WorldWideScience

Sample records for cfd drag prediction

  1. Drag prediction for blades at high angle of attack using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Michelsen, J.A.

    2004-01-01

    In the present paper it is first demonstrated that state of the art 3D CFD codes are. capable of predicting the correct dependency of the integrated drag of a flat plate placed perpendicular to the flow. This is in strong contrast to previous 2D investigations of infinite plates, where computations...... are known to severely overpredict drag. We then demonstrate that the computed drag distribution along the plate span deviate from the general expectation of 2D behavior at the central part of the plate, an important finding in connection with the theoretical estimation of drag behavior on wind turbine...... blades. The computations additionally indicate that a tip effect is present that produces increased drag near the end of the plate, which is opposite of the assumptions generally used in drag estimation for blades. Following this several wind turbine blades are analyzed, ranging from older blades...

  2. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    Science.gov (United States)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  3. Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5

    Science.gov (United States)

    Tinoco, Edward N.; Brodersen, Olaf P.; Keye, Stefan; Laflin, Kelly R.; Feltrop, Edward; Vassberg, John C.; Mani, Mori; Rider, Ben; Wahls, Richard A.; Morrison, Joseph H.; hide

    2017-01-01

    Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting

  4. Vorticity confinement technique for drag prediction

    Science.gov (United States)

    Povitsky, Alex; Snyder, Troy

    2011-11-01

    This work couples wake-integral drag prediction and vorticity confinement technique (VC) for the improved prediction of drag from CFD simulations. Induced drag computations of a thin wing are shown to be more accurate than the more widespread method of surface pressure integration when compared to theoretical lifting-line value. Furthermore, the VC method improves trailing vortex preservation and counteracts the shift from induced drag to numerical entropy drag with increasing distance of Trefftz plane downstream of the wing. Accurate induced drag prediction via the surface integration of pressure barring a sufficiently refined surface grid and increased computation time. Furthermore, the alternative wake-integral technique for drag prediction suffers from numerical dissipation. VC is shown to control the numerical dissipation with very modest computational overhead. The 2-D research code is used to test specific formulations of the VC body force terms and illustrate the computational efficiency of the method compared to a ``brute force'' reduction in spatial step size. For the 3-D wing simulation, ANSYS FLUENT is employed with the VC body force terms added to the solver with user-defined functions (UDFs). VC is successfully implemented to highly unsteady flows typical for Micro Air Vehicles (MAV) producing oscillative drag force either by natural vortex shedding at high angles of attack or by flapping wing motion.

  5. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  6. Drag Reduction CFD Simulations and Flow Visualization of Light Vehicle-Trailer Systems

    Science.gov (United States)

    Sigurdson, Lorenz; Boyer, Henry; Lange, Carlos F.

    2016-11-01

    Experiments and CFD were performed to study the effect a deflector had on the flow and drag force associated with a 2010 F-150 truck and cargo trailer Light Vehicle-Trailer System (LVTS). Image Correlation Velocimetry (ICV) on smokewire streaklines measured the velocity field on the model mid-plane. CFD estimated the drag reduction as 13% at a Re of 14,900 with a moving ground-plane, and 17% without. Experiments suggested that the low Re does not diminish the full-scale relevance of the drag reduction results. One low Re effect was the presence of a separation bubble on the hood of the tow vehicle whose size reduced with an increase in Re. Three other characteristic flow patterns were identified: separation off the lead vehicle cab, stagnation of the free-stream on the trailer face for the no-deflector case, and subsequent separation at the trailer front corner. Comparisons of the ICV and CFD results with no deflector indicated good agreement in the direction of the velocity vectors, and the smoke streaklines and CFD streamlines also agreed well. However, for the deflector case, the CFD found an entirely different topological solution absent in the experiment. A pair of vertically-oriented mid-plane vortices were wrapped around the front of the trailer. Support from the Canadian Natural Sciences and Engineering Research Council Grant 41747 is gratefully acknowledged.

  7. CFD Prediction of Airfoil Drag in Viscous Flow Using the Entropy Generation Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-01-01

    Full Text Available A new aerodynamic force of drag prediction approach was developed to compute the airfoil drag via entropy generation rate in the flow field. According to the momentum balance, entropy generation and its relationship to drag were derived for viscous flow. Model equations for the calculation of the local entropy generation in turbulent flows were presented by extending the RANS procedure to the entropy balance equation. The accuracy of algorithm and programs was assessed by simulating the pressure coefficient distribution and dragging coefficient of different airfoils under different Reynolds number at different attack angle. Numerical data shows that the total entropy generation rate in the flow field and the drag coefficient of the airfoil can be related by linear equation, which indicates that the total drag could be resolved into entropy generation based on its physical mechanism of energy loss.

  8. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    Science.gov (United States)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  9. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    Science.gov (United States)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  10. CFD Study of Drag and Lift of Sepak Takraw Ball at Different Face Orientations

    Directory of Open Access Journals (Sweden)

    Abdul Syakir Abdul Mubin

    2015-01-01

    Full Text Available There have been a significant number of researches on computational fluid dynamic (CFD analysis of balls used in sports such as golf balls, tennis balls, and soccer balls. Sepak takraw is a high speed court game predominantly played in Southeast Asia using mainly the legs and head. The sepak takraw ball is unique because it is not enclosed and made of woven plastic. Hence a study of its aerodynamicswould give insight into its behaviour under different conditions of play. In this study the dynamics of the fluid around a static sepak takraw ball was investigated at different wind speeds for three different orientations using CFD. It was found that although the drag did not differ very much, increasing the wind velocity causes an increase in drag. The lift coefficientvaries as the velocity increases and does not show a regular pattern. The drag and lift coefficients are influenced by the orientation of the sepak takraw ball.

  11. The 3D CFD study of gliding swimmer on passive hydrodynamics drag

    Directory of Open Access Journals (Sweden)

    Vishveshwar Rajendra Mantha

    2014-04-01

    Full Text Available The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

  12. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    Science.gov (United States)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  13. Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh

    Science.gov (United States)

    Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.

    2010-01-01

    In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.

  14. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    International Nuclear Information System (INIS)

    Papadakis, G; Voutsinas, S; Sieros, G; Chaviaropoulos, T

    2014-01-01

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes

  15. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  16. Development of a CFD Model Including Tree's Drag Parameterizations: Application to Pedestrian's Wind Comfort in an Urban Area

    Science.gov (United States)

    Kang, G.; Kim, J.

    2017-12-01

    This study investigated the tree's effect on wind comfort at pedestrian height in an urban area using a computational fluid dynamics (CFD) model. We implemented the tree's drag parameterization scheme to the CFD model and validated the simulated results against the wind-tunnel measurement data as well as LES data via several statistical methods. The CFD model underestimated (overestimated) the concentrations on the leeward (windward) walls inside the street canyon in the presence of trees, because the CFD model can't resolve the latticed cage and can't reflect the concentration increase and decrease caused by the latticed cage in the simulations. However, the scalar pollutants' dispersion simulated by the CFD model was quite similar to that in the wind-tunnel measurement in pattern and magnitude, on the whole. The CFD model overall satisfied the statistical validation indices (root normalized mean square error, geometric mean variance, correlation coefficient, and FAC2) but failed to satisfy the fractional bias and geometric mean bias due to the underestimation on the leeward wall and overestimation on the windward wall, showing that its performance was comparable to the LES's performance. We applied the CFD model to evaluation of the trees' effect on the pedestrian's wind-comfort in an urban area. To investigate sensory levels for human activities, the wind-comfort criteria based on Beaufort wind-force scales (BWSs) were used. In the tree-free scenario, BWS 4 and 5 (unpleasant condition for sitting long and sitting short, respectively) appeared in the narrow spaces between buildings, in the upwind side of buildings, and the unobstructed areas. In the tree scenario, BWSs decreased by 1 3 grade inside the campus of Pukyong National University located in the target area, which indicated that trees planted in the campus effectively improved pedestrian's wind comfort.

  17. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.

    Science.gov (United States)

    Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P Worth

    2015-10-01

    CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7 μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods.

  18. Wake-Model Effects on Induced Drag Prediction of Staggered Boxwings

    Directory of Open Access Journals (Sweden)

    Julian Schirra

    2018-01-01

    Full Text Available For staggered boxwings the predictions of induced drag that rely on common potential-flow methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve effects related to wake deflection and roll-up, which can have significant affects on the induced drag projection of these systems. The present work investigates the principle impact of wake modelling on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models, and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories, which results in smaller effective height-to-span ratios than compared with negative stagger and thus closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake model will provide the high-degree of accuracy that rivals that of an Euler method while being computationally significantly more efficient.

  19. CFD analysis for road vehicles - case study

    Directory of Open Access Journals (Sweden)

    Eugen Mihai NEGRUS

    2011-09-01

    Full Text Available This is a case study on the influence of the lower part of road vehicles on the global drag characteristics. Reducing overall drag by redesigning the lower part of the road vehicles has a potential of almost 20% in the overall drag breakdown, mainly due to the viscous effects and the fluidic interaction of the flow under the car with the typical bluff body flow pattern behind the vehicle. A special parameterization is proposed for the global shape of the sedan car, with respect to the lower part of the body, taking into account most of the specificities of the system. For such a complex interaction, CFD analysis is probably the only efficient tool in order to assess specific design parameterization of a generic car shape. Building on the credibility of such instruments is one of the major goals of this paper. Also, with respect to a target sedan car configuration, examples of successful design strategies are presented. Based on the CFD results, possible strategies to be used in order to reduce viscous drag and global drag characteristics are proposed.

  20. A Comparative Study Using CFD to Predict Iced Airfoil Aerodynamics

    Science.gov (United States)

    Chi, x.; Li, Y.; Chen, H.; Addy, H. E.; Choo, Y. K.; Shih, T. I-P.

    2005-01-01

    WIND, Fluent, and PowerFLOW were used to predict the lift, drag, and moment coefficients of a business-jet airfoil with a rime ice (rough and jagged, but no protruding horns) and with a glaze ice (rough and jagged end has two or more protruding horns) for angles of attack from zero to and after stall. The performance of the following turbulence models were examined by comparing predictions with available experimental data. Spalart-Allmaras (S-A), RNG k-epsilon, shear-stress transport, v(sup 2)-f, and a differential Reynolds stress model with and without non-equilibrium wall functions. For steady RANS simulations, WIND and FLUENT were found to give nearly identical results if the grid about the iced airfoil, the turbulence model, and the order of accuracy of the numerical schemes used are the same. The use of wall functions was found to be acceptable for the rime ice configuration and the flow conditions examined. For rime ice, the S-A model was found to predict accurately until near the stall angle. For glaze ice, the CFD predictions were much less satisfactory for all turbulence models and codes investigated because of the large separated region produced by the horns. For unsteady RANS, WIND and FLUENT did not provide better results. PowerFLOW, based on the Lattice Boltzmann method, gave excellent results for the lift coefficient at and near stall for the rime ice, where the flow is inherently unsteady.

  1. Comparison of CFD Predictions of the TCA Baseline

    Science.gov (United States)

    Cappuccio, Gelsomina

    1999-01-01

    The computational fluid dynamics (CFD) comparisons being presented are compared to each other and to wind tunnel (WT) data on the baseline TCA. Some of the CFD computations were done prior to the tests and others later. Only force data (CL vs CD) from CFD will be presented as part of this report. The WT data presented comes from the testing of the baseline TCA in the Langley Unitary Plan Wind Tunnel (UPWT), Test Section #2. There are 2 sets of wind tunnel data being presented: one from test 1671 of model 2a (flapped wing) and the other from test 1679 of model 2b (solid wing). Most of the plots show only one run from each of the WT tests per configuration. But many repeat runs were taken during the tests. The WT repeat runs showed an uncertainty in the drag of +/- 0.5 count. There were times when the uncertainty in drag was better, +/- 0.25 count. Test 1671 data was of forces and pressures measured from model 2a. The wing had cutouts for installing various leading and trailing edge flaps at lower Mach numbers. The internal duct of the nacelles are not designed and fabricated as defined in the outer mold lines (OML) iges file. The internal duct was fabricated such that a linear transition occurs from the inlet to exhaust. Whereas, the iges definition has a constant area internal duct that quickly transitions from the inlet to exhaust cross sectional shape. The nacelle internal duct was fabricated, the way described, to save time and money. The variation in the cross sectional area is less than 1% from the iges definition. The nacelles were also installed with and without fairings. Fairings are defined as the build up of the nacelles on the upper wing surface so that the nacelles poke through the upper surface as defined in the OML iges file. Test 1679 data was of forces measured from model 2a and 2b. The wing for model 2b was a solid wing. The nacelles were built the same way as for model 2a, except for the nacelle base pressure installation. The nacelles were only

  2. Computational investigations of blunt body drag-reduction spikes in hypersonic flows

    International Nuclear Information System (INIS)

    Kamran, N.; Zahir, S.; Khan, M.A.

    2003-01-01

    Drag is an important parameter in the designing of high-speed vehicles. Such vehicles include hypervelocity projectiles, reentry modules, and hypersonic aircrafts. Therefore, there exists an active or passive technique to reduce drag due to the high pressures at nosetip region of the vehicle. Drag can be reduced by attaching a forward facing spike on the nose of the vehicle. The present study reviews and deals with the CFD analysis made on a standard blunt body to reduce aerodynamic drag due to the attachment of forward facing spikes for High-Speed vehicles. Different spike lengths have been examined to study the forebody flowfield. The investigation concludes that spikes are an effective way to reduce the aerodynamic drag due to reduced dynamic pressure on the nose caused by the separated flow on the spikes. With the accomplishment of confidence on computational data, study was extended in hypersonic Mach range with a drag prediction accuracy of ± 10%. In the present work, viscous fluid dynamics studies were performed for a complete freestream Mach number range of 5.0, 6.0, 7.0 and 8.0 for different spike lengths and zero degree angle of attack. (author)

  3. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  4. Assessment of passive drag in swimming by numerical simulation and analytical procedure.

    Science.gov (United States)

    Barbosa, Tiago M; Ramos, Rui; Silva, António J; Marinho, Daniel A

    2018-03-01

    The aim was to compare the passive drag-gliding underwater by a numerical simulation and an analytical procedure. An Olympic swimmer was scanned by computer tomography and modelled gliding at a 0.75-m depth in the streamlined position. Steady-state computer fluid dynamics (CFD) analyses were performed on Fluent. A set of analytical procedures was selected concurrently. Friction drag (D f ), pressure drag (D pr ), total passive drag force (D f +pr ) and drag coefficient (C D ) were computed between 1.3 and 2.5 m · s -1 by both techniques. D f +pr ranged from 45.44 to 144.06 N with CFD, from 46.03 to 167.06 N with the analytical procedure (differences: from 1.28% to 13.77%). C D ranged between 0.698 and 0.622 by CFD, 0.657 and 0.644 by analytical procedures (differences: 0.40-6.30%). Linear regression models showed a very high association for D f +pr plotted in absolute values (R 2  = 0.98) and after log-log transformation (R 2  = 0.99). The C D also obtained a very high adjustment for both absolute (R 2  = 0.97) and log-log plots (R 2  = 0.97). The bias for the D f +pr was 8.37 N and 0.076 N after logarithmic transformation. D f represented between 15.97% and 18.82% of the D f +pr by the CFD, 14.66% and 16.21% by the analytical procedures. Therefore, despite the bias, analytical procedures offer a feasible way of gathering insight on one's hydrodynamics characteristics.

  5. Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.

    Science.gov (United States)

    Beaumont, F; Taiar, R; Polidori, G; Trenchard, H; Grappe, F

    2018-01-23

    The aerodynamic drag of three different time-trial cycling helmets was analyzed numerically for two different cyclist head positions. Computational Fluid Dynamics (CFD) methods were used to investigate the detailed airflow patterns around the cyclist for a constant velocity of 15 m/s without wind. The CFD simulations have focused on the aerodynamic drag effects in terms of wall shear stress maps and pressure coefficient distributions on the cyclist/helmet system. For a given head position, the helmet shape, by itself, obtained a weak effect on a cyclist's aerodynamic performance (CFD results have also shown that both helmet shape and head position significantly influence drag forces, pressure and wall shear stress distributions on the whole cyclist's body due to the change in the near-wake behavior and in location of corresponding separation and attachment areas around the cyclist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Possible User-Dependent CFD Predictions of Transitional Flow in Building Ventilation

    DEFF Research Database (Denmark)

    Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue

    2016-01-01

    A modified backward-facing step flow with a large expansion ratio of five (5) was modelled by 19 teams without benchmark solutions or experimental data for validation in an ISHVAC-COBEE July 2015 Tianjin Workshop, entitled as “to predict low turbulent flow”. Different computational fluid dynamics...... (CFD) codes/software, turbulence models, boundary conditions, numerical schemes and convergent criteria were adopted based on the own CFD experience of each participating team. The largest coefficient of variation is larger than 50% and the largest relative maximum difference of penetration length......, is shown to be still a very challenging task. This calls for a solid approach of validation and uncertainty assessment in CFD “experiments”. The users are recommended to follow an existing guideline of uncertainty assessment of CFD predictions to minimize the errors and uncertainties in the future....

  7. Verification of supersonic and hypersonic semi-empirical predictions using CFD

    International Nuclear Information System (INIS)

    McIlwain, S.; Khalid, M.

    2004-01-01

    CFD was used to verify the accuracy of the axial force, normal force, and pitching moment predictions of two semi-empirical codes. This analysis considered the flow around the forebody of four different aerodynamic shapes. These included geometries with equal-volume straight or tapered bodies, with either standard or double-angle nose cones. The flow was tested at freestream Mach numbers of M = 1.5, 4.0, and 7.0. The CFD results gave the expected flow pressure contours for each geometry. The geometries with straight bodies produced larger axial forces, smaller normal forces, and larger pitching moments compared to the geometries with tapered bodies. The double-angle nose cones introduced a shock into the flow, but affected the straight-body geometries more than the tapered-body geometries. Both semi-empirical codes predicted axial forces that were consistent with the CFD data. The agreement between the normal forces and pitching moments was not as good, particularly for the straight-body geometries. But even though the semi-empirical results were not exactly the same as the CFD data, the semi-empirical codes provided rough estimates of the aerodynamic parameters in a fraction of the time required to perform a CFD analysis. (author)

  8. Technical Status Review on Drag Prediction and Analysis from Computational Fluid Dynamics: State of the Art

    Science.gov (United States)

    1989-06-01

    comportaicnt des informations pr~cieuses sur cc sujet. Par consequent il a t demande aux auteurs d’en fournir des versions ecrites pour les pr~senter dans...that ’a comprehensive drag predic- tion method, valid for the main classes of aircraft and based entirely on theory, is not likely to be possible for...configuration b) Field methods Comprehensive CFD calculations are not Albone. Hail & Transonic small P.D. Smith. turbulent available for this

  9. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  10. Drag reduction of a reverse-engineered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lecrivain, G.; Slaouti, A.; Kennedy, I. [Manchester Metropolitan Univ., Manchester (United Kingdom). Dept. of Engineering and Technology

    2007-08-09

    The aerodynamic performance of a hand-made sports car was numerically assessed using computational fluid dynamics (CFD) analysis of various shape modifications. The purpose was to achieve a lower drag design. Reverse-engineering was used to create a virtual model of complex 3D shapes for which no computer-aided drawings (CAD) data existed. From the predicted flow, the body could be redesigned for better performance prior to its remanufacturing. This paper described the multidisciplinary procedure involving reverse-engineering and CAD that was used to recreate a suitable watertight model of the sports car. The different errors embedded in the successive stages leading to the final model were accurately assessed and minimized. The whole vehicle was remodelled for drag reduction. Surface reconstruction was carried out, an an accurate set of high quality Non-Uniform Rational B-Spline (NURBS) surfaces was produced over the polygonal mesh resulting in a fine visual surface finish with smooth lines and contours, as required in the automotive industry. Further modifications were implemented for the purpose of drag reduction and to improve its aerodynamic performance. The application described in this paper can be extended to any other similarly intricate vehicle or industrial component. 12 refs., 1 tab., 11 figs.

  11. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Science.gov (United States)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  12. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  13. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.

    2016-11-15

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  14. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D.

    2016-01-01

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m"2 s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  15. Examples of using CFD for wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)

    1997-12-31

    Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)

  16. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  17. Prediction of ash deposition using CFD simulation combined to thermodynamic calculation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshi Muratani; Takashi Hongo [UBE Industries, Ltd., Yamaguchi (Japan). Coal Department, Energy and Environment Division

    2007-07-01

    This study focused on the advanced ash deposition prediction using computational fluid dynamics (CFD) analysis combined to thermodynamic calculation, considering both combustion characteristics and ash fusibility. Combustion field in pulverised coal-fired boiler was calculated through the normal CFD process. As the post process of combustion calculation, ash particles were injected into the combustion field to calculate ash deposition by CFD, in which particle sticking sub-program was newly employed. In this post process, ash deposition condition for CFD calculation was defined with the ash fusibility data obtained from thermodynamic analysis. These results of ash deposition on the furnace wall showed good agreement with the plant observation. Furthermore, in order to improve the plant operation, some virtual cases were simulated, which might reduce ash deposition. 7 refs., 14 figs., 6 tabs.

  18. Assessment of CFD capability for prediction of hypersonic shock interactions

    Science.gov (United States)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  19. Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach

    Science.gov (United States)

    Evans, B.

    2018-01-01

    This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.

  20. A Predictive Framework to Elucidate Venous Stenosis: CFD & Shape Optimization.

    Science.gov (United States)

    Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Hammes, Mary; Coe, Fredric

    2017-07-01

    The surgical creation of vascular accesses for renal failure patients provides an abnormally high flow rate conduit in the patient's upper arm vasculature that facilitates the hemodialysis treatment. These vascular accesses, however, are very often associated with complications that lead to access failure and thrombotic incidents, mainly due to excessive neointimal hyperplasia (NH) and subsequently stenosis. Development of a framework to monitor and predict the evolution of the venous system post access creation can greatly contribute to maintaining access patency. Computational fluid dynamics (CFD) has been exploited to inspect the non-homeostatic wall shear stress (WSS) distribution that is speculated to trigger NH in the patient cohort under investigation. Thereafter, CFD in liaison with a gradient-free shape optimization method has been employed to analyze the deformation modes of the venous system enduring non-physiological hemodynamics. It is observed that the optimally evolved shapes and their corresponding hemodynamics strive to restore the homeostatic state of the venous system to a normal, pre-surgery condition. It is concluded that a CFD-shape optimization coupling that seeks to regulate the WSS back to a well-defined physiological WSS target range can accurately predict the mode of patient-specific access failure.

  1. Research on Fairing design and CFD Analysis of Submarine Pipeline Inspection ARV

    Directory of Open Access Journals (Sweden)

    Jin Xiaojian

    2017-01-01

    Full Text Available Along with the fast development of the ocean exploitation, the cost-effective requirement of autonomous & remotely operated vehicle (ARV, which can perform more complicated missions such as the oil exploitation and the inspection of the submarine pipeline is more urgent. The submarine pipeline inspection ARV can help us better understand, protect and efficiently utilize them for human welfare. Fairing design of a new detection ARV are introduced in this paper. In order to select an appropriate thruster that will achieve the required speed of the ARV, the ANSYS-CFX tools are used to predicted the drag force. The CFD results reveal the distribution of velocity and pressure values of the ARV. In order to verify the CFD modeling process, a towed body was developed and analyzed, compared against the corresponding physical test data.

  2. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    Science.gov (United States)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  3. Thickened boundary layer theory for air film drag reduction on a van body surface

    Science.gov (United States)

    Xie, Xiaopeng; Cao, Lifeng; Huang, Heng

    2018-05-01

    To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.

  4. Computational fluid dynamics (CFD) using porous media modeling predicts recurrence after coiling of cerebral aneurysms.

    Science.gov (United States)

    Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori

    2017-01-01

    This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.

  5. Prediction of fire growth on furniture using CFD

    Science.gov (United States)

    Pehrson, Richard David

    A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.

  6. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...

  7. Vehicle wheel drag coefficient in relation to travelling velocity - CFD analysis

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2016-10-01

    In order to understand the aerodynamic losses associated with a rotating automobile wheel, a detailed characteristics of the drag coefficient in relation to the applied velocity are necessary. Single drag coefficient value is most often reported for the commercially available vehicles, much less is revealed about the influence of particular car components on the energy consumption in various driving cycles. However, detailed flow potential losses determination is desired for performance estimation. To address these needs, the numerical investigation of an isolated wheel is proposed herein.

  8. Performance assessment of the commercial CFD software for the prediction of the PWR internal flow - Corrected version

    International Nuclear Information System (INIS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Cheong, Ae Ju; Kim, Do Hyeong; Kang, Min Ku

    2013-01-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developers and its users think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor safety problems there is still the limitations and the uncertainties in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) has been presently conducting the performance assessment of the commercial CFD software for the nuclear reactor safety problems. In this study, in order to examine the prediction performance of the commercial CFD software with the porous model in the analysis of the scale-down APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the on-board numerical models in ANSYS CFX R.14 and FLUENT R.14. It was concluded that depending on the CFD software the internal flow distribution of the scale-down APR+ was locally some-what different. Although there was a limitation in estimating the prediction performance of the commercial CFD software due to the limited number of the measured data, CFXR.14 showed the more reasonable predicted results in comparison with FLUENT R.14. Meanwhile, due to the difference of discretization methodology, FLUENT R.14 required more computational memory than CFX R.14 for the same grid system. Therefore the CFD software suitable to the available computational resource should be selected for the massive parallel computation. (authors)

  9. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  10. A hypersonic lift mechanism with decoupled lift and drag surfaces

    Science.gov (United States)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  11. AERODYNAMICS ASSESSMENT USING CFD FOR A LOW DRAG SHELL ECO-MARATHON CAR

    OpenAIRE

    Abo-Serie, E.

    2017-01-01

    Having a small car running with low power can be achieved byreducing the aerodynamics drag, rolling resistance and mechanical frictionsbetween the moving parts. The Shell Eco-Marathon competition held around theworld with events in Europe, USA and Asia shows every year new techniques andideas to reduce the power needed to drive the car. The record of over 3400 kmon the equivalent of a single litre of fuel is an indication of how car can runefficiently. The problem with these low drag cars is ...

  12. Predicting lethal entanglements as a consequence of drag from fishing gear.

    Science.gov (United States)

    van der Hoop, Julie M; Corkeron, Peter; Henry, Allison G; Knowlton, Amy R; Moore, Michael J

    2017-02-15

    Large whales are frequently entangled in fishing gear and sometimes swim while carrying gear for days to years. Entangled whales are subject to additional drag forces requiring increased thrust power and energy expenditure over time. To classify entanglement cases and aid potential disentanglement efforts, it is useful to know how long an entangled whale might survive, given the unique configurations of the gear they are towing. This study establishes an approach to predict drag forces on fishing gear that entangles whales, and applies this method to ten North Atlantic right whale cases to estimate the resulting increase in energy expenditure and the critical entanglement duration that could lead to death. Estimated gear drag ranged 11-275N. Most entanglements were resolved before critical entanglement durations (mean±SD 216±260days) were reached. These estimates can assist real-time development of disentanglement action plans and U.S. Federal Serious Injury assessments required for protected species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  14. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    Science.gov (United States)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form

  15. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  16. Helicopter fuselage drag - combined computational fluid dynamics and experimental studies

    Science.gov (United States)

    Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.

    2015-06-01

    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.

  17. Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.

    2010-01-01

    This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.

  18. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  19. CFD-FEM coupling for accurate prediction of thermal fatigue

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Kuczaj, A.K.; Blom, F.J.; Church, J.M.; Komen, E.M.J.

