puay W; Verkman, A S; Levin, Marc H

    2016-05-01

    Dry eye disorders, including Sjögren's syndrome, constitute a common problem in the aging population, with limited effective therapeutic options available. The cAMP-activated Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is a major prosecretory channel at the ocular surface. We investigated whether compounds that target CFTR can correct the abnormal tear film in dry eye. Small-molecule activators of human wild-type CFTR identified by high-throughput screening were evaluated in cell culture and in vivo assays, to select compounds that stimulate Cl(-)-driven fluid secretion across the ocular surface in mice. An aminophenyl-1,3,5-triazine, CFTRact-K089, fully activated CFTR in cell cultures with EC50 ∼250 nM and produced an ∼8.5 mV hyperpolarization in ocular surface potential difference. When delivered topically, CFTRact-K089 doubled basal tear volume for 4 h and had no effect in CF mice. CFTRact-K089 showed sustained tear film bioavailability without detectable systemic absorption. In a mouse model of aqueous-deficient dry eye produced by lacrimal ablation, topical administration of 0.1 nmol CFTRact-K089 3 times daily restored tear volume to basal levels, preventing corneal epithelial disruption when initiated at the time of surgery and reversing it when started after development of dry eye. Our results support the potential utility of CFTR-targeted activators as a novel prosecretory treatment for dry eye.-Flores, A. M., Casey, S. D., Felix, C. M., Phuan, P. W., Verkman, A. S., Levin, M. H. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease.

  15. Impact of Cystic Fibrosis Transmembrane Regulator (CFTR gene mutations on male infertility

    Directory of Open Access Journals (Sweden)

    Jlenia Elia

    2014-09-01

    Full Text Available Objective. The aim of this study was to evaluate the prevalence of most common mutations and intron 8 5T (IVS8-5T polymorphism of CFTR gene in Italian: a azoospermic males; b non azoospermic subjects, male partners of infertile couples enrolled in assisted reproductive technology (ART programs. Material and methods. We studied 242 subjects attending our Andrology Unit (44 azoospermic subjects and 198 non azoospermic subjects, male partners of infertile couples enrolled in ART programs. Semen analysis, molecular analysis for CFTR gene mutations and genomic variant of IVS8-5T polymorphic tract, karyotype and chromosome Y microdeletions, hormonal profile (LH, FSH, Testosterone and seminal biochemical markers (fructose, citric acid and L-carnitine were carried out. Results. The prevalence of the common CFTR mutations and/or the IVS8-5T polymorphism was 12.9% (4/31 cases in secretory azoospermia, while in obstructive azoospermia was 84.6% (11/13 cases; in these, the most frequent mutations were the F508del, R117H and W1282X. Regarding the non azoospermic subjects, the prevalence of the CFTR and/or the IVS8-5T polymorphism was 11.1% (11/99 cases in severe dyspermia, 8.1% (6/74 cases in moderate dyspermia and finally 4.0% (1/25 cases in normospermic subjects. Conclusions. This study confirms the highly significant prevalence of CFTR mutations in males with bilateral absence of the vas deferens or ejaculatory ducts obstruction compared with subjects with secretory azoospermia. Moreover, the significant prevalence of mutations in severely dyspermic subjects may suggest the possible involvement of CFTR even in the spermatogenic process. This could explain the unsatisfactory recovery of sperm from testicular fine needle aspiration in patients affected by genital tract blockage.

  16. Identification of CFTR Gene Mutations in Chinese Patients with Congenital Obstructive Azoospermia

    Institute of Scientific and Technical Information of China (English)

    曾国华; 吴开俊; 梅骅; 庄广伦

    2001-01-01

    Objective To analyze the frequency and hot spot of CFTR gene mutations in Chinese patients with congenital obstructive azoospermia Materials & Methods Mutations in CFTR exon 2,3,4,5,6a,8,10,11,12,13,15A 17b, 19A,20,21and 23 were detected. PCR-single strand conformation poly-morphism (SSCP) and direct sequencing were performed on 32 patients with congenital bilateral absence of the vas deferens (CBAVD), 17 patients with congenital unilateral absence of the vas deferens (CUAVD) and 50 normal Chinese.Results No CFTR gene mutations were detected in 50 normal Chinese. One CBAVD patient exhibited an abnormal band on SSCP for exon 10 of the CFTR gene and subsequent DNA sequencing showed a 3 bp deletion at position 1 653~ 1 655, which caused the deletion of a single amino acid, phenyalanine, in codon 508, i. e. , △F 508. A shift mutation was detected in another CBAVD patient in exon 2, a 1 bp deletion at position 225, 225 delC. One CUAVD patient exhibited an abnormal band on SSCP for exon 17 b of CFTR gene. Subsequent DNA sequencing showed a C-to-A transversion at position 3 295, which led to a predicted change of Leusine (codon 1 055,CUU) to Isoleucine (codon AUU), L1055I.Conclusion CFTR mutation could be detected in Chinese patients with congenital obstructive azoospermia. But no hot spots of mutations are discovered. 225 delC and L1055I are identified as two novel mutations, which are found only in Chinese.

  17. Regulated trafficking of the CFTR chloride channel

    NARCIS (Netherlands)

    Braakman, L.J.; Kleizen, B.; Jonge, H.R. de

    2000-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Wh

  18. Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Becq Frédéric

    2008-10-01

    Full Text Available Abstract Background In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC stimulation, which generates inositol 1,4,5-trisphosphate (IP3 and 1,2-diacylglycerol (DAG and induces Ca2+ release from endoplasmic reticulum (ER stores. Methods In the present study, we monitored the cytosolic Ca2+ transients using the UV light photolysis technique to uncage caged Ca2+ or caged IP3 into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF and non-CF origin. We compared in these cells the types of Ca2+ receptors present in the ER, and measured their Ca2+ dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin. Results We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP3R dependent-Ca2+ response following both correcting treatments compared to uncorrected cells in such a way that Ca2+ responses (CF+treatment vs wild-type cells were normalized. This normalization of the Ca2+ rate does not affect the activity of Ca2+-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP3R1, we observed a decrease of the implication of IP3R1 in the Ca2+ response in CF corrected cells. We observed a similar Ca2+ mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted. When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP3R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell. Conclusion These results suggest reversal of the IP3R dysfunction in F508del-CFTR epithelial

  19. The Gulf War depleted uranium cohort at 20 years: bioassay results and novel approaches to fragment surveillance.

    Science.gov (United States)

    McDiarmid, Melissa A; Gaitens, Joanna M; Hines, Stella; Breyer, Richard; Wong-You-Cheong, Jade J; Engelhardt, Susan M; Oliver, Marc; Gucer, Patricia; Kane, Robert; Cernich, Alison; Kaup, Bruce; Hoover, Dennis; Gaspari, Anthony A; Liu, Juan; Harberts, Erin; Brown, Lawrence; Centeno, Jose A; Gray, Patrick J; Xu, Hanna; Squibb, Katherine S

    2013-04-01

    During the 1991 GulfWar, U.S. service members were exposed to depleted uranium (DU) through friendly-fire incidents involving DU munitions and vehicles protected by DU armor. Routes of exposure to DU involved inhalation of soluble and insoluble DU oxide particles, wound contamination, and retained embedded DU metal fragments that continue to oxidize in situ and release DU to the systemic circulation. A biennial health surveillance program established for this group of Veterans by the U.S. Department of Veterans Affairs has shown continuously elevated urine DU concentrations in the subset of veterans with embedded fragments for over 20 years. While the 2011 assessment was comprehensive, few clinically significant U-related health effects were observed. This report is focused on health outcomes associated with two primary target organs of concern for long term effects of this combat-related exposure to DU. Renal biomarkers showed minimal DU-related effects on proximal tubule function and cytotoxicity, but significant biomarker results were observed when urine concentrations of multiple metals also found in fragments were examined together. Pulmonary tests and questionnaire results indicate that pulmonary function after 20 y remains within the clinical normal range. Imaging of DU embedded fragment-associated tissue for signs of inflammatory or proliferative reactions possibly associated with foreign body transformation or with local alpha emissions from DU was also conducted using PET-CT and ultrasound. These imaging tools may be helpful in guiding decisions regarding removal of fragments. PMID:23439138

  20. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR

    Directory of Open Access Journals (Sweden)

    Mónica Roxo-Rosa

    2015-11-01

    Full Text Available In autosomal dominant polycystic kidney disease (ADPKD, cyst inflation and continuous enlargement are associated with marked transepithelial ion and fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR. Indeed, the inhibition or degradation of CFTR prevents the fluid accumulation within cysts. The in vivo mechanisms by which the lack of Polycystin-2 leads to CFTR stimulation are an outstanding challenge in ADPKD research and may bring important biomarkers for the disease. However, hampering their study, the available ADPKD in vitro cellular models lack the three-dimensional architecture of renal cysts and the ADPKD mouse models offer limited access for live-imaging experiments in embryonic kidneys. Here, we tested the zebrafish Kupffer's vesicle (KV as an alternative model-organ. KV is a fluid-filled vesicular organ, lined by epithelial cells that express both CFTR and Polycystin-2 endogenously, being each of them easily knocked-down. Our data on the intracellular distribution of Polycystin-2 support its involvement in the KV fluid-flow induced Ca2+-signalling. Mirroring kidney cysts, the KV lumen inflation is dependent on CFTR activity and, as we clearly show, the knockdown of Polycystin-2 results in larger KV lumens through overstimulation of CFTR. In conclusion, we propose the zebrafish KV as a model organ to study the renal cyst inflation. Favouring its use, KV volume can be easily determined by in vivo imaging offering a live readout for screening compounds and genes that may prevent cyst enlargement through CFTR inhibition.

  1. Development of rAAV2-CFTR: History of the First rAAV Vector Product to be Used in Humans.

    Science.gov (United States)

    Loring, Heather S; ElMallah, Mai K; Flotte, Terence R

    2016-04-01

    The first human gene therapy trials using recombinant adeno-associated virus (rAAV) vectors were performed in cystic fibrosis (CF) patients. Over 100 CF patients were enrolled in 5 separate trials of rAAV2-CFTR administration via nasal, endobronchial, maxillary sinus, and aerosol delivery. Recombinant AAV vectors were designed to deliver the CF transmembrane regulator (CFTR) gene and correct the basic CFTR defect by restoring chloride transport and reverting the upregulation of proinflammatory cytokines. However, vector DNA expression was limited in duration because of the low incidence of integration and natural airway epithelium turnover. In addition, repeated administration of AAV-CFTR vector resulted in a humoral immune response that prevented effective gene transfer from subsequent doses of vector. AAV serotype 2 was used in human trials before the comparison with other serotypes and determination that serotypes 1 and 5 not only possess higher tropism for the airway epithelium, but also are capable of bypassing the binding and trafficking processes-both were important hindrances to the effectiveness of rAAV2. Although rAAV-CFTR gene therapy does not appear likely to supplant newer small-molecule CFTR modulators in the near future, early work with rAAV-CFTR provided an important foundation for later use of rAAV in humans. PMID:26895204

  2. Divergent signaling via SUMO modification: potential for CFTR modulation.

    Science.gov (United States)

    Ahner, Annette; Gong, Xiaoyan; Frizzell, Raymond A

    2016-02-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is generally responsible for the cAMP/PKA regulated anion conductance at the apical membranes of secretory epithelial cells. Mutations in CFTR underlie cystic fibrosis (CF), in which the most common variant, F508del, causes protein misfolding and its proteasome-mediated degradation. A new pathway that contributes to mutant CFTR degradation is mediated by the small heat shock protein, Hsp27, which cooperates with Ubc9, the E2 enzyme for SUMOylation, to selectively conjugate mutant CFTR with SUMO-2/3. This SUMO paralog can form polychains, which are recognized by the ubiquitin E3 enzyme, RNF4, leading to CFTR ubiquitylation and recognition by the proteasome. We found also that F508del CFTR could be modified by SUMO-1, a paralog that does not support SUMO polychain formation. The use of different SUMO paralogs to modify and target a single substrate for divergent purposes is not uncommon. In this short review we discuss the possibility that conjugation with SUMO-1 could protect mutant CFTR from disposal by RNF4 and similar ubiquitin ligases. We hypothesize that such a pathway could contribute to therapeutic efforts to stabilize immature mutant CFTR and thereby enhance the action of therapeutics that correct CFTR trafficking to the apical membranes.

  3. Molecular Motors and Apical CFTR Traffic in Epithelia

    Directory of Open Access Journals (Sweden)

    Dmitri V. Kravtsov

    2013-05-01

    Full Text Available Intracellular protein traffic plays an important role in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR chloride channels. Microtubule and actin-based motor proteins direct CFTR movement along trafficking pathways. As shown for other regulatory proteins such as adaptors, the involvement of protein motors in CFTR traffic is cell-type specific. Understanding motor specificity provides insight into the biology of the channel and opens opportunity for discovery of organ-specific drug targets for treating CFTR-mediated diseases.

  4. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model.

    Science.gov (United States)

    Bednarski, Christien; Tomczak, Katja; Vom Hövel, Beate; Weber, Wolf-Michael; Cathomen, Toni

    2016-01-01

    In vitro disease models have enabled insights into the pathophysiology of human disease as well as the functional evaluation of new therapies, such as novel genome engineering strategies. In the context of cystic fibrosis (CF), various cellular disease models have been established in recent years, including organoids based on induced pluripotent stem cell technology that allowed for functional readouts of CFTR activity. Yet, many of these in vitro CF models require complex and expensive culturing protocols that are difficult to implement and may not be amenable for high throughput screens. Here, we show that a simple cellular CF disease model based on the bronchial epithelial ΔF508 cell line CFBE41o- can be used to validate functional CFTR correction. We used an engineered nuclease to target the integration of a super-exon, encompassing the sequences of CFTR exons 11 to 27, into exon 11 and re-activated endogenous CFTR expression by treating CFBE41o- cells with a demethylating agent. We demonstrate that the integration of this super-exon resulted in expression of a corrected mRNA from the endogenous CFTR promoter and used short-circuit current measurements in Ussing chambers to corroborate restored ion transport of the repaired CFTR channels. In conclusion, this study proves that the targeted integration of a large super-exon in CFTR exon 11 leads to functional correction of CFTR, suggesting that this strategy can be used to functionally correct all CFTR mutations located downstream of the 5' end of exon 11. PMID:27526025

  5. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Wine

    Full Text Available To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (~50 individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ~0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with 'CFTR-related' conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics.

  6. Mutation Analysis of CFTR Gene in 70 Iranian Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    Reza Alibakhshi Mahdi Zamani

    2006-03-01

    Full Text Available Cystic fibrosis (CF is the most common inherited disorder in Caucasian populations, with over 1400 cystic fibrosis transmembrane conductance regulator (CFTR mutations. The type of mutations and their distributions varies widely between different countries and/or ethnic groups. Seventy Iranian cystic fibrosis patients were screened for the CFTR gene mutation using ARMS/PCR (amplification refractory mutation system for the following mutations: ∆F508, N1303K, G542X, 1717-1G>A, R553X, W1282X, G551D, 621+1G>T, ∆I507 and R560T. Single strand conformation polymorphism (SSCP analysis of exons 3, 7, 10, 11 and 17b, including both the exon/intron junctions, of the CFTR gene was performed in patients in whom no mutation could be identified on one or both CFTR genes. As a result of this screening, only three mutations were found: ∆F508 mutation was found in 25 (17.8% alleles, N1303K in six (4.3% alleles and G542X in five (3.6% alleles. Thus, a total of 3 mutations cover 25.7% of CF alleles. These finding will be used for planning future screening and appropriate genetic counseling programs in Iranian CF patients.

  7. Analysis of mutations in the cystic fibrosis transmembrane regulator (CFTR gene in patients with obstructive azoospermia

    Directory of Open Access Journals (Sweden)

    Andrea L.F. Bernardino

    2003-01-01

    Full Text Available Congenital bilateral absence of the vas deferens (CBAVD accounts for 1%-2% of sterility in men. A high incidence of mutations, as well as the involvement of the 5T variant of the T tract length in intron 8 of the cystic fibrosis conductance regulator (CFTR gene, have been previously described in males with CBAVD. Herein we report the screening for mutations and for the 5T variant of the CFTR gene in 17 patients with CBAVD and three others with non-CABVD obstructive azoospermia. In the CBAVD group, three patients (15% were compound heterozygotes for mutations, and five patients (25% had a mutation in one allele and the 5T variant in the other; the 5T variant was also present in two other patients, one of them being homozygous. The most frequent mutation was DF508, present on five chromosomes (12.5%. A novel missense mutation (A399D was detected in a Japanese CBVAD patient. Our results yield further evidence for a strong association between male obstructive azoospermia caused by CBAVD and mutation/5T variant in the CFTR gene. The search for CFTR mutations in such patients is thus recommended for genetic counseling of couples who undergo assisted fertilization due to CBAVD.

  8. CFTR mutations have no effect on results of ICSI in congenital obstructive azoospermia patients%CFTR突变基因l不影响先天性梗阻性无精子症患者ICSI治疗的成功率

    Institute of Scientific and Technical Information of China (English)

    曾国华; 吴开俊; 梅骅; 庄广伦

    2001-01-01

    为探讨囊性纤维化跨膜转运调节物(Cystic Fibrosis Transmembrane Conductance Regulator,CFTR)基因突变是否影响先天性梗阻性无精子症患者单精子卵浆内注射(Intracytoplasmic Sperm Injection,ICSI)治疗的成功率,本文对3例先天性梗阻性无精子症CFTR突变基因携带者和18例CFTR突变基因非携带者进行了ICSI的治疗.结果表明:先天性梗阻性无精子症CFTR突变基因携带者与CFIR突变基因非携带者ICSI治疗时受精率、卵裂率和妊娠率无显著性差异.结论:CFTR突变基因并不影响先天性梗阻性无精子症患者ICSI治疗的成功率,故这些患者在ICSI治疗前夫妻双方更有必要行CFTR突变基因的筛查.

  9. G551D-CFTR needs more bound actin than wild-type CFTR to maintain its presence in plasma membranes.

    Science.gov (United States)

    Trouvé, Pascal; Kerbiriou, Mathieu; Teng, Ling; Benz, Nathalie; Taiya, Mehdi; Le Hir, Sophie; Férec, Claude

    2015-08-01

    Cystic Fibrosis is due to mutations in the CFTR gene. The missense mutation G551D (approx. 5% of cases) encodes a CFTR chloride channel with normal cell surface expression but with an altered chloride channel activity, leading to a severe phenotype. Our aim was to identify specific interacting proteins of G551D-CFTR which could explain the channel defect. Wild-type CFTR (Wt-CFTR) was co-immunoprecipitated from stably transfected HeLa cells and resolved by 2D gel electrophoresis. Among the detected spots, one was expressed at a high level. Mass Spectrometry revealed that it corresponded to actin which is known to be involved in the CFTR's channel function. To assess whether actin could be involved in the altered G551D-CFTR function, its basal expression was studied. Because actin expression was the same in wt- and in G551D-CFTR expressing cells, its interaction with both wt- and G551D-CFTR was studied by co-immunoprecipitation, and we found that a higher amount of actin was bound onto G551D-CFTR than onto Wt-CFTR. The role of actin upon wt- and G551D-CFTR function was further studied by patch-clamp experiments after cytochalasin D treatment of the cells. We found a decrease of the very weak currents in G551D-CFTR expressing cells. Because a higher amount of actin is bound onto G551D-CFTR than onto Wt-CFTR, it is likely to be not involved in the mutated CFTR's defect. Nevertheless, because actin is necessary to maintain the very weak global currents observed in G551D-CFTR expressing HeLa cells, we conclude that more actin is necessary to maintain G551D-CFTR in the plasma membrane than for Wt-CFTR.

  10. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR).

    Science.gov (United States)

    El Khouri, Elma; Le Pavec, Gwenaëlle; Toledano, Michel B; Delaunay-Moisan, Agnès

    2013-10-25

    In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.

  11. Agricultural production and groundwater depletion under climate variability in India - Results from a regional scale crop modeling approach

    Science.gov (United States)

    Siegfried, T. U.; Sobolowski, S.; Fishman, R.; Vasquez, V.; Raj, P.; Narula, K. K.; Modi, V.; Lall, U.

    2009-12-01

    In India, recent declines in national food security may point to systemic deficiencies of agricultural production. Over the past decade and in the face of declining public investments in irrigation projects, the growth of production has increasingly become reliant on the allocation of large volumes of groundwater in an unsustainable manner. As a result, shallow as well as deep fossil groundwater resources are increasingly depleted and the buffer that mitigates negative impacts on production in case of Monsoonal dry-spells / drought conditions is lost. In the face of future climate and food supply uncertainty, it is vital that the connections between climate variability, unsustainable irrigation practices and their impacts on regional scale agricultural production be quantified and better understood. In our analysis, we focus on rice production in the Telengana region in Andhra Pradesh, which is characterized by a semi-arid tropical climate that is driven by the bimodal seasonality of the south-western monsoon. Traditionally, agricultural production of rice was constrained by precipitation variations during the wet season (Kharif). However, the advent of inexpensive pump technology in the 1970's, coupled with governmentally subsidized electricity has allowed year-round rice production. Thus, the Monsoon rains must not only drive wet season production but must also sufficiently recharge groundwater in order to support dry season production. Observed Production time series are characterized by non-stationarity and heteroscedasticity. Using a subset of eight districts, a non-linear Gaussian Process regression model is developed and yearly crop production is modeled at the district level over 48 years. We show that interannual climate variations, in the form of the monsoon rains, play a significant role in determining the area of land set aside for dry season planting and thus affect total yearly production. The results suggest that a non-linear Bayesian regression

  12. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    OpenAIRE

    Becq, F; Jensen, T J; Chang, X B; Savoia, A.; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epi...

  13. MARCH2 regulates autophagy by promoting CFTR ubiquitination and degradation and PIK3CA-AKT-MTOR signaling.

    Science.gov (United States)

    Xia, Dan; Qu, Liujing; Li, Ge; Hongdu, Beiqi; Xu, Chentong; Lin, Xin; Lou, Yaxin; He, Qihua; Ma, Dalong; Chen, Yingyu

    2016-09-01

    MARCH2 (membrane-associated RING-CH protein 2), an E3 ubiquitin ligase, is mainly associated with the vesicle trafficking. In the present study, for the first time, we demonstrated that MARCH2 negatively regulates autophagy. Our data indicated that overexpression of MARCH2 impaired autophagy, as evidenced by attenuated levels of LC3B-II and impaired degradation of endogenous and exogenous autophagic substrates. By contrast, loss of MARCH2 expression had the opposite effects. In vivo experiments demonstrate that MARCH2 knockout mediated autophagy results in an inhibition of tumorigenicity. Further investigation revealed that the induction of autophagy by MARCH2 deficiency was mediated through the PIK3CA-AKT-MTOR signaling pathway. Additionally, we found that MARCH2 interacts with CFTR (cystic fibrosis transmembrane conductance regulator), promotes the ubiquitination and degradation of CFTR, and inhibits CFTR-mediated autophagy in tumor cells. The functional PDZ domain of MARCH2 is required for the association with CFTR. Thus, our study identified a novel negative regulator of autophagy and suggested that the physical and functional connection between the MARCH2 and CFTR in different conditions will be elucidated in the further experiments. PMID:27308891

  14. Stepwise Depletion of Coating Elements as a Result of Hot Corrosion of NiCrAlY Coatings

    Science.gov (United States)

    Rana, Nidhi; Jayaganthan, R.; Prakash, Satya

    2013-11-01

    Present investigation deals with the hot corrosion behaviour of the NiCrAlY coatings deposited by HVOF technique on Superni76 under cyclic conditions at 900 °C in the presence of Na2SO4 + 60% V2O5 salt. The weight change behaviour of the coatings was followed with time up to 200 cycles and K p value was calculated for the hot corrosion process. Surface and cross-section of the corroded samples were examined by FESEM/EDS and XRD to follow the progress of corrosion up to 200 cycles. In earlier cycles, the corrosive species oxidised top surface of the coatings. With increasing number of cycles, oxidation of the coatings occurred up to 40-μm depth. A Cr-depleted band was seen below the oxide scale. Further increase in number of cycles led to migration and oxidation of Al to form Al2O3 sublayer at coating/scale interface, thereby leading to formation of Al-depleted zone in the coating below the Al2O3 sublayer. The corrosion resistance of the NiCrAlY coatings is attributed to the formation of the continuous and dense Al2O3 sublayer at the coating/scale interface, which acts as barrier to the migration of Cr to the surface. The appearance of Al3Y after 100 and 200 cycles also contributes to the increased corrosion resistance of coatings after 100 and 200 cycles.

  15. NF kappaB expression increases and CFTR and MUC1 expression decreases in the endometrium of infertile patients with hydrosalpinx: a comparative study

    Directory of Open Access Journals (Sweden)

    Song Yong

    2012-10-01

    Full Text Available Abstract Background Hydrosalpinx are associated with infertility, due to reduced rates of implantation and increased abortion rates. The aims of this study were to investigate the expression of cystic fibrosis transmembrane conductance regulator (CFTR, nuclear factor kappa B (NF KappaB and mucin-1 (MUC-1, and analyze the correlation between the expression of CFTR and NF KappaB or MUC1, in the endometrium of infertile women with and without hydrosalpinx. Methods Thirty-one infertile women with laparoscopy-confirmed unilateral or bilateral hydrosalpinx and 20 infertile women without hydrosalpinx or pelvic inflammatory disease (control group were recruited. Endometrial biopsy samples were collected and the expression of CFTR, NF KappaB and MUC1 were analyzed using immunohistochemistry and quantitative real-time PCR. Results CFTR, NF KappaB and MUC1 mRNA and protein expression tended to increase in the secretory phase compared to the proliferative phase in both groups; however, these differences were not significantly different. The endometrium of infertile patients with hydrosalpinx had significantly higher NF KappaB mRNA and protein expression, and significantly lower CFTR and MUC1 mRNA and protein expression, compared to control infertile patients. A positive correlation was observed between CFTR and MUC1 mRNA expression (r = 0.65, P CFTR mRNA and NF KappaB mRNA expression (r = −0.59, P Conclusions Increased NF KappaB expression and decreased CFTR and MUC1 expression in the endometrium of infertile patients with hydrosalpinx reinforce the involvement of a molecular mechanism in the regulation of endometrial receptivity.

  16. Management of depleted uranium

    International Nuclear Information System (INIS)

    Large stocks of depleted uranium have arisen as a result of enrichment operations, especially in the United States and the Russian Federation. Countries with depleted uranium stocks are interested in assessing strategies for the use and management of depleted uranium. The choice of strategy depends on several factors, including government and business policy, alternative uses available, the economic value of the material, regulatory aspects and disposal options, and international market developments in the nuclear fuel cycle. This report presents the results of a depleted uranium study conducted by an expert group organised jointly by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It contains information on current inventories of depleted uranium, potential future arisings, long term management alternatives, peaceful use options and country programmes. In addition, it explores ideas for international collaboration and identifies key issues for governments and policy makers to consider. (authors)

  17. An unexpected effect of TNF-α on F508del-CFTR maturation and function [v2; ref status: indexed, http://f1000r.es/5tv

    Directory of Open Access Journals (Sweden)

    Sara Bitam

    2015-09-01

    Full Text Available Cystic fibrosis (CF is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR, which encodes a cAMP-dependent Cl- channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular.

  18. An unexpected effect of TNF-α on F508del-CFTR maturation and function [v1; ref status: indexed, http://f1000r.es/5jf

    Directory of Open Access Journals (Sweden)

    Sara Bitam

    2015-07-01

    Full Text Available Cystic fibrosis (CF is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR, which encodes a cAMP-dependent Cl- channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular.

  19. Burn-up credit criticality benchmark. Phase 4-B: results and analysis of MOX fuel depletion calculations

    International Nuclear Information System (INIS)

    The DECD/NEA Expert Group on Burn-up Credit was established in 1991 to address scientific and technical issues connected with the use of burn-up credit in nuclear fuel cycle operations. Following the completion of six benchmark exercises with uranium oxide (UOX) fuels irradiated in pressurised water reactors (PWRs) and boiling water reactors (BWRs), the present report concerns mixed uranium and plutonium oxide (MOX) fuels irradiated in PWRs. The exercises consisted of inventory calculations of MOX fuels for two initial plutonium compositions. The depletion calculations were carried out using three representations of the MOX assemblies and their interface with UOX assemblies. This enabled the investigation of the spatial and spectral effects during the irradiation of the MOX fuels. (author)

  20. [Cystic fibrosis: new treatments targeting the CFTR protein].

    Science.gov (United States)

    Fajac, I; Sermet-Gaudelus, I

    2013-04-01

    Cystic fibrosis is an autosomal recessive genetic disease due to mutations in the (cystic fibrosis transmembrane conductance regulator) CFTR gene. The CFTR protein is a chloride channel expressed at the surface of several epithelial cells. Defective function of the CFTR protein leads to a severe disease in which lung disease is the leading cause of death. Current treatments are symptomatic. Nevertheless, with specialist and holistic care in dedicated cystic fibrosis centres, the median survival has improved. But the average age of death remains 29 years. Innovative molecules aiming to correct the CFTR protein itself are under development. These will be personalised treatments depending on the genotype or the type of CFTR dysfunction. The first molecule, ivacaftor, has just been approved in Europe and the USA. Adults and children treated with ivacaftor in clinical trials had a 10% improvement in FEV1 that was maintained for more than a year. Although at present ivacaftor is approved for only a small percentage of patients, the therapeutic strategy of correcting CFTR protein has been proved a valid approach. Other molecules targeting other defects in the CFTR protein are under evaluation.

  1. Multi-physiopathological consequences of the c.1392G>T CFTR mutation revealed by clinical and cellular investigations.

    Science.gov (United States)

    Farhat, Raed; El-Seedy, Ayman; El-Moussaoui, Kamal; Pasquet, Marie-Claude; Adolphe, Catherine; Bieth, Eric; Languepin, Jeanne; Sermet-Gaudelus, Isabelle; Kitzis, Alain; Ladevèze, Véronique

    2015-02-01

    This study combines a clinical approach and multiple level cellular analyses to determine the physiopathological consequences of the c.1392G>T (p.Lys464Asn) CFTR exon 10 mutation, detected in a CF patient with a frameshift deletion in trans and a TG(11)T(5) in cis. Minigene experiment, with different TG(m)T(n) alleles, and nasal cell mRNA extracts were used to study the impact of c.1392G>T on splicing in both in cellulo and in vivo studies. The processing and localization of p.Lys464Asn protein were evaluated, in cellulo, by western blotting analyses and confocal microscopy. Clinical and channel exploration tests were performed on the patient to determine the exact CF phenotype profile and the CFTR chloride transport activity. c.1392G>T affects exon 10 splicing by inducing its complete deletion and encoding a frameshift transcript. The polymorphism TG(11)T(5) aggravates the effects of this mutation on aberrant splicing. Analysis of mRNA obtained from parental airway epithelial cells confirmed these in cellulo results. At the protein level the p.Lys464Asn protein showed neither maturated form nor membrane localization. Furthermore, the in vivo channel tests confirmed the absence of CFTR activity. Thus, the c.1392G>T mutation alone or in association with the TG repeats and the poly T tract revealed obvious impacts on splicing and CFTR protein processing and functionality. The c.[T(5); 1392G>T] complex allele contributes to the CF phenotype by affecting splicing and inducing a severe misprocessing defect. These results demonstrate that the classical CFTR mutations classification is not sufficient: in vivo and in cellulo studies of a possible complex allele in a patient are required to provide correct CFTR mutation classification, adequate medical counseling, and adapted therapeutic strategies.

  2. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR.

    Science.gov (United States)

    Huguet, F; Calvez, M L; Benz, N; Le Hir, S; Mignen, O; Buscaglia, P; Horgen, F D; Férec, C; Kerbiriou, M; Trouvé, P

    2016-09-01

    Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.

  3. Nasal Potential Difference in Cystic Fibrosis considering Severe CFTR Mutations

    OpenAIRE

    2015-01-01

    The gold standard for diagnosing cystic fibrosis (CF) is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD) test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients) (G1), CF patients with class...

  4. Proteomic identification of calumenin as a G551D-CFTR associated protein.

    Directory of Open Access Journals (Sweden)

    Ling Teng

    Full Text Available Cystic fibrosis (CF is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE. Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.

  5. Proteomic identification of calumenin as a G551D-CFTR associated protein.

    Science.gov (United States)

    Teng, Ling; Kerbiriou, Mathieu; Taiya, Mehdi; Le Hir, Sophie; Mignen, Olivier; Benz, Nathalie; Trouvé, Pascal; Férec, Claude

    2012-01-01

    Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.

  6. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  7. Assessing the Disease-Liability of Mutations in CFTR

    OpenAIRE

    Ferec, Claude; Cutting, Garry R

    2012-01-01

    Over 1900 mutations have been reported in the cystic fibrosis transmembrane conductance regulator (CFTR), the gene defective in patients with cystic fibrosis. These mutations have been discovered primarily in individuals who have features consistent with the diagnosis of CF. In some cases, it has been recognized that the mutations are not causative of cystic fibrosis but are responsible for disorders with features similar to CF, and these conditions have been termed CFTR-related disorders or ...

  8. The Cystic Fibrosis Transmembrane Regulator (CFTR in the kidney

    Directory of Open Access Journals (Sweden)

    MORALES MARCELO M.

    2000-01-01

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a Cl- channel. Mutations of this transporter lead to a defect of chloride secretion by epithelial cells causing the Cystic Fibrosis disease (CF. In spite of the high expression of CFTR in the kidney, patients with CF do not show major renal dysfunction, but it is known that both the urinary excretion of drugs and the renal capacity to concentrate and dilute urine is deficient. CFTR mRNA is expressed in all nephron segments and its protein is involved with chloride secretion in the distal tubule, and the principal cells of the cortical (CCD and medullary (IMCD collecting ducts. Several studies have demonstrated that CFTR does not only transport Cl- but also secretes ATP and, thus, controls other conductances such as Na+ (ENaC and K+ (ROMK2 channels, especially in CCD. In the polycystic kidney the secretion of chloride through CFTR contributes to the cyst enlargement. This review is focused on the role of CFTR in the kidney and the implications of extracellular volume regulators, such as hormones, on its function and expression.