    2009-01-01

    Thermal fatigue is a safety related issue in primary pipework systems of nuclear power plants. Life extension of current reactors and the design of a next generation of new reactors lead to growing importance of research in this direction. The thermal fatigue degradation mechanism is induced by temperature fluctuations in a fluid, which arise from mixing of hot and cold flows. Accompanied physical phenomena include thermal stratification, thermal striping, and turbulence [1]. Current plant instrumentation systems allow monitoring of possible causes as stratification and temperature gradients at fatigue susceptible locations [1]. However, high-cycle temperature fluctuations associated with turbulent mixing cannot be adequately detected by common thermocouple instrumentations. For a proper evaluation of thermal fatigue, therefore, numerical simulations are necessary that couple instantaneous fluid and solid interactions. In this work, a strategy for the numerical prediction of thermal fatigue is presented. The approach couples Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For the development of the computational approach, a classical test case for the investigation of thermal fatigue problems is studied, i.e. mixing in a T-junction. Due to turbulent mixing of hot and cold fluids in two perpendicularly connected pipes, temperature fluctuations arise in the mixing zone downstream in the flow. Subsequently, these temperature fluctuations are also induced in the pipes. The stresses that arise due to the fluctuations may eventually lead to thermal fatigue. In the first step of the applied procedure, the temperature fluctuations in both fluid and structure are calculated using the CFD method. Subsequently, the temperature fluctuations in the structure are imposed as thermal loads in a FEM model of the pipes. A mechanical analysis is then performed to determine the thermal stresses, which are used to predict the fatigue lifetime of the structure

  20. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    Science.gov (United States)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  1. Prediction of leakage and rotordynamic coefficients for the circumferential-groove pump seal using CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ha, Tae Woong [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    The circumferential-groove seal is commonly used in various turbopumps to reduce leakage. The main goal of this paper is to develop the method of three-dimensional CFD analysis for determining leakage and rotordynamic coefficients of the circumferential-groovepump seal. A relative coordinate system was defined for steady-state simulation to calculate the velocity and pressure distributions of the seal clearance at each rotor whirl speed. Instead of setting the inlet and outlet pressures as the boundary conditions in the three dimensional CFD analysis, as it is more commonly done, we used the inlet velocity and outlet pressure obtained from a preliminary two dimensional CFD analysis. For prediction leakage, the presented analysis shows improvement from the bulk-flow model analysis. For the prediction of rotordynamic coefficients of K, k and C, the presented analysis provides results in closer agreement with the experimental values than those of the bulk-flow model analysis at several rotor speeds.

  2. Aerodynamic Drag Scoping Work.

    Energy Technology Data Exchange (ETDEWEB)

    Voskuilen, Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erickson, Lindsay Crowl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined by Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.

  3. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  4. The influence of numerical models on determining the drag coefficient

    Directory of Open Access Journals (Sweden)

    Dobeš Josef

    2014-03-01

    Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.

  5. An Analysis of CFD and Flat Plate Predictions of Friction Drag for the TCA W/B at Supersonic Cruise

    Science.gov (United States)

    Lawrence, Scott L.

    1999-01-01

    This paper presents results of a study which attempted to provide some understanding of the relationship between skin friction drag estimates produced by flat plate methods and those produced by Navier-Stokes computations. A brief introduction is followed by analysis, including a flat plate grid study, analysis of the wing flow, an analysis of the fuselage flow. Other results of interest are then presented, including turbulence model sensitivities, and brief analysis of other configurations.

  6. Error estimation for CFD aeroheating prediction under rarefied flow condition

    Science.gov (United States)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  7. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.

    Science.gov (United States)

    Pawar, Sanjay B

    2018-01-01

    The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s -1 experiencing an average shear of 23.52-44.56 s -1 which is far below the critical limit of cell damage.

  8. Comparison of particle-wall interaction boundary conditions in the prediction of cyclone collection efficiency in computational fluid dynamics (CFD) modeling

    International Nuclear Information System (INIS)

    Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.

    2009-01-01

    In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)

  9. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results

    Directory of Open Access Journals (Sweden)

    Yogang Singh

    2017-06-01

    Full Text Available Underwater gliders are buoyancy propelled vehicle which make use of buoyancy for vertical movement and wings to propel the glider in forward direction. Autonomous underwater gliders are a patented technology and are manufactured and marketed by corporations. In this study, we validate the experimental lift and drag characteristics of a glider from the literature using Computational fluid dynamics (CFD approach. This approach is then used for the assessment of the steady state characteristics of a laboratory glider designed at Indian Institute of Technology (IIT Madras. Flow behaviour and lift and drag force distribution at different angles of attack are studied for Reynolds numbers varying from 105 to 106 for NACA0012 wing configurations. The state variables of the glider are the velocity, gliding angle and angle of attack which are simulated by making use of the hydrodynamic drag and lift coefficients obtained from CFD. The effect of the variable buoyancy is examined in terms of the gliding angle, velocity and angle of attack. Laboratory model of glider is developed from the final design asserted by CFD. This model is used for determination of static and dynamic properties of an underwater glider which were validated against an equivalent CAD model and simulation results obtained from equations of motion of glider in vertical plane respectively. In the literature, only empirical approach has been adopted to estimate the hydrodynamic coefficients of the AUG that are required for its trajectory simulation. In this work, a CFD approach has been proposed to estimate the hydrodynamic coefficients and validated with experimental data. A two-mass variable buoyancy engine has been designed and implemented. The equations of motion for this two-mass engine have been obtained by modifying the single mass version of the equations described in the literature. The objectives of the present study are to understand the glider dynamics adopting a CFD approach

  10. Safety Injection Tank Performance Analysis Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Lee, Jeong Ik; Nietiadi Yohanes Setiawan [KAIST, Daejeon (Korea, Republic of); Addad Yacine [KUSTAR, Abu Dhabi (United Arab Emirates); Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    This may affect the core cooling capability and threaten the fuel integrity during LOCA situations. However, information on the nitrogen flow rate during discharge is very limited due to the associated experimental measurement difficulties, and these phenomena are hardly reflected in current 1D system codes. In the current study, a CFD analysis is presented which hopefully should allow obtaining a more realistic prediction of the SIT performance which can then be reflected on 1D system codes to simulate various accident scenarios. Current Computational Fluid Dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study aims to find a better CFD prediction and more accurate modeling to predict the system performance during accident scenarios. The safety injection tank with fluidic device was analyzed using commercial CFD. A fine resolution grid was used to capture the vortex of the fluidic device. The calculation so far has shown good consistency with the experiment. Calculation should complete by the conference date and will be thoroughly analyzed to be discussed. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be validated to give more reliable results. The data from CFD and experiments will provide a more accurate K-factor of the fluidic device which can later be applied in system code inputs.

  11. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, CFD-DEM (computational fluid dynamics - discrete element method has been used to model the 2 phase flow composed of solid particle and gas in the fluidised bed. This technique uses the Eulerian and the Langrangian methods to solve fluid and particles respectively. Each particle is treated as a discrete entity whose motion is governed by Newton's laws of motion. The particle-particle and particle-wall interaction is modelled using the classical contact mechanics. The particles motion is coupled with the volume averaged equations of the fluid dynamics using drag law. In fluidised bed, particles start experiencing drag once the fluid is passing through. The solid particles response to it once drag experienced is just equal to the weight of the particles. At this moment pressure drop across the bed is just equal to the weight of particles divide by the cross-section area. This is the first regime of fluidization, also referred as ‘the regime of minimum fluidization’. In this study, phenomenon of minimum fluidization is studied using CFD-DEM simulation with 4 different sizes of particles 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm diameters. The results are presented in the form of pressure drop across the bed with the fluid superficial velocity. The achieved results are found in good agreement with the experimental and theoretical data available in literature.

  12. Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature Against SPEL Experiments

    International Nuclear Information System (INIS)

    Churl Yoon; Bo Wook Rhee; Byung-Joo Min

    2002-01-01

    A validation of a 3D CFD model for predicting local subcooling of the moderator in the vicinity of calandria tubes in a CANDU-6 reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard k-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used. Buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is the buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well. (authors)

  13. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  14. Comprehensive Approach to Verification and Validation of CFD Simulations Applied to Backward Facing Step-Application of CFD Uncertainty Analysis

    Science.gov (United States)

    Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.

    2012-01-01

    There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.

  15. A following car influences cyclist drag: CFD simulations and wind tunnel measurements

    NARCIS (Netherlands)

    Blocken, B.J.E.; Toparlar, Y.

    2015-01-01

    It is well-known in elite cycling that a cyclist riding behind a car experiences a substantial reduction in aerodynamic resistance or drag. However, the upstream effect by a following car on the cyclist in front of it is not well-known and has, to the best of our knowledge, not yet been reported in

  16. Development and validation of the 3-D CFD model for CANDU-6 moderator temperature predictions

    International Nuclear Information System (INIS)

    Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo

    2003-03-01

    A computational fluid dynamics model for predicting the moderator circulation inside the CANada Deuterium Uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the Calandria tubes. The buoyancy effect induced by internal heating is accounted for by Boussinesq approximation. The standard κ-ε turbulence model associated with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the Calandria tubes in the core region is simplified to porous media, in which an-isotropic hydraulic impedance is modeled using an empirical correlation of the frictional pressure loss. The governing equations are solved by CFX-4.4, a commercial CFD code developed by AEA technology. The CFD model has been successfully verified and validated against experimental data obtained in the Stern Laboratories Inc. (SLI) in Hamilton, Ontario

  17. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    Science.gov (United States)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  18. Advanced subgrid modeling for Multiphase CFD in CASL VERA tools

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Gilman, Lindsey; Sugrue, Rosie

    2014-01-01

    This work introduces advanced modeling capabilities that are being developed to improve the accuracy and extend the applicability of Multiphase CFD. Specifics of the advanced and hardened boiling closure model are described in this work. The development has been driven by new physical understanding, derived from the innovative experimental techniques available at MIT. A new experimental-based mechanistic approach to heat partitioning is proposed. The model introduces a new description of the bubble evaporation, sliding and interaction on the heated surface to accurately capture the evaporation occurring at the heated surface, while also tracking the local surface conditions. The model is being assembled to cover an extended application area, up to Critical Heat Flux (CHF). The accurate description of the bubble interaction, effective microlayer and dry surface area are considered to be the enabling quantities towards innovated CHF capturing methodologies. Further, improved mechanistic force-balance models for bubble departure predictions and lift-off diameter predictions are implemented in the model. Studies demonstrate the influence of the newly implemented partitioning components. Finally, the development work towards a more consistent and integrated hydrodynamic closure is presented. The main objective here is to develop a set of robust momentum closure relations which focuses on the specific application to PWR conditions, but will facilitate the application to other geometries, void fractions, and flow regimes. The innovative approach considers local flow conditions on a cell-by-cell basis to ensure robustness. Closure relations of interest initially include drag, lift, and turbulence dispersion, with near wall corrections applied for both drag and lift. (author)

  19. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2012-03-01

    The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6-2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.

  20. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    Science.gov (United States)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  1. Prediction of flow in mix-proof valve by use of CFD - Validation by LDA

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    was done on a spherical shaped mix-proof valve (MPV). Flow were predicted by Computational Fluid Dynamics (CFD) and validated by data obtained from experiments using laser sheet visualization and laser Doppler anemometry. Correction of the measured velocities and probe location was required as refraction......-wall region is shown. Fully 3D flow patterns were identified and valuable information was obtained for further investigations concerning prediction of cleanability in the MPV based on knowledge of the hydrodynamics herein....

  2. Detailed disc assembly temperature prediction: comparison between CFD and simplified engineering methods

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2003-09-01

    Full Text Available Institute of Aeronautics and Astronautics Inc. All rights reserved. DETAILED DISC ASSEMBLY TEMPERATURE PREDICTION: COMPARISON BETWEEN CFD AND SIMPLIFIED ENGINEERING METHODS ISABE-2005-1130 Glen Snedden, Thomas Roos and Kavendra Naidoo CSIR, Defencetek... transfer and conduction code (Gaugler, 1978) Taw Adiabatic Wall Temperature y+ Near wall Reynolds number Introduction In order to calculate life degradation of gas turbine disc assemblies, it is necessary to model the transient thermal and mechanical...

  3. Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow

    Directory of Open Access Journals (Sweden)

    Philip McDonald

    2017-11-01

    Full Text Available Synthetic jet actuators have shown promise to control drag and lift for a bluff body in cross-flow. Using unsteady RANS CFD modelling, a significant modification of the drag coefficient for a circular cylinder in cross-flow at R e = 3900 is achieved by varying the actuation frequency. The variation in actuation frequency corresponds to a range in Stokes number of 2.4 < S t o < 6.4. The trends in drag coefficient modification largely agree with the findings of past publications, achieving a maximum drag reduction at S t o = 4.9 for a fixed jet Reynolds number of the synthetic jet of R e U ¯ o = 12. A decrease in the adverse pressure gradient near the jet orifice correlated with a momentum increase in the viscous sublayer and stronger vortical structures at the rear of the cylinder. In these same conditions, a decrease in turbulence intensity was observed in the far field wake, which is a relevant finding in the context of wind and tidal turbine arrays.

  4. Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet

    Science.gov (United States)

    Sato, Koma; Kumano, Takayasu; Yonezawa, Masahito; Yamashita, Hiroshi; Jeong, Shinkyu; Obayashi, Shigeru

    Multi-Objective Optimization has been applied to a design problem of the twin engine concept for Silent Supersonic Business Jet (SSBJ). This problem aims to find main wing, body, tail wing and engine nacelle configurations, which can minimize both sonic boom and drag in a supersonic cruising flight. The multi-objective genetic algorithm (MOGA) coupled with the Kriging model has been used to globally and effectively search for optimal design candidates in the multi-objective problem. The drag and the sonic boom have been evaluated by the computational fluid dynamics (CFD) simulation and the waveform parameter method. As a result, the present optimization has successfully obtained low-boom and low-drag design candidates, which are better than the baseline design by more than 40% regarding each performance. Moreover, the structure of design space has been visualized by the self-organizing map (SOM).

  5. Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High Efficiency Pulmonary Delivery: Comparison of CFD Predictions with Experimental Results

    Science.gov (United States)

    Hindle, Michael

    2011-01-01

    Purpose The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Methods Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. Results The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6–2.5 µm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Conclusions Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery. PMID:21948458

  6. An extended CFD model to predict the pumping curve in low pressure plasma etch chamber

    Science.gov (United States)

    Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu

    2014-12-01

    Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.

  7. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    OpenAIRE

    Manisha Bal; Bhim Charan Meikap

    2017-01-01

    The filtered containment venting system (FCVS) is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD) has been used to predict the hydrodynamic behaviour of a newly designed venturi sc...

  8. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...

  9. The drag forces exerted by lahar flows on a cylindrical pier: case study of post Mount Merapi eruptions

    Science.gov (United States)

    Faizien Haza, Zainul

    2018-03-01

    Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.

  10. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.

    Science.gov (United States)

    Longest, P Worth; Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-12-01

    The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.

  11. Reducing drag of a commuter train, using engine exhaust momentum

    Science.gov (United States)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  12. CFD model of an aerating hydrofoil

    International Nuclear Information System (INIS)

    Scott, D; Sabourin, M; Beaulieu, S; Papillon, B; Ellis, C

    2014-01-01

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used

  13. CFD Modeling of Free-Piston Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  14. Development of Mitsubishi high thermal performance grid 1 - CFD applicability for thermal hydraulic design

    International Nuclear Information System (INIS)

    Ikeda, K.; Hoshi, M.

    2001-01-01

    Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)

  15. CFD Simulation and Experimental Study of Winglets at Low Subsonic Flow

    OpenAIRE

    Sanjay Kumar Sardiwal; Md. Abdul Sami

    2014-01-01

    A winglet is a device attached at the wingtip, used to improve aircraft efficiency by lowering the induced drag caused by wingtip vortices. It is a vertical or angled extension at the tips of each wing. Winglets work by increasing the effective aspect ratio of a wing without adding greatly to the structural stress and hence necessary weight of the wing structure. This paper describes a CFD 3-dimensional winglets analysis that was performed on a rectangular wing of NACA653218 c...

  16. CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration

    Science.gov (United States)

    Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.

    1993-01-01

    This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion

  17. The IEA Annex 20 Two-Dimensional Benchmark Test for CFD Predictions

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Rong, Li; Cortes, Ines Olmedo

    2010-01-01

    predictions both for isothermal flow and for nonisothermal flow. The benchmark is defined on a web page, which also shows about 50 different benchmark tests with studies of e.g. grid dependence, numerical schemes, different source codes, different turbulence models, RANS or LES, different turbulence levels...... in a supply opening, study of local emission and study of airborne chemical reactions. Therefore the web page is also a collection of information which describes the importance of the different elements of a CFD procedure. The benchmark is originally developed for test of two-dimensional flow, but the paper...

  18. Case studies from the REHVA CFD guide book

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper presents CFD predictions which are used at different levels, from the evaluation of an idea to the design of a system, or for the analysing work on an existing building.......This paper presents CFD predictions which are used at different levels, from the evaluation of an idea to the design of a system, or for the analysing work on an existing building....

  19. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    International Nuclear Information System (INIS)

    Ramirez-Munoz, J.; Salinas-Rodriguez, E.; Soria, A.; Gama-Goicochea, A.

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. → The leading bubble wake decreases the drag on the trailing bubble. → A new semi-analytical model for the trailing bubble's drag is presented. → The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 ≤ Re ≤ 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 ≤ Er ≤ 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  20. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  1. Validation of NEPTUNE-CFD two-phase flow models using experimental data

    International Nuclear Information System (INIS)

    Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent

    2014-01-01

    This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)

  2. Improvement of AEP Predictions Using Diurnal CFD Modelling with Site-Specific Stability Weightings Provided from Mesoscale Simulation

    International Nuclear Information System (INIS)

    Hristov, Y; Oxley, G; Žagar, M

    2014-01-01

    The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-ε turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies

  3. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  4. CFD simulation of crossflow mixing in a rod bundle with mixing blades

    International Nuclear Information System (INIS)

    In, W. K.

    1999-01-01

    A CFD model was developed in this study to simulate the crossflow mixing in a 4x4 square array rod bundle caused by ripped-open blades. The central subchannel and adjacent subchannels of one grid span were modeled using flow symmetry. The lateral velocity pattern within the central subchannel, lateral velocity and the turbulence intensity in the rod gap region were predicted by the CFD method, and the predictions were compared with the measurements. The CFD simulation shows a vortex flow around the fuel rod caused by a pair of blades, which is consistent with the experimental results. The CFD predictions of the lateral velocity on the mixing sections show a near symmetric profile, but the measurements present an asymmetric velocity profile leading to an inversion of lateral velocity. The predicted mixing rate between the central subchannel and the adjacent subchannels reasonably agrees with the measured one. The CFD prediction shows a parabolic distribution of the RMS velocity but the measured one shows a rather flat distribution near the blade that develops to a parabolic distribution far downstream (L=29De). The predicted average RMS velocity on a mixing section is also slightly lower than the measured one. This study confirmed that the CFD simulation can present the effect of the ripped-open blades on the crossflow mixing in a rod bundle well

  5. Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction

    Science.gov (United States)

    DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger

    2011-01-01

    A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

  6. Summary of the Blind Test Campaign to predict the High Reynolds number performance of DU00-W-210 airfoil

    DEFF Research Database (Denmark)

    Yilmaz, Özlem Ceyhan; Pires, Oscar; Munduate, Xabier

    2017-01-01

    This paper summarizes the results of a blind test campaign organized in the AVATAR project to predict the high Reynolds number performance of a wind turbine airfoil for wind turbine applications. The DU00-W-210 airfoil was tested in the DNW-HDG pressurized wind tunnel in order to investigate...... the flow at high Reynolds number range from 3 to 15 million which is the operating condition of the future large 10MW+ offshore wind turbine rotors. The results of the experiment was used in a blind test campaign to test the prediction capability of the CFD tools used in the wind turbine rotor simulations....... As a result of the blind test campaign it was found that although the codes are in general capable of predicting increased max lift and decreased minimum drag with Re number, the Re trend predictions in particular the glide ratio (lift over drag) need further improvement. In addition to that, the significant...

  7. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Science.gov (United States)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  8. Resolvent-based feedback control for turbulent friction drag reduction

    Science.gov (United States)

    Kawagoe, Aika; Nakashima, Satoshi; Luhar, Mitul; Fukagata, Koji

    2017-11-01

    Suboptimal control for turbulent friction drag reduction has been studied extensively. Nakashima et al. (accepted) extended resolvent analysis to suboptimal control, and for the control where the streamwise wall shear stress is used as an input (Case ST), they revealed the control effect across spectral space is mixed: there are regions of drag increase as well as reduction. This suggests that control performance may be improved if the control is applied for selective wavelengths, or if a new law is designed to suppress the spectral region leading to drag increase. In the present study, we first assess the effect of suboptimal control for selective wavelengths via DNS. The friction Reynolds number is set at 180. For Case ST, resolvent analysis predicts drag reduction at long streamwise wavelengths. DNS with control applied only for this spectral region, however, did not result in drag reduction. Then, we seek an effective control law using resolvent analysis and propose a new law. DNS results for this law are consistent with predictions from resolvent analysis, and about 10% drag reduction is attained. Further, we discuss how this law reduces the drag from a dynamical and theoretical point of view. This work was supported through Grant-in-Aid for Scientic Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  9. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  10. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  11. Drag Reduction of an Airfoil Using Deep Learning

    Science.gov (United States)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  12. Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow

    Science.gov (United States)

    Tucker, P. Kevin

    1993-01-01

    The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.

  13. Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling and experimental measurement

    International Nuclear Information System (INIS)

    Gubba, S.R.; Ingham, D.B.; Larsen, K.J.; Ma, L.; Pourkashanian, M.; Qian, X.; Williams, A.; Yan, Y.

    2012-01-01

    Recent national and international emission legislations to reduce emissions of carbon dioxide are forcing power generation industries using coal to look at various alternatives, such as biomass and especially by co-firing techniques. Biomass is transported to the burners either mixed with the primary fuel, in general, coal, or used in dedicated pipelines. In both cases, transportation of biomass is difficult due to its composition, size, shape and physical behaviour in comparison to the transportation of coal. This study considers experimental measurements for biomass particle transportation in a pipeline with a transverse elbow and compares the results with those using computation fluid dynamic (CFD) techniques. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered in the present investigation. The experimental work was performed using the dynamic changes in the electrostatic charges of biomass particles in conjunction with correlation signal processing techniques. The CFD simulations were performed by considering the effects of gravity, non-spherical drag (based on estimated shape factor), detailed information of the particle distribution, particle wall collisions and particle–particle interactions. Good quantitative and qualitative agreement was obtained between the CFD simulations and the experimental data. It is concluded that particle–particle interactions are of less importance if the mass loading ratio of particles to air is less than 0.03. -- Highlights: ► Dispersed biomass particle transportation is studied using experiments and CFD. ► Inclusion of asphericity in the drag model clearly demonstrated the improvements. ► Gravity effects are found to be important for correct particle distribution in pipe lines. ► Inter-particle collisions were less important for mass loading ratios <0.05 kg/kg.

  14. Investigation of Drag Force on Fibres of Bonded Spherical Elements using a Coupled CFD-DEM Approach

    DEFF Research Database (Denmark)

    Jensen, Anna Lyhne; Sørensen, Henrik; Rosendahl, Lasse Aistrup

    2016-01-01

    Clogging in wastewater pumps is often caused by flexible, stringy objects. Therefore, simulation of clogging effects in wastewater pumps entails simulation of such flexible objects and the interaction between these objects and fluid in the pump. Using a coupled CFD-DEM approach, the flexible obje...

  15. Measurement of drag and its cancellation

    Energy Technology Data Exchange (ETDEWEB)

    DeBra, D B; Conklin, J W, E-mail: johnwc@stanford.edu [Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035 (United States)

    2011-05-07

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  16. Measurement of drag and its cancellation

    International Nuclear Information System (INIS)

    DeBra, D B; Conklin, J W

    2011-01-01

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  17. Assessment of the CFD capabilities to predict aerodynamic flows in presence of VG arrays

    International Nuclear Information System (INIS)

    Manolesos, Marinos; Papadakis, Giorgos; Voutsinas, Spyros G

    2014-01-01

    Modelling of aerodynamic flows in the presence of vortex generators constitutes a big challenge for CFD due to the different scales involved. The present paper addresses this issue in terms of accuracy and cost. In the simple case of a VG pair placed on a flat plate with no streamwise pressure gradient, the option of fully resolving the VG and that of using the jBAY model are compared with measurements and other CFD simulations. Then the case of 3D separation control on a rectangular wing is considered and comparisons to measurements are performed. Although full resolution of the VGs improves accuracy, the vorticity production is still significantly underestimated, a fact linked with the incapacity of eddy viscosity models to predict vortex flows. It is found that the simulation of one VG pair with periodic side conditions gives fair predictions as long as the VGs keep the flow attached. At angles of attack where 3D separation occurs, this cost effective modelling approach is no longer valid and simulations should include the complete array of VGs. Stereo PIV data showed that close to the VGs (up to 37.2 VG heights downstream of the VGs) turbulent transport between the vortices is strong while further downstream (up to 47.2 heights) diffusion becomes dominant. The normal Reynolds stress distributions also indicate significant vortex wandering in both the normal and spanwise directions

  18. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  19. Computational fluid dynamic (CFD) analysis on ALUDRA SR-10 UAV with parachute recovery system

    Science.gov (United States)

    Saim, R.; Mohd, S.; Shamsudin, S. S.; Zulkifli, M. F.; Omar, Z.; Subari@Rahmat, Z.; Masrom, M. F. Mohd; Zaki, Y.

    2017-09-01

    In an operation, belly landing is mostly applied as recovery method especially on research Unmanned Aerial Vehicle (UAV) such as Aludra SR-10. This type of landing method may encounter tough landing on hard soil and gravel which create high impact load on the aircraft. The impact may cause structural or system damage which costly to be repaired. Nowadays, Parachute Recovery System (PRS) recently used in numerous different tasks such as landing purpose to replace belly landing technique. Parachute use in this system to slow down flying or falling UAV to a safe landing by opening the canopy to increase aerodynamic drag. This paper was described the Computational Fluid Dynamic (CFD) analysis on ALUDRA SR-10 model with two different conditions i.e. the UAV equipped with and without parachute in order to identify the changes of aerodynamic characteristics. This simulation studies using solid models of aircraft and hemisphere parachute and was carried out by using ANSYS 16.0 Fluent under steady and turbulent flow and was modelled using the k-epsilon (k-ε) turbulence model. This simulation was limited to determine the drag force and drag coefficient. The obtained result showed that implementation of parachute increase 0.25 drag coefficient of the aircraft that is from 0.93 to 1.18. Subsequent to the reduction of descent rate caused by the parachute, the drag force of the aircraft increase by 0.76N. These increasing of drag force of the aircraft will produce lower terminal velocity which is expected to reduce the impact force on the aircraft during landing.

  20. A 3-D CFD approach to the mechanistic prediction of forced convective critical heat flux at low quality

    International Nuclear Information System (INIS)

    Jean-Marie Le Corre; Cristina H Amon; Shi-Chune Yao

    2005-01-01

    Full text of publication follows: The prediction of the Critical Heat Flux (CHF) in a heat flux controlled boiling heat exchanger is important to assess the maximal thermal capability of the system. In the case of a nuclear reactor, CHF margin gain (using improved mixing vane grid design, for instance) can allow power up-rate and enhanced operating flexibility. In general, current nuclear core design procedures use quasi-1D approach to model the coolant thermal-hydraulic conditions within the fuel bundles coupled with fully empirical CHF prediction methods. In addition, several CHF mechanistic models have been developed in the past and coupled with 1D and quasi-1D thermal-hydraulic codes. These mechanistic models have demonstrated reasonable CHF prediction characteristics and, more remarkably, correct parametric trends over wide range of fluid conditions. However, since the phenomena leading to CHF are localized near the heater, models are needed to relate local quantities of interest to area-averaged quantities. As a consequence, large CHF prediction uncertainties may be introduced and 3D fluid characteristics (such as swirling flow) cannot be accounted properly. Therefore, a fully mechanistic approach to CHF prediction is, in general, not possible using the current approach. The development of CHF-enhanced fuel assembly designs requires the use of more advanced 3D coolant properties computations coupled with a CHF mechanistic modeling. In the present work, the commercial CFD code CFX-5 is used to compute 3D coolant conditions in a vertical heated tube with upward flow. Several CHF mechanistic models at low quality available in the literature are coupled with the CFD code by developing adequate models between local coolant properties and local parameters of interest to predict CHF. The prediction performances of these models are assessed using CHF databases available in the open literature and the 1995 CHF look-up table. Since CFD can reasonably capture 3D fluid

  1. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  2. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?

    Science.gov (United States)

    Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent

    2017-07-01

    Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    International Nuclear Information System (INIS)

    Gopala, Vinay Ramohalli; Lycklama a Nijeholt, Jan-Aiso; Bakker, Paul; Haverkate, Benno

    2011-01-01

    Research highlights: → This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. → The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. → The model is verified against an analytical solution and validated against the flowability tests for concrete. → Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. → The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid

  4. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  5. Recent developments in CFD and their impact on fuel assembly optimization

    International Nuclear Information System (INIS)

    Lascar, Celine; Alleborn, Norbert; Leberig, Mario; Jones, J.; Martin, M.

    2010-01-01

    In the recent past, progress in computer hardware and in Computational Fluid Dynamics (CFD) codes has made CFD attractive for thermal-hydraulic applications of the nuclear industry. Available code systems have a separated treatment of 1-phase and 2-phase CFD. While 1-phase phenomena (relevant for example to determine pressure losses in fuel assembly) can be reliably predicted with today's CFD programs, 2-phase CFD is still in the process of strong development in modeling 2- phase phenomena. AREVA NP is investing major efforts and resources (i) to develop knowledge and mastery of CFD models, their associated parameters, and the ranges of applications; (ii) to ensure validation of the in-house CFD codes and methodologies by gathering a large experimental databank; and (iii) to build state-ofthe- art tools and hardware to support this CFD development. All CFD work presented in this paper was performed with the commercial code STAR-CD. (orig.)

  6. Application of Simple CFD Models in Smoke Ventilation Design

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans

    2004-01-01

    The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...

  7. CFD prediction and simulation of a pumpjet propulsor

    Directory of Open Access Journals (Sweden)

    Lin Lu

    2016-01-01

    Full Text Available In this study an attempt has been made to study the hydrodynamic performance of pumpjet propulsor. Numerical investigation based on the Reynolds Averaged Navier–Stokes (RANS computational fluid dynamics (CFD method has been carried out. The structured grid and SST k–ω turbulence model have been applied. The numerical simulations of open water performance of marine propeller E779A are carried out with different advance ratios to verify the numerical simulation method. Results show that the thrust and the torque are in good agreements with experimental data. The grid independent inspection is applied to verify accuracy of numerical simulation grid. The numerical predictions of hydrodynamic performance of pumpjet propulsor are carried out with different advance ratios. Results indicate that the rotor provides the main thrust of propulsor and the balance performance of propulsor is generally satisfactory. Additionally, the curve of propulsor efficiency is in good agreement with experimental data. Furthermore, the pressure distributions around rotor and stator blades are reasonable. Beyond that, the existence of tip clearance accounts for the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon.

  8. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  9. Drag and Lift Estimation from 3-D Velocity Field Data Measured by Multi-Plane Stereo PIV

    OpenAIRE

    加藤, 裕之; 松島, 紀佐; 上野, 真; 小池, 俊輔; 渡辺, 重哉; Kato, Hiroyuki; Matsushima, Kisa; Ueno, Makoto; Koike, Shunsuke; Watanabe, Shigeya

    2013-01-01

    For airplane design, it is crucial to have tools that can accurately predict airplane drag and lift. Usually drag and lift prediction methods are force measurement using wind tunnel balance. Unfortunately, balance data do not provide information contribution of airplane to components to drag and lift for more precise and competitive airplane design. To obtain such information, a wake integration method for use drag and lift estimation was developed for use in wake survey data analysis. Wake s...

  10. Mixing and RTD in tanks: radiotracer experiments and CFD simulations

    International Nuclear Information System (INIS)

    Thatte, A.R.; Patwardhan, A.P.; Pant, H.J.; Sharma, V.K.; Gursharan Singh; Berne, Ph.

    2004-01-01

    The present work is directed towards exploring the possibility of developing a model for predicting the residence time distribution based on the actual flow and turbulence fields present within the reactor. In view of this, experiments have been carried out to characterize mixing processes in two different equipment: jet mixer and stirred tank reactor. CFD models have been developed to predict the mixing time and residence time distribution in these equipments. In all the case, it is observed that the CFD predictions agree well with the experimental measurements. (author)

  11. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations.

    Science.gov (United States)

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.

  12. 2D CFD Airfoil Analysis

    Science.gov (United States)

    Babb, Grace

    2017-11-01

    This work aims to produce a higher fidelity model of the blades for NASA's X-57 all electric propeller driven experimental aircraft. This model will, in turn, allow for more accurate calculations of the thrust each propeller can generate. This work uses computational fluid dynamics (CFD) to first analyze the propeller blades as a series of 11 differently shaped airfoils and calculate, among other things, the coefficients for lift and drag associated with each airfoil at different angles of attack. OpenFOAM-a C + + library that can be used to create series of applications for pre-processing, solving, and post-processing-is one of the primary tools utilized in these calculations. By comparing the data OpenFOAM generates about the NACA 23012 airfoil with existing experimental data about the NACA 23012 airfoil, the reliability of our model is measured and verified. A trustworthy model can then be used to generate more data and sent to NASA to aid in the design of the actual aircraft.

  13. Predictive Evaluations of Oxygen-Rich Hydrocarbon Combustion Gas-Centered Swirl Coaxial Injectors using a Flamelet-Based 3-D CFD Simulation Approach

    Science.gov (United States)

    Richardson, Brian R.; Braman, Kalem; West, Jeff

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has embarked upon a joint project with the Air Force to improve the state-of-the-art of space application combustion device design and operational understanding. One goal of the project is to design, build and hot-fire test a 40,000 pound-thrust Oxygen/Rocket Propellant-2 (RP-2) Oxygen-Rich staged engine at MSFC. The overall project goals afford the opportunity to test multiple different injector designs and experimentally evaluate the any effect on the engine performance and combustion dynamics. To maximize the available test resources and benefits, pre-test, combusting flow, Computational Fluid Dynamics (CFD) analysis was performed on the individual injectors to guide the design. The results of the CFD analysis were used to design the injectors for specific, targeted fluid dynamic features and the analysis results also provided some predictive input for acoustic and thermal analysis of the main Thrust Chamber Assembly (TCA). MSFC has developed and demonstrated the ability to utilize a computationally efficient, flamelet-based combustion model to guide the pre-test design of single-element Gas Centered Swirl Coaxial (GCSC) injectors. Previous, Oxygen/RP-2 simulation models utilizing the Loci-STREAM flow solver, were validated using single injector test data from the EC-1 Air Force test facility. The simulation effort herein is an extension of the validated, CFD driven, single-injector design approach applied to single injectors which will be part of a larger engine array. Time-accurate, Three-Dimensional, CFD simulations were performed for five different classes of injector geometries. Simulations were performed to guide the design of the injector to achieve a variety of intended performance goals. For example, two GCSC injectors were designed to achieve stable hydrodynamic behavior of the propellant circuits while providing the largest thermal margin possible within the design envelope. While another injector was designed

  14. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    Energy Technology Data Exchange (ETDEWEB)

    Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  15. Atomistically informed solute drag in Al–Mg

    International Nuclear Information System (INIS)

    Zhang, F; Curtin, W A

    2008-01-01

    Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al–Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls–Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls–Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress–velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al–Mg alloys over a range of concentrations and temperatures

  16. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    Science.gov (United States)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  17. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  18. Dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  19. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    Science.gov (United States)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  20. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    Science.gov (United States)

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  1. CFD analysis of ejector in a combined ejector cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Rusly, E.; Aye, Lu [International Technologies Centre (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Melbourne, Vic. 3010 (Australia); Charters, W.W.S.; Ooi, A. [Department of Mechanical and Manufacturing Engineering, The University of Melbourne, Melbourne, Vic. 3010 (Australia)

    2005-11-01

    One-dimensional ejector analyses often use coefficients derived from experimental data for a set of operating conditions with limited functionality. In this study, several ejector designs were modelled using finite volume CFD techniques to resolve the flow dynamics in the ejectors. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance outside the experimental range were also carried out. During validation, data from CFD predicted the entrainment ratios with greater accuracy on definite area ratios, although no shock was recorded in the ejector. Predictions outside the experimental range-at operating conditions in a combined ejector-vapour compression system-and flow conditions resulting from ejector geometry variations are discussed. It is found that the maximum entrainment ratio happens in the ejector just before a shock occurs and that the position of the nozzle is an important ejector design parameter. (author)

  2. Validation of CFD predictions using process data obtained from flow through an industrial control valve

    International Nuclear Information System (INIS)

    Green, J; Mishra, R; Charlton, M; Owen, R

    2012-01-01

    This study uses the experimental flow test data to validate CFD simulations for a complex control valve trim. In both the simulation and the experimental flow test the capacity of the trim (Cv) is calculated in order to test the ability of CFD software to provide a design tool for these trims. While CFD tests produced results for the capacity which were consistent across a series of five different simulations, it differed from the experimental flow data by nearly 25%. This indicates that CFD simulations need to be properly calibrated before being used in designing complex valve trims.

  3. Study of tip loss corrections using CFD rotor computations

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2014-01-01

    Tip loss correction is known to play an important role for engineering prediction of wind turbine performance. There are two different types of tip loss corrections: tip corrections on momentum theory and tip corrections on airfoil data. In this paper, we study the latter using detailed CFD...... computations for wind turbines with sharp tip. Using the technique of determination of angle of attack and the CFD results for a NordTank 500 kW rotor, airfoil data are extracted and a new tip loss function on airfoil data is derived. To validate, BEM computations with the new tip loss function are carried out...... and compared with CFD results for the NordTank 500 kW turbine and the NREL 5 MW turbine. Comparisons show that BEM with the new tip loss function can predict correctly the loading near the blade tip....

  4. Separability of drag and thrust in undulatory animals and machines

    Science.gov (United States)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  5. Racializing white drag.

    Science.gov (United States)

    Rhyne, Ragan

    2004-01-01

    While drag is primarily understood as a performance of gender, other performative categories such as race, class, and sexuality create drag meaning as well. Though other categories of identification are increasingly understood as essential elements of drag by performers of color, whiteness remains an unmarked category in the scholarship on drag performances by white queens. In this paper, I argue that drag by white queens must be understood as a performance of race as well as gender and that codes of gender excess are specifically constructed through the framework of these other axes of identity. This essay asks whether white performance by white queens necessarily reinscribes white supremacy through the performance of an unmarked white femininity, or might drag performance complicate (though not necessarily subvert) categories of race as well as gender? In this essay, I will suggest that camp drag performances, through the deployment of class as a crucial category of performative femininity, might indeed be a key site through which whiteness is denaturalized and its power challenged. Specifically, I will read on camp as a politicized mode of race, class and gender performance, focusing on the intersections of these categories of identity in the drag performance of Divine.

  6. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  7. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  8. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  9. Prediction and validation of pool fire development in enclosures by means of CFD (Poolfire) Report - Year 1

    Energy Technology Data Exchange (ETDEWEB)

    van Hees, P.; Wahlqvist, J. (Lund Univ., Lund (Sweden)); Hostikka, S.; Sikanen, T. (VTT Technical Research Centre of Finland (Finland)); Husted, B. (Haugesund College, Stord (Norway)); Magnusson, T. (Ringhals AB, Vaeroebacka (Sweden)); Joerud, F. (Oskarshamn Kraftgrupp AB, Oskarshamn (Sweden))

    2012-02-15

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In the this first year report the literature review conducted within the project is reported as well as the first tasks in the evaluation and modelling of the new model. (Author)

  10. Prediction and validation of pool fire development in enclosures by means of CFD (Poolfire) Report - Year 1

    International Nuclear Information System (INIS)

    van Hees, P.; Wahlqvist, J.; Hostikka, S.; Sikanen, T.; Husted, B.; Magnusson, T.; Joerud, F.

    2012-01-01

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In the this first year report the literature review conducted within the project is reported as well as the first tasks in the evaluation and modelling of the new model. (Author)

  11. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  12. Prediction and evaluation method of wind environment in the early design stage using BIM-based CFD simulation

    International Nuclear Information System (INIS)

    Lee, Sumi; Song, Doosam

    2010-01-01

    Drastic urbanization and manhattanization are causing various problems in wind environment. This study suggests a CFD simulation method to evaluate wind environment in the early design stage of high-rise buildings. The CFD simulation of this study is not a traditional in-depth simulation, but a method to immediately evaluate wind environment for each design alternative and provide guidelines for design modification. Thus, the CFD simulation of this study to evaluate wind environments uses BIM-based CFD tools to utilize building models in the design stage. This study examined previous criteria to evaluate wind environment for pedestrians around buildings and selected evaluation criteria applicable to the CFD simulation method of this study. Furthermore, proper mesh generation method and CPU time were reviewed to find a meaningful CFD simulation result for determining optimal design alternative from the perspective of wind environment in the design stage. In addition, this study is to suggest a wind environment evaluation method through a BIM-based CFD simulation.

  13. CFD analysis on heat transfer in low Prandtl number fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)

    2011-07-01

    Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)

  14. On the Minimum Induced Drag of Wings -or- Thinking Outside the Box

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  15. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  16. On the variability of sea drag in finite water depth

    Science.gov (United States)

    Toffoli, A.; Loffredo, L.; Le Roy, P.; LefèVre, J.-M.; Babanin, A. V.

    2012-11-01

    The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.

  17. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    Science.gov (United States)

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    ) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization both in 2-D and 1-D was undertaken. Results suggest that the iCFD model developed for the SST through the proposed methodology is able to predict solid distribution with high accuracy - taking a reasonable computational effort - when compared to multi-dimensional numerical experiments, under a wide range of flow and design conditions. iCFD tools could play a crucial role in reliably predicting systems' performance under normal and shock events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, Peter Vilhelm; Bjerg, Bjarne Schmidt

    2016-01-01

    scale pig barns was simulated to show the procedures of validating a CFD simulation in livestock buildings. After summarizing the guideline and/or best practice for CFD modeling, the authors addressed the issues related to numerical methods and the governing equations, which were limited to RANS models....... Although it is not necessary to maintain the same format of reporting the CFD modeling as presented in this paper, the authors would suggest including all the information related to the selection of turbulence models, difference schemes, convergence criteria, boundary conditions, geometry simplification......, simulating domain etc. This information is particularly important for the readers to evaluate the quality of the CFD simulation results....

  19. On the Fetch Dependent Drag Coefficient over Coastal and Inland Seas

    DEFF Research Database (Denmark)

    Geernaert, G. L.; Smith, J. A.

    a maximum when the phase speed of the dominant wind wave has a value near 7 u*, where u* is the friction velocity. This corresponds to a maximum near 2 km fetch during moderate windspeed, and the maximum value of the drag coefficient corresponds to an increased fetch of 13 km for windspeeds of 20 m/sec. We......The drag coefficient has been postulated by many investigators to depend on fetch. For constant windspeed and stability, laboratory data generally show an increasing drag coefficient with fetch while field observations show a decreasing dependence. In this study, we show that if one combines...... the spectral form of the roughness length proposed by Kitaigorodskii with the JONSWAP wave spectrum and extrapolate to very short fetch, then the predicted drag coefficient exhibits a behaviour which coarsely reproduces field and laboratory observations. The results indicate that the drag coefficient exhibits...

  20. User-Dependent CFD Predictions of a Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue

    2015-01-01

    The backward-facing step flow with an expansion ratio of 5 has been modelled by 19 teams without benchmark solution or experimental data. Different CFD codes, turbulence models, boundary conditions, numerical schemes and convergent criteria are adopted based on the participants’ own experience...

  1. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.

    2016-12-15

    Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions

  2. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    International Nuclear Information System (INIS)

    Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.

    2008-01-01

    Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling

  3. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  4. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  5. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  6. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    International Nuclear Information System (INIS)

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  7. Measurement and CFD calculation of spacer loss coefficient for a tight-lattice fuel bundle

    International Nuclear Information System (INIS)

    In, Wang Kee; Shin, Chang Hwan; Kwack, Young Kyun; Lee, Chi Young

    2015-01-01

    Highlights: • Experiment and CFD analysis evaluated the pressure drop in a spacer grid. • The measurement and CFD errors for the spacer loss coefficient were estimated. • The spacer loss coefficient for the dual-cooled annular fuel bundle was determined. • The CFD prediction agrees with the measured spacer loss coefficient within 8%. - Abstract: An experiment and computational fluid dynamics (CFD) analysis were performed to evaluate the pressure drop in a spacer grid for a dual-cooled annular fuel (DCAF) bundle. The DCAF bundle for the Korean optimum power reactor (OPR1000) is a 12 × 12 tight-lattice rod array with a pitch-to-diameter ratio of 1.08 owing to a larger outer diameter of the annular fuel rod. An experiment was conducted to measure the pressure drop in spacer grid for the DCAF bundle. The test bundle is a full-size 12 × 12 rod bundle with 11 spacer grid. The test condition covers a Reynolds number range of 2 × 10 4 –2 × 10 5 by changing the temperature and flow rate of water. A CFD analysis was also performed to predict the pressure drop through a spacer grid using the full-size and partial bundle models. The pressure drop and loss coefficient of a spacer grid were predicted and compared with the experimental results. The CFD predictions of spacer pressure drop and loss coefficient agree with the measured values within 8%. The spacer loss coefficient for the DCAF bundle is estimated to be approximately 1.50 at a nominal operating condition of OPR1000, i.e., Re = 4 × 10 5

  8. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  9. Prediction of dosage-based parameters from the puff dispersion of airborne materials in urban environments using the CFD-RANS methodology

    Science.gov (United States)

    Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.

    2018-02-01

    One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict dosage-based parameters from the puff release of an airborne material from a point source in the atmospheric boundary layer inside the built-up area. The present work addresses the question of whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict ensemble-average dosage-based parameters that are related with the puff dispersion. RANS simulations with the ADREA-HF code were, therefore, performed, where a single puff was released in each case. The present method is validated against the data sets from two wind-tunnel experiments. In each experiment, more than 200 puffs were released from which ensemble-averaged dosage-based parameters were calculated and compared to the model's predictions. The performance of the model was evaluated using scatter plots and three validation metrics: fractional bias, normalized mean square error, and factor of two. The model presented a better performance for the temporal parameters (i.e., ensemble-average times of puff arrival, peak, leaving, duration, ascent, and descent) than for the ensemble-average dosage and peak concentration. The majority of the obtained values of validation metrics were inside established acceptance limits. Based on the obtained model performance indices, the CFD-RANS methodology as implemented in the code ADREA-HF is able to predict the ensemble-average temporal quantities related to transient emissions of airborne material in urban areas within the range of the model performance acceptance criteria established in the literature. The CFD-RANS methodology as implemented in the code ADREA-HF is also able to predict the ensemble-average dosage, but the dosage results should be treated with some caution; as in one case, the observed ensemble-average dosage was under-estimated slightly more than the acceptance criteria. Ensemble

  10. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  11. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.

    Science.gov (United States)

    Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad

    2018-02-15

    One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug

  12. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  13. On the Effect of Rigid Swept Surface Waves on Turbulent Drag

    Science.gov (United States)

    Denison, M.; Wilkinson, S. P.; Balakumar, P.

    2015-01-01

    Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.

  14. Self-determined shapes and velocities of giant near-zero drag gas cavities

    KAUST Repository

    Vakarelski, Ivan Uriev

    2017-09-09

    Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than Embedded Image those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities.

  15. Studies of Aerodynamic Drag.

    Science.gov (United States)

    1982-12-01

    31. Strouhal number vs Reynolds number - Effect of Wind tunnel Blockage. 150- P ecrit 100- 50k- o present d Qta o Mitry (1977) --Shair et ati (1963) 0...forces measured by the balance. 4.12 Final Tests A comprehensive set of drag measurements was taken with the new drag plates, the drag plates being

  16. Proceedings of the workshop on Benchmarking of CFD Codes for Application to Nuclear Reactor Safety (CFD4NRS)

    International Nuclear Information System (INIS)

    2007-01-01

    -film/wire anemometry, particle image velocimetry, laser induced fluorescence, etc. A particular point of scrutiny for papers in this category was whether an assessment of error bounds and measurement uncertainties was included. There were 98 registered participants to the workshop to hear 5 invited talks and 39 technical papers. It was pointed out that 2/3 of the papers accepted for CFD4NRS were concerned with single-phase calculations and experiments, while 1/3 were dedicated to multi-phase issues. The ratio probably reflects the degree of maturity of CFD in the respective areas, but nonetheless suggests a growing acknowledgement of the role of multi-phase CFD in nuclear NRS issues. Clear recommendations to come out of the workshop for the continuing use of CFD methods in NRS issues are listed below: - Best Practice Guidelines should be followed as far as practical to ensure that CFD simulation results are free of numerical errors, and that the physical models employed are well validated against data appropriate to the flow regimes and physical phenomena being investigated. - Experimental data used for code validation should include estimates of measurement uncertainties, and should include detailed information concerning initial and boundary conditions. - Experimenters involved in producing data for validating CFD models and/or applications should collaborate actively with CFD practitioners in advance of setting up their instrumentation. This interface is vital in ensuring that the information needed to set up the CFD simulation will actually be available, the selection of 'target variables' (i.e. the most significant measurements against which to compare code predictions) is optimal, and the frequency of data acquisition is appropriate to the time-scale(s) of significant fluid-dynamic/heat-transfer/phase-exchange events. - This workshop proved to be a very valuable means to assess the status of CFD code validation and application

  17. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Manisha Bal

    2017-12-01

    Full Text Available The filtered containment venting system (FCVS is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD has been used to predict the hydrodynamic behaviour of a newly designed venturi scrubber. Mesh was developed by gambit 2.4.6 and ansys fluent 15 has been used to predict the pressure drop profile inside the venturi scrubber under various flow conditions. The Reynolds Renormalization Group (RNG k-ε turbulence model and the volume of the fluid (VOF were employed for this simulation. The effect of throat gas velocity, liquid mass flow rate, and liquid loading on pressure drop was studied. Maximum pressure drop 2064.34 pa was achieved at the throat gas velocity of 60 m/s and liquid flow rate of 0.033 kg/s and minimum pressure drop 373.51 pa was achieved at the throat gas velocity of 24 m/s and liquid flow rate of 0.016 kg/s. The results of the present study will assist for proper functioning of venturi scrubber. Keywords: Venturi scrubber, Hydrodynamics, Pressure drop, Computational fluid dynamics, Nuclear power plant safety, Flow prediction

  18. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  19. The difference between traditional experiments and CFD validation benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton L., E-mail: barton.smith@usu.edu

    2017-02-15

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  20. The difference between traditional experiments and CFD validation benchmark experiments

    International Nuclear Information System (INIS)

    Smith, Barton L.

    2017-01-01

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  1. Development of a three-dimensional CFD model for rotary lime kilns

    Energy Technology Data Exchange (ETDEWEB)

    Lixin Tao; Blom, Roger (FS Dynamics Sweden AB, Goeteborg (Sweden)); Nordgren, Daniel (Innventia, Stockholm (Sweden))

    2010-11-15

    In the calcium loop of the recovery cycle in a Kraft process of pulp and paper production, rotary lime kilns are used to convert the lime mud, mainly CaCO3, back to quick lime, CaO, for re-use in the causticizing process. The lime kilns are one of the major energy consumption devices for paper and pulp industry. Because of the rising oil price and new emission limits, the pulp mills have been forced to look for alternative fuels for their lime kilns. One interesting alternative to oil, often easily available at pulp mills, is biofuels such as sawdust and bark. However the practical kiln operation often encounters some difficulties because of the uncertainties around the biofuel impact on the lime kiln performance. A deeper understanding of the flame characteristics is required when shifting from oil to biofuels. Fortunately recent advances in modern Computational Fluid Dynamics, CFD, have provided the possibility to study and predict the detailed flame characteristics regarding the lime kiln performance. In this project a three-dimensional CFD model for rotary lime kilns has been developed. To simulate a rotary lime kiln the developed CFD model integrates the three essential sub-models, i.e. the freeboard hot flow model, the lime bed model and the rotating refractory wall model and it is developed based on the modern CFD package: FLUENT which is commercially available on the market. The numerical simulations using the developed CFD model have been performed for three selected kiln operations fired with three different fuel mixtures. The predicted results from the CFD modelling are presented and discussed in order to compare the impacts on the kiln performance due to the different firing conditions. During the development, the lime kiln at the Soedra Cell Moensteraas mill has been used as reference kiln. To validate the CFD model, in-plant measurements were carried out in the Moensteraas lime kiln during an experiment campaign. The results obtained from the

  2. Flask fluid flow simulation using CFD

    International Nuclear Information System (INIS)

    Swindlehurst, W.E.; Livesey, E.; Worthington, D.

    1989-01-01

    BNFL and its subsidiary Company, PNTL, design and operate waterfilled LWR fuel transport flasks for the international transport of irradiated fuel. Although some 150 flasks are currently in operation, new flask designs are being developed. As part of the supporting R and D program, Computational Fluid Dynamics (CFD) codes are being investigated as a means of predicting fluid movements and temperatures within the complex internal geometry of flasks. The ability to simulate fluid flow is particularly important when convection heat transfer is significant. Although obviously relevant to water filled flasks, the technique is applicable to dry flask thermal assessments (where experience shows that convection heat transfer is often underestimated). Computational Fluid Dynamics has emerged in recent years as an important technique in engineering design and safety assessments. Cheaper computing and the development of general CFD codes allows complex engineering structures to be analyzed. However, because of this complexity, it is essential that the application and associated modeling assumptions are critically reviewed. To assess the ability of a CFD code to model flask internals, the code PHOENICS has been used to model the fluid movements in a BNFL Excellox-type flask and the results compared with test data

  3. Dicty_cDB: CFD492 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CF (Link to library) CFD492 (Link to dictyBase) - - - Contig-U10808-1 CFD492P (Link to Original site) CFD492...F 583 CFD492Z 527 CFD492P 1110 - - Show CFD492 Library CF (Link to library) Clone ID CFD492...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CF/CFD4-D/CFD492Q.Seq.d/ Representative seq. ID CFD492...P (Link to Original site) Representative DNA sequence >CFD492 (CFD492Q) /CSM/CF/CFD4-D/CFD492...omology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CFD492 (CFD492

  4. Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2016-12-01

    Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.

  5. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  6. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    Science.gov (United States)

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.

  7. Experimental and CFD investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy

    Reliable and accurate modeling capabilities for combustion systems are valuable tools for optimization of the combustion process. This work concerns primary precautions for reducing NO emissions, thereby abating the detrimental effects known as “acid rain”, and minimizing cost for flue gas...... treatment. The aim of this project is to provide validation data for Computational Fluid Dynamic (CFD) models relevant for grate firing combustion conditions. CFD modeling is a mathematical tool capable of predicting fluid flow, mixing and chemical reaction with thermal conversion and transport. Prediction......, but under well-defined conditions. Comprehensive experimental data for velocity field, temperatures, and gas composition are obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. Ammonia is added to the combustion setup in order to simulate fuel...

  8. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  9. Eleventh annual conference of the CFD Society of Canada (CFD 2003). Proceedings

    International Nuclear Information System (INIS)

    Ollivier-Gooch, C.

    2003-01-01

    The Eleventh Annual Conference of the CFD Society of Canada, CFD 2003, was held in Vancouver, British Columbia from May 28-30, 2003. The conference was attended by 125 delegates from twelve countries. In addition to traditional CFD applications in vehicle aerodynamics and turbulent flow, the conference also showcased a number of less traditional application areas, including fuel cells, biofluids, multi-phase flows, and flows in porous media

  10. 3D CFD Modeling of the LMF System: Desulfurization Kinetics

    Science.gov (United States)

    Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert

    A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.

  11. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  12. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  13. Simulation of steady-state natural convection using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Zitzmann, T.; Pfrommer, P. [Univ. of Applied Sciences, Coberg (Germany); Cook, M.; Rees, S.; Marjanovic, L. [De Montfort Univ., Leicester (United Kingdom). Inst. of Energy and Sustainable Development

    2005-07-01

    Building materials play an important role in the creation of comfortable indoor environments and can reduce dependence on high energy use mechanical systems. Correct predictions between building structure and heat transfer are needed in order to achieve optimal conditions. Heat transfer is dependent on the velocity and temperature distribution in a room, particularly in the wall boundary layer. This paper discussed the modeling of air flow and heat transfer over a heated vertical plate in a differentially-heated cavity using Computational Fluid Dynamics (CFD). Guidelines on the use of CFD with unstructured meshes to model buoyancy-driven flow in a cavity were presented. Benchmark CFD results were compared with published analytical data. The finite volume method was employed using an unstructured mesh containing tetrahedral and prism elements, so that local numerical diffusion was reduced and therefore suitable for complex flows. The code was based on a couple solver for solving the differential equations using the fully implicit discretization method. Hydrodynamic equations were treated as one single system. A false time stepping method was used to reduce the number of iterations required for convergence, which also guided the solutions to a steady-state solution. It was concluded that the methodology achieves accurate predictions, and is suitable for the modeling of heat transfer optimizations. 13 refs., 7 figs.