  9. Targeted therapies to improve CFTR function in cystic fibrosis.

    Science.gov (United States)

    Brodlie, Malcolm; Haq, Iram J; Roberts, Katie; Elborn, J Stuart

    2015-01-01

    Cystic fibrosis is the most common genetically determined, life-limiting disorder in populations of European ancestry. The genetic basis of cystic fibrosis is well established to be mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for an apical membrane chloride channel principally expressed by epithelial cells. Conventional approaches to cystic fibrosis care involve a heavy daily burden of supportive treatments to combat lung infection, help clear airway secretions and maintain nutritional status. In 2012, a new era of precision medicine in cystic fibrosis therapeutics began with the licensing of a small molecule, ivacaftor, which successfully targets the underlying defect and improves CFTR function in a subgroup of patients in a genotype-specific manner. Here, we review the three main targeted approaches that have been adopted to improve CFTR function: potentiators, which recover the function of CFTR at the apical surface of epithelial cells that is disrupted in class III and IV genetic mutations; correctors, which improve intracellular processing of CFTR, increasing surface expression, in class II mutations; and production correctors or read-through agents, which promote transcription of CFTR in class I mutations. The further development of such approaches offers great promise for future therapeutic strategies in cystic fibrosis. PMID:26403534

  10. Rescue of Murine F508del CFTR Activity in Native Intestine by Low Temperature and Proteasome Inhibitors

    NARCIS (Netherlands)

    M. Wilke (Martina); A.G. Bot (Alice); H. Jorna (Huub); B.J. Scholte (Bob); H.R. de Jonge (Hugo)

    2012-01-01

    textabstractMost patients with Cystic Fibrosis (CF) carry at least one allele with the F508del mutation, resulting in a CFTR chloride channel protein with a processing, gating and stability defect, but with substantial residual activity when correctly sorted to the apical membranes of epithelial cel

  11. Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR

    Directory of Open Access Journals (Sweden)

    Neng Chen

    2014-07-01

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR gene mutation analysis has been implemented for Cystic Fibrosis (CF carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD. Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM curve analysis, allele-specific PCR (AS-PCR and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing.

  12. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    Science.gov (United States)

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  13. Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells.

    Science.gov (United States)

    Bilan, Frédéric; Nacfer, Magali; Fresquet, Fleur; Norez, Caroline; Melin, Patricia; Martin-Berge, Alice; Costa de Beauregard, Marie-Alyette; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent

    2008-07-01

    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein is a chloride channel localized at the apical plasma membrane of epithelial cells. We previously described that syntaxin 8, an endosomal SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) protein, interacts with CFTR and regulates its trafficking to the plasma membrane and hence its channel activity. Syntaxin 8 belongs to the endosomal SNARE complex which also contains syntaxin 7, vti1b and VAMP8. Here, we report that these four endosomal SNARE proteins physically and functionally interact with CFTR. In LLC-PK1 cells transfected with CFTR and in Caco-2 cells endogenously expressing CFTR, we demonstrated that endosomal SNARE protein overexpression inhibits CFTR activity but not swelling- or calcium-activated iodide efflux, indicating a specific effect upon CFTR activity. Moreover, co-immunoprecipitation experiments in LLC-PK1-CFTR cells showed that CFTR and SNARE proteins belong to a same complex and pull-down assays showed that VAMP8 and vti1b preferentially interact with CFTR N-terminus tail. By cell surface biotinylation and immunofluorescence experiments, we evidenced that endosomal SNARE overexpression disturbs CFTR apical targeting. Finally, we found a colocalization of CFTR and endosomal SNARE proteins in Rab11-positive recycling endosomes, suggesting a new role for endosomal SNARE proteins in CFTR trafficking in epithelial cells.

  14. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis.

    Science.gov (United States)

    Dekkers, Johanna F; Berkers, Gitte; Kruisselbrink, Evelien; Vonk, Annelotte; de Jonge, Hugo R; Janssens, Hettie M; Bronsveld, Inez; van de Graaf, Eduard A; Nieuwenhuis, Edward E S; Houwen, Roderick H J; Vleggaar, Frank P; Escher, Johanna C; de Rijke, Yolanda B; Majoor, Christof J; Heijerman, Harry G M; de Winter-de Groot, Karin M; Clevers, Hans; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-06-22

    Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to two drugs-the prototypical CFTR potentiator VX-770 (ivacaftor/KALYDECO) and the CFTR corrector VX-809 (lumacaftor)-in organoid cultures derived from the rectal epithelia of subjects with CF, who expressed a broad range of CFTR mutations. We observed that CFTR residual function and responses to drug therapy depended on both the CFTR mutation and the genetic background of the subjects. In vitro drug responses in rectal organoids positively correlated with published outcome data from clinical trials with VX-809 and VX-770, allowing us to predict from preclinical data the potential for CF patients carrying rare CFTR mutations to respond to drug therapy. We demonstrated proof of principle by selecting two subjects expressing an uncharacterized rare CFTR genotype (G1249R/F508del) who showed clinical responses to treatment with ivacaftor and one subject (F508del/R347P) who showed a limited response to drug therapy both in vitro and in vivo. These data suggest that in vitro measurements of CFTR function in patient-derived rectal organoids may be useful for identifying subjects who would benefit from CFTR-correcting treatment, independent of their CFTR mutation. PMID:27334259

  15. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation

    OpenAIRE

    Bruscia, Emanuela M.; Price, Joanna E.; Cheng, Ee-chun; Weiner, Scott; Caputo, Christina; Ferreira, Elisa C.; Egan, Marie E.; Krause, Diane S.

    2006-01-01

    Several studies have demonstrated that bone marrow (BM)-derived cells give rise to rare epithelial cells in the gastrointestinal (GI) and respiratory tracts after BM transplantation into myeloablated recipients. We investigate whether, after transplantation of cystic fibrosis transmembrane conductance regulator (CFTR)-positive BM-derived cells, BM-derived GI and airway epithelial cells can provide CFTR activity in the GI tract and nasal epithelium of recipient cystic fibrosis mice. CFTR−/− mi...

  16. F508del-CFTR rescue: a matter of cell stress response.

    Science.gov (United States)

    Nieddu, Erika; Pollarolo, Benedetta; Merello, Luisa; Schenone, Silvia; Mazzei, Mauro

    2013-01-01

    Cystic fibrosis (CF) is a common inherited fatal disease affecting 70,000 people worldwide, with a median predicted age of survival of approximately 38 years. The deletion of Phenylalanine in position 508 of the Cystic Fibrosis Transmembrane conductance Regulator (F508del-CFTR) is the most common mutation in CF patients: the deleted protein, not properly folded, is degraded. To date no commercial drugs are available. Low temperature, some osmolytes and conditions able to induce heat shock protein 70 (Hsp70) expression and heat shock cognate 70 (Hsc70) inhibition result in F508del-CFTR rescue, hence restoring its physiological function: this review sheds light on the correlation between these several evidences. Interestingly, all these approaches have a role in the cell stress response (CSR), a set of cell reactions to stress. In addition, unpredictably, F508del-CFTR rescue has to be considered in the frame of CSR: entities that induce - or are induced during - the CSR are, in general, also able to correct trafficking defect of CFTR. Specifically, the low temperature induces, by definition, a CSR; osmolytes, such as glycerol and trimethylamine N-oxide (TMAO), are products of the CSR; pharmacological correctors, such as Matrine and 4-phenylbutirric acid (4PBA), down-regulate the constitutive Hsc70 in favor of an up-regulation of the inducible chaperone Hsp70, another component of the CSR. The identification of a common mechanism of action for different types of correctors could drive the discovery of new active molecules in CF, overcoming methods clinically inapplicable, such as the low temperature. PMID:23331026

  17. Expression of TRPC3 in Chinese Hamster Ovary Cells Results in Calcium-activated Cation Currents Not Related to Store Depletion

    OpenAIRE

    Zitt, Christof; Obukhov, Alexander G.; Strübing, Carsten; Zobel, Andrea; Kalkbrenner, Frank; Lückhoff, Andreas; Schultz, Günter

    1997-01-01

    TRPC3 (or Htrp3) is a human member of the trp family of Ca2+-permeable cation channels. Since expression of TRPC3 cDNA results in markedly enhanced Ca2+ influx in response to stimulation of membrane receptors linked to phospholipase C (Zhu, X., J. Meisheng, M. Peyton, G. Bouley, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. Cell. 85:661–671), we tested whether TRPC3 might represent a Ca2+ entry pathway activated as a consequence of depletion of intracellular calcium stores. CHO cells express...

  18. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein-detergent complexes.

    Science.gov (United States)

    Pollock, Naomi L; Satriano, Letizia; Zegarra-Moran, Olga; Ford, Robert C; Moran, Oscar

    2016-04-01

    CFTR is an anionic channel expressed in epithelia whose mutations cause cystic fibrosis. Wild (WT) and mutated (F508del) types were over-expressed in yeast, solubilised in the detergent LPG-14 and purified. The detergent-CFTR complexes were studied by SAXS techniques using a solvent of variable density. The final result of the study is the numerical value of a set of parameters: molecular mass, volume and radius of gyration, average electron density and second moment of the electron density fluctuations inside the particles. It is also shown that in the complex the centres of gravity of CFTR and of the detergent are displaced relative to each other. The analysis of these parameters led to the determination of the size and shape of the volumes occupied by protein and by detergent in the complex. WT-CFTR to be an elongated molecule (maximum diameter ∼12.4nm) which spans a flat detergent micelle. The distance distribution function, P(r) confirms that the WT-CFTR is elongated and with an inhomogeneous electronic density. The F508del-CFTR molecule is also elongated (maximum diameter ∼13.2nm), but the associated detergent micelle hides a larger surface, plausibly related to an increased exposure of hydrophobic portions of the mutated protein. The corresponding P(r) is consistent with the presence of well defined domains, probably linked by flexible regions. These differences suggest that the full-length mutant F508del-CFTR has a detectably different conformation, in contrast to the minor differences observed for the isolated F508-containing domain. We interpret the data in terms of an incomplete post-translational assembly of the protein domains.

  19. Reduced expression of Tis7/IFRD1 protein in murine and human cystic fibrosis airway epithelial cell models homozygous for the F508del-CFTR mutation.

    Science.gov (United States)

    Blanchard, Elise; Marie, Solenne; Riffault, Laure; Bonora, Monique; Tabary, Olivier; Clement, Annick; Jacquot, Jacky

    2011-08-01

    12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o(-) cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o(-) cells compared to normal bronchial epithelial cells 16HBE14o(-). Surprisingly, messenger RNA level of IFRD1 in CFBE41o(-) cells was found elevated. Treating CFBE41o(-) cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.

  20. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein-detergent complexes.

    Science.gov (United States)

    Pollock, Naomi L; Satriano, Letizia; Zegarra-Moran, Olga; Ford, Robert C; Moran, Oscar

    2016-04-01

    CFTR is an anionic channel expressed in epithelia whose mutations cause cystic fibrosis. Wild (WT) and mutated (F508del) types were over-expressed in yeast, solubilised in the detergent LPG-14 and purified. The detergent-CFTR complexes were studied by SAXS techniques using a solvent of variable density. The final result of the study is the numerical value of a set of parameters: molecular mass, volume and radius of gyration, average electron density and second moment of the electron density fluctuations inside the particles. It is also shown that in the complex the centres of gravity of CFTR and of the detergent are displaced relative to each other. The analysis of these parameters led to the determination of the size and shape of the volumes occupied by protein and by detergent in the complex. WT-CFTR to be an elongated molecule (maximum diameter ∼12.4nm) which spans a flat detergent micelle. The distance distribution function, P(r) confirms that the WT-CFTR is elongated and with an inhomogeneous electronic density. The F508del-CFTR molecule is also elongated (maximum diameter ∼13.2nm), but the associated detergent micelle hides a larger surface, plausibly related to an increased exposure of hydrophobic portions of the mutated protein. The corresponding P(r) is consistent with the presence of well defined domains, probably linked by flexible regions. These differences suggest that the full-length mutant F508del-CFTR has a detectably different conformation, in contrast to the minor differences observed for the isolated F508-containing domain. We interpret the data in terms of an incomplete post-translational assembly of the protein domains. PMID:26850167

  1. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR

    NARCIS (Netherlands)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lacti

  2. Activation of CFTR by ASBT-mediated bile salt absorption.

    Science.gov (United States)

    Bijvelds, Marcel J C; Jorna, Huub; Verkade, Henkjan J; Bot, Alice G M; Hofmann, Franz; Agellon, Luis B; Sinaasappel, Maarten; de Jonge, Hugo R

    2005-11-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl- secretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+ flux. TC-evoked Cl- secretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1 receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Cl- secretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Cl- exit. TC-induced Cl- secretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state. PMID:16037545

  3. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity.

    Science.gov (United States)

    Londino, James D; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F; Noah, James W; Matalon, Sadis

    2013-05-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.

  4. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis

    NARCIS (Netherlands)

    Dekkers, Johanna F; Berkers, Gitte; Kruisselbrink, Evelien; Vonk, Annelotte; de Jonge, Hugo R; Janssens, Hettie M; Bronsveld, Inez; van de Graaf, Eduard A; Nieuwenhuis, Edward E S; Houwen, Roderick H J; Vleggaar, Frank P; Escher, Johanna C; de Rijke, Yolanda B; Majoor, Christof J; Heijerman, Harry G M; de Winter-de Groot, Karin M; Clevers, Hans; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-01-01

    Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to tw

  5. Differential expression of CFTR gene in the mouse intestinal tissues%CFTR 基因在小鼠肠道组织中的差异表达

    Institute of Scientific and Technical Information of China (English)

    王月影; 韩莹倩; 查光明; 汪新建; 李和平

    2014-01-01

    Object This experiment was conducted to study the relationship between CFTR gene expression in the intestinal tissues and secretory diarrhea.Methods Twenty-four Kunming mice were selected, half male and half female, and were randomly divided into 3 groups ( n=8 in each group):control group with intraperitoneal injection of 0.2 mL nor-mal saline, and the experimental group of mice by intraperitoneal injection of lipopolysaccharide(LPS) (6 mg/kg· bw). The mental state and intestinal morphology of the mice at 1 h and 8 h after LPS injection were observed to assess whether the secretory diarrhea model was successfully established.The expression of CFTR gene segments of intestine tissue was de-tected by fluorescence quantitative PCR.Results LPS induced secretory diarrhea.CFTR gene was expressed in the mouse duodenum, jejunum, ileum and colon tissues with different expression abundance.It was highest in the colon, but the difference was not significant between intestinal segments.Compared with the control group, LPS up-regulated the tran-scription level of CFTR gene in the duodenum, jejunum and ileum, and down-regulated the transcription of CFTR gene in the colon.Conclusions The results of our study suggest that the changes of the transcriptional level of CFTR gene are closely related with the diarrhea induced by LPS and the effects in different intestinal segments on the diarrhea is different. The jejunum plays a crucial role and the colon plays a least role in the Cl-secretion.%目的:研究肠道组织CFTR基因表达与分泌性腹泻发生的关系。方法选取KM小鼠24只,雌雄各半,随机分为3组(每组8只):对照组经小鼠腹腔注射0.2 mL生理盐水,实验组小鼠经腹腔注射LPS[6 mg/(kg· bw)]分别作用1 h、8 h,于注射后通过小鼠精神状态、肠道组织形态学判定分泌性腹泻模型的建立,利用荧光定量PCR法检测各段肠道组织CFTR基因的表达。结果 LPS成功诱导小鼠发生了分泌

  6. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis.

    Science.gov (United States)

    Faure, Grazyna; Bakouh, Naziha; Lourdel, Stéphane; Odolczyk, Norbert; Premchandar, Aiswarya; Servel, Nathalie; Hatton, Aurélie; Ostrowski, Maciej K; Xu, Haijin; Saul, Frederick A; Moquereau, Christelle; Bitam, Sara; Pranke, Iwona; Planelles, Gabrielle; Teulon, Jacques; Herrmann, Harald; Roldan, Ariel; Zielenkiewicz, Piotr; Dadlez, Michal; Lukacs, Gergely L; Sermet-Gaudelus, Isabelle; Ollero, Mario; Corringer, Pierre-Jean; Edelman, Aleksander

    2016-07-17

    Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents. PMID:27241308

  7. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  8. Transcriptional networks driving enhancer function in the CFTR gene.

    Science.gov (United States)

    Kerschner, Jenny L; Harris, Ann

    2012-09-01

    A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.

  9. CFTR and Ca2+ signaling in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Fabrice eAntigny

    2011-10-01

    Full Text Available Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF disease the most common CFTR (Cystic Fibrosis Transmembrane conductance Regulator mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER compartment, rapidly degraded by the ubiquitine/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G protein-coupled receptors (GPCRs by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism to explain this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the origin of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease cystic fibrosis.

  10. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis

    Science.gov (United States)

    Lopes-Pacheco, Miquéias

    2016-01-01

    Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients’ debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients. PMID:27656143

  11. Nasal Potential Difference in Cystic Fibrosis considering Severe CFTR Mutations

    Directory of Open Access Journals (Sweden)

    Ronny Tah Yen Ng

    2015-01-01

    Full Text Available The gold standard for diagnosing cystic fibrosis (CF is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients (G1, CF patients with classes IV-VI CFTR mutations (five patients (G2, and 21 healthy subjects (G3. The CF patients and healthy subjects also underwent the NPD test. A statistical analysis was performed using the Mann-Whitney, Kruskal-Wallis, χ2, and Fisher’s exact tests, α=0.05. No differences were observed between the CF patients and healthy controls for the PDMax, Δamiloride, and Δchloride + free + amiloride markers from the NPD test. For the finger value, a difference between G2 and G3 was described. The Wilschanski index values were different between G1 and G3. In conclusion, our data showed that NPD is useful for CF diagnosis when classes I-III CFTR mutations are screened. However, if classes IV-VI are considered, the NPD test showed an overlap in values with healthy subjects.

  12. Cystic fibrosis transmembrane conductance regulator (CFTR allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Serena Schippa

    Full Text Available INTRODUCTION: In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF. CFTR mutations (F508del is the most common lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. METHODS: Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. RESULTS: Patients were classified by two different criteria: 1 presence/absence of F508del mutation; 2 disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum were reduced. CONCLUSIONS: This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.

  13. Amniotic Mesenchymal Stem Cells: A New Source for Hepatocyte-Like Cells and Induction of CFTR Expression by Coculture with Cystic Fibrosis Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Valentina Paracchini

    2012-01-01

    Full Text Available Cystic fibrosis (CF is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR gene, with lung and liver manifestations. Because of pitfalls of gene therapy, novel approaches for reconstitution of the airway epithelium and CFTR expression should be explored. In the present study, human amniotic mesenchymal stem cells (hAMSCs were isolated from term placentas and characterized for expression of phenotypic and pluripotency markers, and for differentiation potential towards mesoderm (osteogenic and adipogenic lineages. Moreover, hAMSCs were induced to differentiate into hepatocyte-like cells, as demonstrated by mixed function oxidase activity and expression of albumin, alpha1-antitrypsin, and CK19. We also investigated the CFTR expression in hAMSCs upon isolation and in coculture with CF airway epithelial cells. Freshly isolated hAMSCs displayed low levels of CFTR mRNA, which even decreased with culture passages. Following staining with the vital dye CM-DiI, hAMSCs were mixed with CFBE41o- respiratory epithelial cells and seeded onto permeable filters. Flow cytometry demonstrated that 33–50% of hAMSCs acquired a detectable CFTR expression on the apical membrane, a result confirmed by confocal microscopy. Our data show that amniotic MSCs have the potential to differentiate into epithelial cells of organs relevant in CF pathogenesis and may contribute to partial correction of the CF phenotype.

  14. Diagnosis of cystic fibrosis in the kindred of an infant with CFTR-related metabolic syndrome: Importance of follow-up that includes monitoring sweat chloride concentrations over time

    OpenAIRE

    Williams, SN; Nussbaum, E.; Chin, TW; Do, PCM; Singh, KE; Randhawa, I

    2014-01-01

    Newly implemented newborn screening (NBS) programs in California have resulted in a large subset of patients in whom at least two cystic fibrosis transmembrane conductance regulator (CFTR) mutations are identified, but subsequent sweat chloride analysis reveals normal or indeterminate values. These patients are diagnosed with CFTR-Related Metabolic Syndrome (CRMS). However, the natural progression and management of these patients are not clearly understood and frequently after the age of 1-ye...

  15. A molecular mechanism for aberrantCFTR-dependent HCO3– transport in cystic fibrosis

    OpenAIRE

    Ko, Shigeru B. H.; Shcheynikov, Nikolay; Choi, Joo Young; Luo, Xiang; Ishibashi, Kenichi; Thomas, Philip J.; Kim, Joo Young; Kim, Kyung Hwan; Lee, Min Goo; Naruse, Satoru; Muallem, Shmuel

    2002-01-01

    Aberrant HCO3– transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl–-dependent HCO3– transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO3– current by CFTR cannot account for CFTR-activated HCO3– transport and that CFTR does not activate AE1–AE4. In contrast, CFTR markedly activates Cl– and OH–/HCO3– transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporte...

  16. Oral fibrinogen-depleting agent lumbrokinase for secondary ischemic stroke prevention: results from a multicenter, randomized, parallel-group and controlled clinical trial

    Institute of Scientific and Technical Information of China (English)

    CAO Yong-jun; ZHANG Xia; WANG Wan-hua; ZHAI Wan-qing; QIAN Ju-fen; WANG Jian-sheng; CHEN Jun

    2013-01-01

    Background Elevated fibrinogen (Fg) level is a known risk factor for ischemic stroke.There are few clinical trials on oral fibrinogen-depleting therapies for secondary ischemic stroke prevention.We aimed to assess the effects of one-year therapy with oral lumbrokinase enteric-coated capsules on secondary ischemic stroke prevention.Methods This is a multicenter,randomized,parallel group and controlled study that began treatment in hospitalized patients with ischemic stroke and continued for 12 months.Patients were randomized to either the control group that received the standard stroke treatment or the fibrinogen-depleting group that received the standard stroke treatment plus enteric-coated lumbrokinase capsules.The NIH Stroke Scale scores (NIHSSs) and plasma Fg level were recorded.The carotid artery intima-media thickness (IMT) and status of plaques were examined through carotid ultrasound examination.Primary outcomes included all-cause mortality,any event of recurrent ischemic stroke/transient ischemic attack (TIA),hemorrhagic stroke,myocardial infarction and angina,and other noncerebral ischemia or hemorrhage.Kaplan-Meier survival analysis and the Long-rank test were used to compare total vascular end point incidence between the two groups.Comparison of median values between two groups was done by the Student t test,one-way analysis of variance (ANOVA),or non-parametric rank sum test.Results A total of 310 patients were enrolled,192 patients in the treatment group and 118 patients in the control group.Compared to the control group,the treatment group showed favorable outcomes in the Fg level,carotid IMT,the detection rate of vulnerable plaques,the volume of carotid plaques,NIHSS scores,and incidence of total vascular (6.78% and 2.08%,respectively) and cerebral vascular events (5.93% and 1.04%,respectively) (P <0.05).In the treatment group,the volume of carotid plaques was significantly related to the carotid IMT,the plaque diameter,width and number (P

  17. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress.

    Science.gov (United States)

    Vitzthum, Constanze; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that is essential for electrolyte and fluid homeostasis. Preliminary evidence indicates that CFTR is a mechanosensitive channel. In lung epithelia, CFTR is exposed to different mechanical forces such as shear stress (Ss) and membrane distention. The present study questioned whether Ss and/or stretch influence CFTR activity (wild type, ∆F508, G551D). Human CFTR (hCFTR) was heterologously expressed in Xenopus oocytes and the response to the mechanical stimulus and forskolin/IBMX (FI) was measured by two-electrode voltage-clamp experiments. Ss had no influence on hCFTR activity. Injection of an intracellular analogous solution to increase cell volume alone did not affect hCFTR activity. However, hCFTR activity was augmented by injection after pre-stimulation with FI. The response to injection was similar in channels carrying the common mutations ∆F508 and G551D compared to wild type hCFTR. Stretch-induced CFTR activation was further assessed in Ussing chamber measurements using Xenopus lung preparations. Under control conditions increased hydrostatic pressure (HP) decreased the measured ion current including activation of a Cl(-) secretion that was unmasked by the CFTR inhibitor GlyH-101. These data demonstrate activation of CFTR in vitro and in a native pulmonary epithelium in response to mechanical stress. Mechanosensitive regulation of CFTR is highly relevant for pulmonary physiology that relies on ion transport processes facilitated by pulmonary epithelial cells. PMID:26357939

  18. Functional cure of SIVagm infection in rhesus macaques results in complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion.

    Directory of Open Access Journals (Sweden)

    Ivona Pandrea

    2011-08-01

    Full Text Available Understanding the mechanism of infection control in elite controllers (EC may shed light on the correlates of control of disease progression in HIV infection. However, limitations have prevented a clear understanding of the mechanisms of elite controlled infection, as these studies can only be performed at randomly selected late time points in infection, after control is achieved, and the access to tissues is limited. We report that SIVagm infection is elite-controlled in rhesus macaques (RMs and therefore can be used as an animal model for EC HIV infection. A robust acute infection, with high levels of viral replication and dramatic mucosal CD4(+ T cell depletion, similar to pathogenic HIV-1/SIV infections of humans and RMs, was followed by complete and durable control of SIVagm replication, defined as: undetectable VLs in blood and tissues beginning 72 to 90 days postinoculation (pi and continuing at least 4 years; seroreversion; progressive recovery of mucosal CD4(+ T cells, with complete recovery by 4 years pi; normal levels of T cell immune activation, proliferation, and apoptosis; and no disease progression. This "functional cure" of SIVagm infection in RMs could be reverted after 4 years of control of infection by depleting CD8 cells, which resulted in transient rebounds of VLs, thus suggesting that control may be at least in part immune mediated. Viral control was independent of MHC, partial APOBEC restriction was not involved in SIVagm control in RMs and Trim5 genotypes did not impact viral replication. This new animal model of EC lentiviral infection, in which complete control can be predicted in all cases, permits research on the early events of infection in blood and tissues, before the defining characteristics of EC are evident and when host factors are actively driving the infection towards the EC status.

  19. Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion.

    Science.gov (United States)

    Zitt, C; Obukhov, A G; Strübing, C; Zobel, A; Kalkbrenner, F; Lückhoff, A; Schultz, G

    1997-09-22

    TRPC3 (or Htrp3) is a human member of the trp family of Ca2+-permeable cation channels. Since expression of TRPC3 cDNA results in markedly enhanced Ca2+ influx in response to stimulation of membrane receptors linked to phospholipase C (Zhu, X., J. Meisheng, M. Peyton, G. Bouley, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. Cell. 85:661-671), we tested whether TRPC3 might represent a Ca2+ entry pathway activated as a consequence of depletion of intracellular calcium stores. CHO cells expressing TRPC3 after intranuclear injection of cDNA coding for TRPC3 were identified by fluorescence from green fluorescent protein. Expression of TRPC3 produced cation currents with little selectivity for Ca2+ over Na+. These currents were constitutively active, not enhanced by depletion of calcium stores with inositol-1,4,5-trisphosphate or thapsigargin, and attenuated by strong intracellular Ca2+ buffering. Ionomycin led to profound increases of currents, but this effect was strictly dependent on the presence of extracellular Ca2+. Likewise, infusion of Ca2+ into cell through the patch pipette increased TRPC3 currents. Therefore, TRPC3 is stimulated by a Ca2+-dependent mechanism. Studies on TRPC3 in inside-out patches showed cation-selective channels with 60-pS conductance and short (ionomycin to cells increased channel activity in cell-attached patches. Increasing the Ca2+ concentration on the cytosolic side of inside-out patches (from 0 to 1 and 30 microM), however, failed to stimulate channel activity, even in the presence of calmodulin (0.2 microM). We conclude that TRPC3 codes for a Ca2+-permeable channel that supports Ca2+-induced Ca2+-entry but should not be considered store operated. PMID:9298988

  20. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene.

    Science.gov (United States)

    Mueller, Christian; Torrez, Daniel; Braag, Sofia; Martino, Ashley; Clarke, Tracy; Campbell-Thompson, Martha; Flotte, Terence R

    2008-01-01

    Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes. PMID:18023072

  1. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  2. CFTR Mutations in Congenital Absence of Vas Deferens

    Directory of Open Access Journals (Sweden)

    Ramin Radpour

    2007-01-01

    Full Text Available A qualitative diagnosis of infertility requires attention to female and male physical abnormalities,endocrine anomalies and genetic conditions that interfere with reproduction. Many genes arelikely to be involved in the complex process of reproduction. Cystic fibrosis (CF incidence variesin different White people populations (a higher incidence of CF is observed in northern–westernEuropean populations than in southern European populations, and therefore the incidence ofcongenital bilateral absence of the vas deferens (CBAVD may also vary in different Whitepeople populations. As CF is mainly observed in White people, hardly any data are available ofCBAVD in non-White people, but frequent polymorphisms such as 5T are observed in mostpopulations. The spectrum and distribution of cystic fibrosis transmembrane conductanceregulator gene (CFTR mutations differs between CBAVD and CF patients, and even comparedwith control individuals. Combinations of particular alleles at several polymorphic loci yieldinsufficient functional CFTR. The combination of the 5T allele in one copy of the CFTR genewith a cystic fibrosis mutation in the other copy is the most common cause of CBAVD in Iran.Because of techniques such as intracytoplasmic sperm injection (ICSI, CBAVD patients are nowable to father children, however such couples have an increased risk of having a child with cysticfibrosis, and therefore genetic testing and counseling should be provided. Around 10% ofobstructive azoospermia is congenital and is due to mutations the CF gene. This paper reviews therelationship of mutations in the CFTR gene with CBAVD.

  3. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets

    NARCIS (Netherlands)

    J.T. Fisher (John); S.R. Tyler (Scott); Y. Zhang (Yulong); B.J. Lee (Ben); X. Liu (Xiaoming); X. Sun (Xinying); H. Sui (Hongshu); B. Liang (Bo); M. Luo (Ma); W. Xie (Weiliang); I. Yi (Iasson); W. Zhou (Weili); Y. Song (Yiqing); N. Keiser (Nicholas); K. Wang (Kai); H.R. de Jonge (Hugo); J.F. Engelhardt (John)

    2013-01-01

    textabstractCystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to un

  4. Insulin-like growth factor 1 (IGF-1 enhances the protein expression of CFTR.

    Directory of Open Access Journals (Sweden)

    Ha Won Lee

    Full Text Available Low levels of insulin-like growth factor 1 (IGF-1 have been observed in the serum of cystic fibrosis (CF patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR, whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  5. Insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.

    Science.gov (United States)

    Lee, Ha Won; Cheng, Jie; Kovbasnjuk, Olga; Donowitz, Mark; Guggino, William B

    2013-01-01

    Low levels of insulin-like growth factor 1 (IGF-1) have been observed in the serum of cystic fibrosis (CF) patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR), whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL)- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET) assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  6. In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents.

    Science.gov (United States)

    Sonawane, N D; Muanprasat, Chatchai; Nagatani, Ray; Song, Yuanlin; Verkman, A S

    2005-01-01

    A small-molecule inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (CFTR(inh)-172), reduces enterotoxin-induced intestinal fluid secretion in rodents. Here, we study CFTR(inh)-172 pharmacology and antidiarrheal efficacy in rodents using (14)C-labeled CFTR(inh)-172, liquid chromatography/mass spectrometry, and a closed intestinal loop model of fluid secretion. CFTR(inh)-172 was cleared primarily by renal glomerular filtration without chemical modification. CFTR(inh)-172 accumulated in liver within 5 min after intravenous infusion in mice, and was concentrated fivefold in bile over blood. At 30-240 min, CFTR(inh)-172 was found mainly in liver, intestine, and kidney, with little detectable in the brain, heart, skeletal muscle, or lung. Pharmacokinetic analysis in rats following intravenous bolus infusion showed a distribution volume of 770 mL with redistribution and elimination half-times of 0.14 h and 10.3 h, respectively. CFTR(inh)-172 was stable in hepatic microsomes. Closed-loop studies in mice indicated that a single intraperitoneal injection of 20 microg CFTR(inh)-172 inhibited fluid accumulation at 6 h after cholera toxin by >90% in duodenum and jejunum, approximately 60% in ileum and accumulation of CFTR(inh)-172 account for its efficacy as an antidiarrheal. PMID:15761937

  7. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids.

    Science.gov (United States)

    Dekkers, Johanna F; Gogorza Gondra, Ricardo A; Kruisselbrink, Evelien; Vonk, Annelotte M; Janssens, Hettie M; de Winter-de Groot, Karin M; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-08-01

    Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508del) are being extensively studied but correction of other trafficking mutants that may also benefit from corrector treatment remains largely unknown.We studied correction of the folding mutants CFTR-p.Phe508del, -p.Ala455Glu (A455E) and -p.Asn1303Lys (N1303K) by VX-809 and 18 other correctors (C1-C18) using a functional CFTR assay in human intestinal CF organoids.Function of both CFTR-p.Phe508del and -p.Ala455Glu was enhanced by a variety of correctors but no residual or corrector-induced activity was associated with CFTR-p.Asn1303Lys. Importantly, VX-809-induced correction was most dominant for CFTR-p.Phe508del, while correction of CFTR-p.Ala455Glu was highest by a subgroup of compounds called bithiazoles (C4, C13, C14 and C17) and C5.These data support the development of mutation-specific correctors for optimal treatment of different CFTR trafficking mutants, and identify C5 and bithiazoles as the most promising compounds for correction of CFTR-p.Ala455Glu. PMID:27103391

  8. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  9. A novel fluorescent sensor for measurement of CFTR function by flow cytometry.