  14. A CFD model for pollutant dispersion in rivers

    Directory of Open Access Journals (Sweden)

    Modenesi K.

    2004-01-01

    Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.

  15. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.

    Science.gov (United States)

    de Boer, Anne H; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    2012-09-01

    To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer™ dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Comparison of predicted flow and particle behaviour from CFD computations with experimental data obtained with cascade impactor and laser diffraction analysis. Inhaler resistance, flow split, particle trajectories and particle residence times can well be predicted with CFD for a multiple classifier based inhaler like the Twincer™. CFD computations showed that the flow split of the Twincer™ is independent of the pressure drop across the inhaler and that the total flow rate can be decreased without affecting the dispersion efficacy or retention behaviour. They also showed that classifier symmetry can be improved by reducing the resistance of one of the classifier bypass channels, which for the current concept does not contribute to the swirl in the classifier chamber. CFD is a highly valuable tool for development and optimisation of dry powder inhalers. CFD can assist adapting the inhaler design to specific physico-chemical properties of the drug formulation with respect to dispersion and retention behaviour. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  16. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    Science.gov (United States)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  17. Numerical prediction of forces for turbulent flow around a ship rudder

    International Nuclear Information System (INIS)

    Rafi, H.; Raza, A.; Bilal, S.; Zahir, S.; Khan, M.A.

    2004-01-01

    The three dimensional Navier Stokes equations with the standard k-epsilon turbulence model are solved for incompressible turbulent flows around the ship rudder placed in a uniform flow. The solution was obtained using second order high-resolution advection scheme on an unstructured grid. A wall function is used for realizing the no slip condition at walls. Computations were performed on a rudder at two different Reynolds numbers with angle of attack ranging from 0 to 26 degrees. The present results are compared as CFD-Experimental and CFD-CFD in the form of lift and drag coefficients for different degrees of deflection and are in good agreement with the experimental measurements and with the other author's computational results. The calculated stall angles and maximum lift at stall angles are slightly smaller as compared to experimental results. (author)

  18. Air Layer Drag Reduction

    Science.gov (United States)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  19. Assessment of computational fluid dynamics (CFD) for nuclear reactor safety problems

    International Nuclear Information System (INIS)

    Smith, B. L.; Andreani, M.; Bieder, U.; Bestion, D.; Ducros, F.; Graffard, E.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Hoehne, T.; Rohde, U.; Lucas, D.; Komen, E.; Houkema, M.; Mahaffy, J.; Moretti, F.; Morii, T.; Muehlbauer, P.; Song, C.H.; Zigh, G.; Menter, F.; Watanabe, T.

    2008-01-01

    The basic objective of the present work was to provide documented evidence of the need to perform CFD simulations in Nuclear Reactor Safety (NRS), concentrating on single-phase applications, and to assess the competence of the present generation of CFD codes to perform these simulations reliably. The fulfilling of this objective involves multiple tasks, summarized as: to provide a classification of NRS problems requiring CFD analysis, to identify and catalogue existing CFD assessment bases, to identify shortcomings in CFD approaches, to put into place a means for extending the CFD assessment database, with an emphasis on NRS applications. The resulting document is presented here. After some introductory remarks, chapter 3 lists twenty-two NRS issues for which it is considered that the application of CFD would bring real benefits in terms of better predictive capability. This classification is followed by a short description of the safety issue, a state-of-the-art summary of what has been attempted, and what is still needed to be done to improve reliability. Chapter 4 details the assessment bases that have already been established in both the nuclear and non-nuclear domains, and discusses the usefulness and relevance of the work to NRS applications, where appropriate. This information is augmented in Chapter 5 by descriptions of the existing CFD assessment bases that have been established around specific, NRS problems. Typical examples are experiments devoted to the boron dilution issue, pressurised thermal shock, and thermal fatigue in pipes. Chapter 6 is devoted to identifying the technology gaps which need to be closed to make CFD a more trustworthy analytical tool. Some deficiencies identified are lack of a Phenomenon Identification and Ranking Table (PIRT), limitations in the range of application of turbulence models, coupling of CFD with neutronics and system codes, and computer power limitations. Most CFD codes currently being used have their own, custom

  20. Analysis of Satellite Drag Coefficient Based on Wavelet Transform

    Science.gov (United States)

    Liu, Wei; Wang, Ronglan; Liu, Siqing

    Abstract: Drag coefficient sequence was obtained by solving Tiangong1 continuous 55days GPS orbit data with different arc length. The same period solar flux f10.7 and geomagnetic index Ap ap series were high and low frequency multi-wavelet decomposition. Statistical analysis results of the layers sliding correlation between space environmental parameters and decomposition of Cd, showed that the satellite drag coefficient sequence after wavelet decomposition and the corresponding level of f10.7 Ap sequence with good lag correlation. It also verified that the Cd prediction is feasible. Prediction residuals of Cd with different regression models and different sample length were analysed. The results showed that the case was best when setting sample length 20 days and f10.7 regression model were used. It also showed that NRLMSIS-00 model's response in the region of 350km (Tiangong's altitude) and low-middle latitude (Tiangong's inclination) is excessive in ascent stage of geomagnetic activity Ap and is inadequate during fall off segment. Additionally, the low-frequency decomposition components NRLMSIS-00 model's response is appropriate in f10.7 rising segment. High frequency decomposition section, Showed NRLMSIS-00 model's response is small-scale inadequate during f10.7 ascent segment and is reverse in decline of f10.7. Finally, the potential use of a summary and outlook were listed; This method has an important reference value to improve the spacecraft orbit prediction accuracy. Key words: wavelet transform; drag coefficient; lag correlation; Tiangong1;space environment

  1. Control of the electromagnetic drag using fluctuating light fields

    Science.gov (United States)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  2. Aerodynamic drag on intermodal railcars

    Science.gov (United States)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  3. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  4. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  5. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction

    Science.gov (United States)

    Elbing, Brian R.; Winkel, Eric S.; Lay, Keary A.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0msinitial zone1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.

  6. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  7. Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics.

    Science.gov (United States)

    Shekhawat, Lalita Kanwar; Sarkar, Jayati; Gupta, Rachit; Hadpe, Sandeep; Rathore, Anurag S

    2018-02-10

    Centrifugation continues to be one of the most commonly used unit operations for achieving efficient harvest of the product from the mammalian cell culture broth during production of therapeutic monoclonal antibodies (mAbs). Since the mammalian cells are known to be shear sensitive, optimal performance of the centrifuge requires a balance between productivity and shear. In this study, Computational Fluid Dynamics (CFD) has been successfully used as a tool to facilitate efficient optimization. Multiphase Eulerian-Eulerian model coupled with Gidaspow drag model along with Eulerian-Eulerian k-ε mixture turbulence model have been used to quantify the complex hydrodynamics of the centrifuge and thus evaluate the turbulent stresses generated by the centrifugal forces. An empirical model has been developed by statistical analysis of experimentally observed cell lysis data as a function of turbulent stresses. An operating window that offers the optimal balance between high productivity, high separation efficiency, and low cell damage has been identified by use of CFD modeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    Science.gov (United States)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  9. Drag Coefficient Estimation in Orbit Determination

    Science.gov (United States)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  10. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    OpenAIRE

    Vincent Casseau; Rodrigo C. Palharini; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    A two-temperature CFD (computational fluid dynamics) solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrat...

  11. An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation

    International Nuclear Information System (INIS)

    Besagni, Giorgio; Mereu, Riccardo; Chiesa, Paolo; Inzoli, Fabio

    2015-01-01

    Highlights: • We validate a CFD approach for a convergent nozzle ejector using global and local measurement. • We evaluate seven RANS turbulence models for convergent nozzle ejector. • We introduce a lumped parameter model for on-design and off-design ejector performance evaluation. • We analyze the relationship between local flow behavior and lumped parameters of the model. • We discuss how to improve predicting capabilities of the model by variable parameters calibrated on CFD simulations. - Abstract: This paper presents an Integrated Lumped Parameter Model-Computational Fluid-Dynamics approach for off-design ejector performance evaluation. The purpose of this approach is to evaluate the entrainment ratio, for a fixed geometry, in both on-design and off-design operating conditions. The proposed model is based on a Lumped Parameter Model (LPM) with variable ejector component efficiencies provided by CFD simulations. The CFD results are used for developing maps for ejector component efficiencies in a broad range of operating conditions. The ejector component efficiency maps couple the CFD and the LPM techniques for building an Integrated LPM-CFD approach. The proposed approach is demonstrated for a convergent nozzle ejector and the paper is structured in four parts. At first, the CFD approach is validated by global and local data and seven Reynolds Averaged Navier Stokes (RANS) turbulence models are compared: the k–ω SST showed good performance and was selected for the rest of the analysis. At second, a Lumped Parameter Model (LPM) for subsonic ejector is developed and the ejector component efficiencies have been defined. At third, the CFD approach is used to investigate the flow field, to analyze its influence on ejector component efficiencies and to propose efficiency correlations and maps linking ejector component efficiencies and local flow quantities. In the last part, the efficiency maps are embedded into the lumped parameter model, thus creating

  12. CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling. In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature. The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990, it has been assumed that the fluidised gas-particle medium is isothermal. The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990. Their assumption that the system is isothermal also appears to be valid.

  13. Tenth annual conference of the CFD Society of Canada (CFD 2002). Proceedings

    International Nuclear Information System (INIS)

    Barron, R.M.

    2002-01-01

    The Tenth Annual Conference of the CFD Society of Canada, CFD 2002, was held in Windsor, Ontario from June 9-11, 2002. Contributions and participation were from many countries including Canada, United States, United Kingdom, France, Belgium, Germany, Iran, India, Pakistan, China, Japan, Singapore, Kuwait and Russia. The proceedings are a collection of the papers received covering the spectrum of computational fluid dynamics (CFD) from fundamental advances to improved algorithms to traditional and innovative applications. There is also a special session on automotive applications

  14. CFD Simulations of Soap Separation; CFD-simulering av avsaapning

    Energy Technology Data Exchange (ETDEWEB)

    Birkestad, Per

    2010-07-01

    A part of Vaermeforsk, the 'Skogsindustriella programmet', has identified the possibility to increase the production of tall oil, and hence the competitiveness, in Swedish pulp mills through an increase in the efficiency of the soap separation tanks. Currently, soap is extracted from the black liquor through a sedimentation process where the less dense soap rise to the top of the liquor tank where it is removed through a over-flow ducting at the top of the tank. Vaermeforsk seeks a better understanding of the detailed flow and the separation mechanisms within the liquor tanks and has initiated a study of computational fluid dynamics (CFD) of the tanks. The aim of the study has been threefold; To develop CFD-methods for use in the study of soap separation processes, to investigate the detailed flow within two Swedish liquor tanks and one North American soap skimmer and lastly to develop new design rules for use in future designs of soap separation tanks. The project shows that CFD is a useful tool for the investigation of black liquor and soap flow within a soap separation tank. The CFD simulations of three existing liquor tanks show that the previously used design-rules based on surface loads are inadequate as the actual flow velocities within the tanks are two orders of magnitude larger than those previously used as reference (the surface load). The CFD simulations also show that the black liquor flow, and hence the soap separation, is very sensitive to density variations on the black liquor inlet and temperature variations as small as 1 deg C can significantly affect the liquor flow.

  15. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    Science.gov (United States)

    Tucker, V A

    2000-12-01

    used for calculating the gliding performance of a peregrine. The accuracy with which drag coefficients measured on wingless bird bodies in a wind tunnel represent the C(D,par) of a living bird is unknown. Another method for determining C(D,par) selects values that improve the fit between speeds predicted by mathematical models and those observed in living birds. This method yields lower values for C(D,par) (0.05-0.07) than wind tunnel measurements, and the present study suggests a value of 0.1 for raptors as a compromise.

  16. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  17. Magnon-drag thermopile.

    Science.gov (United States)

    Costache, Marius V; Bridoux, German; Neumann, Ingmar; Valenzuela, Sergio O

    2011-12-18

    Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron-magnon interactions, magnon dynamics and thermal spin transport.

  18. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    Science.gov (United States)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  19. An Assessment of CFD/CSD Prediction State-of-the-Art by Using the HART II International Workshop Data

    Science.gov (United States)

    Smith, Marilyn J.; Lim, Joon W.; vanderWall, Berend G.; Baeder, James D.; Biedron, Robert T.; Boyd, D. Douglas, Jr.; Jayaraman, Buvana; Jung, Sung N.; Min, Byung-Young

    2012-01-01

    Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.

  20. Development of a compartment model based on CFD simulations for description of mixing in bioreactors

    Directory of Open Access Journals (Sweden)

    Crine, M.

    2010-01-01

    Full Text Available Understanding and modeling the complex interactions between biological reaction and hydrodynamics are a key problem when dealing with bioprocesses. It is fundamental to be able to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. CFD can provide detailed modeling about hydrodynamics and mixing. However, it is computationally intensive, especially when reactions are taken into account. Another way to predict hydrodynamics is the use of "Compartment" or "Multi-zone" models which are much less demanding in computation time than CFD. However, compartments and fluxes between them are often defined by considering global quantities not representative of the flow. To overcome the limitations of these two methods, a solution is to combine compartment modeling and CFD simulations. Therefore, the aim of this study is to develop a methodology in order to propose a compartment model based on CFD simulations of a bioreactor. The flow rate between two compartments can be easily computed from the velocity fields obtained by CFD. The difficulty lies in the definition of the zones in such a way they can be considered as perfectly mixed. The creation of the model compartments from CFD cells can be achieved manually or automatically. The manual zoning consists in aggregating CFD cells according to the user's wish. The automatic zoning defines compartments as regions within which the value of one or several properties are uniform with respect to a given tolerance. Both manual and automatic zoning methods have been developed and compared by simulating the mixing of an inert scalar. For the automatic zoning, several algorithms and different flow properties have been tested as criteria for the compartment creation.

  1. The effect of sodium hydroxide on drag reduction using banana peel as a drag reduction agent

    Science.gov (United States)

    Kaur, H.; Jaafar, A.

    2018-02-01

    Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions. Drag reduction agent such as polymers can be introduced to increase the flowrate of water flowing and reduce the water accumulation in the system. Currently used polymers are synthetic polymers, which will harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime was explored and assessed in this study using a rheometer, where a reduced a torque produced was perceived as a reduction of drag. This method proposed is less time consuming and is more practical which is producing carboxymethylcellulose from the banana peel. The cellulose powder was converted to carboxymethylcellulose (CMC) by etherification process. The carboxymethylation reaction during the synthesizing process was then optimized against the reaction temperature, reaction time and solubility. The biopolymers were then rheologically characterized, where the viscoelastic effects and the normal stresses produced by these biopolymers were utilized to further relate and explain the drag reduction phenomena. The research was structured to focus on producing the biopolymer and to assess the drag reduction ability of the biopolymer produced. The rheological behavior of the biopolymers was then analyzed based on the ability of reducing drag. The results are intended to expand the currently extremely limited experimental database. Based on the results, the biopolymer works as a good DRA.

  2. CFD simulation of a coolant flow and a heat transfer in a pebble bed reactor - HTR2008-58334

    International Nuclear Information System (INIS)

    In, W. K.; Lee, W. J.; Hassan, Y. A.

    2008-01-01

    This CFD study is to simulate a coolant(gas) flow and heat transfer in a PBR core during a normal operation. This study used a pebble array with direct area contacts among the pebbles which is one of the pebbles arrangements for a detailed simulation of PBR core CFD studies. A CFD model is developed to more adequately represent the pebbles randomly stacked in the PBR core. The CFD predictions showed a large variation of the temperature on the pebble surface as well as in the pebble core. The temperature drop in the outer graphite layer is smaller than that in the pebble-core region. This is because the thermal conductivity of graphite is higher than the fuel (UO, mixture) conductivity in the pebble core. Higher pebble surface temperature is predicted downstream of the pebble contact due to a reverse flow. Multiple vortices are predicted to occur downstream of the spherical pebbles due to a flow separation. The coolant flow structure and fuel temperature in the PBR core appears to largely depend on the in-core distribution of the pebbles. (authors)

  3. Prediction of gasoline yield in a fluid catalytic cracking (FCC riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD approach

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan

    2015-07-01

    Full Text Available Fluid catalytic cracking (FCC is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD software, heavy density catalyst and 4-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit are conferred for 2D simulation using commercial CFD code FLUENT 6.3. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon as efficient as possible. This study implements and predicts the use of the granular Eulerian multiphase model with species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the breaking of heavy hydrocarbon in the presence of catalyst. An approach proposed in this study shows good agreement with the experimental and numerical data available in the literature.

  4. A CFD code comparison of wind turbine wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses fo...

  5. CFD application to advanced design for high efficiency spacer grid

    International Nuclear Information System (INIS)

    Ikeda, Kazuo

    2014-01-01

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  6. CFD application to advanced design for high efficiency spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuo, E-mail: kazuo3_ikeda@ndc.mhi.co.jp

    2014-11-15

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  7. CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon

    2011-01-01

    The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes

  8. Use of CFD in development of intake ports for diesel engines

    International Nuclear Information System (INIS)

    Alcenius, T.

    2002-01-01

    The design of intake ports for diesel engines is difficult due to the many competing requirements of the cylinder head design. When the concept design is completed, the typical course for verification and optimization of the port is through steady state flow testing. In the past, optimization of the port was considered a 'black art' as the final shape of the port and its performance was tied directly to the experience of the port development engineer. As CFD has been increasingly used to analyze various aspects of engine performance, an obvious area to explore is its use to predict steady state port flow performance prior to fabrication of any test hardware. A study was carried out to evaluate the usefulness of CFD in predicting steady state flow bench results and to provide insight into the fluid mechanics of the port flow to assist in the flow bench development. Port flow testing was carried out on a baseline diesel engine port for a range of valve lifts from zero to just above the maximum valve lift. This experimental test data was used to calculate flow coefficients and swirl ratios (an indicator of mean air motion in the cylinder). Subsequently, CFD models were generated that replicated the flow bench set-up. Three valve lifts across the valve lift range were chosen for the comparison. Results of the analysis were used to calculate flow coefficients and swirl ratios. Computed results were then compared to the experiments to determine their accuracy and a detailed review of the CFD results was conducted to understand the flow in the port. Modifications were made to the port from recommendations made based on the CFD results. The ports were then retested to determine the effectiveness of the recommendations. Finally, the results are discussed as to their meaning and usefulness for design programs. (author)

  9. A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.

    2007-01-01

    Design of Experiments (DOE) was applied to the LAS geometric parameter study to efficiently identify and rank primary contributors to integrated drag over the vehicles ascent trajectory in an order of magnitude fewer CFD configurations thereby reducing computational resources and solution time. SME s were able to gain a better understanding on the underlying flowphysics of different geometric parameter configurations through the identification of interaction effects. An interaction effect, which describes how the effect of one factor changes with respect to the levels of other factors, is often the key to product optimization. A DOE approach emphasizes a sequential approach to learning through successive experimentation to continuously build on previous knowledge. These studies represent a starting point for expanded experimental activities that will eventually cover the entire design space of the vehicle and flight trajectory.

  10. CFD simulation analysis and validation for CPR1000 pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Mingqian; Ran Xiaobing; Liu Yanwu; Yu Xiaolei; Zhu Mingli

    2013-01-01

    Background: With the rapid growth in the non-nuclear area for industrial use of Computational fluid dynamics (CFD) which has been accompanied by dramatically enhanced computing power, the application of CFD methods to problems relating to Nuclear Reactor Safety (NRS) is rapidly accelerating. Existing research data have shown that CFD methods could predict accurately the pressure field and the flow repartition in reactor lower plenum. But simulations for the full domain of the reactor have not been reported so far. Purpose: The aim is to determine the capabilities of the codes to model accurately the physical phenomena which occur in the full reactor vessel. Methods: The flow field of the CPR1000 reactor which is associated with a typical pressurized water reactor (PWR) is simulated by using ANSYS CFX. The pressure loss in reactor pressure vessel, the hydraulic loads of guide tubes and support columns, and the bypass flow of head dome were obtained by calculations for the full domain of the reactor. The results were validated by comparing with the determined reference value of the operating nuclear plant (LingAo nuclear plant), and the transient simulation was conducted in order to better understand the flow in reactor pressure vessel. Results: It was shown that the predicted pressure loss with CFD code was slightly different with the determined value (10% relative deviation for the total pressure loss), the hydraulic loads were less than the determined value with maximum relative deviation 50%, and bypass flow of head dome was approximately the same with determined value. Conclusion: This analysis practice predicts accurately the physical phenomena which occur in the full reactor vessel, and can be taken as a guidance for the nuclear plant design development and improve our understanding of reactor flow phenomena. (authors)

  11. development of a new drag coefficient model for oil and gas

    African Journals Online (AJOL)

    eobe

    approximation of experimental data for e. R , from .... dynamic conditions in order to evaluate the drag and ... based on the experimental data for multiphase, water- oil-gas flow see ... Figure 6: Comparison of measured and model prediction.

  12. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  13. CFD validation of a supercritical water flow for SCWR design heat and mass fluxes

    International Nuclear Information System (INIS)

    Roelofs, F.; Lycklama a Nijeholt, J.A.; Komen, E.M.J.; Lowenberg, M.; Starflinger, J.

    2007-01-01

    The applicability of Computational Fluid Dynamics (CFD) for water under supercritical conditions in supercritical water reactors (SCWR) has still to be verified. In the recent past, CFD validation analyses were performed by various institutes for supercritical water in vertical tubes based on the well known experimental data from Yamagata. However, validation using data from experiments with working conditions closer to the actual operational conditions of such reactors is needed. From a literature survey the experiments performed by Herkenrath are selected to perform validation analyses at higher heat fluxes and a higher mass flux. The accuracy of CFD using RANS (Reynolds Average Navier-Stokes) turbulence modelling for supercritical fluids under conditions close to the operational conditions of a supercritical water reactor is determined. It is concluded that the wall temperature can be predicted by RANS CFD, using the RNG k-ε turbulence model, with accuracy in the range of 5% for heat fluxes up to 1100 kW/m 2 and for a bulk enthalpy up to 2200 kJ/kg. For a bulk enthalpy exceeding 2200 kJ/kg, a significant lower accuracy of the CFD predictions (about 3%) is found for the simulations of the experiments of Yamagata in comparison with the simulations of the experiments of Herkenrath. For these experiments, the accuracy is about 18 per cent. This might be a result of the fact that the CFD analyses do not simulate the flattening of the temperature profile at about 2200 kJ/kg which is found in the experiments of Herkenrath. However, the obtained accuracies ranging from 3% to 18% are still deemed to be acceptable for many design purposes. (authors)

  14. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  15. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  16. Uniting ripple-formation theory under water and winds: A universal scaling relation for the wavelength of fluid-drag ripples across fluids and planetary bodies

    Science.gov (United States)

    Lapotre, M. G. A.; Lamb, M. P.; Ewing, R. C.; McElroy, B. J.

    2016-12-01

    Current ripples form on riverbeds and on the seafloor from viscous drag exerted by water flow over sand and are thought to be absent in subaerial systems, where ripple formation is dominated by a mechanism involving the impacting and splashing of sand grains. A fluid-drag mechanism, however, is not precluded in subaerial conditions and was originally hypothesized by R. A. Bagnold. Despite decades of observations in the field and in the laboratory, no universal scaling relation exists to predict the size of fluid-drag ripples. We combine dimensional analysis and a new extensive data compilation to develop a relationship and predict the equilibrium wavelength of current ripples. Our analysis shows that ripples are spaced farther apart when formed by more viscous fluids, smaller bed shear velocities, in coarser grains, or for smaller sediment specific gravity. Our scaling relation also highlights the abrupt transition between current ripples and subaqueous dunes, and thus allows for a process-based segregation of ripples from dunes. When adjusting for subaerial conditions, we predict the formation of decimeter-scale wind-drag ripples on Earth and meter-scale wind-drag ripples on Mars. The latter are ubiquitous on the Red Planet, and are found to co-exist with smaller decimeter-scale ripples, which we interpret as impact ripples. Because the predicted scale of terrestrial wind-drag ripples overlaps with that of impact ripples, it is possible that wind-drag ripples exist on Earth too, but are not recognized as such. When preserved in rocks, fluid-drag ripple stratification records flow directions and fluid properties that are crucial to constrain paleo-environments. Our new theory allows for predictions of ripple size, perhaps in both fluvial and eolian settings, and thus potentially represents a powerful tool for paleo-environmental reconstructions on different planetary bodies.

  17. CFD for Nuclear Reactor Safety Applications (CFD4NRS-4) - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    Following the CFD4NRS workshops held in Garching, Germany (Sept. 2006), Grenoble, France (Sep. 2008) and Washington D.C., USA (Sept. 2010), this Workshop is intended to extend the forum created for numerical analysts and experimentalists to exchange information in the application of CFD and CMFD to NRS issues and in guiding nuclear reactor design thinking. The workshop includes single-phase and multi-phase CFD applications, and offers the opportunity to present new experimental data for CFD validation. More emphasis has been given to the experiments, especially on two-phase flow, for advanced CMFD modelling for which sophisticated measurement techniques are required. Understanding of the physics has been depen before starting numerical analysis. Single-phase and multi-phase CFD simulations with a focus on validation were performed in areas such as: single-phase heat transfer, boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These relate to NRS-relevant issues, such as pressurised thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution in containments, thermal striping, etc. The use of systematic error quantification and the application of BPGs were strongly encouraged. Experiments providing data suitable for CFD or CMFD validation were also presented. These included local measurements using multi-sensor probes, laser-based techniques (LDV, PIV or LIF), hot-film/wire anemometry, imaging, or other advanced measuring techniques. There were over 150 registered participants at the CFD4NRS-4 workshop. The programme consisted of 48 technical papers. Of these, 44 were presented orally and 4 as posters. An additional 8 posters related to the OECD/NEA-KAERI sponsored CFD benchmark exercise on turbulent mixing in a rod bundle with spacers (MATiS-H) were presented and a special session was allocated for 6 video presentations. In addition, five keynote lectures were given by distinguished experts. The

  18. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  19. Engineering drag currents in Coulomb coupled quantum dots

    Science.gov (United States)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  20. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis

    KAUST Repository

    Zhang, Yue

    2015-01-01

    This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric boundary layer is modeled with an artificial inflow turbulence generation method. Then, the turbulent flow is simulated by the second mode of a Zonal Detached-Eddy Simulation, and a conservative quadrature-projection scheme is adopted to transfer unsteady loads from fluid to structural nodes. The aerodynamic damping that represents the fluid-structure interaction mechanism is determined by empirical functions extracted from wind tunnel experiments. Eventually, the flow solutions and the structural responses in terms of mean and root mean square quantities are compared with experimental measurements, over a wide range of reduced velocities. The significance of turbulent inflow conditions and aeroelastic effects is highlighted. The current methodology provides predictions of good accuracy and can be considered as a preliminary design tool to evaluate the unsteady wind effects on tall buildings.

  1. Effects of Increasing Drag on Conjunction Assessment

    Science.gov (United States)

    Frigm, Ryan Clayton; McKinley, David P.

    2010-01-01

    Conjunction Assessment Risk Analysis relies heavily on the computation of the Probability of Collision (Pc) and the understanding of the sensitivity of this calculation to the position errors as defined by the covariance. In Low Earth Orbit (LEO), covariance is predominantly driven by perturbations due to atmospheric drag. This paper describes the effects of increasing atmospheric drag through Solar Cycle 24 on Pc calculations. The process of determining these effects is found through analyzing solar flux predictions on Energy Dissipation Rate (EDR), historical relationship between EDR and covariance, and the sensitivity of Pc to covariance. It is discovered that while all LEO satellites will be affected by the increase in solar activity, the relative effect is more significant in the LEO regime around 700 kilometers in altitude compared to 400 kilometers. Furthermore, it is shown that higher Pc values can be expected at larger close approach miss distances. Understanding these counter-intuitive results is important to setting Owner/Operator expectations concerning conjunctions as solar maximum approaches.

  2. Parametric sensitivity of a CFD model concerning the hydrodynamics of trickle-bed reactor (TBR

    Directory of Open Access Journals (Sweden)

    Janecki Daniel

    2016-03-01

    Full Text Available The aim of the present study was to investigate the sensitivity of a multiphase Eulerian CFD model with respect to relations defining drag forces between phases. The mean relative error as well as standard deviation of experimental and computed values of pressure gradient and average liquid holdup were used as validation criteria of the model. Comparative basis for simulations was our own data-base obtained in experiments carried out in a TBR operating at a co-current downward gas and liquid flow. Estimated errors showed that the classical equations of Attou et al. (1999 defining the friction factors Fjk approximate experimental values of hydrodynamic parameters with the best agreement. Taking this into account one can recommend to apply chosen equations in the momentum balances of TBR.

  3. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  4. Integration of CFD codes and advanced combustion models for quantitative burnout determination

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)

    2007-10-15

    CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.

  5. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  6. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.

    Science.gov (United States)

    Popa, C V; Zaidi, H; Arfaoui, A; Polidori, G; Taiar, R; Fohanno, S

    2011-01-01

    This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-ω turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENT® CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.

  7. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    Science.gov (United States)

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  8. Coarse-grid-CFD. An advantageous alternative to subchannel analysis

    International Nuclear Information System (INIS)

    Class, A.G.; Himmel, S.R.; Viellieber, M.O.

    2011-01-01

    In the 1960 th to 80 th when current GEN II reactor technology was developed, the only possible approach was to use one-dimensional subchannel analysis to compute the flow inside a fuel bundle so that the subchannel scale could be resolved. For simulations of the whole reactor core either system codes or homogenization were employed. In system codes resolution of individual assemblies was the state of the art. Homogenization used porous media equations simulations and averaged the thermohydraulics on reactor core scale. Current potent computing power allows using Computational Fluid Dynamics (CFD) to simulate individual fuel assemblies. Yet the large number of fuel assemblies within the core forbids exploiting CFD for core wide simulation. We propose to combine ideas of subchannel analysis and CFD to develop a new methodology which takes advantage of the fast development of commercial CFD software and the efficiency of subchannel analysis. In this methodology was first applied to simulate a wire-wrap fuel bundle of the High Performance Light Water Reactor (HPLWR). Computations using an inviscid Euler solver on an extremely coarse grid were tuned to predict the true thermohydraulics by adding volumetric forces. These forces represent the non-resolved sub-grid physics. The volumetric forces cannot be measured directly. However, they can be accessed from detailed CFD simulations resolving all relevant physics. Parameterization of these subgrid forces can be realized analogous to models in subchannel codes. In the present work we extend the methodology to the open source solver OpenFOAM and a specific hexagonal fuel assembly which is studied in the framework of liquid metal cooled GEN IV reactor concepts. (orig.)

  9. Application of the FUN3D Unstructured-Grid Navier-Stokes Solver to the 4th AIAA Drag Prediction Workshop Cases

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.

    2010-01-01

    FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.

  10. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  11. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Science.gov (United States)

    Blyth, Taylor S.

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  12. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  13. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage

    International Nuclear Information System (INIS)

    In, Wangkee; Kwack, Youngkyun; Kook, Donghak; Koo, Yanghyun

    2014-01-01

    A dry storage system is used for the interim storage of spent fuel prior to permanent depository and/or recycling. The spent fuel is initially stored in a water pool for more than 5 years at least after dispatch from the reactor core and is transported to dry storage. The dry cask contains a multiple number of spent fuel assemblies, which are cooled down in the spent fuel pool. The dry cask is usually filled up with helium gas for increasing the heat transfer to the environment outside the cask. The dry storage system has been used for more than a decade in United States of America (USA) and the European Union (EU). Korea is also developing a dry storage system since its spent fuel pool is anticipated to be full within 10 years. The spent fuel will be stored in a dry cask for more than 40 years. The integrity and safety of spent fuel are important for long-term dry storage. The long-term storage will experience the degradation of spent fuel such as the embrittlement of fuel cladding, thermal creep and hydride reorientation. High burn-up fuel may expedite the material degradation. It is known that the cladding temperature has a strong influence on the material degradation. Hence, it is necessary to accurately predict the local distribution of the cladding temperature using the Computational Fluid Dynamics (CFD) approach. The objective of this study is to apply the CFD method for predicting the three-dimensional distribution of fuel temperature in a dry cask. This CFD study simulated the dry cask for containing the 21 fuel assemblies under development in Korea. This paper presents the fluid velocity and temperature distribution as well as the fuel temperature. A two-step CFD approach was applied to simulate the heat and fluid flow in a dry storage of 21 spent fuel assemblies. The first CFD analysis predicted the helium flow and temperature in a dry cask by a assuming porous body of the spent fuel. The second CFD analysis was to simulate a spent fuel assembly in the

  14. Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD

    DEFF Research Database (Denmark)

    Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina

    2017-01-01

    Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time...... transfer coefficients were in accordance with the experimental data. This work illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of changing the physical...

  15. How fine is fine enough when doing CFD terrain simulations

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Réthoré, Pierre-Elouan

    2012-01-01

    The present work addresses the problemof establishing the necessary grid resolution to obtain a given level of numerical accuracy using a CFD model for prediction of flow over terrain. It is illustrated, that a very high resolution may be needed if the numerical difference between consecutive...

  16. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    Science.gov (United States)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  17. CFD modelling of sampling locations for early detection of spontaneous combustion in long-wall gob areas.

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C

    In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion.

  18. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  19. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    Science.gov (United States)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in

  20. Parameterizing Subgrid-Scale Orographic Drag in the High-Resolution Rapid Refresh (HRRR) Atmospheric Model

    Science.gov (United States)

    Toy, M. D.; Olson, J.; Kenyon, J.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    The accuracy of wind forecasts in numerical weather prediction (NWP) models is improved when the drag forces imparted on atmospheric flow by subgrid-scale orography are included. Without such parameterizations, only the terrain resolved by the model grid, along with the small-scale obstacles parameterized by the roughness lengths can have an effect on the flow. This neglects the impacts of subgrid-scale terrain variations, which typically leads to wind speeds that are too strong. Using statistical information about the subgrid-scale orography, such as the mean and variance of the topographic height within a grid cell, the drag forces due to flow blocking, gravity wave drag, and turbulent form drag are estimated and distributed vertically throughout the grid cell column. We recently implemented the small-scale gravity wave drag paramterization of Steeneveld et al. (2008) and Tsiringakis et al. (2017) for stable planetary boundary layers, and the turbulent form drag parameterization of Beljaars et al. (2004) in the High-Resolution Rapid Refresh (HRRR) NWP model developed at the National Oceanic and Atmospheric Administration (NOAA). As a result, a high surface wind speed bias in the model has been reduced and small improvement to the maintenance of stable layers has also been found. We present the results of experiments with the subgrid-scale orographic drag parameterization for the regional HRRR model, as well as for a global model in development at NOAA, showing the direct and indirect impacts.

  1. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 1. SRANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)

  2. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis

    KAUST Repository

    Zhang, Yue; Habashi, Wagdi G (Ed); Khurram, Rooh Ul Amin

    2015-01-01

    This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric

  3. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    International Nuclear Information System (INIS)

    Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik

    2014-01-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach

  4. CFD simulation of solids suspension in stirred tanks: Review

    Directory of Open Access Journals (Sweden)

    Ochieng Aoyi

    2010-01-01

    Full Text Available Many chemical reactions are carried out using stirred tanks, and the efficiency of such systems depends on the quality of mixing, which has been a subject of research for many years. For solid-liquid mixing, traditionally the research efforts were geared towards determining mixing features such as off-bottom solid suspension using experimental techniques. In a few studies that focused on the determination of solids concentration distribution, some methods that have been used have not been accurate enough to account for some small scale flow mal-distribution such as the existence of dead zones. The present review shows that computational fluid dynamic (CFD techniques can be used to simulate mixing features such as solids off-bottom suspension, solids concentration and particle size distribution and cloud height. Information on the effects of particle size and particle size distribution on the solids concentration distribution is still scarce. Advancement of the CFD modeling is towards coupling the physical and kinetic data to capture mixing and reaction at meso- and micro-scales. Solids residence time distribution is important for the design; however, the current CFD models do not predict this parameter. Some advances have been made in recent years to apply CFD simulation to systems that involve fermentation and anaerobic processes. In these systems, complex interaction between the biochemical process and the hydrodynamics is still not well understood. This is one of the areas that still need more attention.

  5. Symmetry breaking for drag minimization

    Science.gov (United States)

    Roper, Marcus; Squires, Todd M.; Brenner, Michael P.

    2005-11-01

    For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.

  6. Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Applications - Workshop Proceedings, CFD4NRS-3 - Experimental Validation and Application of CFD and CMFD Codes to Nuclear Reactor Safety Issues

    International Nuclear Information System (INIS)

    2012-01-01

    The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to WGAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. The workshop included single-phase and multiphase CFD applications as well as new experimental techniques, including the following: Single-phase and two-phase CFD simulations with an emphasis on validation were sought in areas such as boiling flows, free-surface flows, direct contact condensation, and turbulent mixing. These should relate to NRS-relevant issues such as pressurized thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution, and thermal striping. The use of systematic error quantification and Best Practice Guidelines (BPGs) was encouraged. Experiments providing data suitable for CFD validation-specifically in the area of NRS-including local measurement devices such as multi-sensor optical or electrical probes, Laser Doppler Velocimetry (LDV), hot-film/wire anemometry, Particle Image Velocimetry (PIV), Laser-Induced Fluorescence (LIF), and other innovative techniques. There were over 200 registered participants at the CFD4NRS-3 workshop. The program consisted of about 75 technical papers. Of these, 57 were oral presentations and 19 were posters. An additional 20 posters related to the OECD/NEA-sponsored CFD benchmark exercise on thermal fatigue in a T-Junction were presented. In addition, five keynote lectures were given by distinguished experts. This is about a 30 pc increase with respect to the previous XCFD4NRS workshop held in Grenoble in 2008, and a 70 pc increase compared to the first CFD4NRS workshop held in Garching in 2006. This confirms that there is a real and growing need for such workshops. The papers presented in the conference tackled different topics

  7. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    Science.gov (United States)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  8. Quantitative Analysis of Accuracy of Voidage Computations in CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    H. A. Khawaja

    2012-06-01

    Full Text Available CFD-DEM (Computational Fluid Dynamics – Discrete Element Modelling is a two-phase flow numerical modelling technique, where the Eulerian method is used for the fluid and the Lagrangian method for the particles. The two phases are coupled by a fluid-particle interaction force (i.e. drag force which is computed using a correlation. In a two-phase flow, one critical parameter is the voidage (or void fraction, which is defined as the ratio of the volume occupied by the fluid to the total volume. In a CFD-DEM simulation the local voidage is computed by calculating the volume of particles in a given fluid cell. For spherical particles, this computation is difficult when a particle is on the boundary of fluid cells. In this case, it is usual to compute the volume of a particle in a fluid cell approximately. One such approximation divides the volume of a particle into each cell in the same ratio as an equivalent cube of width equal to the particle diameter. Whilst this approach is computationally straight forward, the approximation introduces an error in the voidage computation. Here we estimate the error by comparing the approximate volume calculation with an exact (numerical computation of the volume of a particle in a fluid cell. The results show that the error varies with the position of the particle relative to the cell boundary. A new approach is suggested which limits the error to less than 2.5 %, without significantly increasing the computational complexity.

  9. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Karbojian, Aram, E-mail: karbojan@kth.se; Villanueva, Walter, E-mail: walter@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2015-08-15

    Highlights: • Design of a heavy liquid thermal-hydraulic loop for CFD/STH code validation. • Description of the loop instrumentation and assessment of measurement error. • Experimental data from forced to natural circulation transient. - Abstract: Application of coupled CFD (Computational Fluid Dynamics) and STH (System Thermal Hydraulics) codes is a prerequisite for computationally affordable and sufficiently accurate prediction of thermal-hydraulics of complex systems. Coupled STH and CFD codes require validation for understanding and quantification of the sources of uncertainties in the code prediction. TALL-3D is a liquid Lead Bismuth Eutectic (LBE) loop developed according to the requirements for the experimental data for validation of coupled STH and CFD codes. The goals of the facility design are to provide (i) mutual feedback between natural circulation in the loop and complex 3D mixing and stratification phenomena in the pool-type test section, (ii) a possibility to validate standalone STH and CFD codes for each subsection of the facility, and (iii) sufficient number of experimental data to separate the process of input model calibration and code validation. Description of the facility design and its main components, approach to estimation of experimental uncertainty and calibration of model input parameters that are not directly measured in the experiment are discussed in the paper. First experimental data from the forced to natural circulation transient is also provided in the paper.

  10. A Performance Prediction Method for Pumps as Turbines (PAT Using a Computational Fluid Dynamics (CFD Modeling Approach

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2017-01-01

    Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.

  11. CFD simulations for engine intake manifolds

    International Nuclear Information System (INIS)

    Witry, A.; Zhao, A.

    2002-01-01

    This paper attempts to explain a procedure for using Computational Fluid Dynamics (CFD) for product development of engine intake manifolds. The paper uses the development of an intake manifold as an example of such a process. Using the commercial FLUENT solver, its standard wall functions and k-ε model, a four runner intake manifold with an average mesh size of 300, 000 hexa elements created in ICEM-CFD with a maximum skewness of 0.85 produces rapid results for quick product turn-around times. The setup used allows for compressibility and viscous heating effects to be modeled whilst ignoring wall heat transfer due to the high speeds of the air/foil mixture and low residence times. Eight consecutive models were modeled here whilst carrying out continuous enhancements. For every iteration, four different so called 'static' runs with only one runner open at any one time using a steady state assumption were calculated further assuming that only one intake valve is open at any one time. Even flow distributions between the runner are deemed to be 'dynamically' obtained once the pressure drops between the manifold's inlet and runner outlets are equalized. Furthermore, different modifications were attempted to ensure that the fluid's particle tracks show very little particle return tendencies along with excellent nonuniformity indexes at the runners outlets. Confirmation of these results were obtained from test data showing CFD pressure drop predictions to be within 4% error with 67% of any runner's pressure losses being caused in the runner itself due to the small cross sectional area(s). (author)

  12. The Test for Flow Characteristics of Tubular Fuel Assembly(II) - Experimental results and CFD analysis

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2006-12-01

    A test facility had been established for the experiment of velocity distribution and pressure drop in a tubular fuel. A basic test had been conducted to examine the performance of the test loop and to verify the accuracy of measurement by pitot-tube. In this report, test results and CFD analysis for the hydraulic characteristics of a tubular fuel, following the previous tests, are described. Coolant velocities in all channels were measured using pitot-tube and the effect of flow rate change on the velocity distribution was also examined. The pressure drop through the tubular fuel was measured for various flow rates in range of 1 kg/s to 21 kg/s to obtain a correlation of pressure drop with variation of flow rate. In addition, a CFD(Computational Fluid Dynamics) analysis was also done to find out the hydraulic characteristics of tubular fuel such as velocity distribution and pressure drop. As the results of CFD analysis can give us a detail insight on coolant flow in the tubular fuel, the CFD method is a very useful tool to understand the flow structure and phenomena induced by fluid flow. The CFX-10, a commercial CFD code, was used in this study. The two results by the experiment and the CFD analysis were investigated and compared with each other. Overall trend of velocity distribution by CFD analysis was somewhat different from that of experiment, but it would be reasonable considering measurement uncertainties. The CFD prediction for pressure drop of a tubular fuel shows a tolerably good agreement with experiment within 8% difference

  13. Twelfth annual conference of the CFD Society of Canada (CFD 2004). Proceedings

    International Nuclear Information System (INIS)

    Khalid, M.; Chen, S.; McIlwain, S.

    2004-01-01

    The Twelfth Annual Conference of the CFD Society of Canada, CFD 2004, was held in Ottawa, Ontario from May 9-11, 2004. The proceedings consists of 24 sessions covering the following topics: fluid structure interactions; multiphase and multi-species flows; mesh methods; turbulence; DNS/LES; supersonic and hypersonic flows; heat transfer; combustion and detonation; flow physics; aerodynamics; applications; algorithms; environmental flows; magnetohydrodynamics and electrohydrodynamics; biofluids; and, combustion and smoke management

  14. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor; Simulacion CFD de los venteos rigidos de la contencion de un reactor BWR-5 Mark-II

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L. [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Tijerina S, F.; Tapia M, R., E-mail: francisco.tijerina@cfe.gob.mx [CFE, Central Nucleoelectrica Laguna Verde, Carretera Federal Cardel-Nautla Km 42.5, 91476 Municipio Alto Lucero, Veracruz (Mexico)

    2016-09-15

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  15. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    Science.gov (United States)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  16. Drag Reduction by Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Nils Beck

    2018-01-01

    Full Text Available The Energy System Transition in Aviation research project of the Aeronautics Research Center Niedersachsen (NFL searches for potentially game-changing technologies to reduce the carbon footprint of aviation by promoting and enabling new propulsion and drag reduction technologies. The greatest potential for aerodynamic drag reduction is seen in laminar flow control by boundary layer suction. While most of the research so far has been on partial laminarization by application of Natural Laminar Flow (NLF and Hybrid Laminar Flow Control (HLFC to wings, complete laminarization of wings, tails and fuselages promises much higher gains. The potential drag reduction and suction requirements, including the necessary compressor power, are calculated on component level using a flow solver with viscid/inviscid coupling and a 3D Reynolds-Averaged Navier-Stokes (RANS solver. The effect on total aircraft drag is estimated for a state-of-the-art mid-range aircraft configuration using preliminary aircraft design methods, showing that total cruise drag can be halved compared to today’s turbulent aircraft.

  17. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    Science.gov (United States)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  18. Bioinspired surfaces for turbulent drag reduction.

    Science.gov (United States)

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-06

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  19. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  20. A PC-Based Tool for Coupled CFD and CSD Simulation of Blast-Barrier Responses

    National Research Council Canada - National Science Library

    Chen, Zen; Bewick, Bryan; Salim, Hani A; Kiger, Sam A; Dinan, Robert J; Hu, Wenquin

    2006-01-01

    ... for predicting the responses of a blast barrier. An axisymmetrical model is formulated using a coupled CFD and CSD simulation procedure designed via the Material Point Method in spatial discretization...

  1. Overview of hypersonic CFD code calibration studies

    Science.gov (United States)

    Miller, Charles G.

    1987-01-01

    The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.

  2. Optimization of the Upper Surface of Hypersonic Vehicle Based on CFD Analysis

    Science.gov (United States)

    Gao, T. Y.; Cui, K.; Hu, S. C.; Wang, X. P.; Yang, G. W.

    2011-09-01

    For the hypersonic vehicle, the aerodynamic performance becomes more intensive. Therefore, it is a significant event to optimize the shape of the hypersonic vehicle to achieve the project demands. It is a key technology to promote the performance of the hypersonic vehicle with the method of shape optimization. Based on the existing vehicle, the optimization to the upper surface of the Simplified hypersonic vehicle was done to obtain a shape which suits the project demand. At the cruising condition, the upper surface was parameterized with the B-Spline curve method. The incremental parametric method and the reconstruction technology of the local mesh were applied here. The whole flow field was been calculated and the aerodynamic performance of the craft were obtained by the computational fluid dynamic (CFD) technology. Then the vehicle shape was optimized to achieve the maximum lift-drag ratio at attack angle 3°, 4° and 5°. The results will provide the reference for the practical design.

  3. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  4. Experimental measurement of unsteady drag on shock accelerated micro-particles

    Science.gov (United States)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  5. Review of Available Data for Validation of Nuresim Two-Phase CFD Software Applied to CHF Investigations

    Directory of Open Access Journals (Sweden)

    D. Bestion

    2009-01-01

    Full Text Available The NURESIM Project of the 6th European Framework Program initiated the development of a new-generation common European Standard Software Platform for nuclear reactor simulation. The thermal-hydraulic subproject aims at improving the understanding and the predictive capabilities of the simulation tools for key two-phase flow thermal-hydraulic processes such as the critical heat flux (CHF. As part of a multi-scale analysis of reactor thermal-hydraulics, a two-phase CFD tool is developed to allow zooming on local processes. Current industrial methods for CHF mainly use the sub-channel analysis and empirical CHF correlations based on large scale experiments having the real geometry of a reactor assembly. Two-phase CFD is used here for understanding some boiling flow processes, for helping new fuel assembly design, and for developing better CHF predictions in both PWR and BWR. This paper presents a review of experimental data which can be used for validation of the two-phase CFD application to CHF investigations. The phenomenology of DNB and Dry-Out are detailed identifying all basic flow processes which require a specific modeling in CFD tool. The resulting modeling program of work is given and the current state-of-the-art of the modeling within the NURESIM project is presented.

  6. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  7. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  8. Drag reduction through self-texturing compliant bionic materials

    Science.gov (United States)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  9. Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In the present work, CFD simulations of the DU96-W-180 airfoil at 26 and 24 deg. angles of attack were performed. 2D RANS and 3D DES computations with non-moving and prescribed motion airfoil suspensions were carried out. The openings of the lift coefficient loops predicted by CFD were different...... than those predicted by engineering models. The average lift slope of the loops from the 3D CFD had opposite sign than the one from 2D CFD. Trying to model the 3D behaviour with the engineering models proved difficult. The disagreement between the 2D CFD, 3D CFD and the engineering models indicates...

  10. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  11. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  12. Two-phase CFD PTS validation in an extended range of thermohydraulics conditions covered by the COSI experiment

    International Nuclear Information System (INIS)

    Coste, P.; Ortolan, A.

    2014-01-01

    Highlights: • Models for large interfaces in two-phase CFD were developed for PTS. • The COSI experiment is used for NEPTUNE C FD integral validation. • COSI is a PWR cold leg scaled 1/100 for volume. • Fifty runs are calculated, covering a large range of flow configurations. • The CFD predicting capability is analysed using global and local measurements. - Abstract: In the context of the Pressurized Water Reactors (PWR) life duration safety studies, some models were developed to address the Pressurized Thermal Shock (PTS) from the two-phase CFD angle, dealing with interfaces much larger than cells size and with direct contact condensation. Such models were implemented in NEPTUNE C FD, a 3D transient Eulerian two-fluid model. The COSI experiment is used for its integral validation. It represents a cold leg scaled 1/100 for volume and power from a 900 MW PWR under a large range of LOCA PTS conditions. In this study, the CFD is evaluated in the whole range of parameters and flow configurations covered by the experiment. In a first step, a single choice of mesh and CFD models parameters is fixed and justified. In a second step, fifty runs are calculated. The CFD predicting capability is analysed, comparing the liquid temperature and the total condensation rate with the experiment, discussing their dependency on the inlet cold liquid rate, on the liquid level in the cold leg and on the difference between co-current and counter-current runs. It is shown that NEPTUNE C FD 1.0.8 calculates with a fair agreement a large range of flow configurations related to ECCS injection and steam condensation

  13. Calibration of the k- ɛ model constants for use in CFD applications

    Science.gov (United States)

    Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora

    2011-11-01

    The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.

  14. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.

    2002-01-01

    Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  15. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    Science.gov (United States)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended

  16. Natural ventilation of a generic cask under a transport hood - CFD and analytical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Powell, D.; Davies, G.; Tso, C.F. [Arup, London (United Kingdom)

    2004-07-01

    In comparison with finite element simulation for structural and thermal behaviour, the use of computational fluid dynamics technique (hereafter CFD) to analyse, predict and design air and heat flow in package design is relatively novel. Arup has been using CFD techniques to investigate fluid and heat flow, and to use it as a tool to design fluid and heat flow across a broad spectrum of industries for over fifteen years. In order demonstrate the power of the technique and its benefits, the airflow and heat flow characteristics around a transport package during transit under a transport hood has been evaluated using the CFD technique. This paper presents the scenario, the model, the analysis technique and the results of this analysis. Comparison with test results is probably the best way to validate a CFD analysis. In the absence of test results, the analysis was verified by comparison with hand calculation solutions. The scenario as it stands is too complex and hand calculation solution cannot describe the scenario sufficiently. However, hand calculation solutions could be derived for simplified version of the scenario against which CFD analysis of the simplified scenario can be compared. The second half of this paper describes the verification out.

  17. Natural ventilation of a generic cask under a transport hood - CFD and analytical modelling

    International Nuclear Information System (INIS)

    Powell, D.; Davies, G.; Tso, C.F.

    2004-01-01

    In comparison with finite element simulation for structural and thermal behaviour, the use of computational fluid dynamics technique (hereafter CFD) to analyse, predict and design air and heat flow in package design is relatively novel. Arup has been using CFD techniques to investigate fluid and heat flow, and to use it as a tool to design fluid and heat flow across a broad spectrum of industries for over fifteen years. In order demonstrate the power of the technique and its benefits, the airflow and heat flow characteristics around a transport package during transit under a transport hood has been evaluated using the CFD technique. This paper presents the scenario, the model, the analysis technique and the results of this analysis. Comparison with test results is probably the best way to validate a CFD analysis. In the absence of test results, the analysis was verified by comparison with hand calculation solutions. The scenario as it stands is too complex and hand calculation solution cannot describe the scenario sufficiently. However, hand calculation solutions could be derived for simplified version of the scenario against which CFD analysis of the simplified scenario can be compared. The second half of this paper describes the verification out

  18. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Joshi, Jyeshtharaj B.; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2015-01-01

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  19. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  20. CFD Simulations to Improve Ventilation in Low-Income Housing

    Science.gov (United States)

    Ho, Rosemond; Gorle, Catherine

    2017-11-01

    Quality of housing plays an important role in public health. In Dhaka, Bangladesh, the leading causes of death include tuberculosis, lower respiratory infections, and chronic obstructive pulmonary disease, so improving home ventilation could potentially mitigate these negative health effects. The goal of this project is to use computational fluid dynamics (CFD) to predict the relative effectiveness of different ventilation strategies for Dhaka homes. A Reynolds-averaged Navier-Stokes CFD model of a standard Dhaka home with apertures of different sizes and locations was developed to predict air exchange rates. Our initial focus is on simulating ventilation driven by buoyancy-alone conditions, which is often considered the limiting case in natural ventilation design. We explore the relationship between ventilation rate and aperture area to determine the most promising configurations for optimal ventilation solutions. Future research will include the modeling of wind-driven conditions, and extensive uncertainty quantification studies to investigate the effect of variability in the layout of homes and neighborhoods, and in local wind and temperature conditions. The ultimate objective is to formulate robust design recommendations that can reduce risks of respiratory illness in low-income housing.

  1. Comparison of CFD and Test Techniques for Cavitation Inception

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Park, Sung Keun; Lee, Sun Ki; Kim, Byung Kon

    2009-01-01

    Cavitation erosion on centrifugal pump impellers is a one of the fundamental factors that cause performance degradation and life shortening of the pumps. One approach to estimate the expected life of an impeller is to use sheet cavity length on the blade surface. While observing the cavity length is more suitable to accurately predict the impeller damage, it is not readily available in the field or on the test stand. Recently, the prediction of the cavity length by using commercial CFD codes has been tried by several authors. As an alternative to direct measure the cavity length of an impeller, a means of estimating cavity length of an impeller based on the relation of operating NPSH to that of 3% NPSH and inception NPSH was developed by Cooper. Although this method seems to be attractive, it is not easy to accurately estimate the inception NPSH without flow visualization. Some recent researchers has been paid attention to apply the high frequency Acoustic Emission(AE) technique to detect cavitation inception of pumps. As an effort to better estimate the cavity length without relying on flow visualization, CFD calculations and experiments were performed and then the results are compared in this study

  2. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2011-01-01

    , we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development

  3. Drag force, drag torque, and Magnus force coefficients of rotating spherical particle moving in fluid

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Kvurt, Y.; Keita, Ibrahima; Chára, Zdeněk; Vlasák, Pavel

    2012-01-01

    Roč. 30, č. 1 (2012), s. 55-67 ISSN 0272-6351 R&D Projects: GA AV ČR IAA200600603; GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * Magnus force * Reynolds number * rotational Reynolds number Subject RIV: BK - Fluid Dynamics Impact factor: 0.435, year: 2012

  4. On the Drag Effect of a Refuelling Pellet

    DEFF Research Database (Denmark)

    Chang, Tinghong; Michelsen, Poul

    1981-01-01

    A refueling pellet is subjected mainly to two kinds of drags: (1) inertial drag caused by the motion of the pellet relative to the surrounding plasma, and (2) ablation drag caused by an uneven ablation rate of the front and the rear surface of the pellet in an inhomogeneous plasma. Computational ...... results showed that for reasonable combinations of pellet size and injection speed, the drag effect is hardly detectable for plasma conditions prevailing in current large tokamaks....