    Science.gov (United States)

    Vijftigschild, Lodewijk A W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2013-06-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis. CFTR-dependent iodide transport measured by fluorescent quenching of ectopically expressed halide-sensitive yellow fluorescent protein (YFP) is widely being used to study CFTR function by microscopy or plate readers. Since YFP fluorescence in these systems is dependent on YFP expression levels and iodide concentration, differences in sensor expression level between experimental units are normalized at the start of each experiment. To allow accurate measurement of CFTR function by flow cytometry, we reasoned that co-expression of an iodide insensitive fluorescent protein would allow for normalization of sensor expression levels and more accurate quantification of CFTR function. Our data indicated that dsRed and mKate fluorescence are iodide insensitive, and we determined an optimal format for co-expression of these fluorescent proteins with halide-sensitive YFP. We showed using microscopy that ratiometric measurement (YFP/mKate) corrects for differences in sensor expression levels. Ratiometric measurements were essential to accurately measure CFTR function by flow cytometry that we here describe for the first time. Mixing of wild type or mutant CFTR expressing cells indicated that addition of approximately 10% of wild type CFTR expressing cells could be distinguished by ratiometric YFP quenching. Flow cytometric ratiometric YFP quenching also allowed us to study CFTR mutants associated with differential residual function upon ectopic expression. Compared with conventional plate-bound CFTR function assays, the flow cytometric approach described here can be used to study CFTR function in suspension cells. It may be further adapted to study CFTR function in heterologous cell populations using cell surface markers and selection of cells that display high CFTR function by cell sorting.

  10. Comparison of depletion results for a boiling water reactor fuel element with CASMO and SCALE 6.1 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Morera, D.; Miro, R.; Barrachina, T.; Verdu, G., E-mail: cmesado@isirym.upv.es, E-mail: dmorera@isirym.upv.es, E-mail: rmiro@isirym.upv.es, E-mail: tbarrachina@isirym.upv.es, E-mail: gverdu@isirym.upv.es [Universitat Politecnica de Valencia (UPV), Valencia (Spain). Institute for the Industrial, Radiophysical and Environmental Safety; Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion, S.A.U, Madrid (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S. L., Madrid (Spain); Melara, Jose, E-mail: j.melara@iberdrola.es [Iberdrola Generacion Nuclear, Madrid (Spain)

    2013-07-01

    In this work, the results of depletion calculations with CASMO and SCALE 6.1 (TRITON) are compared. To achieve it, a region of a Boiling Water Reactor (BWR) fuel element is modeled, using both codes. To take into account different operating conditions, the simulations are repeated with different void fraction, ranging from null void fraction to a void fraction closed to one. Special care was used to keep in mind that the homogenization of the materials and the two group approach was the same in both codes. Additionally, KENO-VI and MCDANCOFF modules are used. The k-effective calculated by KENO-VI is used to ensure that the starting point was correct and MCDANCOFF module is used to calculate the Dancoff factors in order to improve the model accuracy. To validate the whole process, a comparison of k{sub eff}, and cross-sections collapsed and homogenized is shown. The results show a very good agreement, with an average error around the 1.75%. Furthermore, an automatic process for translating CASMO data to SCALE input decks was developed. The reason for the translation is the fact that SCALE's TRITON module is a new code very powerful and continuously being developed. Thus, great advantage can be taken from the current and future SCALE features. This is hoped to produce more realistic models, and hence, increase the accuracy of neutronic libraries. (author)

  11. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel

    OpenAIRE

    Tsai, Ming-Feng; Li, Min; Hwang, Tzyh-Chang

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted that CFTR’s opening–closing cycles, each completed within 1 s, are driven by rapid ATP binding and hydrolysis events in NBD2. Here, by recording CFTR currents in...

  12. Impact of heterozygote CFTR Mutations in COPD patients with Chronic Bronchitis

    OpenAIRE

    Raju, S. Vamsee; Tate, Jody H; Peacock, Sandra KG; Fang, Ping; Oster, Robert A.; Dransfield, Mark T.; Steven M Rowe

    2014-01-01

    Background Cigarette smoking causes Chronic Obstructive Pulmonary Disease (COPD), the 3rd leading cause of death in the U.S. CFTR ion transport dysfunction has been implicated in COPD pathogenesis, and is associated with chronic bronchitis. However, susceptibility to smoke induced lung injury is variable and the underlying genetic contributors remain unclear. We hypothesized that presence of CFTR mutation heterozygosity may alter susceptibility to cigarette smoke induced CFTR dysfunction. Con...

  13. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  14. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice.

    Directory of Open Access Journals (Sweden)

    Frank A J A Bodewes

    Full Text Available The cause of Cystic fibrosis liver disease (CFLD, is unknown. It is well recognized that hepatic exposure to hydrophobic bile salts is associated with the development of liver disease. For this reason, we hypothesize that, CFTR dependent variations, in the hepatic handling of hydrophobic bile salts, are related to the development CFLD. To test our hypothesis we studied, in Cftr-/- and control mice, bile production, bile composition and liver pathology, in normal feeding condition and during cholate exposure, either acute (intravenous or chronic (three weeks via the diet. In Cftr-/- and control mice the basal bile production was comparable. Intravenous taurocholate increased bile production to the same extent in Cftr-/- and control mice. However, chronic cholate exposure increased the bile flow significantly less in Cftr-/- mice than in controls, together with significantly higher biliary bile salt concentration in Cftr-/- mice. Prolonged cholate exposure, however, did not induce CFLD like pathology in Cftr-/- mice. Chronic cholate exposure did induce a significant increase in liver mass in controls that was absent in Cftr-/- mice. Chronic cholate administration induces a cystic fibrosis-specific hepatobiliary phenotype, including changes in bile composition. These changes could not be associated with CFLD like pathological changes in CF mouse livers. However, chronic cholate administration induces liver growth in controls that is absent in Cftr-/- mice. Our findings point to an impaired adaptive homeotrophic liver response to prolonged hydrophobic bile salt exposure in CF conditions.

  15. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    Science.gov (United States)

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, pCFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration. PMID:27471203

  16. SNaPshot Assay for the Detection of the Most Common CFTR Mutations in Infertile Men

    OpenAIRE

    Predrag Noveski; Svetlana Madjunkova; Marija Mircevska; Toso Plaseski; Vanja Filipovski; Dijana Plaseska-Karanfilska

    2014-01-01

    Congenital bilateral absence of vas deferens (CBAVD) is the most common CFTR-related disorder (CFTR-RD) that explains about 1-2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot) assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA an...

  17. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore.

    Science.gov (United States)

    Zhang, Z R; Zeltwanger, S; McCarty, N A

    2004-05-01

    The objective of the present study was to clarify the mechanism by which the sulfonylurea drug, glibenclamide, inhibits single CFTR channels in excised patches from Xenopus oocytes. Glibenclamide blocks the open pore of the channel via binding at multiple sites with varying kinetics. In the absence of glibenclamide, open-channel bursts exhibited a flickery intraburst closed state (C1); this is due to block of the pore by the pH buffer, TES. Application of 25 microM glibenclamide to the cytoplasmic solution resulted in the appearance of two drug-induced intraburst closed states (C2, C3) of widely different duration, which differed in pH-dependence. The kinetics of interaction with the C3 state, but not the C2 state, were strongly voltage-dependent. The durations of both the C2 and C3 states were concentration-dependent, indicating a non-linear reaction scheme. Application of drug also increased the burst duration, which is consistent with an open-channel blocking mechanism. A kinetic model is proposed. These results indicate that glibenclamide interacts with open CFTR channels in a complex manner, involving interactions with multiple binding sites in the channel pore.

  18. Depletion of regulatory T cells in a hapten-induced inflammation model results in prolonged and increased inflammation driven by T cells

    DEFF Research Database (Denmark)

    Christensen, A. D.; Skov, Søren; Kvist, P. H.;

    2015-01-01

    Regulatory T cells (Tregs ) are known to play an immunosuppressive role in the response of contact hypersensitivity (CHS), but neither the dynamics of Tregs during the CHS response nor the exaggerated inflammatory response after depletion of Tregs has been characterized in detail. In this study we...

  19. Leukocyte-depletion of blood components does not significantly reduce the risk of infectious complications. Results of a double-blinded, randomized study

    DEFF Research Database (Denmark)

    Titlestad, I. L.; Ebbesen, L. S.; Ainsworth, A. P.;

    2001-01-01

    Allogeneic blood transfusions are claimed to be an independent risk factor for postoperative infections in open colorectal surgery due to immunomodulation. Leukocyte-depletion of erythrocyte suspensions has been shown in some open randomized studies to reduce the rate of postoperative infection t...

  20. Analysis of cystic fibrosis–associated P67L CFTR illustrates barriers to personalized therapeutics for orphan diseases

    Science.gov (United States)

    Sabusap, Carleen M.; Wang, Wei; McNicholas, Carmel M.; Chung, W. Joon; Fu, Lianwu; Wen, Hui; Mazur, Marina; Kirk, Kevin L.; Collawn, James F.; Hong, Jeong S.; Sorscher, Eric J.

    2016-01-01

    Emerging knowledge indicates the difficulty in categorizing unusual cystic fibrosis (CF) mutations, with regard to both pathogenic mechanism and theratype. As case in point, we present data concerning P67L mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), a defect carried by a small number of individuals with CF and sometimes attributed to a channel conductance abnormality. Findings from our laboratory and others establish that P67L causes protein misfolding, disrupts maturation, confers gating defects, is thermally stable, and exhibits near normal conductance. These results provide one framework by which rare CF alleles such as P67L can be more comprehensively profiled vis-à-vis molecular pathogenesis. We also demonstrate that emerging CF treatments — ivacaftor and lumacaftor — can mediate pronounced pharmacologic activation of P67L CFTR. Infrequent CF alleles are often improperly characterized, in part, due to the small numbers of patients involved. Moreover, access to new personalized treatments among patients with ultra-orphan genotypes has been limited by difficulty arranging phase III clinical trials, and off-label prescribing has been impaired by high drug cost and difficulty arranging third party reimbursement. Rare CFTR mutations such as P67L are emblematic of the challenges to “precision” medicine, including use of the best available mechanistic knowledge to treat patients with unusual forms of disease. PMID:27660821

  1. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine.

    Science.gov (United States)

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David L

    2015-10-20

    Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin. PMID:26436698

  2. Depletion of intense fields

    CERN Document Server

    Seipt, D; Marklund, M; Bulanov, S S

    2016-01-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multi-photon nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude $a_0 \\sim 10^3$ and electron bunches with charges of the order of nC.

  3. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    Science.gov (United States)

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  4. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.

    Science.gov (United States)

    Fatehi, Mohammad; Linsdell, Paul

    2009-04-01

    Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current-voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl(-) permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore. PMID:19381710

  5. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.W.; Hamosh, A.; Macek, M. Jr. [John Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1996-07-01

    The etiology of allergic bronchopulmonary aspergillosis (ABPA) is not well understood. A clinical phenotype resembling the pulmonary disease seen in cystic fibrosis (CF) patients can occur in some individuals with ABPA. Reports of familial occurrence of ABPA and increased incidence in CF patients suggest a possible genetic basis for the disease. To test this possibility, the entire coding region of the cystic fibrosis transmembrane regulator (CFTR) gene was analyzed in 11 individuals who met strict criteria for the diagnosis of ABPA and had normal sweat electrolytes ({le}40 mmol/liter). One patient carried two CF mutations ({Delta}F508/R347H), and five were found to carry one CF mutation (four {Delta}F508; one R117H). The frequency of the {Delta}F508 mutation in patients with ABPA was significantly higher than in 53 Caucasian patients with chronic bronchitis (P < .0003) and the general population (P < .003). These results suggest that CFTR plays an etiologic role in a subset of ABPA patients. 54 refs., 2 tabs.

  6. Contribution of CFTR to Alveolar Fluid Clearance by Lipoxin A4 via PI3K/Akt Pathway in LPS-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2013-01-01

    Full Text Available The lipoxins are the first proresolution mediators to be recognized and described as the endogenous “braking signals” for inflammation. We evaluated the anti-inflammatory and proresolution bioactions of lipoxin A4 in our lipopolysaccharide (LPS-induced lung injury model. We demonstrated that lipoxin A4 significantly improved histology of rat lungs and inhibited IL-6 and TNF-α in LPS-induced lung injury. In addition, lipoxin A4 increased alveolar fluid clearance (AFC and the effect of lipoxin A4 on AFC was abolished by CFTRinh-172 (a specific inhibitor of CFTR. Moreover, lipoxin A4 could increase cystic fibrosis transmembrane conductance regulator (CFTR protein expression in vitro and in vivo. In rat primary alveolar type II (ATII cells, LPS decreased CFTR protein expression via activation of PI3K/Akt, and lipoxin A4 suppressed LPS-stimulated phosphorylation of Akt. These results showed that lipoxin A4 enhanced CFTR protein expression and increased AFC via PI3K/Akt pathway. Thus, lipoxin A4 may provide a potential therapeutic approach for acute lung injury.

  7. Progesterone Downregulates Oestrogen-Induced Expression of CFTR and SLC26A6 Proteins and mRNA in Rats’ Uteri

    Directory of Open Access Journals (Sweden)

    K. Gholami

    2012-01-01

    Full Text Available Under progesterone (P dominance, fluid loss assists uterine closure which is associated with pH reduction. We hypothesize that P inhibits uterine fluid secretion and HCO3- transport. Aim. to investigate the expression of Cystic Fibrosis Transmembrane Regulator (CFTR and Cl−/HCO3- exchanger (SLC26A6 under P effect. Method. Uteri from ovariectomized steroid replaced and intact rats at different stages of oestrous cycle were analyzed for changes in protein and mRNA expressions. Results. P inhibits CFTR and SLC26A6 proteins and mRNA expression while oestrogen (E causes vice versa. E treatment followed by P causes a reduction in these transporters’ mRNA and protein. Similar changes occur throughout the oestrous cycle; that is, CFTR mRNA expression was high at proestrus while SLC26A6 mRNA and protein expressions were increased at proestrus and estrus. At diestrus, however, the expression of these transporters’ protein and mRNA was reduced. Conclusion. Inhibition of CFTR and SLC26A6 expressions may explain the reduced fluid volume and pH under P-mediated effect.

  8. Lack of association between UGT1A7, UGT1A9, ARP, SPINK1 and CFTR gene polymorphisms and pancreatic cancer in Italian patients

    Institute of Scientific and Technical Information of China (English)

    Ada Piepoli; Annamaria Gentile; Maria Rosa Valvano; Daniela Barana; Cristina Oliani; Rosa Cotugno; Michele Quitadamo; Angelo Andriulli; Francesco Perri

    2006-01-01

    AIM: To investigate simultaneously UGT1A7, UGT1A9,ARP, SPINK and CFTR genes to verify whether genetic polymorphisms predispose to the development of pancreatic cancer (PC).METHODS: Genomic DNA of 61 pancreatic cancer patients and 105 healthy controls (HC) were analyzed.UGT1,47 genotyping was determined by PCR-RFLP analysis. Specific PCR and sequencing were used to analyze genetic variants of UGT1A9, ARP, SPINK1 and CFTR genes.RESULTS: Four different alleles (*1: WT;*2: N129Kand R131K;*3: N129K, R131K, and W208R;and *4:W208R) in UGT1A7 and three different alleles (*1: WT;*4: Y242X;and *5: D256N) in UGT1A9 were detected.All UGT1A polymorphisms were observed at similar frequency in PC patients and HC. Seven different alleles in ARP were found in PC patients and HC at similar frequency. The SPINK1 mutations N34S and P55Soccurred in five PC patients with a prevalence (4.1%) not significantly different from that observed (2.0%) in HC.The only CFTR ΔF508 mutation was recognized in three PC patients with a prevalence (4.9%) similar to HC.CONCLUSION: UGT1A7, UGT1A9, ARP, SPINK1 and CFTR gene polymorphisms are not associated with PC in Italian patients.

  9. Mechanisms of CFTR folding at the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Soo Jung Kim

    2012-12-01

    Full Text Available In the past decade much has been learned about how CFTR folds and misfolds as the etiologic cause of cystic fibrosis (CF. CFTR folding is complex and hierarchical, takes place in multiple cellular compartments and physical environments, and involves several large networks of folding machineries. Insertion of transmembrane (TM segments into the endoplasmic reticulum (ER membrane and tertiary folding of cytosolic domains begin cotranslationally as the nascent polypeptide emerges from the ribosome, whereas posttranslational folding establishes critical domain-domain contacts needed to form a physiologically stable structure. Within the membrane, N- and C-terminal TM helices are sorted into bundles that project from the cytosol to form docking sites for nucleotide binding domains, NBD1 and NBD2, which in turn form a sandwich dimer for ATP binding. While tertiary folding is required for domain assembly, proper domain assembly also reciprocally affects folding of individual domains analogous to a jigsaw puzzle wherein the structure of each interlocking piece influences its neighbors. Superimposed on this process is an elaborate proteostatic network of cellular chaperones and folding machineries that facilitate the timing and coordination of specific folding steps in and across the ER membrane. While the details of this process require further refinement, we finally have a useful framework to understand key folding defect(s caused by ∆F508 that provides a molecular target(s for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients.

  10. DEPLETED URANIUM TECHNICAL WORK

    Science.gov (United States)

    The Depleted Uranium Technical Work is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this mater...

  11. Stimulation of Airway and Intestinal Mucosal Secretion by Natural Coumarin CFTR Activators

    OpenAIRE

    Hong eYang; Lina eXu; Yujie eSui; Xin eLiu; Chengyan eHe; Rouyu eFang; Jia eLiu; Feng eHao; Tong-Hui eMa

    2011-01-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause lethal hereditary disease cystic fibrosis (CF) that involves extensive destruction and dysfunction of serous epithelium. Possible pharmacological therapy includes correction of defective intracellular processing and abnormal channel gating. In a previous study, we identified five natural coumarin potentiators of Δ508-CFTR including osthole, imperatorin, isopsoralen, praeruptorin A and scoparone. The present study wa...

  12. Mechanism-based corrector combination restores Delta F508-CFTR folding and function

    NARCIS (Netherlands)

    Okiyoneda, Tsukasa; Veit, Guido; Dekkers, Johanna F.; Bagdany, Miklos; Soya, Naoto; Xu, Haijin; Roldan, Ariel; Verkman, Alan S.; Kurth, Mark; Simon, Agnes; Hegedus, Tamas; Beekman, Jeffrey M.; Lukacs, Gergely L.

    2013-01-01

    The most common cystic fibrosis mutation, Delta F508 in nucleotide binding domain 1 (NBD1), impairs cystic fibrosis transmembrane conductance regulator (CFTR)-coupled domain folding, plasma membrane expression, function and stability. VX-809, a promising investigational corrector of Delta F508-CFTR

  13. Conformationally rigid histone deacetylase inhibitors correct DF508-CFTR protein function

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Hutt, Darren M.;

    2011-01-01

    Histone deacetylase (HDAC) inhibitors have shown partial efficacy toward correcting cystic fibrosis transmembrane conductance regulator (CFTR) protein function in ΔF508- CFTR models. While current treatment options for CF generally concentrate on disease symptoms such as management of inflammation...

  14. Novel CFTR missense mutations in Brazilian patients with congenital absence of vas deferens: counseling issues Mutações novas no gene CFTR de pacientes brasileiros portadores de agenesia dos vasos deferentes: dificuldades no aconselhamento

    Directory of Open Access Journals (Sweden)

    Patricia de Campos Pieri

    2007-01-01

    Full Text Available PURPOSE: Screening for mutations in the entire Cystic Fibrosis gene (CFTR of Brazilian infertile men with congenital absence of vas deferens, in order to prevent transmission of CFTR mutations to offspring with the use of assisted reproductive technologies. METHOD: Specific polymerase chain reaction (PCR primers were designed to each of the 27 exons and splicing sites of interest followed by single strand conformational polymorphism and Heteroduplex Analysis (SSCP-HA in precast 12.5% polyacrylamide gels at 7ºC and 20ºC. Fragments with abnormal SSCP migration pattern were sequenced. RESULTS: Two novel missense mutations (S753R and G149W were found in three patients (two brothers together with the IVS8-5T allele in hetrozygosis. CONCLUSION: The available screenings for CF mutations do not include the atypical mutations associated to absence of vas deferens and thus, when these tests fail to find mutations, there is still a genetic risk of affected children with the help of assisted reproduction. We recommend the screening of the whole CFTR gene for these infertile couples, as part of the work-up before assisted reproduction.OBJETIVO: Pesquisar mutações em toda a extensão do gene que causa a Fibrose Cística (CFTR de homens brasileiros inférteis por agenesia congênita dos vasos deferentes, com a finalidade de prevenir a transmissão de mutações em CFTR à prole com o uso das tecnologias de reprodução assistida. MÉTODOS: Foram desenhados oligonucleotídeos específicos para realização de reação de polimerização em cadeia (PCR para cada um dos 27 exons e sítios de processamento de interesse no gene CFTR. O PCR foi seguido pela técnica de SSCP-HA (polimorfismos de conformação no DNA de fita simples e na formação de heteroduplexes em géis pré-fabricados de poliacrilamida a 12,5% em duas temperaturas, 7ºC e 20ºC. Os fragmentos com padrão alterado na migração do SSCP foram submetidos a seqüenciamento automatizado

  15. Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats.

    Science.gov (United States)

    Salleh, Naguib; Ismail, Nurain; Muniandy, Sekaran; Korla, Praveen Kumar; Giribabu, Nelli

    2015-12-01

    The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (pCFTR, AC and cAMP in cervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes.

  16. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR

    DEFF Research Database (Denmark)

    Wainwright, Claire E; Elborn, J Stuart; Ramsey, Bonnie W;

    2015-01-01

    BACKGROUND: Cystic fibrosis is a life-limiting disease that is caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Phe508del is the most common CFTR mutation. METHODS: We conducted two phase 3, randomized, double-blind, placebo......-controlled studies that were designed to assess the effects of lumacaftor (VX-809), a CFTR corrector, in combination with ivacaftor (VX-770), a CFTR potentiator, in patients 12 years of age or older who had cystic fibrosis and were homozygous for the Phe508del CFTR mutation. In both studies, patients were randomly......-ivacaftor and placebo groups. The rate of discontinuation due to an adverse event was 4.2% among patients who received lumacaftor-ivacaftor versus 1.6% among those who received placebo. CONCLUSIONS: These data show that lumacaftor in combination with ivacaftor provided a benefit for patients with cystic fibrosis...

  17. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

    DEFF Research Database (Denmark)

    Phylactides, M.; Rowntree, R.; Nuthall, H.;

    2002-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex pattern of expression, with temporal and spatial regulation that is not accounted for by elements in the promoter. One approach to identifying the regulatory elements for CFTR is the mapping of DNase I...... hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2,3,10,16,17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhancer....../reporter constructs containing the DHS regions showed that those in introns 20 and 21 augmented the activity of the CFTR promoter. Structural analysis of the DNA sequence at the DHS suggested that only the one intron 21 might be caused by inherent DNA structures. Cell specificity of the DHS suggested a role for the...

  18. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis.

    Science.gov (United States)

    Esposito, Speranza; Tosco, Antonella; Villella, Valeria R; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2016-12-01

    Cystic fibrosis (CF) is a lethal monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that entails the (diagnostic) increase in sweat electrolyte concentrations, progressive lung disease with chronic inflammation and recurrent bacterial infections, pancreatic insufficiency, and male infertility. Therapies aimed at restoring the CFTR defect have emerged. Thus, a small molecule which facilitates chloride channel opening, the potentiator Ivacaftor, has been approved for the treatment of CF patients bearing a particular class of rare CFTR mutations. However, small molecules that directly target the most common misfolded CFTR mutant, F508del, and improve its intracellular trafficking in vitro, have been less effective than expected when tested in CF patients, even in combination with Ivacaftor. Thus, new strategies are required to circumvent the F508del-CFTR defect. Airway and intestinal epithelial cells from CF patients bearing the F508del-CFTR mutation exhibit an impressive derangement of cellular proteostasis, with oxidative stress, overactivation of the tissue transglutaminase (TG2), and disabled autophagy. Proteostasis regulators such as cysteamine can rescue and stabilize a functional F508del-CFTR protein through suppressing TG2 activation and restoring autophagy in vivo in F508del-CFTR homozygous mice, in vitro in CF patient-derived cell lines, ex vivo in freshly collected primary patient's nasal cells, as well as in a pilot clinical trial involving homozygous F508del-CFTR patients. Here, we discuss how the therapeutic normalization of defective proteostasis can be harnessed for the treatment of CF patients with the F508del-CFTR mutation. PMID:26976279

  19. Forest soil nutrient status after 10 years of experimental acidification and base cation depletion : results from 2 long-term soil productivity sites in the central Appalachians

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.B. [United States Dept. of Agriculture Forest Service, Parsons, WV (United States); Burger, J.A. [Virginia Tech University, Blacks Burg, VA (United States)

    2010-07-01

    This study assessed the hypothesis that soil based cation depletion is an effect of acidic deposition in forests located in the central Appalachians. The effects of experimentally induced base cation depletion were evaluated in relation to long-term soil productivity and the sustainability of forest stands. Whole-tree harvesting was conducted along with the removal of dead wood litter in order to remove all aboveground nutrients. Ammonium sulfate fertilizer was added at annual rates of 40.6 kg S/ha and 35.4 kg N/h in order to increase the leaching of calcium (Ca) and magnesium (Mg) from the soil. A randomized complete block design was used in 4 or 5 treatment applications in a mixed hardwood experimental forest located in West Virginia and in a cherry-maple forest located in a national forest in West Virginia. Soils were sampled over a 10-year period. The study showed that significant changes in soil Mg, N and some other nutrients occurred over time. However, biomass did not differ significantly among the different treatment options used.

  20. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    Science.gov (United States)

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function.

  1. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  2. Depleted Uranium Management

    International Nuclear Information System (INIS)

    The paper considers radiological and toxic impact of the depleted uranium on the human health. Radiological influence of depleted uranium is less for 60 % than natural uranium due to the decreasing of short-lived isotopes uranium-234 and uranium-235 after enrichment. The formation of radioactive aerosols and their impact on the human are mentioned. Use of the depleted uranium weapons has also a chemical effect on intake due to possible carcinogenic influence on kidney. Uranium-236 in the substance of the depleted uranium is determined. The fact of beta-radiation formation in the uranium-238 decay is regarded. This effect practically is the same for both depleted and natural uranium. Importance of toxicity of depleted uranium, as the heavier chemical substance, has a considerable contribution to the population health. The paper analyzes risks regarding the use of the depleted uranium weapons. There is international opposition against using weapons with depleted uranium. Resolution on effects of the use of armaments and ammunitions containing depleted uranium was five times supported by the United Nations (USA, United Kingdom, France and Israel did not support). The decision for banning of depleted uranium weapons was supported by the European Parliament

  3. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  4. In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

    Science.gov (United States)

    Wu, Yanning; Wang, Shuo; Li, Chunying

    2012-08-13

    Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis(1-3). CFTR has been implicated in two major diseases: cystic fibrosis (CF)(4) and secretory diarrhea(5). In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States(6). Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut(7). Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo(8-19). In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP(20-27). The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)(20). Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities(22). This multivalency with respect to CFTR binding

  5. Interference with ubiquitination in CFTR modifies stability of core glycosylated and cell surface pools.

    Science.gov (United States)

    Lee, Seakwoo; Henderson, Mark J; Schiffhauer, Eric; Despanie, Jordan; Henry, Katherine; Kang, Po Wei; Walker, Douglas; McClure, Michelle L; Wilson, Landon; Sorscher, Eric J; Zeitlin, Pamela L

    2014-07-01

    It is recognized that both wild-type and mutant CFTR proteins undergo ubiquitination at multiple lysines in the proteins and in one or more subcellular locations. We hypothesized that ubiquitin is added to specific sites in wild-type CFTR to stabilize it and at other sites to signal for proteolysis. Mass spectrometric analysis of wild-type CFTR identified ubiquitinated lysines 68, 710, 716, 1041, and 1080. We demonstrate that the ubiquitinated K710, K716, and K1041 residues stabilize wild-type CFTR, protecting it from proteolysis. The polyubiquitin linkage is predominantly K63. N-tail mutants, K14R and K68R, lead to increased mature band CCFTR, which can be augmented by proteasomal (but not lysosomal) inhibition, allowing trafficking to the surface. The amount of CFTR in the K1041R mutant was drastically reduced and consisted of bands A/B, suggesting that the site in transmembrane 10 (TM10) was critical to further processing beyond the proteasome. The K1218R mutant increases total and cell surface CFTR, which is further accumulated by proteasomal and lysosomal inhibition. Thus, ubiquitination at residue 1218 may destabilize wild-type CFTR in both the endoplasmic reticulum (ER) and recycling pools. Small molecules targeting the region of residue 1218 to block ubiquitination or to preserving structure at residues 710 to 716 might be protein sparing for some forms of cystic fibrosis.

  6. Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation.

    Science.gov (United States)

    Schmidt, Béla Z; Watts, Rebecca J; Aridor, Meir; Frizzell, Raymond A

    2009-02-13

    Cysteine string protein (Csp) is a J-domain-containing protein whose overexpression blocks the exit of cystic fibrosis transmembrane conductance regulator (CFTR) from the endoplasmic reticulum (ER). Another method of blocking ER exit, the overexpression of Sar1-GTP, however, yielded twice as much immature CFTR compared with Csp overexpression. This finding suggested that Csp not only inhibits CFTR ER exit but also facilitates the degradation of immature CFTR. This was confirmed by treatment with a proteasome inhibitor, which returned the level of immature CFTR to that found in cells expressing Sar1-GTP only. CspH43Q, which does not interact with Hsc70/Hsp70 efficiently, did not promote CFTR degradation, suggesting that the pro-degradative effect of Csp requires Hsc70/Hsp70 binding/activation. In agreement with this, Csp overexpression increased the amount of Hsc70/Hsp70 co-immunoprecipitated with CFTR, whereas overexpression of CspH43Q did not. The Hsc70/Hsp70 binding partner C terminus of Hsp70-interacting protein (CHIP) can target CFTR for proteasome-mediated degradation. Csp overexpression also increased the amount of CHIP co-immunoprecipitated with CFTR. In addition, CHIP interacted directly with Csp, which was confirmed by in vitro binding experiments. Csp overexpression also increased CFTR ubiquitylation and reduced the half-life of immature CFTR. These findings indicate that Csp not only regulates the exit of CFTR from the ER, but that this action is accompanied by Hsc70/Hsp70 and CHIP-mediated CFTR degradation.

  7. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    Directory of Open Access Journals (Sweden)

    Steven M Rowe

    Full Text Available Nasal potential difference (NPD is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR and epithelial sodium channel (ENaC activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770 in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1 the average of both nostrils; (2 the most-polarized nostril at each visit; and (3 the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity, the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity, and the delta NPD (measuring CFTR and ENaC activity. The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV. Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  8. Retinal pigment epithelial function: a role for CFTR?

    Science.gov (United States)

    Blaug, Sasha; Quinn, Richard; Quong, Judy; Jalickee, Stephen; Miller, Sheldon S

    2003-01-01

    In the vertebrate eye, the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE) are separated by a small extracellular (subretinal) space whose volume and chemical composition varies in the light and dark. Light onset triggers relatively fast (ms) retinal responses and much slower voltage and resistance changes (s to min) at the apical and basolateral membranes of the RPE. Two of these slow RPE responses, the fast oscillation (FO) and the light peak, are measured clinically as part of the electrooculogram (EOG). Both EOG responses are mediated in part by apical and basolateral membranes proteins that form a pathway for the movement of salt and osmotically obliged fluid across the RPE, from retina to choroid. This transport pathway serves to control the volume and chemical composition of the subretinal and choroidal extracellular spaces. In human fetal RPE, we have identified one of these proteins, the cystic fibrosis transmembrane conductance regulator (CFTR) by RT-PCR, immunolocalization, and electrophysiological techniques. Evidence is presented to suggest that the FO component of the EOG is mediated directly or indirectly by CFTR. PMID:12675485

  9. Activation Effect of Cathartic Natural Compound Rhein to CFTR Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in intestinal exocrine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone activator of CFTR Cl- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Traditional Chinese Medicine such as aloe, cascara and senna.

  10. Preliminary results on low power sigmoid neuron transistor response in 28 nm high-k metal gate Fully Depleted SOI technology

    Science.gov (United States)

    Galy, Ph.; Dehan, P.; Jimenez, J.; Heitz, B.

    2013-11-01

    The purpose of this paper is to describe a preliminary approach to achieve a sigmoid neuron transistor response using the 28 nm high-k metal gate Fully Depleted SOI (FDSOI) technology. It is well known that a neural network is an ambitious way to handle signal and/or data flow. Of interest also is the 'learning phase' of the proposed structure. However, the major difficulty of such structures, where the elementary device is a "Neuron Design (ND)" is in their integration. The elementary ND is based upon a circuit with at least ten interconnected CMOS transistors in order to obtain a sigmoid response activation function (in this example) with multiple inputs typically as per the McCulloch and Pitts model. Given that a large number of NDs are required to build an Artificial Neural Network (ANN), the power consumption of such a structure is a key topic that is also addressed. Another open question concerns the dispersion response due to process variability. This study reports on a new single undoped Formal Neuron Transistor (NT) solution.

  11. Clodronate treatment significantly depletes macrophages in chickens

    OpenAIRE

    Kameka, Amber M.; Haddadi, Siamak; Jamaldeen, Fathima Jesreen; Moinul, Prima; He, Xiao T.; Nawazdeen, Fathima Hafsa P.; Bonfield, Stephan; Sharif, Shayan; van Rooijen, Nico; Abdul-Careem, Mohamed Faizal

    2014-01-01

    Macrophages function as phagocytes and antigen-presenting cells in the body. As has been demonstrated in mammals, administration of clodronate [dichloromethylene bisphosphonate (Cl2MBP)] encapsulated liposomes results in depletion of macrophages. Although this compound has been used in chickens, its effectiveness in depleting macrophages has yet to be fully determined. Here, we show that a single administration of clodronate liposomes to chickens results in a significant depletion of macropha...

  12. Nonlinear lower hybrid wave depletion

    International Nuclear Information System (INIS)

    Two numerical ray tracing codes with focusing are used to compute lower hybrid daughter wave amplification by quasi-mode parametric decay. The first code, LHPUMP provides a numerical pump model on a grid. This model is used by a second code, LHFQM which computes daughter wave amplification inside the pump extent and follows the rays until their energy is absorbed by the plasma. An analytic model is then used to estimate pump depletion based on the numerical results. Results for PLT indicate strong pump depletion at the plasma edge at high density operation for the 800 Mhz wave frequency, but weak depletion for the 2.45 Ghz experiment. This is proposed to be the mechanism responsible for the high density limit for current drive as well as for the difficulty to heat ions

  13. The analysis of some CFTR gene mutations in a small group of cf patients from southern part of Romania

    Directory of Open Access Journals (Sweden)

    Lucian GAVRILA

    2009-05-01

    Full Text Available Cystic fibrosis is the most common hereditary disease in European descendant populations, with prevalencedepending on ethnic groups studied. In contrast to other European countries, there is little information regarding the frequency ofCFTR mutations for the Southern part of Romania. The aim of this study was to test the presence of nine CFTR mutations in CFpatients from the Southern part of Romania, using complementary analysis methods. We investigated a group of unrelated CFpatients (n=19 and, when possible, their voluntary parents (n=15. We observed that the most frequently worldwide CF mutation,delta F508, was present in 17 of our patients (89.5% in homozygous (n=7 or heterozygous (n=10 condition and absent in 2 cases(10.5%. This mutation was also detected in ten parents, seven of them (100% have homozygous children and three (37.5%have heterozygous children for delta F508 mutation. None of the G542X, S549N, G551D, R553X, R560T, S1255X, W1282X andN1303K mutations have been detected in the samples from patients or parents. Our results are partially similar with those reportedin neighbouring countries where the delta F508 is the most common mutation detected and the frequency of R560T, S549N, G551D andS1255X mutations is near zero. The enlargement of this study could give a better result regarding the spectrum of CFTR mutationsin Romanian patients with CF.

  14. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    Science.gov (United States)

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers. PMID:27114540

  15. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.

    Science.gov (United States)

    Park, Jinhong; Khloya, Poonam; Seo, Yohan; Kumar, Satish; Lee, Ho K; Jeon, Dong-Kyu; Jo, Sungwoo; Sharma, Pawan K; Namkung, Wan

    2016-01-01

    The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis. PMID:26863533

  16. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.

    Directory of Open Access Journals (Sweden)

    Jinhong Park

    Full Text Available The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508. Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.

  17. Riddle of depleted uranium

    International Nuclear Information System (INIS)

    Depleted Uranium (DU) is the waste product of uranium enrichment from the manufacturing of fuel rods for nuclear reactors in nuclear power plants and nuclear power ships. DU may also results from the reprocessing of spent nuclear reactor fuel. Potentially DU has both chemical and radiological toxicity with two important targets organs being the kidney and the lungs. DU is made into a metal and, due to its availability, low price, high specific weight, density and melting point as well as its pyrophoricity; it has a wide range of civilian and military applications. Due to the use of DU over the recent years, there appeared in some press on health hazards that are alleged to be due to DU. In these paper properties, applications, potential environmental and health effects of DU are briefly reviewed

  18. Depleted uranium: Metabolic disruptor?

    International Nuclear Information System (INIS)

    The presence of uranium in the environment can lead to long-term contamination of the food chain and of water intended for human consumption and thus raises many questions about the scientific and societal consequences of this exposure on population health. Although the biological effects of chronic low-level exposure are poorly understood, results of various recent studies show that contamination by depleted uranium (DU) induces subtle but significant biological effects at the molecular level in organs including the brain, liver, kidneys and testicles. For the first time, it has been demonstrated that DU induces effects on several metabolic pathways, including those metabolizing vitamin D, cholesterol, steroid hormones, acetylcholine and xenobiotics. This evidence strongly suggests that DU might well interfere with many metabolic pathways. It might thus contribute, together with other man-made substances in the environment, to increased health risks in some regions. (authors)

  19. Depleted uranium in Japan

    International Nuclear Information System (INIS)

    In Japan, depleted uranium ammunition is regarded as nuclear weapons and meets with fierce opposition. The fact that US Marines mistakenly fired bullets containing depleted uranium on an island off Okinawa during training exercises in December 1995 and January 1996, also contributes. The overall situation in this area in Japan is outlined. (P.A.)

  20. Water Depletion Threatens Agriculture

    Science.gov (United States)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  1. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response.

    Science.gov (United States)

    Gomes-Alves, Patrícia; Couto, Francisco; Pesquita, Cátia; Coelho, Ana V; Penque, Deborah

    2010-04-01

    F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca(2+)-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be 'restored', i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.

  2. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response.

    Science.gov (United States)

    Gomes-Alves, Patrícia; Couto, Francisco; Pesquita, Cátia; Coelho, Ana V; Penque, Deborah

    2010-04-01

    F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca(2+)-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be 'restored', i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue. PMID:20044041

  3. CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia

    OpenAIRE

    Li, Xiaopeng; Comellas, Alejandro P.; Karp, Philip H.; Ernst, Sarah E.; Moninger, Thomas O.; Gansemer, Nicholas D.; Taft, Peter J.; Pezzulo, Alejandro A; Michael V Rector; Rossen, Nathan; Stoltz, David A.; McCray, Paul B.; Welsh, Michael J.; Zabner, Joseph

    2012-01-01

    A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epitheli...

  4. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

    Directory of Open Access Journals (Sweden)

    Kyle E Roberts

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR is an epithelial chloride channel mutated in patients with cystic fibrosis (CF. The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors", but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL, which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers" that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01 binds six-fold more tightly than the previous best hexamer (iCAL35, and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.

  5. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR*

    OpenAIRE

    A. Steen; Wiederhold, E.; T Gandhi; Breitling, R.; D. J. Slotboom

    2010-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and indu...

  6. Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets

    OpenAIRE

    Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S.; Chen, Juan; Zhang, Yulong; Welsh, Michael J.; Leno, Gregory H.; Engelhardt, John F.

    2008-01-01

    Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene–deficient model...

  7. Signalling pathways in cystic fibrosis: a cross talk between CFTR trafficking and inflammation mechanisms

    OpenAIRE

    Coelho, João Pedro Lourenço

    2015-01-01

    Tese de mestrado, Bioquímica (Bioquímica), Universidade de Lisboa, Faculdade de Ciências, 2015 Cystic Fibrosis (CF) is the most common lethal autosomic recessive disease among the Caucasians. The disease is caused by mutations in the CFTR gene, that encodes a chloride channel expressed at the apical membrane of epithelial cells. CFTR dysfunction causes the electrolyte unbalance found in exocrine epithelia, leading to mucus thickening and bacteria entrapment in the lung. The inflammatory re...

  8. Phenotypic variability of R117H-CFTR expression within monozygotic twins.

    Science.gov (United States)

    Waller, Michael D; Simmonds, Nicholas J

    2016-08-01

    Whilst cystic fibrosis is a monogenic condition, variation in phenotype exists for the same CFTR genotype, which is influenced by multiple genetic and non-genetic (environmental) factors. The R117H-CFTR mutation has variability directly relating to in cis poly-thymidine alleles, producing a differing spectrum of disease. This paper provides evidence of extreme phenotype variability - including fertility status - in the context of male monogenetic twins, discussing mechanisms and highlighting the diagnostic and treatment challenges. PMID:27364092

  9. Synthesis and Characterization of A Small Molecule CFTR Chloride Channel Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHANG Heng-jun; SU Zhong-min; ZHOU Jin-song; YANG Hong; MA Tong-hui

    2004-01-01

    A thiazolidinone CFTR inhibitor(CFTRinh-172) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor, CFTRinh-172, can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl-methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTRinh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay(Kd≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay(Kd≈0.2 μmol/L), indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTRinh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTRinh-172 for in vivo pharmacokinetics studies.

  10. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  11. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    Science.gov (United States)

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.

  12. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    Science.gov (United States)

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy. PMID:26385858

  13. Refining the continuum of CFTR-associated disorders in the era of newborn screening.

    Science.gov (United States)

    Levy, H; Nugent, M; Schneck, K; Stachiw-Hietpas, D; Laxova, A; Lakser, O; Rock, M; Dahmer, M K; Biller, J; Nasr, S Z; Baker, M; McColley, S A; Simpson, P; Farrell, P M

    2016-05-01

    Clinical heterogeneity in cystic fibrosis (CF) often causes diagnostic uncertainty in infants without symptoms and in older patients with milder phenotypes. We performed a cross-sectional evaluation of a comprehensive set of clinical and laboratory descriptors in a physician-defined cohort (N = 376; Children's Hospital of Wisconsin and the American Family Children's Hospital CF centers in Milwaukee and Madison, WI, USA) to determine the robustness of categorizing CF (N = 300), cystic fibrosis transmembrane conductance regulator (CFTR)-related disorder (N = 19), and CFTR-related (CRMS) metabolic syndrome (N = 57) according to current consensus guidelines. Outcome measures included patient demographics, clinical measures, sweat chloride levels, CFTR genotype, age at diagnosis, airway microbiology, pancreatic function, infection, and nutritional status. The CF cohort had a significantly higher median sweat chloride level (105 mmol/l) than CFTR-related disorder patients (43 mmol/l) and CFTR-related metabolic syndrome patients (35 mmol/l; p ≤ 0.001). Patient groups significantly differed in pancreatic sufficiency, immunoreactive trypsinogen levels, sweat chloride values, genotype, and positive Pseudomonas aeruginosa cultures (p ≤ 0.001). An automated classification algorithm using recursive partitioning demonstrated concordance between physician diagnoses and consensus guidelines. Our analysis suggests that integrating clinical information with sweat chloride levels, CFTR genotype, and pancreatic sufficiency provides a context for continued longitudinal monitoring of patients for personalized and effective treatment. PMID:26671754

  14. Lack of CFTR in Skeletal Muscle Predisposes to Muscle Wasting and Diaphragm Muscle Pump Failure in Cystic Fibrosis Mice

    OpenAIRE

    Maziar Divangahi; Haouaria Balghi; Gawiyou Danialou; Comtois, Alain S.; Alexandre Demoule; Sheila Ernest; Christina Haston; Renaud Robert; Hanrahan, John W.; Danuta Radzioch; Petrof, Basil J

    2009-01-01

    Cystic fibrosis (CF) patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR) plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR-deficient myotubes exhibit augmented levels of intracellular calcium aft...

  15. Defective CFTR expression and function are detectable in blood monocytes : development of a new blood test for cystic fibrosis

    OpenAIRE

    Sorio, C.; Buffelli, M.; C. Angiari; Ettorre, M; Johansson, J; M. Vezzalini; Viviani, L; Ricciardi, M.; G. Verzè; Assael, B M; P. Melotti

    2011-01-01

    Background Evaluation of cystic fibrosis transmembrane conductance regulator (CFTR) functional activity to assess new therapies and define diagnosis of cystic fibrosis (CF) is cumbersome. It is known that leukocytes express detectable levels of CFTR but the molecule has not been characterized in these cells. In this study we aim at setting up and validating a blood test to evaluate CFTR expression and function in leukocytes. Description Western blot, PCR, immunofluorescence and cell membrane ...

  16. Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR

    OpenAIRE

    Neng Chen; Prada, Anne E.

    2014-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation analysis has been implemented for Cystic Fibrosis (CF) carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD). Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele re...

  17. Uses of depleted uranium

    International Nuclear Information System (INIS)

    The depleted uranium is that in which percentage of uranium-235 fission executable is less than 0.2% or 0.3%. It is usually caused by the process of reprocessing the nuclear fuel burning, and also mixed with some other radioactive elements such as uranium 236, 238 and plutonium 239. The good features of the depleted uranium are its high density, low price and easily mined. So, the specifications for depleted uranium make it one of the best materials in case you need to have objects small in size, but quite heavy regarding its size. Uses of deplet ed uranium were relatively increased in domestic industrial uses as well as some uses in nuclear industry in the last few years. So it has increased uses in many areas of military and peaceful means such as: in balancing the giant air crafts, ships and missiles and in the manufacture of some types of concrete with severe hardness. (author)

  18. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells.

    Science.gov (United States)

    Kumar, P; Bhattacharyya, S; Peters, K W; Glover, M L; Sen, A; Cox, R T; Kundu, S; Caohuy, H; Frizzell, R A; Pollard, H B; Biswas, R

    2015-11-01

    Cystic fibrosis (CF) is due to mutations in the CFTR gene, which prevents correct folding, trafficking and function of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein. The dysfunctional effect of CFTR mutations, principally the F508del-CFTR mutant, is further manifested by hypersecretion of the pro-inflammatory chemokine interleukin-8 into the airway lumen, which further contributes to morbidity and mortality. We have hypothesized that microRNA (miR)-based therapeutics could rescue the dysfunctional consequences of mutant CFTR. Here we report that a miR-16 mimic can effectively rescue F508del-CFTR protein function in airway cell lines and primary cultures, of differentiated human bronchial epithelia from F508del homozygotes, which express mutant CFTR endogenously. We also identify two other miRs, miR-1 and miR-302a, which are also active. Although miR-16 is expressed at basal comparable levels in CF and control cells, miR-1 and miR-302a are undetectable. When miR mimics are expressed in CF lung or pancreatic cells, the expression of the F508del-CFTR protein is significantly increased. Importantly, miR-16 promotes functional rescue of the cyclic AMP-activated apical F508del-CFTR chloride channel in primary lung epithelial cells from CF patients. We interpret these findings to suggest that these miRs may constitute novel targets for CF therapy. PMID:26133785

  19. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells.

    Science.gov (United States)

    Kumar, P; Bhattacharyya, S; Peters, K W; Glover, M L; Sen, A; Cox, R T; Kundu, S; Caohuy, H; Frizzell, R A; Pollard, H B; Biswas, R

    2015-11-01

    Cystic fibrosis (CF) is due to mutations in the CFTR gene, which prevents correct folding, trafficking and function of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein. The dysfunctional effect of CFTR mutations, principally the F508del-CFTR mutant, is further manifested by hypersecretion of the pro-inflammatory chemokine interleukin-8 into the airway lumen, which further contributes to morbidity and mortality. We have hypothesized that microRNA (miR)-based therapeutics could rescue the dysfunctional consequences of mutant CFTR. Here we report that a miR-16 mimic can effectively rescue F508del-CFTR protein function in airway cell lines and primary cultures, of differentiated human bronchial epithelia from F508del homozygotes, which express mutant CFTR endogenously. We also identify two other miRs, miR-1 and miR-302a, which are also active. Although miR-16 is expressed at basal comparable levels in CF and control cells, miR-1 and miR-302a are undetectable. When miR mimics are expressed in CF lung or pancreatic cells, the expression of the F508del-CFTR protein is significantly increased. Importantly, miR-16 promotes functional rescue of the cyclic AMP-activated apical F508del-CFTR chloride channel in primary lung epithelial cells from CF patients. We interpret these findings to suggest that these miRs may constitute novel targets for CF therapy.

  20. Ego depletion increases risk-taking.

    Science.gov (United States)

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings. PMID:22931000

  1. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.

    Science.gov (United States)

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph A; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2015-10-01

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action. PMID:26245207

  2. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.

    Science.gov (United States)

    Cheng, Jie; Guggino, William

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.

  3. Ubiquitination and Degradation of CFTR by the E3 Ubiquitin Ligase MARCH2 through Its Association with Adaptor Proteins CAL and STX6

    OpenAIRE

    Jie Cheng; William Guggino

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent bindin...

  4. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation.

    Directory of Open Access Journals (Sweden)

    Daniele Rapino

    Full Text Available Although, the most common Cystic Fibrosis mutation, ΔF508, in the cystic fibrosis transmembrane regulator. (CFTR, is located in nucleotide binding domain (NBD1, disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we studied, using a combination of biochemical approaches and newly created cell lines, two disease-causing NBD2 mutants, N1303K and S1235R. Surprisingly, neither was rescued by low temperature. Inhibition of proteasomes with MG132 or aggresomes with tubacin rescued the immature B and mature C bands of N1303K and S1235R, indicating that degradation occurs via proteasomes and aggresomes. We found no effect of the lysosome inhibitor E64. Thus, our results show that these NBD2 mutants are processing mutants with unique characteristics. Several known correctors developed to rescue ΔF508-CFTR, when applied either alone or in combination, significantly increased the maturation of bands B and C of both NBD 2 mutants. The best correction occurred with the combinations of C4 plus C18 or C3 plus C4. Co-transfection of truncated CFTR (∆27-264 into stably transfected cells was also able to rescue them. This demonstrates for the first time that transcomplementation with a truncated version of CFTR can rescue NBD2 mutants. Our results show that the N1303K mutation has a more profound effect on NBD2 processing than S1235R and that small-molecule correctors increase the maturation of bands B and C in NBD2 mutants. In addition, ∆27-264 was able to transcomplement both NDB2 mutants. We conclude that differences and similarities occur in the impact of mutations on NBD2 when compared to ΔF508-CFTR suggesting that individualized strategies may be needed to restore their function. Finally our results are important because they suggest that gene or corrector molecule therapies either alone or in combination individualized for NBD2 mutants may be beneficial for patients bearing

  5. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor.

    Directory of Open Access Journals (Sweden)

    Jessica E Char

    Full Text Available To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (- ivacaftor, 3 only (+ ivacaftor and 3 (+/- ivacaftor (1-5 tests per condition. The total number of gland measurements was 852 (- ivacaftor and 906 (+ ivacaftor. A healthy control was tested 4 times (51 glands. For each gland we measured both CFTR-independent (M-sweat and CFTR-dependent (C-sweat; C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects. By contrast, 6/6 subjects (113/342 glands produced C-sweat in the (+ ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+ ivacaftor  = 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.

  6. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

    with an AFM (2).    The intuitive explanation for the depletion based on "hydrophobic mismatch" between the obviously hydrophilic bulk phase of water next to the hydrophobic polymer. It would thus be an intrinsic property of all interfaces between non-matching materials. The detailed physical interaction path......  The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...

  7. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

    with an AFM (2). The intuitive explanation for the depletion based on "hydrophobic mismatch" between the obviously hydrophilic bulk phase of water next to the hydrophobic polymer. It would thus be an intrinsic property of all interfaces between non-matching materials. The detailed physical interaction path......  The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...

  8. Enhancement and depletion of lower/middle tropospheric ozone in Senegal during pre-monsoon and monsoon periods of summer 2008: observations and model results

    Directory of Open Access Journals (Sweden)

    G. S. Jenkins

    2011-10-01

    Full Text Available During the summer (8 June through 3 September of 2008, 9 ozonesondes are launched from Dakar, Senegal (14.75° N, 17.49° W to investigate ozone (O3 variability in the lower/middle troposphere during the pre-monsoon and monsoon periods. Results during June 2008 (pre-monsoon period show a reduction in O3 concentrations, especially in the 850–700 hPa layer with Saharan Air Layer (SAL events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We also use the WRF-CHEM model to gain greater insights for observations of elevated/reduced O3 concentrations during the pre-monsoon/monsoon periods. In the transition period between 26 June and 2 July in the lower troposphere (925–600 hPa, a significant increase in O3 concentrations occur which we suggest is caused by enhanced biogenic NOx emissions from Sahelian soils following rain events on 28 June and 1 July. During July and August 2008 (monsoon period, with the exception of one SAL outbreak, vertical profiles of O3 are well mixed with concentrations not exceeding 55 ppb between the surface and 550 hPa. The results suggest that during the pre-monsoon period ozone concentrations in the lower troposphere are controlled by the SAL, which destroys ozone through heterogeneous processes. At the base of the SAL we also find elevated levels of ozone, which we attribute to biogenic sources of NOx from Saharan dust that are released in the presence of moist conditions. Once the monsoon period commences, wet and dry deposition become important sinks of ozone in the Sahel with episodes of ozone poor air that is horizontally transported from low latitudes into the Sahel. These results support aircraft chemical measurements and chemical modeling results from the African Monsoon Multidisciplinary Analysis (AMMA field

  9. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  10. Shear-affected depletion interaction

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.; Lang, P.R.

    2012-01-01

    We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force i

  11. Correlation of the level of full-length CFTR transcript with pulmonary phenotype in patients carrying R117H and 1342-1,-2delAG mutations

    Energy Technology Data Exchange (ETDEWEB)

    Hamosh, A.; Cutting, G.R. [Johns Hopkins Univ. School of Medicine, Balitmore, MD (United States); Oates, R.; Amos, J. [Boston Univ. School of Medicine, Boston, MA (United States)

    1994-09-01

    The R117H mutation occurs on two chromosome backgrounds, one associated with a 7 thymidine tract (7T-R11H) in the splice-acceptor site of intron 8, the other with a 5 thymidine tract (5T-R117H). We examined exon 9 splicing efficiency in 5 patients of genotype R117H/{delta}F508 and one carrying 1342-1,-2delAG{delta}F508, an obligate exon 9 slice site mutation. Four patients carried R117H on a 7T background -- three adult men with congenital bilateral absence of the vas deferens and one adolescent female with pancreatitis and borderline sweat chloride concentration. The patient with R117H on a 5T background had pancreatic sufficient CF (PS-CF). The 1342-1,-2delAG patient has classic pancreatic insufficient CF (PI-CF). cDNA was synthesized from total RNA extracted from nasal epithlial cells and analyzed for CFTR splicing by 35 cycle PCR using primers in exon 7 and 11. The quantity of full length transcript derived from the R117H or {delta}F508 alleles was assessed by allele-specific oligonucleotide hybridization. While 91.4% of transcript from the 5T-R117H allele was full-length, only 42.2% of CFTR transcript from the 5T-R117H allele was full length. Since CBAVD patients have no lung disease and PS-CF patients do, this indicates that the threshold of developing CF lung disease is crossed when the amount of CFTR transcript bearing R117H is reduced by half. Interestingly, 17.1% of transcript derived from the 1342-1,-2delAG allele (or 8.6% of total CFTR transcript) was normal and full length. This suggests that up to 9% of full length wild-type CFTR transcript may be inadequate to escape the lung disease of CF and that a 9 thymidine tract followed by AAC (the result of the AG deletion) can be used as a splice donor with 2-9% efficiency.

  12. Ouabain mimics low temperature rescue of F508del-CFTR in cystic fibrosis epithelial cells

    Directory of Open Access Journals (Sweden)

    Donglei eZhang

    2012-10-01

    Full Text Available ABSTRACT Most cases of cystic fibrosis (CF are caused by the deletion of a single phenylalanine residue at position 508 of the cystic fibrosis transmembrane conductance regulator (CFTR. The mutant F508del-CFTR is retained in the endoplasmic reticulum and degraded, but can be induced by low temperature incubation (29°C to traffic to the plasma membrane where it functions as a chloride channel. Here we show that, cardiac glycosides, at nanomolar concentrations, can partially correct the trafficking of F508del-CFTR in human CF bronchial epithelial cells (CFBE41o- and in an F508del-CFTR mouse model. Comparison of the transcriptional profiles obtained with polarized CFBE41o- cells after treatment with ouabain and by low temperature has revealed a striking similarity between the two corrector treatments that is not shared with other correctors. In summary, our study shows a novel function of ouabain and its analogues in the regulation of F508del-CFTR trafficking and suggests that compounds that mimic this low temperature correction of trafficking will provide new avenues for the development of therapeutics for CF.

  13. Ivacaftor treatment in patients with cystic fibrosis and the G551D-CFTR mutation

    Directory of Open Access Journals (Sweden)

    Isabelle Sermet-Gaudelus

    2013-03-01

    Full Text Available Cystic fibrosis (CF is an autosomal recessive lethal disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene that encodes for CFTR, an epithelial cell-surface expressed protein responsible for the transport of chloride (Cl-. Gating mutations associated with defective conductance can be modulated by CFTR potentiators. Ivacaftor is a CFTR potentiator approved for the treatment of CF patients >6 yrs of age with at least one copy of the G551D-CFTR mutation. Herein, the clinical trial development programme for ivacaftor will be reviewed, including two pivotal studies in adolescents/adults and in children. These studies report sustained improvements in lung function and sweat chloride concentrations, and a reduction in pulmonary exacerbations over a 48-week treatment period. In the era of personalised medicine, ivacaftor offers an effective and well-tolerated treatment for the clinical management of CF patients with the G551D mutation. A long-term, open-label study will report the effects of ivacaftor over a further 48 weeks.

  14. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization.

    Science.gov (United States)

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. PMID:27328319

  15. Activation of CFTR-mediated CI-Transport by Capsaicinoids in Cell Culture Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xue-liang; HOU Ting-ting; GE Hong; SUN Juan-juan; YANG Hong; MA Tong-hui

    2009-01-01

    Previous studies reported that capsaicin potentiates ΔF508 mutant cystic fibrosis transmembrane conductance regulator(CFTR) channel gating defect by transfected cell-based assays.It has been postulated that orally ingested capsaicin may conceptually be used to develop a therapeutic strategy to treat gastrointestinal disorders in CF patients.We tried to reproduce and extend those pre-clinical data of previous studies.Cell-based fluorescence functional measurements in Fischer thyroid epithelial cells(FRT) expressing CFTR showed no effect of capsaicin on potentiating ΔF508-CFTR.while genistein showed a strongly positive activity.Studies show that capsaicin and dihydrocapsaicin activated cAMP-prestimulated wild-type CFTR in a dose-dependent manner with a maximal response of 70% of that activated by genistein,thus gave an apparent EC50 of (40.4±6.8)μmol/L and (150.2±7.4) μmol/L respectively.Preliminary study shows that the binding sites for capsaicin and dihydrocapsaicin may be probably partially overlapped with that for genistein because the maximal activation of wild-type CFTR with genistein is partially blocked by capsaicin and dihydrocapsaicin.

  16. A Class of High-affinity Bicyclooctane G551D-CFTR Activators Identified by High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHAO Lu; LIU Yan-li; XU Li-na; SHANG De-jing; YANG Hong

    2004-01-01

    The glycine-to-aspartic acid missense mutation at the codon 551(G551D) of the cystic fibrosis transmembrane conductance regulator(CFTR) is one of the five most frequent cystic fibrosis(CF) mutations associated with a severe CF phenotype. To explore the feasibility of pharmacological correction of disrupted activation of CFTR chloride channel caused by G551D mutation, we developed a halide-sensitive fluorescence miniassay for G551D-CFTR in Fisher rat thyroid(FRT) epithelial cells for the discovery of novel activators of G551D-CFTR. A class of bicyclooctane small molecule compounds that efficiently stimulate G551D-CFTR chloride channel activity was identified by high throughput screening via the FRT cell-based assay. This class of compounds selectively activates G551D-CFTR with a high affinity, whereas little effect of the compounds on wildtype CFTR can be seen. The discovery of a class of bicyclooctane G551D-CFTR activators will permit the analysis of structure-activity relationship of the compounds to identify ideal leads for in vivo therapeutic studies.

  17. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells

    NARCIS (Netherlands)

    A. Bronckers; L. Kalogeraki; H.J.N. Jorna; M. Wilke; T.J. Bervoets; D.M. Lyaruu; B. Zandieh-Doulabi; P. Denbesten; H. de Jonge

    2010-01-01

    Patients with cystic fibrosis (CF) have mild defects in dental enamel. The gene mutated in these patients is CFTR, a Cl− channel involved in transepithelial salt and water transport and bicarbonate secretion. We tested the hypothesis that Cftr channels are present and operating in the plasma membran

  18. The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells.

    Science.gov (United States)

    Heda, G D; Tanwani, M; Marino, C R

    2001-01-01

    Although the biosynthetic arrest of the DeltaF508 mutant of cystic fibrosis transmembrane conductance regulator (CFTR) can be partially reversed by physical and chemical means, recent evidence suggests that the functional stability of the mutant protein after reaching the cell surface is compromised. To understand the molecular basis for this observation, the current study directly measured the half-life of Delta F508 and wild-type CFTR at the cell surface of transfected LLC-PK(1) cells. Plasma membrane CFTR expression over time was characterized biochemically and functionally in these polarized epithelial cells. Surface biotinylation, streptavidin extraction, and quantitative immunoblot analysis determined the biochemical half-life of plasma membrane DeltaF508 CFTR to be approximately 4 h, whereas the plasma membrane half-life of wild-type CFTR exceeded 48 h. This difference in biochemical stability correlated with CFTR-mediated transport function. These findings indicate that the Delta F508 mutation decreases the biochemical stability of CFTR at the cell surface. We conclude that the Delta F508 mutation triggers more rapid internalization of CFTR and/or its preferential sorting to a pathway of rapid degradation. PMID:11121388

  19. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr(-/-)) mouse model with hepato-biliary pathology

    NARCIS (Netherlands)

    Bodewes, Frank A. J. A.; van der Wulp, Mariette Y. M.; Beharry, Satti; Doktorova, Marcela; Havinga, Rick; Boverhof, Renze; Phillips, M. James; Durie, Peter R.; Verkade, Henkjan J.

    2015-01-01

    Background: Cftr(-/-tm1UC) mice develop progressive hepato-biliary pathology. We hypothesize that this liver pathology is related to alterations' in biliary bile hydrophobicity and bile salt metabolism in Cftr(-/-tm1Unc) mice. Methods: We determined bile production, biliary and fecal bile salt- and

  20. The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain

    NARCIS (Netherlands)

    Hoelen, H.M.; Kleizen, B.; Schmidt, A.; Richardson, J.; Charitou, P.; Braakman, L.J.; Thomas, P. J.

    2010-01-01

    In the vast majority of cystic fibrosis (CF) patients, deletion of residue F508 from CFTR is the cause of disease. F508 resides in the first nucleotide binding domain (NBD1) and its absence leads to CFTR misfolding and degradation. We show here that the primary folding defect arises during synthesis

  1. Enhancement and depletion of lower/middle tropospheric ozone in Senegal during pre-monsoon and monsoon periods of summer 2008: observations and model results

    Directory of Open Access Journals (Sweden)

    G. S. Jenkins

    2011-03-01

    Full Text Available During the summer (8 June through 3 September of 2008, nine ozonesondes are launched from Dakar, Senegal (14.75° N, 17.49° W to investigate the impact of the Saharan Dust Layer (SAL on ozone (O3 concentrations in the lower troposphere. Results during June (pre-monsoon period show a reduction in O3, especially in the 850–700 hPa layer with SAL events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We use the WRF-CHEM model to explore the causes of elevated O3 concentrations that appear to have a stratospheric contribution. During July and August (monsoon period, with the exception of one SAL outbreak, vertical profiles of O3 are well mixed with concentrations not exceeding 55 ppb between the surface and 550 hPa. In the transition period between 26 June and 2 July lower tropospheric (925–600 hPa O3 concentrations are likely enhanced by enhanced biogenic NOx emissions from the Saharan desert and Sahelian soils following several rain events on 28 June and 1 July.

  2. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  3. Stratospheric ozone depletion.

    Science.gov (United States)

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  4. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  5. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  6. HD depletion in starless cores

    CERN Document Server

    Sipilä, O; Harju, J

    2013-01-01

    Aims: We aim to investigate the abundances of light deuterium-bearing species such as HD, H2D+ and D2H+ in a gas-grain chemical model including an extensive description of deuterium and spin state chemistry, in physical conditions appropriate to the very centers of starless cores. Methods: We combine a gas-grain chemical model with radiative transfer calculations to simulate density and temperature structure in starless cores. The chemical model includes deuterated forms of species with up to 4 atoms and the spin states of the light species H2, H2+ and H3+ and their deuterated forms. Results: We find that HD eventually depletes from the gas phase because deuterium is efficiently incorporated to grain-surface HDO, resulting in inefficient HD production on grains. HD depletion has consequences not only on the abundances of e.g. H2D+ and D2H+, whose production depends on the abundance of HD, but also on the spin state abundance ratios of the various light species, when compared with the complete depletion model ...

  7. CFTR抑制ApoE-/-鼠高同型半胱氨酸血症诱导的肝损伤%CFTR suppressing hyperhomocysteinemia-induced hepatocyte damage in ApoE-/-mice

    Institute of Scientific and Technical Information of China (English)

    焦运; 杨安宁; 孙岳; 孔繁琪; 杨晓玲; 张鸣号; 金少举; 姜怡邓

    2016-01-01

    目的:探讨囊性纤维化跨膜转导调节因子(CFTR)在高同型半胱氨酸血症(HHcy)致 ApoE-/-鼠肝损伤中的作用。方法:5周龄雄性 ApoE-/-鼠36只随机分为模型对照组、模型组和治疗组,分别给予普通、高蛋氨酸、高蛋氨酸加叶酸饮食,C57BL/6J 雄鼠12只,普通饮食,为正常对照组。检测小鼠血清 Hcy、ALT和AST 变化,Hcy(100μmol/L)及100 Hcy + F (100μmol/L Hcy +叶酸)干预肝细胞后,检测肝组织和细胞内 CFTR mRNA 和蛋白水平,分析 CFTR 激动剂(VX-770)与抑制剂[CFTR(inh)-17]干预细胞后对CFTR 表达及 ALT 和 AST 含量的影响。结果:模型组 ApoE-/-鼠血清 Hcy、ALT 和 AST 显著升高, CFTR表达下降(P <0.05),而治疗组可拮抗 Hcy、ALT、AST、CFTR 的改变(P <0.05);Hcy (100μmol/L)引起肝细胞 CFTR 表达降低而 ALT 和 AST 升高(P <0.05),叶酸对这一改变起缓解作用。 VX-770和 CFTR (inh)-17干预后可改变肝细胞内ALT 和AST 含量。结论: CFTR 通过调控 ALT 和 AST 抑制 HHcy 致肝细胞损伤过程。%Objective To investigate the function of CFTR in ApoE-/- mice with HHcy-induced hepato-cellular injury. Methods Thirty six 5-week old ApoE-/- mice were divided into three groups , including the ApoE-/- group, the HHcy group and the intervention group, (n = 12). Twelve normal C57BL/6J mice were fed with regular mouse diet as the normal control (SPF grade). HL-7702 human liver cells were intervened by Hcy (100 μmol/L) and 100 μmol/L Hcy + folic acid (100 μmol/L Hcy + F). The changes of Hcy, ALT and AST in the serum and the expression of CFTR mRNA and protein in liver and liver cells were detected. The concen-trations of ALT and AST in the liver cell intervened by VX-770 agonist and CFTR(inh)-172 inhibitor were mea-sured by ELISA. Results Compared with the control group , the levels of Hcy , ALT and AST were higher

  8. Resveratrol increases F508del-CFTR dependent salivary secretion in cystic fibrosis mice

    Directory of Open Access Journals (Sweden)

    Barbara Dhooghe

    2015-07-01

    Full Text Available Cystic fibrosis (CF is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR protein function. We assayed, in F508del-CFTR homozygous (CF and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal β-adrenergic-dependent component and to stimulation by isoprenaline (CFTR-dependent component. Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of β-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases β-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.