  5. A400M Wake Flow Studies Based on RANS CFD Methods on Hybrid Meshes

    National Research Council Canada - National Science Library

    Doetter, F; Aumann, P; Acisu, I; Brodersen, O; Ronzheimer, A

    2006-01-01

    .... CFD methods used by Airbus and DLR allow valuable predictions of these conditions, taking into account the influence of flow deflectors, sponsons, open cargo hold doors/ramps, as well as propulsion slip-streams...

  6. Study on the CFD simulation of refrigerated container

    Science.gov (United States)

    Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin

    2017-10-01

    The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.

  7. Application of CFD in Indonesian Research: A review

    Science.gov (United States)

    Ambarita, H.; Siregar, M. R.; Kishinami, K.; Daimaruya, M.; Kawai, H.

    2018-04-01

    Computational Fluid Dynamics (CFD) is a numerical method that solves fluid flow and related governing equations using a computational tool. The studies on CFD, its methodology and its application as a research tool, are increasing. In this study, application of CFD by Indonesian researcher is briefly reviewed. The main objective is to explore the characteristics of CFD applications in Indonesian researchers. Considering the size and reputation, this study uses Scopus publications indexed data base. All of the documents in Scopus related to CFD which is affiliated by at least one of Indonesian researcher are collected to be reviewed. Research topics, CFD method, and simulation results are reviewed in brief. The results show that there are 260 documents found in literature indexed by Scopus. These documents divided into research articles 125 titles, conference paper 135 titles, book 1 title and review 1 title. In the research articles, only limited researchers focused on the development of CFD methodology. Almost all of the articles focus on using CFD in a particular application, as a research tool, such as aircraft application, wind power and heat exchanger. The topics of the 125 research articles can be divided into 12 specific applications and 1 miscellaneous application. The most popular application is Heating Ventilating and Air Conditioning and followed by Reactor, Transportation and Heat Exchanger applications. The most popular commercial CFD code used is ANSYS Fluent and only several researchers use CFX.

  8. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    Science.gov (United States)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  9. Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation

    Science.gov (United States)

    Edwards, Thomas A.; Flores, Jolen

    1989-01-01

    Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.

  10. Drag reduction through self-texturing compliant bionic materials

    OpenAIRE

    Eryong Liu; Longyang Li; Gang Wang; Zhixiang Zeng; Wenjie Zhao; Qunji Xue

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, sem...

  11. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Directory of Open Access Journals (Sweden)

    Gu Yunqing

    2017-01-01

    Full Text Available Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  12. Progress towards a Drag-free SmallSat

    Science.gov (United States)

    Saraf, Shailendhar

    The net force acting on a drag-free satellite is purely gravitational as all other forces, mainly atmospheric drag and solar radiation pressure, are canceled out. In order to achieve this, a free floating reference (test mass) inside the satellite is shielded against all forces but gravity and a system of thrusters is commanded by a control algorithm such that the relative displacement between the reference and the satellite stays constant. The main input to that control algorithm is the output of a sensor which measures the relative displacement between the satellite and the test mass. Internal disturbance forces such as electrostatic or magnetic forces cannot be canceled out his way and have to be minimized by a careful design of the satellite. A drag-free technology package is under development at Stanford since 2004. It includes an optical displacement sensor to measure the relative position of the test mass inside the satellite, a caging mechanism to lock the test mass during launch, a UV LED based charge management system to minimize the effect of electrostatic forces, a thermal enclosure, and the drag-free control algorithms. Possible applications of drag-free satellites in fundamental physics (Gravity Probe B, LISA), geodesy (GOCE), and navigation (TRIAD I). In this presentation we will highlight the progress of the technology development towards a drag-free mission. The planned mission on a SaudiSat bus will demonstrate drag-free technology on a small spacecraft at a fraction of the cost of previous drag-free missions. The target acceleration noise is 10-12 m/sec2. With multiple such satellites a GRACE-like mission with improved sensitivity and potentially improved spatial and temporal resolution can be achieved.

  13. Status and outlook of CFD technology at Mitsubishi Heavy Industries Nagoya. Mitsubishi Meiko ni okeru CFD gijutsu no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Tanioka, T [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1990-09-01

    The present and future were reviewed of CFD (computational fluid dynamics) technology in Nagoya Works, Mitsubishi Heavy Industries, Ltd., Japan. The progress of the role of CFD in aerodynamic design and progress of CFD technology were reviewed. The followings were illustrated as examples of CFD analysis: design of a main wing for transonic private aircrafts by backward analysis, analysis of an airframe shape for the MU300 jet airplane with a panel method, Navier-stokes (NS) analysis of a transonic wing section, NS analysis of pressure distributions on the surfaces of the YXX airplane and space shuttle HOPE, and NS analysis of an aerodynamic heating distribution for spaceplanes. CFD tools were outlined for every developmental item such as a main wing, and requirements and subjects in practical use were discussed of several CFD tools for a rough check, precise performance check and parametric study. Such computer performance as a main memory capacity and processing speed required for the future practical use of advanced CFD was also discussed. 20 figs.

  14. Assessment of CFD Codes for Nuclear Reactor Safety Problems - Revision 2

    International Nuclear Information System (INIS)

    Smith, B.L.; Andreani, M.; Bieder, U.; Ducros, F.; Bestion, D.; Graffard, E.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Hoehne, T.; Houkema, M.; Komen, E.; Mahaffy, J.; Menter, F.; Moretti, F.; Morii, T.; Muehlbauer, P.; Rohde, U.; Krepper, E.; Song, C.H.; Watanabe, T.; Zigh, G.; Boyd, C.F.; Archambeau, F.; Bellet, S.; Munoz-Cobo, J.M.; Simoneau, J.P.

    2015-01-01

    in terms of better predictive capability, and ultimately enhanced safety awareness in quantitative terms. This classification is followed by a short description of each specific safety issue, a highly condensed state-of-the-art summary of what has been attempted to date, what is still needed to be done to improve reliability, and a list of topical references. Chapter 4 details the general assessment bases that have already been established, and discusses the usefulness and relevance of the work to NRS applications, where appropriate. This information is augmented in Chapter 5 by descriptions of the existing CFD assessment bases that have been established around specific NRS issues. Typical examples are experiments devoted to boron dilution, pressurised thermal shock, and thermal fatigue in pipes. The technology gaps which need to be closed to make CFD a more trustworthy analytical tool are listed in Chapter 6. Some deficiencies originally identified, such as limitations in the range of application of turbulence modelling, coupling of CFD with neutronics and system codes, and computer power limitations, have subsequently been filled, or partially filled. Most CFD codes currently being used in NRS applications have their own, custom-built assessment bases, the data being provided from both within and outside the nuclear community. These efforts are also documented. Chapter 7 has been completely revised, since the CFD4NRS Workshop in Garching, Germany in 2006 has been followed by three more workshops in the series: XCFD4NRS (Grenoble, France, 2008), CFD4NRS-3 (Washington DC, USA, 2010) and CFD4NRS-4 (Daejeon, S. Korea, 2012). In addition, two OECD-sponsored CFD benchmark exercises have been organised by the CFD group within WGAMA, featuring topical issues of nuclear safety: thermal fatigue in T-junctions and turbulence generated downstream of a spacer grid in a rod bundle. Summary details are given

  15. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    Science.gov (United States)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  16. A coupled RELAPS-3D/CFD methodology with a proof-of-principle calculation; TOPICAL

    International Nuclear Information System (INIS)

    Aumiller, D.L.; Tomlinson, E.T.; Bauer, R.C.

    2000-01-01

    The RELAP5-3D computer code was modified to make the explicit coupling capability in the code fully functional. As a test of the modified code, a coupled RELAP5/RELAP5 analysis of the Edwards-O'Brien blowdown problem was performed which showed no significant deviations from the standard RELAP5-3D predictions. In addition, a multiphase Computational Fluid Dynamics (CFD) code was modified to permit explicit coupling to RELAP5-3D. Several calculations were performed with this code. The first analysis used the experimental pressure history from a point just upstream of the break as a boundary condition. This analysis showed that a multiphase CFD code could calculate the thermodynamic and hydrodynamic conditions during a rapid blowdown transient. Finally, a coupled RELAP5/CFD analysis was performed. The results are presented in this paper

  17. A supportive architecture for CFD-based design optimisation

    Science.gov (United States)

    Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong

    2014-03-01

    Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture

  18. MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments

    Science.gov (United States)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-12-01

    Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.

  19. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  20. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  1. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  2. Prediction and validation of pool fire development in enclosures by means of CFD Models for risk assessment of nuclear power plants (Poolfire) - Report year 2

    International Nuclear Information System (INIS)

    Van Hees, P.; Wahlqvist, J.; Kong, D.; Hostikka, S.; Sikanen, T.; Husted, B.; Magnusson, T.; Joerud, F.

    2013-05-01

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)

  3. Prediction and validation of pool fire development in enclosures by means of CFD Models for risk assessment of nuclear power plants (Poolfire) - Report year 2

    Energy Technology Data Exchange (ETDEWEB)

    van Hees, P.; Wahlqvist, J.; Kong, D. [Lund Univ., Lund (Sweden); Hostikka, S.; Sikanen, T. [VTT Technical Research Centre of Finland (Finland); Husted, B. [Haugesund Univ. College, Stord (Norway); Magnusson, T. [Ringhals AB, Vaeroebacka (Sweden); Joerud, F. [European Spallation Source (ESS), Lund (Sweden)

    2013-05-15

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)

  4. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  5. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    Science.gov (United States)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  6. 火星突入カプセルの設計における CFD の適用事例 その1: 極超音速領域での熱空力解析

    OpenAIRE

    松山, 新吾; 藤田, 和央; Matsuyama, Shingo; Fujita, Kazuhisa

    2017-01-01

    This paper describes CFD application examples to predict hypersonic aerothermodynamics in design studies of a Mars entry capsule for future Japan’s Mars exploration mission. Firstly, two examples of the validation studies for the JAXA’s in-house CFD code against experimental measurements are briefly presented. CFD predictions of aeroheating are conducted for the T5 shock tunnel experiment at California Institute of Technology. The CFD results are generally in good agreement with the experimen...

  7. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  8. Computational Fluid Dynamics for Nuclear Reactor Safety-5 (CFD4NRS-5). Workshop Proceedings, 9-11 September 2014, Zurich, Switzerland

    International Nuclear Information System (INIS)

    Smith, Brian L.; Andreani, Michele; Badillo, Arnoldo; Dehbi, Abdel; Sato, Yohei; Smith, Brian L.; Dreier, Joerg; Kapulla, Ralf; Niceno, Bojan; Sharabi, Medhat; Bestion, Dominique; Bieder, Ulrich; Coste, Pierre; Martinez, Jean Marc; Zigh, Ghani; Boyd, Chris; Prasser, Horst-Michael; Kerenyi, Nora; Adams, Robert; Bolesch, Christian; D'Aleo, Paolo; Eismann, Ralph; Kickhofel, John; Lafferty, Nathan; Saxena, Abhishek; Kissane, Martin; ); Ulses, Anthony; ); Bartosiewicz, Yann; Seynhaeve, Jean-Marie; Caraghiaur, Diana; Munoz Cobo, Jose Luis; Glaeser, Horst; Buchholz, Sebastian; Scheuerer, Martina; Hassan, Yassin; In, Wang-Kee; Song, Chul-Hwa; Yoon, Han-Young; Kim, J.W.; Koncar, Bostjan; Tiselj, Iztoc; Lakehal, Djamel; Yadigaroglu, George; Lo, Simon; Manera, Annalisa; Petrov, Victor; Mimouni, Stephane; Benhamadouche, Sofiane; Morii, Tadashi; Suikkanen, Heikki; Toppila, Timo; Angele, Kristian; Baglietto, Emilio; Cheng, Xu; Graffard, Estelle; Ko, Jordan; Hoehne, Thomas; Lucas, Dirk; Krepper, Eckhard; Laurien, Eckart; Moretti, Fabio; Piro, Markus; Roelofs, Ferry; Veber, Pascal; Watanabe, Tadashi; Yan, Jin; Yeoh, Guan

    2016-01-01

    This present workshop, the 5. Computational Fluid Dynamics for Nuclear-Reactor Safety (CFD4NRS-5), in the biennial series of such Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) sponsored events, a tradition which began in Garching in 2006, follows the format and objectives of its predecessors in creating a forum whereby numerical analysts and experimentalists can exchange information in the application of computational fluid dynamics (CFD) to nuclear power plant (NPP) safety and future design issues. The emphasis, as always, was, in a congenial atmosphere, to offer exposure to state-of-the-art (single-phase and multi-phase) CFD applications reflecting topical issues arising in NPP design and safety, but in particular to promote the release of high-resolution experimental data to continue the CFD validation process in this application area. The reason for the increased use of multi-dimensional CFD methods is that a number of important thermal-hydraulic phenomena occurring in NPPs cannot be adequately predicted using traditional one-dimensional system hydraulics codes with the required accuracy and spatial resolution when strong three-dimensional motions prevail. Established CFD codes already contain empirical models for simulating turbulence, heat transfer, multi-phase interaction and chemical reactions. Nonetheless, such models must be validated against test data before they can be used with confidence. The necessary validation procedure is performed by comparing model predictions against trustworthy experimental data. However, reliable model assessment requires CFD simulations to be undertaken with full control over numerical errors and input uncertainties. The writing groups originally set up by the NEA have been consistently promoting the use of best practice guidelines (BPGs) in the application of CFD for just this purpose, and BPGs remain a central pillar of the simulation material accepted at this current workshop, as it was at its

  9. CFD simulation of homogenisation time measured by radiotracers

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostik, M.; Jahoda, M.

    2004-01-01

    A methodology for CFD (Computational Fluid Dynamics) simulation of radiotracer experiments was suggested. The most important parts of the methodology for validation of CFD results by radiotracers are: a) successful simulation of tracer experiment by CFD code (numerical solution of tracer dispersion in a stirred tank), which results in tracer concentration field at several time intervals; b) post-process data treatment, which uses detection chain description and which enables to simulate the detector measurement of homogenisation time from the tracer concentration field evaluated by CFD code. (author)

  10. User Interface Developed for Controls/CFD Interdisciplinary Research

    Science.gov (United States)

    1996-01-01

    The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.

  11. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L.; Tijerina S, F.; Tapia M, R.

    2016-09-01

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  12. CFD for hypersonic airbreathing aircraft

    Science.gov (United States)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  13. A CFD model for determining mixing and mass transfer in a high power agitated bioreactor

    DEFF Research Database (Denmark)

    Bach, Christian; Albæk, Mads O.; Stocks, Stuart M.

    performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was found to be most efficiently described by using the k-ε model with regards...... simulations, and the overall mass transfer coefficient was found to be in accordance with experimental data. This work illustrates the possibility of predicting the hydrodynamic performance of an agitated bioreactor using validated CFD models. These models can be applied in the testing of new bioreactor...

  14. CFD analysis of poison injection in AHWR calandria

    International Nuclear Information System (INIS)

    Kansal, A.K.; Kamble, M.T.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    The present work intends to give details of design and performance validation of SDS-2. The performance is evaluated on the basis of dispersion of poison in calandria in a given period of time. Location of injection tube and injection holes, size of jet hole and number of holes are some of the design parameters which greatly affect dispersion of poison in calandria. A Computational Fluid Dynamic (CFD) study for axial and radial injection of poison was carried out using open source CFD code OpenFOAM. CFD benchmarking was done using experiments performed by Johari (Johari et al. 1997) to identify suitable turbulence model for this problem. An experimental facility simulating poison injection in moderator in presence of calandria tubes was used to further validate the CFD model is shown in the paper. CFD analysis was carried out for axial as well as radial injection for AHWR geometry. CFD analysis using OpenFOAM has been carried out to study high pressure poison injection for single jet of Shut Down System - 2 (SDS- 2) of Advanced Heavy Water Reactor (AHWR) for various design options. CFD model used in analysis have been validated with experimental data available in literature as well as experiments performed for AHWR specific geometry. Various turbulence models are tested and their adequacy for such flow problems has been established. The CFD model is then used to simulate poison injection for two design options for AHWR and their performance is compared. (author)

  15. Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bum Suk; Kim, Mann Eung [Korean Register of Shipping, Daejeon (Korea, Republic of); Lee, Young Ho [Korea Maritime Univ., Busan (Korea, Republic of)

    2008-07-15

    Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- {epsilon}) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  16. Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code

    International Nuclear Information System (INIS)

    Kim, Bum Suk; Kim, Mann Eung; Lee, Young Ho

    2008-01-01

    Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- ε) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model

  17. Prediction of hydraulic force and momentum on pelton turbine jet deflector based on cfd simulation

    International Nuclear Information System (INIS)

    Popovski, Boro

    2015-01-01

    The numerical simulation of three-dimensional turbulent flow through the jet-distributor, free stream jet and deflector of Pelton Turbine is presented in this work. The calculations are performed using the CFD package Ansys CFX (Navie-Stokes equations and the k-omega SST turbulent model). A traditional definition for calculation of hydraulic forces and momentum on the jet deflector and a method for experimental evaluation are described. The steps for flow modelling, mesh (grid) generation, as well as the results obtained from the numerical simulation of the flow and stress deformation calculations of the jet-deflector are presented. This work corresponds with the actual approach of methods development for flow simulation and calculations of Pelton Turbines. The kinematic and dynamic parameters are calculated based on CFD simulations. The results of the calculations represents reliable tool in the procedure of development and construction of Pelton Turbines. (author)

  18. Comparison of a semi-analytic and a CFD model uranium combustion to experimental data

    International Nuclear Information System (INIS)

    Clarksean, R.

    1998-01-01

    Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome

  19. Effect of truncated cone roughness element density on hydrodynamic drag

    Science.gov (United States)

    Womack, Kristofer; Schultz, Michael; Meneveau, Charles

    2017-11-01

    An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  20. Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations

    OpenAIRE

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.; Zahle, Frederik

    2012-01-01

    In the present work, CFD simulations of the DU96-W-180 airfoil at 26 and 24 deg. angles of attack were performed. 2D RANS and 3D DES computations with non-moving and prescribed motion airfoil suspensions were carried out. The openings of the lift coefficient loops predicted by CFD were different than those predicted by engineering models. The average lift slope of the loops from the 3D CFD had opposite sign than the one from 2D CFD. Trying to model the 3D behaviour with the engineering models...

  1. Prediction of wall friction for fluids at supercritical pressure with CFD models

    International Nuclear Information System (INIS)

    Angelucci, M.; Ambrosini, W.; Forgione, N.

    2011-01-01

    In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of friction factor observed in experimental data at supercritical pressures at various operating conditions. A short survey of available data and correlations for smooth pipe friction in circular pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-like and the gas-like regions and within the transitional region around the pseudo-critical temperature. For smooth pipes, a general decrease of the friction factor in the transitional region is reported, constituting one of the relevant effects to be predicted by the computational fluid-dynamic models. A limited number of low-Reynolds number models is adopted, making use of refined near-wall discretisations as required by the constraint y + < 1 at the wall. In particular, the Lien k-ε and the SST k-ω models are considered. The values of the wall shear stress calculated by the code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then the Darcy-Weisbach friction factors, basing on their classical definitions. The obtained values are compared with those provided by experimental tests and correlations, finding a reasonable qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, where fluid property changes are moderate, than in the transitional region, where the trends provided by available correlations are reproduced only in a qualitative way. (author)

  2. 3D CFD Analysis of a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2015-04-01

    Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

  3. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses

  4. CFD modeling of thermal mixing in a T-junction geometry using LES model

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz

  5. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Ivo, Kljenak; Miroslav, Babic; Borut, Mavko

    2007-01-01

    The possibility of simulating adequately the flow circulation within a nuclear power plant containment using a lumped-parameter code is considered. An experiment on atmosphere mixing and stratification, which was performed in the containment experimental facility TOSQAN at IRSN (Institute of Radioprotection and Nuclear Safety) in Saclay (France), was simulated with the CFD (Computational Fluid Dynamics) code CFX4 and the lumped-parameter code CONTAIN. During some phases of the experiment, steady states were achieved by keeping the boundary conditions constant. Two steady states during which natural convection was the dominant gas flow mechanism were simulated independently. The nodalization of the lumped-parameter model was based on the flow pattern, simulated with the CFD code. The simulation with the lumped-parameter code predicted basically the same flow circulation patterns within the experimental vessel as the simulation with the CFD code did. (authors)

  6. Impact of CGNS on CFD Workflow

    Science.gov (United States)

    Poinot, M.; Rumsey, C. L.; Mani, M.

    2004-01-01

    CFD tools are an integral part of industrial and research processes, for which the amount of data is increasing at a high rate. These data are used in a multi-disciplinary fluid dynamics environment, including structural, thermal, chemical or even electrical topics. We show that the data specification is an important challenge that must be tackled to achieve an efficient workflow for use in this environment. We compare the process with other software techniques, such as network or database type, where past experiences showed how difficult it was to bridge the gap between completely general specifications and dedicated specific applications. We show two aspects of the use of CFD General Notation System (CGNS) that impact CFD workflow: as a data specification framework and as a data storage means. Then, we give examples of projects involving CFD workflows where the use of the CGNS standard leads to a useful method either for data specification, exchange, or storage.

  7. The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A CFD based method is proposed for the simulation of hydrogen deflagration. Black-Right-Pointing-Pointer A dynamic grid adaptation method is proposed to resolve turbulent flame brush thickness. Black-Right-Pointing-Pointer The predictions obtained using this method is in good agreement with the static grid method. Black-Right-Pointing-Pointer TFC model results are in good agreement with large-scale homogeneous hydrogen-air experiments. - Abstract: During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive

  8. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  9. Requirements for effective use of CFD in aerospace design

    Science.gov (United States)

    Raj, Pradeep

    1995-01-01

    This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.

  10. Advanced Wall Boiling Model with Wide Range Applicability for the Subcooled Boiling Flow and its Application into the CFD Code

    International Nuclear Information System (INIS)

    Yun, B. J.; Song, C. H.; Splawski, A.; Lo, S.

    2010-01-01

    Subcooled boiling is one of the crucial phenomena for the design, operation and safety analysis of a nuclear power plant. It occurs due to the thermally nonequilibrium state in the two-phase heat transfer system. Many complicated phenomena such as a bubble generation, a bubble departure, a bubble growth, and a bubble condensation are created by this thermally nonequilibrium condition in the subcooled boiling flow. However, it has been revealed that most of the existing best estimate safety analysis codes have a weakness in the prediction of the subcooled boiling phenomena in which multi-dimensional flow behavior is dominant. In recent years, many investigators are trying to apply CFD (Computational Fluid Dynamics) codes for an accurate prediction of the subcooled boiling flow. In the CFD codes, evaporation heat flux from heated wall is one of the key parameters to be modeled for an accurate prediction of the subcooled boiling flow. The evaporate heat flux for the CFD codes is expressed typically as follows, q' e = πD 3 d /6 ρ g h fg fN' where, D d , f ,N' are bubble departure size, bubble departure frequency and active nucleation site density, respectively. In the most of the commercial CFD codes, Tolubinsky bubble departure size model, Kurul and Podowski active nucleation site density model and Ceumem-Lindenstjerna bubble departure frequency model are adopted as a basic wall boiling model. However, these models do not consider their dependency on the flow, pressure and fluid type. In this paper, an advanced wall boiling model was proposed in order to improve subcooled boiling model for the CFD codes

  11. CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh.

    Science.gov (United States)

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda R; Medronho, Ricardo A

    2009-11-01

    In the present work Computational Fluid Dynamics (CFD) was used to study the flow field and particle dynamics in an internal spin-filter (SF) bioreactor system. Evidence of a radial exchange flow through the filter mesh was detected, with a magnitude up to 130-fold higher than the perfusion flow, thus significantly contributing to radial drag. The exchange flow magnitude was significantly influenced by the filter rotation rate, but not by the perfusion flow, within the ranges evaluated. Previous reports had only given indirect evidences of this exchange flow phenomenon in spin-filters, but the current simulations were able to quantify and explain it. Flow pattern inside the spin-filter bioreactor resembled a typical Taylor-Couette flow, with vortices being formed in the annular gap and eventually penetrating the internal volume of the filter, thus being the probable reason for the significant exchange flow observed. The simulations also showed that cells become depleted in the vicinity of the mesh due to lateral particle migration. Cell concentration near the filter was approximately 50% of the bulk concentration, explaining why cell separation achieved in SFs is not solely due to size exclusion. The results presented indicate the power of CFD techniques to study and better understand spin-filter systems, aiming at the establishment of effective design, operation and scale-up criteria.

  12. Superfluid drag in the two-component Bose-Hubbard model

    Science.gov (United States)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  13. Aerodynamics of ski jumping: experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meile, W.; Reisenberger, E.; Brenn, G. [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria); Mayer, M. [VRVis GmbH, Vienna (Austria); Schmoelzer, B.; Mueller, W. [Medical University of Graz, Department for Biophysics, Graz (Austria)

    2006-12-15

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required. (orig.)

  14. Aerodynamics of ski jumping: experiments and CFD simulations

    Science.gov (United States)

    Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.

    2006-12-01

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.

  15. Modelling of Aerodynamic Drag in Alpine Skiing

    OpenAIRE

    Elfmark, Ola

    2017-01-01

    Most of the breaking force in the speed disciplines in alpine skiing is caused by the aerodynamic drag, and a better knowledge of the drag force is therefore desirable to gain time in races. In this study a complete database of how the drag area (CDA) changes, with respect to the different body segments, was made and used to explain a complete body motion in alpine skiing. Three experiments were performed in the wind tunnel at NTNU, Trondheim. The database from a full body measurement on an a...

  16. Dynamic CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    Science.gov (United States)

    Brock, Joseph M; Stern, Eric

    2016-01-01

    Dynamic CFD simulations of the SIAD ballistic test model were performed using US3D flow solver. Motivation for performing these simulations is for the purpose of validation and verification of the US3D flow solver as a viable computational tool for predicting dynamic coefficients.

  17. Search for a solute-drag effect in dendritic solidification

    International Nuclear Information System (INIS)

    Eckler, K.; Herlach, D.M.; Aziz, M.J.

    1994-01-01

    The authors report the results of an indirect experimental test for the solute-drag effect in alloy solidification by fitting the data of Eckler et.al. for Ni-B dendrite tip velocities vs undercooling to models in several ways. The unknown equilibrium partition coefficient, k e , was varied as a fitting parameter. When they combine the dendrite growth model of Boettinger et al. with the Continuous Growth Model (CGM) of Aziz and Kaplan with solute drag, they cannot fit the data for any value of k e . When they combine dendrite growth theory with the CGM without solute drag, they obtain a reasonable fit to the data for k e = 4 x 10 -6 . When they combine dendrite growth theory with a new partial-solute-drag interpolation between the with-solute-drag and the without-solute-drag versions of the CGM, they obtain a still better fit to the data for k e = 2.8 x 10 - 4. This result points out the possibility of partial solute-drag during solidification and the importance of an independent determination of k e in order to distinguish between models

  18. On the origin of the drag force on golf balls

    Science.gov (United States)

    Balaras, Elias; Beratlis, Nikolaos; Squires, Kyle

    2017-11-01

    It is well establised that dimples accelerate the drag-crisis on a sphere. The result of the early drag-crisis is a reduction of the drag coefficient by more than a factor of two when compared to a smooth sphere at the same Reynolds number. However, when the drag coefficients for smooth and dimpled spheres in the supercritical regime are compared, the latter is higher by a factor of two to three. To understand the origin of this behavior we conducted direct numerical simulations of the flow around a dimpled sphere, which is similar to commercially available golf balls, in the supercritical regime. By comparing the results to those for a smooth sphere it is found that dimples, although effective in accelerating the drag crisis, impose a local drag-penalty, which contributes significantly to the overall drag force. This finding challenges the broadly accepted view, that the dimples only indirectly affect the drag force on a golf ball by manipulating the structure of the turbulent boundary layer near the wall and consequently affect global separation. Within this view, typically the penalty on the drag force imposed by the dimples is assumed to be small and coming primarily from skin friction. The direct numerical simulations we will report reveal a very different picture.

  19. Experimental evaluation of the drag force and drag torque acting on a rotating spherical particle moving in fluid

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Kvurt, Y.; Kharlamov, Alexander; Chára, Zdeněk; Vlasák, Pavel

    2008-01-01

    Roč. 56, č. 2 (2008), s. 88-94 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600603 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * spherical particle * rotational movement * translational movement Subject RIV: DA - Hydrology ; Limnology

  20. The impact of CFD on development test facilities - A National Research Council projection. [computational fluid dynamics

    Science.gov (United States)

    Korkegi, R. H.

    1983-01-01

    The results of a National Research Council study on the effect that advances in computational fluid dynamics (CFD) will have on conventional aeronautical ground testing are reported. Current CFD capabilities include the depiction of linearized inviscid flows and a boundary layer, initial use of Euler coordinates using supercomputers to automatically generate a grid, research and development on Reynolds-averaged Navier-Stokes (N-S) equations, and preliminary research on solutions to the full N-S equations. Improvements in the range of CFD usage is dependent on the development of more powerful supercomputers, exceeding even the projected abilities of the NASA Numerical Aerodynamic Simulator (1 BFLOP/sec). Full representation of the Re-averaged N-S equations will require over one million grid points, a computing level predicted to be available in 15 yr. Present capabilities allow identification of data anomalies, confirmation of data accuracy, and adequateness of model design in wind tunnel trials. Account can be taken of the wall effects and the Re in any flight regime during simulation. CFD can actually be more accurate than instrumented tests, since all points in a flow can be modeled with CFD, while they cannot all be monitored with instrumentation in a wind tunnel.

  1. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-01

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  2. A CFD benchmarking exercise based on flow mixing in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L., E-mail: brian.smith@psi.ch [Thermal Hydraulics Laboratory, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mahaffy, J.H. [Wheelsmith Farm, Spring Mill, PA (United States); Angele, K. [Vattenfall R and D, Älvkarleby (Sweden)

    2013-11-15

    The paper describes an international benchmarking exercise, sponsored by the OECD Nuclear Energy Agency (NEA), aimed at testing the ability of state-of-the-art computational fluid dynamics (CFD) codes to predict the important fluid flow parameters affecting high-cycle thermal fatigue induced by turbulent mixing in T-junctions. The results from numerical simulations are compared to measured data from an experiment performed at 1:2 scale by Vattenfall Research and Development, Älvkarleby, Sweden. The test data were released only at the end of the exercise making this a truly blind CFD-validation benchmark. Details of the organizational procedures, the experimental set-up and instrumentation, the different modeling approaches adopted, synthesis of results, and overall conclusions and perspectives are presented.

  3. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  4. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  5. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  6. Drag reduction of nata de coco suspensions in circular pipe flow

    Science.gov (United States)

    Warashina, J.; Ogata, S.

    2015-04-01

    Reducing pipe friction by adding a drag-reducing agent has attracted interest as a means to reduce energy consumption. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. However, no drag-reducing agent currently satisfies both these conditions. We focused on nata de coco and found that the nata de coco fiber reduced drag by up to 25%. With respect to the mechanism of drag reduction by nata de coco fiber, the relationship between drag-reduction phenomena and the fiber form of nata de coco was investigated by visualization. We also found that the drag-reduction effect appeared to be due to the formation of networks of tangled fibers of nata de coco. However, drag reduction did not occur in the case in which fibers of nata de coco did not form networks.

  7. CFD Simulation on Cooling Down of Beryllium Filters for Neutron Conditioning for Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Azraf Azman; Shahrir Abdullah; Mohd Rizal Mamat

    2011-01-01

    The cryogenic system for cooling Beryllium filter utilizing liquid nitrogen was designed, fabricated, tested and installed at SANS instrument of TRIGA MARK II PUSPATI research reactor. A computational fluid dynamics (CFD) modeling was used to predict the cooling performance of the beryllium for optimization of neutron beam resolution and transmission. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat flux. The simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium. (author)

  8. Comparative assessment of CFD Tools and the Eurocode Methodology in describing Externally Venting Flames

    Directory of Open Access Journals (Sweden)

    Asimakopoulou Eleni K.

    2013-11-01

    Full Text Available The ability of currently available Computational Fluid Dynamics (CFD tools to adequately describe Externally Venting Flames (EVF is assessed, aiming to demonstrate compliance with performance-based fire safety regulations. The Fire Dynamics Simulator (FDS CFD tool is used to simulate the EVF characteristics in a corridor-compartment-façade configuration exposed to natural fire conditions. Numerical results of the temporal evolution of gas velocity, gas temperatures and flame shape are obtained for both the interior and the exterior of the compartment. Predictions are compared to respective experimental data, as well as to correlations suggested by the Eurocode methodology. The effects of ventilation conditions are investigated by simulating both Forced Draught (FD and No Forced Draught (NoFD test cases. The obtained results suggest that currently available CFD tools are capable of achieving good qualitative agreement with experimental data and, in certain cases (e.g. FD conditions, adequate quantitative agreement, that generally outperforms the Eurocode prescriptive methodology.

  9. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  10. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  11. CFD modeling of a vertical-axis wind turbine for efficiency improvement and climate change mitigation

    International Nuclear Information System (INIS)

    Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.

    2009-01-01

    Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)

  12. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  13. Computational System For Rapid CFD Analysis In Engineering

    Science.gov (United States)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  14. CFD modeling of the IRIS pressurizer dynamic

    International Nuclear Information System (INIS)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R.; Bezerra, Jair L.; Lira, Carlos A.B. Oliveira

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  15. CFD modeling of the IRIS pressurizer dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2015-07-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  16. Concentrated energy addition for active drag reduction in hypersonic flow regime

    Science.gov (United States)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  17. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  18. Study of mixing behavior of cstr using CFD

    Directory of Open Access Journals (Sweden)

    D. Rajavathsavai

    2014-03-01

    Full Text Available The continuous stirred tank reactor (CSTR is a widely used equipment in chemical related industries. The flow behaviour of fluid inside the reactor may either change from dispersion to ideal or ideal to dispersion mixing state. It is studied using the computational fluid dynamics (CFD simulation software ANSYS Fluent. The mixing behaviour is predicted in terms of age distribution function, I (θ. For the CSTR without impeller and baffles, I (θ is found by the tracer injection method. It is measured and predicted by the impeller swept volume method for the CSTR in the presence of impeller and baffles. The predicted results are found to be in good agreement with the literature experimental data. Effect of rpm of the impeller, Reynolds number and viscosity of the process fluid on the mixing characteristics has been investigated.

  19. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows

  20. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    National Research Council Canada - National Science Library

    Chu, Peter C; Fan, Chenwu; Gefken, Paul R

    2008-01-01

    Prediction of rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/lift and torque coefficients, which depend on various physical processes such as supercavitation and bubbles...

  1. CFD Model Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data associated with the development of the CFD model for spore deposition in respiratory systems of rabbits and humans. This dataset is associated with the...

  2. The role of CFD combustion modeling in hydrogen safety management – III: Validation based on homogeneous hydrogen–air–diluent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Komen, Ed [Nuclear Research and Consultancy Group – NRG, P.O. Box 25, 1755 ZG Petten (Netherlands); Roekaerts, Dirk [Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2015-08-15

    Highlights: • A CFD based method proposed in the previous article is used for the simulation of the effect of CO{sub 2}–He dilution on hydrogen deflagration. • A theoretical study is presented to verify whether CO{sub 2}–He diluent can be used as a replacement for H{sub 2}O as diluent. • CFD model used for the validation work is described. • TFC combustion model results are in good agreement with large-scale homogeneous hydrogen–air–CO{sub 2}–He experiments. - Abstract: Large quantities of hydrogen can be generated and released into the containment during a severe accident in a PWR. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In our previous article, a CFD based method to determine these pressure loads was presented. This CFD method is based on the application of a turbulent flame speed closure combustion model. The method was validated against three uniform hydrogen–air deflagration experiments with different blockage ratio performed in the ENACCEF facility. It was concluded that the maximum pressures were predicted within 13% accuracy, while the rate of pressure rise dp/dt was predicted within about 30%. The eigen frequencies of the residual pressure wave phenomena were predicted within a few %. In the present article, we perform additional validation of the CFD based method against three uniform hydrogen–air–CO{sub 2}–He deflagration experiments with three different concentrations of the CO{sub 2}–He diluent. The trends of decrease in the flame velocity, the intermediate peak pressure, the rate of pressure rise dp/dt, and the maximum value of the mean pressure with an increase in the CO{sub 2}–He dilution are captured well in the simulations. From the

  3. Drag reduction of a rapid vehicle in supercavitating flow

    Directory of Open Access Journals (Sweden)

    D. Yang

    2017-01-01

    Full Text Available Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

  4. Some Aspects of Nonlinear Dynamics and CFD

    Science.gov (United States)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  5. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  6. New Analysis of Solute Drag in AA5754 by Precise Determination of Point Defect Generation and the Orowan Relation

    Science.gov (United States)

    Diak, Brad J.; Penlington, Alex; Saimoto, Shig

    Serrated deformation in Al-Mg alloys creates problems that affect consumer product acceptability. This effect is usually attributed to the Portevin-LeChâtelier effect. In this study the inverse PLC effect due to solute drag on moving dislocations is examined in AA5754. The drag mechanism is dependent on the diffusivity of the solute which is in-turn dependent on the point defect evolution during deformation. Experimental determination of the parabolic James-Barnett drag profile by strain rate change experiments indicates the peak stress is centered at 1.5×10-9m/s, which requires a mechanical formation energy for vacancies of 0.4eV/at. A new slip-based constitutive relation was used to determine the evolution of vacancy volume fraction with deformation with strain, which is greater than the volume fraction of vacancies predicted by the solute drag profile.

  7. 2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers

    International Nuclear Information System (INIS)

    Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N

    2014-01-01

    In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost

  8. Single-phase CFD applicability for estimating fluid hot-spot locations in a 5 x 5 fuel rod bundle

    International Nuclear Information System (INIS)

    Ikeda, Kazuo; Makino, Yasushi; Hoshi, Masaya

    2006-01-01

    High-thermal performance PWR spacer grids require both of low pressure loss and high critical heat flux (CHF) properties. Therefore, a numerical study using computational fluid dynamics (CFD) was carried out to estimate pressure loss in strap and mixing vane structures. Moreover, a CFD simulation under single-phase flow condition was conducted for one specific condition in a water departure from nucleate boiling (DNB) test to examine the applicability of the CFD model for predicting the CHF rod position. Energy flux around the rod surface in a water DNB test is the sum of the intrinsic energy flux from a rod and the extrinsic energy flux from other rods, and increments of the enthalpy and decrements of flow velocity near the rod surface are assumed to affect CHF performance. CFD makes it possible to model the complicated flow field consisting of a spacer grid and a rod bundle and evaluate the local velocity and enthalpy distribution around the rod surface, which are assumed to determine the initial conditions for the two-phase structure. The results of this study indicate that single-phase CFD can play a significant role in designing PWR spacer grids for improved CHF performance

  9. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  10. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  11. Modelación CFD de casos básicos de convección en ambientes cerrados: Necesidades de principiantes en CFD para adquirir habilidades y confianza en la modelación CFD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortés

    2014-01-01

    Full Text Available La predicción de patrones de flujo de aire, velocidad, temperatura, humedad y concentración de contaminantes son requeridos para el diseño de ambientes interiores saludables y confortables. La Dinámica de Fluidos Computacional (CFD es la técnica más avanzada para modelar y predecir los flujos de aire en ambientes cerrados. Sin embargo, los principales errores en los modelos CFD y en sus resultados están relacionados con el factor humano. Los principiantes en modelación CFD no cuentan con las habilidades, experiencia y juicio ingenieril para generar modelos robustos y confiables. Este proceso no es intuitivo y los nuevos usuarios necesitan orientación. Este artículo busca proveer información más completa sobre la modelación CFD de casos básicos de convección natural, forzados y mixtos que permitirán a los nuevos usuarios adquirir las habilidades y confianza. La modelación CFD incluye la generación de malla, definición de criterios de convergencia y factores de relajación, y la evaluación de modelos de turbulencia para cada caso. Los resultados muestran que es necesaria la experiencia de los usuarios en cada paso de la modelación CFD, incluso para casos simples de convección.

  12. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers

    NARCIS (Netherlands)

    Forstner, M.; Hofmeister, G.; Joeller, M.; Dahl, J.; Braun, M.; Kleditzsch, S.; Scharler, R.; Obernberger, I.

    2006-01-01

    In order to describe and predict the formation of ash deposits in biomass fired combustion plants, a mathematical model is being developed and implemented into the CFD code Fluent¿ as a post processing tool. At the present state of development the model covers the release of coarse ash particles and

  13. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    Directory of Open Access Journals (Sweden)

    Jiecheng Yang

    2014-02-01

    Full Text Available Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs. Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force.

  14. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    Science.gov (United States)

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-01-01

    Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  15. Drag reduction in channel flow using nonlinear control

    Science.gov (United States)

    Keefe, Laurence R.

    1993-01-01

    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  16. Spin-transfer mechanism for magnon-drag thermopower

    NARCIS (Netherlands)

    Lucassen, M.E.|info:eu-repo/dai/nl/314406913; Wong, C.H.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Tserkovnyak, Y.

    2011-01-01

    We point out a relation between the dissipative spin-transfer-torque parameter β and the contribution of magnon drag to the thermoelectric power in conducting ferromagnets. Using this result, we estimate β in iron at low temperatures, where magnon drag is believed to be the dominant contribution to

  17. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  18. The difficult challenge of a two-phase CFD modelling for all flow regimes

    International Nuclear Information System (INIS)

    Bestion, D.

    2014-01-01

    Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The

  19. Development, Verification and Validation of Parallel, Scalable Volume of Fluid CFD Program for Propulsion Applications

    Science.gov (United States)

    West, Jeff; Yang, H. Q.

    2014-01-01

    There are many instances involving liquid/gas interfaces and their dynamics in the design of liquid engine powered rockets such as the Space Launch System (SLS). Some examples of these applications are: Propellant tank draining and slosh, subcritical condition injector analysis for gas generators, preburners and thrust chambers, water deluge mitigation for launch induced environments and even solid rocket motor liquid slag dynamics. Commercially available CFD programs simulating gas/liquid interfaces using the Volume of Fluid approach are currently limited in their parallel scalability. In 2010 for instance, an internal NASA/MSFC review of three commercial tools revealed that parallel scalability was seriously compromised at 8 cpus and no additional speedup was possible after 32 cpus. Other non-interface CFD applications at the time were demonstrating useful parallel scalability up to 4,096 processors or more. Based on this review, NASA/MSFC initiated an effort to implement a Volume of Fluid implementation within the unstructured mesh, pressure-based algorithm CFD program, Loci-STREAM. After verification was achieved by comparing results to the commercial CFD program CFD-Ace+, and validation by direct comparison with data, Loci-STREAM-VoF is now the production CFD tool for propellant slosh force and slosh damping rate simulations at NASA/MSFC. On these applications, good parallel scalability has been demonstrated for problems sizes of tens of millions of cells and thousands of cpu cores. Ongoing efforts are focused on the application of Loci-STREAM-VoF to predict the transient flow patterns of water on the SLS Mobile Launch Platform in order to support the phasing of water for launch environment mitigation so that vehicle determinantal effects are not realized.

  20. CFD predictions of standby liquid control system mixing in lower plenum of a BWR

    International Nuclear Information System (INIS)

    Boyd, Christopher; Skarda, Raymond

    2014-01-01

    Highlights: • Computational fluid dynamics analysis of BWR lower plenum. • Mixing and stratification of the standby liquid control system injection. • Scoping study highlights the expected flow paths and limitations of experiments. - Abstract: During an anticipated transient without scram (ATWS) scenario in certain boiling water reactor (BWR) systems, a standby liquid control system (SLCS) is used to inject a sodium pentaborate solution into the reactor system in order to quickly shut down (scram) the reactor without the use of the control rods. Some BWR designs utilize a SLCS that injects through a set of nozzles on a vertical pipe in the peripheral region of the lower plenum of the reactor vessel. During the scenario, system water levels are reduced and natural circulation flow rates down through the jet pump nozzles and up into the core are a small fraction of the rated system flow. It is during this period that the SLCS flows are considered. This work outlines some initial scoping studies completed by the staff at the Nuclear Regulatory Commission (NRC). An attempt at benchmarking the computational fluid dynamics (CFD) approach using a set of available test data from a small facility is outlined. Due to our lack of information related to specific details of the facility geometry along with the limited data available from the test, the benchmark exercise produced only a qualitative basis for selecting turbulence models and mesh density. A CFD model simulating a full-scale reactor system is developed for the lower plenum of a representative BWR/4 design and SLCS flows and mixing are studied under a range of flow conditions. The full-scale BWR simulation builds upon the lessons learned from the benchmark exercise. One challenge for this work is the large size of the domain and the relatively small size of the geometric details such as flow passages and gaps. The geometry is simplified to make meshing feasible by eliminating some of the small features. The

  1. Application of CFD methods in research of SCWR thermo-hydraulics

    International Nuclear Information System (INIS)

    Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping

    2013-01-01

    The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)

  2. Wall temperature control of low-speed body drag

    Science.gov (United States)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  3. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-10-01

    Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.

  4. Determination of increased mean drag coefficients for a cylinder vibrating at low values of Keulegan-Carpenter number

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Riveros

    2014-06-01

    Full Text Available There is an increasing demand for the development of a reliable technology for wind turbines in deepwaters.Therefore, offshore wind turbine technology is receiving great amount of attention by the research community. Nevertheless, the dynamic response prediction of the support system for offshore wind turbines is still challenging due to the nonlinear and self-regulated nature of the Vortex Induced Vibration (VIV process. In this paper, the numerical implementation of a computational fluid dynamics-based approach for determination of increased mean drag coefficient is presented. The numerical study is conducted at low values of Keulegan-Carpenter number in order to predict the increment of drag force due to cross-flow motion. The simulation results are then compared with previously developed empirical formulations. Good agreement is observed in these comparisons.

  5. Results from a CFD reference study into the modelling of heat and smoke transport by different CFD-practitioners

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Lemaire, A.D.; Plas, van der M.

    2009-01-01

    The paper describes results from a reference study that focuses on the application of the Computational Fluid Dynamics (CFD-) technique for heat and smoke transport in practice. Goal of the study is to obtain insight into the amount and causes of the spread of CFD-results when applied by different

  6. Electron drag in ferromagnetic structures separated by an insulating interface

    Science.gov (United States)

    Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.

    2018-06-01

    We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.

  7. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  8. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    Science.gov (United States)

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  9. Application of CFD technique for HYFLEX aerodynamic design

    OpenAIRE

    Yamamoto, Yukimitsu; Watanabe, Shigeya; Ishiguro, Mitsuo; Ogasawara, Ko; 山本 行光; 渡辺 重哉; 石黒 満津夫; 小笠原 宏

    1994-01-01

    An overview of the application of Computational Fluid Dynamics (CFD) technique for the HYFLEX (Hypersonic Flight Experiment) aerodynamic design by using the numerical simulation codes in the supersonic and hypersonic speed ranges is presented. Roles of CFD required to make up for the short term of development and small amount of the wind tunnel test cases, application in the HYFLEX aerodynamic design and their application methods are described. The procedure of CFD code validation by the expe...

  10. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  11. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  12. Predicting local distributions of erosion-corrosion wear sites for the piping in the nuclear power plant using CFD models

    International Nuclear Information System (INIS)

    Ferng, Y.M.

    2008-01-01

    The erosion-corrosion (E/C) wear is an essential degradation mechanism for the piping in the nuclear power plant, which results in the oxide mass loss from the inside of piping, the wall thinning, and even the pipe break. The pipe break induced by the E/C wear may cause costly plant repairs and personal injures. The measurement of pipe wall thickness is a useful tool for the power plant to prevent this incident. In this paper, CFD models are proposed to predict the local distributions of E/C wear sites, which include both the two-phase hydrodynamic model and the E/C models. The impacts of centrifugal and gravitational forces on the liquid droplet behaviors within the piping can be reasonably captured by the two-phase model. Coupled with these calculated flow characteristics, the E/C models can predicted the wear site distributions that show satisfactory agreement with the plant measurements. Therefore, the models proposed herein can assist in the pipe wall monitoring program for the nuclear power plant by way of concentrating the measuring point on the possible sites of severe E/C wear for the piping and reducing the measurement labor works

  13. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  14. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  15. Co-current descending two-phase flows in inclined packed beds : experiments versus simulations

    Energy Technology Data Exchange (ETDEWEB)

    Atta, A.; Nigam, K.D.P.; Roy, S. [Inst. of Technology, New Delhi (India). Dept. of Chemical Engineering; Schubert, M.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2010-10-15

    This paper presented a numerical simulation for an inclined packed bed configuration for two-phase co-current downward flow. A two-phase Eulerian computational fluid dynamics (CFD) model was used to predict the hydrodynamic behaviour. Two different modelling strategies were compared, notably a straight tube with an artificially inclined gravity, and an inclined geometry with straight gravity. The effect of inclination angle of a packed bed on its gas-liquid flow segregation and liquid saturation spatial distribution was measured for varying inclinations and fluid velocities. The CFD model was adapted from a trickle-bed vertical configuration and based on the porous media concept. The predicted pressure drops for the inclined gravity were found to be insensitive to inclination. Therefore, simulations to study the parameters that influence the reduced liquid saturation were performed only with the inclined geometry case. Experimental data obtained using electrical capacitance tomography was used to validate the model predictions. The study showed that a trickle bed CFD model for vertically straight reactors can be effectively implemented in inclined reactor geometries. However, additional research is needed to formulate appropriate drag force closures which should be incorporated in the CFD model for improved quantitative estimation of inclined bed hydrodynamics. 22 refs., 10 figs.

  16. Measurements of drag and flow over biofilm

    Science.gov (United States)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  17. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Brotherton D.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is reported. The Fresnel "drag" in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the consequence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  18. Creating drag and lift curves from soccer trajectories

    Science.gov (United States)

    Goff, John Eric; Kelley, John; Hobson, Chad M.; Seo, Kazuya; Asai, Takeshi; Choppin, S. B.

    2017-07-01

    Trajectory analysis is an alternative to using wind tunnels to measure a soccer ball’s aerodynamic properties. It has advantages over wind tunnel testing such as being more representative of game play. However, previous work has not presented a method that produces complete, speed-dependent drag and lift coefficients. Four high-speed cameras in stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer trajectories. Those trajectories span a range of launch speeds from 9.3 to 29.9 m s-1. That range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results from trajectory analysis were combined to give speed-dependent drag and lift coefficient curves for the entire range of speeds found in the 29 trajectories. The average root mean square error between the measured and modelled trajectory was 0.028 m horizontally and 0.034 m vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients respectively.

  19. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    Science.gov (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  20. Validation of CFD-methods to predict heat transfer and temperatures during the transport and storage of casks under a cover

    International Nuclear Information System (INIS)

    Leber, A.; Graf, W.; Hueggenberg, R.

    2004-01-01

    With respect to the transport of casks for radioactive material, the proof of the safe heat removal can be accomplished by validated calculation methods. The boundary conditions for thermal tests for type B packages are specified in the ADR based on the regulations defined by the International Atomic Energy Agency. The varying boundary conditions under transport or storage conditions are based on the varying thermal conditions true for different cask types. In most cases the cask will be transported in lying position under a cover (e.g. canopy or tarpaulin) and stored in standing position in an array with other casks. The main heat transport mechanisms are natural convection and thermal radiation. The cover or the storage building are furnished with vents that create an air flow, which will improve the natural convection. Depending on the thermal boundary conditions, the cask design and the heat power, about 50 - 95% of the heat power will be removed from the finned cask surface by natural convection. Consequently the convection by air flow is the main heat transport mechanism. The air flow can be approximated with analytical methods by solving the integral heat and flow balances for the domain. In a stationary state the overpressure due the buoyancy and the pressure loss in the flow resistances are equal. Based on the air flow, the relevant temperatures of the cask can be calculated in an iterative process. Due to the fast development of numerical calculation methods and computer hardware, the use of Computational- Fluid-Dynamics(CFD) calculations plays an important role. CFD-calculations are based on solving the equations of conservation (Navier-Stokes equations) using a finite element mesh or a finite volume mesh of the model. For a finned cask lying under a cover, where the main contributing element for heat removal is natural convection in combination with the thermal radiation, a CFD-calculation can be the most appropriate method. Common CFD-Codes are FLUENT

  1. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  2. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  3. CFD Simulation of Entrained Flow Gasification With Improved Devolatilization and Char Consumption Submodels

    KAUST Repository

    Kumar, Mayank; Zhang, Cheng; Monaghan, Rory F. D.; Singer, Simcha L.; Ghoniem, Ahmed F.

    2009-01-01

    In this work, we use a CFD package to model the operation of a coal gasifier with the objective of assessing the impact of devolatilization and char consumption models on the accuracy of the results. Devolatilization is modeled using the Chemical Percolation Devolitilization (CPD) model. The traditional CPD models predict the rate and the amount of volatiles released but not their species composition. We show that the knowledge of devolatilization rates is not sufficient for the accurate prediction of char consumption and a quantitative description of the devolatilization products, including the chemical composition of the tar, is needed. We incorporate experimental data on devolatilization products combined with modeling of the tar composition and reactions to improve the prediction of syngas compositions and carbon conversion. We also apply the shrinking core model and the random pore model to describe char consumption in the CFD simulations. Analysis of the results indicates distinct regimes of kinetic and diffusion control depending on the particle radius and injection conditions for both char oxidation and gasification reactions. The random pore model with Langmuir-Hinshelwood reaction kinetics are found to be better at predicting carbon conversion and exit syngas composition than the shrinking core model with Arrhenius kinetics. In addition, we gain qualitative and quantitative insights into the impact of the ash layer surrounding the char particle on the reaction rate. Copyright © 2010 by ASME.

  4. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    International Nuclear Information System (INIS)

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-01-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length

  5. The Overall Drag Losses For A Combination of Bodies

    Directory of Open Access Journals (Sweden)

    Sabah Al-Janabi

    2013-05-01

    Full Text Available The objective of this work is to obtain better understanding of the flow over a combination of bluff bodies in close enough proximity to strongly interact with each other. This interaction is often beneficial in that the drag of the overall system is reduced. Proto-types for this problem come from tractor- trailer and missiles, and from various add-on devices designed to reduce their drag. Thus, an experimental investigation was carried out by placing  conical frontal bodies having a base diameter of 0.65 cylinder diameter with different vertex angles (30°, 50°, 70°, and 90°. It was found that, the bluffer cone with 90° vertex angle gives the best minimum drag, which is 31% lower than the drag of the isolated cylinder. Also an interesting phenomenon was observed in that, the minimum drags for all combinations are obtained at the same gap ratio (i.e.at g/d2= 0.365.

  6. The Dalles Dam, Columbia River: Spillway Improvement CFD Study

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.

    2006-06-01

    This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model

  7. Effects of polymer stresses on analogy between momentum and heat transfer in drag-reduced turbulent channel flow

    Science.gov (United States)

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2018-03-01

    The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.

  8. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  9. Tip studies using CFD and comparison with tip loss models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Johansen, J.

    2004-01-01

    The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...

  10. Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT.

    Science.gov (United States)

    Wang, Y Jason; Zhang, K Max

    2009-10-15

    It is well recognized that dilution is an important mechanism governing the near-road air pollutant concentrations. In this paper, we aim to advance our understanding of turbulent mixing mechanisms on and near roadways using computation fluid dynamics. Turbulent mixing mechanisms can be classified into three categories according to their origins: vehicle-induced turbulence (VIT), road-induced turbulence (RIT), and atmospheric boundary layer turbulence. RIT includes the turbulence generated by road embankment, road surface thermal effects, and roadside structures. Both VIT and RIT are affected by the roadway designs. We incorporate the detailed treatment of VIT and RIT into the CFD (namely CFD-VIT-RIT) and apply the model in simulating the spatial gradients of carbon monoxide near two major highways with different traffic mix and roadway configurations. The modeling results are compared to the field measurements and those from CALINE4 and CFD without considering VIT and RIT. We demonstrate that the incorporation of VIT and RIT considerably improves the modeling predictions, especially on vertical gradients and seasonal variations of carbon monoxide. Our study implies that roadway design can significantly influence the near-road air pollution. Thus we recommend that mitigating near-road air pollution through roadway designs be considered in the air quality and transportation management In addition, thanks to the rigorous representation of turbulent mixing mechanisms, CFD-VIT-RIT can become valuable tools in the roadway designs process.

  11. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  12. Retooling CFD for hypersonic aircraft

    Science.gov (United States)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  13. A CFD analysis of blade row interactions within a high-speed axial compressor

    Science.gov (United States)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  14. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  15. Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design

    Science.gov (United States)

    Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.

    1993-01-01

    Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.

  16. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report; TOPFLOW-Experimente, Modellentwicklung und Validierung zur Qualifizierung von CFD-Codes fuer Zweiphasenstroemungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-15

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  17. Bilateral macular colobomata: Temporal dragging of optic disc

    Directory of Open Access Journals (Sweden)

    David J Mathew

    2015-01-01

    Full Text Available A 13-year-old male presented with decreased vision and squint from childhood. He had bilateral large colobomata at the macula in each eye, the one on the right being larger than the left. The disc was dragged temporally with straightening of the temporal retinal vessels. This is a case report of bilateral large macular coloboma and serves to report its association with a temporally dragged disc and straightened temporal retinal vessels. A dragged disc if present with a colobomatous defect at the macula may strengthen the case for diagnosis of macular coloboma and help exclude other differentials.

  18. Oscillating Sign of Drag in High Landau Levels

    International Nuclear Information System (INIS)

    von Oppen, Felix; Simon, Steven H.; Stern, Ady

    2001-01-01

    Motivated by experiments, we study the sign of the Coulomb drag voltage in a double layer system in a strong magnetic field. We show that the commonly used Fermi golden rule approach implicitly assumes a linear dependence of intralayer conductivity on density, and is thus inadequate in strong magnetic fields. Going beyond this approach, we show that the drag voltage commonly changes sign with density difference between the layers. We find that, in the quantum Hall regime, the Hall and longitudinal drag resistivities may be comparable. Our results are also relevant for pumping and acoustoelectric experiments

  19. Experimental and numerical investigation of low-drag intervals in turbulent boundary layer

    Science.gov (United States)

    Park, Jae Sung; Ryu, Sangjin; Lee, Jin

    2017-11-01

    It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.

  20. CFD investigation of pentamaran ship model with chine hull form on the resistance characteristics

    Science.gov (United States)

    Yanuar; Sulistyawati, W.

    2018-03-01

    This paper presents an investigation of pentamaran hull form with chine hull form to the effects of outriggers position, asymmetry, and deadrise angles on the resistance characteristics. The investigation to the resistance characteristics by modelling pentamaran hull form using chine with symmetrical main hull and asymmetric outboard on the variation deadrise angles: 25°, 30°, 35° and Froude number 0,1 to 0,7. On calm water resistance characteristics of six pentamaran models with chine-hull form examined by variation of deadrise angles by using CFD. Comparation with Wigley hull form, the maximum resistance drag reduction of the chine hull form was reduced by 15.81% on deadrise 25°, 13.8% on deadrise 30°, and 20.38% on deadrise 35°. While the smallest value of total resistance coefficient was generated from chine 35° at R/L:1/14 and R/L:1/7. Optimum hull form for minimum resistance has been obtained, so it is interesting to continue with angle of entrance and stem angle of hull for further research.

  1. Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion

    Science.gov (United States)

    Garcia, R.; McConnaughey, P. K.; Eastland, A.

    1993-01-01

    The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial

  2. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    International Nuclear Information System (INIS)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  3. CFD validation experiments for hypersonic flows

    Science.gov (United States)

    Marvin, Joseph G.

    1992-01-01

    A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.

  4. Application perspectives of simulation techniques CFD in nuclear power plants; Perspectivas de aplicacion de tecnicas de modelado CFD en plantas nucleoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F., E-mail: igalindo@iie.org.mx [Instituto de Investigaciones Electricas, Reforma No. 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2013-10-15

    The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)

  5. The Role of CFD Simulation in Rocket Propulsion Support Activities

    Science.gov (United States)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  6. Advanced CFD and radiotracer techniques - A complementary technology - for industrial multiphase applications

    International Nuclear Information System (INIS)

    Tu, J.Y.

    2004-01-01

    A CFD and RTD Education Package was developed, in which lecture notes, tutorials and computer softwares for both CFD and RTD are included. A user-friendly web-based interface has been prepared to allow lecturers more effectively conducting their training courses or workshops, and to provide students or users more easily learning the CFD and RTD knowledge and practising computer softwares. This report gives an overview of the advances in development and use of CFD models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and softwares are highlighted. Integration of advanced CFD modelling with radiotracer techniques as a complementary technology for future research and industrial applications is discussed. The features and examples of the developed CFD and RTD Education package are presented. (author)

  7. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    Science.gov (United States)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  8. International research progress of CFD application in analysis of nuclear power system

    International Nuclear Information System (INIS)

    Li Linsen; Wang Kan; Song Xiaoming

    2009-01-01

    This paper introduces the latest international research progress of CFD application in nuclear reactor system analysis. CFD method has been applied to a few 3-D single phase transient simulations, including flow field modeling of the reactor cores, assemblies, and vessel plenums. On the other hand, CFD method applied to reactor system still needs further validation and benchmarking, meanwhile,the application of CFD also needs to be studied, including the setup of the Best Practice Guidelines (BPG). Furthermore, CFD codes are used to couple with thermal-hydraulic system codes or neutronic codes. Eventually, in two phase field and turbulence modeling, CFD codes are still being developed. (authors)

  9. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    Science.gov (United States)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  10. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    Science.gov (United States)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  11. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  12. Wave drag as the objective function in transonic fighter wing optimization

    Science.gov (United States)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  13. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor

    2015-01-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  14. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  15. Conquer the FPSO (Floating Production Storage and Off loading) separation challenge using CFD (Computational Fluid Dynamics) and laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Astrid R.; Hannisdal, Andreas; Amarzguioui, Morad; Wood, Deborah; Tor Andersen [Aibel, Stavanger (Norway)

    2008-07-01

    To have the necessary confidence in a separators' performance, the design must be based on more than simple design rules. A combination of separation testing, computer modelling, and general knowledge of the process is needed. In addition, new technologies can provide enhanced overall performance when it is required. This paper describes how all of these techniques can be combined to get the most out of separator design. We will describe how Aibel has used Computational Fluid Dynamics (CFD), together with laboratory testing, multi-disciplinary knowledge and new technology in order to revolutionize the way we design separators. This paper will present a study of separation performance for one of our customers. A CFD simulation was performed to predict the internal waves inside a separator located on a FPSO, and how these affect separation phenomena. The performance of the theoretical CFD model was verified by laboratory wave experiments. Separation tests were performed to test new solutions which could increase the performance of the process. Based on the CFD simulations and the separation tests, a modification of the separator was proposed. (author)

  16. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.

    2017-10-17

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  17. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.; Vakarelski, Ivan Uriev; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2017-01-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  18. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de......In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  19. Computational Fluid Dynamics (CFD) in Nuclear Reactor Safety (NRS) - Proceedings of the workshop on Experiments and CFD Code Application to Nuclear Reactor Safety (XCFD4NRS)

    International Nuclear Information System (INIS)

    2008-01-01

    Computational Fluid Dynamics (CFD) is to an increasing extent being adopted in nuclear reactor safety analyses as a tool that enables specific safety relevant phenomena occurring in the reactor coolant system to be better described. The Committee on the Safety of Nuclear Installations (CSNI), which is responsible for the activities of the OECD Nuclear Energy Agency that support advancing the technical base of the safety of nuclear installations, has in recent years conducted an important activity in the CFD area. This activity has been carried out within the scope of the CSNI working group on the analysis and management of accidents (GAMA), and has mainly focused on the formulation of user guidelines and on the assessment and verification of CFD codes. It is in this GAMA framework that a first workshop CFD4NRS was organized and held in Garching, Germany in 2006. Following the CFD4NRS workshop, this XCFD4NRS Workshop was intended to extend the forum created for numerical analysts and experimentalists to exchange information in the field of Nuclear Reactor Safety (NRS) related activities relevant to Computational Fluid Dynamics (CFD) validation, but this time with more emphasis placed on new experimental techniques and two-phase CFD applications. The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to GAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. The scope of XCFD4NRS includes: - Single-phase and two-phase CFD simulations with an emphasis on validation in areas such as: boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These applications should relate to NRS-relevant issues such as: pressurized thermal shocks, critical heat flux, pool heat exchangers, boron dilution, hydrogen

  20. Ensemble Assimilation Using Three First-Principles Thermospheric Models as a Tool for 72-hour Density and Satellite Drag Forecasts

    Science.gov (United States)

    Hunton, D.; Pilinski, M.; Crowley, G.; Azeem, I.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.; Codrescu, M.

    2014-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by variability in the density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for neutral density, winds, temperature, composition, and satellite drag. This modeling tool will be called the Atmospheric Density Assimilation Model (ADAM). It will be based on three state-of-the-art coupled models of the thermosphere-ionosphere running in real-time, using assimilative techniques to produce a thermospheric nowcast. It will also produce, in realtime, 72-hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition. We will review the requirements for the ADAM system, the underlying full-physics models, the plethora of input options available to drive the models, a feasibility study showing the performance of first-principles models as it pertains to satellite-drag operational needs, and review challenges in designing an assimilative space-weather prediction model. The performance of the ensemble assimilative model is expected to exceed the performance of current empirical and assimilative density models.

  1. Theory of Coulomb drag for massless Dirac fermions

    International Nuclear Information System (INIS)

    Carrega, M; Principi, A; Polini, M; Tudorovskiy, T; Katsnelson, M I

    2012-01-01

    Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)

  2. Residence Time Distribution (RTD) Prediction in Mixing Vessel via CFD Simulation Using Fluent: An Overview

    International Nuclear Information System (INIS)

    Mohd Rizal Mamat; Azraf Azman; Noraishah Othman

    2011-01-01

    A prototype mixing vessel has been developed by Industrial Technology Division and installed at a multiphase testing facility in MINT Tech Park. A task to investigate the mixing vessel performance using Computational Fluid Dynamics (CFD) has been undertaken using the available FLUENT software in Malaysian Nuclear Agency. This paper discusses the modeling and simulation done in obtaining the Residence Time Distribution (RTD) for the mixing vessel using FLUENT. (author)

  3. Study of Laminar Flame 2-D Scalar Values at Various Fuel to Air Ratios Using an Imaging Fourier-Transform Spectrometer and 2-D CFD Analysis

    Science.gov (United States)

    2013-03-01

    Role of flow visualization in the development of UNICORN , Journal of Visualization 2000, Vol. 2, 257-272. [10] Gross, K. C.; Tremblay, P.; Bradley...NASA- Glenn’s Chemical Equilibrium with Applications (CEA) program. UNICORN CFD predictions were in excellent agreement with CEA calculations at...49 Appendix A – UNICORN CFD Inputs and Instruction .....................................................50 Appendix B – NASA-Glenn

  4. An Investigation into Solution Verification for CFD-DEM

    Energy Technology Data Exchange (ETDEWEB)

    Fullmer, William D. [National Energy Technology Lab. (NETL), AECOM, Morgantown, WV (United States); Musser, Jordan [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-10-01

    different randomized particle configurations of the same general problem (for the fictitious case) or different instances of freezing a transient simulation, the numerical uncertainties appeared to be on the same order of magnitude as ensemble or time averaging uncertainties. By testing different drag laws, almost all cases studied show that model form uncertainty in this one, very important closure relation was larger than the numerical uncertainty, at least with a reasonable CFD grid, roughly five particle diameters. In this study, the diffusion width (filtering length scale) was mostly set at a constant of six particle diameters. A few exploratory tests were performed to show that similar convergence behavior was observed for diffusion widths greater than approximately two particle diameters. However, this subject was not investigated in great detail because determining an appropriate filter size is really a validation question which must be determined by comparison to experimental or highly accurate numerical data. Future studies are being considered targeting solution verification of transient simulations as well as validation of the filter size with direct numerical simulation data.

  5. Drag of a growing bubble at rectilinear accelerated ascension in pure liquids and binary solutions

    Directory of Open Access Journals (Sweden)

    Ašković Radomir

    2003-01-01

    Full Text Available The problem of predicting the drag coefficient of a growing bubble at rectilinear accelerated ascension in uniformly super­heated pure liquids and in binary solutions with a non-volatile solute at large Reynolds and Peclet numbers is discussed. In the case of pure liquids, the general solution for the drag coefficient of an accelerated growing bubble from its inception at the critical radius and through the surface-tension-, inertia-, and heat-diffusion-controlled regimes is established, as well as some necessary adaptations in the case of binary solutions with a non-volatile solute. Two particular limiting regimes in the case of pure liquids, inertia-controlled and heat-diffusion-controlled regimes, respectively, are analyzed in details, with satisfactory results. .

  6. Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York City wastewater treatment plants.

    Science.gov (United States)

    Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2012-01-01

    New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.

  7. Validation of a CFD analysis model for the calculation of CANDU6 moderator temperature distribution

    International Nuclear Information System (INIS)

    Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo

    2001-01-01

    A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada is used for the validation. Also a comparison is made between previous DFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard κ-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 .deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well

  8. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  9. CFD-supported development of small-scale biomass furnaces; CFD-gestuetzte Entwicklung von Biomassefeuerungen im kleinen Leistungsbereich

    Energy Technology Data Exchange (ETDEWEB)

    Scharler, R. [Bios Bioenergiesystem GmbH, Graz (Austria); Obernberger, I. [Technische Univ. Eindhoven (Netherlands). Thermochemische Biomassekonversion; Weissinger, A. [Oesterreichische Kraft und Waerme aus Biomasse GmbH (KWB), St. Margarethen/Raab (Austria). Bereich Forschung und Entwicklung; Schmidt, W. [Oesterreichische Kraft und Waerme aus Biomasse GmbH (KWB), St. Margarethen/Raab (Austria). Bereich Produktentwicklung, Umwelt- und Informationsmanagement

    2005-07-01

    Despite the complexity of solid biomass combustion, the Bios Bioenergiesysteme GmbH, Graz, Austria, has successfully developed and optimised several biomass furnaces in the range of 500 kW to 30 MW based on CFD (Computational Fluid Dynamics). A project carried out in co-operation with the KWB Kraft und Waerme aus Biomasse GmbH, St. Margarethen, Austria, demonstrates the application of CFD for the efficient and improved design of small-scale furnaces for solid biofuels like pellets and wood chips as basis for a series production. (orig.)

  10. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  11. The development and application of CFD technology in mechanical engineering

    Science.gov (United States)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  12. Best Practices for Reduction of Uncertainty in CFD Results

    Science.gov (United States)

    Mendenhall, Michael R.; Childs, Robert E.; Morrison, Joseph H.

    2003-01-01

    This paper describes a proposed best-practices system that will present expert knowledge in the use of CFD. The best-practices system will include specific guidelines to assist the user in problem definition, input preparation, grid generation, code selection, parameter specification, and results interpretation. The goal of the system is to assist all CFD users in obtaining high quality CFD solutions with reduced uncertainty and at lower cost for a wide range of flow problems. The best-practices system will be implemented as a software product which includes an expert system made up of knowledge databases of expert information with specific guidelines for individual codes and algorithms. The process of acquiring expert knowledge is discussed, and help from the CFD community is solicited. Benefits and challenges associated with this project are examined.

  13. Ad/dressing the nation: drag and authenticity in post-apartheid South Africa.

    Science.gov (United States)

    Spruill, Jennifer

    2004-01-01

    This paper examines a style of drag in South Africa that features "traditional African" clothing. In a region in which homosexuality is denigrated as a colonial, European import and "unAfrican," the meaning of "traditional drag" is deeply inflected by the question of cultural authenticity. This dragging practice fits within a distinctly post-colonial production of tradition and its self-conscious display--in the form of attire--of a decidedly "gay" one. Traditional drag also responds to ongoing politics within and between lesbian and gay communities about racial "representivity" and "transformation." The paper focuses on displays of traditional drag at Johannesburg's Gay and Lesbian Pride Parade but also explores the complex politics of publicity and address suggested by varying contexts in which traditional dress and drag are mobilized.

  14. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  15. A computational method to predict fluid-structure interaction of pressure relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. K.; Lee, D. H.; Park, S. K.; Hong, S. R. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    An effective CFD (Computational fluid dynamics) method to predict important performance parameters, such as blowdown and chattering, for pressure relief valves in NPPs is provided in the present study. To calculate the valve motion, 6DOF (six degree of freedom) model is used. A chimera overset grid method is utilized to this study for the elimination of grid remeshing problem, when the disk moves. Further, CFD-Fastran which is developed by CFD-RC for compressible flow analysis is applied to an 1' safety valve. The prediction results ensure the applicability of the presented method in this study.

  16. Analysis research on mixing characteristics of lower plenum of Qinshan phase Ⅱ NPP by CFD method

    International Nuclear Information System (INIS)

    Mao Huihui; He Peifeng; Lu Chuan; Zhang Hongliang

    2015-01-01

    The flowing and mixing characteristics of the lower plenum of Qinshan Phase n NPP were analyzed by CFD method. The calculation results were compared with the results of the reactor hydraulic simulation test. On core inlet mass flow distributions, both upwind and high resolution advection schemes show good agreements with test results. While on lower plenum mixing characteristics, the calculation results from either upwind or high resolution advection schemes show relatively large differences to the test data. Relatively, upwind advection schemes predict better anticipations on maximum and minimum mixing factors. Furthermore, whether or not considering helix flow by main pump is the most possible key factor that leads to difference between CFD calculation and test results. (authors)

  17. CFD simulation with Code-Saturne of the light gas stratification erosion by a vertical air gas injection using a Low Mach number algorithm

    International Nuclear Information System (INIS)

    Hou Bingxu; Yu Jiyang; Senechal, Dorothee; Mechitoua, Namane; Min Jiesheng; Chen Guofei

    2015-01-01

    During CFD simulations of the flows at low Mach number regime, the classical assumption which neglects the dilatable effect of gas is no longer applicable when the temperature variation or the concentration variation of the mixture's components is too large in the fluid domain. To be able to correctly predict the flow at such a regime, some authors have recourse to a Low Mach number algorithm. This algorithm is based on the well-known pressure-based algorithm or elliptic solver for incompressible flows, SIMPLE, with a modification for the treatment of the pressure which is split into two parts (the hydrodynamic pressure and the thermodynamic pressure) and a dilatable term added in the mass equation. This algorithm has been implemented in the CFD code, Code_—Saturne, developed by EDF R and D, and applied for the CFD simulations of the erosion phenomena of light gas stratification by air injection. This paper is devoted to the analytical work with the Low Mach number algorithm based on the ST1 series of the SETH-2 campaign provided by the OECD project on the PANDA test facility of PSI. The first part is focused on a mesh sensitivity analysis, which is a common procedure for CFD codes validation. The second part of the paper presents a comparison between the CFD results obtained with the standard algorithms used for incompressible flows and the Low Mach number algorithm. The third part is an analysis of the CFD results obtained on the reference mesh with both different Froude numbers corresponding to the tests ST1_—7 (Fr=6.04) and ST1_—10 (Fr=7.95) from the ST1 series. In the last part the authors perform the knowledge of the initial light gas distribution effect on the stratification erosion and the capability of the CFD codes to predict this phenomenon with an area governed by diffusion regime (at the top of the vessel) and another one by forced convection near the injection. (author)

  18. Progress report on INEL full flow drag screen

    International Nuclear Information System (INIS)

    Arave, A.E.; Colson, J.B.; Fincke, J.R.

    1977-01-01

    The objective in developing a full flow drag screen is to obtain a total momentum flux measurement which when combined with a suitable independent velocity or density measurement will yield a total mass flux. The major design considerations are predicated by the fact that an accurate momentum flux measurement must be made over a wide range of flow conditions. The device should exhibit a constant calibration regardless of Reynolds number, void fraction, slip ratio, or flow regime. The dynamics of drag devices are well understood in single-phase flows. This is not true for two-phase flows. The present development program is directed toward gaining an understanding of the dynamics of drag devices which sample the total area of a pipe in two-phase flow and developing a method for deducing mass flow rate using such a device. Various geometric arrangements are to be investigated. Testing to date has shown excellent results using a round wire mesh screen in the Semiscale air/water loop. Future air/water testing will include perforated plates and wire meshes with both rectangular and diamond shaped cross sections. Analytical models of the hydrodynamics of the drag screen as well as the associated density or velocity measuring device are being used to select the optimum configuration. Alternate force sensing methods are also being considered. These include single and multiple transducer arrangements. Multistage springs and pressure drop across the body are to be evaluated for extending the dynamic range of the drag body

  19. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  20. Energy efficient piston configuration for effective air motion – A CFD study

    International Nuclear Information System (INIS)

    Gnana Sagaya Raj, Antony Raj; Mallikarjuna, Jawali Maharudrappa; Ganesan, Venkitachalam

    2013-01-01

    Highlights: ► All piston crown show similar flow pattern for experimental and simulated studies. ► Piston position plays a predominant role in the air pattern inside the cylinder. ► The flat bowl piston shows higher TKE compared to all other piston crown shape. ► The turbulence intensity and length scale are higher for flat bowl piston. ► The quantitative error between the CFD and PIV analysis is about 5%. -- Abstract: Air motion inside the cylinder is very important from the point of view of energy efficiency. In this direction, piston configuration plays a very crucial role. This study is concerned with the CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the experimental results available in the literature. Four configurations viz., flat, inclined, centre bowl and inclined offset bowl pistons have been studied. For numerical analysis STAR-CD CFD software has been used. Experimental results available in the literature for comparison are obtained by PIV measurements. From this study, it is concluded that a centre bowl on flat piston is found to be the best from the point of view of tumble ratio, turbulent kinetic energy, turbulent intensity and turbulent length scale which play very important role in imparting proper air motion, there by increasing the energy efficiency of the engine.

  1. Drag force in a D-instanton background

    Science.gov (United States)

    Zhang, Zi-qiang; Luo, Zhong-jie; Hou, De-fu

    2018-06-01

    We study the drag force and diffusion coefficient with respect to a moving heavy quark in a D-instanton background, which corresponds to the Yang-Mills theory in the deconfining, high-temperature phase. It is shown that the presence of the D-instanton density tends to increase the drag force and decrease the diffusion coefficient, reverse to the effects of the velocity and the temperature. Moreover, the inclusion of the D-instanton density makes the medium less viscous.

  2. Modeling of annular two-phase flow using a unified CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se

    2016-07-15

    Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.

  3. Modeling of annular two-phase flow using a unified CFD approach

    International Nuclear Information System (INIS)

    Li, Haipeng; Anglart, Henryk

    2016-01-01

    Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.

  4. The contact drag of towed demersal fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, K.; Ivanović, A.

    2018-01-01

    The contact demersal towed fishing gears make with the seabed can lead to penetration of the substrate, lateral displacement of the sediment and a pressure field transmitted through the sediment. It will also contribute to the overall drag of the fishing gear. Consequently, there can be environmental effects such as habitat alteration and benthic mortality, and impacts to the fuel efficiency of the fishing operation which will affect emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we present the results of experimental trials that measure the contact drag of a range of elements that represent some of the components of towed demersal gears that are in contact with the seabed. We show that the contact drag of the gear components depends on their weight, geometry, the type of sediment on which they are towed and whether they are rolling or not. As expected, the contact drag of each gear component increases as its weight increases and the drag of fixed elements is greater than that of the rolling ones. The dependence on aspect ratio is more complex and the drag (per unit area) of narrow cylinders is less than that of wider ones when they roll on the finer sediment or are fixed (not permitted to roll) on the coarser sediment. When they roll on the coarse sediment there is no dependence on aspect ratio. Our results also suggest that fixed components may penetrate the seabed to a lesser depth when they are towed at higher speeds but when they roll there is no such relationship.

  5. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions

    OpenAIRE

    Mehrnaz Rouhi Youssefi; Doyle Knight

    2017-01-01

    The goal of this study is to assess CFD capability for the prediction of shock wave laminar boundary layer interactions at hypersonic velocities. More specifically, the flow field over a double-cone configuration is simulated using both perfect gas and non-equilibrium Navier–Stokes models. Computations are compared with recent experimental data obtained from measurements conducted in the LENS XX (Large Energy National Shock Expansion Tunnel Version 2) at the Calspan University of Buffalo Rese...

  6. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re- ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse- quence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  7. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...

  8. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  9. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    International Nuclear Information System (INIS)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-01-01

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator

  10. The extensive international use of commercial computational fluid dynamics (CFD) codes

    International Nuclear Information System (INIS)

    Hartmut Wider

    2005-01-01

    What are the main reasons for the extensive international success of commercial CFD codes? This is due to their ability to calculate the fine structures of the investigated processes due to their versatility, their numerical stability and that they can guarantee the proper solution in most cases. This was made possible by the constantly increasing computer power at an ever more affordable prize. Furthermore it is much more efficient to have researchers use a CFD code rather than to develop a similar code system due to the time consuming nature of this activity and the high probability of hidden coding errors. The centralized development and upgrading makes these reliable CFD codes possible and affordable. However, the CFD companies' developments are naturally concentrated on the most profitable areas, and thus, if one works in a 'non-priority' field one cannot use them. Moreover, the prize of renting CFD codes, applications to complex systems such as whole nuclear reactors and the need to teach students gives the development of self-made codes still plenty of room. But CFD codes can model detailed aspects of large systems and subroutines generated by users can be added. Since there are only a few heavily used CFD codes such as FLUENT, STAR-CD, ANSYS CFX, these are used in many countries. Also international training courses are given and the news bulletins of these codes help to spread the news on further developments. A larger number of international codes would increase the competition but would at the same time make it harder to select the most appropriate CFD code for a given problem. Examples will be presented of uses of CFD codes as more detailed system codes for the decay heat removal from reactors, the application to aerosol physics and the application to heavy metal fluids using different turbulence models. (author)

  11. Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.

    1997-12-31

    The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project

  12. Grafted natural polymer as new drag reducing agent: An experimental approach

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2012-01-01

    Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

  13. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  14. A CFD code comparison of wind turbine wakes

    International Nuclear Information System (INIS)

    Van der Laan, M P; Sørensen, N N; Storey, R C; Cater, J E; Norris, S E

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses for four test cases. A grid resolution study, performed in EllipSys3D and SnS, shows that a minimal uniform cell spacing of 1/30 of the rotor diameter is necessary to resolve the wind turbine wake. In addition, the LES-predicted velocity deficits are also compared with Reynolds-Averaged Navier Stokes simulations using EllipSys3D for a test case that is based on field measurements. In these simulations, two eddy viscosity turbulence models are employed: the k-ε model and the k-ε-f p model. Where the k-ε model fails to predict the velocity deficit, the results of the k-ε-f P model show good agreement with both LES models and measurements

  15. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  16. Reynolds number dependence of drag reduction by rodlike polymers

    NARCIS (Netherlands)

    Amarouchene, Y.; Bonn, D.; Kellay, H.; Lo, T.-S.; L'vov, V.S.; Procaccia, I.

    2008-01-01

    We present experimental and theoretical results addressing the Reynolds number (Re) dependence of drag reduction by sufficiently large concentrations of rodlike polymers in turbulent wall-bounded flows. It is shown that when Re is small the drag is enhanced. On the other hand, when Re increases, the

  17. CFD and thermal analysis applications at General Motors

    International Nuclear Information System (INIS)

    Johnson, J.P.

    2002-01-01

    The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)

  18. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  19. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  20. Aerodynamic drag reduction tests on a box-shaped vehicle

    Science.gov (United States)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.