  9. Depleted Uranium and Its Effects on Humans

    Directory of Open Access Journals (Sweden)

    Zdeněk Hon

    2015-04-01

    Full Text Available The article summarizes contemporary scientific knowledge of depleted uranium effects on human health due to its use in military conflicts. The discussion covers cases of minimal risk due to external irradiation resulting from the storage and handling of depleted uranium ammunition and, in contrast, important toxicological and radio-toxicological risks of late effects resulting from the inhalation and ingestion of dust particles produced by the burning of the core of the anti-tank ammunition.

  10. Depleted Uranium and Its Effects on Humans

    OpenAIRE

    Zdeněk Hon; Jan Österreicher; Leoš Navrátil

    2015-01-01

    The article summarizes contemporary scientific knowledge of depleted uranium effects on human health due to its use in military conflicts. The discussion covers cases of minimal risk due to external irradiation resulting from the storage and handling of depleted uranium ammunition and, in contrast, important toxicological and radio-toxicological risks of late effects resulting from the inhalation and ingestion of dust particles produced by the burning of the core of the anti-tank ammunition.

  11. Structure and Dynamics of NBD1 from CFTR Characterized Using Crystallography and Hydrogen/Deuterium Exchange Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, H.A.; Wang, C.; Zhao, X.; Hamuro, Y.; Conners, K.; Kearins, M.C.; Lu, F.; Sauder, J.M.; Molnar, K.S.; Coales, S.J.; Maloney, P.C.; Guggino, W.B.; Wetmore, D.R.; Weber, P.C.; Hunt, J.F. (SGX); (ExSAR); (Cystic); (JHU-MED); (Columbia)

    2012-04-30

    The {Delta}F508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and {Delta}F508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because {Delta}F508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and {Delta}F508 constructs, and the {Delta}F508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide {sup 1}H/{sup 2}H exchange rates in matched F508 and {Delta}F508 constructs reveal that {Delta}F508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the {Delta}F508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-{Delta}F508 structures but completely solvent exposed in all {Delta}F508 structures. These results reinforce the importance of the perturbation {Delta}F508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased

  12. Capital expenditure and depletion

    Energy Technology Data Exchange (ETDEWEB)

    Rech, O.; Saniere, A

    2003-07-01

    In the future, the increase in oil demand will be covered for the most part by non conventional oils, but conventional sources will continue to represent a preponderant share of the world oil supply. Their depletion represents a complex challenge involving technological, economic and political factors. At the same time, there is reason for concern about the decrease in exploration budgets at the major oil companies. (author)

  13. Capital expenditure and depletion

    International Nuclear Information System (INIS)

    In the future, the increase in oil demand will be covered for the most part by non conventional oils, but conventional sources will continue to represent a preponderant share of the world oil supply. Their depletion represents a complex challenge involving technological, economic and political factors. At the same time, there is reason for concern about the decrease in exploration budgets at the major oil companies. (author)

  14. Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Naziha Bakouh

    Full Text Available BACKGROUND: A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR. CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes. METHODOLOGY/FINDINGS: NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression. CONCLUSION/PERSPECTIVES: We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in

  15. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  16. Testing fully depleted CCD

    Science.gov (United States)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  17. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy

    KAUST Repository

    Jourdain, P.

    2013-12-11

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  18. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy.

    Science.gov (United States)

    Jourdain, Pascal; Becq, Frédéric; Lengacher, Sylvain; Boinot, Clément; Magistretti, Pierre J; Marquet, Pierre

    2014-02-01

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  19. Ecological considerations of natural and depleted uranium

    International Nuclear Information System (INIS)

    Depleted 238U is a major by-product of the nuclear fuel cycle for which increasing use is being made in counterweights, radiation shielding, and ordnance applications. This paper (1) summarizes the pertinent literature on natural and depleted uranium in the environment, (2) integrates results of a series of ecological studies conducted at Los Alamos Scientific Laboratory (LASL) in New Mexico where 70,000 kg of depleted and natural uranium has been expended to the environment over the past 34 years, and (3) synthesizes the information into an assessment of the ecological consequences of natural and depleted uranium released to the environment by various means. Results of studies of soil, plant, and animal communities exposed to this radiation and chemical environment over a third of a century provide a means of evaluating the behavior and effects of uranium in many contexts

  20. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global...

  1. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  2. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.

    Science.gov (United States)

    Loureiro, Cláudia A; Matos, Ana Margarida; Dias-Alves, Ângela; Pereira, Joana F; Uliyakina, Inna; Barros, Patrícia; Amaral, Margarida D; Matos, Paulo

    2015-05-19

    The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.

  3. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Bruce A Stanton

    Full Text Available P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF. Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR.The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  4. Stratospheric ozone depletion

    International Nuclear Information System (INIS)

    The amount of stratospheric ozone and the reduction of the ozone layer vary according to seasons and latitudes. At present total and vertical ozone is monitored over all Austria. The mean monthly ozone levels between 1994 and 2000 are presented. Data on stratospheric ozone and UV-B radiation are published daily on the home page http: www.lebesministerium.at. The use of ozone depleting substances such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) is provided. Besides, the national measures taken to reduce their use. Figs. 2, Tables 2. (nevyjel)

  5. Applicability and Efficiency of NGS in Routine Diagnosis: In-Depth Performance Analysis of a Complete Workflow for CFTR Mutation Analysis.

    Directory of Open Access Journals (Sweden)

    Adrien Pagin

    Full Text Available Actually, about 2000 sequence variations have been documented in the CFTR gene requiring extensive and multi-step genetic testing in the diagnosis of cystic fibrosis and CFTR-related disorders. We present a two phases study, with validation and performance monitoring, of a single experiment methodology based on multiplex PCR and high throughput sequencing that allows detection of all variants, including large rearrangements, affecting the coding regions plus three deep intronic loci.A total of 340 samples, including 257 patients and 83 previously characterized control samples, were sequenced in 17 MiSeq runs and analyzed with two bioinformatic pipelines in routine diagnostic conditions. We obtained 100% coverage for all the target regions in every tested sample.We correctly identified all the 87 known variants in the control samples and successfully confirmed the 62 variants identified among the patients without observing false positive results. Large rearrangements were identified in 18/18 control samples. Only 17 patient samples showed false positive signals (6.6%, 12 of which showed a borderline result for a single amplicon. We also demonstrated the ability of the assay to detect allele specific dropout of amplicons when a sequence variation occurs at a primer binding site thus limiting the risk for false negative results.We described here the first NGS workflow for CFTR routine analysis that demonstrated equivalent diagnostic performances compared to Sanger sequencing and multiplex ligation-dependent probe amplification. This study illustrates the advantages of NGS in term of scalability, workload reduction and cost-effectiveness in combination with an improvement of the overall data quality due to the simultaneous detection of SNVs and large rearrangements.

  6. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium.

    Directory of Open Access Journals (Sweden)

    Liqun Zhang

    2009-07-01

    Full Text Available Dysfunction of CFTR in cystic fibrosis (CF airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL, mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE was used to test whether a human parainfluenza virus (PIV vector engineered to express CFTR (PIVCFTR could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl(- and Na(+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%-65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients

  7. Funciones de los canales iónicos CFTR y ENAC en la fibrosis quística

    OpenAIRE

    Alejandra G. Palma; Basilio A. Kotsias; Gabriela I. Marino

    2014-01-01

    La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR), un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regula...

  8. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations.

    Science.gov (United States)

    Veit, Gudio; Avramescu, Radu G; Chiang, Annette N; Houck, Scott A; Cai, Zhiwei; Peters, Kathryn W; Hong, Jeong S; Pollard, Harvey B; Guggino, William B; Balch, William E; Skach, William R; Cutting, Garry R; Frizzell, Raymond A; Sheppard, David N; Cyr, Douglas M; Sorscher, Eric J; Brodsky, Jeffrey L; Lukacs, Gergely L

    2016-02-01

    More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients.

  9. Critical Role of Cystic Fibrosis Transmembrane Conductance Regulation(CFTR)in Female Reproduction

    Institute of Scientific and Technical Information of China (English)

    Hsiao Chang CHAN

    2003-01-01

    @@ Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl- channel, mutations of which are responsible for defective Cl- and/or HCO-3 secretions seen in cystic fibrosis (CF), a common lethal genetic disease affecting most exocrine glands/organs, including the lungs, intestine, pancreas and reproductive tracts of both sexes.

  10. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cystic fibrosis transmembrane conductance... DEVICES Immunological Test Systems § 866.5900 Cystic fibrosis transmembrane conductance regulator (CFTR... intended as an aid in confirmatory diagnostic testing of individuals with suspected cystic fibrosis...

  11. Comprehensive and accurate mutation scanning of the CFTR gene by two-dimensional DNA electrophoresis

    NARCIS (Netherlands)

    Wu, Y; Hofstra, RMW; Scheffer, H; Uitterlinden, AG; Mullaart, E; Buys, CHCM; Vijg, J

    1996-01-01

    The large number of possible disease causing mutations in the 27 exons of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has severely limited direct diagnosis of cystic fibrosis (CF) patients and carriers by mutation detection. Here we show that in principle testing for mutation

  12. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice

    NARCIS (Netherlands)

    Bodewes, Frank A. J. A.; Bijvelds, Marcel J.; de Vries, Willemien; Baller, Juul F. W.; Gouw, Annette S. H.; de Jonge, Hugo R.; Verkade, Henkjan J.

    2015-01-01

    The cause of Cystic fibrosis liver disease (CFLD), is unknown. It is well recognized that hepatic exposure to hydrophobic bile salts is associated with the development of liver disease. For this reason, we hypothesize that, CFTR dependent variations, in the hepatic handling of hydrophobic bile salts

  13. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice

    NARCIS (Netherlands)

    F.A.J.A. Bodewes (Frank); M.J.C. Bijvelds (Marcel); De Vries, W. (Willemien); Baller, J.F.W. (Juul F. W.); A.S.H. Gouw (Annette); H.R. de Jonge (Hugo); H.J. Verkade (Henkjan)

    2015-01-01

    textabstractThe cause of Cystic fibrosis liver disease (CFLD), is unknown. It is well recognized that hepatic exposure to hydrophobic bile salts is associated with the development of liver disease. For this reason, we hypothesize that, CFTR dependent variations, in the hepatic handling of hydrophobi

  14. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. PMID:27241617

  15. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion.

  16. Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.

    Science.gov (United States)

    Szollosi, Andras; Muallem, Daniella R; Csanády, László; Vergani, Paola

    2011-06-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the adenosine triphosphate (ATP)-binding cassette (ABC) superfamily. ABC proteins share a common molecular mechanism that couples ATP binding and hydrolysis at two nucleotide-binding domains (NBDs) to diverse functions. This involves formation of NBD dimers, with ATP bound at two composite interfacial sites. In CFTR, intramolecular NBD dimerization is coupled to channel opening. Channel closing is triggered by hydrolysis of the ATP molecule bound at composite site 2. Site 1, which is non-canonical, binds nucleotide tightly but is not hydrolytic. Recently, based on kinetic arguments, it was suggested that this site remains closed for several gating cycles. To investigate movements at site 1 by an independent technique, we studied changes in thermodynamic coupling between pairs of residues on opposite sides of this site. The chosen targets are likely to interact based on both phylogenetic analysis and closeness on structural models. First, we mutated T460 in NBD1 and L1353 in NBD2 (the corresponding site-2 residues become energetically coupled as channels open). Mutation T460S accelerated closure in hydrolytic conditions and in the nonhydrolytic K1250R background; mutation L1353M did not affect these rates. Analysis of the double mutant showed additive effects of mutations, suggesting that energetic coupling between the two residues remains unchanged during the gating cycle. We next investigated pairs 460-1348 and 460-1375. Although both mutations H1348A and H1375A produced dramatic changes in hydrolytic and nonhydrolytic channel closing rates, in the corresponding double mutants these changes proved mostly additive with those caused by mutation T460S, suggesting little change in energetic coupling between either positions 460-1348 or positions 460-1375 during gating. These results provide independent support for a gating model in which ATP-bound composite site 1 remains

  17. Frequency of CFTR, SPINK1, and Cathepsin B Gene Mutation in North Indian Population: Connections between Genetics and Clinical Data

    Directory of Open Access Journals (Sweden)

    Shweta Singh

    2014-01-01

    Full Text Available Objectives. Genetic mutations and polymorphisms have been correlated with chronic pancreatitis (CP. This study aims to investigate the association of genetic variants of cystic fibrosis transmembrane conductance regulator (CFTR and serine protease inhibitor Kazal type 1 (SPINK-1 genes and Cathepsin B gene polymorphisms with CP and to associate genetic backgrounds with clinical phenotypes. Methods. 150 CP patients and 150 normal controls were enrolled consecutively. We analyzed SPINK-1 N34S and IVS3+2T>C gene mutations by PCR-restriction-fragment length polymorphism (RFLP. The identification of DF508, G551D, G542X, R117H, and W1282X mutations was carried out by ARMS-PCR. S549N mutation, IVS8 polyTn polymorphism, and Cathepsin B Lec26Val were analysed by PCR-RFLP, nested PCR, and PCR-RFLP plus sequencing, respectively. Results. We found a significant association of SPINK1 (N34S gene polymorphism. IVS1−37T>C polymorphism shows linkage with 101A>G. 300 chromosomes belonging to the CFTR subgroup exhibited minor allele frequency of 0.04, 0.03, 0.03, 0.013, 0.006, and 0.02 for DF508, G452X, G551D, S549N, R117H, and IVS8 T5, respectively. Except for R117H and IVS8 T5 polymorphisms, all other mutations showed significant variation. Conclusion. Analysis of potential susceptibility variants is needed to support nature of the genes and environment in pancreatitis. This data may help establish genetic screening and prenatal setup for Indian population.

  18. Relationships among CFTR expression, HCO3− secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies

    Science.gov (United States)

    Shah, Viral S.; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H.; Parker, Connor P.; Ostedgaard, Lynda S.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10–50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl− secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3− secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3− at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR+/− or CFTR+/∆F508) expressed CFTR and secreted HCO3− at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3− secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl− secretion, the amount of CFTR is rate-limiting for HCO3− secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers. PMID:27114540

  19. Thermal stability of purified and reconstituted CFTR in a locked open channel conformation.

    Science.gov (United States)

    Aleksandrov, Luba A; Jensen, Timothy J; Cui, Liying; Kousouros, Joseph N; He, Lihua; Aleksandrov, Andrei A; Riordan, John R

    2015-12-01

    CFTR is unique among ABC transporters as the only one functioning as an ion channel and from a human health perspective because mutations in its gene cause cystic fibrosis. Although considerable advances have been made towards understanding CFTR's mechanism of action and the impact of mutations, the lack of a high-resolution 3D structure has hindered progress. The large multi-domain membrane glycoprotein is normally present at low copy number and when over expressed at high levels it aggregates strongly, limiting the production of stable mono-disperse preparations. While the reasons for the strong self-association are not fully understood, its relatively low thermal stability seems likely to be one. The major CF causing mutation, ΔF508, renders the protein very thermally unstable and therefore a great deal of attention has been paid to this property of CFTR. Multiple second site mutations of CFTR in NBD1 where F508 normally resides and small molecule binders of the domain increase the thermal stability of the mutant. These manipulations also stabilize the wild-type protein. Here we have applied ΔF508-stabilizing changes and other modifications to generate wild-type constructs that express at much higher levels in scaled-up suspension cultures of mammalian cells. After purification and reconstitution into liposomes these proteins are active in a locked-open conformation at temperatures as high as 50 °C and remain monodisperse at 4 °C in detergent or lipid for at least a week. The availability of adequate amounts of these and related stable active preparations of homogeneous CFTR will enable stalled structural and ligand binding studies to proceed.

  20. Stimulation of airway and intestinal mucosal secretion by natural coumarin CFTR activators

    Directory of Open Access Journals (Sweden)

    Hong eYang

    2011-09-01

    Full Text Available Mutations of cystic fibrosis transmembrane conductance regulator (CFTR cause lethal hereditary disease cystic fibrosis (CF that involves extensive destruction and dysfunction of serous epithelium. Possible pharmacological therapy includes correction of defective intracellular processing and abnormal channel gating. In a previous study, we identified five natural coumarin potentiators of Δ508-CFTR including osthole, imperatorin, isopsoralen, praeruptorin A and scoparone. The present study was designed to determine the activity of these coumarine compounds on CFTR activity in animal tissues as a primary evaluation of their therapeutic potential. In the present study, we analyzed the affinity of these coumarin potentiators in activating wild-type CFTR and found that they are all potent activators. Osthole showed the highest affinity with Kd values <50 nmol/L as determined by Ussing chamber short-circuit current assay. Stimulation of rat colonic mucosal secretion by osthole was tested by the Ussing chamber short-circuit current assay. Osthole reached maximal activation of colonic Cl- secretion at 5 mol/L. Stimulation of mouse tracheal mucosal secretion was analyzed by optical measurement of single gland secretion. Fluid secretion rate of tracheal single submucosal gland stimulated by osthole at 10mol/L was 3-fold more rapid than that in negative control. In both cases the stimulated secretions were fully abolished by CFTRinh-172. In conclusion, the effective stimulation of Cl– and fluid secretion in colonic and tracheal mucosa by osthole suggested the therapeutic potential of natural coumarine compounds for the treatment of cystic fibrosis and other CFTR-related diseases.

  1. Development of Monte Carlo depletion code MCDEP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Kim, K. Y.; Lee, J. C.; Ji, S. K. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Monte Carlo neutron transport calculation has been used to obtain a reference solution in reactor physics analysis. The typical and widely-used Monte Carlo transport code is MCNP (Monte Carlo N-Particle Transport Code) developed in Los Alamos National Laboratory. The drawbacks of Monte-Carlo transport codes are the lacks of the capacities for the depletion and temperature dependent calculations. In this research we developed MCDEP (Monte Carlo Depletion Code Package) using MCNP with the capacity of the depletion calculation. This code package is the integration of MCNP and depletion module of ORIGEN-2 using the matrix exponential method. This code package enables the automatic MCNP and depletion calculations only with the initial MCNP and MCDEP inputs prepared by users. Depletion chains were simplified for the efficiency of computing time and the treatment of short-lived nuclides without cross section data. The results of MCDEP showed that the reactivity and pin power distributions for the PWR fuel pins and assemblies are consistent with those of CASMO-3 and HELIOS.

  2. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells.

    Directory of Open Access Journals (Sweden)

    Mathieu Kerbiriou

    Full Text Available In cystic fibrosis (CF, the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER. We previously showed that the unfolded protein response (UPR may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF.

  3. Analysis of CFTR Gene Mutations in Children with Cystic Fibrosis, First Report from North-East of Iran

    OpenAIRE

    Atieh Mehdizadeh Hakkak; Mohammad Keramatipour; Saeid Talebi; Azam Brook; Jalil Tavakol Afshari; Amin Raazi; Hamid Reza Kianifar

    2013-01-01

     Objective(s):  More than 1500 registered mutations in cystic fibrosis transmembrane regulator (CFTR) gene are responsible for dysfunction of an ion channel protein and a wide spectrum of clinical manifestations in patients with cystic fibrosis (CF). This study was performed to investigate the frequency of a number of well-known CFTR mutations in North Eastern Iranian CF patients. Material and Methods: A total number of 56 documented CF patients participated in this study. Peripheral blood...

  4. The Novel CFTR Mutation A457P in a Male with a Delayed Diagnosis of Cystic Fibrosis

    OpenAIRE

    Zuckerman, Jonathan B.; Yarmus, Lonny B.; Sosnay, Patrick R.; Cole, Kate H.

    2011-01-01

    Cystic fibrosis (CF) is an autosomal recessive disease that may be caused by more than 1000 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We describe the case of a CF patient who was initially diagnosed at 16 years of age after presenting with mild respiratory compromise and pancreatic sufficiency. When genetic testing was first performed using a CF mutation panel, only a single F508del CFTR allele was identified. We subsequently performed testing...

  5. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    OpenAIRE

    Sonawane Nitin D; Previs Stephen F; Jiang Dechen; Ruddy Jennifer; Manson Mary E; West Richard H; Fang Danjun; Burgess James D; Kelley Thomas J

    2010-01-01

    Abstract Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detectio...

  6. The Toxicity of Depleted Uranium

    OpenAIRE

    Wayne Briner

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  7. Lack of CFTR in skeletal muscle predisposes to muscle wasting and diaphragm muscle pump failure in cystic fibrosis mice.

    Directory of Open Access Journals (Sweden)

    Maziar Divangahi

    2009-07-01

    Full Text Available Cystic fibrosis (CF patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR-deficient myotubes exhibit augmented levels of intracellular calcium after KCl-induced depolarization, and exposure to an inflammatory milieu induces excessive NF-kB translocation and cytokine/chemokine gene upregulation. To determine the effects of an inflammatory environment in vivo, sustained pulmonary infection with Pseudomonas aeruginosa was produced, and under these conditions diaphragmatic force-generating capacity is selectively reduced in Cftr(-/- mice. This is associated with exaggerated pro-inflammatory cytokine expression as well as upregulation of the E3 ubiquitin ligases (MuRF1 and atrogin-1 involved in muscle atrophy. We conclude that an intrinsic alteration of function is linked to the absence of CFTR from skeletal muscle, leading to dysregulated calcium homeostasis, augmented inflammatory/atrophic gene expression signatures, and increased diaphragmatic weakness during pulmonary infection. These findings reveal a previously unrecognized role for CFTR in skeletal muscle function that may have major implications for the pathogenesis of cachexia and respiratory muscle pump failure in CF patients.

  8. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    Science.gov (United States)

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.

  9. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    Science.gov (United States)

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis. PMID:27206858

  10. Depleted zinc: Properties, application, production

    International Nuclear Information System (INIS)

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  11. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  12. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    OpenAIRE

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, ...

  13. Role of curcurmin in acute lung injury by acute pulmonary embolism and expression of CFTR%姜黄素对急性肺动脉栓塞大鼠肺损伤及CFTR表达的影响

    Institute of Scientific and Technical Information of China (English)

    王征; 玉寒冰; 罗全

    2014-01-01

    目的:观察姜黄素对急性肺栓塞大鼠肺损伤的保护作用及对CFTR表达的影响。方法:大鼠分为假手术组,模型组,姜黄素(150mg/kg)﹢APE组。制备左肺动脉结扎模拟急性肺动脉栓塞模型。进行血气分析,检测AFC及肺湿干比,real-time PCR方法检测肺组织的CFTR的表达。结果:与模型组比较,姜黄素升高PaO2水平,减轻AFC下降趋势,及减少肺湿干比的增加。姜黄素能提高肺组织的CFTR的表达。结论:姜黄素对急性肺动脉栓塞大鼠的急性肺损伤有保护作用,并上调CFTR的表达。%Objective:To observe whether the curcumin could protect the acute lung injury by acute lung embolism and affect the expression of CFTR. Methods:SPF rats were divided into 3 groups:sham group,acute pulmonary em-bolism(APE)group and curcumin group(150mg/kg). The model of acute pulmonary embolism was ligatured the left artery. Blood gas analysis,AFC and wet-to-dry ratio and CFTR mRNA expression were observed. Results:Curcu-min could increase artery O2 pressure,decrease the AFC downward and wet-to-dry ratio. Curcumin could increase the expression of CFTR mRNA. Conculsion:Curcumin could protect the acute lung injury by APE and associated with upward of CFTR mRNA.

  14. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  15. Depletable resources and the economy.

    NARCIS (Netherlands)

    Heijman, W.J.M.

    1991-01-01

    The subject of this thesis is the depletion of scarce resources. The main question to be answered is how to avoid future resource crises. After dealing with the complex relation between nature and economics, three important concepts in relation with resource depletion are discussed: steady state, ti

  16. Depletion sensitivity predicts unhealthy snack purchases.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; Fennis, Bob M; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose weight on snack purchase behavior were explored. Participants included in the study were instructed to report every snack they bought over the course of one week. The dependent variables were the number of healthy and unhealthy snacks purchased. The results of the present study demonstrate that depletion sensitivity predicts the amount of unhealthy (but not healthy) snacks bought. The more sensitive people are to depletion, the more unhealthy snacks they buy. Moreover, there was some tentative evidence that this relation is more pronounced for people with a weak as opposed to a strong goal to lose weight, suggesting that a strong goal to lose weight may function as a motivational buffer against self-control failures. All in all, these findings provide evidence for the external validity of depletion sensitivity and the relevance of this construct in the domain of eating behavior. PMID:26321417

  17. The New MCNP6 Depletion Capability

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  18. ABSOLUTE CONFIGURATION AND BIOLOGICAL PROPERTIES OF ENANTIOMERS OF CFTR INHIBITOR BPO-27.

    Science.gov (United States)

    Snyder, David S; Tradtrantip, Lukmanee; Battula, Sailaja; Yao, Chenjuan; Phuan, Puay-Wah; Fettinger, James C; Kurth, Mark J; Verkman, A S

    2013-05-01

    We previously reported benzopyrimido-pyrrolo-oxazinedione (BPO) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in a model of polycystic kidney disease. Here, we separated the enantiomers of lead compound BPO-27, (1), which contains a single chiral center, and determined their absolute configuration, activity and metabolic stability. Following separation by chiral supercritical fluid chromatography, the R enantiomer, as determined by x-ray crystallography, inhibited CFTR chloride conductance with IC50 ~ 4 nM, while S enantiomer was inactive. In vitro metabolic stability in hepatic microsomes showed both enantiomers as stable, with <5 % metabolism in 4 h. Following bolus interperitoneal administration in mice, serum (R)-1 decayed with t1/2 ~ 1.6 h and gave sustained therapeutic concentrations in kidney.

  19. Depleted uranium and the Gulf War syndrome

    International Nuclear Information System (INIS)

    Some military personnel involved in the 1991Gulf War have complained of continuing stress-like symptoms for which no obvious cause has been found. These symptoms have at times been attributed to the use of depleted uranium (DU) in shell casings which are believed to have caused toxic effects. Depleted uranium is natural uranium which is depleted in the rarer U-235 isotope. It is a heavy metal and in common with other heavy metals is chemically toxic. It is also slightly radioactive and could give rise to a radiological hazard if dispersed in finely divided form so that it was inhaled. In response to concerns, the possible effects of DU have been extensively studied along with other possible contributors to Gulf War sickness. This article looks at the results of some of the research that has been done on DU. (author)

  20. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  1. The CFTR frameshift mutation 3905insT and its effect at transcript and protein level.

    Science.gov (United States)

    Sanz, Javier; von Känel, Thomas; Schneider, Mircea; Steiner, Bernhard; Schaller, André; Gallati, Sabina

    2010-02-01

    Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as chloride channel at the apical membrane of different epithelia. Owing to the high genotypic and phenotypic disease heterogeneity, effects and consequences of the majority of the CFTR mutations have not yet been studied. Recently, the frameshift mutation 3905insT was identified as the second most frequent mutation in the Swiss population and found to be associated with a severe phenotype. The frameshift mutation produces a premature termination codon (PTC) in exon 20, and transcripts bearing this PTC are potential targets for degradation through nonsense-mediated mRNA decay (NMD) and/or for exon skipping through nonsense-associated alternative splicing (NAS). Using RT-PCR analysis in lymphocytes and different tissue types from patients carrying the mutation, we showed that the PTC introduced by the mutation does neither elicit a degradation of the mRNA through NMD nor an alternative splicing through NAS. Moreover, immunocytochemical analysis in nasal epithelial cells revealed a significantly reduced amount of CFTR at the apical membrane providing a possible molecular explanation for the more severe phenotype observed in F508del/3905insT compound heterozygotes compared with F508del homozygotes. However, further experiments are needed to elucidate the fate of the 3905insT CFTR in the cell after its biosynthesis.

  2. Inflammation and CFTR: Might Neutrophils be the Key in Cystic Fibrosis?

    OpenAIRE

    Witko-Sarsat, V; Sermet-Gaudelus, I; Lenoir, G.; Descamps-Latscha, B

    1999-01-01

    The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation...

  3. Phosphorylation of CFTR and other membrane proteins: a role in biogenesis and traffic?

    OpenAIRE

    Romeiras, Francisco Maria de Sousa de Macedo Malta, 1986-

    2009-01-01

    Tese de mestrado, Bioquímica (Bioquímica Médica), Universidade de Lisboa, Faculdade de Ciências, 2009 Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the gene that encodes for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). With more than 1600 mutations reported, a single mutation– the deletion of phenylalanine residue at position 508 – accounts for more than 70% of chromosomes worldwide. The presence of ...

  4. Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea

    OpenAIRE

    Luan, Xiaojie; Campanucci, Verónica A; Nair, Manoj; YILMAZ, Orhan; Belev, George; Machen, Terry E.; Chapman, Dean; Ianowski, Juan P.

    2014-01-01

    Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease caused by the failure to clear bacteria. Bacterial clearance depends on a layer of airway surface liquid (ASL) covering the airways, rich in antimicrobial compounds and mucins, that removes bacteria from the airway through mucocilia...

  5. Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea.

    Science.gov (United States)

    Luan, Xiaojie; Campanucci, Verónica A; Nair, Manoj; Yilmaz, Orhan; Belev, George; Machen, Terry E; Chapman, Dean; Ianowski, Juan P

    2014-09-01

    Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling. Bacterial clearance depends on a layer of airway surface liquid (ASL) consisting of both a mucus layer that traps, kills, and inactivates bacteria and a periciliary liquid layer that keeps the mucus at an optimum distance from the underlying epithelia, to maximize ciliary motility and clearance of bacteria. The airways in CF patients and animal models of CF demonstrate abnormal ASL secretion and reduced antimicrobial properties. Thus, it has been proposed that abnormal ASL secretion in response to bacteria may facilitate the development of the infection and inflammation that characterize CF airway disease. Whether the inhalation of bacteria triggers ASL secretion, and the role of CFTR, have never been tested, however. We developed a synchrotron-based imaging technique to visualize the ASL layer and measure the effect of bacteria on ASL secretion. We show that the introduction of Pseudomonas aeruginosa and other bacteria into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This response requires expression of the bacterial protein flagellin. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion, leading to infection and inflammation. PMID:25136096

  6. Regulation of CFTR Cl− channel gating by ATP binding and hydrolysis

    OpenAIRE

    Ikuma, Mutsuhiro; Welsh, Michael J.

    2000-01-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg2+ prevents hydrolysis. We found that even in the absence of Mg2+, ATP could support cha...

  7. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis.

    OpenAIRE

    Miller, P. W.; Hamosh, A.; Macek, M.; Greenberger, P. A.; MacLean, J; Walden, S M; Slavin, R G; Cutting, G R

    1996-01-01

    The etiology of allergic bronchopulmonary aspergillosis (ABPA) is not well understood. A clinical phenotype resembling the pulmonary disease seen in cystic fibrosis (CF) patients can occur in some individuals with ABPA. Reports of familial occurrence of ABPA and increased incidence in CF patients suggest a possible genetic basis for the disease. To test this possibility, the entire coding region of the cystic fibrosis transmembrane regulator (CFTR) gene was analyzed in 11 individuals who met ...

  8. Impact of Cystic Fibrosis Transmembrane Regulator (CFTR) gene mutations on male infertility

    OpenAIRE

    Jlenia Elia; Rossella Mazzilli; Michele Delfino; Maria Piane; Cristina Bozzao; Vincenzo Spinosa; Luciana Chessa; Fernando Mazzilli

    2014-01-01

    Objective. The aim of this study was to evaluate the prevalence of most common mutations and intron 8 5T (IVS8-5T) polymorphism of CFTR gene in Italian: a) azoospermic males; b) non azoospermic subjects, male partners of infertile couples enrolled in assisted reproductive technology (ART) programs. Material and methods. We studied 242 subjects attending our Andrology Unit (44 azoospermic subjects and 198 non azoospermic subjects, male partners of infertile couples enrolled in ART programs). S...

  9. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Directory of Open Access Journals (Sweden)

    Jeanine F Amacher

    Full Text Available PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR. Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL, and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  10. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease.

    Science.gov (United States)

    Snyder, David S; Tradtrantip, Lukmanee; Yao, Chenjuan; Kurth, Mark J; Verkman, A S

    2011-08-11

    We previously reported the discovery of pyrimido-pyrrolo-quinoxalinedione (PPQ) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in an organ culture model of polycystic kidney disease (PKD) (J. Med. Chem. 2009, 52, 6447-6455). Here, we report related benzopyrimido-pyrrolo-oxazinedione (BPO) CFTR inhibitors. To establish structure-activity relationships and select lead compound(s) with improved potency, metabolic stability, and aqueous solubility compared to the most potent prior compound 8 (PPQ-102, IC(50) ∼ 90 nM), we synthesized 16 PPQ analogues and 11 BPO analogues. The analogues were efficiently synthesized in 5-6 steps and 11-61% overall yield. Modification of 8 by bromine substitution at the 5-position of the furan ring, replacement of the secondary amine with an ether bridge, and carboxylation, gave 6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid 42 (BPO-27), which fully inhibited CFTR with IC(50) ∼ 8 nM and, compared to 8, had >10-fold greater metabolic stability and much greater polarity/aqueous solubility. In an embryonic kidney culture model of PKD, 42 prevented cyst growth with IC(50) ∼ 100 nM. Benzopyrimido-pyrrolo-oxazinediones such as 42 are potential development candidates for antisecretory therapy of PKD.

  11. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations.

    Science.gov (United States)

    Furukawa-Hagiya, Tomoka; Furuta, Tadaomi; Chiba, Shuntaro; Sohma, Yoshiro; Sakurai, Minoru

    2013-01-10

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions. PMID:23214920

  12. Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Andrea Venerando

    Full Text Available By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2. Thr1467 is localized in the C-terminal tail, embedded in a functionally important and very acidic sequence (EETEEE which displays an optimal consensus for protein kinase CK2. Herein, we show that Thr1467, homologous to human Thr1471 is readily phosphorylated by CK2. Indeed a 42 amino acid peptide encompassing the C-terminal segment of human CFTR is readily phosphorylated at Thr1471 with favorable kinetics (Km 1.7 µM by CK2 holoenzyme, but neither by its isolated catalytic subunit nor by other acidophilic Ser/Thr kinases (CK1, PLK2/3, GCK/FAM20C. Our finding that by treating CFTR expressing BHK cells with the very specific CK2 inhibitor CX4945, newly synthesized wild type CFTR (and even more its Phe508del mutant accumulates more abundantly than in the absence of CK2 inhibitor, supports the conclusion that phosphorylation of CFTR by CK2 correlates with decreased stability of the protein.

  13. Influence of Roller Burnishing Parameters on Depletion of Plasticity Reserve

    Science.gov (United States)

    Blumenstein, V. Yu; Petrenko, K. P.

    2016-04-01

    Roller burnishing process considerably increases surface quality and service life of machine parts. Efficiency of roller burnishing rises greatly when technological inheritance (TI) is taken into account. Research results of degree of plasticity reserve depletion (DPRD) while roller burnishing are presented. Results obtained made it possible to establish mechanisms of strain accumulation and plasticity reserve depletion according to roller burnishing parameters.

  14. Development of heavy concrete mixed with depleted uranium

    International Nuclear Information System (INIS)

    Compressive strength and shielding performance tests of heavy weight concrete mixed with depleted Uranium (Depleted Uranium Concrete) were carried out. The depleted uranium pellets (φ 8 mm, height 9.5 mm) were mixed into cement paste instead of coarse aggregate. Specimens with nominal specific gravity of 3.2 - 5.4 were manufactured. The results of the compression strength test showed that compressive strength of more than 30 MPa was obtained with the specimens having the nominal specific gravity of more than 5 and it was confirmed from the shielding performance tests that Depleted Uranium Concrete has shielding corresponding to its nominal specific gravity. (author)

  15. PTTG mRNA和CFTR mRNA在慢性胰腺炎和胰腺癌鉴别诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    李雅萍

    2015-01-01

    Objective To explore the application of PTTG mRNA and CFTR mRNA in the differential diagnosis of chronic pancreatitis and pancreatic cancer. Method 20 cases of patients with chronic pancreatitis and 30 cases of patients with pancreatic cancer were selected. The expression of organize PTTG mRNA and CFTRmRNA in the two groups was detected,real-time reverse transcription-polymerase chain reaction(RT-PCR) technology was applied. The changes of the two markers were comparetively analysed. Results The expression rate of CFTRmRNA in chronic pancreatitis group and PTTGmRNA in pancreatic cancer group was respectively obviously higher(P<0.01). The expression quantity of PTTGmRNA and CFTRmRNA in chronic pancreatitis and pancreatic cancer were in the correlation(r=-0.526,-0.539,P<0.01). Conclution PTTGmRNA has higher sensitivity in diagnosis of pancreatic cancer,so does CFTRmRNA in diagnosis of chronic pancreatitis. Testing organization PTTGmRNA and CFTRmRNA can be used in the differential diagnosis of chronic pancreatitis and pancreatic cancer disease.%目的:探讨垂体肿瘤转化基因(PTTG)mRNA和囊性纤维跨膜转运调节因子(CFTR)mRNA在慢性胰腺炎和胰腺癌疾病中的变化及临床意义。方法选择慢性胰腺炎患者20例,胰腺癌患者30例;采用实时逆转录-聚合酶链反应(RT-PCR)技术检测两组组织中PTTG mRNA和CFTR mRNA表达状况,比较分析两标志物的变化。结果慢性胰腺炎组织中CFTR mRNA的表达水平明显高于胰腺癌(P<0.01), PTTG mRNA在慢性胰腺炎组织中的表达水平明显低于胰腺癌(P<0.01)。PTTG mRNA和CFTR mRNA在慢性胰腺炎和胰腺癌组织中的表达量具有相关性(r=-0.526、-0.539,P<0.01)。结论检测PTTG mRNA表达水平可用于胰腺癌诊断,检测CFTR mRNA表达水平可用于慢性胰腺炎诊断,且均具有较强的灵敏性。

  16. Pathogen and autoantigen homologous regions within the cystic fibrosis transmembrane conductance regulator (CFTR) protein suggest an autoimmune treatable component of cystic fibrosis.

    Science.gov (United States)

    Carter, Chris J

    2011-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel provides the glutathione and hypochlorous acid necessary for bactericidal/viricidal actions. CFTR mutations block these effects, diminishing pathogen defence and allowing extracellular pathogen accumulation, where antibody encounter is likely. KEGG pathway analysis of the CFTR interactome shows that CFTR is involved in pathogen entry pathways and immune defence as well as in pathways relevant to comorbid conditions (diabetes, cardiomyopathies and sexual organ development). Pseudomonas aeruginosa and Staphylococcus aureus infections decrease the lifespan of cystic fibrosis patients and Stenotrophomonas maltophilia colonization is increased. Autoantibodies, targeting myeloperoxidase, the bactericidal/permeability-increasing protein and calgranulin may further compromise pathogen defence. Short consensus sequences, within immunogenic extracellular regions of the CFTR protein, are homologous to proteins expressed by P. aeruginosa, S. aureus and S. maltophilia, and to several autoantigens, with a universal overlap between autoantigen/pathogen/CFTR consensi. Antibodies to pathogens are thus likely responsible for the creation of these autoantibodies, which, with pathogen antibodies, may target the CFTR protein acting as antagonists, further compromising its function. This creates a feedforward cycle, diminishing the function of the CFTR protein and increasing the probability of pathogen accumulation and antibody production at every turn. Interruption of this cycle by antibody adsorption or immunosuppressant therapy may be beneficial in cystic fibrosis.

  17. ホスファチジン酸による CFTR の細胞内輸送制御機構および CFTR 機能破綻により生じる掻痒病態発症機構の解明

    OpenAIRE

    橋本, 泰明; ハシモト, ヤスアキ; Hashimoto, Yasuaki

    2008-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) in which mutation isthe cause of cystic fibrosis (CF) is a polytopic integral membrane protein that mediatestransepithelial chloride transport across epithelial cells in airways, pancreas, intestines andsweat glands. In addition, CFTR also regulates other various molecules (ion channels andreceptors) such as ENaC by forming multimolecular complex called “Transportsome”.Therefore, CFTR molecule is an extremely important molecule fo...

  18. Depletable resources and the economy.

    OpenAIRE

    Heijman, W. J. M.

    1991-01-01

    The subject of this thesis is the depletion of scarce resources. The main question to be answered is how to avoid future resource crises. After dealing with the complex relation between nature and economics, three important concepts in relation with resource depletion are discussed: steady state, time preference and efficiency.For the steady state, three variants are distinguished; the stationary state, the physical steady state and the state of steady growth. It is concluded that the so-call...

  19. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) increases the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells by phosphorylating Shank2E protein.

    Science.gov (United States)

    Koeppen, Katja; Coutermarsh, Bonita A; Madden, Dean R; Stanton, Bruce A

    2014-06-13

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site.

  20. Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice.

    Directory of Open Access Journals (Sweden)

    Barbara Dhooghe

    Full Text Available Although lung disease is the major cause of mortality in cystic fibrosis (CF, gastrointestinal (GI manifestations are the first hallmarks in 15-20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5 inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF

  1. Distribution of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR Mutations in a Cohort of Patients Residing in Palestine.

    Directory of Open Access Journals (Sweden)

    Issa Siryani

    Full Text Available Cystic fibrosis (CF is an autosomal recessive inherited life-threatening disorder that causes severe damage to the lungs and the digestive system. In Palestine, mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR that contributes to the clinical presentation of CF are ill defined. A cohort of thirty three clinically diagnosed CF patients from twenty one different Palestinian families residing in the central and southern part of Palestine were incorporated in this study. Sweat chloride testing was performed using the Sweat Chek Conductivity Analyzer (ELITECH Group, France to confirm the clinical diagnosis of CF. In addition, nucleic acid from the patients' blood samples was extracted and the CFTR mutation profiles were assessed by direct sequencing of the CFTR 27 exons and the intron-exon boundaries. For patient's DNA samples where no homozygous or two heterozygous CFTR mutations were identified by exon sequencing, DNA samples were tested for deletions or duplications using SALSA MLPA probemix P091-D1 CFTR assay. Sweat chloride testing confirmed the clinical diagnosis of CF in those patients. All patients had NaCl conductivity >60 mmol/l. In addition, nine different CFTR mutations were identified in all 21 different families evaluated. These mutations were c.1393-1G>A, F508del, W1282X, G85E, c.313delA, N1303K, deletion exons 17a-17b-18, deletion exons 17a-17b and Q1100P. c.1393-1G>A was shown to be the most frequent occurring mutation among tested families. We have profiled the underling mutations in the CFTR gene of a cohort of 21 different families affected by CF. Unlike other studies from the Arab countries where F508del was reported to be the most common mutation, in southern/central Palestine, the c.1393-1G>A appeared to be the most common. Further studies are needed per sample size and geographic distribution to account for other possible CFTR genetic alterations and their frequencies. Genotype

  2. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR

    OpenAIRE

    Cui, Guiying; Rahman, Kazi S.; Infield, Daniel T.; Kuang, Christopher; Prince, Chengyu Z.; McCarty, Nael A.

    2014-01-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1–6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oo...

  3. CFTR and cystic fibrosis%CFTR与囊性纤维化

    Institute of Scientific and Technical Information of China (English)

    王瑞; 李学军

    2006-01-01

    囊性纤维化跨膜传导调节因子(CFTR)是一种cAMP激活的ATP门控性氯离子通道,表达于气道,消化道和生殖道上皮细胞的顶部质膜中.囊性纤维化(CF)是白人中最常见的遗传性疾病之一,由CFTR基因突变造成.对CFTR基因的破译使人们进一步了解CF的发病机制,并为该疾病的诊断提供了新的线索.

  4. Development of ARMS PCR tests for detection of common CFTR gene mutations

    OpenAIRE

    Livshits L. A.; Pampukha V. M.; Soloviov O. O.

    2010-01-01

    Aim. To develop diagnostic assays, based on the amplification refractory mutation system (ARMS) principle, for detection of common mutations in the CFTR gene using two approaches: standard PCR with further gel-electrophoresis and Real-Time PCR with SYBR Green. Materials. For this study we have chosen the following mutations: dF508, W1282X, R117H, 621 + 1G > T, 2143delT with the frequencies in Ukraine: dF508 – 43.3 %; 2143delT – 1.38 %; W1282X – 1.1 %; R117H, 621 + 1G > T – < 0.6 %. For the de...

  5. A worldwide view of groundwater depletion

    Science.gov (United States)

    van Beek, L. P.; Wada, Y.; van Kempen, C.; Reckman, J. W.; Vasak, S.; Bierkens, M. F.

    2010-12-01

    During the last decades, global water demand has increased two-fold due to increasing population, expanding irrigated area and economic development. Globally such demand can be met by surface water availability (i.e., water in rivers, lakes and reservoirs) but regional variations are large and the absence of sufficient rainfall and run-off increasingly encourages the use of groundwater resources, particularly in the (semi-)arid regions of the world. Excessive abstraction for irrigation frequently leads to overexploitation, i.e. if groundwater abstraction exceeds the natural groundwater recharge over extensive areas and prolonged times, persistent groundwater depletion may occur. Observations and various regional studies have revealed that groundwater depletion is a substantial issue in regions such as Northwest India, Northeast Pakistan, Central USA, Northeast China and Iran. Here we provide a global overview of groundwater depletion from the year 1960 to 2000 at a spatial resolution of 0.5 degree by assessing groundwater recharge with the global hydrological model PCR-GLOBWB and subtracting estimates of groundwater abstraction obtained from IGRAC-GGIS database. PCR-GLOBWB was forced by the CRU climate dataset downscaled to daily time steps using ERA40 re-analysis data. PCR-GLOBWB simulates daily global groundwater recharge (0.5 degree) while considering sub-grid variability of each grid cell (e.g., short and tall vegetation, different soil types, fraction of saturated soil). Country statistics of groundwater abstraction were downscaled to 0.5 degree by using water demand (i.e., agriculture, industry and domestic) as a proxy. To limit problems related to increased capture of discharge and increased recharge due to groundwater pumping, we restricted our analysis to sub-humid to arid areas. The uncertainty in the resulting estimates was assessed by a Monte Carlo analysis of 100 realizations of groundwater recharge and 100 realizations of groundwater abstraction

  6. Molten-Salt Depleted-Uranium Reactor

    OpenAIRE

    Dong, Bao-Guo; Dong, Pei; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results...

  7. S-palmitoylation regulates biogenesis of core glycosylated wild-type and F508del CFTR in a post-ER compartment.

    Science.gov (United States)

    McClure, Michelle L; Wen, Hui; Fortenberry, James; Hong, Jeong S; Sorscher, Eric J

    2014-04-15

    Defects in CFTR (cystic fibrosis transmembrane conductance regulator) maturation are central to the pathogenesis of CF (cystic fibrosis). Palmitoylation serves as a key regulator of maturational processing in other integral membrane proteins, but has not been tested previously for functional effects on CFTR. In the present study, we used metabolic labelling to confirm that wild-type and F508del CFTR are palmitoylated, and show that blocking palmitoylation with the pharmacologic inhibitor 2-BP (2-bromopalmitate) decreases steady-state levels of both wild-type and low temperature-corrected F508del CFTR, disrupts post-ER (endoplasmic reticulum) maturation and reduces ion channel function at the cell surface. PATs (protein acyl transferases) comprise a family of 23 gene products that contain a DHHC motif and mediate palmitoylation. Recombinant expression of specific PATs led to increased levels of CFTR protein and enhanced palmitoylation as judged by Western blot and metabolic labelling. Specifically, we show that DHHC-7 (i) increases steady-state levels of wild-type and F508del CFTR band B, (ii) interacts preferentially with the band B glycoform, and (iii) augments radiolabelling by [3H]palmitic acid. Interestingly, immunofluorescence revealed that DHHC-7 also sequesters the F508del protein to a post-ER (Golgi) compartment. Our findings point to the importance of palmitoylation during wild-type and F508del CFTR trafficking.

  8. Acute Pancreatitis in Association with Campylobacter jejuni- Associated Diarrhea in a 15-Year-Old with CFTR Mutations: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Leena Kandula

    2006-09-01

    Full Text Available Context: Acute pancreatitis has occasionally been reported in association with Campylobacter jejuni infection in humans. However, the mechanism linking Campylobacter jejuni infection and pancreatitis isunclear. Acute pancreatitis in association with an infectious illness may be related to underlying genetic mutations. For instance, studies show that mutations in the cystic fibrosis transmembrane conductance regulator gene increase the susceptibility for acute and chronic pancreatitis. Case report :We describe a patient with Campylobacter jejuni infection who developed acute pancreatitis in the setting of an underlying cystic fibrosis transmembrane conductance regulator gene mutation. Discussion :In this patient with an underlying mutation in the CFTR gene, we propose that the interaction between the mutant gene and an environmental factor, Campylobacter jejuni infection, resulted in pancreatitis.

  9. Health and environmental impact of depleted uranium

    International Nuclear Information System (INIS)

    Depleted Uranium (DU) is 'nuclear waste' produced from the enrichment process and is mostly made up of 238U and is depleted in the fissionable isotope 235U compared to natural uranium (NU). Depleted uranium has about 60% of the radioactivity of natural uranium. Depleted uranium and natural uranium are identical in terms of the chemical toxicity. Uranium's high density gives depleted uranium shells increased range and penetrative power. This density, combined with uranium's pyrophoric nature, results in a high-energy kinetic weapon that can punch and burn through armour plating. Striking a hard target, depleted uranium munitions create extremely high temperatures. The uranium immediately burns and vaporizes into an aerosol, which is easily diffused in the environment. People can inhale the micro-particles of uranium oxide in an aerosol and absorb them mainly from lung. Depleted uranium has both aspects of radiological toxicity and chemical toxicity. The possible synergistic effect of both kinds of toxicities is also pointed out. Animal and cellular studies have been reported the carcinogenic, neurotoxic, immuno-toxic and some other effects of depleted uranium including the damage on reproductive system and foetus. In addition, the health effects of micro/ nano-particles, similar in size of depleted uranium aerosols produced by uranium weapons, have been reported. Aerosolized DU dust can easily spread over the battlefield spreading over civilian areas, sometimes even crossing international borders. Therefore, not only the military personnel but also the civilians can be exposed. The contamination continues after the cessation of hostilities. Taking these aspects into account, DU weapon is illegal under international humanitarian laws and is considered as one of the inhumane weapons of 'indiscriminate destruction'. The international society is now discussing the prohibition of DU weapons based on 'precautionary principle'. The 1991 Gulf War is reportedly the first

  10. Measurements of CFTR-Mediated Cl− Secretion in Human Rectal Biopsies Constitute a Robust Biomarker for Cystic Fibrosis Diagnosis and Prognosis

    Science.gov (United States)

    Vinagre, Adriana M.; Ramalho, Anabela S.; Bonadia, Luciana C.; Felício, Verónica; Ribeiro, Maria A.; Uliyakina, Inna; Marson, Fernando A.; Kmit, Arthur; Cardoso, Silvia R.; Ribeiro, José D.; Bertuzzo, Carmen S.; Sousa, Lisete; Kunzelmann, Karl; Ribeiro, Antônio F.; Amaral, Margarida D.

    2012-01-01

    Background Cystic Fibrosis (CF) is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR) gene encoding for a cAMP-regulated chloride (Cl−) channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases. Methodology/Principal Findings To further establish measurement of CFTR function as a sensitive and robust biomarker for diagnosis and prognosis of CF, we herein assessed cholinergic and cAMP-CFTR-mediated Cl− secretion in 524 freshly excised rectal biopsies from 118 individuals, including patients with confirmed CF clinical diagnosis (n = 51), individuals with clinical CF suspicion (n = 49) and age-matched non-CF controls (n = 18). Conclusive measurements were obtained for 96% of cases. Patients with “Classic CF”, presenting earlier onset of symptoms, pancreatic insufficiency, severe lung disease and low Shwachman-Kulczycki scores were found to lack CFTR-mediated Cl− secretion (<5%). Individuals with milder CF disease presented residual CFTR-mediated Cl− secretion (10–57%) and non-CF controls show CFTR-mediated Cl− secretion ≥30–35% and data evidenced good correlations with various clinical parameters. Finally, comparison of these values with those in “CF suspicion” individuals allowed to confirm CF in 16/49 individuals (33%) and exclude it in 28/49 (57%). Statistical discriminant analyses showed that colonic measurements of CFTR-mediated Cl− secretion are the best discriminator among Classic/Non-Classic CF and non-CF groups. Conclusions/Significance Determination of CFTR-mediated Cl− secretion in rectal biopsies is demonstrated here to be a sensitive, reproducible and robust predictive biomarker for the diagnosis and prognosis of CF. The method also has very high potential for (pre-)clinical trials of CFTR-modulator therapies. PMID:23082198

  11. Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis.

    Directory of Open Access Journals (Sweden)

    Marisa Sousa

    Full Text Available BACKGROUND: Cystic Fibrosis (CF is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR gene encoding for a cAMP-regulated chloride (Cl(- channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases. METHODOLOGY/PRINCIPAL FINDINGS: To further establish measurement of CFTR function as a sensitive and robust biomarker for diagnosis and prognosis of CF, we herein assessed cholinergic and cAMP-CFTR-mediated Cl(- secretion in 524 freshly excised rectal biopsies from 118 individuals, including patients with confirmed CF clinical diagnosis (n=51, individuals with clinical CF suspicion (n=49 and age-matched non-CF controls (n=18. Conclusive measurements were obtained for 96% of cases. Patients with "Classic CF", presenting earlier onset of symptoms, pancreatic insufficiency, severe lung disease and low Shwachman-Kulczycki scores were found to lack CFTR-mediated Cl(- secretion (<5%. Individuals with milder CF disease presented residual CFTR-mediated Cl(- secretion (10-57% and non-CF controls show CFTR-mediated Cl(- secretion ≥ 30-35% and data evidenced good correlations with various clinical parameters. Finally, comparison of these values with those in "CF suspicion" individuals allowed to confirm CF in 16/49 individuals (33% and exclude it in 28/49 (57%. Statistical discriminant analyses showed that colonic measurements of CFTR-mediated Cl(- secretion are the best discriminator among Classic/Non-Classic CF and non-CF groups. CONCLUSIONS/SIGNIFICANCE: Determination of CFTR-mediated Cl(- secretion in rectal biopsies is demonstrated here to be a sensitive, reproducible and robust predictive biomarker for the diagnosis and prognosis of CF. The method also has very high potential for (pre-clinical trials of CFTR-modulator therapies.

  12. The CF-modifying gene EHF promotes p.Phe508del-CFTR residual function by altering protein glycosylation and trafficking in epithelial cells.

    Science.gov (United States)

    Stanke, Frauke; van Barneveld, Andrea; Hedtfeld, Silke; Wölfl, Stefan; Becker, Tim; Tümmler, Burkhard

    2014-05-01

    The three-base-pair deletion c.1521_1523delCTT (p.Phe508del, F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) is the most frequent disease-causing lesion in cystic fibrosis (CF). The CFTR gene encodes a chloride and bicarbonate channel at the apical membrane of epithelial cells. Altered ion transport of CFTR-expressing epithelia can be used to differentiate manifestations of the so-called CF basic defect. Recently, an 11p13 region has been described as a CF modifier by the North American CF Genetic Modifier Study Consortium. Selecting the epithelial-specific transcription factor EHF (ets homologous factor) as the likely candidate gene on 11p13, we have genotyped two intragenic microsatellites in EHF to replicate the 11p13 finding in the patient cohort of the European CF Twin and Sibling Study. We could observe an association of rare EHF haplotypes among homozygotes for c.1521_1523delCTT in CFTR, which exhibit a CF-untypical manifestation of the CF basic defect such as CFTR-mediated residual chloride secretion and low response to amiloride. We have reviewed transcriptome data obtained from intestinal epithelial samples of homozygotes for c.1521_1523delCTT in CFTR, which were stratified for their EHF genetic background. Transcripts that were upregulated among homozygotes for c.1521_1523delCTT in CFTR, who carry two rare EHF alleles, were enriched for genes that alter protein glycosylation and trafficking, both mechanisms being pivotal for the effective targeting of fully functional p.Phe508del-CFTR to the apical membrane of epithelial cells. We conclude that EHF modifies the CF phenotype by altering capabilities of the epithelial cell to correctly process the folding and trafficking of mutant p.Phe508del-CFTR.

  13. Hypertension-linked mutation of α-adducin increases CFTR surface expression and activity in HEK and cultured rat distal convoluted tubule cells.

    Directory of Open Access Journals (Sweden)

    Anna Mondini

    Full Text Available The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F316Y in rats, an actin capping protein, led to a functional modification of CFTR activity and surface expression. The experiments were performed on HEK293 T cells cotransfected with CFTR and the human wild type (WT or G460W mutated α-adducin. In whole-cell patch-clamp experiments, both the CFTR chloride current and the slope of current activation after forskolin addition were significantly higher in HEK cells overexpressing the G460W adducin. A higher plasma membrane density of active CFTR channels was confirmed by cell-attached patch-clamp experiments, both in HEK cells and in cultured primary DCT cells, isolated from MHS (Milan Hypertensive Strain, a Wistar rat (Rattus norvegicus hypertensive model carrying the F316Y adducin mutation, compared to MNS (Milan Normotensive Strain rats. Western blot experiments demonstrated an increase of the plasma membrane CFTR protein expression, with a modification of the channel glycosylation state, in the presence of the mutated adducin. A higher retention of CFTR protein in the plasma membrane was confirmed both by FRAP (Fluorescence Recovery After Photobleaching and photoactivation experiments. The present data indicate that in HEK cells and in isolated DCT cells the presence of the G460W-S586C hypertensive variant of adducin increases CFTR channel activity, possibly by altering its membrane turnover and inducing a retention of the channel in the plasmamembrane. Since CFTR is known to modulate the activity of many others transport systems, the increased surface expression of the channel could have consequences on the whole network of transport in kidney cells.

  14. Iron Depletion into Dust Grains in Galactic Planetary Nebulae

    CERN Document Server

    Delgado-Inglada, G

    2010-01-01

    We present preliminary results of an analysis of the iron depletion factor into dust grains for a sample of 20 planetary nebulae (PNe) from the Galactic bulge. We compare these results with the ones we obtained in a prior analysis of 28 Galactic disk PNe and 8 Galactic H II regions. We derive high depletion factors in all the objects, suggesting that more than 80% of their iron atoms are condensed into dust grains. The range of iron depletions in the sample PNe covers about two orders of magnitude, and we explore here if the differences are related to the PN morphology. However, we do not find any significant correlation.

  15. Identification of Herbal Compound lmperatorin with Adverse Effects on ANO1 and CFTR Chloride Channels

    Institute of Scientific and Technical Information of China (English)

    HAO Feng; YI Fei; ZHANG Di; NING Yan; SU Wei-heng; FENG Xue-chao; YANG Hong; MA Tong-hui

    2011-01-01

    Calcium-activated chloride channels(CaCCs) are the crucial regulators of transepithelial fluid secretion,smooth muscle contraction and sensory transduction. Recently, compelling evidence has indicated that TMEM 16A(ANO 1 or anoctamin-i ) is a bona fide calcium-acvtivated chloride channel. A few small molecule CaCCs regulators are available for functional and therapeutic studies. We screened 126 natural compounds from Chinese herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells to coexpress ANOI and an iodide-sensitive fluorescent indicator(EYFP-HI48Q/I152L). lmperatorin, a coumarin compound, was identifled to inhibit ANOl-mediated chloride transport activated by multiple calcium-elevating agonists. The inhibitory effect is dose-dependent with IC50 ~14.63 μmol/L. Interestingly, imperatorin activated CFTR chloride channel with EC50 ~35.52 μmol/L. The adverse effects of imperatorin on CaCC and CFTR chloride channels will make it useful in pharmacological dissection of chloride transport in airway and intestinal epithelium. Further studies are required to evaluate the therapeutic effects of imperatorin on hypertension, asthma and certain tumors.

  16. Cystic fibrosis and the role of gastrointestinal outcome measures in the new era of therapeutic CFTR modulation

    NARCIS (Netherlands)

    Bodewes, Frank A J A; Verkade, Henkjan J; Taminiau, Jan A J M; Borowitz, Drucy; Wilschanski, Michael

    2015-01-01

    With the development of new drugs that directly affect CFTR protein function, clinical trials are being designed or initiated for a growing number of patients with cystic fibrosis. The currently available and accepted clinical endpoints, FEV1 and BMI, have limitations. The aim of this report is to d

  17. Heterogeneity of phenotype in two cystic fibrosis patients homozygous for the CFTR exon 11 mutation G551D.

    OpenAIRE

    Parad, R B

    1996-01-01

    In the heterozygous state, the cystic fibrosis transmembrane conductance regulator (CFTR) exon 11 mutation G551D has been described as "severe," causing pancreatic insufficiency. Two cystic fibrosis (CF) patients homozygous for this mutation showed a mild rather than severe pancreatic phenotype and a variable pulmonary phenotype.

  18. Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice

    NARCIS (Netherlands)

    Bodewes, Frank A. J. A.; Wouthuyzen-Bakker, Marjan; Bijvelds, Marcel J.; Havinga, Rick; de Jonge, Hugo R.; Verkade, Henkjan J.

    2012-01-01

    Bodewes FAJA, Wouthuyzen-Bakker M, Bijvelds MJ, Havinga R, de Jonge HR, Verkade HJ. Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice. Am J Physiol Gastrointest Liver Physiol 302: G1035-G1042, 2012. First published F

  19. Comparative analysis of common CFTR polymorphisms poly-T, TG-repeats and M470V in a healthy Chinese population

    Institute of Scientific and Technical Information of China (English)

    Qin Huang; Wei Ding; Mu-Xin Wei

    2008-01-01

    AIM: To investigate the three important cystic fibrosis transmembrane conductance regulator (CFTR) haplotypes po!y-T, TG-repeats and the M470V polymorphisms in the Chinese population, and to compare their distribution with that in Caucasians and other Asian populations.METHODS: Genomic DNA was extracted from blood leukocytes. Exons 9 and 10 of the CFTR gene were obtained through polymerase chain reaction (PCR). Exon 9 DNA sequences were directly detected by an automated sequencer and poly-T and TG-repeats were identified by direct sequence analysis. Pure exon 10 PCR-amplified products were digested by Hph I restriction enzyme and the M470V mutation was detected by the AGE photos of digestion products.RESULTS: T7 was the most common (93.6%) haplotype and the (TG)ll frequency of 57.2% and (TG)12 frequency of 40.9% were dominant haplotypes in the junction of intron 8 (IVS-8) and exon 9. The frequency of T5 was 3.8% and all T5 allele tracts (10 alleles) were joined with (TG)12. Four new alleles of T6 (1.5%) were found in three healthy individuals. In exon 10, the V allele (56.1%) was slightly more frequent than the M allele (43.9%), and the M/V (45.5%) was the dominant genotype in these individuals. The three major haplotypes T7-(TG)ll-V470, T7-(TG)12-M470 and T7-TG11-M470 were related to nearly 86.0% of the population.CONCLUSION: The polymorphisms of poly-T, TG-repeats, and M470V distribution were similar to those in other East Asians, but they had marked differences in frequency from those single haplotype polymorphisms or linkage haplotypes in Caucasians. Thus, they may be able to explain the low incidence of CF and CF-like diseases in Asians.

  20. Screening and validation of specific zinc finger nucleases targeted pig CFTR gene%猪CFTR基因特异性锌指核酸酶的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    王瑞; 王令; 林娟; 张存芳; 张智英

    2012-01-01

    to screen specific zinc finger proteins by two steps of B2H.Forty eight specific ZFPs with high affinity to the left and right half sites of CFTR target site were gained,respectively.The result of ZFN activity validation in yeast demonstrated that 90% of screened ZFN had the ability to cleave CFTR target site,and specific ZFN were achieved via this strategy.【Conclusion】The ZFN with high affinity and efficiency will be applied to target pig CFTR gene resulting in generation of CFTR gene knockout pig cell lines,which is fundamental to make the disease model for gene therapy and drug discovery.

  1. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  2. Understanding the haling power depletion (HPD) method

    International Nuclear Information System (INIS)

    The Pennsylvania State Univ. (PSU) is using the university version of the Studsvik Scandpower Code System (CMS) for research and education purposes. Preparations have been made to incorporate the CMS into the PSU Nuclear Engineering graduate class 'Nuclear Fuel Management' course. The information presented in this paper was developed during the preparation of the material for the course. The Haling Power Depletion (HPD) was presented in the course for the first time. The HPD method has been criticized as not valid by many in the field even though it has been successfully applied at PSU for the past 20 years. It was noticed that the radial power distribution (RPD) for low leakage cores during depletion remained similar to that of the HPD during most of the cycle. Thus, the Haling Power Depletion (HPD) may be used conveniently mainly for low leakage cores. Studies were then made to better understand the HPD and the results are presented in this paper. Many different core configurations can be computed quickly with the HPD without using Burnable Poisons (BP) to produce several excellent low leakage core configurations that are viable for power production. Once the HPD core configuration is chosen for further analysis, techniques are available for establishing the BP design to prevent violating any of the safety constraints in such HPD calculated cores. In summary, in this paper it has been shown that the HPD method can be used for guiding the design for the low leakage core. (authors)

  3. Investigation of expression of CFTR and its relationship with apoptosis in lung squamous cell carcinoma%CFTR在肺鳞癌中的表达及其与肿瘤凋亡关系的研究

    Institute of Scientific and Technical Information of China (English)

    李亚秋; 姜文华; 范军达; 郝利铭

    2013-01-01

    Objective To investigate the expression of cystic fibrosis transmembrane conductance regulator (CFTR) to explore its relationship with apoptosis in well and poorly differentiated human lung squamous cell carcinoma.Methods The expression of CFTR was detected by immunohistochemical(S-P) method in 27 lung squamous cell carcinoma tissue,and the apoptosis rate was done by TUNEL method.Results Mean optical density of well-differentiated lung squamous cell carcinoma(1169.22 ± 42.61) was significantly higher than that in poorly differentiated lung squamous cell carcinoma(1047.89 ± 20.62,P<0.05),and the diameter of well-differentiated cancer cells (32.36 ± 1.12) μ m was significantly higher than that of poorly differentiated lung squamous cell carcinoma(21.42 ± 0.97)μm (P<0.01).The apoptosis rate of well-differentiated lung squamous cell carcinoma(12.04 ± 2.36)% was significantly higher than that in poorly differentiated lung squamous cell carcinoma(7.74 ± 1.03)%(P <0.01).The apoptosis rate was positively correlated with the mean optical density of CFTR product in lung squamous carcinoma cells(r=0.619,P<0.01).Conclusion The overexpression of CFTR is positively correlated with the apoptosis of lung squamous cancer cells,indicating that CFTR is related to the promotion of the apoptosis of lung squamous cancer cells.%目的 探讨囊性纤维化跨膜传导调节因子(CFTR)在人高、低分化肺鳞癌组织中的表达,及其与癌细胞凋亡的关系.方法 采用免疫组织化学S-P法检测27例鳞癌组织中CFTR的表达,TUNEL法检测肺鳞癌细胞凋亡率.结果 人高分化鳞癌细胞的CFTR阳性产物平均光密度(1169.22±42.61)显著高于低分化鳞癌的平均光密度(1047.89±20.62,P<0.05),且高分化癌细胞直径(32.36±1.12)μm显著高于低分化癌细胞直径(21.42±0.97)μm(P<0.01).高分化鳞癌组织的凋亡率(12.04±2.36)%显著高于低分化鳞癌组织的凋亡率(7.74±1.03)%(P<0.01).凋亡率与表

  4. Defective fluid secretion from submucosal glands of nasal turbinates from CFTR-/- and CFTR (ΔF508/ΔF508 pigs.

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Cho

    Full Text Available BACKGROUND: Cystic fibrosis (CF, caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. METHODOLOGY/PRINCIPAL FINDINGS: Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area, more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands. Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CF(ΔF508/ΔF508 with CFTR(-/- piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7. An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. CONCLUSIONS/SIGNIFICANCE: These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections.

  5. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  6. Fighting self-control failure: overcoming ego depletion by increasing self-awareness

    OpenAIRE

    Alberts, Hugo J. E. M.; Martijn, Carolien; de Vries, Nanne K

    2010-01-01

    International audience According to the limited strength model (Muraven, Tice, & Baumeister, 1998), exerting self-control causes ego depletion: a depletion of cognitive resources resulting in poorer performance on later self-control tasks. Previous studies have demonstrated a positive effect of self-awareness on self-control performance. The present study examined whether the occurrence of ego depletion can be circumvented by increasing self-awareness. Initially depleted participants who r...

  7. Expandiendo el espectro mutacional en pacientes chilenos con fibrosis quística Expanding the CFTR mutation spectrum in Chilean patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Marcos Vásquez D

    2012-06-01

    -9000 newborns in Chile. More than 1,800 different mutations have been identified in CFTR gene. The available molecular diagnosis analyzes the 36 most frequent mutations in Caucasian population, with an overall detection rate of80-85%, but with a much lower detection rate in Chilean patients of 42%. To analyze which other mutations are present in Chilean patients, we conducted an extensive analysis by direct DNA sequencing of coding sequences of the CFTR gene. Methods: Forty eight Chilean patients with clinical diagnosis of CF and one mutated allele in the CFTR gene identified, were studied by direct sequence analysis of exons 6, 7, 14, 19 and 20 of the CFTR gene. Results: We found 3 different mutations in 14 cases that had not been previously identified in Chilean patients. Four patients have a deletion of two nucleotides (c.2462_2463delGT/p.Ser821ArgfsX4 in exon 14, which is predicted to cause a frameshift and a premature stop codon. Eight patients have c.3196C>T mutation in the exon 20 and 2 cases has c.3039delC mutation in the exon 19. Both mutations had been previously described in other populations. Discussion: The identification of these mutations has notably increased the detection rate in our patients. Adapting the molecular diagnosis method by including these three mutations should increase the CF detection rate in Chilean patients. This analysis will improve CF diagnosis and allow an adequate genetic counseling to the families.

  8. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Price, E. M.; Gabriel, S. E.;

    1996-01-01

    The Sf9 insect Spodoptora frugiperda cell line was used for heterologous expression of the cloned human cystic fibrosis transmembrane conductance regulator (CFTR) cDNA, or the cloned ß-galactosidase gene, using the baculovirus Autographa califonica as the infection vector. Using application of the...... patch-clamp technique, evidence for functional expression of CFTR was obtained according to the following three criteria. Firstly, whole-cell currents recorded 2 days after infection with CFTR revealed a statistically significant increase of membrane conductance, ˜25 times above that of mock......-infected control cells, with the reversal potential of the major current component being governed by the chloride equilibrium potential (E Cl). Secondly, in contrast to uninfected cells and cells infected with ß-galactosidase, the membrane conductance to chloride of CFTR-injected cells was stimulated by cytosolic...

  9. Purinergic regulation of CFTR and Ca2+ -activated Cl- channels and K+ channels in human pancreatic duct epithelium

    DEFF Research Database (Denmark)

    Wang, Jing; Haanes, Kristian A; Novak, Ivana

    2013-01-01

    dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have...... mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The...... receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct...

  10. Prediction Method of Safety Mud Density in Depleted Oilfields

    Directory of Open Access Journals (Sweden)

    Yuan Jun-Liang

    2013-04-01

    Full Text Available At present, many oilfields were placed in the middle and late development period and the reservoir pressure depleted usually, resulting in more serious differential pressure sticking and drilling mud leakage both in the reservoir and cap rock. In view of this situation, a systematic prediction method of safety mud density in depleted oilfields was established. The influence of reservoir depletion on stress and strength in reservoir and cap formation were both studied and taken into the prediction of safety mud density. The research showed that the risk of differential pressure sticking and drilling mud leakage in reservoir and cap formation were both increased and they were the main prevention object in depleted oilfields drilling. The research results were used to guide the practice drilling work, the whole progress gone smoothly.

  11. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  12. Measurements of CFTR-Mediated Cl− Secretion in Human Rectal Biopsies Constitute a Robust Biomarker for Cystic Fibrosis Diagnosis and Prognosis

    OpenAIRE

    Sousa, Marisa; Servidoni, Maria F; Vinagre, Adriana M.; Ramalho, Anabela S; Bonadia, Luciana C.; Felício, Verónica; Ribeiro, Maria A..; Uliyakina, Inna; Marson A, Fernando; Kmit, Arthur; Cardoso, Silvia R.; Ribeiro, José D; Carmen S. Bertuzzo; Sousa, Lisete; Kunzelmann, Karl

    2012-01-01

    BACKGROUND: Cystic Fibrosis (CF) is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR) gene encoding for a cAMP-regulated chloride (Cl(-)) channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases. METHODOLOGY/PRINCIPAL FINDINGS: To further establish measurement of CFTR function as a sensitive and robust biomarker fo...

  13. Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770.

    Science.gov (United States)

    Gentzsch, Martina; Ren, Hong Y; Houck, Scott A; Quinney, Nancy L; Cholon, Deborah M; Sopha, Pattarawut; Chaudhry, Imron G; Das, Jhuma; Dokholyan, Nikolay V; Randell, Scott H; Cyr, Douglas M

    2016-09-01

    Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients. PMID:27402691

  14. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2

    OpenAIRE

    Szollosi, A; P.; Vergani; Csanady, L.

    2010-01-01

    The chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) displays a typical adenosine trisphosphate (ATP)-binding cassette (ABC) protein architecture comprising two transmembrane domains, two intracellular nucleotide-binding domains (NBDs), and a unique intracellular regulatory domain. Once phosphorylated in the regulatory domain, CFTR channels can open and close when supplied with cytosolic ATP. Despite the general agreement that formation of a head-to-tail NBD dim...

  15. Detection of the mutation of all the exons of the CFTR gene in Chinese men with congenital bilateral absence of the vas deferens%中国先天性双侧输精管缺如患者CFTR基因全部外显子突变检测

    Institute of Scientific and Technical Information of China (English)

    杜强; 方媛媛; 潘永峰; 潘伯臣; 宋永胜; 吴斌

    2012-01-01

    目的:探讨我国先天性双侧输精管缺如患者CFTR基因检测的必要性. 方法:采用PCR技术结合DNA直接测序的方法检测9例先天性双侧输精管缺如患者CFTR基因全部外显子的突变情况,并在NCBI和Cystic Fibrosis Mutation Database在线比对. 结果:除非编码区突变和已经报道的SNP位点之外,9例先天性双侧输精管缺如患者中4例新发现4种不同于西方人已知突变类型的外显子区突变,均为杂合子错义突变. 结论:中国先天性双侧输精管缺如患者CFTR基因外显子区存在不同于西方人的突变,有必要对中国先天性双侧输精管缺如患者进行CFTR基因突变检测.%To assess the necessity of detecting the gene of cystic fibrosis transmembrane conductance regulator factor ( CFTR) in Chinese men with congenital bilateral absence of the vas deferens (CBAVD). Methods : We detected the mutation of all the 27 exons of the CFTR gene in 9 patients with CBAVD by DNA sequencing, and compared the results using NCBI and Cystic Fibrosis Mutation Database. Results: Four novel missense mutations / variants were found in the CFTR gene of the CBAVD patients, which were submitted and accepted in the Cystic Fibrosis Mutation Database. Conclusion: There are mutations or variants in the CFTR gene in Chinese men with CBAVD, and the mutational distribution is different from that in Westerners.

  16. Assessment Of Depleted Uranium Contamination In Selective IRAQI Soils

    International Nuclear Information System (INIS)

    The aim of this research was to measure the radiation exposure rates in three selected Locations in southren part of Iraq (two in Nassireya, and one in Amara) resulted from the existence of depleted uranium in soil and metal pieces have been taken from destroyed tank and study mathmatically the concentration of Depleted Uranium by its dispersion from soil surface by winds and rains from 2003 to 2007. The exposure rates were measured using inspector device, while depleted uranium concentration in soil samples and tank's matal pieces were detected with Solid State Nuclear Track Detectors(SSNTDs). The wind and rain effects were considered in the calculation of dispersion effect on depleted uranium concentration in soil, where the wind effect were calculated with respect to the sites nature and soil conditions, and rain effect with respect to dispersive-convective equation for radionuclide in soil. The results obtained for the exposure rates were high near the penetrated surfac, moderate and low in soil and metal pices. The Depleted Uranium concentration in soil and metal pieces have the highest value in Nassireya. The results from dispersion calculation (wind & rain) showed that the depleted uranium concentration in 2008 will be less than the danger level and in allowable contamination range

  17. The Case of Ozone Depletion

    Science.gov (United States)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  18. Verification of Depleted Uranium in non-Nuclear use

    International Nuclear Information System (INIS)

    The present work describes a system for the verification of depleted uranium-being recognized by the International Atomic Energy as a Nuclear which should be accounted for and put under Nuclear Safeguards even if it is used for non-nuclear applications such as in shielding against gamma radiation in Radiotherapy facilities, industrial radiography systems or as counterweights in air craft. Measurement of depleted uranium is performed by employing Non-Destructive Assay techniques, which use a gamma-ray spectrometer system and/or a neutron coincidence counter system. Results show that the used techniques can detect the presence of depleted uranium in the investigated materials. Also, quantitative values of U-235 enrichment and mass content of the assayed material could be obtained with a precision of better than 7%. This work would find important applications for the verification and control of depleted uranium for the purposes of Nuclear Safeguards

  19. Depleted Uranium Penetrators : Hazards and Safety

    OpenAIRE

    Rao, S S; T. Balakrishna Bhat

    1997-01-01

    The depleted uranium (DU) alloy is a state-of-the-art material for kinetic energy penetrators due to its superior ballistic performance. Several countries use DU penetrators in their main battle tanks. There is no gamma radiation hazard to the crew members from stowage of DO rounds. Open air firing can result in environmental contamination and associated hazards due to airborne particles containing essentially U/sub 3/0/sub 8/ and UO/sub 2/. Inhalation of polluted air only through resp...

  20. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  1. CFTR genotype-related body water and electrolyte balance during a marathon.

    Science.gov (United States)

    Del Coso, J; Lara, B; Salinero, J J; Areces, F; Ruiz-Vicente, D; Gallo-Salazar, C; Abián-Vicén, J; Cacabelos, R

    2016-09-01

    The aim of this investigation was to determine the influence of CFTR genotype on body water and electrolyte balance during a marathon. Fifty-one experienced runners completed a marathon race. Before and after the race, body mass and a sample of venous blood were obtained. During the race, sweat samples were collected using sweat patches, and fluid and electrolyte intake were obtained using self-reported questionnaires. Thirty-eight participants (74.5% of the total) were 7T/7T homozygotes, 11 (21.6%) were 7T/9T heterozygotes, and one participant presented the rare genotype 5T/7T. Another participant with 9T/9T presented the mutation p.L206W. Participants with 7T/7T showed higher sweat sodium concentrations (42.2 ± 21.6 mmol/L) than 7T/9T (29.0 ± 24.7 mmol/L; P = 0.04). The runner with the 5T/7T genotype (10.2 mmol/L) and the participant with the p.L206W mutation (20.5 mmol/L) exhibited low-range sweat sodium concentrations. However, post-race serum sodium concentration was similar in 7T/7T and 7T/9T (142.1 ± 1.3 and 142.4 ± 1.6 mmol/L, respectively; P = 0.27) and did not show abnormalities in participants with the 5T/7T genotype (140.0 mmol/L) and the p.L206W mutation (143.0 mmol/L). Runners with the CFTR-7T/7T genotype exhibited increased sweat sodium concentrations during a marathon. However, this phenotype was not related with increased likelihood of suffering body water and electrolyte imbalances during real competitions.

  2. A modern depleted uranium manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

  3. The Optimal Depletion of Exhaustible Resource under Different Commitment

    Institute of Scientific and Technical Information of China (English)

    Zhou Wei; Wu Kangping

    2012-01-01

    There are few papers in the literature focusing on the issue of the optimal depletion of exhaustible resources in the framework of variable time preference. This paper attempts to analyze the pure consumption of exhaustible resource under hy- perbolic time preference, and to discuss the optimal depletion rate and the effect of the protection of the exhaustible resource under different commitment abilities. The results of model show that the case of the hyperbolic discount with the full commitment of the govemment is equivalent to the case of constant discount of the social planner problem. In that case, the optimal depletion rate and the initial consumption of exhaustible resource are the slowest. On the contrary, they are the highest and the myopic behaviors lead to excessive consumption of exhaustible resources inevitably without commitment. Otherwise, in the case of partial commit- ment, the results are between the cases of full commitment and of no commitment. Therefore, with the hyperbolic time preference, the optimal depletion rate of resource depends on the commitment ability. Higher commitment ability leads to lower effective rate of time preference, and consequently, lower depletion rate and lower initial depletion value. The improvement of commitment ability can decrease the impatience and myopia behaviors, and contribute to the protection of the exhaustible resources.

  4. Diagnostic value of guided fine needle aspiration accompanied by CFTR detection in chronic pancreatitis%内镜超声引导下穿刺联合CFTR基因检测对慢性胰腺炎的诊断价值

    Institute of Scientific and Technical Information of China (English)

    郑著家; 李长福; 韩继武

    2011-01-01

    Objective To evaluate significance of diagnosis with endoscopic ultrasonography guided fine needle aspiration (EUS-FNA) accompanied by cystic fibrosis transmembrane conductance regulator (CFTR) detection in chronic pancreatitis. Methods Endoscopic ultrasonography guided fine needle aspiration was performed in 120 patients with chronic pancreatitis at our hospital and the Fourth Affiliated Hospital of Harbin Medical University from August 2003 to December 2005. At the same time. CFR was detected. Results In EUS-FNA specimens of patients, the contents of CFTR were significantly higher than that in blood ( P < 0. 05 ), 20% of the patients were dignosed as pancreatic cancer. Conclusion EUS-FNA accompanied by CFTR detection is important in diagnosis of chronic pancreatitis.%目的 探讨内镜超声引导下细针穿刺活检(endoscopic ultrasonography guided fine needle aspiration,EUS-FNA )联合囊性纤维化转膜传导调节因子(cystic fibrosis transmembrane conductance regulator,CFTR)基因检测对慢性胰腺炎的诊断价值.方法 对本院及哈尔滨医科大学附属第四医院120例慢性胰腺炎患者进行超声内镜引导下穿刺活检,并采用免疫印迹方法检测CFTR基因表达情况.结果 活检物中的CFTR检测阳性率明显高于血清中的浓度,其中小胰腺癌检出率为20%.结论 EUS-FNA联合CFTR基因检测对慢性胰腺炎的诊断具有重要价值.

  5. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  6. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    Science.gov (United States)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  7. Depletion Interactions in a Cylindric Pipeline with a Small Shape Change

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Shu; GAO Hai-Xia; XIAO Chang-Ming

    2007-01-01

    Stressed by external forces, it is possible for a cylindric pipeline to change into an elliptic pipeline. To expose the effect of small shape change of the pipeline on the depletion interactions, both the depletion potentials and depletion forces in the hard sphere systems confined by a cylindric pipeline or by an elliptic pipeline are studied by Monte Carlo simulations. The numerical results show that the depletion interactions are strongly affected by the small change of the shape of the pipeline in a way. Furthermore, it is also found that the depletion interactions will be strengthened if the short axis of the elliptic pipeline is decreased.

  8. EFFECTS OF MONOCARBOXYLIC ACID DERIVATIVES ON CARDIAC VENTRICULAR CFTR Cl-CHANNELS IN GUINEA PIG%单羧酸类Cl-通道阻断剂对心室肌CFTR Cl-通道的影响

    Institute of Scientific and Technical Information of China (English)

    周士胜; 臧益民

    1999-01-01

    本文采用全细胞膜片箝与细胞内灌注技术,观察了单羧酸类 Cl-通道阻断剂对豚鼠心室肌囊性纤维变性膜透性调节蛋白(CFTR)Cl-电流的影响,细胞外9-AC以可逆方式增强异丙肾上腺素(ISO)激发的CFTR Cl-的外向电流成分,5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB)和二苯胺羧酸(DPC)对ISO发的CFTR Cl-电流的作用呈现先增强后抑制的双相效应.细胞内NPPB表现为增强ISO激发作用.结果表明,单羧酸类Cl-通道阻断剂在细胞上有不同的作用位点,该类药物作用效果的差异可能与此有关.

  9. Endocytic Sorting of CFTR variants Monitored by Single Cell Fluorescence Ratio Image Analysis (FRIA) in Living Cells

    Science.gov (United States)

    Barriere, H.; Apaja, P.; Okiyoneda, T.; Lukacs, G. L.

    2016-01-01

    Summary The wild-type CFTR channel undergoes constitutive internalization and recycling at the plasma membrane. This process is initiated by the recognition of the Tyr- and di-Leu-based endocytic motifs of CFTR by the AP-2 adaptor complex, leading to the formation of clathrin-coated vesicles and the channel delivery to sorting/recycling endosomes. Accumulating evidence suggests that conformationally defective mutant CFTRs (e.g. rescued ΔF508 and glycosylation-deficient channel) are unstable at the plasma membrane and undergo augmented ubiquitination in post-Golgi compartments. Ubiquitination conceivably accounts for the metabolic instability at cell surface by provoking accelerated internalization, as well as rerouting the channel from recycling towards lysosomal degradation. We developed an in vivo fluorescence ratio imaging assay (FRIA) that in concert with genetic manipulation can be utilized to establish the post-endocytic fate and sorting determinants of mutant CFTRs. PMID:21594793

  10. Molecular beam depletion: a new approach

    CERN Document Server

    Dorado, Manuel

    2014-01-01

    During the last years some interesting experimental results have been reported for experiments in N20, N0 , N0 dimer , H2 , Toluene and BaFCH3 cluster. The main result consists in the observation of molecular beam depletion when the molecules of a pulsed beam interact with a static electric or magnetic field and an oscillating field (RF). In these cases, and as a main difference, instead of using four fields as in the original technique developed by I.I. Rabi and others, only two fields, those which configure the resonant unit, are used. That is, without using the nonhomogeneous magnetic fields. The depletion explanation for I.I. Rabi and others is based in the interaction between the molecular electric or magnetic dipole moment and the non-homogeneous fields. But, obviously, the change in the molecules trajectories observed on these new experiments has to be explained without considering the force provided by the field gradient because it happens without using non-homogeneous fields. In this paper a theoreti...

  11. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    Science.gov (United States)

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret. PMID:24940811

  12. Analysis of the CFTR gene in Venezuelan cystic fibrosis patients, identification of six novel cystic fibrosis-causing genetic variants

    OpenAIRE

    Sánchez K; de Mendonca E; Matute X; Chaustre I; Villalón M; Takiff H

    2016-01-01

    Karen Sánchez,1 Elizabeth de Mendonca,1 Xiorama Matute,2 Ismenia Chaustre,2 Marlene Villalón,3 Howard Takiff4 1Unit of Genetic and Forensic Studies, Venezuelan Institute for Scientific Research (IVIC), 2Hospital JM de los Ríos, 3Hospital José Ignacio Baldo, Algodonal, National Reference Unit, 4Laboratory of Molecular Genetics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela. Abstract: The mutations in the CFTR gene found in patients with cy...

  13. Analysis of the CFTR gene in Venezuelan cystic fibrosis patients, identification of six novel cystic fibrosis-causing genetic variants

    OpenAIRE

    Sánchez, Karen

    2016-01-01

    Karen Sánchez,1 Elizabeth de Mendonca,1 Xiorama Matute,2 Ismenia Chaustre,2 Marlene Villalón,3 Howard Takiff4 1Unit of Genetic and Forensic Studies, Venezuelan Institute for Scientific Research (IVIC), 2Hospital JM de los Ríos, 3Hospital José Ignacio Baldo, Algodonal, National Reference Unit, 4Laboratory of Molecular Genetics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela. Abstract: The mutations in the CFTR gene found in ...

  14. Frequency of CFTR, SPINK1, and Cathepsin B Gene Mutation in North Indian Population: Connections between Genetics and Clinical Data

    OpenAIRE

    Shweta Singh; Gourdas Choudhuri; Sarita Agarwal

    2014-01-01

    Objectives. Genetic mutations and polymorphisms have been correlated with chronic pancreatitis (CP). This study aims to investigate the association of genetic variants of cystic fibrosis transmembrane conductance regulator (CFTR) and serine protease inhibitor Kazal type 1 (SPINK-1) genes and Cathepsin B gene polymorphisms with CP and to associate genetic backgrounds with clinical phenotypes. Methods. 150 CP patients and 150 normal controls were enrolled consecutively. We analyzed SPINK-1 N34S...

  15. Detection of Five Common CFTR Mutations by Rapid-Cycle Real-Time Amplification Refractory Mutation System PCR

    OpenAIRE

    Dempsey, Eugene; Barton, Davis; Ryan, Fergus X.

    2004-01-01

    Cystic fibrosis is the most common autosomal recessive disease in Caucasian populations and has a carrier frequency of 1 in 25 (1 ). The gene involved codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane-associated protein involved in ion transport across the plasma membrane of epithelial cells. To date more than 1000 mutations have been described in this gene, and most are rare (2 ). By focusing on five common mutations it is possible to detect the diseasecaus...

  16. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  17. Depleted Argon from Underground Sources

    International Nuclear Information System (INIS)

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  18. Depleted uranium. Nuclear related problems

    International Nuclear Information System (INIS)

    Depleted uranium (DU) has found a military application in Golf War, in Bosnia and in Yugoslavia (Kosovo). In military sense it was very efficient. But the fact that some parts of that ammunition are manufactured from depleted uranium, low level radioactive waste, implies other aspects of this application like radiological, ecological, jurist, ethical and psychological. The subject of this paper is just physical aspect. There are several problems concerning this aspect: production of DU, total amount of DU in the world, 235U/238U relation, radioactivity of DU, measurements, and presence of other radionuclides like plutonium. DU is by product of nuclear technology and represents low-level nuclear waste. Therefore it should be stored. Total amount of DU in the world is about one million tons with an annual increase of 30 000 t. The content of 235U in DU can vary in the range 0.16-0.3%. The total radioactivity of DU is a consequence of 7 radionuclides and amounts 39.42 Bq/mg. This include alpha, beta and gamma radioactivity. Because of characteristics of this radioactivity it is difficult to prospect the terrain except at the site of action. During the impact of DU rods four types of DU particles could be produced: whole penetrators, penetrator parts, big aerosols (>10 μm) and small aerosols (<10 μm). Most of these particles fall locally, although some of them could be find several tens of kilometers away. All these problems have been discussed in this paper. (author)

  19. A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR.

    Science.gov (United States)

    Yamamoto, Yo-hei; Kimura, Taiji; Momohara, Shuku; Takeuchi, Masato; Tani, Tokio; Kimata, Yukio; Kadokura, Hiroshi; Kohno, Kenji

    2010-01-01

    Cytosolic Hsc70/Hsp70 are known to contribute to the endoplasmic reticulum (ER)-associated degradation of membrane proteins. However, at least in mammalian cells, its partner ER-localized J-protein for this cellular event has not been identified. Here we propose that this missing protein is DNAJB12. Protease protection assay and immunofluorescence study revealed that DNAJB12 is an ER-localized single membrane-spanning protein carrying a J-domain facing the cytosol. Using co-immunoprecipitation assay, we found that DNAJB12 is able to bind Hsc70 and thus can recruit Hsc70 to the ER membrane. Remarkably, cellular overexpression of DNAJB12 accelerated the degradation of misfolded membrane proteins including cystic fibrosis transmembrane conductance regulator (CFTR), but not a misfolded luminal protein. The DNAJB12-dependent degradation of CFTR was compromised by a proteasome inhibitor, lactacystin, suggesting that this process requires the ubiquitin-proteasome system. Conversely, knockdown of DNAJB12 expression attenuated the degradation of CFTR. Thus, DNAJB12 is a novel mammalian ER-localized J-protein that plays a vital role in the quality control of membrane proteins.

  20. The Novel CFTR Mutation A457P in a Male with a Delayed Diagnosis of Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Kate H. Cole

    2011-01-01

    Full Text Available Cystic fibrosis (CF is an autosomal recessive disease that may be caused by more than 1000 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. We describe the case of a CF patient who was initially diagnosed at 16 years of age after presenting with mild respiratory compromise and pancreatic sufficiency. When genetic testing was first performed using a CF mutation panel, only a single F508del CFTR allele was identified. We subsequently performed testing, which revealed a previously unreported mutation: A457P (p.Ala457Pro, c.1369G>C. The patient's clinical course through adulthood is described, and genotype-phenotype correlation is discussed. The A457P mutation appears to confer a relatively mild phenotype, as is usually observed with CFTR class IV–VI defects. With the advent of more comprehensive and widely available genetic testing techniques, identification of CF genotypes in patients with milder disease variants may help stratify patients for targeted therapy and prevent late complications of the disease.

  1. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.

  2. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner.

    Science.gov (United States)

    Alshafie, Walaa; Chappe, Frederic G; Li, Mansong; Anini, Younes; Chappe, Valerie M

    2014-07-01

    Vasoactive intestinal peptide (VIP) is a topical airway gland secretagogue regulating fluid secretions, primarily by stimulating cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride secretion that contributes to the airways innate defense mechanism. We previously reported that prolonged VIP stimulation of pituitary adenylate cyclase-activating peptide receptors (VPAC1) in airway cells enhances CFTR function by increasing its membrane stability. In the present study, we identified the key effectors in the VIP signaling cascade in the human bronchial serous cell line Calu-3. Using immunocytochemistry and in situ proximity ligation assays, we found that VIP stimulation increased CFTR membrane localization by promoting its colocalization and interaction with the scaffolding protein Na(+)/H(+) exchange factor 1 (NHERF1), a PDZ protein known as a positive regulator for CFTR membrane localization. VIP stimulation also increased phosphorylation, by protein kinase Cε of the actin-binding protein complex ezrin/radixin/moesin (ERM) and its interaction with NHERF1 and CFTR complex. On the other hand, it reduced intracellular CFTR colocalization and interaction with CFTR associated ligand, another PDZ protein known to compete with NHERF1 for CFTR interaction, inducing cytoplasmic retention and lysosomal degradation. Reducing NHERF1 or ERM expression levels by specific siRNAs prevented the VIP effect on CFTR membrane stability. Furthermore, iodide efflux assays confirmed that NHERF1 and P-ERM are necessary for VIP regulation of the stability and sustained activity of membrane CFTR. This study shows the cellular mechanism by which prolonged VIP stimulation of airway epithelial cells regulates CFTR-dependent secretions.

  3. Halocarbon ozone depletion and global warming potentials

    Science.gov (United States)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  4. 乙醇对于豚鼠胰腺导管上皮细胞腔面膜侧 CFTR 介导的 HCO3-分泌的影响%Effect of ethanol on HCO 3- secretion mediated by CFTR from guinea - pig pancreatic duct cells. SONG Ying1,DING Xiang - fu2,WANG

    Institute of Scientific and Technical Information of China (English)

    宋莹; 丁相福; 王晓东; 段瑞峰; 石黑洋; 刘佰纯

    2016-01-01

    Objective To investigate the effect of ethanol on HCO3 - secretion induced by CFTR from guinea - pig pancreatic duct cells and to analyse the mechanisms of alcoholic pancreatitis. Methods Interlobular duct segments( diameter,100 ~ 150 μm)were microdissected under a dissection microscope using sharp needles. The lumen of the interlobular duct segment was microperfused. The bath and luminal solutions were modified separately. Intracellular pH(pHi)in the duct cells was estimated by microfluorometry using the pH - sensitive fluoroprobe BCECF. Transepithelial fluxes of HCO3 - were estimated under the anion gradients favoring rapid exchange of intracellular HCO3 - . Results ①When in vitro pancreatic duct pipe cavity,when filled with high concentration of sodium bicarbonate buffer micro pHi from epithelial cells after alkaline pH unit recovery rate was was 0. 048 ± 0. 009 pH unit·min - 1(n = 9),add 1 mm when ethanol pHi decline accelerated significantly(0. 066 ± 0. 005 pH unit·min - 1 ,n = 7,t = 0. 0009,P < 0. 05). ②Luminal application of CFTRinh - 172(10 μM)significantly( P < 0. 05)inhibited apical HCO3 - secretion(0. 039 ± 0. 010 pH unit·min - 1 ,n = 7,t = 0. 001). ③When the duct was stimulated with ethanol,luminal application of CFTRinh - 172 decrease the rate of pHi(0. 054 ± 0. 008 pH unit·min - 1 ,n = 7,t = 0. 0015,P < 0. 05). Conclusion Ethanol stimulated api-cal HCO3 - secretion of guinea - pig pancreatic ducts. The augmentation by ethanol appears to be mediated by CFTR.%目的:通过研究乙醇对于豚鼠胰腺导管上皮细胞腔面膜侧囊性纤维化转膜传导因子( CFTR)介导的碳酸氢根离子(HCO3-)分泌的影响,探讨酒精性胰腺炎的发病机制。方法运用显微解剖技术分离豚鼠胰腺导管(直径100~150μm),使用微灌流技术置换管腔内液体。采用荧光显微测定技术检测细胞内 pH 值变化,并计算出腔面膜侧HCO3-分泌率,进而探讨乙醇在 CFTR 介导的 HCO3-

  5. The Influence of Chronic Ego Depletion on Goal Adherence: An Experience Sampling Study.

    Directory of Open Access Journals (Sweden)

    Ligang Wang

    Full Text Available Although ego depletion effects have been widely observed in experiments in which participants perform consecutive self-control tasks, the process of ego depletion remains poorly understood. Using the strength model of self-control, we hypothesized that chronic ego depletion adversely affects goal adherence and that mental effort and motivation are involved in the process of ego depletion. In this study, 203 students reported their daily performance, mental effort, and motivation with respect to goal directed behavior across a 3-week time period. People with high levels of chronic ego depletion were less successful in goal adherence than those with less chronic ego depletion. Although daily effort devoted to goal adherence increased with chronic ego depletion, motivation to adhere to goals was not affected. Participants with high levels of chronic ego depletion showed a stronger positive association between mental effort and performance, but chronic ego depletion did not play a regulatory role in the effect of motivation on performance. Chronic ego depletion increased the likelihood of behavior regulation failure, suggesting that it is difficult for people in an ego-depletion state to adhere to goals. We integrate our results with the findings of previous studies and discuss possible theoretical implications.

  6. Repulsive depletion interactions in colloid polymer mixtures

    OpenAIRE

    Rudhardt, Daniel; Bechinger, Clemens; Leiderer, Paul

    1999-01-01

    Depletion forces in colloidal systems are known to be entirely attractive, as long as the background of macromolecules is small enough that an ideal gas approach is valid. At higher densities, however, structural correlation effects of the macromolecules which lead to additional repulsive parts in the depletion interaction, have to be taken into account. We have measured the depletion interaction between a single polystyrene sphere and a wall in the presence of non-ionic polymer coils. Althou...

  7. Mutations in CFTR gene and clinical correlation in Argentine patients with congenital bilateral absence of the vas deferens Correlación de las características clínicas con mutaciones del gen CFTR en pacientes argentinos con ausencia bilateral congénita de vasos deferentes

    OpenAIRE

    Levy, Estrella M; Patricia Granados; Vanesa Rawe; Santiago Brugo Olmedo; María C Luna; Eduardo Cafferata; Omar H Pivetta

    2004-01-01

    Congenital bilateral absence of the vas deferens (CBAVD) is a form of male infertility in which mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified. Here we identify different mutations of CFTR and the poly-T variant of intron 8 (IVS8) in Argentine patients and analyze sweat test values and clinical characteristic related to Cystic Fibrosis (CF). For counseling purposes the two most frequent mutations in Argentine CF population: DF508 and G542...

  8. Funciones de los canales iónicos CFTR y ENAC en la fibrosis quística

    Directory of Open Access Journals (Sweden)

    Alejandra G. Palma

    2014-04-01

    Full Text Available La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR, un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regular el canal epitelial de sodio sensible al amiloride (ENaC. Se han identificado más de 1900 mutaciones en el gen cftr. La enfermedad se caracteriza por secreciones viscosas en las glándulas exocrinas y por niveles elevados de cloruro de sodio en el sudor. En la fibrosis quística el CFTR no funciona y el ENaC está desregulado; el resultado es un aumento en la reabsorción de sodio y agua con la formación de un líquido viscoso. En las glándulas sudoríparas tanto el Na+ como el Cl- se retienen en el lumen causando una pérdida de electrolitos durante la sudoración y el NaCl se elimina al sudor. Así, los niveles elevados de NaCl son la base del test del sudor inducido por pilocarpina, un método de diagnóstico para la enfermedad. En esta revisión se discuten los movimientos de Cl- y Na+ en las glándulas sudoríparas y pulmón así como el papel del ENaC en la patogénesis de la enfermedad.

  9. 50 CFR 216.15 - Depleted species.

    Science.gov (United States)

    2010-10-01

    ... Assistant Administrator as depleted under the provisions of the MMPA. (a) Hawaiian monk seal (Monachus schauinslandi). (b) Bowhead whale (Balaena mysticetus). (c) North Pacific fur seal (Callorhinus...

  10. Application Progress in CFTR Inhibitors in the Treatment of Secretory Diarrhea%囊性纤维化跨膜传导调节因子抑制药在分泌性腹泻中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    徐倩倩; 王玉波; 王艳萍; 郭时金; 张志美; 沈志强

    2015-01-01

    Secretory diarrhea provides a major health challenge worldwide, which is one of the most important reasons for children morbidity and death. The activation of Cl- channels in intestinal epithelial cells resulting in the excessive fluid secretion in the intestine is the main reason of diarrhea caused by enterotoxins. In diarrhea caused by cholera and the other bacterial enterotoxins, cystic fibrosis transmembrane conductance regulator ( CFTR) is the main cAMP-control Cl- channel to promote the fluid secretion in epithelial cells. Therefore, CFTR inhibitors are the new choices for secretory diarrhea. CFTR inhibitors include thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes, and some components from natural plants also exhibit CFTR inhibition activity, however, further studies should be done.%分泌性腹泻威胁着全球健康,是儿童发病和死亡的主要原因之一。肠上皮细胞腔内Cl-通道激活导致肠道液体过度分泌是肠毒素引起腹泻的主要原因。在霍乱及其他细菌肠毒素引发的腹泻中,囊性纤维化跨膜传导调节因子( cystic fibrosis transmembrane conductance regulator, CFTR)是主要的cAMP-调节Cl-通道,其主要功能是促进上皮细胞液体分泌。利用肠上皮细胞CFTR抑制药抗分泌性腹泻是一种新途径。已有的CFTR抑制药有噻唑啉酮类、甘氨酸酰肼类和喹喔啉二酮等。同时,从天然植物中提取分离的一些成分也具有CFTR抑制作用,但研究还不够深入。因此,对CFTR抑制药的研究进展进行了综述。

  11. Global Depletion of Groundwater Resources: Past and Future Analyses

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  12. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  13. Resource depletion does not influence prospective memory in college students

    Science.gov (United States)

    Talley Shelton, Jill; Cahill, Michael J.; Mullet, Hillary G.; Scullin, Michael K.; Einstein, Gilles O.; McDaniel, Mark A.

    2013-01-01

    This paper reports an experiment designed to investigate the potential influence of prior acts of self-control on subsequent prospective memory performance. College undergraduates (n = 146) performed either a cognitively depleting initial task (e.g., mostly incongruent Stroop task) or a less resource-consuming version of that task (e.g., all congruent Stroop task). Subsequently, participants completed a prospective memory task that required attentionally demanding monitoring processes. The results demonstrated that prior acts of self-control do not impair the ability to execute a future intention in college-aged adults. We conceptually replicated these results in three additional depletion and prospective memory experiments. This research extends a growing number of studies demonstrating the boundary conditions of the resource depletion effect in cognitive tasks. PMID:24021851

  14. Vacancy Formation Enthalpy in Polycrystalline Depleted Uranium

    Science.gov (United States)

    Lund, K. R.; Lynn, K. G.; Weber, M. H.; Okuniewski, M. A.

    2013-06-01

    Positron Annihilation Spectroscopy was performed as a function of temperature and beam energy on polycrystalline depleted uranium (DU) foil. Samples were run with varying heat profiles all starting at room temperature. While collecting Doppler-Broadening data, the temperature of the sample was cycled several times. The first heat cycle shows an increasing S-parameter near temperatures of 400K to 500K much lower than the first phase transition of 941K indicating increasing vacancies possibly due to oxygen diffusion from the bulk to the surface. Vacancy formation enthalpies were calculated fitting a model to the data to be 1.6± 0.16 eV. Results are compared to previous work [3,4].

  15. Depleted Uranium Penetrators : Hazards and Safety

    Directory of Open Access Journals (Sweden)

    S. S. Rao

    1997-01-01

    Full Text Available The depleted uranium (DU alloy is a state-of-the-art material for kinetic energy penetrators due to its superior ballistic performance. Several countries use DU penetrators in their main battle tanks. There is no gamma radiation hazard to the crew members from stowage of DO rounds. Open air firing can result in environmental contamination and associated hazards due to airborne particles containing essentially U/sub 3/0/sub 8/ and UO/sub 2/. Inhalation of polluted air only through respirators or nose masks and refraining form ingestion of water or food materials from contaminated environment are safety measures for avoiding exposure to uranium and its toxicity. Infusion of sodium bicarbonate helps in urinary excretion of uranium that may have entered the body.

  16. Oil depletion and terms of trade

    OpenAIRE

    Irimia-Vladu, Marina; Thompson, Henry

    2007-01-01

    A model of the international oil market model with optimal depletion and offer curves suggests importers face a backward bending offer curve. An oil tariff would then raise oil imports and lower the price of oil including the tariff. Simulations of price and extraction paths for the coming century provide insight into the future of oil depletion and terms of trade.

  17. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; Fennis, Bob M.; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose we

  18. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; Fennis, Bob M.; Vet, De Emely; Ridder, De Denise T.D.

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  19. Antarctic winter mercury and ozone depletion events over sea ice

    Science.gov (United States)

    Nerentorp Mastromonaco, M.; Gårdfeldt, K.; Jourdain, B.; Abrahamsson, K.; Granfors, A.; Ahnoff, M.; Dommergue, A.; Méjean, G.; Jacobi, H.-W.

    2016-03-01

    During atmospheric mercury and ozone depletion events in the springtime in polar regions gaseous elemental mercury and ozone undergo rapid declines. Mercury is quickly transformed into oxidation products, which are subsequently removed by deposition. Here we show that such events also occur during Antarctic winter over sea ice areas, leading to additional deposition of mercury. Over four months in the Weddell Sea we measured gaseous elemental, oxidized, and particulate-bound mercury, as well as ozone in the troposphere and total and elemental mercury concentrations in snow, demonstrating a series of depletion and deposition events between July and September. The winter depletions in July were characterized by stronger correlations between mercury and ozone and larger formation of particulate-bound mercury in air compared to later spring events. It appears that light at large solar zenith angles is sufficient to initiate the photolytic formation of halogen radicals. We also propose a dark mechanism that could explain observed events in air masses coming from dark regions. Br2 that could be the main actor in dark conditions was possibly formed in high concentrations in the marine boundary layer in the dark. These high concentrations may also have caused the formation of high concentrations of CHBr3 and CH2I2 in the top layers of the Antarctic sea ice observed during winter. These new findings show that the extent of depletion events is larger than previously believed and that winter depletions result in additional deposition of mercury that could be transferred to marine and terrestrial ecosystems.

  20. Specification for the VERA Depletion Benchmark Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  1. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to drug-induced diarrhea.

    Science.gov (United States)

    Moon, Changsuk; Zhang, Weiqiang; Ren, Aixia; Arora, Kavisha; Sinha, Chandrima; Yarlagadda, Sunitha; Woodrooffe, Koryse; Schuetz, John D; Valasani, Koteswara Rao; de Jonge, Hugo R; Shanmukhappa, Shiva Kumar; Shata, Mohamed Tarek M; Buddington, Randal K; Parthasarathi, Kaushik; Naren, Anjaparavanda P

    2015-05-01

    Diarrhea is one of the most common adverse side effects observed in ∼7% of individuals consuming Food and Drug Administration (FDA)-approved drugs. The mechanism of how these drugs alter fluid secretion in the gut and induce diarrhea is not clearly understood. Several drugs are either substrates or inhibitors of multidrug resistance protein 4 (MRP4), such as the anti-colon cancer drug irinotecan and an anti-retroviral used to treat HIV infection, 3'-azido-3'-deoxythymidine (AZT). These drugs activate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluid secretion by inhibiting MRP4-mediated cAMP efflux. Binding of drugs to MRP4 augments the formation of MRP4-CFTR-containing macromolecular complexes that is mediated via scaffolding protein PDZK1. Importantly, HIV patients on AZT treatment demonstrate augmented MRP4-CFTR complex formation in the colon, which defines a novel paradigm of drug-induced diarrhea.

  2. Monte carlo depletion analysis of SMART core by MCNAP code

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong Sung; Sim, Hyung Jin; Kim, Chang Hyo [Seoul National Univ., Seoul (Korea, Republic of); Lee, Jung Chan; Ji, Sung Kyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2001-05-01

    Depletion an analysis of SMART, a small-sized advanced integral PWR under development by KAERI, is conducted using the Monte Carlo (MC) depletion analysis program, MCNAP. The results are compared with those of the CASMO-3/ MASTER nuclear analysis. The difference between MASTER and MCNAP on k{sub eff} prediction is observed about 600pcm at BOC, and becomes smaller as the core burnup increases. The maximum difference bet ween two predict ions on fuel assembly (FA) normalized power distribution is about 6.6% radially , and 14.5% axially but the differences are observed to lie within standard deviation of MC estimations.

  3. Characterization of a Depleted Monolithic Active Pixel Sensor (DMAPS) prototype

    Science.gov (United States)

    Obermann, T.; Havranek, M.; Hemperek, T.; Hügging, F.; Kishishita, T.; Krüger, H.; Marinas, C.; Wermes, N.

    2015-03-01

    New monolithic pixel detectors integrating CMOS electronics and sensor on the same silicon substrate are currently explored for particle tracking in future HEP experiments, most notably at the LHC . The innovative concept of Depleted Monolithic Active Pixel Sensors (DMAPS) is based on high resistive silicon bulk material enabling full substrate depletion and the application of an electrical drift field for fast charge collection, while retaining full CMOS capability for the electronics. The technology (150 nm) used offers quadruple wells and allows to implement the pixel electronics with independently isolated N- and PMOS transistors. Results of initial studies on the charge collection and sensor performance are presented.

  4. Simulating distinguish enriched uranium from depleted uranium by activation method

    International Nuclear Information System (INIS)

    Detecting uranium material is an important work in arms control Active detection is an efficient method for uranium material. The paper focuses on the feasibility that can distinguish the enriched uranium and the depleted uranium by MCNP program. It can distinguish the enriched uranium and the depleted uranium by the curve of relationship between fission rate of uranium material and thickness of moderator.Advantages of 252Cf and 14 MeV neutron sources are discussed in detecting uranium material through calculation. The results show that 252Cf neutron source is better than 14 MeV one. Delayed neutrons are more easily detected than delayed gamma ray at measurement aspect. (authors)

  5. Long-term management and use of depleted uranium

    International Nuclear Information System (INIS)

    The products resulting from the process of enrichment of natural uranium, or reprocessed uranium, are enriched uranium products as the light fraction and depleted uranium (uranium tails) as the heavy fraction. If the source material is natural uranium, the mass ratios of uranium products and uranium tails can be derived relatively easily from the required enrichment level of the uranium product (product assay (% of U-235)) and the selected depletion level of the uranium tails (tails assay (% of U-235)). The paper discusses among other aspects the dependence of the tails mass on the required enrichment level of the relevant uranium product, for various tails assays. (orig./CB)

  6. Characterization of a Depleted Monolithic Active Pixel Sensor (DMAPS) prototype

    International Nuclear Information System (INIS)

    New monolithic pixel detectors integrating CMOS electronics and sensor on the same silicon substrate are currently explored for particle tracking in future HEP experiments, most notably at the LHC . The innovative concept of Depleted Monolithic Active Pixel Sensors (DMAPS) is based on high resistive silicon bulk material enabling full substrate depletion and the application of an electrical drift field for fast charge collection, while retaining full CMOS capability for the electronics. The technology (150 nm) used offers quadruple wells and allows to implement the pixel electronics with independently isolated N- and PMOS transistors. Results of initial studies on the charge collection and sensor performance are presented

  7. Depletion of abiotic resources in the steel production in Poland

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-07-01

    Full Text Available Steelmaking processes consume a lot of energy and materials, therefore researchers are constantly looking for new ways of reducing the consumption of resources in the production processes. The main purpose of the article is to present abiotic resource depletion the in steel production in the case of integrated steelmaking route in Poland and its role in life cycle assessment. There are different methods of life cycle assessment for abiotic resources, the use of which affects the quality of the obtained information. The article presents some results of life cycle assessment of abiotic depletion.

  8. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska

    OpenAIRE

    Thompson, C. R.; P. B. Shepson; Liao, J.; Huey, L.G.; E. C. Apel; Cantrell, C. A.; Flocke, F.; Orlando, J.; Fried, A.; Hall, S. R; R. S. Hornbrook; D. J. Knapp; Mauldin III, R. L; Montzka, D. D.; B. C. Sive

    2014-01-01

    The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there ha...

  9. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska

    OpenAIRE

    Thompson, C. R.; P. B. Shepson; Liao, J.; Huey, L.G.; E. C. Apel; Cantrell, C. A.; Flocke, F.; Orlando, J.; Fried, A.; Hall, S. R; R. S. Hornbrook; D. J. Knapp; Mauldin III, R. L; Montzka, D. D.; B. C. Sive

    2015-01-01

    The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indicatio...

  10. Methionine depletion modulates the antitumor and antimetastatic efficacy of ethionine.

    Science.gov (United States)

    Guo, H; Tan, Y; Kubota, T; Moossa, A R; Hoffman, R M

    1996-01-01

    The elevated methionine requirement for the growth of tumors, termed methionine dependence, is a potentially highly effective therapeutic target. To attack this target we are developing anti-methionine chemotherapy. In this study of anti-methionine chemotherapy we have observed that the methionine analog ethionine is synergistic with methionine depletion in arresting the growth of the Yoshida sarcoma both in vitro and when transplanted to nude mice. In contrast, ethionine in vitro in a methionine-containing medium is not effective against Yoshida sarcoma cells. Similarly, ethionine administered along with a methionine-containing diet is ineffective against the Yoshida sarcoma growing in nude mice. A methionine-depleted diet alone is only partially effective against tumor growth. The Yoshida sarcoma gave rise to metastases in 75% of the- organs observed in the mice on the methionine-containing diet, and 43 % of the organs in the mice on the methionine-free diet. In striking contrast, no metastases were observed in the ethionine-treated animals on the methionine-free diet. Anti-methionine chemotherapy consisting of dietary methionine depletion and ethionine administration caused an initial weight loss but the animals weight stabilized resulting in no animal deaths. The synergism of ethionine and methionine depletion is markedly similar in vitro and in vivo suggesting the observed efficacy is due to the specific anti-methionine targeting. Thus methionine depletion highly potentiates the anti-tumor and anti-metastatic effectiveness of ethionine suggesting that anti-methionine chemotherapy consisting of methionine depletion as a modulator of methionine analogs holds great promise as a new, tumor-selective therapeutic approach.

  11. Combination of Correctors Rescue ΔF508-CFTR by Reducing Its Association with Hsp40 and Hsp27.

    Science.gov (United States)

    Lopes-Pacheco, Miquéias; Boinot, Clément; Sabirzhanova, Inna; Morales, Marcelo M; Guggino, William B; Cebotaru, Liudmila

    2015-10-16

    Correcting the processing of ΔF508-CFTR, the most common mutation in cystic fibrosis, is the major goal in the development of new therapies for this disease. Here, we determined whether ΔF508 could be rescued by a combination of small-molecule correctors, and identified the mechanism by which correctors rescue the trafficking mutant of cystic fibrosis transmembrane conductance regulator (CFTR). We transfected COS-7 cells with ΔF508, created HEK-293 stably expressing ΔF508, and utilized CFBE41o(-) cell lines stably transduced with ΔF508. As shown previously, ΔF508 expressed less protein, was unstable at physiological temperature, and rapidly degraded. When the cells were treated with the combination C18 + C4 the mature C-band was expressed at the cell surface. After treatment with C18 + C4, we saw a lower rate of protein disappearance after translation was stopped with cycloheximide. To understand how this rescue occurs, we evaluated the change in the binding of proteins involved in endoplasmic reticulum-associated degradation, such as Hsp27 (HspB1) and Hsp40 (DnaJ). We saw a dramatic reduction in binding to heat shock proteins 27 and 40 following combined corrector therapy. siRNA experiments confirmed that a reduction in Hsp27 or Hsp40 rescued CFTR in the ΔF508 mutant, but the rescue was not additive or synergistic with C4 + 18 treatment, indicating these correctors shared a common pathway for rescue involving a network of endoplasmic reticulum-associated degradation proteins.

  12. A Monte Carlo Study of Influences on Depletion Force from Another Large Sphere in Colloidal Suspensions

    Institute of Scientific and Technical Information of China (English)

    XIAO Chang-Ming; GUO Ji-Yuan; HU Ping

    2006-01-01

    @@ According to the acceptance ratio method, the influences on the depletion interactions between a large sphere and a plate from another closely placed large sphere are studied by Monte Carlo simulation. The numerical results show that both the depletion potential and depletion force are affected by the presence of the closely placed large sphere; the closer the large sphere are placed to them, the larger the influence will be. Furthermore, the influences on the depletion interactions from another large sphere are more sensitive to the angle than to the distance.

  13. DIRECT MEASUREMENT OF WEAK DEPLETION FORCE BETWEEN TWO SURFACES*

    Institute of Scientific and Technical Information of China (English)

    Xiang-jun Gong; Xiao-chen Xing; Xiao-ling Wei; To Ngai

    2011-01-01

    In a mixture of colloidal particles and polymer molecules, the particles may experience an attractive “depletion force” if the size of the polymer molecule is larger than the interparticle separation. This is because individual polymer molecules experience less conformational entropy if they stay between the particles than they escape the inter-particle space,which results in an osmotic pressure imbalance inside and outside the gap and leads to interparticle attraction. This depletion force has been the subject of several studies since the 1980s, but the direct measurement of this force is still experimentally challenging as it requires the detection of energy variations of the order of kBT and beyond. We present here our results for applying total internal reflection microscopy (TIRM) to directly measure the interaction between a free-moving particle and a flat surface in solutions consisting of small water-soluble organic molecules or polymeric surfactants. Our results indicate that stable nanobubbles (ca. 150 nm) exist free in the above aqueous solutions. More importantly, the existence of such nanobubbles induces an attraction between the spherical particle and flat surface. Using TIRM, we are able to directly measure such weak interaction with a range up to 100 nm. Furthermore, we demonstrate that by employing thermo-sensitive microgel particles as a depleting agent, we are able to quantitatively measure and reversibly control kBT-scale depletion attraction as function of solution pH.

  14. In Vivo Depletion of T Lymphocytes.

    Science.gov (United States)

    Laky, Karen; Kruisbeek, Ada M

    2016-01-01

    In vivo depletion of T lymphocytes is a means of studying the role of specific T cell populations during defined phases of in vivo immune responses. In this unit, a protocol is provided for injecting monoclonal antibodies (mAbs) into wild-type adult mice. Depletion of the appropriate subset of cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on a variety of in vivo immune responses. The depleted condition may be maintained by repeated injections of the monoclonal antibody, or reversed by normal thymopoiesis following discontinuation of antibody administration. PMID:27038463

  15. Polar stratospheric clouds and ozone depletion

    Science.gov (United States)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  16. Depleted UF6 programmatic environmental impact statement

    International Nuclear Information System (INIS)

    The US Department of Energy has developed a program for long-term management and use of depleted uranium hexafluoride, a product of the uranium enrichment process. As part of this effort, DOE is preparing a Programmatic Environmental Impact Statement (PEIS) for the depleted UF6 management program. This report duplicates the information available at the web site (http://www.ead.anl.gov/web/newduf6) set up as a repository for the PEIS. Options for the web site include: reviewing recent additions or changes to the web site; learning more about depleted UF6 and the PEIS; browsing the PEIS and related documents, or submitting official comments on the PEIS; downloading all or part of the PEIS documents; and adding or deleting one's name from the depleted UF6 mailing list

  17. Fully Depleted Charge-Coupled Devices

    International Nuclear Information System (INIS)

    We have developed fully depleted, back-illuminated CCDs that build upon earlier research and development efforts directed towards technology development of silicon-strip detectors used in high-energy-physics experiments. The CCDs are fabricated on the same type of high-resistivity, float-zone-refined silicon that is used for strip detectors. The use of high-resistivity substrates allows for thick depletion regions, on the order of 200-300 um, with corresponding high detection efficiency for near-infrared and soft x-ray photons. We compare the fully depleted CCD to the p-i-n diode upon which it is based, and describe the use of fully depleted CCDs in astronomical and x-ray imaging applications

  18. Development of ARMS PCR tests for detection of common CFTR gene mutations

    Directory of Open Access Journals (Sweden)

    Livshits L. A.

    2010-09-01

    Full Text Available Aim. To develop diagnostic assays, based on the amplification refractory mutation system (ARMS principle, for detection of common mutations in the CFTR gene using two approaches: standard PCR with further gel-electrophoresis and Real-Time PCR with SYBR Green. Materials. For this study we have chosen the following mutations: dF508, W1282X, R117H, 621 + 1G > T, 2143delT with the frequencies in Ukraine: dF508 – 43.3 %; 2143delT – 1.38 %; W1282X – 1.1 %; R117H, 621 + 1G > T – T, 2143delT mutations. To validate the developed assays we have analyzed control DNA samples with the following mutations: W1282X (n = 3, R117H (n = 2, 621 + 1G > T (n = 1, 2143delT (n = = 1. For validation of the dF508 assay we have analyzed 100 heterozygous carriers and 50 homozygous carriers. We have analyzed 48 patients with cystic fibrosis, in which only one mutation was previously detected in combination with unknown mutant variant, using the developed ARMS assay for the 2143delT mutation, and detected 4 heterozygous carriers. No differences were observed in comparison with the standard protocols. Conclusions. It was shown that ARMS is a reliable, rapid and inexpensive method, and the developed assays can be applied in the standard PCR protocol with further gel-electrophoresis as well as using Real-Time PCR with SYBR Green for the molecular genetic diagnostics of cystic fibrosis.

  19. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Initial PVO Evidence of Electron Depletion Signatures Downstream of Venus

    Science.gov (United States)

    Intriligator, D. S.; Hartle, R. E.; Perez-de-Tejada, H.; Siscoe, G. L.

    1993-01-01

    This first analysis of Pioneer Venus Orbiter (PVO) plasma analyzer electron measurements obtained in early 1992 during the PVO entry phase of the mission indicates the presence downstream from the terminator of a depletion or "bite out" of energetic ionosheath electrons similar to that observed on Mariner 10. There is more than one possible explanation for this energetic electron depletion. If it is due to atmospheric scattering, the electrons traveling along draped magnetic flux tubes that thread through the Venus neutral atmosphere would lose energy from impact ionization with oxygen. The cross-section for such electron impact ionization of oxygen has a peak near 100 eV, and it remains high above this energy, so atmospheric loss could provide a natural process for electrons at these energies to be selectively removed. In this case, our results are consistent with the Kar et al. (1994) study of PVO atmospheric entry ion mass spectrometer data which indicates that electron impact plays a significant role in maintaining the nightside ionosphere. Although it is appealing to interpret the energetic electron depletion in terms of direct atmospheric scattering, alternatively it could result from strong draping which connects the depletion region magnetically to the weak downstream bow shock and thereby reduces the electron source strength.

  1. C18O Depletion in Starless Cores in Taurus

    CERN Document Server

    Ford, Amanda Brady

    2011-01-01

    We present here findings for C18O depletion in eight starless cores in Taurus: TMC-2, L1498, L1512, L1489, L1517B, L1521E, L1495A-S, and L1544. We compare observations of the C18O J=2-1 transition taken with the ALMA prototype receiver on the Heinrich Hertz Submillimeter Telescope to results of radiative transfer modeling using RATRAN. We use temperature and density profiles calculated from dust continuum radiative transfer models to model the C18O emission. We present modeling of three cores, TMC-2, L1489, and L1495A-S, which have not been modeled before and compare our results for the five cores with published models. We find that all of the cores but one, L1521E, are substantially depleted. We also find that varying the temperature profiles of these model cores has a discernable effect, and varying the central density has an even larger effect. We find no trends with depletion radius or depletion fraction with the density or temperature of these cores, suggesting that the physical structure alone is insuff...

  2. Radiative characteristics of depleted uranium bomb and it is protection

    International Nuclear Information System (INIS)

    Based on the developing process of depleted uranium bombs described in the first part, the radiative characteristics and mechanism of depleted uranium bombs are analyzed emphatically. The deeper discussion on protection of depleted uranium bombs is proceeded

  3. Levels of depleted uranium in Kosovo soils

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, U.; Stellato, L.; Jia, G.; Rosamilia, S.; Gaudino, S.; Barbizzi, S.; Belli, M

    2001-07-01

    The United Nations Environment Programme has performed a field survey at 11 sites located in Kosovo, where depleted uranium (DU) ammunitions were used by the North Atlantic Treaty Organization (NATO) during the last Balkans conflict (1999). Soil sampling was performed to assess the spread of DU ground contamination around and within the NATO target sites and the migration of DU along the soil profile. The {sup 234}U/{sup 238}U and {sup 235}U/{sup 238}U activity concentration ratios have been used as an indicator of natural against anthropogenic sources of uranium. The results show that levels of {sup 238}U activity concentrations in soils above 100 Bq.kg{sup -1} can be considered a 'tracer' of the presence of DU in soils. The results also indicate that detectable ground surface contamination by DU is limited to areas within a few metres from localised points of concentrated contamination caused by penetrator impacts. Vertical distribution of DU along the soil profile is measurable up to a depth of 10-20 cm. This latter aspect is of particular relevance for the potential risk of future contamination of groundwater. (author)

  4. Levels of depleted uranium in Kosovo soils

    International Nuclear Information System (INIS)

    The United Nations Environment Programme has performed a field survey at 11 sites located in Kosovo, where depleted uranium (DU) ammunitions were used by the North Atlantic Treaty Organization (NATO) during the last Balkans conflict (1999). Soil sampling was performed to assess the spread of DU ground contamination around and within the NATO target sites and the migration of DU along the soil profile. The 234U/238U and 235U/238U activity concentration ratios have been used as an indicator of natural against anthropogenic sources of uranium. The results show that levels of 238U activity concentrations in soils above 100 Bq.kg-1 can be considered a 'tracer' of the presence of DU in soils. The results also indicate that detectable ground surface contamination by DU is limited to areas within a few metres from localised points of concentrated contamination caused by penetrator impacts. Vertical distribution of DU along the soil profile is measurable up to a depth of 10-20 cm. This latter aspect is of particular relevance for the potential risk of future contamination of groundwater. (author)

  5. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion

    DEFF Research Database (Denmark)

    Miller, Chaya; Wang, Liya; Ostergaard, Elsebet;

    2011-01-01

    SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome is a result of mutations in the β subunit of the ADP-dependent isoform of the Krebs cycle succinyl-CoA synthase (SCS). The mechanism of tissue specificity and mtDNA depletion is elusive but complementation by the GDP-dependent isoform...

  6. Engineering analysis for disposal of depleted uranium tetrafluoride (UF4)

    International Nuclear Information System (INIS)

    This report presents and evaluates options for disposing of depleted uranium in the chemical form of uranium tetrafluoride (UF4). Two depleted uranium inventories are considered. One results from the original U.S. Department of Energy (DOE) inventory of 560,000 metric tons (te) of depleted uranium hexafluoride (UF6); the other inventory is the original DOE inventory augmented by 145,000 te of depleted UF6 from the United States Enrichment Corporation. Preconceptual designs are included for three disposal options: disposal in a vault, disposal in an engineered trench, and disposal in a deep mine cavity. The disposal container is taken to be either a 30-gallon drum or a 55-gallon drum. Descriptions of the facilities associated with the three disposal options are provided. Staffing estimates for the construction and operation of the facilities are also provided. Wastes and emissions from the facilities during construction, operation, and maintenance have been estimated. Parametric studies have also been performed on the basis of 25% and 50% of the original inventory

  7. A method to estimate groundwater depletion from confining layers

    Science.gov (United States)

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  8. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium.

    Science.gov (United States)

    McNeer, Nicole Ali; Anandalingam, Kavitha; Fields, Rachel J; Caputo, Christina; Kopic, Sascha; Gupta, Anisha; Quijano, Elias; Polikoff, Lee; Kong, Yong; Bahal, Raman; Geibel, John P; Glazer, Peter M; Saltzman, W Mark; Egan, Marie E

    2015-01-01

    Cystic fibrosis (CF) is a lethal genetic disorder most commonly caused by the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It is not readily amenable to gene therapy because of its systemic nature and challenges including in vivo gene delivery and transient gene expression. Here we use triplex-forming peptide nucleic acids and donor DNA in biodegradable polymer nanoparticles to correct F508del. We confirm modification with sequencing and a functional chloride efflux assay. In vitro correction of chloride efflux occurs in up to 25% of human cells. Deep-sequencing reveals negligible off-target effects in partially homologous sites. Intranasal delivery of nanoparticles in CF mice produces changes in the nasal epithelium potential difference assay, consistent with corrected CFTR function. Also, gene correction is detected in the nasal and lung tissue. This work represents facile genome engineering in vivo with oligonucleotides using a nanoparticle system to achieve clinically relevant levels of gene editing without off-target effects. PMID:25914116

  9. The CFTR polymorphisms poly-T, TG-repeats and M470V in Chinese males with congenital bilateral absence of the vas deferens

    Institute of Scientific and Technical Information of China (English)

    Wu-Hua Ni; Lei Jiang; Qian-Jin Fei; Jian-Yuan Jin; Xu Yang; Xue-Feng Huang

    2012-01-01

    Congenital bilateral absence of the vas deferens (CBAVD) is a frequent cause of obstructive azoospermia,and mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene have also been frequently identified in patients with CBAVD.However,the distribution of the CFTR polymorphisms M470V,poly-T,TG-repeats and F508del mutation in the Chinese CBAVD population with presumed low cystic fibrosis (CF) frequency remains to be evaluated.Samples obtained from 109 Chinese infertile males with CBAVD and 104 normal controls were analyzed for the presence of CFTR (TG)m(T)n,M470V and F508del by PCR amplification followed by direct sequencing.Our study showed that the F508del mutation was not found in our patients.The 5T mutation was present with high frequency in Chinese CBAVD patients and IVS8-5T linked to either 12 or 13 TG repeats was highly prevalent among CBAVD patients (97.22% of 72 cases and 96.91% of 97 alleles with IVS8-5T).Moreover,a statistically significant relationship between TG12-5T-V470 haplotype and CBAVD was detected.This study indicated that the CFTR polymorphisms poly-T,TG-repeats and M470V might affect the process of CBAVD in the Chinese population.

  10. Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant

    Energy Technology Data Exchange (ETDEWEB)

    Atwell, Shane; Brouillette, Christie G.; Conners, Kris; Emtage, Spencer; Gheyi, Tarun; Guggino, William B.; Hendle, Jorg; Hunt, John F.; Lewis, Hal A.; Lu, Frances; Protasevich, Irina I.; Rodgers, Logan A.; Romero, Rich; Wasserman, Stephen R.; Weber, Patricia C.; Wetmore, Diana; Zhang, Feiyu F.; Zhao, Xun (Cystic); (UAB); (JHU); (Columbia); (Lilly)

    2010-04-26

    Upon removal of the regulatory insert (RI), the first nucleotide binding domain (NBD1) of human cystic fibrosis transmembrane conductance regulator (CFTR) can be heterologously expressed and purified in a form that remains stable without solubilizing mutations, stabilizing agents or the regulatory extension (RE). This protein, NBD1 387-646({Delta}405-436), crystallizes as a homodimer with a head-to-tail association equivalent to the active conformation observed for NBDs from symmetric ATP transporters. The 1.7-{angstrom} resolution X-ray structure shows how ATP occupies the signature LSGGQ half-site in CFTR NBD1. The {Delta}F508 version of this protein also crystallizes as a homodimer and differs from the wild-type structure only in the vicinity of the disease-causing F508 deletion. A slightly longer construct crystallizes as a monomer. Comparisons of the homodimer structure with this and previously published monomeric structures show that the main effect of ATP binding at the signature site is to order the residues immediately preceding the signature sequence, residues 542-547, in a conformation compatible with nucleotide binding. These residues likely interact with a transmembrane domain intracellular loop in the full-length CFTR channel. The experiments described here show that removing the RI from NBD1 converts it into a well-behaved protein amenable to biophysical studies yielding deeper insights into CFTR function.

  11. Iron depletion enhances the effect of sorafenib in hepatocarcinoma.

    Science.gov (United States)

    Urano, Shinichi; Ohara, Toshiaki; Noma, Kazuhiro; Katsube, Ryoichi; Ninomiya, Takayuki; Tomono, Yasuko; Tazawa, Hiroshi; Kagawa, Shunsuke; Shirakawa, Yasuhiro; Kimura, Fumiaki; Nouso, Kazuhiro; Matsukawa, Akihiro; Yamamoto, Kazuhide; Fujiwara, Toshiyoshi

    2016-06-01

    ABSTACT Human hepatocellular carcinoma (HCC) is known to have a poor prognosis. Sorafenib, a molecular targeted drug, is most commonly used for HCC treatment. However, its effect on HCC is limited in clinical use and therefore new strategies regarding sorafenib treatment are required. Iron overload is known to be associated with progression of chronic hepatitis and increased risk of HCC. We previously reported that iron depletion inhibited cancer cell proliferation and conversely induced angiogenesis. Indeed iron depletion therapy including iron chelator needs to be combined with anti-angiogenic drug for its anti-cancer effect. Since sorafenib has an anti-angiogenic effect by its inhibitory targeting VEGFR, we hypothesized that sorafenib could complement the anti-cancer effect of iron depletion. We retrospectively analyzed the relationship between the efficacy of sorafenib and serum iron-related markers in clinical HCC patients. In clinical cases, overall survival was prolonged in total iron binding capacity (TIBC) high- and ferritin low-patients. This result suggested that the low iron-pooled patients, who could have a potential of more angiogenic properties in/around HCC tumors, could be adequate for sorafenib treatment. We determined the effect of sorafenib (Nexavar®) and/or deferasirox (EXJADE®) on cancer cell viability, and on cell signaling of human hepatocarcinoma HepG2 and HLE cells. Both iron depletion by deferasirox and sorafenib revealed insufficient cytotoxic effect by each monotherapy, however, on the basis of increased angiogenesis by iron depletion, the addition of deferasirox enhanced anti-proliferative effect of sorafenib. Deferasirox was confirmed to increase vascular endothelial growth factor (VEGF) secretion into cellular supernatants by ELISA analysis. In in vivo study sorafenib combined with deferasirox also enhanced sorafenib-induced apoptosis. These results suggested that sorafenib combined with deferasirox could be a novel combination

  12. The health hazards of depleted uranium munitions. Part 1

    International Nuclear Information System (INIS)

    Depleted uranium is a toxic and weakly radioactive metal used for a variety of purposes. Perhaps its most controversial use is in battlefield munitions, where it can be widely dispersed in the form of fine particles and shrapnel that may enter the bodies of combatants and others through inhalation, ingestion or wounding. It is a matter of legitimate public concern whether the use of this material in this way could create unacceptable health hazards or damage to the environment. The objective of our study has been to provide the best scientific understanding of the ways in which the material may be distributed, how it may be taken up by humans, and the potential implications for health. For politicians, any hazards to health have to be balanced against the military advantages that the use of these munitions confers. We have not tried to reach a judgment on these political issues, but we believe that a better scientific understanding of the extent of the hazards will make it easier for these wider questions to be addressed in a more objective way. This report is the first of two, and addresses the likely levels of exposure to depleted uranium, the resulting radiological risks, and the lessons to be learned from epidemiological studies. Our second report will address toxicological risks and environmental issues. So far, we conclude that risks from radiation are low for most soldiers on the battlefield, and for civilians who later return to the area. However, there are uncertainties about the maximal levels of exposure to depleted uranium on the battlefield, and there may be circumstances in which a few soldiers are exposed to levels of depleted uranium that result in a significant risk to health. Further studies are needed to determine the levels of exposure to depleted uranium that might occur on the battlefield and to judge whether such higher risks are likely to occur in practice

  13. Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics

    Directory of Open Access Journals (Sweden)

    Nie Jing

    2011-05-01

    Full Text Available Abstract Background High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum. Results The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance p