WorldWideScience

Sample records for cf-252 ion-chamber instrumented

  1. Comparison Of 252Cf Time Correlated Induced Fisssion With AmLi Induced Fission On Fresh MTR Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jay Prakash [Los Alamos National Laboratory

    2017-03-30

    The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded and collimated ion chamber. The 3He detectors are used for active and passive neutron coincidence counting while the ion chamber is used for gross gamma counting. Active coincidence measurement data is used to measure residual fissile mass, whereas the passive coincidence measurement data along with passive gamma measurement can provide information about burnup, cooling time, and initial enrichment. In the past, most of the active interrogation systems along with the AEFC used an AmLi neutron interrogation source. Owing to the difficulty in obtaining an AmLi source, a 252Cf spontaneous fission (SF) source was used during a 2014 field trail in Uzbekistan as an alternative. In this study, experiments were performed to calibrate the AEFC instrument and compare use of the 252Cf spontaneous fission source and the AmLi (α,n) neutron emission source. The 252Cf source spontaneously emits bursts of time-correlated prompt fission neutrons that thermalize in the water and induce fission in the fuel assembly. The induced fission (IF) neutrons are also time correlated resulting in more correlated neutron detections inside the 3He detector, which helps reduce the statistical errors in doubles when using the 252Cf interrogation source instead of

  2. Simultaneous investigation of fission fragments and neutrons in 252Cf(s,f)

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Knitter, H.H.

    1986-01-01

    The gridded twin ion chamber developed at CBNM is used to measure the kinetic energy-, mass- and angular distributions of the fission fragments of 252 Cf in an advantageous 4π-geometry. Together with a neutron time-of-flight detector this experimental arrangement permits to measure the correlation between neutron emission, fragment angle, mass and energy in the spontaneous fission of 252 Cf. With the present experimental set-up a mass resolution for fission fragments of 0.5 a.m.u., an angular resolution of Δcosθ = 0.05 and a timing resolution of 0.7 ns FWHM were observed. Preliminary evaluations of the raw experimental data are presented for the fission fragment mass distribution, the average total kinetic energy and their variance as function of mass, the angular distribution between fragments and neutrons, the number of neutrons emitted per fragment as function of fragment mass, the average neutron emission energies as function of mass, and the prompt fission neutron spectrum averaged over all fragments. (author)

  3. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated 252 Cf, D 2 O-moderated 252 Cf, polyethylene-moderated 252 Cf, and WEP neutron howitzer with 252 Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 to 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated

  4. Neutron Spectra, Fluence and Dose Rates from Bare and Moderated Cf-252 Sources

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-01

    A new, stronger 252Cf source (serial number SR-CF-3050-OR) was obtained from Oak Ridge National Laboratory (ORNL) in 2014 to supplement the existing 252Cf sources which had significantly decayed. A new instrument positioning track system was designed and installed by Hopewell Designs, Inc. in 2011. The neutron field from the new, stronger 252Cf source in the modified calibration environment needed to be characterized as well as the modified neutron fields produced by the new source and seven different neutron moderators. Comprehensive information about our 252Cf source, its origin, production, and isotopic content and decay characteristics needed to be compiled as well. This technical report is intended to address these issues.

  5. Physical and biological dosimetries of Cf-252 radiation

    International Nuclear Information System (INIS)

    Yamashita, Hisao; Wada, Tadashi; Dokiya, Takushi; Hashimoto, Shozo

    1986-01-01

    Recently Cf-252 sources containing 300 μg have become available in a size identical to 1 Ci of Cs-137 and with the use of remotely controlled afterloading apparatus, safe therapy with little exposure to the therapist is now possible. Radiation leakage from the Cf-252 apparatus and from the treatment room was measured with REM-meter and it was possible to reduce the leakage from the treatment room to less than 1 mrem/h (gamma rays) and 0.5 mrem/h (neutrons). Measurement of fast neutrons was made with a twin chamber composed of a tissue equivalent ionization chamber and a carbon ionization chamber. The neutron dose in air and the absorbed dose in tissue equivalent water tank were measured, which showed that in air, neutrons were 70% and photons were 30% of dose. In water, greater distances from the source, neutrons attenuate and gamma rays increase in dose. The results of studies on the skin reaction of mice and sperm cleavage delay time of sea urchins indicated that the RBE ranges from 1.5 to 3.0 using the high dose rate system. Neutrons are remarkably affected by a time factor. With the use of high dose rate sources, the dose rate has become higher, but the overall time has been extended through dose fractionation and it was considered advisable to employ an RBE of 3-4 in these studies. (Auth.)

  6. Prompt neutron energy spectrum for the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Blinov, M.V.; Boykov, G.S.; Vitenko, V.A.

    1985-06-01

    The prompt neutron spectrum for the spontaneous fission of Cf-252 has been measured in 0.01-10 MeV region by the time-of-flight technique using a fast ionization chamber with U-235 layers as the neutron detector. Numerical data for the spectrum are presented, with an error file. (author)

  7. Dosimetric evaluation of 252Cf beam for use in radiobiology studies at Hiroshima University

    International Nuclear Information System (INIS)

    Hoshi, M.; Takeoka, S.; Tsujimura, T.; Kuroda, T.; Kawami, M.; Sawada, S.

    1988-01-01

    This report provides reliable tissue kerma in free air data by characterising the 252 Cf irradiating system and by comparing three dosimetry methods, paired chambers (ICRU 1977, 1978), Fricke and thermoluminescence dosemeter. (author)

  8. Resistive plate chamber neutron and gamma sensitivity measurement with a {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; DeVecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P.; Volpe, F

    2003-06-21

    A bakelite double gap Resistive Plate Chamber (RPC), operating in avalanche mode, has been exposed to the radiation emitted from a {sup 252}Cf source to measure its neutron and gamma sensitivity. One of the two gaps underwent the traditional electrodes surface coating with linseed oil. RPC signals were triggered by fission events detected using BaF{sub 2} scintillators. A Monte Carlo code, inside the GEANT 3.21 framework with MICAP interface, has been used to identify the gamma and neutron contributions to the total number of collected RPC signals. A neutron sensitivity of (0.63{+-}0.02)x10{sup -3} (average energy 2 MeV) and a gamma sensitivity of (14.0{+-}0.5)x10{sup -3} (average energy 1.5 MeV) have been measured in double gap mode. Measurements done in single gap mode have shown that both neutron and gamma sensitivity are independent of the oiling treatment.

  9. Determination of kinetics parameters using stochastic methods in a 252Cf system

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1988-01-01

    Safety analysis and control system design of nuclear systems require the knowledge of neutron kinetics related parameters like effective delayed neutron fraction, neutron lifetime, time between neutron generations and subcriticality margins. Many methods, deterministic and stochastic, are being used, some since the beginning of nuclear power, to measure these important parameters. The method based on the use of the 252 Cf neutron source has been under intense study at the Oak Ridge National Laboratory, both experimentally and theoretically, during the last years. The increasing demand for this isotope in industrial and medical applications and new designs of advanced high flux reactors to produce it make the isotope available as neutron source (only few micrograms are necessary). A thin layer of 252 Cf is deposited in one of the electrodes of a fission chamber which produces pulses each time the 252 Cf disintegrates via α or spontaneous fission decay; the smaller pulses associated with the α decay can be easily discriminated with the important result that we known the time when v/sub c/ neutrons are injected into the system (number of neutrons per fission of 252 Cf). Thus, a small (few cm 3 ) and nonintrusive device can be used as a random pulsed neutron source with known natural properties that do no depend on biases associated with more complex interrogating devices like accelerators. This paper presents a general formalism that relates the kinetics parameters with stochastic descriptors that naturally appear because of the random nature of the production and transport of neutrons

  10. Investigation of the far asymmetric region in 252Cf(sf)

    International Nuclear Information System (INIS)

    Hambsch, F.-J.; Oberstedt, S.

    1997-01-01

    A twin Frisch-gridded ionization chamber has been used to measure the fission fragment mass, kinetic-energy and angular correlations for 252 Cf(sf). In total 2.5 x 10 8 events were collected. The focus was in the far asymmetric mass region, where enhancements in the yield had been found earlier. It could be shown, that these findings are due to false events, coming from either close geometries not properly taking into account the angular-dependent energy loss in the sample and backing, from a too large angular cone selected in case of studies employing ionization chambers, or even from poor target qualities. (orig.)

  11. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  12. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  13. System control for the modulated 252Cf source ''Shuffler''

    International Nuclear Information System (INIS)

    Stephens, M.M.

    1975-06-01

    The design and theory of operation of the control chassis for a 252 Cf nondestructive assay system are described. This system repetitively transfers a 252 Cf source from the irradiation region to a shielded position before measuring the delayed neutrons. The design criteria for the system were: rapid movement and precise positioning of the 252 Cf source, precise positioning of the sample, and very accurate timing of the irradiate and count cycles. To achieve these results crystal oscillators were used for timing, and stepping motors were used to position the sample and the source. (U.S.)

  14. Laboratory-scale shielded cell for 252Cf

    International Nuclear Information System (INIS)

    Anderl, R.A.; Cargo, C.H.

    1979-01-01

    A shielded-cell facility for storing and handling remotely up to 2 milligram quantities of unencapsulated 252 Cf has been built in a radiochemistry laboratory at the Test Reactor Area of the Idaho National Engineering Laboratory. Unique features of this facility are its compact bulk radiation shield of borated gypsum and transfer lines which permit the transport of fission product activity from 252 Cf fission sources within the cell to a mass separator and to a fast radiochemistry system in nearby rooms

  15. INAA using 252Cf neutron source at University of Pune

    International Nuclear Information System (INIS)

    Rajurkar, N.S.

    2006-01-01

    The review presents the work done over last two decades on Instrumental Neutron Activation Analysis (INAA) by our research group at University of Pune using 252 Cf spontaneous fission neutron source. The technique has been applied in different fields viz. numismatics, industry, agriculture, ayurveda, environmental and health sciences and diffusion studies. A brief discussion of the work is presented in this article. (author)

  16. Analysis of geological material and especially ores by means of a 252Cf source

    International Nuclear Information System (INIS)

    Barrandon, J.N.; Borderie, B.; Melky, S.; Halfon, J.; Marce, A.

    1976-01-01

    Tests were made on the possibilities for analysis by 252 Cf activation in the earth sciences and mining research. The results obtained show that while 252 Cf activation can only resolve certain very specific geochemical research problems, it does allow the exact and rapid determination of numerous elements whose ores are of great economic importance such as fluorine, titanium, vanadium, manganese, copper, antimony, barium, and tungsten. The utilization of activation analysis methods in the earth sciences is not a recent phenomenon. It has generally been limited to the analysis of traces in relatively small volumes by means of irradiation in nuclear reactors. Traditional neutron sources were little used and were not very applicable. The development of 252 Cf isotopic sources emitting more intense neutron fluxes make it possible to consider carrying out more sensitive determinations without making use of a nuclear reactor. In addition, this technique can be adapted for in situ analysis in mines and mine borings. Our work which is centered upon the possibilities of instrumental laboratory analyses of geological materials through 252 Cf activation is oriented in two principal directions: the study of the experimental sensitivities of the various elements in different rocks with the usual compositions; and the study of the possibilities for routine ore analyses

  17. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  18. An absolute measurement of 252Cf prompt fission neutron spectrum at low energy range

    International Nuclear Information System (INIS)

    Lajtai, A.; Dyachenko, P.P.; Kutzaeva, L.S.; Kononov, V.N.; Androsenko, P.A.; Androsenko, A.A.

    1983-01-01

    Prompt neutron energy spectrum at low energies (25 keV 252 Cf spontaneous fission has been measured with a time-of-flight technique on a 30 cm flight-path. Ionization chamber and lithium-glass were used as fission fragment and neutron detectors, respectively. Lithium glasses of NE-912 (containing 6 Li) and of NE-913 (containing 7 Li) 45 mm in diameter and 9.5 mm in thickness have been employed alternatively, for the registration of fission neutrons and gammas. For the correct determination of the multiscattering effects - the main difficulty of the low energy neutron spectrum measurements - a special geometry for the neutron detector was used. Special attention was paid also to the determination of the absolute efficiency of the neutron detector. The real response function of the spectrometer was determined by a Monte-Carlo calculation. The scattering material content of the ionization chamber containing a 252 Cf source was minimized. As a result of this measurement a prompt fission neutron spectrum of Maxwell type with a T=1.42 MeV parameter was obtained at this low energy range. We did not find any neutron excess or irregularities over the Maxwellian. (author)

  19. Radiation ulcers in patients with cancer of the torgue after 252Cf therapy

    International Nuclear Information System (INIS)

    Galantseva, G.F.; Guseva, L.I.; Plichko, V.I.

    1984-01-01

    Interstitial therapy with 252 Cf was conducted for 57 patients with cancer of the tongue. It was established that clinical course of radiation tungue ulcers after interstitial therapy with 252 Cf doesn't differ sufficiently from the course of radiation injuries, occurring after γ-radiation application. Radiation ulcers are often observed in patients after the treatment of recurrent and residual tumors with 252 Cf (in 33% of patients); the ulcers appeared in 15% of cases in patients after the treatment of initial ulcers tumors. Conservative treatment provide the cure of radiation tongUe ulcers after interstitial therapy with 252 Cf

  20. Neutron shielding for a 252 Cf source

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Eduardo Gallego, Alfredo Lorente

    2006-01-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source. During calculations a detailed model for the 252 Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare 252 Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  1. Test and evaluation results of the 252Cf shuffler at the Savannah River Plant

    International Nuclear Information System (INIS)

    Crane, T.W.

    1981-03-01

    The 252 Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring 235 U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% 235 U with the remaining isotopes being 236 U, 238 U, and 234 U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the 252 Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant

  2. 4π-spectrometer technique for measurements of secondary neutron average number in nuclear fission by 252Cf neutrons

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Barashkov, Yu.A.; Golovanov, O.A.; Sidorov, L.V.

    1977-01-01

    A method for determining the average number of secondary neutrons anti ν produced in nuclear fission by the neutrons of the 252 Cf fission spectra by means of a 4π time-of-flight spectrometer is described. Layers of 252 Cf and an isotope studied are placed close to each other; if the isotope layer density is 1 mg/cm 2 probability of its fission is about 10 -5 per one spontaneous fission of californium. Fission fragments of 252 Cf and the isotope investigated have been detected by two surface-barrier counters with an efficiency close to 100%. The layers and the counters are situated in a measuring chamber placed in the center of the 4π time-of-flight spectrometer. The latter is utilized as a neutron counter because of its fast response. The method has been verified by carrying out measurements for 235 U and 239 Pu. A comparison of the experimental and calculated results shows that the method suggested can apply to determine the number of secondary neutrons in fission of isotopes that have not been investigated yet

  3. Development of a Time Projection Chamber using CF4 gas for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Isobe, T.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Matsumoto, T.; Kametani, S.; Kajihara, F.; Gunji, T.; Kurihara, N.; Oda, S.X.; Yamaguchi, Y.L.

    2006-01-01

    A prototype Time Projection Chamber (TPC) using pure CF 4 gas was developed for possible use in heavy ion experiments. Basic characteristics such as gain, drift velocity, longitudinal diffusion and attenuation length of produced electrons were measured with the TPC. At an electric field of 900V/cm, the drift velocity and longitudinal diffusion for 1cm drift were obtained as 10cm/μs and 60μm, respectively. The relatively large gain fluctuation is explained to be due to the electron attachment process in CF 4 . These characteristics are encouraging for the measurement of the charged particle trajectories under high multiplicity conditions at RHIC

  4. The status of low dose rate and future of high dose rate Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F.; Chuba, P.J.; Fontanesi, J.

    1997-12-01

    This work describes the current status of the US low dose rate (LDR) Cf-252 brachytherapy program. The efforts undertaken towards development of a high dose rate (HDR) remotely after loaded Cf-252 source, which can accommodate 1 mg or greater Cf-252, are also described. This HDR effort is a collaboration between Oak Ridge National Laboratory (ORNL), commercial remote after loader manufactures, the Gershenson Radiation Oncology Center (ROC), and Wayne State University. To achieve this goal, several advances in isotope chemistry and source preparation at ORNL must be achieved to yield a specific material source loading of greater than or equal 1 mg Cf-252 per mm3. Development work with both radioactive and non-radioactive stand-ins for Cf-252 have indicated the feasibility of fabricating such sources. As a result, the decreased catheter diameter and computer controlled source placement will permit additional sites (e.g. brain, breast, prostate, lung, parotid, etc.) to be treated effectively with Cf-252 sources. Additional work at the Radiochemical Engineering and Development Center (REDC) remains in source fabrication, after loader modification, and safe design. The current LDR Cf-252 Treatment Suite at the ROC is shielded and licensed to hold up to 1 mg of Cf-252. This was designed to maintain cumulative personnel exposure, both external to the room and in direct isotope handling, at less than 20 microSv/hr. However, cumulative exposure may be greatly decreased if a Cf-252 HDR unit is employed which would eliminate direct isotope handling and decrease treatment times from tilde 3 hours to an expected range of 3 to 15 minutes. Such a Cf-252 HDR source will also demonstrate improved dose distributions over current LDR treatments due to the ability to step the point-like source throughout the target volume and weight the dwell time accordingly

  5. Molecular weight determination of bisbenzyl-isoquinoline alkaloids by 252Cf-plasma desorption mass spectrometer

    International Nuclear Information System (INIS)

    Kohno, Hiroyuki; Tatsunami, Shinobu; Hiroi, Tomoko; Kouyama, Hiroshi; Taniguchi, Masashi; Yago, Nagasumi; Nakamura, Iwao

    1995-01-01

    Bisbenzylisoquinoline alkaloids of Stephania cepharantha have been used for various clinical purposes and recently reevaluated as stimulators of interleukin secretion in tissues. We analyzed molecular stuctures of bisbenzylisoquinoline alkaloids by determining their molecular weights using the 252 Cf-plasma desorption mass spectrometry (PDMS). The spectra were accumulated for 500 000 fission events. The acceleration voltage used here was 15 kV. Samples were analyzed using nitrocellulose-coated sample targets. Of the 5 alkaloids studied here, cepharanthine gave a main peak of molecular weight of 606.1 for the theoretical molecular weight of 606.7. The other minor peaks were considered to be demethylated fragment ions. 252 Cf-PDMS should be quite useful in studying structure, metabolism and pharmacokinetics of various drugs with extremely low coefficients of variation. (author)

  6. Radionuclide 252Cf neutron source

    International Nuclear Information System (INIS)

    Kolevatov, Yu.I.; Trykov, L.A.

    1979-01-01

    Characteristics of radionuclide neutron sourses of 252 Cf base with the activity from 10 6 to 10 9 n/s have been investigated. Energetic distributions of neutrons and gamma-radiation have been presented. The results obtained have been compared with other data available. The hardness parameter of the neutron spectrum for the energy range from 3 to 15 MeV is 1.4 +- 0.02 MeV

  7. Radiation ulcers in patients with cancer of the tongue after /sup 252/Cf therapy

    Energy Technology Data Exchange (ETDEWEB)

    Galantseva, G.F.; Guseva, L.I.; Plichko, V.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    1984-01-01

    Interstitial therapy with /sup 252/Cf was conducted for 57 patients with cancer of the tongue. It was established that clinical course of radiation tungue ulcers after interstitial therapy with /sup 252/Cf doesn't differ sufficiently from the course of radiation injuries, occurring after ..gamma..-radiation application. Radiation ulcers are often observed in patients after the treatment of recurrent and residual tumors with /sup 252/Cf (in 33% of patients); the ulcers appeared in 15% of cases in patients after the treatment of initial ulcers tumors. Conservative treatment provide the cure of radiation tongue ulcers after interstitial therapy with /sup 252/Cf.

  8. A survey of uses and users of 252Cf

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Alexander, C.W.; King, L.J.; Knauer, J.B.; Notz, K.J.

    1989-01-01

    Californium-252, which is one of the transuranium-element isotopes being produced in the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL), has found many applications in service to industry and medicine. As a neutron source, 252 Cf is unique in providing a highly concentrated and extremely reliable neutron spectrum from a very small assembly. Over the past 22 years, 252 Cf has been applied with great success to cancer therapy, to neutron radiography of objects ranging from flowers to entire aircraft, to startup sources for nuclear reactors, to fission activation assay for quality control and safeguards of all commercial nuclear fuel, and to many other beneficial uses, some of which are now poised for further growth. The extensive exploitation of this highly specialized product has been made possible through 252 Sales/Loan programs sponsored by the US DOE Office of Nuclear Materials Production, initially at the Savannah River Laboratory and now at ORNL

  9. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  10. A pneumatic transfer system for special form 252Cf

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form 252 Cf. It was developed to reduce the exposure to personnel handling sources of 252 Cf with masses up to 150 microg by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the 252 Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those 252 Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole

  11. Validating criticality calculations for spent fuel with 252Cf-source-driven noise measurements

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Krass, A.W.; Valentine, T.E.

    1992-01-01

    The 252 Cf-Source-driven noise analysis method can be used for measuring the subcritical neutron multiplication factor k of arrays of spent light water reactor (LWR) fuel. This type of measurement provides a parameter that is directly related to the criticality state of arrays of LWR fuel. Measurements of this parameter can verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. The practicality of a measurement depends on the ability to install the hardware required to perform the measurement. Source chambers containing the 252 Cf at the required source intensity for this application have been constructed and have operated successfully for ∼10 years and can be fabricated to fit into control rod guide tubes of PWR fuel elements. Fission counters especially developed for spent-fuel measurements are available that would allow measurements of a special 3 x 3 spent fuel array and a typical burnup credit rail cask with spent fuel in unborated water. Adding a moderator around these fission counters would allow measurements with the typical burnup credit rail cask with borated water and the special 3 x 3 array with borated water. The recent work of Ficaro on modifying the KENO Va code to calculate by the Monte Carlo method the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process, initiated by a 252 Cf source in the assembly allows a direct computer calculation of the noise analysis data from this measurement method

  12. The observation of quasi-molecular ions from a tiger snake venom component (Msub(r) 13309) using 252Cf-plasma desorption mass spectrometry

    International Nuclear Information System (INIS)

    Kamensky, I.; Haakansson, P.; Kjellberg, J.; Sundqvist, B.; Fohlman, J.; Peterson, P.A.

    1983-01-01

    A method involving fast heavy-ion bombardment of a solid sample called 252 Cf-plasma desorption mass spectrometry has been used to study a non-enzymatic, non-toxic phospholipase homolog from Australian tiger snake (Notechis scutatus) venom. The protein consists of 119 amino acids in a single polypeptide chain cross-linked by 7 disulfide bridges. The isotopically averaged molecular mass as determined by protein sequence analysis is 13309 atomic mass units (amu). The mass distributions were studied by means of time-of-flight measurements. Quasi-molecular ions associated to the molecule and its dimer were observed. The mass of the quasi-molecular ion corresponding to the molecule was determined to be 13285 +- 25 amu. (Auth.)

  13. Californium Cf-252 for pelvic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Y; Feola, J M; Tai, D; Wilson, L C; Van Nagell, J R; Yoneda, J

    1978-01-01

    Clinical data about therapy concerning tumors of the female gynecological cancers of the cervix, vagina and uterus are reviewed. Dosimetric, laboratory and radiobiological research data form the basis for an approach to such tumors using Cf-252 as a form of boost brachytherapy. Extreme personnel hazards are a real and important consideration and indicate that maximal containment and isolation procedures should be exercised in its use.

  14. Subcriticality determination by a new time-domain correlation experiment with a 252Cf neutron source

    International Nuclear Information System (INIS)

    Nishina, K.; Yamane, Y.; Ishiguro, S.; Miyoshi, Y.; Suzaki, T.; Kobayahi, I.

    1985-01-01

    As a candidate for the on-site subcriticality-monitoring method, a new time-domain correlation experiment is proposed. Hinted by the Cf-252 detector method of Mihalczo, three covariances are taken between the count of three detectors; namely an ionization chamber with Cf-252 coating, and two He-3 proportional counters. A ratio Q is formed from the three quantities such that it does not depend either on detector efficiencies or counting gate duration T, and then related to reactivity. A formulation is given deriving a theoretical expression for this Q, with the effect of higher spatial modes included. Experiments were carried out with a loading at Tank-type Critical Assembly of Japan Atomic Energy Research Institute, which is a slightly-enriched, and light-water moderated system. With fundamental mode approximation adopted in the data processing, reasonable agreements are observed between the present method and the reactivity scale that has been calibrated by water-level variety. The possibility of the present method is to be investigated further beyond the range of 7$ reported

  15. Ion chamber instrument

    International Nuclear Information System (INIS)

    Stephan, D.H.

    1975-01-01

    An electrical ionization chamber is described having a self-supporting wall of cellular material which is of uniform areal density and formed of material, such as foamed polystyrene, having an average effective atomic number between about 4 and about 9, and easily replaceable when on the instrument. (auth)

  16. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  17. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  18. Determination of disintegration half-life of 252Cf

    International Nuclear Information System (INIS)

    Chen Keliang; Liu Guoxing; Wang Sufang; Zheng Jiwen

    1991-01-01

    The follow-up measurements have been made by using a Si(Au) detector with small solid angle geometry for α disintegration of 252 Cf. The measured half-life of disintegration is 2.638 ± 0.009 year. This value is in accordance with other previous results

  19. Reactor production of 252Cf and transcurium isotopes

    International Nuclear Information System (INIS)

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, 252 Cf, 253 Es, and 255 Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of 254g Es from 252 Cf will be discussed. 14 refs., 5 tabs

  20. Characteristics of polyethylene-moderated 252Cf neutron sources

    International Nuclear Information System (INIS)

    Alejnikov, V.E.; Beskrovnaya, L.G.; Florko, B.V.

    2000-01-01

    Polyethylene-moderated 252 Cf neutron sources were designed to produce neutron reference fields' spectra that simulate the spectra observed in the workplaces within nuclear reactors and accelerators. The paper describes the neutron sources and fields. Neutron spectra were calculated by Monte Carlo method and compared with experimental data

  1. RBE of Cf-252 neutrons as determined by its lethal, mutagenic, and cytogenetic effects on human cells

    International Nuclear Information System (INIS)

    Ban, Sadayuki

    1989-01-01

    To assess the biological effects of neutrons, a man-made spontaneously fissioning isotope, Cf-252, is useful as an experimental model to obtain basic biological data on mixed radiation of gamma-rays and neutrons. The paper describes the lethal effect of Cf-252 radiation on human skin fibroblasts, its lethal and mutagenic effect on HeLa MR cells, and the micronuclei inducing effect on human peripheral lymphocytes. Dose-survival responses of three fibroblast cell strains exposed to Cf-252 radiation are measured. Individual difference is larger than the experimental fluctuation. D 10 values of each strain are obtained from the linear model and linear-quadratic model. Though the dose rate of X-ray is higher than that of Cf-252 radiations, the mean value of RBE(n+γ) is simply obtained as 1.86+0.31 (RBE:relative biological effectiveness). RBE(n) of Cf-252 neutrons to high-dose-rate X-rays is 2.29. After X-ray irradiation, the survival curve of HeLa MR cells gives an extrapolation number of 3.6. It is 1.3 after Cf-252 irradiation. At 50% survival, RBE(n+γ) and RBE(n) are 2.05 and 2.6, respectively. At 10% survival they are 2.05 and 2.6. The mutation frequencies after X-ray irradiation showed a significant non-linear increase with dose. Those after Cf-252 irradiation increase linearly with dose. (N.K.)

  2. Decorporation of 241Am and 252Cf by Ca-DTPA from rat, Syrian and Chinese hamster

    International Nuclear Information System (INIS)

    Seidel, A.

    1977-01-01

    Retention and mobilization by Ca-DTPA of 241 Am and 252 Cf from rats, Syrian and Chinese hamsters are compared. Previous observations of a much longer residence time of actinides in hamsters liver than in rat liver are confirmed. Identical dose-effect functions were obtained for skeleton of rats and Syrian hamsters whereas 252 Cf removal from Chinese hamster skeleton was lower. The mobilization of 241 Am was lower than that of 252 Cf. With regard to species differences, qualitatively similar results were obtained for 241 Am as for 252 Cf. The results will be discussed with regard to the reduction by DTPA treatment of radiation risk in animal species with different biological half times of actinides in their livers. In this connection, attention will be paid to the usefulness of long-term DTPA treatment

  3. Shielding experiments in different materials with 252Cf neutron spectra

    International Nuclear Information System (INIS)

    Sathian, Deepa; Marathe, P.K.; Pal, Rupali; Jayalakshmi, V.; Chourasiya, G.; Mayya, Y.S.

    2008-01-01

    Adequate shielding for neutron sources can be determined using analytical method or by actually measuring the attenuation for the target configuration. This paper describes the measurement of Half Value Thickness (HVT), Tenth Value Thickness (TVT), Σ values for four different shielding materials, using a standard 252 Cf neutron source and comparing with the values calculated using an empirical relationship. BF 3 based REM-counter is used for measurement of neutron dose equivalent, against different thickness of the shielding material. The experimental HVT and S values are in good agreement with the calculated values. From this study, it is concluded that, among the four materials studied, high density polyethylene (HDPE) is best suitable for the shielding of a 252 Cf neutron source. (author)

  4. Measurements of gamma-ray dose from a moderated 252Cf source

    International Nuclear Information System (INIS)

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated 252 Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D 2 O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%

  5. Energy and angular distributions of neutrons from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Sidorov, L.V.; Vasil'eva, N.K.

    1982-01-01

    Some results from a first series of measurements of energy and angular distributions of neutrons from 252 Cf spontaneous fission using a spectrometer with high neutron detection efficiency, i.e. a 4π neutron time-of-flight spectrometer, were already presented. Subsequently, a second series of measurements was performed using a more sophisticated technique. For this second series, we used a more intense 252 Cf layer (25,000 spontaneous fissions per second). The angular resolution was improved by a factor of 2-3 by combining the hexahedral counter modules, placed at the same angle with respect to the direction of motion of the fragments, in new panoramic counters. The neutron counters were calibrated against the average 252 Cf neutron spectrum at several positions of the axis of the fragment detector with respect to the neutron counters. In the spectrum measurements and calibration work, the scattered neutron background was not determined theoretically, as in the first series of measurements, but experimentally using four extra scintillation counters with scatter cones; the counters were set up at 60 deg., 80 deg., 100 deg., and 120 deg. to the direction of separation of the fragments

  6. Time domain measurements for fast metal assemblies with /sup 252/Cf

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J T

    1975-06-01

    Time correlation measurements between the pulses from an ionization counter containing a /sup 252/Cf neutron source, which provided the initiators of fission chains in a neutron multiplying assembly and from sensors that detected particles from the fission chains are reviewed for fast uranium or plutonium metal assemblies. Comparisons are made between the correlated count rate from a /sup 252/Cf measurement and that from both one and two-detector Rossi-..cap alpha.. measurements. The assemblies studied were (1) unmoderated and polyethylene-moderated uranium (93 wt percent /sup 235/U) cylinders with masses from 12 to 160 kg; prompt neutron decay constants from 3 to 10/sup 3/ to 10/sup 8/ sec/sup -1/ and (2) unmoderated plutonium spheres and parts of spheres with plutonium masses from 2.2 to 16 kg with /sup 240/Pu contents of 4.5 to 20.1 at. percent. Measurements with a delayed critical uranium metal sphere determined the effective delayed neutron fraction and served as the basis for verification of the theory of the /sup 252/Cf measurement method in the time domain within a few per cent. (auth)

  7. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  8. NAA using Cf-252 after preconcentration

    International Nuclear Information System (INIS)

    Panyo, O.; Moebius, S.; Keller, C.

    1988-01-01

    Neutron activation analysis (NAA) with thermal neutron using Cf-252 sources was applied to elemental analysis of elements in water samples. A high-resolution Ge(Li) detector was employed for gamma-radiation detection. Both suspended particulate matter and liquid fraction were investigated after filtration. Preconcentration method by co-precipitation using iron (III) hydroxide and oxine were chosen for use. Elements which were considered to be able to detect in the present study are Al, As, Cl, K, Mg, Mn, Na, Sr, Ti, U, V and Zn

  9. Neutron emission during acceleration of 252Cf fission fragments

    International Nuclear Information System (INIS)

    Batenkov, O.I.; Blinov, M.V.; Blinov, A.B.; Smirnov, S.N.

    1991-01-01

    We investigate neutron emission during acceleration of fission fragments in the process of spontaneous fission of 252 Cf. Experimental angular and energy distributions of neutrons are compared with the results of calculations of neutron evaporation during fragment acceleration. (author). 8 refs, 3 figs

  10. Neutron activation analysis detection limits using 252Cf sources

    International Nuclear Information System (INIS)

    DiPrete, D.P.; Sigg, R.A.

    2000-01-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux 252 Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an ∼6-mg 252 Cf NAA facility. The SRTC 252 Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [approximately2 x 10 7 n/cm 2 ·s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes

  11. Evaluation of the 252Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1987-01-01

    The 252 Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing 252 Cf of adequate intensity for these measurements. These three considerations are discussed

  12. Evaluation of mass distribution data from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Liu Tingjin

    2003-01-01

    The mass distribution data of 252 Cf spontaneous fission were evaluated based on 7 sets of available experimental data. The measured data were corrected for the standards and γ intensity used by using the new evaluated ones. The errors were made necessary adjusting. The evaluated experimental data were fitted with spline function without any restriction and with symmetric restriction. These two sets of fit data were recommended as reference data of the mass distribution of 252 Cf spontaneous fission. The errors of the recommended data were considerably reduced comparing with the measured ones. The light and heavy peaks are not completely symmetric. Also there are fine structures on the right side of the light peak at A=109-111 and left side of the heavy peak at A=137-139. These should be paid attention and studied further. (author)

  13. Effective source size as related to 252Cf neutron radiography

    International Nuclear Information System (INIS)

    Wada, Nobuo; Enomoto, Shigemasa; Tachikawa, Noboru; Nojiri, Toshiaki.

    1977-01-01

    The effective source size in 252 Cf thermal neutron radiography, relating to its geometrical unsharpness in image formation, is experimentally studied. A neutron radiographic system consists of a 160 μg 252 Cf neutron source, water moderator and divergent cadmium lined collimator. Thermal neutron image detection is performed with using a LiF scintillator and a high speed X-ray film to employ direct exposure method. The modulation transfer function, used for describing image quality, is derived from radiographic image corresponding to a cadmium plate with sharp edge. The modulation transfer function for the system is expressed by the product of the function for both geometrical and inherent unsharpness, and allows isolation of geometrical unsharpness as related to the effective size of the thermal neutron source. It is found to be 80 -- 90% of the collimator inlet diameter. (auth.)

  14. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote after-loader

    International Nuclear Information System (INIS)

    Melhus, C. S.; Rivard, M. J.; KurKomelis, J.; Liddle, C. B.; Masse, F. X.

    2005-01-01

    In support of the effort to begin high-dose rate 252 Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252 Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 ± 0.02 μSv h -1 with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 μSv h -1 ) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252 Cf. (authors)

  15. Calculation of dose distribution for 252Cf fission neutron source in tissue equivalent phantoms using Monte Carlo method

    International Nuclear Information System (INIS)

    Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong

    2001-01-01

    Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf

  16. Separation of 248Cm (III) from 252Cf (III) and its use in time resolved fluorescence spectroscopic (TRFS) studies

    International Nuclear Information System (INIS)

    Murali, M.S.; Nair, A.G.C.; Gujar, R.B.; Jain, A.; Tomar, B.S.; Godbole, S.V.; Reddy, A.V.R.; Manchanda, V.K.

    2008-07-01

    The present report gives a description of the methodology for the separation of 248 Cm(III) from decayed 252 Cf (III) waste solution. The waste solution was first assayed for 252 Cf content by neutron counting using a neutron well coincidence counter. The sample was subjected to the chemical separation of 248 Cm (III) from 252 Cf (III) following anion and cation exchange chromatography. The alpha spectrum of the separated curium fraction showed peaks due to 246 Cm and 248 Cm while the corresponding alpha spectrum of californium fraction showed 249,250,251,252 Cf. The gamma ray abundances of 249 Cf were determined with respect to its gamma rays of 387 keV and the data agreed well with that in literature. Separated Cm(III) was further characterized by recording its time resolved fluorescence spectrum (TRFS) in aqueous medium. (author)

  17. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  18. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    Mochiki, Koh-ichi; Koiso, Manabu; Yamaji, Akihiro; Iwata, Hideki; Kihara, Yoshitaka; Sano, Shigeru; Murata, Yutaka

    2001-01-01

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  19. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  20. Development of the neutron reference calibration field using a 252Cf standard source surrounded with PMMA moderators

    International Nuclear Information System (INIS)

    Yoshida, T.; Kanai, K.; Tsujimura, N.

    2002-01-01

    The authors developed the neutron reference calibration fields using a 252 Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the 252 Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments

  1. Cf-252 neutron brachytherapy: an advance for bulky localized cancer therapy

    International Nuclear Information System (INIS)

    Maruyama, Y.

    1984-01-01

    The physical and radiobiogical basis as well as the rationale for neutron brachytherapy, using Cf-252, in human cancer therapy is reviewed. Cf-252 brachytherapy represents an economical and effective form of neutron radiotherapy that is readily and safely applied clinically. It can be used anywhere in the world without unusual personnel, equipment or facilities, or prohibitive expenses or maintenance costs. Used on bulky head and neck, thoracic, abdominal, pelvic, brain and appendage cancers, it overcomes hypoxic radioresistance and produces remarkable rates of tumor clearance. It is easily combined with photon radiotherapy and in proper schedules and doses, it can control advanced but still localized regional cancers to produce tumor cure. It will clear the local manifestations of recurrent or metastatic tumors or advanced stages of primary tumors and therefore in conjunction with other adjuvant therapies offers much more effective tumor control and palliation than present conventional therapy. (Auth.)

  2. Development of the neutron reference calibration field using a {sup 252}Cf standard source surrounded with PMMA moderators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Kanai, K.; Tsujimura, N. [Japan Nuclear Cycle Development Institute, Ibaraki-ken (Japan)

    2002-07-01

    The authors developed the neutron reference calibration fields using a {sup 252} Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252} Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments.

  3. Study of scission shapes in spontaneous ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Singer, P.; Schwalm, D.; Thirolf, P.; Goennenwein, F.; Hesse, M.

    1995-06-01

    A new kinematic study on the ternary fission of 252 Cf has been conducted by registering prompt neutrons and fission γ rays coincidence with light charged particles (LCP) and fission fragments. The aim is to investigate changes in fragment deformation energy between the binary and ternary fission modes from measured prompt neutron angular distributions and multiplicities, and to explore the influence of light particle emission on the energy distribution, multiplicity and angular anisotropy of γ rays emitted during fragment de-excitation. The experiment was performed at the MPI Heidelberg using the Darmstadt-Heidelberg crystal ball spectrometer as γ-ray and neutron detector. Fragments were identified by a double-E measurement with an angular sensitive twin ionization chamber (IC). Light charged particles from fission were measured by ΔE-E telescopes composed of ΔE ICs and silicon PIN diodes. The telescopes enable to identify various LCPs which are emitted much more rarely than ternary α particles. The parameters of the experiment and the method of data analysis are described and first results presented. (orig.)

  4. The application of n-γ discrimination in 252Cf spontaneous neutron TOF spectra measurement

    International Nuclear Information System (INIS)

    Zhou Haojun; Zhang Yi; Li Jiansheng; Jin Yu; Wang Jie; Li Chunyuan

    2004-01-01

    The BC501 scintillator is used as a fast neutron detector. The effect that the pulse rise time method was used to discriminate γ from 252 Cf spontaneous neutron TOF spectra is studied in the experiment. A pulse rise time separation spectra of γ and 252 Cf spontaneous neuron upon 1 MeV is obtained, the n-γ separation function reaches to 4.6. When the result of pulse rise time separation coincides with the time-of-flight spectra in which the neutron energy is upon 0.5 MeV, 0.8 MeV and 1.0 MeV, comparing with the anticoincidence, γ was eliminated 99.90% at least. (authors)

  5. Frequency spectrum analysis of 252Cf neutron source based on LabVIEW

    International Nuclear Information System (INIS)

    Mi Deling; Li Pengcheng

    2011-01-01

    The frequency spectrum analysis of 252 Cf Neutron source is an extremely important method in nuclear stochastic signal processing. Focused on the special '0' and '1' structure of neutron pulse series, this paper proposes a fast-correlation algorithm to improve the computational rate of the spectrum analysis system. And the multi-core processor technology is employed as well as multi-threaded programming techniques of LabVIEW to construct frequency spectrum analysis system of 252 Cf neutron source based on LabVIEW. It not only obtains the auto-correlation and cross correlation results, but also auto-power spectrum,cross-power spectrum and ratio of spectral density. The results show that: analysis tools based on LabVIEW improve the fast auto-correlation and cross correlation code operating efficiency about by 25% to 35%, also verify the feasibility of using LabVIEW for spectrum analysis. (authors)

  6. A new facility for non-destructive assay using a 252Cf source

    International Nuclear Information System (INIS)

    Stevanato, L.; Caldogno, M.; Dima, R.; Fabris, D.; Hao, Xin; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Pino, F.; Sajo-Bohus, L.; Viesti, G.

    2013-01-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged 252 Cf source is presented. The system is designed to analyze samples having maximum size of about 20×25 cm 2 , the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. - Highlights: ► Tagged 252 Cf source setup. ► Material recognition and sample imaging with measurements of gamma ray and neutron transmission. ► Material identification via energy dependent neutron and gamma ray transmission measurements. ► Identification of layered material. ► Effects due to the sample thickness on the above identification techniques

  7. A Phase I/II Protocol Using 252Cf for the Treatment of Cervical Carcinoma

    International Nuclear Information System (INIS)

    Anita Mahajan; Mark J. Rivard; Evelyn R. Nunez; David E. Wazer

    2000-01-01

    For this clinical study, external photon beam irradiation will be given in a standard fashion with intravenous cisplatinum (CDDP) every week as a radiosensitizing agent. We will incorporate 252 Cf as the brachytherapy source replacing 192 Ir, theoretically improving patient outcomes with its lack of cell cycle and oxygen dependence, and a therapeutic ratio possibly greater than unity. Local tumor control and control of systemic disease are potentially feasible using 252 Cf to initially debulk and destroy local bulky tumor with CDDP and X rays to enhance treatment efficacy and treat minimal microscopic and distant micrometastases. The initial 22 Cf dose will be 1 Gy per weekly fraction with 0.25-Gy increments toward a 2.5-Gy limit. Patients will be stratified according to their stage, toxicities and outcomes will be monitored closely, and the study will be halted if undo morbidities are noted

  8. Design of a setup for {sup 252}Cf neutron source for storage and analysis purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Daqian [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhuang, Haocheng [Xi’an Middle School of Shanxi Province, Xi’an 710000 (China); Jia, Wenbao, E-mail: jiawenbao@163.com [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China); Cheng, Can; Jiang, Zhou; Wang, Hongtao [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Chen, Da [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China)

    2016-11-01

    {sup 252}Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg {sup 252}Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  9. A 252Cf based nondestructive assay system for fissile material

    International Nuclear Information System (INIS)

    Menlove, H.O.; Crane, T.W.

    1978-01-01

    A modulated 252 Cf source assay system 'Shuffler' based on fast-or-thermal-neutron interrogation combined with delayed-neutron counting has been developed for the assay of fissile material. The 252 Cf neutron source is repetitively transferred from the interrogation position to a shielded position while the delayed neutrons are counted in a high efficiency 3 He neutron well-counter. For samples containing plutonium, this well-counter is also used in the passive coincidence mode to assay the effective 240 Pu content. The design of an optimized neutron tailoring assembly for fast-neutron interrogation using a Monte Carlo Neutron Computer Code is described. The Shuffler system has been applied to the assay of fuel pellets, inventory samples, irradiated fuel and plutonium mixed-oxide fuel. The system can assay samples with fissile contents from a few milligrams up to several kilograms using thermal-neutron interrogation for the low mass samples and fast-neutron interrogation for the high mass samples. Samples containing 235 U- 238 U, or 233 U-Th, or UO 2 -PuO 2 fuel mixtures have been assayed with the Shuffler system. (Auth.)

  10. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    Directory of Open Access Journals (Sweden)

    Simakov Stanislav

    2016-01-01

    Full Text Available The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f. and reference 235U(nth,f neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f. IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  11. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 5. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    In recent years, Georgia Institute of Technology (Georgia Tech) has been involved in a number of neutron dosimetry research projects. Several reference neutron fields are now available for such projects. They are all based on the use of a 252 Cf source. The source can be used by itself to create a reference un-moderated 252 Cf neutron field, or it can be placed inside several different moderating assemblies. The spectra created by placing the source inside these assemblies and the un-moderated source are employed to investigate detector and dosimeter responses. Currently, the set of moderators available includes a 30-cm diam cadmium-covered D 2 O spherical shell, a 30-cm-thick iron spherical shell, a 30-cm-diam polyethylene spherical shell, an 18.3-cm-thick tungsten spherical shell, a 16-cm-thick lead spherical shell, and a 9-cm-thick tantalum spherical shell. In addition, the 252 Cf source can be placed inside a neutron howitzer recently constructed at Georgia Tech. The howitzer is a WEP cylinder loaded with boron that has a 10.16-cm-diam cylindrical opening. When the source is placed in the cylindrical penetration of the howitzer, a neutron field ∼30 cm in diameter is created at a distance of 50 cm from the californium source. Over the last few years, Bonner sphere spectrometers using LiI(Eu) scintillators and LiF thermoluminescence dosimeters have been calibrated using this facility at Georgia Tech. Recently, the Neely Nuclear Research Center (NNRC) acquired an LB 6411 neutron probe (product of EG and G Berthold). This probe is designed to measure ambient dose equivalent in accordance with International Commission on Radiological Protection Publication 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diam spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV (Ref. 5). As a test of the instrument's ability to measure ambient

  12. Brachytherapy of carcinoma of vulva with 252Cf

    International Nuclear Information System (INIS)

    Spikalovas, V.; Sinkevicius, V.; Drulia, E.; Kurtinaitis, J.

    1996-01-01

    Thirty patients with carcinoma of vulva were treated with interstitial neutron radiotherapy with 252 Cf. Age of patients was from 32 to 83 years. Stage I was in I patient, stage II - in 12, stage III was in 10 patients. The diagnosis of vulvar cancer was made for the first time in 11 cases, 19 patients had recurrences after the initial treatment. Most of these patients also received external irradiation for cancer of vulva and bilateral inguinal sites with a single fraction dose of 2 Gy to a total dose 30-50 Gy. Enlarged inguinal lymph nodes were irradiated additionally to 60 Gy with reduced field of irradiation. When radiotherapy was used repeatedly interstitial brachytherapy comprised the major part of irradiation dose or the therapy was used alone delivering 35-55 iGy. We used 252 Cf sources with increased activity at the ends 20-30 mm long. A number of inserted sources varied from 2 to 10, irradiation dose rate from 20.3 to 236.7 cGy/h, time of irradiation from 10.2 to 12. hours, RBE from 4.6 to 6.33. Special template device made it possible to implant sources in strictly pre-set geometry. Analysis of survival of patients showed that 2 years survival was 66%, 3 years - 60%, and 5 years survival was 49%. In two cases necrotic epithelitis developed with following radiation ulcer which were cured in 3-4 months. Clinical data showed great effectiveness of interstitial neutron therapy having in mind that 19 patients were treated for recurrences of vulvar cancer after previuos treatment

  13. In Plant Measurement and Analysis of Mixtures of Uranium and Plutonium TRU-Waste Using a 252Cf Shuffler Instrument

    International Nuclear Information System (INIS)

    Hurd, J.R.

    1998-01-01

    The active-passive 252 Cf shuffler instrument, installed and certified several years ago in Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here

  14. The fast neutron emission spectrum of 252-Cf

    International Nuclear Information System (INIS)

    Bensch, F.

    1979-07-01

    The aim of this work was a new measurement of the neutron emission spectrum of 252-Cf neutron standard sources as the IAEA is offering to users. The main feature was the application of gas-filled proton-recoil spectrometers and no TOF technique. The special interest of this document was in the temperature parameter of the Maxwellian distribution and in its relative deviations. In this connection, special measurements with high energy resolution were carried out in a search for fine structure neutron groups, which have been observed in some TOF measurements, but could not be reproduced during this measurement

  15. Approaches for the generation of a covariance matrix for the Cf-252 fission-neutron spectrum

    International Nuclear Information System (INIS)

    Mannhart, W.

    1983-01-01

    After a brief retrospective glance is cast at the situation, the evaluation of the Cf-252 neutron spectrum with a complete covariance matrix based on the results of integral experiments is proposed. The different steps already taken in such an evaluation and work in progress are reviewed. It is shown that special attention should be given to the normalization of the neutron spectrum which must be reflected in the covariance matrix. The result of the least-squares adjustment procedure applied can easily be combined with the results of direct spectrum measurements and should be regarded as the first step in a new evaluation of the Cf-252 fission-neutron spectrum. (author)

  16. Development of neutron induced prompt γ-ray spectroscopy system using 252Cf

    International Nuclear Information System (INIS)

    Park, Yong-Joon; Song, Byung-Chul; Jee, Kwang-Yong

    2003-01-01

    For the design and set-up of neutron induced prompt γ-ray spectroscopy system using 252 Cf neutron source, the effects of shielding and moderator materials have been examined. The 252 Cf source being used for TLD badge calibration in Korea Atomic Energy Research Institute was utilized for this preliminary experiment. The γ-ray background and prompt γ-ray spectrum of the sample containing Cl were measured using HPGe (GMX 69% relative efficiency) located at the inside of the system connected to notebook PC at the outside of the system (about 20 meter distance). The background activities of neutron and γ-rays were measured with neutron survey meter as well as γ-ray survey meters, respectively and the system was designed to minimize the activities. Prompt γ-ray spectrum was measured using γ-γ coincident system for reduce the background and the continuum spectrum. The optimum system was designed and set up using the experimental data obtained

  17. Determining {sup 252}Cf source strength by absolute passive neutron correlation counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6166 (United States); Henzlova, D., E-mail: henzlova@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-06-21

    Physically small, lightly encapsulated, radionuclide sources containing {sup 252}Cf are widely used for a vast variety of industrial, medical, educational and research applications requiring a convenient source of neutrons. For many quantitative applications, such as detector efficiency calibrations, the absolute strength of the neutron emission is needed. In this work we show how, by using a neutron multiplicity counter the neutron emission rate can be obtained with high accuracy. This provides an independent and alternative way to create reference sources in-house for laboratories such as ours engaged in international safeguards metrology. The method makes use of the unique and well known properties of the {sup 252}Cf spontaneous fission system and applies advanced neutron correlation counting methods. We lay out the foundation of the method and demonstrate it experimentally. We show that accuracy comparable to the best methods currently used by national bodies to certify neutron source strengths is possible.

  18. Methods and apparatus for cleaning objects in a chamber of an optical instrument by generating reactive ions using photon radiation

    Science.gov (United States)

    Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.; Umstadter, Karl R.; Starodub, Elena; Zhuang, Guorong V.

    2015-10-13

    An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUV light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.

  19. Fast neutron therapy with high intensity Cf-252 sources by remotely controlled afterloading and clinical experiences in the treatment of gynaecological cancers

    International Nuclear Information System (INIS)

    Yamashita, H.; Hashimoto, S.; Wada, M.; Dokiya, T.

    1986-01-01

    Cf-252 fast neutron therapy with high intensity Cf-252 sources was tested for the treatment of advanced gynaecological cancers using a remotely controlled afterloading machine designed by the author and manufactured by Toshiba. Using high intensity sources and short treatment times in a special treatment room, personnel or environment exposure to radiation was at a safe level, i.e. almost nil. During 1978-1983 18 stage III cases of cancer of the uterine cervix were treated with complete response in 78% and 44% 5 year survivals. The types of acute and delayed effects of Cf-252 were the same as Co-60 or Cs-137 but the rectum was found sensitive in this system of brachytherapy. A dose of 1,000-1,500 cGy/6-10 F in 10-22 days of Cf-252 radiation was tolerated and produced tumor cure

  20. {sup 5}He ternary fission yields of {sup 252}Cf and {sup 235}U(n,f)

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Ramayya, A. V. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Hamilton, J. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Beyer, C. J. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Kormicki, J. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Zhang, X. Q. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rodin, A. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia (Russian Federation); Formichev, A. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia (Russian Federation); Kliman, J. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia (Russian Federation); Krupa, L. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia (Russian Federation)] (and others)

    2000-04-01

    The relative {sup 4}He and {sup 5}He ternary fission yields were determined from a careful analysis of the energy distribution of {alpha} spectra from a new measurement with a {sup 252}Cf source and from published data on {sup 252}Cf and {sup 235}U(n,f). The kinetic energies of the {sup 5}He and {sup 4}He ternary particles were found to be approximately 11 and 16 MeV, respectively. {sup 5}He particles contribute 10-20 % to the total alpha yield with the remainder originating from {sup 4}He accompanied fission. (c) 2000 The American Physical Society.

  1. Optimization of in situ prompt gamma-ray analysis using a HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Chien Chung; Jiunnhsing Chao

    1991-01-01

    Application of in situ measurements by the neutron-induced prompt gamma-ray activation analysis (PGAA) technique to geochemical analysis and mineral survey have been investigated. An in situ survey of water pollutants by PGAA techniques was first proposed in the authors' previous study, where a 2.7-μg 252 Cf neutron source used in connection with a gamma-ray detecting system to determine water pollutants was described. In this paper the authors describe a modified detection probe designed and constructed to look for the optimum conditions of various-intensity 252 Cf neutron sources in measurement of some elements in lake water. Detecting efficiencies at high-energy regions and detection limits for elements commonly found in polluted lakes were evaluated and predicted to investigate the potential application of the probe for in situ measurements

  2. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  3. Group Representation of the Prompt Fission Neutron Spectrum of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S.; Miller, K. A. [Safeguards Science and Technology Group (N-1), Nuclear Nonproliferation Division, Los Alamos National Laboratory, Los Alamos(United States)

    2011-12-15

    We review the spectral representation used for the prompt fission neutron spectrum of 252Cf in the International Organization for Standardization document ISO 8529-1. We find corrections to Table A.2, the discrete group structure form, of this report are needed. We describe the approach to generating replacement values and provide a new tabulation.

  4. Challenges using a 252Cf shuffler instrument in a plant environment to measure mixtures of uranium and plutonium transuranic waste

    International Nuclear Information System (INIS)

    Hurd, J.R.

    1999-01-01

    An active-passive 252 Cf shuffler instrument, installed and certified several years ago at Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU) waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here

  5. Dispersions and correlations of the distributions of products of 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kirillov, B.F.; Kozlov, Y.V.; Martem'yanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K.

    1982-01-01

    We report the results of two experiments on study of the dispersions and correlations of the distributions of products of the spontaneous fission of 252 Cf. In each experiment about 10 8 fissions were recorded with simultaneous measurement of the number of neutrons produced and in one case the fragment kinetic energy and in the other case the energy of the prompt #betta# rays. The quantities obtained were the probabilities of production of a given number of neutrons per fission, the dispersions of the distributions of the number of neutrons produced and of the fragment kinetic energy, and the dependence of the average #betta#-ray energy and the average fragment kinetic energy on the number of neutrons produced. A calculation is made of the spectrum of the total energy carried away by fragments and neutrons, and its dispersion is determined. An estimate of the total energy release in the 252 Cf fission process is made

  6. An evaluation of the spontaneous fission prompt neutron spectrum of 252Cf

    International Nuclear Information System (INIS)

    Bojkov, G.S.; Yurevich, V.I.

    1987-01-01

    An evaluation of the spontaneous fission prompt neutron spectrum of 252 Cf from 1 keV to 20 MeV is described. Variance-covariance matrices for a number of recent experimental data sets were constructed and used to evaluate the neutron spectrum following a Bayesian procedure. The evaluated spectrum is compared with various experimental and theoretical representations. (author)

  7. Mass spectrometry with ionization induced by 252Cf fission fragments

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Artaev, V.B.

    1991-01-01

    The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface

  8. Correlation studies of neutron multiplicities in the 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kovalenko, S.S.; Kuznetsov, A.V.; Malkin, L.Z.; Petrzhak, K.A.; Petrov, B.F.; Shpakov, V.I.

    1988-01-01

    Correlations between the numbers of neutrons emitted by the 252 Cf spontaneous fission fragments have been studied as a function of the fragment mass and total kinetic energy. Behaviour of the neutron number dispersions and covariances was studied for the region of symmetric fission. Parameters of the complementary fragment excitation energy distribution (mean values, dispersions, covariances) were determined. Various factors describing correlations between the complementary fragment excitation energies are considered

  9. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2009-01-01

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252 Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252 Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252 Cf brachytherapy are presented in this paper. (author)

  10. Study of biological effects of varying mixtures of Cf-252 and gamma radiation on the acute radiation syndromes: Relevance to clinical radiotherapy of radioresistant cancer

    International Nuclear Information System (INIS)

    Maruyama, Y.; Wierzbicki, J.; Feola, J.M.

    1993-01-01

    Data for the 30 day bone marrow syndrome (BM-50) and the 6-10 day gastrointestinal (GI-50) syndrome for a one and two fraction schedule and acute and low dose rate irradiation using pure and mixed Cf-252 and photon radiation are presented. The radiation of Cf-252 is a mixture of neutrons and gamma rays. Balb/c mice of both sexes were total body irradiated with acute Co-60, low dose rate Cs-137 and Cf-252 using a 1 x and 2 x schedule. For low linear energy transfer radiations of Co-60 or Cs-137 there was expected to be an increase in the dose to produce the gastrointestinal and bone marrow syndromes with minimal change for Cf-252 neutrons. The proportion of photons in the Cf-252 radiation field were further altered by mixing Cs-137 with the Cf-252 sources and mice were total body irradiated with different proportions of photons to determine the effect on the radiation syndromes. The effects of mixing Cf-252 neutrons with different proportions of photons on the syndromes was determined. There was increase in BM-50 and GI-50 doses with fractionated or low dose rate photon irradiations and the dose modifying factors were 1.3-1.4 for the GI syndrome and 1.2 for the bone marrow syndrome. For Cf-252 there was minimal fractionation effect for the GI-50 syndrome, which increased by 1.1 for x 1 vs. x 2 fractions; for the BM-50 syndrome it rose by a 1.1 factor. For LDR Cs-137 the dose for the GI-50 syndrome rose 2.2-fold. For mixed neutron-photon radiation of 0%, 15%, 35%, and 65% η/γ mixtures, the dose to produce the BM-50 and GI-50 endpoints dropped sharply from 0 to 35% neutrons and remained flat thereafter. For major tissues such as the bone marrow and GI tract, Cf-252 behaved as high linear energy transfer for mixtures of neutrons and gamma rays when the radiations were delivered simultaneously at the low dose rates studied. 35 refs., 3 figs., 2 tabs

  11. Shielding of radiation fields generated by 252Cf in a concrete maze. Part 2 -- Simulation

    International Nuclear Information System (INIS)

    Fasso, A.; Ipe, N.E.; Reyna, A.

    1998-03-01

    A streaming experiment performed in a concrete maze of shape and size typical of a radiotherapy room was simulated with the Monte Carlo program FLUKA. The purpose of the calculation was to test the performance of the code in the low energy neutron range, and at the same time to provide additional information which could help in optimizing shielding of medical facilities. Instrument responses were calculated at different maze locations for several experimental configurations and were compared with measurements. In addition, neutron and gamma fluence, ambient dose equivalent and effective dose were calculated at the same positions. Both sources used in the experiment, namely a bare 252 Cf source and one shielded by a tungsten shell 5 cm thick, were considered in the simulation

  12. Investigation of the characteristics of 252Cf-detectors

    International Nuclear Information System (INIS)

    Karlsson, Erik

    2004-12-01

    In the first chapter the characteristic behaviors of two Cf detectors have been investigated by performing pilot measurements. The detector with the stronger source gives an unstable signal with a low signal/noise ratio. Therefore this detector has not been further investigated. The ionization chamber reacts on both fission products and alpha decay. An energy experiment showed that there were large difficulties to separate those decays. A plastic scintillator, which reacts on both photons and neutrons, was used for neutron detection. Energy spectrums were performed and the result showed that it is difficult to set an energy threshold to separate the neutrons and the photons. The discrimination will rather be achieved by time of flight methods which is discussed under the second chapter in this thesis; Experimental results. An other experiment was done in order to investigate whether it is possible to detect any delayed components from the spontaneous fission of Cf. The result showed that delayed components existed. Either they are delayed neutrons from exited fission products, or it is some delay related to the charge collection in the Cf detector. Correlation measurements showed that few events are coincident. Only 50% of the signals from the plastic scintillator are correlated with the Cf source

  13. Relative biological effectiveness (R.B.E.) of Cf-252 vs. acute Co-60 and low dose rate Cs-137 irradiation by spleen weight loss

    International Nuclear Information System (INIS)

    Maruyama, Y.; Feola, J.M.; Magura, C.; Beach, J.L.

    1986-01-01

    R.B.E. of Cf-252 on lymphoid tissue was assessed by radiation study of spleen weight loss following acute Co-60, and low dose rate (L.D.R.) Cs-137 and Cf-252 irradiations. Acute Co-60 and L.D.R. Cs-137 dose-response followed two component exponential curves with a 1.3-fold greater effect of L.D.R. Cs-137 vs. acute Co-60 on the first slope and 1.9-fold greater effect for the 2nd slope. L.D.R. Cf-252 response was 1.3 x greater than acute Co-60 but was 1.0 vs. L.D.R. Cs-137 for the first slope indicating a similar effect of Cf-252 mixed neutron/gamma radiation to L.D.R. gamma radiation in producing spleen shrinkage. There was no effect of different sequences and schedules of mixing acute Co-60 with Cf-252 irradiation observed by endogenous CFU-S survival. The R.B.E. of 1.0 - 1.9 indicates that lymphohemopoietic in vivo, presumably well oxygenated, does not respond acutely or as sensitively as hypoxic tumor where R.B.E. is 5 - 7. (author)

  14. Fabrication of 50-mg 252Cf neutron sources for the FDA [Food and Drug Administration] activation analysis facility

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of 252 Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of 252 Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf 2 O 2 SO 4 microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing

  15. In situ prompt gamma-ray activation analysis of water pollutants using a shallow 252Cf-HPGe probe

    International Nuclear Information System (INIS)

    Chung Chien; Tseng Tzucheng

    1988-01-01

    A shallow 252 Cf-HPGe probe used for in situ prompt γ-ray activation of water pollutants is described. A 2.7 μg 252 Cf neutron source and a 10% HPGe detector are inserted into a waterproof stainless steel probe, which is designed to be submerged and recovered in field operation. A laboratory test is performed to obtain the neutron flux distribution and prompt γ-ray contribution to the HPGe detector counts from around the submerged probe. The concentrations of toxic cadmium and chlorine in water are determined in the prompt γ-ray spectrum. The detection limit of industrial pollutants and some improvements of the current design are discussed. (orig.)

  16. Neutron dose rate for {sup 252} Cf AT source in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Francois, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)

    2006-07-01

    The AAPM TG-43 modified protocol was used for the calculation of the neutron dose rate of {sup 252}Cf sources for two tissue substitute materials, five normal tissues and six tumours. The {sup 252}Cf AT source model was simulated using the Monte Carlo MCNPX code in spherical geometry for the following factors: a) neutron air kerma strength conversion factor, b) dose rate constant, c) radial dose function, d) geometry factor, e) anisotropy function and f) neutron dose rate. The calculated dose rate in water at 1 cm and 90 degrees from the source long axis, using the Watt fission spectrum, was D{sub n}(r{sub 0}, {theta}{sub 0})= 1.9160 cGy/h-{mu}g. When this value is compared with Rivard et al. calculation using MCNP4B code, 1.8730 cGy/h-{mu}g, a difference of 2.30% is obtained. The results for the reference neutron dose rate in other media show how small variations in the elemental composition between the tissues and malignant tumours, produce variations in the neutron dose rate up to 12.25%. (Author)

  17. Correlated spins of complementary fragment pairs in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Smith, A. G.; Simpson, G. S.; Billowes, J.; Dagnall, P. J.; Durell, J. L.; Freeman, S. J.; Leddy, M.; Phillips, W. R.; Roach, A. A.; Smith, J. F.

    1999-01-01

    A study of the γ-ray decay of low-lying excited states in fragments produced in the spontaneous fission of 252 Cf has revealed a significant correlation between the angles of emission of the 2 1 + →0 1 + transitions of complementary fragment pairs. Calculations of the amount of dealignment that is needed to reproduce the measured a 2 values, and a comparison with the results of previous fragment-γ angular distribution measurements, suggests that at scission there may be significant population of m≠0 substates associated with the projection of the fragment spin vector on the fission axis. Fragments from the spontaneous fission of 248 Cm emit 2 1 + →0 1 + γ rays that show markedly reduced interfragment correlations, suggesting that either a larger role is played by the relative angular momentum of the fragments, or that the dealignment introduced by the neutron emission and statistical γ decay to the 2 1 + state is larger in 248 Cm than 252 Cf fission. (c) 1999 The American Physical Society

  18. Fresnel zone plate imaging of a 252Cf spontaneous fission source

    International Nuclear Information System (INIS)

    Stalker, K.T.; Hessel, K.R.

    1976-11-01

    The feasibility of coded aperture imaging for nuclear fuel motion monitoring is shown using Cf 252 spontaneous fission source. The theory of coded aperture imaging for Fresnel zone plate apertures is presented and design considerations for zone plate construction are discussed. Actual images are obtained which demonstrate a transverse resolution of 1.7 mm and a tomographic resolution of 1.5 millimeters. The capability of obtaining images through 12.7 mm of stainless steel is also shown

  19. 252Cf-source-driven noise analysis measurements for characterization of concrete highly enriched uranium (HEU) storage vaults

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1993-01-01

    The 252 Cf-source-driven noise analysis method has been used in measurements for subcritical configurations of fissile systems for a variety of applications. Measurements of 25 fissile systems have been performed with a wide variety of materials and configurations. This method has been applied to measurements for (1) initial fuel loading of reactors, (2) quality assurance of reactor fuel elements, (3) fuel preparation facilities, (4) fuel processing facilities, (5) fuel storage facilities, (6) zero-power testing of reactors, and (7) verification of calculational methods for assemblies with the neutron k 252 Cf source and commercially available detectors was feasible and to determine if the measurement could characterize the ability of the concrete to isolate the fissile material

  20. Shielding of radiation fields generated by {sup 252}Cf in a concrete maze. Part 2 -- Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A.; Ipe, N.E.; Reyna, A. [Stanford Univ., CA (US). Stanford Linear Accelerator Center; McCall, R.C. [McCall Associates, Woodside, CA (US)

    1998-03-01

    A streaming experiment performed in a concrete maze of shape and size typical of a radiotherapy room was simulated with the Monte Carlo program FLUKA. The purpose of the calculation was to test the performance of the code in the low energy neutron range, and at the same time to provide additional information which could help in optimizing shielding of medical facilities. Instrument responses were calculated at different maze locations for several experimental configurations and were compared with measurements. In addition, neutron and gamma fluence, ambient dose equivalent and effective dose were calculated at the same positions. Both sources used in the experiment, namely a bare {sup 252}Cf source and one shielded by a tungsten shell 5 cm thick, were considered in the simulation.

  1. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  2. Regularities in dose field formation for fixation of 252Cf and 60Co sources on the same plane

    International Nuclear Information System (INIS)

    Ivanov, V.N.; Vtyurin, B.M.; Ivanova, L.F.; Kondzhariya, Yu.R.

    1983-01-01

    A computerized study was made of a change in the correlation between the sizes of an irradiated volume and the distribution of sources. Criteria have been established for the utilization of 252 Cf and 60 Co sources of different active length and design placed on the same plane. Reference dose rate and its derivatives have been chosen as the main parameters that characterize a dose field. A dosimetric analysis was performed using the data for an adsorbed dose of neutrons in the tissue, taking account of high RBE of 252 Cf fast neutrons that equals 6-7, and a slight change of the local RBE value near the source resulting from a change of the effective spectrum of neutrons in combination with the growth of a contribution of #betta#-radiation into the summary dose with the removal from the source. The irradiated volume was evaluated by introducing 3 linear parameters - length, thickness and width. It has been shown that the ratio of the length of an irradiated volume to the active length of 252 Cf sources with radionuclide regular linear density changes from 0.7 with the isodose value of 85% up to 0.97 with the isodose value of 60%. For 60 Co sources with a higher linear density of the radionuclide on the edges the lower limit of this value equals 1. Intervals of changes in the rest of parameters have also been defined. The results obtained are presented graphically. The results of the study are used for a dosimetric control of the clinical trials of 252 Cf and 60 Co sources in the treatment of patients with tumors of the tongue, oral cavity fundus, lip and other sites

  3. Identification of new neutron-rich rare-earth nuclei produced in /sup 252/Cf spontaneous fission

    CERN Document Server

    Greenwood, R C; Gehrke, R J; Meikrantz, D H

    1981-01-01

    A program of systematic study of the decay properties of neutron-rich rare-earth nuclei with 30 s252/Cf spontaneous fission, is currently underway using the Idaho ESOL (Elemental Separation On Line) Facility. The chemistry system used for the rare-earth elemental separations consists of two high-performance chromatography columns connected in series and coupled to the /sup 252 /Cf fission source via a helium gas-jet transport arrangement. The time delay for separation and initiation of gamma -ray counting with results which have been obtained to date with this system include the identification of a number of new neutron-rich rare-earth isotopes including /sup 155/Pm (t/sub 1/2/=48+or-4 s) and /sup 163/Gd (t/sub 1 /2/=68+or-3 s), in addition to 5.51 min /sup 158/Sm which was identified in an earlier series of experiments. (11 refs).

  4. Trajectory calculations for the ternary cold fission of 252Cf

    International Nuclear Information System (INIS)

    Misicu, S.

    1998-01-01

    We compute the final kinetic energies of the fragments emitted in the light charged particle accompanied by cold fission of 252 Cf taking into account the deformation and the finite-size effects of the fragments and integrating the equations of motion for a three-body system subjected only to Coulomb forces. The initial conditions for the trajectory calculations were derived in the framework of a deformed cluster model which includes also the effect due to the absorbative nuclear part. Although the distributions of initial kinetic energies are rather broad we show that in cold fission the initial conditions can be better determined than in the usual spontaneous fission

  5. High energy {gamma} emission in the spontaneous fission of {sup 252}Cf; Emission {gamma} de grande energie dans la fission spontanee de {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Badimon, C.; Barreau, G.; Doan, T.P.; Pedemay, G. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Thiesen, Ch. [Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Belier, G.; Meot, M.V. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Astier, A.; Ducroux, L.; Meyer, M.; Redon, N. [Inst.de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-06-01

    The prompt {gamma} emission in the spontaneous fission of {sup 252}Cf is characterized by an energy spectrum which extends up to 20 MeV. It was established that the spectrum presents in the neighbourhood of symmetric fission an intensity bump in the 3-8 MeV {gamma} energy interval. The origin of this phenomenon is still not well understood, so that it was found interesting to carry out new measurements. The spectrum of the {gamma} rays emitted in spontaneous fission of {sup 252}Cf has been measurement in the EUROGAM II multidetector using photovoltaic cells to detect fragments. The aim of the experiment was to investigate the {gamma} yield enhancement which appears for mass fragment ratio near 132/120. This enhancement was found to be composed of two peaks located at 4 MeV and 5.5 MeV respectively. The results obtained confirm the intensity bound in the 3-8 MeV region but this augmentation reaches the maximum when the heavy fragment is near the mass 132. Beyond mass 140 the phenomenon diminish and the {gamma} spectrum regains the behaviour expected for a statistic emission. The additional structure at 5.5 MeV does not vary with excitation energy while the excitation function of the 4 MeV structure is more structured and presents a maximum when the excitation energy is near 8 MeV. It is likely that all or part of this observed phenomenon is due to a particular excitation mode of this isotope associated for instance with a low energy dipole resonance. A theoretical study of this collective effect is under way 3 refs.

  6. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF6 scintillators and a sealed 252Cf source

    International Nuclear Information System (INIS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-01-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50x2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252 Cf source ( 6 .

  7. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  8. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  9. Undergraduate experiments using the neutron radiation from californium-252

    International Nuclear Information System (INIS)

    Rossel, J.; Golecki, I.

    1976-01-01

    Three experiments designed to demonstrate and measure several properties of the neutron radiation emitted by a 3μg 252 Cf source are described. The experiments constitute a special project carried out by a third-year undergraduate student at the Institute of Physics of the University of Neuchatel. The 252 Cf source is enclosed in a shield which allows a pencil of fast neutrons to pass through a central tube, while reducing the ambient radiation below the tolerance level. The shield consists of layers of borated paraffin wax, iron and cadmium. The first experiment uses an air-alcohol diffusion cloud chamber for the demonstration of tracks of recoil protons produced by the neutrons. Semi-quantitative measurements of track lengths give the correct order of magnitude of the proton energies. In the second experiment a liquid scintillator detector is used to scan the beam profile across the radiation shield enclosing the source. A pulse-shape-discrimination system discriminates between neutrons and gamma photons. The third experiment makes use of the nuclear emulsion technique to study the neutron energy distribution of 252 Cf. Preliminary results are compared with published values. (author)

  10. Application of modular neutron spectrometer to measure neutron spectra from fission of 252Cf

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Osuch, S.; Popkiewicz, M.; Wilhelmi, Z.; Zelazny, Z.

    1996-01-01

    The neutron spectrometer MONA (Modular Neutron Array) and its test has been described. The spectrometers consist of eight BC-501A liquid scintillator detectors of BICRON which allow one to distinguish between the pulses from gamma quanta and neutrons using pulse shape discrimination (PSD) method. The electronic equipment for the PSD and the test result using the 252 Cf radioactive source are presented

  11. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    International Nuclear Information System (INIS)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ( 238 PuBe, 252 Cf, 238 PuB, 238 PuF 4 , and 238 PuLi) and the neutron instrumentation (moderated BF 3 detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, 12 C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs

  12. 252Cf-source-correlated transmission measurements for uranyl fluoride deposit in a 24-in.-OD process pipe

    International Nuclear Information System (INIS)

    Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Mullens, J.A.

    1998-01-01

    Characterization of a hydrated uranyl fluoride (UO 2 F 2 ·nH 2 O) deposit in a 17-ft-long, 24-in.-OD process pipe at the former Oak Ridge Gaseous Diffusion Plant was successfully performed by using 252 Cf-source-correlated time-of-flight (TOF) transmission measurements. These measurements of neutrons and gamma rays through the pipe from an external 2521 Cf fission source were used to measure the deposit profile and its distribution along the pipe, the hydration (or H/U), and the total uranium mass. The measurements were performed with a source in an ionization chamber on one side of the pipe and detectors on the other. Scanning the pipe vertically and horizontally produced a spatial and time-dependent radiograph of the deposit in which transmitted gamma rays and neutrons were separated in time. The cross-correlation function between the source and the detector was measured with the Nuclear Weapons Identification System. After correcting for pipe effects, the deposit thickness was determined from the transmitted neutrons and H/U from the gamma rays. Results were consistent with a later intrusive observation of the shape and the color of the deposit; i.e., the deposit was annular and was on the top of the pipe at some locations, demonstrating the usefulness of this method for deposit characterization

  13. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor, k/sub eff/ has been satisfactorily determined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments and the development of theoretical methods to predict the experimental observables

  14. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables

  15. A new facility for non-destructive assay using a 252Cf source.

    Science.gov (United States)

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  17. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

  18. A new type-B cask design for transporting 252Cf

    International Nuclear Information System (INIS)

    Simmons, C.M.

    2000-01-01

    A project to design, certify, and build a new US Department of Energy (DOE) Type B container for transporting >5 mg of 252 Cf is more than halfway to completion. This project was necessitated by the fact that the existing Oak Ridge National Laboratory (ORNL) Type B containers were designed and built many years ago and thus do not have the records and supporting data that current regulations require. Once the new cask is available, it will replace the existing Type B containers. The cask design is driven by the unique properties of 252 Cf, which is a very intense spontaneous fission neutron source and necessitates a large amount of neutron shielding. The cask is designed to contain up to 60 mg of 252 Cf in the form of californium oxide or californium oxysulfate, in pellet, wire, or sintered material forms that are sealed inside small special-form capsules. The new cask will be capable of all modes of transport (land, sea, and air). The ORNL team, composed of technical and purchasing personnel and using rigorous selection criteria, chose NAC, International (NAC), as the subcontractor for the project. In January 1997, NAC started work on developing the conceptual design and performing the analyses. The original design concept was for a tungsten alloy gamma shield surrounded by two concentric shells of NS-4-FR neutron shield material. A visit to US Nuclear Regulatory Commission (NRC) regulators in November 1997 to present the conceptual design for their comments resulted in a design modification when the question of potential straight-line cracking in the NS-4-FR neutron shield material arose. NAC's modified design includes offset, wedgelike segments of the neutron shield material. The new geometry eliminates concerns about straight-line cracking but increases the weight of the packaging and makes the fabrication more complex. NAC has now completed the cask design and performed the analyses (shielding, structural, thermal, etc.) necessary to certify the cask. The cask

  19. Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.

    2005-06-01

    For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)

  20. The temperature of fission fragments from spontaneous fission of 252Cf measured by time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Popkiewicz, M.; Osuch, S.; Szeflinski, Z.; Sztampke, A.; Wilhelmi, Z.; Wolinska, M.; Zaganczyk, R.

    1997-01-01

    The detection system MONA (Modular Neutron Array) consisting of eight large BC-501A liquid scintillators, was applied to determine the temperature of fission fragments emitted in spontaneous fission of 252 Cf. The determination of the temperature was based on the measurement of the neutron spectra

  1. Determination of 114Pd cumulative yield and investigation of the fine-structure at light peak in mass distribution of 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Yu Runlan; Li Xueliang; Cui Anzhi; Guo Jingru; Yan Shuhen; Tang Peijia; Liu Daming

    1991-07-01

    A rapid radiochemical procedure for Pd separation was developed. It was the first time to use radiochemical techniques to determine 114 Pd cumulative yield (2.50 ± 0.14)% in 252 Cf spontaneous fission. The cumulative yields of (3.50 ± 0.13)% and (3.70 ± 0.11)% for 112 Pd and 113g Ag were also obtained. These are in agreement with Skovorodkin's results. The cumulative yields determined show that there is a fine-structure at light peak of mass number A = 113 in the mass distribution of 252 Cf spontaneous fission

  2. High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics

    International Nuclear Information System (INIS)

    Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.

    1997-01-01

    A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)

  3. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  4. Matrix effects correction on 252Cf shufflers by application of the alternating conditional expectation to neutron flux monitor data

    International Nuclear Information System (INIS)

    Pickrell, M.M.

    1992-01-01

    The 252 Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to diagnose the matrix and position effects on 252 Cf shuffler assays. The matrices incorporated metals, neutron poisons, and hydrogen in densities ranging from 0≤ pH ≤ 0.086 g/cm 3 , a range of cases more extreme than typically found in routine plant use. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay

  5. Californium-252 radiotherapy sources for interstitial afterloading

    International Nuclear Information System (INIS)

    Permar, P.H.; Walker, V.W.

    1976-01-01

    Californium-252 neutron sources for interstitial afterloading were developed to investigate the value of this radionuclide in cancer therapy. Californium-252 seed assemblies contain essentially point sources of 252 Cf permanently sealed on 1-cm centers within a flexible plastic tube. The seed assemblies are fabricated with remotely operated, specially designed machines. The fabrication process involves the production of a Pt-10 percent Ir-clad wire with a 252 Cf 2 O 3 -Pd cermet core. The wire is swaged and drawn to size, cut to length, and welded in a Pt-10 percent Ir capsule 0.8 mm in diameter and 6 mm long. Each seed capsule contains approximately 0.5 microgram of 252 Cf. Because the effective half-life of 252 Cf is 2.6 years, the seed assemblies are not disposable and must be reused until their activities have decreased to unsuitable levels. The flexible plastic components must therefore have sufficient resistance to radiation damage to survive the neutron-plus-gamma radiation from 252 Cf. On the basis of accelerated irradiation tests with a large 252 Cf source, a recently developed fluoropolymer, ''Tefzel'' (trademark of E. I. du Pont de Nemours and Company) has adequate radiation resistance for this application. Californium-252 seed assembly systems are loaned by the United States Energy Research and Development Administration for clinical investigations under a protocol of the Radiation Therapy Oncology Group, U.S. National Cancer Institute

  6. Importance of the neutrons kerma coefficient in the planning of Brachytherapy treatments with Cf-252 sources; Importancia del coeficiente de kerma de neutrones en la planeacion de tratamientos de Braquiterapia con fuentes de Cf-252

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [ININ, 52045 Ocoyocac, Estado de Mexico (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, 09000 Mexico D.F. (Mexico); Francois L, J.L. [UNAM, 04500 Mexico D.F. (Mexico)]. e-mail: lpg@nuclear.inin.mx

    2006-07-01

    The Cf-252 is a fast neutrons emitting radioisotope by spontaneous fission that can be used as sealed source in medicine applications, industry and research. Commercially its offer sources of different sizes, compact and with a fast neutrons emission of the order of 10{sup 6} n/s-{mu}g and an energy spectra that presents respectively maxim and average energy in 2.1 MeV and 0.7 MeV. In medicine new applications are being developed for the treatment of patient with hypoxic and voluminous tumors, where the therapy with photons has not given positive results, as well as for the protocols of therapy treatment by boron neutron capture, where very small sources of Cf-252 will be used with the interstitial brachytherapy technique of high and low dose rate. In this work an analysis of how the small differences that exist in the elementary composition of 4 wicked tumors, 4 ICRU healthy tissues and 3 substitute materials of ICRU tissue used in dosimetry are presented, its generate changes in the neutrons kerma coefficient in function of the energy and consequently in the absorbed dose in the interval of 11 eV to 29 MeV. These differences can produce maximum variations of the neutron kerma coefficients ratio for E{sub n} > 1 keV of the one: 15% tumor/ICRU guest healthy tissue, 12% ICRU tumor/muscle, 12% ICRU healthy tissues ICRU/ICRU muscle, 22% substitutes tissue/tumor and 22% ICRU substitutes tissue/muscle. Also, it was found that the average value of the neutrons kerma coefficient for the 4 wicked tumors is from 6% to 7% smaller that the average value for the soft tissue in the interval energy of interest for therapy with fast neutrons with E{sub n} > 1 MeV. These results have a special importance during the planning process of brachytherapy treatments with sources of {sup 252}Cf, to optimize and to individualize the patients treatments. (Author)

  7. Burnout and gate rupture of power MOS transistors with fission fragments of 252Cf

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin; Chen Xiaohua; He Chaohui; Yang Hailiang

    2000-01-01

    A study to determine the single event burnout (SEB) and single event gate rupture (SEGR) sensitivities of power MOSFET devices is carried out by exposure to fission fragments from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism are presented. The test results include the observed dependence upon applied drain or gate to source bias and effect of external capacitors and limited resistors

  8. Viability of neutron brachytherapy technique using Cf252 for tumors of salivary glands therapy

    International Nuclear Information System (INIS)

    Andrade, Lidia M.; Campos, Tarcisio P.R.

    2000-01-01

    Gland salivary tumors, although uncommon, present significant characteristics such as distant metastasis, recurrence and average survive of five year for treated patients. Those tumors presents low response to a conventional radiotherapy, photon and electron therapy; thus, this modality is associated with surgery. Fast neutron therapy has been presented better results in controlling the local tumor in comparison with conventional radiotherapy. Brachytherapy with Cf-252 presents an alternative treatment for tumors. Those radiotherapy technique are discussed and analyzed. (author)

  9. HeLa cell tumor response to 60Co, Cs-137, Cf-252 radiations and cisplatin chemotherapy in nude mice

    International Nuclear Information System (INIS)

    Maruyama, Y.; Feola, J.M.; Beach, J.L.

    1984-01-01

    HeLa cells were implanted into athymic nude mice from tissue culture and solid tumors established (HeLa cell tumor or HCT). Large cell numbers of 1 X 10 7 were required to obtain consistent and progressive growth, and tumor growth followed a Gompertzian mode. Irradiation studies were carried out using acute Cobalt-60 (60Co), low-dose-rate (LDR) Cs-137 and LDR Cf-252. Cf-252, a neutron-emitting radioisotope, produced an immediate tumor shrinkage and regression response after a dose of 279 cGy. Acute 60Co or LDR Cs-137 irradiation with 1000 cGy had little effect on the HCT. After a dose of 2000 cGy of 60Co radiation tumor shrinkage followed a latent period of approximately 5 days. Cisplatin had no effect on the HCT in nude mice in stationary or late exponential growth

  10. General purpose nuclear irradiation chamber

    International Nuclear Information System (INIS)

    Nurul Fadzlin Hasbullah; Nuurul Iffah Che Omar; Nahrul Khair Alang Md Rashid; Jaafar Abdullah

    2013-01-01

    Nuclear technology has found a great need for use in medicine, industry, and research. Smoke detectors in our homes, medical treatments and new varieties of plants by irradiating its seeds are just a few examples of the benefits of nuclear technology. Portable neutron source such as Californium-252, available at Industrial Technology Division (BTI/ PAT), Malaysian Nuclear Agency, has a 2.645 year half-life. However, 252 Cf is known to emit gamma radiation from the source. Thus, this chamber aims to provide a proper gamma shielding for samples to distinguish the use of mixed neutron with gamma-rays or pure neutron radiation. The chamber is compatible to be used with other portable neutron sources such as 241 Am-Be as well as the reactor TRIGA PUSPATI for higher neutron dose. This chamber was designed through a collaborative effort of Kulliyyah Engineering, IIUM with the Industrial Technology Division (BTI) team, Malaysian Nuclear Agency. (Author)

  11. Californium-252: a remarkable versatile radioisotope

    International Nuclear Information System (INIS)

    Osborne-Lee, I.W.; Alexander, C.W.

    1995-01-01

    A product of the nuclear age, Californium-252 ( 252 Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, 252 Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of 252 Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the 252 Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, 252 Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of 252 Cf from ORNL is summarized herein

  12. Californium-252: a remarkable versatile radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Osborne-Lee, I.W.; Alexander, C.W.

    1995-10-10

    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.

  13. Metronidazole in the treatment of cervical cancer using Cf-252 neutron brachytherapy

    International Nuclear Information System (INIS)

    Maruyama, Y.

    1986-01-01

    Metronidazole was tested for its possible use in the Cf-252 brachytherapy of cervical cancer as a radiosensitizer and to deal with anaerobic pelvic infection. 15 patients were treated by only 14 were evaluable. All stages from stage IB-IVB were treated and complete local tumor regression was noted in all cases although it could take place very slowly. 5/14 (36%) are 1.5-3 year survivors but only among the patients with stage I-II disease. No unusual radio-enhancing action was observed but metronidazole appeared to be useful to treat the vaginal, cervix and uterine infections often associated with high stage disease and bulky, ulcerative or necrotic tumors

  14. Photon contributions from the 252Cf and 241Am–Be neutron sources at the PSI Calibration Laboratory

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Boschung, M.; Meier, K.; Stadtmann, H.; Hranitzky, C.; Figel, M.; Mayer, S.

    2012-01-01

    At the accredited PSI Calibration Laboratory neutron reference fields traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to the ambient dose equivalent in the neutron fields of the 252 Cf and 241 Am–Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source usually involves considerable uncertainties due to the presence of neutron induced photons in the room, due to a non-zero neutron sensitivity of the photon detector, and last but not least due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution of the two sources as an average of the individual methods. For the 241 Am–Be source a photon contribution of approximately 4.9% was determined and for the 252 Cf source a contribution of 3.6%.

  15. Study the Possibility of measuring Heavy Metals Arising from Gold Mining Sample using 252Cf Neutron Source

    International Nuclear Information System (INIS)

    Soliman, N.F.

    2012-01-01

    Mining activities contribute immensely to trace element pollution .The present work studied the possibility of measuring heavy metals arising from gold mining areas Eastern Desert in Egypt using the isotopic 252 Cf neutron source. 38.5 g of the sample is irradiated in a neutron field of 252 Cf for 36.75 days and 0.3 mg of the sample is irradiated at the Pneumatic Irradiation Rabbit System (PIRS) built in the vertical thermal column of the ET-RR-2 reactor . The induced activities in the samples are measured using two high resolution f ray spectrometry systems (including two calibrated HPGe detectors). The kο standardization neutron activation analysis (kο-NAA) method was used to analyze the sample under investigation. Thermal to epithermal flux ratio fat the two irradiation positions are measured. The obtained results indicated that the values of the suspected heavy metals such as sodium, magnesium, potassium, manganese, arsenic, ruthenium and tantalum were higher than the background values, signifying accumulation of these heavy metals due to gold mining activities .The accuracy and precision of the method has been evaluated

  16. Feasibility of subcriticality and NDA measurements for spent fuel by frequency analysis techniques with 252Cf

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.

    1996-01-01

    The 252 Cf-source-driven frequency analysis method can be used for measuring the subcritical neutron multiplication factor of arrays of LWR fuel and as little as a single PWR fuel assembly. These measurements can be used to verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. In addition, the data can be used to validate calculational methods for criticality safety. These measurements provide parameters that have a higher sensitivity to changes in fissile mass than neutron multiplication factor and thus serve as a better test of calculational methods. The analysis have also shown that measurement of the cross power spectral density (CPSD) between detectors on one side of a single fuel assembly and an internal or external 252 Cf source driving the fission chain multiplication process can be used for nondestructive assay of fissile mass along the length of the assembly. This CPSD is a smooth function of fissile mass and does not depend on the varying inherent source in the fuel assembly and thus is ideal for fissile mass assay

  17. Cross-sections of 197Au(n,α)198Au and 63Cu(n,α)64Cu induced by 252Cf neutrons

    International Nuclear Information System (INIS)

    Mandal, Ranjita; Sengupta, D.; Roy, Malobika; Naik, Mamta; Bhoraskar, V.N.

    2014-01-01

    Analytical work, employing nuclear techniques, is normally carried out through (n,α) reaction because of the availability of neutrons either from reactors or laboratory sources such as Sb-Be, Am-Be, Ra-Be, Po-Be, 252 Cf, etc. The laboratory neutron sources are though portable and adaptable to a particular experimental arrangement, suffer from the disadvantage of slow neutron yield (except 252 Cf). In this set up since the neutrons available are monoenergetic, it was thought appropriate to initiate a program to measure cross-sections of a few nuclear reactions which have practical applications. Earlier studies on cross-section measurement of the reaction 197 Au(n,α) 198 Au and 63 Cu(n,α) 64 Cu has been carried out using different sources, monitors and techniques

  18. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  19. The legacy of Cf-252 operations at Savannah River Technology Center: Continuous releases of radioiodine to the atmosphere

    International Nuclear Information System (INIS)

    Kantelo, M.V.; Crandall, B.S.

    1992-01-01

    The iodine isotopes I-132, 1-133, I-134, and I-135, which have half-lives ranging from 53 minutes to 21 hours, are measured in the atmospheric effluent from the Savannah River Technology Center (SRTC) at the Savannah River Site (SRS) near Aiken, South Carolina. SRS is operated by Westinghouse Savannah River Company for the US Department of Energy (DOE). The isotopes' release rates range from 10 to 300 microcuries per week compared to the rate. The resulting annual dose from all iodine isotopes is minor; it comprises 0.01 percent of the total offsite dose due to atmospheric releases from SRS in 1990. Circumstantial evidence indicates the radioiodine originates from traces of unencapsulated Cf-252. The determination that spontaneous fission of Cf-252 is the source of the radioiodine has several ramifications. Radioactive fission-product isotopes of the noble gas elements krypton and xenon must also be released. Noble gases are more volatile and mobile than iodine. Also, the released iodine isotopes decay to xenon isotopes. The noble gases decay to non-gaseous elements that are transported along with radioiodine to the terrestrial environment by deposition from the SRTC plume. Only Sr-89 is believed to accumulate sufficiently in the environment to approach detectable levels. Given similar conditions in earlier years, releases of short-lived radioiodine have occurred undetected in routine monitoring since the early 1970s. Release rates 20 years ago would have been 200 times greater than current release rates. This report documents preliminary experiments conducted by SRTC and Environmental Monitoring Section (EMS) scientists. The release process and the environmental impact of fission products from Cf-252 should be thoroughly researched

  20. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    Science.gov (United States)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  1. Importance of the neutrons kerma coefficient in the planning of Brachytherapy treatments with Cf-252 sources

    International Nuclear Information System (INIS)

    Paredes G, L.; Balcazar G, M.; Azorin N, J.; Francois L, J.L.

    2006-01-01

    The Cf-252 is a fast neutrons emitting radioisotope by spontaneous fission that can be used as sealed source in medicine applications, industry and research. Commercially its offer sources of different sizes, compact and with a fast neutrons emission of the order of 10 6 n/s-μg and an energy spectra that presents respectively maxim and average energy in 2.1 MeV and 0.7 MeV. In medicine new applications are being developed for the treatment of patient with hypoxic and voluminous tumors, where the therapy with photons has not given positive results, as well as for the protocols of therapy treatment by boron neutron capture, where very small sources of Cf-252 will be used with the interstitial brachytherapy technique of high and low dose rate. In this work an analysis of how the small differences that exist in the elementary composition of 4 wicked tumors, 4 ICRU healthy tissues and 3 substitute materials of ICRU tissue used in dosimetry are presented, its generate changes in the neutrons kerma coefficient in function of the energy and consequently in the absorbed dose in the interval of 11 eV to 29 MeV. These differences can produce maximum variations of the neutron kerma coefficients ratio for E n > 1 keV of the one: 15% tumor/ICRU guest healthy tissue, 12% ICRU tumor/muscle, 12% ICRU healthy tissues ICRU/ICRU muscle, 22% substitutes tissue/tumor and 22% ICRU substitutes tissue/muscle. Also, it was found that the average value of the neutrons kerma coefficient for the 4 wicked tumors is from 6% to 7% smaller that the average value for the soft tissue in the interval energy of interest for therapy with fast neutrons with E n > 1 MeV. These results have a special importance during the planning process of brachytherapy treatments with sources of 252 Cf, to optimize and to individualize the patients treatments. (Author)

  2. The temperature of fission fragments from spontaneous fission of {sup 252}Cf measured by time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Popkiewicz, M.; Osuch, S.; Szeflinski, Z.; Sztampke, A.; Wilhelmi, Z.; Wolinska, M.; Zaganczyk, R. [Warsaw Univ., Inst. of Experimental Physics, Nuclear Physics Div., Warsaw (Poland)

    1997-12-31

    The detection system MONA (Modular Neutron Array) consisting of eight large BC-501A liquid scintillators, was applied to determine the temperature of fission fragments emitted in spontaneous fission of {sup 252}Cf. The determination of the temperature was based on the measurement of the neutron spectra. 5 refs, 2 figs.

  3. Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs

  4. A reference aerosol for a radon reference chamber

    Science.gov (United States)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  5. A reference aerosol for a radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keyser, U. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1996-01-11

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 {mu}m aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration are described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a {sup 252}Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry. (orig.).

  6. Estimation of the LET threshold of single event upset of microelectronics in experiments with Cf-252

    International Nuclear Information System (INIS)

    Kuznetsov, N.V.; Nymmik, R.A.

    1996-01-01

    A method is proposed for analyzing single event upsets (SEU) in large scale integration circuits of random access memory (RAM) when exposed to Cf-252 fission fragments. The method makes is possible to find the RAM linear energy transfer (LET) threshold to be used for estimations of RAM SEU rates in space. The method is illustrated by analyzing experimental data for the 2 x 8 kbit CMOS/bulk RAM. (author)

  7. Physics of the 252Cf-source-driven noise analysis measurement

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Perez, R.B.; Mattingly, J.K.

    1997-01-01

    The 252 Cf-source-driven noise analysis method is a versatile measurements tool that has been applied to measurements for initial loading of reactors, quality assurance of reactor fuel elements, fuel processing facilities, fuel reprocessing facilities, fuel storage facilities, zero-power testing of reactors, verification of calculational methods, process monitoring, characterization of storage vaults, and nuclear weapons identification. This method's broad range of application is due to the wide variety of time- and frequency domain signatures, each with unique properties, obtained from the measurement. The following parameters are obtained from this measurement: average detector count rates, detector multiplicities, detector autocorrelations, cross-correlation between detectors, detector autopower spectral densities, cross-power spectral densities between detectors, coherences, and ratios of spectral densities. All of these measured parameters can also be calculated using the MCNP-DSP Monte Carlo code. This paper presents a review of the time-domain signatures obtained from this measurement

  8. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  9. Parameters for several plutonium nuclides and 252Cf of safeguards interest

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1984-01-01

    Sets of the neutron emission multiplicity distribution gleaned from the literature for plutonium nuclides and 252 Cf are considered. A methodology for rendering the different sets comparable is presented and used to convert the sets to a common basis such that the differences can be evaluated objectively and that allows realistic estimate of the uncertainties. This in turn permits development of a canonical consensus set in certain instances. Evaluated data on the average neutron multiplicity, the total half-lives, and the half-lives for spontaneous fission are also given. A careful search of the literature reveals that the data on neutron multiplicity distributions for many nuclides is surprisingly sparse, considering that almost thirty years has elapsed since the original pioneering work, which in some cases, yield the only reported value. 93 references, 26 tables

  10. Bias in calculated keff from subcritical measurements by the 252Cf-source-driven noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.

    1995-01-01

    The development of MCNP-DSP, which allows direct calculation of the measured time and frequency analysis parameters from subcritical measurements using the 252 Cf-source-driven noise analysis method, permits the validation of calculational methods for criticality safety with in-plant subcritical measurements. In addition, a method of obtaining the bias in the calculations, which is essential to the criticality safety specialist, is illustrated using the results of measurements with 17.771-cm-diam, enriched (93.15), unreflected, and unmoderated uranium metal cylinders. For these uranium metal cylinders the bias obtained using MCNP-DSP and ENDF/B-V cross-section data increased with subcriticality. For a critical experiment [height (h) = 12.629 cm], it was -0.0061 ± 0.0003. For a 10.16-cm-high cylinder (k ∼ 0.93), it was 0.0060 ± 0.0016, and for a subcritical cylinder (h = 8.13 cm, k ∼ 0.85), the bias was -0.0137 ± 0.0037, more than a factor of 2 larger in magnitude. This method allows the nuclear criticality safety specialist to establish the bias in calculational methods for criticality safety from in-plant subcritical measurements by the 252 Cf-source-driven noise analysis method

  11. Methods for Cf-252 cervix cancer therapy and treatment planning for GYN malignancies in Lexington

    International Nuclear Information System (INIS)

    Coffey, C.W.; Yoneda, J.; Beach, J.L.; Maruyama, Y.

    1986-01-01

    This paper presents the clinical physics methods and treatment planning techniques used in both the external beam and brachytherapy treatment of GYN malignancies in the Radiotherapy Department of the University of Kentucky Medical Center. Specific description of the departmental implant suite and brachytherapy procedures are included. The optimization of brachytherapy applicator placement, source arrangement, and normal and tumor total dose and dose distributions are presented. Quality assurance protocols for teletherapy and brachytherapy and patient and staff safety procedures with Cf-252 are discussed

  12. Measurement of the average number of prompt neutrons emitted per fission of 235U relative to 252Cf for the energy region 500 eV to 10 MeV

    International Nuclear Information System (INIS)

    Gwin, R.; Spencer, R.R.; Ingle, R.W.; Todd, J.H.; Weaver, H.

    1980-01-01

    The average number of prompt neutrons emitted per fission ν/sub p/-bar(E), was measured for 235 U relative to ν/sub p/-bar for the spontaneous fission of 252 Cf over the neutron energy range from 500 eV to 10 MeV. The samples of 235 U and 252 Cf were contained in fission chambers located in the center of a large liquid scintillator. Fission neutrons were detected by the large liquid scintillator. The present values of ν/sub p/-bar(E) for 235 U are about 0.8% larger than those measured by Boldeman. In earlier work with the present system, it was noted that Boldeman's value of ν/sub p/-bar(E) for thermal energy neutrons was about 0.8% lower than obtained at ORELA. It is suggested that the thickness of the fission foil used in Boldeman's experiment may cause some of the discrepancy between his and the present values of ν/sub p/-bar(E). For the energy region up to 700 keV, the present values of ν/sub p/-bar(E) for 235 U agree, within the uncertainty, with those given in ENDF/B-V. Above 1 MeV the present results for ν/sub p/-bar(E) range about the ENDF/B-V values with differences up to 1.3%. 6 figures, 1 table

  13. An examination of medical linear accelerator ion-chamber performance

    International Nuclear Information System (INIS)

    Karolis, C.; Lee, C.; Rinks, A.

    1996-01-01

    Full text: The company ( Radiation Oncology Physics and Engineering Services Pty Ltd) provides medical physics services to four radiotherapy centres in NSW with a total of 6 high energy medical linear accelerators manufactured by three different companies. As part of the services, the stability of the accelerator ion chamber system is regularly examined for constancy and periodically for absolute calibration. Each accelerator ion chamber has exhibited undesirable behaviour from time to time, sometimes leading to its replacement. This presentation describes the performance of the ion chambers for some of the linacs over a period of 12-18 months and the steps taken by the manufacturer to address the problems encountered. As part of our commissioning procedure of new linacs, an absolute calibration of the accelerator output (photon and electron beams) is repeated several times over the period following examination of the physical properties of the radiation beams. These calibrations were undertaken in water using the groups calibrated ion chamber/electrometer system and were accompanied by constancy checks using an acrylic phantom and field instruments. Constancy checks were performed daily for a period of 8 weeks during the initial life of the accelerator and thereafter weekly. For one accelerator, the ion chamber was replaced 6 times in the first eighteen months of its life due to severe drifts in output, found to be due to pressure changes in one half of the chamber In another accelerator, erratic swings of 2% were observed for a period of nine months, particularly with the electron beams, before the manufacturer offered to change the chamber with another constructed from different materials. In yet another accelerator the ion chamber has shown consistent erratic behaviour, but this has not been addressed by the manufacturer. In another popular accelerator, the dosimetry was found to be very stable until some changes in the tuning were introduced resulting in small

  14. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  15. Californium-252 interstitial implants in carcinoma of the tongue

    International Nuclear Information System (INIS)

    Vtyurin, B.M.; Ivanov, V.N.; Medvedev, V.S.; Galantseva, G.F.; Abdulkadyrov, S.A.; Ivanova, L.F.; Petrovskaya, G.A.; Plichko, V.I.

    1985-01-01

    A clinical study using 252 Cf sources in brachytherapy of tumors began in the Research Institute of Medical Radiology of the Academy of Medical Sciences of the USSR in 1973. 252 Cf afterloading cells were utilized by the method of simple afterloading. Dosimetry and radiation protection of medical personnel were developed. To substantiate optimal therapeutic doses of 252 Cf neutrons, a correlation of dose, time, and treatment volume factors with clinical results of 252 Cf interstitial implants in carcinoma of the tongue for 47 patients with a minimum follow-up period of 1 year was studied. Forty-nine interstitial implants have been performed. Seventeen patients received 252 Cf implants alone (Group I), 17 other patients received 252 Cf implants in combination with external radiation (Group II), and 15 patients were treated with interstitial implants for recurrent or residual tumors (Groups III). Complete regression of carcinoma of the tongue was obtained in 48 patients (98%). Thirteen patients (27%) developed radiation necrosis. The therapeutic dose of neutron radiation from 252 Cf sources in interstitial radiotherapy of primary tongue carcinomas (Group I) was found to be 7 to 9 Gy. Optimal therapeutic neutron dose in combined interstitial and external radiotherapy of primary tumors (Group II) was 5 to 6 Gy with an external radiation dose of 40 Gy. For recurrent and residual tumors (Group III), favorable results were obtained with tumor doses of 6.5 to 7 Gy

  16. Design of a thermal neutron field by 252Cf source for measurement of 10B concentrations in the blood samples for BNCT

    International Nuclear Information System (INIS)

    Naito, H.; Sakurai, Y.; Maruhashi, A.

    2006-01-01

    10 B concentrations in the blood samples for BNCT has been estimated due to amounts of prompt gamma rays from 10 B in the fields of thermal neutrons from a special guide tube attached to research reactor. A system using radioisotopes as the source of thermal neutron fields has advantages that are convenient and low cost because it doesn't need running of a reactor or an accelerator. The validity of 252 Cf as a neutron source for 10 B concentrations detection system was investigated. This system is composed of D 2 O moderator, Pb reflector/filter, C reflector, and LiF filter. A thermal neutron field with low background gamma-rays is obtained. A large source of 252 Cf is required to obtain a sufficient flux. (author)

  17. Comparison of 252Cf time correlated induced fission with AmLi induced fission on fresh MTR reserach reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jay Prakash [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-01

    The objectives of this project are to calibrate the Advanced Experimental Fuel Counter (AEFC), benchmark MCNP simulations using experimental results, investigate the effects of change in fuel assembly geometry, and finally to show the boost in doubles count rates with 252Cf active soruces due to the time correlated induced fission (TCIF) effect.

  18. Spectroscopy of neutron-rich nuclei populated in the spontaneous fission of 252Cf and 248Cm

    International Nuclear Information System (INIS)

    Smith, A. G.; Simpson, G. S.; Billowes, J.; Durell, J. L.; Phillips, W. R.; Dagnall, P. J.; Freeman, S. J.; Leddy, M.; Roach, A. A.; Smith, J. F.

    1999-01-01

    In this paper we present research that has been carried out using the Euroball and Eurogam arrays to detect γ rays emitted from spontaneously fissioning 248 Cm and 252 Cf. The paper focuses on three sub-areas of current activity, namely, the measurement of yields of secondary fragment pairs, the measurement of state lifetimes at around spin 10, and recent measurements of g-factors of excited states in fission fragments. (c) 1999 American Institute of Physics

  19. Sensitivity of various thermoluminescent, radiophotoluminescent and photographic detectors to neutrons emitted by a 252Cf source

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Medioni, Roger; Chapuis, A.; Portal, Guy.

    1975-07-01

    The specific sensitivity of various thermoluminescent, radiophotoluminescent and photographic detectors to the neutron spectrum of a 252 Cf source was measured and the effect of the size and composition of the containers in which they might be put was investigated. PB33 radiophotoluminescent glasses, radiothermoluminescent alumina and calcium sulfate were less sensitive to fission neutrons whereas photographic emulsions were more sensitive. The former should be used for γ detection in mixed fields of photons and fission neutrons [fr

  20. Use of californium-252 sources in Hungary for teaching and research

    International Nuclear Information System (INIS)

    Csikai, J.

    1976-01-01

    An activation facility was designed to accommodate up to 50 mg of 252 Cf; it contains at present a 500 μg source. The absolute values of thermal, epithermal and fast neutron fluxes were determined by the foil activation method using In, Dy, Au, Al and Fe detectors. Cross-sections averaged for unmoderated 252 Cf neutrons were determined for 22 different reactions for elements with atomic weights lying between A=27 and 204. The sensitivity for determination of Al, Ti, Cu, As, Sr, Mo, In, Cd, Ba, Au, Hg and Pb was calculated for NaI(Tl) and Ge(Li) detectors. Average (n,2n) cross-sections for 252 Cf spectrum were calculated for 49 nuclei lying between A=14 and 204. Angular distributions and cross-sections for the fragments from 252 Cf neutron-induced fission of 232 Th and 238 U were measured. Titanium in bauxite and manganese in aluminium alloys were determined with a 252 Cf source. The applicability of solid-state track detectors for neutron dosimetry, radiography and for the determination of fuel burn-up were investigated using 252 Cf neutron and fragment sources. Characteristics of a jumping spark counter for counting fission fragments were studied with 252 Cf sources. (author)

  1. New isomeric states in 152,154,156Nd produced by spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Phan, X.H.; Theisen, C.; Belier, G.; Girod, M.; Meot, V.; Peru, S.; Astier, A.; Ducroux, L.; Meyer, M.; Redon, N.

    1998-01-01

    Isomeric states have been observed in fission-fragments produced by spontaneous fission of 252 Cf. These states are found in neutron rich nuclei of different structure and deformations. About 50 isomeric nuclei have been observed using coincidences between γ-rays identified in EUROGAM II and fission fragments detected in photovoltaic cells (SAPhIR). Lifetimes in the range from 20 ns to 2μs have been measured. Presented calculations based on HFB+D1S force on new measured isomeric states in the 152,154,156 Nd show evidence for K-isomers. (orig.)

  2. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    International Nuclear Information System (INIS)

    Qing, Yi; Wang, Ge; Wang, Dong; Yang, Xue-Qin; Zhong, Zhao-Yang; Lei, Xin; Xie, Jia-Yin; Li, Meng-Xia; Xiang, De-Bing; Li, Zeng-Peng; Yang, Zhen-Zhou

    2010-01-01

    The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252 Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. HeLa cells were treated with fractionated 252 Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252 Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these 'radioresistance' genes will lead to new therapeutic targets for cervical cancer

  3. Symposium on fast atom and ion induced mass spectrometry of nonvolatile organic solids

    International Nuclear Information System (INIS)

    McNeal, C.J.

    1982-01-01

    The mechanisms of molecular and fragment ion production and the various parameters affecting ion yields were discussed by 6 invited speakers from Europe, Canada, and the US at this symposium. The work reported was almost equally divided between that using low-energy (keV) primary ion (or atom) beams, e.g. fast atom bombardment mass spectrometry (FABMS) and secondary ion mass spectrometry (SIMS) and that using high energy (MeV) particles, e.g. heavy ion induced mass spectrometry (HIIDMS) and 252 Cf-plasma desorption mass spectrometry ( 252 Cf-PDMS). Both theoretical foundations and observed experimental results for both techniques are included

  4. Teratogenic effect of Californium-252 irradiation in rats

    International Nuclear Information System (INIS)

    Satow, Yukio; Lee, Juing-Yi; Hori, Hiroshi; Okuda, Hiroe; Tsuchimoto, Shigeo; Sawada, Shozo; Yokoro, Kenjiro

    1989-01-01

    The teratogenicity of Californium-252 (Cf-252) irradiation which generates approximately 70% 2.3 MeV fast neutron and 30% gamma rays was evaluated. A single whole body exposure of Cf-252 at various doses was given to pregnant rats on day 8 or 9 of pregnancy, followed by microscopic autopsy of the fetuses at the terminal stage of pregnancy to search for external and internal malformations. For comparison, pregnant rats were irradiated with various doses of Cobalt-60 (Co-60) standard gamma rays at the same dose rate (1 rad/min.). The doses were 20-120 rad of Cf-252 and 80-220 rad of Co-60. Using frequency of radiation induced malformations observed on day 8 of pregnancy as an index, relative biological effectiveness (RBE) of 2.3-2.7 was obtained from the straight line obtained by modifying by the least squares method the frequency curves of malformed fetuses in total implants and in surviving fetuses. The types of malformations induced by Cf-252 and Co-60 irradiation were alike. Using fetal LD 50 as an index, 2.4 was obtained as RBE when irradiated on day 8 of pregnancy and 3.1 as that when irradiated on day 9. The results showed that Cf-252 had stronger a teratogenic effect than Co-60 gamma rays. (author)

  5. Survey of potential markets for devices using Californium-252

    International Nuclear Information System (INIS)

    Permar, P.H.

    1975-01-01

    Potential applications for devices or systems containing 252 Cf in the years from 1975 to 1980 are estimated. The estimated number of devices and associated business value were derived from a survey of 46 industrial, educational and governmental organizations conducted from Jan. to May, 1975. Applications for devices and systems based on 252 Cf are expected to increase by a factor of 7 in the 6-y period from 1975 to 1980. The annual business value of 252 Cf devices should increase from 1.5 million dollars in 1975 to 10.8 million dollars in 1980. The potential European market should be several times as large as the US market, based on actual sales of 252 Cf, which have been two to four times greater in Europe than in the US

  6. In situ prompt gamma-ray measurement of river water salinity in northern Taiwan using HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    A portable HPGe- 252 Cf probe dedicated to in situ survey of river water salinity was placed on board a fishing boat to survey the Tamsui River in northern Taiwan. The variation of water salinity is surveyed by measuring the 6111 keV chlorine prompt photopeak along the river. Results indicate that the probe can be used as a salinometer for rapid, in situ measurement in polluted rivers or sea. (author)

  7. A portable measurement system for subcriticality measurements by the CF-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1988-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. The /sup 252/Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor of a configuration of fissile material requires measurement of the frequency-dependent cross-power spectral density (CPSD), G/sub 23/(ω), between a pair of detectors (Nos. 2 and 3) located in or near the fissile material and CPSDs G/sub 12/(ω) and G/sub 13/(ω) between these same detectors and a source of neutrons emanating from an ionization chamber (No. 1) containing /sup 252/Cf, also positioned in or near the fissile material. The auto-power spectral density (APSD), G/sub 11/(ω), of the source is also required. A particular ratio of spectral densities, G/sub 12//sup */G/sub 13//G/sub 11/G/sub 23/ (/sup */ denotes complex conjugation), is then formed. This ratio is related to the subcritical neutron multiplication factor and is independent of detector efficiencies

  8. Investigation of short-living fission products from the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Klonk, H.

    1976-01-01

    In this paper, a method of separating and measuring fission products of Cf-252 is presented. The measurement was achieved by means of γ-spectrometry and thus provides a quantitative analysis with a good separation of the fission products with respect to both atomic number Z and mass number A. The separation of the fission products from the fission source was achieved by means of solid traps. An automatic changing apparatus made it possible to keep irradiation and measuring times short, so even very short-lived fission products could be registered. The quantitative evaluation of primary fission products was made possible by correction according to Bateman equations. With that, the yields of single nuclides and the dispersion of charge can be determined. (orig./WL) [de

  9. Neutron calibration field of bare {sup 252}Cf source in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Le, Ngoc Thiem; Tran, Hoai Nam; Nguyen, Khai Tuan [Institute for Nuclear Science and Technology, Hanoi (Viet Nam); Trinh, Glap Van [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2017-02-15

    This paper presents the establishment and characterization of a neutron calibration field using a bare {sup 252}Cf source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

  10. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  11. Ion chamber repairs in Bruce A

    International Nuclear Information System (INIS)

    Millard, J.; Edwards, T.; Kerker, J.; Pletch, R.; Edwards, T.

    2012-01-01

    This paper discusses identification and successful remediation of leakage of shield tank water on vertical and horizontal Ion Chambers in Bruce A. In doing so, it discusses real events moving from the initial investigation to understand the problem, through looking at options for solutions, and moving to site work and actual resolution.. In multiunit 900 MW class CANDU® reactors, the calandria vessel is suspended within a larger shield tank. Due to temperature changes or changes in moderator fluid levels in the calandria, the calandria can move relative to the shield tank and its reactivity deck. Thimbles which contain the reactivity sensors and controls connect the two vessels and allow the reactivity drives and controls connections to be placed on the deck structure on the top of the reactor assembly for RRS and SDS1 and horizontally for SDS2. These thimbles have expansion joints with metal bellows where they meet the deck structure or shield tank walls. The deck structure lies on a vault containment boundary. The horizontal ion chambers are not in the containment boundary as they connect the outside of the calandria and shield tank around mid plane in the reactor vault, but due to geometry difference provides a more challenging work environment. Bruce had a beetle alarm (1-63851-MIA2-ME30 in alarm state (vertical IC housing)) at the start of April 2012 on Unit 1 channel F vertical Ion chamber expansion joint at the deck connection. This occurred after the moderator levels had been raised after the several years long refurbishment outage and the expansion joint had a significant travel. The investigation showed shield tank water in the collection chamber at the beetle. In addition, Channel J of the horizontal ion chamber had a seized instrument, which on removal was found to relate to oxide build up as a result of minor water leakage into the site. Repairs in both cases were performed as part of the long Bruce 1 & 2 refurbishment outage to completely stop the

  12. Exclusive radiation therapy of endometrial carcinoma using HDR Co-60 and Cf-252 sources

    International Nuclear Information System (INIS)

    Inciura, A.; Janulionis, E.; Atkocius, V.

    2000-01-01

    Although the main treatment of endometrial cancer is surgery, the gross spread of carcinoma in pelvis, elderly age of the patients and serious therapeutical diseases do not allow to operate 20% of the patients. For these patients only radical treatment decision is the combined radiation therapy. However, using various modalities of combined radiotherapy, the treatment results are not satisfying: only 52% of patients survive 5 years. There was implemented a new method of combined radiotherapy, using a three-channel applicator with two-positional locating of HDR Co-60 radioactive sources (group I). A new method of brachytherapy for endometrial carcinoma using a HDR Cf 252 sources (group II) was implemented too. For group I the medium total dose of the point A was 77.6 Gy, point I - 69.6 Gy. point 2 - 84.2 Gy, point B - 52.6 Gy, For group II the medium total dose the points A, 3 and 4 was 50 iGy. For group I 1 year overaII survival rate was 85%, 3 year - 73%. The 3 year survival rate for stage I was 79%, for stage II - 89%, for stage III - 33%. 3 year survival for highly virulent tumours - 56% and for low virulent (adenocarcinoma) - 82% was statistically different. The loss of tumour differentiation correlated with the worse prognosis: 3 year survival for G1 and G2 tumours was 92%, for G3 - 45%. Low hemoglobin level was also associated with low survival rate: 2 year survival for Hb≥120g/l was 85% and Hb<120g/l - 23%. 1 year survival rate was 87%, 3 year - 66%, 5 year - 58% for group II, treated with Cf-252. Radiation complications occurred for 13.8% of the patients for group I and 6.2% for group II. Good survival rates and a small number of complications sufficiently proofed treatment method. (author)

  13. Influence of paternal 252Cf neutron exposure on abnormal sperm, embryonal lethality, and liver tumorigenesis in the F1 offspring of mice

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Takahashi, Tadateru; Lee, Juing-Yi

    1996-01-01

    Experiments were conducted to determine whether neutron-induced genetic damage in parental germline cells can lead to the development of cancer in the offspring. Seven-week-old C3H male mice were irradiated with 252 Cf neutrons at a dose of 0, 50, 100, or 200 cGy. Two weeks or 3 months after irradiation, the male mice were mated with virgin 9-week-old C57BL females. Two weeks after irradiation, the irradiated male mice showed an increased incidence of sperm abnormalities, which led to embryo lethalities in a dose-dependent manner when they were mated with unirradiated female mice. Furthermore, liver tumors in male offspring of male mice in the 50 cGy group were significantly increased in 19 of 44 (43.2%) animals, in clear contrast to the unirradiated group (1 of 31; 3.2%) (P 1 generation may be caused by genetic transmission of hepatoma-associated trait (s) induced by 252 Cf neutron irradiation. (author)

  14. Californium-252 sales and loans at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    King, L.J.

    1987-01-01

    The production and distribution in the United States of 252 Cf has recently been consolidated at the Oak Ridge National Laboratory (ORNL). The 252 Cf Industrial Sales/Loan Program and the 252 Cf University Load Program, which were formerly located at the Savannah River Plant (SRP), have been combined with the californium production and distribution activities of the Transuranium Element Production Program at ORNL. Californium-252 is sold to commercial users in the form of bulk californium oxide, palladium-californium alloy pellets, or alloy wires. Neutron source capsules, which are fabricated for loans to DOE or other US government agencies, are still available in all forms previously available. The consolidation of all 252 Cf distribution activities at the production site is expected to result in better service to users. In particular, customers for neutrons sources will be ale to select from a wider range of neutron source forms, including custom designs, through a single contact point

  15. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  16. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  17. Fragment angular momentum and descent dynamics in {sup 252}Cf spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Popeko, G.S.; Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [JINR, Dubna, 141980 (Russia); Ter-Akopian, G.M.; Hamilton, J.H.; Kormicki, J.; Daniel, A.V.; Ramayya, A.V.; Hwang, J.K.; Sandulescu, A.; Florescu, A.; Greiner, W. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Florescu, A.; Greiner, W. [JIHIR, Oak Ridge, Tennessee 37831 (United States); Greiner, W. [ITP, J.W. Goethe University, D-60054, Frankfurt am Main (Germany); Florescu, A. [IAP, Bucharest, P.O. Box MG-6, (Russian Federation); Kliman, J.; Morhac, M. [IP SASc, Bratislava (Slovak Republic); Rasmussen, J.O. [LBNL, Berkeley, California 94720 (United States); Stoyer, M.A. [LLNL, Livermore , California 94550 (United States); Cole, J.D. [INEL, Idaho Falls, Idaho 83415 (United States)

    1998-12-01

    Fragment angular momenta as a function of neutron multiplicity were extracted for the first time for the Mo-Ba and Zr-Ce charge splits of {sup 252}Cf by studying prompt coincident {gamma}-rays. The obtained primary fragment angular momenta do not continuously rise with the increase in the number of neutrons evaporated. In frame of the scission point bending oscillation model such regularity is explained due the decrease of the bending temperature. Adiabatic bending oscillations (T=0) are obtained at large ({nu}{sub tot}{gt}5) and small ({nu}{sub tot}=0) scission point elongation. These oscillations are excited to the temperature of 2{endash}3 MeV for the most probable scission configurations indicating a weak coupling between collective and internal degrees of freedom. A strong coupling between the collective bending and dipole oscillations was found. {copyright} {ital 1998 American Institute of Physics.}

  18. Calculation of neutron spectra for a 252Cf transport cask using ANISN running on a PC

    International Nuclear Information System (INIS)

    West, L.; Akin, B.P.; Lemley, E.C.

    1995-01-01

    Neutron spectra have been calculated using the ANISN one-dimensional discrete ordinates code for the case of a 152 Cf source in a transport cask of a particular design. All computations were done on personal computers (PCs) (mostly 486 models) with the ANISN-ORNL (486 version) computer code. With a source of 252 Cf fission neutrons, the neutron flux spectrum in the cask cannot be characterized as open-quotes moderated.close quotes Concern about an appropriate choice for the cross-section data set has led to a comparison, for this application, of three different cross-section libraries: DABL, HILO, and BUGLE-80. Although the cross-section sets were not originally designed for PC use, the libraries have been successfully employed for PC computations. Work with yet another data library, BUGLE-93, is incomplete at this stage. From neutron flux spectra on the surface of the cask, personnel dosimetric quantities (such as dose equivalent) have been determined for the DABL, HILO, and BUGLE-80 ANISN calculations

  19. A search for back-to-back e+e- pairs in the spontaneous-fission disintegration of 252Cf

    International Nuclear Information System (INIS)

    Tsunoda, T.; Nakamura, S.; Orito, S.; Minowa, M.

    1995-01-01

    A back-to-back electron-positron pair is searched for in spontaneous-fission disintegration of 252 Cf. The emission of such a pair, if observed, might be a manifestation of production and prompt decay of a heretofore unknown neutral particle. The emission rate of such a pair is found to be less than (2.5-5.5) . 10 -10 per fission at the 95% confidence level depending on the mass of the hypothetical particle which is between 40 and 200 MeV/c 2 . (orig.)

  20. Application of californium-252 neutron sources for analytical chemistry

    International Nuclear Information System (INIS)

    Ishii, Daido

    1976-01-01

    The researches made for the application of Cf-252 neutron sources to analytical chemistry during the period from 1970 to 1974 including partly 1975 are reviewed. The first part is the introduction to the above. The second part deals with general review of symposia, publications and the like. Attention is directed to ERDA publishing the periodical ''Californium-252 Progress'' and to a study group of Cf-252 utilization held by Japanese Radioisotope Association in 1974. The third part deals with its application for radio activation analysis. The automated absolute activation analysis (AAAA) of Savannha River is briefly explained. The joint experiment of Savannha River operation office with New Brunswick laboratory is mentioned. Cf-252 radiation source was used for the non-destructive analysis of elements in river water. East neutrons of Cf-252 were used for the quantitative analysis of lead in paints. Many applications for industrial control processes have been reported. Attention is drawn to the application of Cf-252 neutron sources for the field search of neutral resources. For example, a logging sonde for searching uranium resources was developed. the fourth part deals with the application of the analysis with gamma ray by capturing neutrons. For example, a bore hole sonde and the process control analysis of sulfur in fuel utilized capture gamma ray. The prompt gamma ray by capturing neutrons may be used for the nondestructive analysis of enrivonment. (Iwakiri, K.)

  1. The use of polyimide foils to prevent contamination from self-sputtering of {sup 252}Cf deposits in high-accuracy fission counting

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, David M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: david.gilliam@nist.gov; Yue, Andrew [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Scott Dewey, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2008-06-01

    It is demonstrated that a thin polyimide foil can be employed to prevent contamination from the self-sputtering of a {sup 252}Cf source under vacuum, with small energy loss of the emitted fission fragments, with very small effect on the efficiency of counting the fission fragments, and with a long lifetime of the plastic foils.

  2. Detection of gold cluster ions by ion-to-ion conversion using a CsI-converter

    International Nuclear Information System (INIS)

    Nguyen, V.-T.; Novilkov, A.C.; Obnorskii, V.V.

    1997-01-01

    Gold cluster ions in the m/z range of 10 4 -2 x 10 6 u were produced by bombarding a thin film of gold with 252 Cf-fission fragments. The gold covering a C-Al substrate formed islets having a mean diameter of 44 A. Their size- and mass-distribution was determined by means of electron microscopy. The main task was to measure the m/z distribution of the cluster ions ejected from the sample surface. For this purpose we built a time-of-flight (TOF) mass spectrometer, which could be used as a linear TOF instrument or, alternatively, as a tandem-TOF instrument being equipped with an ion-to-ion converter. Combining the results obtained in both modes, it turned out that the linear TOF instrument equipped with micro-channel plates had a mean detection efficiency for 20 keV cluster ions of about 40%. In the tandem mode, the cluster ions hit a CsI converter with energies of 40z keV (z = charge state), from where secondary ions - mainly Cs + and (CsI) n Cs + cluster ions - were ejected. These ions were used to measure the TOF spectrum of the gold cluster ions. The detection efficiency of the cluster ions was found to vary in the available mass range from 99.7% to 96.5%. The complete mass distribution between 4 x 10 4 and 4 x 10 6 u was determined and compared with the corresponding mass distribution of the gold islets covering the substrate. (orig.)

  3. Neutron gauging applications using a small 252Cf source

    International Nuclear Information System (INIS)

    Helf, S.

    1975-01-01

    The use of a small 252 Cf source, in the 3 to 4 μg range, for neutron gauging applications is described. Emphasis is placed on determination of low concentrations of moisture in homogeneous media, e.g., solvents, explosives, dried food products, etc. and on measurement of charge or fill weight of hydrogenous materials in sealed items, e.g., propellant in a cartridge case. Both moderation of fast neutrons and attenuation of thermalized neutrons have been explored for these applications. Parameters related to the attainment of optimum sensitivity for each method are discussed. Fast neutron moderation is superior for low level moisture measurement whereas thermal neutron attenuation is more sensitive for ''neutron weighing'' applications. Under optimum conditions, sensitivity for moisture measurement approaches 0.1 weight percent whereas ''neutron weighing'' can detect changes in hydrogeneous material content as little as a fraction of a gram. Examples are given for each technique. A number of different thermal neutron detectors are compared for neutron gauging measurements. A 6 LiI (Eu) scintillation detector is judged to be superior with regard to high thermal neutron detection efficiency and low fast neutron and gamma ray response. In this study, emphasis is placed on the use of simple, portable equipment easily adaptable to field or plant use and for on-line process or quality control. (U.S.)

  4. Measurement of Neutron Energy Spectrum Emitted by Cf-252 Source Using Time-of-Flight Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Lee, Sangmin; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The techniques proposed to detect the neutrons usually require the detection of a secondary recoiling nucleus in a scintillator (or other type of detector) to indicate the rare collision of a neutron with a nucleus. This is the same basic technique, in this case detection of a recoil proton that was used by Chadwick in the 1930 s to discover and identify the neutron and determine its mass. It is primary technique still used today for detection of fast neutron, which typically involves the use of a hydrogen based organic plastic or liquid scintillator coupled to a photo-multiplier tube. The light output from such scintillators is a function of the cross section and nuclear kinematics of the n + nucleus collision. With the exception of deuterated scintillators, the scintillator signal does not necessarily produce a distinct peak in the scintillator spectrum directly related to the incident neutron energy. Instead neutron time-of-flight (TOF) often must be utilized to determine the neutron energy, which requires generation of a prompt start signal from the nuclear source emitting the neutrons. This method takes advantage of the high number of prompt gamma rays. The Time-of-Flight method was used to measure neutron energy spectrum emitted by the Cf-252 neutron source. Plastic scintillator that has a superior discrimination ability of neutron and gamma-ray was used as a stop signal detector and liquid scintillator was used as a stat signal detector. In experiment, neutron and gamma-ray spectrum was firstly measured and discriminated using the TOF method. Secondly, neutron energy spectrum was obtained through spectrum analysis. Equation of neutron energy spectrum that was emitted by Cf-252 source using the Gaussian fitting was obtained.

  5. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    Zamyatnin, Yu.S.; Kroshkin, N.I.; Korostylev, V.A.; Nefedov, V.N.; Ryazanov, D.K.; Starostov, B.I.; Semenov, A.F.

    1976-01-01

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252 Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252 Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252 Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  6. Spectrum-averaged cross-section measurement of /sup 103/Rh(n,n)/sup 103m/Rh in the /sup 252/Cf fission neutron spectrum

    International Nuclear Information System (INIS)

    Lamaze, G.P.; Schima, F.J.; Eisenhauer, C.M.; Spiegel, V.

    1988-01-01

    Because of the similarity in energy dependence of the /sup 103/Rh(n,n') differential cross section to the kerma muscle response function for neutrons, rhodium may be useful as a neutron kerma monitor. In support of its use as a neutron monitor, the spectrum-averaged cross section σ-bar has been measured for a /sup 252/Cf fission neutron spectrum. Pairs of thin rhodium samples were irradiated on opposite sides of a thinly encapsulated /sup 252/Cf neutron source. The neutron emission rate of the /sup 252/Cf source was determined by the manganous sulfate (MnSO/sub 4/) bath technique. In this method, the californium source emission rate is determined by comparison to the known emission rate of NBS-I, a standard radium-beryllium neutron source. The neutron fluence incident on the rhodium samples is determined from the californium source strength, average sample-to-source distance, and the duration of the irradiation. Corrections are made for neutron scattering saturation of activity, and attenuation of the X rays by the sample during counting. The X rays were detected with an intrinsic germanium detector designed specifically for low-energy X-ray detection. The activity was not determined by absolute counting so that the final results depend on the value of P/sub Κx/, to total Κ X-ray emission probability. The results of five separate irradiations yield a value of σ-bar . P/sub Κx/ = 62.3 +- 1.9 mb. Using the most recently published value of P/sub Κx/ gives a value of σ-bar = 739 +- 22 mb. A discussion of systematic uncertainties is given

  7. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF{sub 6} scintillators and a sealed {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Noriaki, E-mail: famicom@mail.tagen.tohoku.ac.jp [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF{sub 6} crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF{sub 6} scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF{sub 6} single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50x2 mm{sup 2} was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The {sup 252}Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF{sub 6}.

  8. Performance characteristics of selected integrating ion chambers

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Liberace, R.

    1977-01-01

    Certain types of integrating ion chambers have been identified as acceptable equipment for a nationwide medical X-ray exposure survey program. In this study, Victoreen 2.5, 5 and 10 R condenser R-chambers, the Victoreen 666 Diagnostic Probe (used in the integrating mode) and the Bendix 200 mR and 5 R low energy dosimeters were evaluated for recombination losses and for energy dependence. Recombination losses were determined for exposure rates ranging from 0.3 to 80 R/sec. Energy dependence was determined for X-ray beam qualities ranging from 45 kVp and 0.83 mm Al first half value layer to 125 kVp and 4.8 mm Al first half value layer. The data enable selection of instruments so that errors from recombination losses and energy dependence can be minimized. (author)

  9. Charge distribution in the ternary fragmentation of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kannan, M.T.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2017-08-15

    We present here, for the first time, a study on ternary fragmentation charge distribution of {sup 252}Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from A{sub 3} = 16 to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements A{sub 1} + A{sub 2} + A{sub 3} and A{sub 1} + A{sub 3} + A{sub 2}. The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted. (orig.)

  10. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  11. High sensitivity isotope analysis with a 252Cf--235U fueled subcritical multiplier and low background photon detector systems

    International Nuclear Information System (INIS)

    Wogman, N.A.; Rieck, H.G. Jr.; Laul, J.C.; MacMurdo, K.W.

    1976-09-01

    A 252 Cf activation analysis facility has been developed for routine multielement analysis of a wide variety of solid and liquid samples. The facility contains six sources of 252 Cf totaling slightly over 100 mg. These sources are placed in a 93 percent 235 U-enriched uranium core which is subcritical with a K effective of 0.985 (multiplication factor of 66). The system produces a thermal flux on the order of 10 +1 neutrons per square centimeter per second. A pneumatic rabbit system permits automatic irradiation, decay, and counting regimes to be performed unattended on the samples. The activated isotopes are analyzed through their photon emissions with state-of-the-art intrinsic Ge detectors, Ge(Li) detectors, and NaI(Tl) multidimensional gamma ray spectrometers. High efficiency (25 percent), low background, anticoincidence shielded Ge(Li) gamma ray detector systems have been constructed to provide the lowest possible background, yet maintain a peak to Compton ratio of greater than 1000 to 1. The multidimensional gamma ray spectrometer systems are composed of 23 cm diameter x 20 cm thick NaI(Tl) crystals surrounded by NaI(Tl) anticoincidence shields. The detection limits for over 65 elements have been determined for this system. Over 40 elements are detectable at the 1 part per million level at a precision of +-10 percent

  12. Project 252Cf-D2O. The multisphere system of neutron dosimetry and spectrometry (M.S.-N.D.S.). Studies of applications to health physics

    International Nuclear Information System (INIS)

    Zaborowski, H.L.

    1976-10-01

    The project 252 Cf-D 2 O is articulated upon the utilization of a 200μg nominal 252 Cf spontaneous neutron fission source, used bare and under D 2 O spherical moderators, giving leakage neutron spectra experimentally known and/or calculated. This project has for objective the applications of those sources to Health Physics, in dosimetry (calibration of ''rad'' and ''rem-meters'') and in spectrometry, associated with the experimental system of measurements made by the generalization of the BONNER Spheres, known as ''the Multisphere System''. This communication describes the normalization method used and the results obtained leading to the adoption of a reference matrix called ''the Log-Normal Multisphere Matrix'' (LN-MM) giving the energies response functions of the generalized system for all the spheres diameters between 40 and 400 millimeters and for all the energies between 0.4eV and 15MeV [fr

  13. New isomeric states in {sup 152,154,156}Nd produced by spontaneous fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Phan, X.H.; Theisen, C. [Commissariat l`Energie Atomique de Saclay, Gif sur Yvette (France). DSM/DAPINA/SPhN; Badimon, C.; Barreau, G.; Doan, T.P.; Pedemay, G. [Centre d`Etudes Nucleaires de Bordeaux-Gradignan, Domaine du Haut Vigneau, F-33175 Gradignan (France); Belier, G.; Girod, M.; Meot, V.; Peru, S. [Commissariat a l`Energie Atomique de Bruyeres-le-Chatel, DAM/SPN, BP12, F-91680 Bruyeres-le-Chatel (France); Astier, A.; Ducroux, L.; Meyer, M.; Redon, N. [Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne Cedex (France)

    1998-04-01

    Isomeric states have been observed in fission-fragments produced by spontaneous fission of {sup 252}Cf. These states are found in neutron rich nuclei of different structure and deformations. About 50 isomeric nuclei have been observed using coincidences between {gamma}-rays identified in EUROGAM II and fission fragments detected in photovoltaic cells (SAPhIR). Lifetimes in the range from 20 ns to 2{mu}s have been measured. Presented calculations based on HFB+D1S force on new measured isomeric states in the {sup 152,154,156}Nd show evidence for K-isomers. (orig.) With 8 figs., 27 refs.

  14. Analysis of the boron pile measurement of the average neutron yield per fission of 252Cf: (AWBA development program)

    International Nuclear Information System (INIS)

    Ullo, J.J.

    1977-08-01

    The Harwell Boron Pile measurement of the average number of prompt neutrons emitted per fission, ν-bar/sub p/, of 252 Cf was analyzed in detail by a Monte Carlo method. From the calculated energy dependence of the neutron detection efficiency a value of ν-bar/sub p/ = 3.733 +- 0.022 was obtained. This value is 0.76 percent higher than the original reported value of 3.705 +- 0.015. Possible causes for this increase are discussed. 3 figures, 6 tables

  15. [An improved method of preparing protein and peptide probes in mass spectrometry with ionization of division fragments by californium-252 (TOF-PDMS)].

    Science.gov (United States)

    Chivanov, V D; Zubarev, R A; Aksenov, S A; Bordunova, O G; Eremenko, V I; Kabanets, V M; Tatarinova, V I; Mishnev, A K; Kuraev, V V; Knysh, A N; Eremenko, I A

    1996-08-01

    The addition of organic acids (picric, oxalic, citric, or tartaric) to peptide and protein samples was found to significantly increase the yield of their quasi-molecular ions (QMI) in time-of-flight 252Cf plasma desorption mass spectrometry. The yield of the ions depended on the pKa of the acid added.

  16. Experimental ion mobility measurements in Xe-CF4 mixtures

    Science.gov (United States)

    Cortez, A. F. V.; Kaja, M. A.; Escada, J.; Santos, M. A. G.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2018-04-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon with carbon tetrafluoride (Xe-CF4) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 to 25 Td range (2.4-6.1 kVṡcm‑1ṡbar‑1), at room temperature. The time-of-arrival spectra revealed one or two peaks depending on the gas relative abundances, which were attributed to CF3+ and to Xe2+ ions. However, for Xe concentrations above 60%, only one peak remains (Xe2+). The reduced mobilities obtained from the peak centroid of the time-of-arrival spectra are presented for Xe concentrations in the 5%-95% range.

  17. Time-of-flight mass spectrometer with 252Cf surface ionisation coupled with high-pressure liquid chromatography for determining pharmaceutical substances in the blood

    International Nuclear Information System (INIS)

    Danigel, H.

    1983-01-01

    Cf-252 PDMS is well suited for routine applications and can be combined with HPLC. This combined analytical system can be used for measuring the concentrations of pharmaceutical substances in body fluids on the basis of an internal standard. The results (pharmacokinetics, metabolism) indicate the necessary therapeutical dose and the efficacy of the substance applied. (DG) [de

  18. Study of ternary and quaternary spontaneous fission of 252Cf with the NESSI detector

    International Nuclear Information System (INIS)

    Tishchenko, V.G.; Jahnke, U.; Herbach, C.M.; Hilscher, D.

    2002-11-01

    Ternary and quaternary spontaneous decay of 252 Cf was studied with the NESSI detector, a combination of two 4π detectors for charged particles, neutrons and γ-rays. The applied method of particle identification by measuring the energies and relative time-of-flights of the decay products is shown to be very effective for the study of rare decay modes. The energy and angular distributions of the decay products, the associated neutron multiplicities, the total energy of the prompt γ-radiation as well as correlations between the various observables were measured for the first time in a single full-scale experiment. The characteristics of ternary fission known from previous investigations are confirmed in the frame of a methodically independent experiment. Preliminary estimates of the quaternary fission yield are presented. An attempt is made to determine the mechanism of quaternary fission. (orig.)

  19. {sup 252}Cf spontaneous prompt fission neutron spectrum measured at 0 degree and 180 degree relative to the fragment motion

    Energy Technology Data Exchange (ETDEWEB)

    Shanglian, Bao; Jinquan, Liu [Beijing Univ., BJ (China); Batenkov, O I; Blinov, M V; Smirnov, S N [V.G. Khlopin Radium Institute, ST. Petersburg (Russian Federation)

    1994-09-01

    The {sup 252}Cf spontaneous prompt fission neutron spectrum at 0 degree and 180 degree relative to the motion direction of corresponding fission fragments was measured. High angular resolution for fragment measurements and high energy resolution for neutron measurements were obtained using multi-parameter TOF spectrometer. The results showed that there is a symmetric distribution of `forward` and `backward` for low energy in C.M.S. neutrons, which was an evidence of nonequilibrium neutrons existed in fission process.

  20. Absolute measurement of ν/sub p/-bar for 252Cf by the large liquid scintillator tank technique

    International Nuclear Information System (INIS)

    Spencer, R.R.

    1979-01-01

    A vigorous effect to dispel the scandal of the approx. 2% dispersion in reported experimental values of 252 Cf ν-bar, the average number of neutrons emitted in spontaneous fission, has been underway over the past 5 years. The goal is to reduce the uncertainty in this fundamental parameter to the +- 0.25% level needed for reactor physics applications. Both new measurements and revaluation of older measurements are involved. At ORNL a new measurement is being carried out using the leage liquid scintillator neutron detector. Findings of the most recent experiment, incorporating improvements suggested in a preliminary study are discussed. 6 figures, 2 tables

  1. Possibilities of activation analysis with 252Cf sources in the area of earth sciences and mining prospection

    International Nuclear Information System (INIS)

    Melky, Sami.

    1975-01-01

    The 252 Cf neutron activation experimental set-up is composed of four sources of 225μg each, symmetrically disposed with regard to the sample axis. This installation permits the irradiation of 5 to 40cm 3 of ores, so that the analysis is done on sample weighing about 100g. This method allows, not only the determination of major and minor constituents in the sample, but also the determination of some trace elements. The experimental sensitivity of some important elements are given in mining prospection and it is shown that direct gamma spectrometry after activation permits a fast and precise determination of many elements in ores [fr

  2. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body

    International Nuclear Information System (INIS)

    Endo, A.; Sato, T.

    2013-01-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from. 252 Cf and. 244 Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid. (authors)

  3. Health physics aspects of 252Cf

    International Nuclear Information System (INIS)

    Bhagwat, A.M.

    1974-01-01

    After briefly describing the methods of production, radioactive, chemical and biological properties of californium-252, its health physics aspects are reviewed in detail. Its external and internal radiation hazards can be minimised through control of radiation and contamination and proper shield design. Use of various shielding materials is evaluated. The following aspects are also discussed : (1) radiation detectors for neutrons and gamma radiation (2) personnel monitoring techniques (3) bioassay and (4) storage and transportation. (M.G.B.)

  4. Characterization of neutron spectra using sources of {sup 241}AmBe, {sup 238}PuBe e {sup 252}Cf moderated in water; Caracterização de espectros neutrônicos com fontes de {sup 241}AmBe, {sup 238}PuBe e {sup 252}Cf moderados em água

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, A.S.; Silva, F.S.; Patrão, K.C.S.; Fonseca, E.S. da; Pereira, W.W., E-mail: angela.souzagon@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratório de Metrologia de Nêutrons

    2017-07-01

    Recent studies have demonstrated the importance of characterizing the spectrum of neutron sources for various energies in order to make the understanding of neutron interaction closer to reality they work with. This work presents the determination of neutron energy flux from the source of {sup 241}AmBe (0.6 TBq), {sup 238}PuBe (1.8 TBq) and {sup 252}Cf (120 μg) free in the air and inserted into spheres of various diameters containing distilled water. The determination of the spectrum is based on the measurement and simulation by the Monte Carlo computational method, using the sources under study, with the Bonner multisphere spectrometer containing readings with the detector without sphere and covered with polyethylene balls of diameters: 5,08 cm (2 ″), 7.62 cm (3″), 12.70 cm (5 ″), 20.32 cm (8 ″), 25.40 cm (10 ″) and 30.48 cm (12 ″). It is sought to characterize a new moderate spectrum in water using the sources of {sup 241}AmBe, {sup 238}PuBe and {sup 252}Cf that may be useful for testing, calibration and irradiation of individual and area monitors for neutrons.

  5. Gamma-ray multiplicity distribution in ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Kliman, J [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Krupa, L [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Morhac, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Hamilton, J H [Department of Physics, Vanderbilt University, Nashville, TN (United States); Kormicki, J [Department of Physics, Vanderbilt University, Nashville, TN (United States); Ramayya, A V [Department of Physics, Vanderbilt University, Nashville, TN (United States); Hwang, J K [Department of Physics, Vanderbilt University, Nashville, TN (United States); Luo, Y X [Department of Physics, Vanderbilt University, Nashville, TN (United States); Fong, D [Department of Physics, Vanderbilt University, Nashville, TN (United States); Gore, P [Department of Physics, Vanderbilt University, Nashville, TN (United States); Akopian, G M Ter; Oganessian, Yu Ts; Rodin, A M; Fomichev, A S; Popeko, G S; Daniel, A V [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Rasmussen, J O; Macchiavelli, A O [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Stoyer, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro (Brazil); Cole, J D [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States)

    2002-12-01

    From multiparameter data obtained at Lawrence Berkeley National Laboratory, the integral characteristics of the prompt {gamma}-ray emission were extracted for tripartition of {sup 252}Cf with He, Be and C being the third light charged particle. We used multifold {gamma}-ray coincidence spectra for the determination of {gamma}-ray multiplicities assuming a Gaussian distribution for {gamma}-ray multiplicity. The multiplicity distribution characteristics, i.e. mean multiplicity and its dispersion were obtained by minimizing with respect to the calculated values of probabilities of multifold {gamma}-ray coincidences using a combinatoric method. Comparison with the known experimental data from binary fission was made. Further, we investigated dependencies of the mean {gamma}-ray multiplicity on the kinetic energy of the light charged particle. The mean {gamma}-ray multiplicity for He ternary fission is found to increase rapidly with increasing kinetic energy of He in the region less than 11 MeV and then decrease slowly with increasing kinetic energy of He. The anomalous behaviour of {gamma}-ray emission is discussed. The mean {gamma}-ray multiplicity was determined for the first time for Be and C ternary fission. For Be, the {gamma}-ray multiplicity as a function of kinetic energy was obtained as well.

  6. Californium-252: isotope for modern radiotherapy of cervix, uterine and vaginal carcinomas

    International Nuclear Information System (INIS)

    Maruyama, J.; Beach, J.L.; Nagell, J.R. van

    1984-01-01

    Cf-252 is an isotope that can easily be afterloaded into available gynecological applicators and used for bulky cervix, uterus or vaginal cancer therapy. It is economical, time and cost effective in use, and can be applied to the therapy of many patients throughout the world. It is more effective for neutron therapy than machine fast neutron therapy and is the only form of neutron therapy producing consistent complication-free 5-year cure of advanced cancers currently available. Cf-252 is an isotope for modern gynecological tumor therapy for the future. Isodose curves for Cf-252 implants revealed dose distributions conforming well to tumor. (orig.) [de

  7. Historical review of californium-252 discovery and development

    International Nuclear Information System (INIS)

    Stoddard, D.H.

    1985-01-01

    This paper discusses the discovery and history of californium 252. This isotope may be synthesized by irradiating plutonium 239, plutonium 242, americium 243, or curium 244 with neutrons in a nuclear reactor. Various experiments and inventions involving 252 Cf conducted at the Savannah River Plant are discussed. The evolution of radiotherapy using californium 252 is reviewed

  8. Multielemental nondestructive neutron activation analysis of Dy, Mn, Eu, Na, Ga, W, La and Sm involving cyclic irradiations with 252Cf

    International Nuclear Information System (INIS)

    Narkhede, S.S.; Turel, Z.R.

    1995-01-01

    Dy, Mn, Eu, Na, Ga, W, La and Sm respond very well to INAA technique because of their favourable nuclear properties such as high thermal neutron cross-section or abundance. In the present work a method has been developed for the determination of these elements employing cycle irradiation with 252 Cf thermal neutron source. Radioassaying of the irradiated sample and standard was done employing HPGe detector in conjunction with a PC based MCA units. (author). 2 tabs

  9. Determination of the average number of neutrons per fission event for californium-252

    International Nuclear Information System (INIS)

    Aleksandrov, B.M.; Belov, L.M.; Drapchinskij, L.V.

    1982-01-01

    By means of a separate determination of neutron yields and fission event rates, the value of #betta#-bar( 252 Cf) has been measured for a series of new high-purity sources. The improved quality of the source active layers has reduced the error in determining the fission rate to 0.35%. The value obtained for #betta#-bar( 252 Cf) is 3.747+-0.036. A description is given of the design and the parameters of a spherical manganese bath in which the work on refining the value of #betta#-bar( 252 Cf) will be continued. (author)

  10. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  11. Efficacy of brachytherapy with californium-252 neutrons versus cesium-137 photons for eradication of bulky localized cervical cancer: single-institution study

    International Nuclear Information System (INIS)

    Maruyama, Y.; van Nagell, J.R.; Yoneda, J.; Donaldson, E.; Gallion, H.; Higgins, R.; Powell, D.; Turner, C.; Kryscio, R.

    1988-01-01

    A fast-neutron-emitting radioisotope, 252 Cf, is being tested in clinical trials of neutron brachytherapy for cervical cancer. The efficacy for histological eradication of bulky stage IB cervical tumors (mean diameter, approximately 6 cm) using combined radiation and surgery was studied in 65 patients treated with 137 Cs or 252 Cf before surgery during 1983-1986. Forty-four patients were treated with 137 Cs and 21 were treated with 252 Cf at equivalent doses of radiation. Fifteen of the 44 specimens (34%) were positive after 137Cs therapy. Only one of the 21 specimens was positive after 252 Cf therapy (P = .025), and that patient was treated in a delayed schedule 21 days after the start of external-beam irradiation rather than early in the course. 252 Cf therapy required a much lower radiation dose and shorter treatment time. The study compared tumor destruction of an identically staged human cervical tumor in situ by direct histological means, using 252 Cf neutron therapy or conventional photon therapy at an identical and equivalent dose adjusted by a relative biological effectiveness of 6.0 for 252 Cf

  12. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  13. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and UNRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stone, N. J. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Daniel, A. V. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russian Federation); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  14. Transport-level description of the 252Cf-source method using the Langevin technique

    International Nuclear Information System (INIS)

    Stolle, A.M.; Akcasu, A.Z.

    1991-01-01

    The fluctuations in the neutron number density and detector outputs in a nuclear reactor can be analyzed conveniently by using the Langevin equation approach. This approach can be implemented at any level of approximation to describe the time evolution of the neutron population, from the most complete transport-level description to the very basic point reactor analysis of neutron number density fluctuations. In this summary, the complete space- and velocity-dependent transport-level formulation of the Langevin equation approach is applied to the analysis of the 252 Cf-source-driven noise analysis (CSDNA) method, an experimental technique developed by J.T. Mihalczo at Oak Ridge National Laboratory, which makes use of noise analysis to determine the reactivity of subcritical media. From this analysis, a theoretical expression for the subcritical multiplication factor is obtained that can then be used to interpret the experimental data. Results at the transport level are in complete agreement with an independent derivation performed by Sutton and Doub, who used the probability density method to interpret the CSDNA experiment, but differed from other expressions that have appeared in the literature

  15. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  16. A search for fine structure of the time-of-flight spectrum of the fission neutrons of 252Cf

    International Nuclear Information System (INIS)

    Scobie, J.; Scott, R.D.; Feather, N.; Vass, D.G.

    1977-01-01

    A standard time-of-flight arrangement, in which start pulses were supplied by fission fragments and stop pulses by neutrons, has been employed in an attempt to check recent claims of the existence of fine structures in the time-of-flight spectrum of the fission neutrons of 252 Cf. This structure, in the form of spikes with tails towards longer times, has been attributed to the emission of neutrons of short delay (with half-lives of a few to a hundred or so nanoseconds) in the fission process. It has not been possible to find any convincing evidence for the existence of such structure. (author)

  17. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  18. Measuring the sensitivity of a boron-lined ion chamber

    International Nuclear Information System (INIS)

    Barton, D.M.

    1992-03-01

    Boron-lined ion chambers are used to monitor external neutron flux from fissionable materials assembled at the Los Alamos Critical Assembly Experiment Facility. The sensitivity of these chambers must be measured periodically in order to detect changes in filling gas and to evaluate other factors that may affect chamber performance. We delineate a procedure to measure ion chamber response using a particular neutron source ( 239 PuBe) in a particular moderating geometry of polyethylene. We also discuss use of the amplifier, high-voltage power supply, recorders, and scram circuits that comprise the complete ion chamber monitoring system

  19. Production, Distribution, and Applications of Californium-252 Neutron Sources

    International Nuclear Information System (INIS)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-01-01

    The radioisotope 252 Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10 11 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252 Cf to commercial reencapsulators domestically and internationally. Sealed 252 Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252 Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations

  20. Distinct difference in relative biological effectiveness of 252Cf neutrons for the induction of mitotic crossing over and intragenic reversion of the white-ivory allele in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Hoshi, Masaharu; Ikenaga, Mituo

    1996-01-01

    The relative biological effectiveness (RBE) of 252 Cf neutrons was determined for two different types of somatic mutations, i.e., loss of heterozygosity for wing-hair mutations and reversion of the mutant white-ivory eye-color, in Drosophila melanogaster. Loss of heterozygosity for wing-hair mutations results predominantly from mitotic crossing over induced in wing anlage cells of larvae, while the reverse mutation of eye-color is due to an intragenic structural change in the white locus on the X-chromosome. For a quantitative comparison of RBE values for these events, we have constructed a combined mutation assay system so that induced mutant wing-hair clones as well as revertant eye-color clones can be detected simultaneously in the same individuals. Larvae were irradiated at the age of 80±4 h post-oviposition with 252 Cf neutrons or 137 Cs γ-rays, and male adult flies were examined under the microscope for the presence of the two types of clonal mosaic spots appearing. The induction of wing-hair spots per dose unit was much greater for 252 Cf neutrons than for 137 Cs γ -rays, whereas the frequencies of eye-color reversion were similar for neutrons and γ-rays. The estimated RBE values of neutrons were 8.5 and 1.2 for the induction of mutant wing-hair spots and revertant eye-color spots, respectively. These results indicate that the RBE of neutrons is much greater for mitotic crossing over in comparison to the intragenic white-ivory reversion events. Possible causes for the difference in RBE are discussed

  1. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Martin, R.C.; Laxson, R.R.; Knauer, J.B.

    1996-01-01

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed 252 Cf neutron source for university and research loans. Within the CF, the 252 Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests

  2. SU-E-T-172: Evaluation of the Exradin A26 Ion Chamber in Megavoltage Photon Beams as a Reference Class Instrument

    International Nuclear Information System (INIS)

    McEwen, M

    2014-01-01

    Purpose: The Exradin A26 is a new design of micro-ionization ion chamber that externally resembles the Exradin A16 model but has significant internal changes to address measurement issues reported in the literature for the A16. This project involved the characterization of two versions of the A26 chamber in high energy x-rays with particular reference to the performance specification laid out in the imminent Addendum to TG-51. Methods: The Exradin A26 was investigated in a range of megavoltage photon beams (6–25 MV). Investigations looked at chamber settling, ion recombination and polarity. Since it has been previously shown that non-ideal performance is most easily identified through ion recombination measurements, the focus was on the determination of Pion. Results: i) Chamber settling - the chamber response stabilizes very quickly (within 3 minutes), even after a large change in the polarizing voltage.ii) The polarity correction was found to be small (within 0.2% of unity)iii) The chamber showed linear behavior for a Jaffe plot (1/reading vs 1/polarizing voltage) for applied voltages ≤ 200 V.iv) The recombination correction showed a linear variation with the doseper- pulse, was not significantly dependent on the polarity of the collecting voltage and was consistent with the chamber dimensions (i.e. agreed with Boag theory). Conclusion: An initial investigation of the Exradin A26 micro chamber suggests that although its performance exceeds the AAPM specification for a reference-class ion chamber for use in megavoltage photon beams it is a significant improvement over the previous A16 design. Further work is required to evaluate long-term stability and determine kQ factors

  3. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei, E-mail: mli@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Miller, Michael K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Chen, Wei-Ying [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • Thermally-aged CF8 was irradiated with 1 MeV Kr ions at 400 °C. • Atom probe tomography revealed a strong dose dependence of G-phase precipitates. • Phase separation of α and α′ in ferrite was reduced after irradiation. - Abstract: The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α′ phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10{sup 19} ions/m{sup 2} at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α′ spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α′ spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.

  4. Monte Carlo modeling of ion chamber performance using MCNP.

    Science.gov (United States)

    Wallace, J D

    2012-12-01

    Ion Chambers have a generally flat energy response with some deviations at very low (2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.

  5. Atmospheric chemistry of (CF3)2CHOCH3, (CF3)2CHOCHO, and CF3C(O)OCH3

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From; Wallington, Timothy J.; Andersen, Mads Peter Sulbæk

    2015-01-01

    Smog chambers with in situ FTIR detection were used to measure rate coefficients in 700 Torr of air and 296 ± 2 K of: k(Cl+(CF3)2CHOCH3) = (5.41 ± 1.63) × 10(-12), k(Cl+(CF3)2CHOCHO) = (9.44 ± 1.81) × 10(-15), k(Cl+CF3C(O)OCH3) = (6.28 ± 0.98) × 10(-14), k(OH+(CF3)2CHOCH3) = (1.86 ± 0.41) × 10(-1...

  6. Standard test method for nondestructive assay of nuclear material in scrap and waste by passive-Active neutron counting using 252Cf shuffler

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the nondestructive assay of scrap and waste items for U, Pu, or both, using a 252Cf shuffler. Shuffler measurements have been applied to a variety of matrix materials in containers of up to several 100 L. Corrections are made for the effects of matrix material. Applications of this test method include measurements for safeguards, accountability, TRU, and U waste segregation, disposal, and process control purposes (1, 2, 3). 1.1.1 This test method uses passive neutron coincidence counting (4) to measure the 240Pu-effective mass. It has been used to assay items with total Pu contents between 0.03 g and 1000 g. It could be used to measure other spontaneously fissioning isotopes such as Cm and Cf. It specifically describes the approach used with shift register electronics; however, it can be adapted to other electronics. 1.1.2 This test method uses neutron irradiation with a moveable Cf source and counting of the delayed neutrons from the induced fissions to measure the 235U equiva...

  7. Hydrogen effects in hydrofluorocarbon plasma etching of silicon nitride: Beam study with CF{sup +}, CF{sub 2}{sup +}, CHF{sub 2}{sup +}, and CH{sub 2}F{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomoko; Karahashi, Kazuhiro; Fukasawa, Masanaga; Tatsumi, Tetsuya; Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan); Semiconductor Technology Development Division, SBG, CPDG, Sony Corporation, Atsugi, Kanagawa 243-0014 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan)

    2011-09-15

    Hydrogen in hydrofluorocarbon plasmas plays an important role in silicon nitride (Si{sub 3}N{sub 4}) reactive ion etching. This study focuses on the elementary reactions of energetic CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions with Si{sub 3}N{sub 4} surfaces. In the experiments, Si{sub 3}N{sub 4} surfaces were irradiated by monoenergetic (500-1500 eV) beams of CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions as well as hydrogen-free CF{sub 2}{sup +} and CF{sup +} ions generated by a mass-selected ion beam system and their etching yields and surface properties were examined. It has been found that, when etching takes place, the etching rates of Si{sub 3}N{sub 4} by hydrofluorocarbon ions, i.e., CHF{sub 2}{sup +} and CH{sub 2}F{sup +}, are higher than those by the corresponding fluorocarbon ions, i.e., CF{sub 2}{sup +} and CF{sup +}, respectively. When carbon film deposition takes place, it has been found that hydrogen of incident hydrofluorocarbon ions tends to scavenge fluorine of the deposited film, reducing its fluorine content.

  8. Dose verification with different ion chambers for SRT/SBRT plans

    Science.gov (United States)

    Durmus, I. F.; Tas, B.; Okumus, A.; Uzel, O. E.

    2017-02-01

    Verification of patient plan is very important in stereotactic treatments. VMAT plans were prepared with 6MV-FFF or 10MV-FFF energies for 25 intracranial and extracranial stereotactic patients. Absolute dose was measured for dose verification in each plans. Iba® CC01, Iba® CC04, Iba® CC13 ion chambers placed at a depth of 5cm in solid phantom (RW3). Also we scanned this phantom with ion chambers by Siemens® Biograph mCT. QA plans were prepared by transferring twenty five patient plans to phantom assemblies for three ion chambers. All plans were performed separately for three ion chambers at Elekta® Versa HD linear accelerator. Statistical analysis of results were made by Wilcoxon signed-rank test. Difference between dose values were determined %1.84±3.4 (p: 0.001) with Iba CC13 ion chamber, %1.80±3.4 (p: 0.002) with Iba CC04 ion chamber and %0.29±4.6 (p: 0.667) with Iba CC01 ion chamber. In stereotactic treatments, dosimetric uncertainty increases in small areas. We determined more accurate results with small sized detectors. Difference between TPS calculations and all measurements were founded lower than %2.

  9. Atmospheric Chemistry of (CF3)2CF-C≡N

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Kyte, Mildrid; Thirstrup Andersen, Simone

    2017-01-01

    FTIR/smog chamber experiments and ab initio quantum calculations were performed to investigate the atmospheric chemistry of (CF3)2CFCN, a proposed replacement compound for the industrially important sulfur hexafluoride, SF6. The present study determined k(Cl + (CF3)2CFCN) = (2.33 ± 0.87) × 10–17, k......(OH + (CF3)2CFCN) = (1.45 ± 0.25) × 10–15, and k(O3 + (CF3)2CFCN) ≤ 6 × 10–24 cm3 molecule–1 s–1, respectively, in 700 Torr of N2 or air diluent at 296 ± 2 K. The main atmospheric sink for (CF3)2CFCN was determined to be reaction with OH radicals. Quantum chemistry calculations, supported by experimental...

  10. Study of the 249-251Cf + 48Ca reactions: recent results and outlook

    Science.gov (United States)

    Voinov, A. A.; Oganessian, Yu Ts; Abdullin, F. Sh; Brewer, N. T.; Dmitriev, S. N.; Grzywacz, R. K.; Hamilton, J. H.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Rykaczewski, K. P.; Sabelnikov, A. V.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu S.; Utyonkov, V. K.; Vostokin, G. K.

    2018-02-01

    Experiment aiming at the synthesis of heavy isotopes of Z=118 (Og) using beam of 48Ca and a target of 249-251Cf was undertaken in October 2015 - April 2016 employing the Dubna Gas-Filled Recoil Separator (FLNR JINR). The target of mixed isotopes of 249-251Cf (50.7% of 249Cf, 12.9% of 250Cf, and 36.4% of 251Cf) was irradiated by 48Ca ions at two beam energies of 252 and 258 MeV with the corresponding accumulated beam doses of 1.6×1019 and 1.1×1019. A single event observed at lower beam energy was assigned to the isotope 294Og, the product of the reaction 249Cf(48Ca, 3n); its decay pattern and the observed radioactive properties of the nuclides in the decay chain reproduce in full those observed for 294Og in our earlier experiments of 2002-2005 and 2012. At higher beam energy we observed no decay chains that could be attributed to the isotopes of Og. The possibility of renewal of this experiment in the future is discussed.

  11. Analysis of existing data and specification of an experiment to determine the 252Cf half-life to the required degree of accuracy

    International Nuclear Information System (INIS)

    Lorenz, A.; Kharitonov, I.A.

    1994-02-01

    The methods used and the results obtained in measurements of the 252 Cf half-life are analyzed. In calculating the weighted mean value, additional error components as well as those given by the authors are taken into account. In order to reduce the error in the weighted mean value to less than 0.1%, the need and the requirements for an exact measurement are specified. A half-life of 2.6473±0.0028 years is recommended. (author). 16 refs, 3 tabs

  12. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  13. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  14. Experimental research on specific activity of 24Na using Chinese reference man phantom irradiated by 252Cf neutrons source

    International Nuclear Information System (INIS)

    Wang Yuexing; Yang Yifang; Lu Yongjie; Zhang Jianguo; Xing Hongchuan

    2011-01-01

    Objective: To investigate the specific activity of '2 4 Na per unit neutron fluence, A B/Φ ,in blood produced for Chinese reference man irradiated by 252 Cf neutron source,and to analyze the effects of scattering neutrons from ground,wall,and ceiling in irradiation site on it.Methods: A 252 Cf neutron source of 3×10 8 n/s and the anthropomorphic phantom were used for experiments. The phantom was made from 4 mm thick of outer covering by perspex and the liquid tissue-equivalent substitute in it. The data of phantom dimensions fit into Chinese reference man.The weight ratios of H, N, O and C in substitute equal from source to long axis of phantom were 1.1, 2.1, 3.1 and 4.1 m, respectively. Both the neutron source and the position of xiphisternum of the phantom were 1.6 m above the floor. Results: The average specific activity of 24 Na per unit neutron fluence was related to the irradiation-distances, d, and its maximum value, A B/ΦM , deduced by experimental data was about 1.85×10 -7 Bq·cm 2 ·g -1 . Conclusions: The A B/ΦM corresponds to that of phantom irradiated by plane-parallel beams, and the value is about more 3% than that by BOMAB phantom reported in literature. It has shown that floor-(wall-)scattered neutrons in irradiation site have significant contribution to the specific activity of 24 Na, but they contributed relatively little to the induced neutron doses. Consequently,using the specific activity of 24 Na for assessing accidental neutron doses received by an individual, the contribution of scattered neutrons in accident site will lead dose to be overestimated, and need to be correct. (authors)

  15. Long-term effects of an intracavitary treatment with californium-252 on normal tissue

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.

    1976-01-01

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with 252 Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from 252 Cf and 7000 rad from 226 Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for 252 Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from 252 Cf and 5000 rad from 226 Ra

  16. Prediction of the performance of an ion chamber amplifier under γ radiation

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Sundarsingh, V.P.; Ramachandran, V.

    2005-01-01

    The ion chamber amplifier (ICA) plays a major role in the proper functioning of a nuclear reactor as it monitors the radiations from the nuclear reactor by measuring the ionic activity inside the ion chamber. The signal conditioning circuitry of the ICA detects and conditions the weak ionic currents coming from the ion chamber dome. Degradation in the performance of the semiconductor devices used in this part of the ICA, can lead to inaccurate monitoring of the reactor operation, resulting in a possible catastrophe due to malfunction. Further, the response of the ICA under irradiation also depends upon the strength of the input signal (ionic) current it is required to handle. The active devices used in the ICA under study are operational amplifiers (Op-Amps) such as DN8500A and OPA111, instrumentation amplifier INA101, transistor 2N2920A and a voltage reference device, AD584. Since these devices may be sensitive to radiation, one must know their radiation behaviour so that the performance of the ICA can be predicted. This paper examines the performance of the ICA by characterising the radiation profiles of its vital components, viz. the Op-Amps, instrumentation amplifiers, transistors, etc. by monitoring their parametric changes on-line, i.e. when the source is on, and the devices are biased. The simulation runs involve the simulation of the entire ICA circuitry using the changed values of the vital parameters such as input bias current and input offset voltage. The main advantage of this method is that it obviates irradiating the whole ICA circuit to study its irradiation performance, and simulates an environment of radiation leakage around the ICA. Based on this study, results are presented to predict the performance of the ICA

  17. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

    Directory of Open Access Journals (Sweden)

    Firoozabadi M. M.

    2017-03-01

    Full Text Available Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose enhancement in the tumors loaded with these materials. Objective: The purpose of this study is to evaluate dose distribution in the presence of 10B, 157Gd and 33S neutron capturers and to determine the effect of these materials on dose enhancement rate for 252Cf brachytherapy source. Methods: Neutron-ray flux and energy spectra, neutron and gamma dose rates and dose enhancement factor (DEF are determined in the absence and presence of 10B, 157Gd and 33S using Monte Carlo simulation. Results: The difference in the thermal neutron flux rate in the presence of 10B and 157Gd is significant, while the flux changes in the fast and epithermal energy ranges are insensible. The dose enhancement factor has increased with increasing distance from the source and reached its maximum amount equal to 258.3 and 476.1 cGy/h/µg for 157Gd and 10B, respectively at about 8 cm distance from the source center. DEF for 33S is equal to one. Conclusion: Results show that the magnitude of dose augmentation in tumors containing 10B and 157Gd in brachytherapy with 252Cf source will depend not only on the capture product dose level, but also on the tumor distance from the source. 33S makes dose enhancement under specific conditions that these conditions depend on the neutron energy spectra of source, the 33S concentration in tumor and tumor distance from the source.

  18. Effects of sintering additives on the microstructural and mechanical properties of the ion-irradiated SiCf/SiC

    Science.gov (United States)

    Fitriani, Pipit; Sharma, Amit Siddharth; Yoon, Dang-Hyok

    2018-05-01

    SiCf/SiC composites containing three different types of sintering additives viz. Sc-nitrate, Al2O3-Sc2O3, and Al2O3-Y2O3, were subjected to ion irradiation using 0.2 MeV H+ ions with a fluence of 3 × 1020 ions/m2 at room temperature. Although all composites showed volumetric swelling upon ion irradiation, SiCf/SiC with Sc-nitrate showed the smallest change followed by those with the Al2O3-Sc2O3 and Al2O3-Y2O3 additives. In particular, SiCf/SiC containing the conventional Al2O3-Y2O3 additive revealed significant microstructural changes, such as surface roughening and the formation of cracks and voids, resulting in reduced fiber pullout upon irradiation. On the other hand, the SiCf/SiC with Sc-nitrate showed the highest resistance against ion irradiation without showing any macroscopic changes in surface morphology and mechanical strength, indicating the importance of the sintering additive in NITE-based SiCf/SiC for nuclear structural applications.

  19. Study of fission mechanism with the reactions 230Th, 231Pa, 235U, 237Np(n,f) and 252Cf(fs)

    International Nuclear Information System (INIS)

    Benfoughal, T.

    1983-01-01

    In this work, the different stages of the nuclear fission process have been investigated. The analysis of fission cross-section and fission fragment angular distribution measurements are made using the hypothesis of asymmetrically deformed states. From the correlation between fissioning nucleus excitation energy and fragment total kinetic energy measurement for several fissioning systems, it is shown that the nuclear viscosity is relatively strong during the saddle-point to scission-point transition. The study of the spontaneous fission of 252 Cf shows that the fragment mass and kinetic energy distributions are mainly determinated by the nucleon shell effects and pairing correlations [fr

  20. In situ x-ray fluorescence and californium-252 neutron activation analysis for marine and terrestrial mineral exploration

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1976-12-01

    Instrumentation has been designed for in situ analysis of marine and terrestrial minerals using the techniques of x-ray fluorescence and neutron activation analysis. The energy-dispersive x-ray fluorescence analyzer allows more than 20 elements to be quantitatively measured at the 10 ppM level in water depths to 300 m. The analyzer consists of a solid cryogen-cooled Si(Li) detector, a 50 mCi 109 Cd or 57 Co excitation source, and an analyzer-computer system for data storage and manipulation. The neutron activation analysis, which is designed to measure up to 30 elements at parts per hundred to ppM levels, utilizes the man-made element 252 Cf as its neutron activation source. The resulting radioelements which emit characteristic gamma radiation are then analyzed in situ during 2- to 200-s counting intervals with Ge(Li) or NaI(T1) detector systems. An extension of this latter technique, which uses a 252 Cf- 235 U fueled subcritical multiplier, is also being studied. The subcritical facility allows the neutrons from the 252 Cf source to be multiplied, thus providing greater neutron flux. Details of these in situ analysis systems, actual in situ spectra, and recorded data are discussed with respect to the detection of minerals at their varying concentration levels. The system response of each illustrates its usefulness for various rapid environmental mineral exploration studies. These techniques can be utilized on terrestrial surfaces and marine or fresh water sediments. 5 figures, 2 tables

  1. Ion-recombination correction factor κsat for spherical ion chambers irradiated by continuous photom beams

    International Nuclear Information System (INIS)

    Piermattei, A.; Azario, L.; Arcovito, G.

    1996-01-01

    The large range of reference air kerma rates of brachytherapy sources involves the use of large-volume ionization chambers. When such ionization chambers are used the ion-recombination correction factor k sat has to be determined. In this paper three spherical ion chambers with volume ranging from 30 to 10 4 cm 3 have been irradiated by photons of a 192 Ir source to determine the k sat factors. The ionization currents of the ion chambers as a function of the applied voltage and the air kerma rate have been analysed to determine the contribution of the initial and general ion recombination. The k sat values for large-volume ionization chambers obtained by considering the general ion recombination as predominant (Almond's approach) are in disagreement with the results obtained using methods that consider both initial and general ion-recombination contributions (Niatel's approach). Such disagreement can reach 0.7% when high currents are measured for a high-activity source calibration in terms of reference air kerma rate. In this study a new 'two-voltage' method, independent of the voltage ratio given by a dosimetry system, is proposed for practical dosimetry of continuous x-and gamma-radiation beams. In the case where the Almond approach is utilized, the voltage ratio V 1 /V 2 should be less than 2 instead of Almond's limit of V 1 /V 2 <5. (Author)

  2. Design and construction of an explosive detection system by Tna methods, using 252Cf radioisotope source

    International Nuclear Information System (INIS)

    Tavakkoli Farsouli, A.

    1999-01-01

    Bombs concealed in luggage have threatened human life and property throughout the world's traffic. The plastic explosives could not checked by the X-ray detecting device. Thermal Neutron Activation method has been tested in the present work for non-destructive detection of explosives. A radioisotope neutron source 252 Cf and two gamma spectroscopy systems have been used as a tool to find explosives, regardless of the bomb's shape and the packing materials. The MCNP code has been used to design the neutronic section of the system. The measured thermal neutron fluxes by the gold foils in some location of the system were in good agreement with those data obtained by the MCNP code. Also, detection limits for nitrogen in various counting times were measured. The measurements show that the system is capable to detect 417 gr of HMX explosive material (158 gr nitrogen) by 10 minutes of counting time. To modify the system and to decrease the detection limits some opinions are given

  3. Development of a transfer instrument for neutron dosimetry intercomparison

    International Nuclear Information System (INIS)

    Greene, D.; Miles, J.

    1974-01-01

    Comparisons are reported for fast neutron dosemeters which were designed to be transportable so as to enable intercomparisons between institutions using neutrons for radiotherapy or radiobiology. The systems considered are : 1) the ferrous sulphate dosemeter, 2) the lithium fluoride thermoluminescent dosemeter, 3) ionization chambers with various walls and gases. Work on photographic film dosimetry indicated that the system was not suitable and was not pursued. The sources used were 60 Co, the cyclotron at Hammersmith Hospital in London and 252 Cf

  4. Description and calibration beamline SEM/Ion Chamber Current Digitizer

    International Nuclear Information System (INIS)

    Schoo, D.

    1994-05-01

    This report discusses the following on beamline SEM/ion chamber current digitizers: Module description; testing and calibration; common setup procedures; summary of fault indications and associated causes; summary of input and output connections; SEM conversion constant table; ion chamber conversion constant table; hexadecimal to decimal conversion table; and schematic diagram

  5. Automated box/drum waste assay (252Cf shuffler) through the material access and accountability boundary

    International Nuclear Information System (INIS)

    Horley, E.C.; Bjork, C.W.; Bourret, S.C.; Polk, P.J.; Schneider, C.J.; Studley, R.V.

    1992-01-01

    For the first time, a shuffler waste-assay system has been made a part of material access and accountability boundary (MAAB). A 252 Cf Pass-Thru shuffler integrated with a conveyor handling system, will process box or drum waste across the MAAB. This automated system will significantly reduce personnel operating costs because security forces will not be required at the MAAB during waste transfer. Further, the system eliminates the chance of a mix-up between measured and nonmeasured waste. This Pass-Thru shuffler is to be installed in the Westinghouse Savannah River Company 321M facility to screen waste boxes and drums for 235 U. An automated conveyor will load waste containers into the shuffler, and upon verification, will transfer the containers across the MAAB. Verification will consist of a weight measurement followed by active neutron interrogation. Containers that pass low-level waste criteria will be conveyed to an accumulator section outside the MAAB. If a container fails to meet the waste criteria, it will be rejected and sent back to the load station for manual inspection and repackaging

  6. Performance optimization of 20 cm xenon ion thruster discharge chamber

    International Nuclear Information System (INIS)

    Chen Juanjuan; Zhang Tianping; Jia Yanhui; Li Xiaoping

    2012-01-01

    This paper describes the performance of the LIPS-200 ion thruster discharge chamber which was developed by Lanzhou Institute of Physics. Based on the discharge chamber geometric configuration and magnetic field, the completely self-consistent analytical model is utilized to discuss performance optimization of the discharge chamber of the LIPS-200. The thrust is enhanced from 40 mN up to 60 mN at rated impulse and efficiency. The results show that the 188.515 W/A beam ion production cost at a propellant flow rate of 2.167 × 10 17 m -3 requires that the thruster runs at a discharge current of 6.9 A to produce 1.2 A ion beam current. Also, during the process of LIPS-200 ion thruster discharge chamber performance optimization, the sheath potential is always within 3.80 ∼ 6.65 eV. (authors)

  7. Variation in yield ratios of fragment ions and of ion-pairs from CF2Cl2 following monochromatic soft X-ray absorption

    International Nuclear Information System (INIS)

    Suzuki, I.H.; Saito, N.; Bozek, J.D.

    1995-01-01

    Fragment ions produced from CF 2 Cl 2 have been measured from 44 to 1200eV using a time-of-flight mass spectrometer and monochromatized synchrotron radiation. Positively charged ion pairs from this molecule were observed in the inner-shell excitation regions using a Selected photoion-photoion coincidence technique. Obtained yield ratios of fragment ions indicate that the atomic chlorine ion, Cl + , has the greatest intensity at all photon energies above 60eV and exhibits a steep increase at the Cl L 2,3 -edges. Some fragment ions, in particular CF 2 + , have a clear intensity increase at the transitions of inner-shell electrons to unoccupied molecular orbitals. The ion pair F + - Cl + exhibits the highest yield at most photon energies, and some of the branching ratios for ion-pair production changed significantly near the Cl L 2,3 -edges. (author)

  8. Chamber transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted

  9. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  10. Monte Carlo design study of a moderated {sup 252}Cf source for in vivo neutron activation analysis of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.G.; Natto, S.S.A.; Evans, C.J. [Swansea In Vivo Analysis and Cancer Research Group, Department of Physics, University of Wales, Swansea (United Kingdom); Ryde, S.J.S. [Swansea In Vivo Analysis and Cancer Research Group, Department of Medical Physics and Clinical Engineering, Singleton Hospital, Swansea (United Kingdom)

    1997-04-01

    The Monte Carlo computer code MCNP has been used to design a moderated 2{sup 52}Cf neutron source for in vivo neutron activation analysis of aluminium (Al) in the bones of the hand. The clinical motivation is the need to monitor l body burden in subjects with renal dysfunction, at risk of Al toxicity. The design involves the source positioned on the central axis at one end of a cylindrical deuterium oxide moderator. The moderator is surrounded by a graphite reflector, with the hand inserted at the end of the moderator opposing the source. For a 1 mg {sup 252}Cf source, 15 cm long x 20 cm radius moderator and 20 cm thick reflector, the estimated minimum detection limit is .5 mg Al for a 20 min irradiation, with an equivalent dose of 16.5 mSv to the hand. Increasing the moderator length and/or introducing a fast neutron filter (for example silicon) further reduces interference from fast-neutron-induced reactions on phosphorus in bone, at the expense of decreased fluence of the thermal neutrons which activate Al. Increased source strengths may be necessary to compensate for this decreased thermal fluence, or allow measurements to be made within an acceptable time limit for the comfort of the patient. (author)

  11. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  12. HYPOSTASES OF THE POLYPHONIC TREATMENTS IN GHEORGHE NEAGA’S INSTRUMENTAL CHAMBER MUSIC

    Directory of Open Access Journals (Sweden)

    CHICIUC NATALIA

    2016-06-01

    Full Text Available Gheorghe Neaga’s instrumental chamber music constitutes a rich repertoire with representative works for native academic music. The more so, since from the perspective of composition art, the author tended to the excellence of each element of musical expressiveness. As evidence of this can be considered his instrumental chamber works, including sonatas, suites for various instrumental configurations and instrumental ensembles, and not least, the infinite string of instrumental miniatures. Returning to the musical expressiveness, it is necessary to emphasize the fact that in Gheorghe Neaga’s instrumental chamber music is evident, in a different measure for each work, a polyphonic treatment which can be considered typical of the author. That is why the present article aims to present some principles and techniques used by the composer in his own manner in some of his creations offered as examples.

  13. Studying fission neutrons with 2E-2v and 2E

    Directory of Open Access Journals (Sweden)

    Al-Adili Ali

    2018-01-01

    The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of 252Cf(sf and another one of thermal-neutron induced fission in 235U(n,f. Results from 252Cf(sf are reported here.

  14. Induction of external abnormalities in offspring of male mice irradiated with 252Cf neutron

    International Nuclear Information System (INIS)

    Kurishita, Akihiro; Ono, Tetsuya; Mori, Yuriko; Okada, Shigefumi; Sawada, Syozo

    1992-01-01

    To assess the genetic effects of fission neutron, the induction of external malformations was studied in F 1 fetuses after F 0 male mice were irradiated. Male mice of the ICR:MCH strain were irradiated with 252 Cf neutron at doses of 0.238, 0.475, 0.95 and 1.9 Gy. They were mated with non-irradiated female mice at 71-120 days after irradiation. Pregnant females were autopsied on day 18 of gestation and their fetuses were examined for deaths and external abnormalities. No increases of pre- and post-implantation losses were noted at any dose. External abnormalities were observed at rates of 1.40% in the 0.238 Gy, 2.23% in the 0.475 Gy, 3.36% in the 0.95 and 3.26% in the 1.9 Gy groups; the rate in the control group was 1.65%. The dose-response curve was linear up to 0.95 Gy, and then flattened out; the induction rate of external abnormalities was 2.7x10 -4 /gamete/cGy based on the linear regression. These results indicated that fission neutron effectively induces external abnormalities in F 1 fetuses after spermatogonial irradiation. (author). 29 refs.; 1 fig.; 2 tabs

  15. Measurements of the prompt neutron spectra in 233U, 235U, 239Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252Cf spontaneous fission in the energy range of 0.01-10 MeV

    International Nuclear Information System (INIS)

    Starostov, B.I.; Semenov, A.F.; Nefedov, V.N.

    1978-01-01

    The measurement results on the prompt neutron spectra in 233 U, 235 U, 239 Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252 Cf spontaneous fission in the energy range of 0.01-10 MeV are presented. The time-of-flight method was used. The exceeding of the spectra over the Maxwell distributions is observed at E 252 Cf neutron fission spectra. The spectra analysis was performed after normalization of the spectra and corresponding Maxwell distributions for one and the same area. In the range of 0.05-0.22 MeV the yield of 235 U + nsub(t) fission neutrons is approximately 8 and approximately 15 % greater than the yield of 252 Cf and 239 Pu + nsub(t) fission neutrons, respectively. In the range of 0.3-1.2 MeV the yield of 235 U + nsub(t) fission neutrons is 8 % greater than the fission neutron yield in case of 239 Pu + nsub(t) fission. The 235 U + nsub(t) and 233 U + nsub(t) fission neutron spectra do not differ from one another in the 0.05-0.6 MeV range

  16. Compact time-zero detector for heavy ions

    International Nuclear Information System (INIS)

    Weissenberger, E.; Kast, W.; Goennenwein, F.

    1979-01-01

    A time-zero detector for flight-time measurements with heavy ions is described. The ions traverse a thin foil and the secondary electrons splashed from the foil are detected in a channel plate multiplier. A timing signal is derived from the multiplier pulse. The novel features of the detector are its simplicity and compactness of design. The time resolution achieved for the full energy and mass span of fission fragments from the spontaneous fission of 252 Cf used as a heavy ion source is 115 ps (fwhm). (Auth.)

  17. Photoionisation study of Xe.CF{sub 4} and Kr.CF{sub 4} van-der-Waals molecules

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, V. A., E-mail: alekseev@va3474.spb.edu; Kevorkyants, R. [St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034 (Russian Federation); Garcia, G. A.; Nahon, L. [Synchrotron Soleil, Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France)

    2016-05-14

    We report on photoionization studies of Xe.CF{sub 4} and Kr.CF{sub 4} van-der-Waals complexes produced in a supersonic expansion and detected using synchrotron radiation and photoelectron-photoion coincidence techniques. The ionization potential of CF{sub 4} is larger than those of the Xe and Kr atoms and the ground state of the Rg.CF{sub 4}{sup +} ion correlates with Rg{sup +} ({sup 2}P{sub 3/2}) + CF{sub 4}. The onset of the Rg.CF{sub 4}{sup +} signals was found to be only ∼0.2 eV below the Rg ionization potential. In agreement with experiment, complementary ab initio calculations show that vertical transitions originating from the potential minimum of the ground state of Rg.CF{sub 4} terminate at a part of the potential energy surfaces of Rg.CF{sub 4}{sup +}, which are approximately 0.05 eV below the Rg{sup +} ({sup 2}P{sub 3/2}) + CF{sub 4} dissociation limit. In contrast to the neutral complexes, which are most stable in the face geometry, for the Rg.CF{sub 4}{sup +} ions, the calculations show that the minimum of the potential energy surface is in the vertex geometry. Experiments which have been performed only with Xe.CF{sub 4} revealed no Xe.CF{sub 4}{sup +} signal above the first ionization threshold of Xe, suggesting that the Rg.CF{sub 4}{sup +} ions are not stable above the first dissociation limit.

  18. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Rose, D.V.; Welch, D.R.

    2003-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  19. Chamber-transport simulation results for heavy-ion fusion drivers

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  20. SIMULATION OF CHAMBER TRANSPORT FOR HEAVY-ION FUSION DRIVERS

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  1. 252Cf-source-driven neutron noise measurements of subcriticality for a slab tank containing aqueous Pu-U nitrate

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.; Robinson, R.C.; Seino, H.

    1987-08-01

    In order to study nuclear criticality safety related to the development of fast breeder technology, 252 Cf-source-driven neutron noise analysis measurements were performed with a Pu-U nitrate solution in a slab tank of various heights and thickness varying 11.43 cm to 19.05 cm. The results and conclusions of these experiments are (1) a capability to measure the subcriticality of a multiplying system of slab geometry to a k/sub eff/ as low as 0.7 was demonstrated, (2) calculated neutron multiplication factors agreed with those from the experiments within ∼0.02, and (3) the applicability of the method for plutonium solution systems was demonstrated. This paper describes measurements in which the height of the slab was varied for a fixed thickness and the thickness varied for a fixed height, which are the first applications of this measurement method to slab geometry

  2. Long-term effects of an intracavitary treatment with californium-252 on normal tissue. [Swine, /sup 226/Ra

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.

    1976-01-01

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with /sup 252/Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from /sup 252/Cf and 7000 rad from /sup 226/Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for /sup 252/Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from /sup 252/Cf and 5000 rad from /sup 226/Ra.

  3. Study of the isomer nuclei produced in the spontaneous fission of {sup 252}Cf; Etude des noyaux isomeriques produits dans la fission spontanee de {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Thiesen, Ch. [Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Badimon, C.; Barreau, G.; Doan, T.P.; Pedemay, G. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Belier, G.; Girod, M.; Meot, M.V. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Astier, G.; Meot, V.; Peru, S. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Astier, A.; Ducroux, L.; Meyer, M.; Redon, N. [Inst.de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-06-01

    Isomeric states have been studied in fission fragments produced by spontaneous fission of {sup 252}Cf. 34 isomeric nuclei have been identified by using coincidences between {gamma}-rays detected in EUROGAM II and fission fragments detected in photovoltaic cells. Lifetimes from 20 ns up to 2 {mu}s have been measured. Microscopic interpretation of the isomeric levels discovered has been tried by means of the Hartree-Fock-Bogolyubov procedure using Gogny force. It was found that the {sup 152,154,156}Nd nuclei have prolate deformation in their ground state; the rotational band built on this ground state is well reproduced by the calculation. For these nuclei the 2 quasi-particle excited states energies are above 1 MeV in agreement with the experiment. The computation confirms the similitude of the {sup 156}Nd and {sup 158}Sm isomeric states associated to neutron 2 quasi-particles of J{sup {pi}} K{sup {pi}} = 5{sup -} ({nu} 5/2 (642) x {nu} 5/2 (523)) while such similitude does not occur for the isotone nuclei {sup 154}Nd and {sup 156}Sm. The computation predicts a proton 2 quasi-particle excited states of J{sup {pi}} = 5{sup -}, near the isomeric level measured in {sup 156}Sm but not for that of {sup 154}Nd. Concerning the {sup 152}Nd the calculated level density is very near that of the states measured in the 1.6 to 2.3 MeV interval. However, the lack of precise information on spins and parities of the measured levels does make not possible a confrontation with the calculations. An up-graded equipment implying 32 photovoltaic cells instead of 2 cells is to be developed and installed by the EUROGAM 3 refs.

  4. Determination Of The QUART Ion Chamber Stability By Using Medical Linear Accelerator

    International Nuclear Information System (INIS)

    Nasukha.

    1990-01-01

    The Quality Assurance Radiation Therapy (QUART) ion chamber was designed for quality assurance measurements of the medical linear accelerator at the Department of Radiation Oncology, Westmead Hospital in Sydney-Australia. The ion chamber has been calibrated by using the 6 MV medical linear accelerator against the farmer dosimeter. The Medical Physics Department Protocol, Westmead Hospital, Sydney (Australia) was used to check the stability of QUART ion chamber by determination of calibration factor for a period of time. It was found that the stability of the seven chambers were less than 2% for more than 125 days. (author). 4 refs, 7 figs

  5. DESIGN OF AN IMPROVED ION CHAMBER FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; GASSNER,D.

    2002-05-06

    Ion chambers are in common use as beam loss monitors at many accelerators. A unit designed and used at FNAL and later at BNL was proposed for the SNS. Concerns about the ion collection times and low collection efficiency at high loss rates led to improvements to this unit and the design of an alternate chamber with better characteristics. Prototypes have been tested with pulsed beams. The design and test results for both detectors will be presented.

  6. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  7. Determination of the multiplication factor and its bias by the 252Cf-source technique: A method for code benchmarking with subcritical configurations

    International Nuclear Information System (INIS)

    Perez, R.B.; Valentine, T.E.; Mihalczo, J.T.; Mattingly, J.K.

    1997-01-01

    A brief discussion of the Cf-252 source driven method for subcritical measurements serves as an introduction to the concept and use of the spectral ratio, Γ. It has also been shown that the Monte Carlo calculation of spectral densities and effective multiplication factors have as a common denominator the transport propagator. This commonality follows from the fact that the Neumann series expansion of the propagator lends itself to the Monte Carlo method. On this basis a linear relationship between the spectral ratio and the effective multiplication factor has been shown. This relationship demonstrates the ability of subcritical measurements of the ratio of spectral densities to validate transport theory methods and cross sections

  8. Testing of ENDF/B cross section data in the Californium-252 neutron benchmark field

    International Nuclear Information System (INIS)

    Mannhart, W.

    1979-01-01

    The fission neutron field of 252 Cf presently represents one of the most well-known neutron benchmark fields. For 13 neutron reactions which are of importance in reactor metrology, measurements of spectrum-averaged cross sections, [sigma], performed in this neutron field were compared with calculated average cross sections. This comparison allows one to draw conclusions as to the quality of different sigma(E) data taken from ENDF/B-IV, from ENDF/B-V, and from recent experiments and used in the calculation of average cross sections. The comparison includes an uncertainty analysis regarding the different uncertainty contributions of [sigma], of sigma(E), and of the spectral distribution of 252 Cf fission neutrons. Additionally, in a few examples, sensitivity studies were carried out. The sensitivity of the spectrum-averaged cross sections to individual characteristics of the sigma(E) data, such as normalization factors or shifts in the energy scale, was investigated. Similarly, the sensitivity of [sigma] to the spectral distribution of 252 Cf was determined. 4 figures, 2 tables

  9. Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)_3:LiCF_3SO_3 Polymer Electrolytes

    International Nuclear Information System (INIS)

    Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel W.; Wang, Sanwu

    2017-01-01

    The PEO_3:LiCF_3SO_3 polymer electrolyte has attracted significant research due to high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline PEO salt complexes can conduct ions. As a result, further theoretical investigations are warranted to help clarify the issue. In this work, we use density functional theory with the climbing image nudged elastic band method to investigate the atomic-scale mechanism of lithium ion transport in the polymer electrolytes. We also use density functional theory and ab initio molecular dynamics simulations to obtain the amorphous structure of PEO_3:LiCF_3SO_3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO_3:LiCF_3SO_3 are determined. In crystalline PEO_3:LiCF_3SO_3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO_3:LiCF_3SO_3 has higher ionic conductivity than the crystalline phase.

  10. Equipment upgrade - Accurate positioning of ion chambers

    International Nuclear Information System (INIS)

    Doane, Harry J.; Nelson, George W.

    1990-01-01

    Five adjustable clamps were made to firmly support and accurately position the ion Chambers, that provide signals to the power channels for the University of Arizona TRIGA reactor. The design requirements, fabrication procedure and installation are described

  11. Monitoring tritium in air containing other beta-emitters using ion chambers

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1975-01-01

    A flow-through ionization chamber instrument is described which is capable of measuring tritium in air containing high concentrations of other beta emitters. The instrument employs a separate concentric chamber with a thin common wall opaque only to tritium betas. Currents produced in the two chambers are subtracted leaving only the current due to tritium. With a 1.6-l sampling chamber and an 18-s time constant, tritium concentrations of 10 -6 μCi/ml to 10 -4 μCi/ml are measured with 2 sigma confidence in background beta concentrations of 4 x 10 -5 μCi/ml to 0.4 muCi/ml, respectively. (auth)

  12. Atmospheric chemistry of (CF3)2CFOCH3

    DEFF Research Database (Denmark)

    Andersen, Lene Løffler; Østerstrøm, Freja From; Nielsen, Ole John

    2014-01-01

    FTIR smog chamber techniques were used to measure k(Cl + (CF 3)2CFOCH3) = (1.80 ± 0.42) × 10-13, k(Cl + (CF3)2CFOCHO) = (1.47 ± 0.56) × 10-14, and k(OH + (CF3) 2CFOCH3) = (1.55 ± 0.24) × 10-14 cm3 molecule-1 s-1. The chlorine-atom initiated oxidation of (CF3)2CFOCH3 in air in the absence of NOX r...

  13. Development of a parallel plate ion chamber for radiation protection level

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Landi, Mauricio; Moralles, Mauricio

    2011-01-01

    A new parallel plate vented ion chamber is proposed in this paper. The application of this chamber was primarily intended to the measurement of stray radiation in interventional procedures, but the energy response of about 2.6%, which was obtained in the first prototype, on the range from 40 to 150 kV using ISO 4037-1 narrow qualities, provided the possibility of a wide modality application on radiation protection. Primary studies with Maxwell 2D electromagnetic field simulator revealed an optimized model regarding effective volume and saturation voltage levels, which conferred to the ion chamber a dual entrance window feature. The development of this ion chamber has the main contribution of Monte Carlo calculations as a support tool to the establishment of the effective volume of the chamber and determination of the best materials for housing mounting and conductive elements, such as guard rings, electrode, and windows. Even the composition of the conductive layers, which would be neglected due to their very small thicknesses (about 35 μm), had important influence on the results and could be better understood with Monte Carlo N-Particle Transport Code System (MCNP) simulations. (author)

  14. 5He, 7He, and 8Li (E*=2.26 MeV) intermediate ternary particles in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Kopatch, Yu.N.; Mutterer, M.; Schwalm, D.; Thirolf, P.; Goennenwein, F.

    2002-01-01

    The neutron-unstable odd-N isotopes 5 He, 7 He, and 8 Li (in its excited state of E*=2.26 MeV) were measured to show up as short-lived (τ≅10 -21 -10 -20 s) intermediate light charged particles (LCPs) in ternary fission of 252 Cf. For the study a high-efficiency angular correlation measurement between neutrons, LCPs, and main fission fragments has been performed. The evidence for the ternary 5 He and 7 He particles (lifetimes: 1x10 -21 s, and 4x10 -21 s, respectively) was disclosed from the measured angular distributions of their decay neutrons focused by the emission in flight towards the direction of motion of 4 He and 6 He ternary particles. Similarly, neutrons observed to be peaked around Li-particle motion could be attributed to the decay of the second excited state at E*=2.26 MeV (lifetime: 2x10 -20 s) of 8 Li. The fractional yields of the intermediate 5 He and 7 He ternary fission modes relative to the 'true' ternary 4 He and 6 He modes, respectively, were determined to be 0.21(5) for both cases. The mean energy of the 4 He residues resulting from the 5 He decay was determined to be 12.4(3) MeV, compared to 15.7(2) MeV for all ternary α particles registered, and to 16.4(3) MeV for the true ternary α particles. The mean energy of the 6 He residues from the 7 He decay is 11.0(15) MeV, compared to 12.3(5) MeV for all ternary 6 He particles. The population of 8 Li* was deduced to be 0.06(2) relative to Li ternary fission, and 0.33(20) relative to the yield of particle stable 8 Li. The perspective of using the observed intermediate LCPs for probing the ternary scission configuration in 252 Cf fission with the aid of trajectory calculations is briefly discussed

  15. 5He, 7He and 8Li (E=2.26 MeV) intermediate ternary particles in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Kopatch, Yu. N.; Goennenwein, F.

    2002-02-01

    The neutron-unstable odd-N isotopes 5 He, 7 He and 8 Li (in its excited state of E * = 2.26 MeV) were measured to show up as short-lived intermediate light-charged-particles (LCP) in ternary fission of 252 Cf. For the study a high-efficiency angular correlation measurement between neutrons, LCPs and main fission fragments has been performed. The evidence for the ternary 5 He and 7 He particles (lifetimes: 1 x 10 -21 s, and 4 x 10 -21 s, respectively) was disclosed from the measured angular distributions of their decay neutrons focused by the emission in flight towards the direction of motion of 4 He and 6 He ternary particles. Similarly, neutrons observed to be peaked around Li-particle motion could be attributed to the decay of the second excited state at E * = 2.26 MeV (lifetime: 2 x 10 -20 s) of 8 Li. The fractional yields of the intermediate 5 He and 7 He ternary fission modes relative to the ''true'' ternary 4 He and 6 He modes, respectively, were determined to be 0.21(5) for both cases. The mean energy of the 4 He residues resulting from the 5 He decay was determined to be 12.4(3) MeV, compared to 15.7(2) MeV for all ternary α-particles registered, and to 16.4(3) MeV for the true ternary α-particles. The mean energy of the 6 He residues from the 7 He decay is 11.0(15) MeV, compared to 12.3(5) MeV for all ternary 6 He particles. The population of 8 Li * was deduced to be 0.06(2) relative to Li ternary fission, and 0.33(20) relative to the yield of particle stable 8 Li. The perspective of using the observed intermediate LCPs for probing the ternary scission configuration in 252 Cf fission with the aid of trajectory calculations is briefly discussed. (orig.)

  16. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  17. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  18. New Submersed Chamber for Calibration of Relative Humidity Instruments at HMI/FSB-LPM

    Science.gov (United States)

    Sestan, D.; Zvizdic, D.; Sariri, K.

    2018-02-01

    This paper gives a detailed description of a new chamber designed for calibration of relative humidity (RH) instruments at Laboratory for Process Measurement (HMI/FSB-LPM). To the present time, the calibrations of RH instruments at the HMI/FSB-LPM were done by comparison method using a climatic chamber of large volume and calibrated dew point hygrometer with an additional thermometer. Since 2010, HMI/FSB-LPM in cooperation with Centre for Metrology and Accreditation in Finland (MIKES) developed the two primary dew point generators which cover the dew point temperature range between - 70 {°}C and 60 {°}C. In order to utilize these facilities for calibrations of the RH instruments, the new chamber was designed, manufactured and installed in the existing system, aiming to extend its range and reduce the related calibration uncertainties. The chamber construction allows its use in a thermostatic bath of larger volume as well as in the climatic chambers. In the scope of this paper, performances of the new chamber were tested while it was submersed in a thermostated bath. The chamber can simultaneously accommodate up to three RH sensors. In order to keep the design of the chamber simple, only cylindrical RH sensors detachable from display units can be calibrated. Possible optimizations are also discussed, and improvements in the design proposed. By using the new chamber, HMI/FSB-LPM reduced the expanded calibration uncertainties (level of confidence 95 %, coverage factor k=2) from 0.6 %rh to 0.25 %rh at 30 %rh (23 {°}C), and from 0.8 %rh to 0.53 %rh at 70 %rh (23 {°}C).

  19. Use of neutron activation and X-ray fluorescence with radioactive sources (Cf-252 and Am-241) for the instrumental qualiquantitative simultaneous analysis of some elements in samples of mineral supplement for animals

    International Nuclear Information System (INIS)

    Simabuco, S.M.

    1984-01-01

    To study the possibility of using two non-destructive (neutron activation and X-ray fluorescence) analyses in simultaneous quali-quantitative evaluations of some elements in mineral supplement for animals, a Cf-252 neutron source (11.3 mCi; 21.1 μgrams) and a Am-241 low energy gamma-ray emitter source (59.5 KeV; 100 mCi) were employed. For these sources, shieldings and sample irradiation systems were built. For the neutron activation analysis a reservoir of 72 cm height and 43 cm diameter was filled with paraffine, and the samples and neutron sources were put inside this reservoir using polypropilene and nylon tubes. To detect the gamma-rays emitted by the radioisotopes a well-type solid NaI(Tl) crystal scintillator (3x3') was used, coupled to a multi-channel analyser. For the X-ray fluorescence analysis a lead cylinder of 9.75 cm height and 5.6 cm diameter (with 0.7 cm thickness) was made and internally lined with a 0.36 mm copper and 0.1 mm aluminium foil. (Author) [pt

  20. Development of an Ion Chamber for Monitoring the Containment of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae-Yung; Kim, Han-Soo; Park, Se-Hwan; Ha, Jang-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Nuclear power plants need many different types of radiation detectors for different purposes. Neutron detectors are installed inside and outside of the core to check the neutron flux. Scintillation detectors are used to check the fission products included in the liquids and gases of plant system. Geiger-Mueller counters are used for the area radiation monitoring. In addition to the above-mentioned detectors, ion chambers are installed to monitor radiation level of the containment. A few ion chambers are located within the reactor containment to monitor radiation level of an accident case. Therefore, the ion chamber should be capable of monitoring high level radiation dose up to 10{sup 7} R/h. Korea Atomic Energy Research Institute (KAERI) developed an ion chamber for monitoring the radiation dose inside the containment.

  1. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    International Nuclear Information System (INIS)

    Stevenick, W. Van

    1994-01-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to ±3 · 10 -16 A over the environmental range of temperature (-40 to +40 C). Using a single 10 11 Ω feed-back resistor, the electrometer accurately measures currents over a range from 3 · 10 -15 A to 3 · 10 -11 A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 μR h -1 ), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically ∼27 pA at 1 mR h -1 . A data recorder and system controller was designed using the Tattletale trademark Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards

  2. Role of chamber dimension in fluorocarbon based deposition and etching of SiO2 and its effects on gas and surface-phase chemistry

    International Nuclear Information System (INIS)

    Joseph, E. A.; Zhou, B.-S.; Sant, S. P.; Overzet, L. J.; Goeckner, M. J.

    2008-01-01

    It is well understood that chamber geometry is an influential factor governing plasma processing of materials. Simple models suggest that a large fraction of this influence is due to changes in basic plasma properties, namely, density, temperature, and potential. However, while such factors do play an important role, they only partly describe the observed differences in process results. Therefore, to better elucidate the role of chamber geometry in this work, the authors explore the influence of plasma chemistry and its symbiotic effect on plasma processing by decoupling the plasma density, temperature, and potential from the plasma-surface (wall) interactions. Specifically, a plasma system is used with which the authors can vary the chamber dimension so as to vary the plasma-surface interaction directly. By varying chamber wall diameter, 20-66 cm, and source-platen distance, 4-6 cm, the etch behavior of SiO 2 (or the deposition behavior of fluorocarbon polymer) and the resulting gas-phase chemistry change significantly. Results from in situ spectroscopic ellipsometry show significant differences in etch characteristics, with etch rates as high as 350 nm/min and as low as 75 nm/min for the same self-bias voltage. Fluorocarbon deposition rates are also highly dependent on chamber dimension and vary from no net deposition to deposition rates as high as 225 nm/min. Etch yields, however, remain unaffected by the chamber size variations. From Langmuir probe measurements, it is clear that chamber geometry results in significant shifts in plasma properties such as electron and ion densities. Indeed, such measurements show that on-wafer processes are limited at least in part by ion flux for high energy reactive ion etch. However, in situ multipass Fourier transform infrared spectroscopy reveals that the line-averaged COF 2 , SiF 4 , CF 2 , and CF 3 gas-phase densities are also dependent on chamber dimension at high self-bias voltage and also correlate well to the CF x

  3. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  4. Coulomb effects in isobaric cold fission from reactions 233U(nth,f), 235U(nth,f),239Pu(nth,f) and 252Cf(sf)

    International Nuclear Information System (INIS)

    Montoya, Modesto

    2013-01-01

    The Coulomb effect hypothesis, formerly used to interpret fluctuations in the curve of maximal total kinetic energy as a function of light fragment mass in reactions 233 U(n th ,f), 235 U(n th ,f) and 239 Pu(n th ,f), is confirmed in high kinetic energy as well as in low excitation energy windows, respectively. Data from reactions 233 U(n th ,f), 235 U(n th ,f), 239 Pu(n th ,f) and 252 Cf(sf) show that, between two isobaric fragmentations with similar Q-values, the more asymmetric charge split reaches the higher value of total kinetic energy. Moreover, in isobaric charge splits with different Q-values, similar preference for asymmetrical fragmentations is observed in low excitation energy windows. (author).

  5. Sensitivity of the 252Cf(sf neutron observables to the FREYA input yield functions Y(A, Z, TKE

    Directory of Open Access Journals (Sweden)

    Randrup Jørgen

    2017-01-01

    Full Text Available Within the framework of the fission event generator FREYA, we are studying the sensitivity of various neutron observables to the yield distribution Y (A,Z,TKE used as input to the code. Concentrating on spontaneous fission of 252Cf, we have sampled a large number of different input yield functions based on χ2 fits to the experimental data on Y (A and Y (TKE|A. For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract a variety of neutron observables, including the multiplicity distribution, the associated correlation coefficients, and its factorial moments, the dependence of the mean neutron multiplicity on the total fragment kinetic energy TKE and on the fragment mass number A, the neutron energy spectrum, and the two-neutron angular correlation function. In this way, we can determine the variation of these observables resulting from the uncertainties in the experimental mesurements. The imposition of a constraint on the resulting mean neutron multiplicity reduces the variation of the calculated neutron observables and provides a means for shrinking the uncertainties associated with the measured data.

  6. Sensitivity of the 252Cf(sf) neutron observables to the FREYA input yield functions Y(A, Z, TKE)

    Science.gov (United States)

    Randrup, Jørgen; Talou, Patrick; Vogt, Ramona

    2017-09-01

    Within the framework of the fission event generator FREYA, we are studying the sensitivity of various neutron observables to the yield distribution Y (A,Z,TKE) used as input to the code. Concentrating on spontaneous fission of 252Cf, we have sampled a large number of different input yield functions based on χ2 fits to the experimental data on Y (A) and Y (TKE|A). For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract a variety of neutron observables, including the multiplicity distribution, the associated correlation coefficients, and its factorial moments, the dependence of the mean neutron multiplicity on the total fragment kinetic energy TKE and on the fragment mass number A, the neutron energy spectrum, and the two-neutron angular correlation function. In this way, we can determine the variation of these observables resulting from the uncertainties in the experimental mesurements. The imposition of a constraint on the resulting mean neutron multiplicity reduces the variation of the calculated neutron observables and provides a means for shrinking the uncertainties associated with the measured data.

  7. Large area window on vacuum chamber surface for neutron scattering instruments

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao

    2012-01-01

    The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.

  8. Cold vacuum chamber for diagnostics: Instrumentation and first results

    Directory of Open Access Journals (Sweden)

    S. Gerstl

    2014-10-01

    Full Text Available For a proper design of the cryogenic layout of superconducting insertion devices it is necessary to take into account the heat load from the beam to the cold beam tube. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG has been built. COLDDIAG is designed in a flexible way, to allow its installation in different light sources. In order to study the beam heat load and the influence of the cryosorbed gas layer, the instrumentation comprises temperature sensors, pressure gauges, and mass spectrometers as well as retarding field analyzers with which it is possible to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. In this paper we describe the experimental equipment, the installation of COLDDIAG in the Diamond Light Source and selected examples of the measurements performed to show the capabilities of this unique instrument.

  9. Cold vacuum chamber for diagnostics: Instrumentation and first results

    Science.gov (United States)

    Gerstl, S.; Voutta, R.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; de Jauregui, D. Saez; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Sikler, G.; Migliorati, M.; Spataro, B.

    2014-10-01

    For a proper design of the cryogenic layout of superconducting insertion devices it is necessary to take into account the heat load from the beam to the cold beam tube. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is designed in a flexible way, to allow its installation in different light sources. In order to study the beam heat load and the influence of the cryosorbed gas layer, the instrumentation comprises temperature sensors, pressure gauges, and mass spectrometers as well as retarding field analyzers with which it is possible to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. In this paper we describe the experimental equipment, the installation of COLDDIAG in the Diamond Light Source and selected examples of the measurements performed to show the capabilities of this unique instrument.

  10. In-water calibration of PDR 192Ir brachytherapy sources with an NE2571 ionization chamber

    International Nuclear Information System (INIS)

    Reynaert, N.; Verhaegen, F.; Thierens, H.

    1998-01-01

    An ionometric calibration procedure for 192 Ir PDR brachytherapy sources in terms of dose rate to water is presented. The calibration of the source is performed directly in a water phantom at short distances (1.0, 2.5 and 5.0 cm) using an NE2571 Farmer type ion chamber. To convert the measured air-kerma rate in water to dose rate to water a conversion factor (CF) was calculated by adapting the medium-energy x-ray dosimetry protocol for a point source geometry (diverging beam). The obtained CF was verified using two different methods. Firstly, the CF was calculated by Monte Carlo simulations, where the source-ionization chamber geometry was modelled accurately. In a second method, a combination of Monte Carlo simulations and measurements of the air-kerma rate in water (at 1.0, 2.5 and 5.0 cm distance) and in air (1 m distance) was used to determine the CF. The obtained CFs were also compared with conversion factors calculated with the adapted dosimetry protocol for high-energy photons introduced by Toelli. All calculations were done for a Gammamed PDR 192 Ir source-NE2571 chamber geometry. The conversion factors obtained with the four different methods agree to within 1% at the three distances of interest. We obtained the following values (medium-energy x-ray protocol): CF(1 cm) = 1.458; CF(2.5 cm) = 1.162; CF(5.0 cm) = 1.112 (1σ=0.7% for the three distances of interest). The obtained results were checked with TLD measurements. The values of the specific dose rate constant and the radial dose function calculated in this work are in accordance with the literature data. (author)

  11. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  12. Application of TSH bioindicator for studying the biological efficiency of radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Cebulska-Wasilewska, A.

    1996-10-01

    Dose response relationships for various endpoints (gene and lethal mutations, cell cycle alterations) in somatic cells of Tradescantia clone 4430 were established for X-rays and for mixed fast and thermal neutrons from Cf-252 source of KAERI and from U-120 cyclotron of INP. This was a pilot experiment to check if it is possible to establish the relative biological effectiveness values for Cf-252 irradiated TSH cells, with and without boron ion pretreatment, in conditions of mutual KAERI-INP experiment. When T-4430 was pretreated with boron ion, there was and enhancement in biological efficacy of neutron form Cf-252 source. 2 tabs., 7 figs., 7 refs. (Author)

  13. Californium-252

    International Nuclear Information System (INIS)

    1975-01-01

    This meeting constituted the third phase of a project initiated by the Dosimetry Section of the IAEA in 1973. The first step, early in 1973, consisted of the development of a programme for the loan of Cf-252 sources to the Member States in support of education, training and some limited research. To date, 14 institutions in 13 Member States have participated in this loan programme. In August last year, the Agency published an instructional syllabus and laboratory manual authored by Professors Eric J. Hall and Harald H. Rossi of Columbia University (Californium-252 in Teaching and Research, Technical Reports Series No. 159). The appearance of this publication, including guidance on the design and construction of a storage and use facility, was the second phase of this programme aimed at providing some support to potential users in the fields of radiation biology and dosimetry. The objective of the programme's third phase - the convening of an Educational Seminar - was to provide a forum to bring together participants in the Agency's loan programme and experts in various scientific fields. Specifically, the Seminar consisted of a series of expert presentations in spectrometry, activation and prompt gamma analyses, on-stream analysis, dosimetry, health physics, radiology and radiotherapy. (author)

  14. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    International Nuclear Information System (INIS)

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu; Wang Dong

    2011-01-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ( 252 Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with 252 Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7–12 Gy per insertion per week, with a total dose of 29–45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16–38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44–56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of 252 Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  15. Feasibility of fissile mass assay of spent nuclear fuel using 252Cf-source-driven frequency-analysis

    International Nuclear Information System (INIS)

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1996-01-01

    The feasibility was evaluated using MCNP-DSP, an analog Monte Carlo transport cod to simulate source-driven measurements. Models of an isolated Westinghouse 17x17 PWR fuel assembly in a 1500-ppM borated water storage pool were used. In the models, the fuel burnup profile was represented using seven axial burnup zones, each with isotopics estimated by the PDQ code. Four different fuel assemblies with average burnups from fresh to 32 GWd/MTU were modeled and analyzed. Analysis of the fuel assemblies was simulated by inducing fission in the fuel using a 252 Cf source adjacent to the assembly and correlating source fissions with the response of a bank of 3 He detectors adjacent to the assembly opposite the source. This analysis was performed at 7 different axial positions on each of the 4 assemblies, and the source-detector cross-spectrum signature was calculated for each of these 28 simulated measurements. The magnitude of the cross-spectrum signature follows a smooth upward trend with increasing fissile material ( 235 U and 239 Pu) content, and the signature is independent of the concentration of spontaneously fissioning isotopes (e.g., 244 Cm) and (α,n) sources. Furthermore, the cross-spectrum signature is highly sensitive to changes in fissile material content. This feasibility study indicated that the signature would increase ∼100% in response to an increase of only 0.1 g/cm 3 of fissile material

  16. Special design issues. Ion beam driver-reaction chamber interfaces

    International Nuclear Information System (INIS)

    Moir, R.W.; Peterson, R.R.; Kessler, G.

    1995-01-01

    Design issues of the interface between ion beam drivers and the reaction chamber for heavy ion beam and light ion beam inertial fusion drivers are discussed. The interface must provide for radiation protection of final focusing magnets, pumping of evaporated material and non-condensable gas that enter the beam ports, thermal insulation, heat removal, a.o.. Beam ports and focal magnets must be protected by neutronically thick shielding between the beam path and the magnet conductor. The required thickness of the shielding determines the minimum spacing between individual beams in a cluster of beams. The cone angle of this cluster can affect target performance. The beamlines are subjected to evaporated material, debris, and rapidly moving droplets. The reaction chambers used here are HYLIFE-II for indirect, HIBALL-II for direct drive. The light ion beam interface is based on the LIBRA and LIBRA-LiTE studies. In the case of HYLIFE-II, liquid jets must be demonstrated with a thickness of 0.5 m and with an edge that comes to within 10 mm of the beam edges to protect the ports. Design of compact focal arrays with enough shielding to give magnets an adequate lifetime must be achieved. As shielding is added the size of the beam array will grow and the target will drop. For HIBALL neutron shielding of the focal magnets provides an adequate lifetime. Replaceable special INPORT units will have to be developed in the region of the beam ports. For light ions transport issues have led to structures being placed close enough to the target that they experience a higher neutron damage rate and must be replaced once or twice a year, which would require remote maintenance. Light ion concepts could greatly benefit from a self-pinched transport scheme, though the details are unclear and the effect on availability is uncertain. Light and heavy ions have similar problems in keeping the gas in the drivers at a low density. Both will require active means to preserve this low density, while

  17. Rate-dependent performance of ion chambers for particle-ID at the GSI fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, Jan-Paul; Allred, Timothy; Enders, Joachim [Institut fuer Kernphysik, TU Darmstadt (Germany); Gernhaeuser, Roman; Maurus, Steffen [Physik Department, TU Muenchen (Germany); Nociforo, Chiara; Pietri, Stephane; Prochazka, Andrej [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany)

    2015-07-01

    At the GSI Fragment Separator (FRS), multi-sampling ion chambers (MUSIC) employing a Frisch grid are used for charge identification of secondary ion beams. At the FAIR Super-FRS, higher rates are expected, and an event-by-event determination of the charge of secondary ions will be needed at rates of several 100000 events per second. The comparison of results from test measurements for the MUSIC performance with that of a recently constructed tilted-electrode gas ion chamber (TEGIC), which was designed similar to the one discussed, is presented.

  18. Imaging with a multiplane multiwire proportional chamber using heavy ion beams

    International Nuclear Information System (INIS)

    Chu, W.T.; Alonso, J.R.; Tobias, C.A.

    1982-01-01

    A 16-plane multiwire proportional chamber has been developed to accurately map intensity profiles of heavy ion beams at the Bevalac. The imaging capability of the system has been tested for reconstruction of 3-dimensional representation of a canine thorax region using heavy ion beams

  19. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  20. Development of a time projection chamber using gas electron multipliers (GEM-TPC)

    International Nuclear Information System (INIS)

    Oda, S.X.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Isobe, T.; Gunji, T.; Morino, Y.; Saito, S.; Yamaguchi, Y.L.; Sawada, S.; Yokkaichi, S.

    2006-01-01

    We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with three kinds of gases (Ar(90%)-CH 4 (10%), Ar(70%)-C 2 H 6 (30%) and CF 4 ). Detection efficiency of 99%, and spatial resolution of 79μm in the pad-row direction and 313μm in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described

  1. Desorption of organic molecules with fast incident atomic and polyatomic ions

    International Nuclear Information System (INIS)

    Hunt, J.E.; Salehpour, M.; Fishel, D.L.

    1989-01-01

    In 1974, Macfarlane and coworkers introduced a new mass spectrometric technique based on desorption-ionization of sample molecules from solid targets by the impact of fast heavy ions (fission fragments) from 252 Cf. The process of ion-induced desorption of molecular ions from surfaces is not yet fully understood, although a large amount of experimental data related to the mechanism has been published. This paper concerns the use of fast incident polyatomic ions to induce desorption of secondary molecular ions of valine and chlorophyll from surfaces. Polyatomic ions are unique in that they are a collection of temporally and spatially correlated atoms. The main finding in this study is that incident polyatomic ions produce drastic enhancements in the secondary ion yields over atomic ions. Also, two types of nonlinear effects in desorption have been observed and will be discussed

  2. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    DEFF Research Database (Denmark)

    Hurley, MD; Ball, JC; Wallington, TJ

    2004-01-01

    Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH...... respectively. Using relative rate techniques, a value of k(Cl + CF3(CF2)(3)CH2CHO) = (1.84 +/- 0.30) x 10(-11) cm(3) molecule(-1) s(-1) was determined. The yield of the perfluorinated acid, CF3(CF2)(3)COOH, from the 4:2 fluorotelomer alcohol increased with the diluent gas oxygen concentration......, and CF3(CF2)(3)CH2C(O)OOH are secondary oxidation products. Further irradiation results in the formation of CF3(CF2)(3)COOH, COF2, and CF3OH. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH, and CF3(CF2)(3)CH2C(O)OOH are formed from CF3(CF2)(3)CH2CHO oxidation in yields of 46 27 and less than or equal to 27...

  3. The role of ions in new particle formation in the CLOUD chamber

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2017-12-01

    Full Text Available The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion–ion recombination before they grew to 2.5 nm. At this size, more than 90 % of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiälä, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations

  4. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber

    Directory of Open Access Journals (Sweden)

    J. Kleffmann

    2012-01-01

    Full Text Available Reliable measurements of atmospheric trace gases are necessary for both, a better understanding of the chemical processes occurring in the atmosphere, and for the validation of model predictions. Nitrogen dioxide (NO2 is a toxic gas and is thus a regulated air pollutant. Besides, it is of major importance for the oxidation capacity of the atmosphere and plays a pivotal role in the formation of ozone and acid precipitation. Detection of NO2 is a difficult task since many of the different commercial techniques used are affected by interferences. The chemiluminescence instruments that are used for indirect NO2 detection in monitoring networks and smog chambers use either molybdenum or photolytic converters and are affected by either positive (NOy or negative interferences (radical formation in the photolytic converter. Erroneous conclusions on NO2 can be drawn if these interferences are not taken into consideration. In the present study, NO2 measurements in the urban atmosphere, in a road traffic tunnel and in a smog-chamber using different commercial techniques, i.e. chemiluminescence instruments with molybdenum or photolytic converters, a Luminol based instrument and a new NO2-LOPAP, were compared with spectroscopic techniques, i.e. DOAS and FTIR. Interferences of the different instruments observed during atmospheric measurements were partly characterised in more detail in the smog chamber experiments. Whereas all the commercial instruments showed strong interferences, excellent agreement was obtained between a new NO2-LOPAP instrument and the FTIR technique for the measurements performed in the smog chamber.

  5. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  6. Ion chamber-electrometer measurement system for radiation protection tests in X-ray equipment for interventional procedures

    International Nuclear Information System (INIS)

    Bottaro, Marcio

    2012-01-01

    A new parallel plate ionization chamber with volume of 500 cc and an electrometer with digital interface for data acquisition, configuring an ion chamber electrometer measurement system, were developed to comply with specific requirements for compulsory radiation protection tests in interventional X-ray equipment. The ion chamber has as main characteristics: low cost, mechanical strength and response variation with beam energy of less than 5% in the 40 kV to 150 kV range. The electrometer has a high gain (5x10 8 V/A) transimpedance amplifier circuit and a data acquisition and control system developed in LabVIEW ® platform, including an integrated power supply for the ion chamber bias with adjustable DC voltage output from O to 1000 V and an air density correction system. Electric field calculations, laboratory measurements in standard beams and computational simulations of radiation interactions in chamber volume with Monte Carlo Method were employed in the elaborated methodology of the ion chamber development, which was tested and validated. It was also developed a simplified methodology for electrometer calibration that assures metrological trustworthiness of the measurement system. Tests for the system performance evaluation as environmental influence response, energy response, angular dependency, linearity and air kerma and air kerma rate dependency were performed according to international standards and requirements. Additionally, for a detailed evaluation of the developed ion chamber, simulations with various scattered radiation spectra were performed. The system was applied in leakage radiation, residual radiation and scattered radiation tests, being compared with other reference systems and validated for laboratorial test routine. (author)

  7. Ion-stimulated gas desorption yields of coated (Au, Ag, Pd) stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator (LINAC 3), has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting on different accelerator-type vacuum chambers. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, and palladium-coated 316LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 10**4 molecules/ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble metal coating by up to 2 orders of magnitude. In addition, the effectiveness of beam scrubbing with heavy ions and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring (LEIR) are discussed.

  8. Development of a Novel Contamination Resistant Ion Chamber for Process Tritium Measurement and Use in the JET First Trace Tritium Experiment

    International Nuclear Information System (INIS)

    Worth, L.B.C.; Pearce, R.J.H.; Bruce, J.; Banks, J.; Scales, S.

    2005-01-01

    The accuracy of process measurements of tritium with conventional ion chambers is often affected by surface tritium contamination. The measurement of tritium in the exhaust of the JET torus is particularly difficult due to surface contamination with highly tritiated hydrocarbons. JET's first unsuccessful attempt to overcome the contamination problem was to use an ion chamber, with a heating element as the chamber wall so that it could be periodically decontaminated by baking. The newly developed ion chamber works on the principle of minimising the surface area within the boundary of the anode and cathode.This paper details the design of the ion chamber, which utilises a grid of 50-micron tungsten wire to define the ion chamber wall and the collector electrode. The effective surface area which, by contamination, is able to effect the measurement of tritium within the process gas has been reduced by a factor of ∼200 over a conventional ion chamber. It is concluded that the new process ion chamber enables sensitive accurate tritium measurements free from contamination issues. It will be a powerful new tool for future tritium experiments both to improve tritium tracking and to help in the understanding of tritium retention issues

  9. Equivalent properties of single event burnout induced by different sources

    International Nuclear Information System (INIS)

    Yang Shiyu; Cao Zhou; Da Daoan; Xue Yuxiong

    2009-01-01

    The experimental results of single event burnout induced by heavy ions and 252 Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252 Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the 'turn-off' state is more susceptible to single event burnout than it is in the 'turn-on' state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252 Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout. (authors)

  10. TH-AB-201-08: Ion Chamber Dose Measurements - Problems with the Temperature-Pressure Correction Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bourgouin, A [Carleton University, Ottawa, Ontario (Canada); McEwen, M [National Research Council, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate the behavior of ionization chambers over a wide pressure range. Methods: Three cylindrical and two parallel-plate designs of ion chamber were investigated. The ion chambers were placed in vessel where the pressure was varied from atmospheric (101 kPa) down to 5 kPa. Measurements were made using 60Co and high-energy electron beams. The pressure was measured to better than 0.1% and multiple data sets were obtained for each chamber at both polarities to investigate pressure cycling and dependency on the sign of the charge collected. Results: For all types of chamber, the ionization current, corrected using the standard PTP, showed a similar behaviour. Deviations from the standard theory were generally small for Co-60 but very significant for electron beams, up to 20 % below P = 10 kPa. The effect was found to be always larger when collecting negative charge, suggesting a dependence on free-electron collection. The most likely source of such electrons is low-energy electrons emitted from the electrodes. This signal would be independent of air pressure within the chamber cavity. The data was analyzed to extract this signal and it was found to be a non-negligible component of the ionization current at atmospheric pressure. In the case of the parallel plate chambers, the effect was approximately 0.25 %. For the cylindrical chambers the effect was larger - up to 1.2 % - and dependent on the chamber type, which would be consistent with electron emission from different wall materials. For the electron beams, the correction factor was dependent on the electron energy and approximately double that observed in 60Co. Conclusion: Measurements have indicated significant deviations of the standard pressure correction that are consistent with electron emission from chamber electrodes. This has implications for both primary standard and reference ion chamber-based dosimetry.

  11. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  12. Chamber transport of ''foot'' pulses for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  13. 100 mg 251Cf activation analysis facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    MacMurdo, K.W.; Bowman, W.W.

    1975-01-01

    The 252 Cf Activation Analysis Facility at the Savannah River Laboratory (SRL) is used routinely for multielement analyses of a wide variety of solid and liquid samples (e.g., metal alloys, fly ash and other airborne particles, rocks, and aqueous and nonaqueous solutions). An automated absolute activation analysis technique, developed to use neutron transport codes to calculate multienergy group neutron spectra and fluxes, converts counting data directly into elemental concentrations expressed in parts per million. The facility contains four sources of 252 Cf totaling slightly over 100 mg. A pneumatic ''rabbit'' system permits automatic irradiation/decay/counting regimes to be performed unattended on up to 100 samples. Detection sensitivities of less than or equal to 400 ppb natural uranium and less than or equal to 0.5 nCi/g for 239 Pu are observed. Detection limits for over 65 elements have been determined. Over 40 elements are detectable at the one part per million level or less. Overall accuracies of +- 10 percent are observed for most elements. (auth)

  14. Dry etching of new phase-change material Al1.3Sb3Te in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Zhang Xu; Rao Feng; Liu Bo; Peng Cheng; Zhou Xilin; Yao Dongning; Guo Xiaohui; Song Sannian; Wang Liangyong; Cheng Yan; Wu Liangcai; Song Zhitang; Feng Songlin

    2012-01-01

    The dry etching characteristic of Al 1.3 Sb 3 Te film was investigated by using a CF 4 /Ar gas mixture. The experimental control parameters were gas flow rate into the chamber, CF 4 /Ar ratio, the O 2 addition, the chamber background pressure, and the incident RF power applied to the lower electrode. The total flow rate was 50 sccm and the behavior of etch rate of Al 1.3 Sb 3 Te thin films was investigated as a function of the CF 4 /Ar ratio, the O 2 addition, the chamber background pressure, and the incident RF power. Then the parameters were optimized. The fast etch rate was up to 70.8 nm/min and a smooth surface was achieved using optimized etching parameters of CF 4 concentration of 4%, power of 300 W and pressure of 80 mTorr.

  15. Fail-safe ion chamber errant beam detector tailored for personnel protection

    International Nuclear Information System (INIS)

    Plum, M.A.; Browman, A.A.; Brown, D.; Lee, D.M.; McCabe, C.W.

    1989-01-01

    This fail-safe ion chamber system is designed to be part of the personnel safety system (PSS) for the Los Alamos neutron Scattering Center (LANSCE) at the Los Alamos National Laboratory. Its job is to protect the occupants of the experimental areas from large radiation doses caused by errant beam conditions during beam transport from the Proton Storage Ring (PSR) to the LANSCE neutron spallation target. Due to limited shielding between the beam transport line and the experimental area only if the beam losses in the transport line are very low. The worst case beam spill scenario is calculated to result in a personnel exposure of about 0.01 Gys/s (1 rad/s). Although the preferred solution is to increase the bulk shielding between the beam line and the experimental area, the physical dimensions of the site do not permit an adequate amount of shielding to be added. The solution adopted is a layered system of three types of highly reliable detector systems: a current limiter system located in the beam line, a neutron detector system located in the experimental areas, and an ion chamber system located on the walls of the beam line tunnels. The ion chamber system is capable of shutting off the beam in less than 0.5 s, resulting in a worst case personnel exposure of 0.005 Gys (0.5 rad). 4 figs

  16. Comparison of OH Reactivity Instruments in the Atmosphere Simulation Chamber SAPHIR.

    Science.gov (United States)

    Fuchs, H.; Novelli, A.; Rolletter, M.; Hofzumahaus, A.; Pfannerstill, E.; Edtbauer, A.; Kessel, S.; Williams, J.; Michoud, V.; Dusanter, S.; Locoge, N.; Zannoni, N.; Gros, V.; Truong, F.; Sarda Esteve, R.; Cryer, D. R.; Brumby, C.; Whalley, L.; Stone, D. J.; Seakins, P. W.; Heard, D. E.; Schoemaecker, C.; Blocquet, M.; Fittschen, C. M.; Thames, A. B.; Coudert, S.; Brune, W. H.; Batut, S.; Tatum Ernest, C.; Harder, H.; Elste, T.; Bohn, B.; Hohaus, T.; Holland, F.; Muller, J. B. A.; Li, X.; Rohrer, F.; Kubistin, D.; Kiendler-Scharr, A.; Tillmann, R.; Andres, S.; Wegener, R.; Yu, Z.; Zou, Q.; Wahner, A.

    2017-12-01

    Two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016 to compare hydroxyl (OH) radical reactivity (kOH) measurements. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapor, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements is higher for instruments directly detecting hydroxyl radicals (OH), whereas the indirect Comparative Reactivity Method (CRM) has a higher limit of detection of 2s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapor or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected in the chamber to simulate urban and forested environments. Overall, the results show that instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to the reference were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds. In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied in order to account for known effects of, for example, deviations from pseudo-first order conditions, nitrogen oxides or water vapor on the measurement

  17. Experimental study of secondary ion emission from bombarded surfaces by heavy ions at nucleon energy between 0.1 and 5 MeV/u

    International Nuclear Information System (INIS)

    Lorthiois, I.

    1983-03-01

    A time of flight mass spectrometer associated with 252 Cf has been built in the laboratory and used to identify organic and biological molecules. A few number of examples is shown. The complex interaction processes between primary ions and several kinds of materials can be more easily studied by using heavy ions from an accelerator. The mass of the primary ions, its velocity and its state charge are known parameters wich can be varied in these experiments. The desorption yields have been measured simultaneously with other parameters (velocity of the primary ions, number of emitted electrons). The velocity dependance of the yield shows the existence of a maximum around 1 cm/ns and no direct correlations have been found between the yield curves and the electronic stopping power (dE/dx). Experimental results are presented for several types of primary ions (Cu, Kr, Ag) and of material deposits [fr

  18. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    Science.gov (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  19. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...

  20. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.

    Science.gov (United States)

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2014-03-01

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  1. Monte Carlo calculational design of an NDA instrument for the assay of waste products from high enriched uranium spent fuels

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Schrandt, R.G.; MacDonald, J.L.; Cverna, F.H.

    1979-01-01

    The Monte Carlo design of the waste assay region of a dual assay system, to be installed at the Fluorinal and Storage Facility, is described. The instrument will be used by the facility operator to assay high-enriched spent fuel packages and waste solids produced from dissolution of the fuels. The fissile content discharged in the waste is expected to vary between 0 and 400 g of 235 U. Material accountability measurements of the waste must be obtained in the presence of large neutron (0.5 x 10 6 n/s) and gamma (50,000 R/hr) backgrounds. The assay system employs fast-neutron irradiation of the sample, using a 5 mg 252 Cf source, followed by delayed neutron counting after the source is transferred to storage. Calculations indicate a +-4-g (2 sigma) assay for a waste canister containing 300 g of 235 U is achievable with an end-of-life (1 mg) 252 Cf source and a background rate of 0.5 x 10 6 n/s

  2. Discrepancies in the half-lives of 90Sr, 137Cs and 252Cf

    International Nuclear Information System (INIS)

    Rajput, M.U.; Mac Mahon, T.D.

    1990-01-01

    Recent reports have pointed out that significant discrepancies exist in published half-life data for 90 Sr, 137 Cs and 252 Cr, amongst others. These discrepancies make the estimation of evaluated half-lives for these isotopes difficult and contentious. This paper reviews the current situation, takes into account recently available data and attempts to derive recommended half-lives and associated uncertainties for the three isotopes. 37 refs, 3 tabs

  3. Noise analysis based validation of the dynamics of in-core flux detectors and ion chambers used in SDS and RRS systems

    International Nuclear Information System (INIS)

    Gloeckler, O.; Cooke, D.; Tulett, M.V.

    1996-01-01

    The paper concentrates on some of the recent applications of reactor noise analysis in Ontario Hydro's CANDU stations, related to the dynamics of in-core flux detectors (ICFDs) and ion chambers. These applications include (1) detecting anomalies in the dynamics of ICFDs and ion chambers, (2) estimating the effective prompt fractions of ICFDs in power rundown tests and in noise measurement, (3) detecting the mechanical vibration of ICFD instrument tubes induced by moderator flow, (4) detecting the mechanical vibration of fuel channels induced by coolant flow, (5) identifying the cause of excessive signal fluctuations in certain flux detectors, (6) validating the dynamic coupling between liquid zone control signals. Some of these applications are performed on a regular basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the AECB with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology (author)

  4. Absorbed dose beam quality factors for cylindrical ion chambers: Experimental determination at 6 and 15 MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Caporali, C; Guerra, A S; Laitano, R F; Pimpinella, M [ENEA-Casaccia, Inst. Nazionale di Meterologia delle Radiazioni Ionizzanti, Rome (Italy). Dipt. Ambiente

    1996-08-01

    Ion chambers calibrated in terms of absorbed dose to water need an additional factor conventionally designed by k{sub Q} in order to determine the absorbed dose. The quantity k{sub Q} depends on beam quality and chamber characteristics. Rogers and Andreo provided calculations of the k{sub Q} factors for most commercially available ionization chambers for clinical dosimetry. Experimental determinations of the k{sub Q} factors for a number of cylindrical ion chambers have been made and are compared with the calculated values so far published. Measurements were made at 6 MV and 15 MV clinical photon beams at a point in water phantom where the ion chambers and a Fricke dosimeter were alternatively irradiated. The uncertainty on the experimental k{sub Q} factors resulted about {+-} 0.6%. The theoretical and experimental k{sub Q} values are in fairly good agreement. (author). 12 refs, 3 tabs.

  5. Polarity effects and apparent ion recombination in microionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Hooten, Brian D. [Standard Imaging, Middleton, Wisconsin 53562 (United States); Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2016-05-15

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurements were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered

  6. Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber

    International Nuclear Information System (INIS)

    Welch, D.R.; Rose, D.V.; Oliver, B.V.; Genoni, T.C.; Clark, R.E.; Olson, C.L.; Yu, S.S.

    2002-01-01

    In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10-150 mTorr, calculations predict a robust self-magnetic force sufficient for self

  7. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  8. Atmospheric chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials

    DEFF Research Database (Denmark)

    Wallington, TJ; Hurley, MD; Nielsen, OJ

    2004-01-01

    Fourier transform infrared (FTIR) smog chamber techniques were used to measure k(Cl + CF3CFHCF2OCF3) = (4.09 +/- 0.42) x 10(-17), k(OH + CF3CFHCF2OCF3) = (1.43 +/- 0.28) x 10(-15), k(Cl + CF3CFHCF2OCF2H) = (6.89 +/- 1.29) x 10(-17), and k(OH + CF3CFHCF2OCF2H) = (1.79 +/- 0.34) x 10(-15) cm(3) mol...... respectively. The 100-year time horizon global warming potentials of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H relative to CO2 are 4530 and 4340. Results are discussed with respect to the atmospheric chemistry of hydrofluoroethers....

  9. Measurement of the fission yields of selected prompt and decay fission product gamma-rays of spontaneously fissioning 252Cf and 244Cm

    International Nuclear Information System (INIS)

    Reber, E.L.; Gehrke, R.J.; Aryaeinejad, R.; Hartwell, J.K.

    2005-01-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected γ -rays emitted by the spontaneously fissioning isotopes 252 Cf and 244 Cm. The measured γ-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of England and Rider, those γ-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of England and Rider. For those γ-rays whose production is dominated by direct (independent) yield, the ratio of γ-rays per spontaneous fission is reported. The γ-ray yield can be compared to the independent yield values of England and Rider when 100% of the direct feeding passes through the γ-ray. In those cases where both cumulative and independent yields contribute to the observed γ-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed. (author)

  10. Calculated neutron air kerma strength conversion factors for a generically encapsulated Cf-252 brachytherapy source

    CERN Document Server

    Rivard, M J; D'Errico, F; Tsai, J S; Ulin, K; Engler, M J

    2002-01-01

    The sup 2 sup 5 sup 2 Cf neutron air kerma strength conversion factor (S sub K sub N /m sub C sub f) is a parameter needed to convert the radionuclide mass (mu g) provided by Oak Ridge National Laboratory into neutron air kerma strength required by modern clinical brachytherapy dosimetry formalisms indicated by Task Group No. 43 of the American Association of Physicists in Medicine (AAPM). The impact of currently used or proposed encapsulating materials for sup 2 sup 5 sup 2 Cf brachytherapy sources (Pt/Ir-10%, 316L stainless steel, nitinol, and Zircaloy-2) on S sub K sub N /m sub C sub f was calculated and results were fit to linear equations. Only for substantial encapsulation thicknesses, did S sub K sub N /m sub C sub f decrease, while the impact of source encapsulation composition is increasingly negligible as Z increases. These findings are explained on the basis of the non-relativistic kinematics governing the majority of sup 2 sup 5 sup 2 Cf neutron interactions. Neutron kerma and energy spectra resul...

  11. Development of a multi-layer ion chamber for measurement of depth dose distributions of heavy-ion therapeutic beam for individual patients

    International Nuclear Information System (INIS)

    Shimbo, Munefumi; Futami, Yasuyuki; Yusa, Ken; Matsufuji, Naruhiro; Kanai, Tatsuaki; Urakabe, Eriko; Yamashita, Haruo; Akagi, Takashi; Higashi, Akio

    2000-01-01

    In heavy-ion radiotherapy, an accelerated beam is modified to realize a desired dose distribution in patients. The set-up of the beam-modifying devices in the irradiation system is changed according to the patient, and it is important to check the depth dose distributions in the patient. In order to measure dose distributions realized by an irradiation system for heavy-ion radiotherapy, a multi-layer ionization chamber (MLIC) was developed. The MLIC consists of 64 ionization chambers, which are stacked mutually. The interval between each ionization chamber is about 4.1 mm water. There are signal and high voltage plates in the MLIC, which are used as electrodes of the ionization chambers and phantom. Depth dose distribution from 5.09 mm to 261.92 mm water can be measured in about 30 seconds using this MLIC. Thus, it is possible to check beam quality in a short amount of time. (author)

  12. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Multi-wire chamber system for heavy ion beam monitoring at the Bevalac

    International Nuclear Information System (INIS)

    Cuperus, J.; Morgado, R.

    1975-03-01

    Horizontal and vertical integrated beam-current profiles are generated by a system of multi-wire chambers (32 wires/profile) operating in either the ionization or proportional mode. Sixteen distinct displays (1024 words) are digitally stored and any four may be simultaneously displayed. A new display can be generated at 64 ms intervals. A central control unit selects the mode of operation, the amount of delay after an appropriate trigger, the chamber integration time, and the particular chambers to be displayed. Operating in the proportional mode, the system can detect relativistic heavy-ion beam intensities as low as 10 4 charges cm -2 sec -1 . (U.S.)

  15. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain)

    2014-03-15

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  16. Basic studies of a gas-jet-coupled ion source for on-line isotope separation

    International Nuclear Information System (INIS)

    Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1980-01-01

    A hollow-cathode ion source was used in a gas-jet-coupled configuration to produce ion beams of fission products transported to it from a 252 Cf fission source. Solid aerosols of NaCl and Ag were used effectively as activity carriers in the gas-jet system. Flat-plate skimmers provided an effective coupling of the ion source to the gas jet. Ge(Li) spectrometric measurements of the activity deposited on an ion-beam collector relative to that deposited on a pre-skimmer collector were used to obtain separation efficiencies ranging from 0.1% to > 1% for Sr, Y, Tc, Te, Cs, Ba, Ce, Pr, Nd and Sm. The use of CCl 4 as a support gas resulted in a significant enhancement of the alkaline-earth and rare-earth separation efficiencies

  17. Differential and integral comparisons of three representations of the prompt neutron spectrum for the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Madland, D.G.; LaBauve, R.J.; Nix, J.R.

    1984-01-01

    Because of their importance as neutron standards, we present comparisons of measured and calculated prompt fission neutron spectra N(E) and average prompt neutron multiplicities anti nu/sub p/ for the spontaneous fission of 252 Cf. In particular, we test three representations of N(E) against recent experimental measurements of the differential spectrum and threshold integral cross sections. These representations are the Maxwellian spectrum, the NBS spectrum, and the Los Alamos spectrum of Madland and Nix. For the Maxwellian spectrum, we obtain the value of the Maxwellian temperature T/sub M/ by a least-squares adjustment to the experimental differential spectrum of Poenitz and Tamura. For the Los Alamos spectrum, a similar least-squares adjustment determines the nuclear level-density parameter a, which is the single unknown parameter that appears. The NBS spectrum has been previously constructed by adjustments to eight differential spectra measured during the period 1965 to 1974. Among these three representations, we find that the Los Alamos spectrum best reproduces both the differential and integral measurements, assuming ENDF/B-V cross sections in the calculation of the latter. Although the NBS spectrum reproduces the integral measurements fairly well, it fails to satisfactorily reproduce the new differential measurement, and the Maxwellian spectrum fails to satisfactorily reproduce the integral measurements. Additionally, we calculate a value of anti nu/sub p/ from the Los Alamos theory that is within approximately 1% of experiment. 25 references

  18. High-resolution ion pulse ionization chamber with air filling for the {sup 222}Rn decays detection

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilyuk, Yu.M.; Gangapshev, A.M.; Gezhaev, A.M.; Etezov, R.A.; Kazalov, V.V.; Kuzminov, V.V. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation); Panasenko, S.I. [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Ratkevich, S.S., E-mail: ssratk@gmail.com [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Tekueva, D.A.; Yakimenko, S.P. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation)

    2015-11-21

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the {sup 222}Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented. - Highlights: • The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. • The chamber is intended to register alpha-particles from {sup 222}Rn and its daughter's decays in the filled air sample. • The detector is less sensitive to electromagnetic pick-ups and mechanical noises. • An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure have been investigated and the results are presented.

  19. Instrumentation for Position Sensitive Detector-Powder diffractometer at CENM-Maamora

    International Nuclear Information System (INIS)

    Messous, M.-Y.; Belhorma, B.; Labrim, H.; El-Bakkari, B.; Jabri, H.

    2013-06-01

    Linear position sensitive detectors are widely used to configure neutron diffractometer and other instruments. Necessary front-end electronics and data acquisition system was developed to fulfil such instruments built around the research reactor. In this paper, the front-end electronics dedicated to the neutron powder diffractometer which will be installed in the axial beam port of the Triga Mark II research reactor (Center of Nuclear Studies of Maamora) is described. It consists of High voltage power supply, a Position-decoder and a Multichannel analyzer and data acquisition software. The 3 He-PSD detector response exposed to the neutron flow emitted by 252 Cf source held in paraffin spheres with distinct thicknesses for moderation effect, is shown. Monte-Carlo N Particles code (MCNP) simulations were also performed to study both the detector performance and the paraffin efficiency. (authors)

  20. Core Facility of the Juelich Observatory for Cloud Evolution (JOYCE - CF)

    Science.gov (United States)

    Beer, J.; Troemel, S.

    2017-12-01

    A multiple and holistic multi-sensor monitoring of clouds and precipitation processes is a challenging but promising task in the meteorological community. Instrument synergies offer detailed views in microphysical and dynamical developments of clouds. Since 2017 The the Juelich Observatory for Cloud Evolution (JOYCE) is transformed into a Core Facility (JOYCE - CF). JOYCE - CF offers multiple long-term remote sensing observations of the atmosphere, develops an easy access to all observations and invites scientists word wide to exploit the existing data base for their research but also to complement JOYCE-CF with additional long-term or campaign instrumentation. The major instrumentation contains a twin set of two polarimetric X-band radars, a microwave profiler, two cloud radars, an infrared spectrometer, a Doppler lidar and two ceilometers. JOYCE - CF offers easy and open access to database and high quality calibrated observations of all instruments. E.g. the two polarimetric X-band radars which are located in 50 km distance are calibrated using the self-consistency method, frequently repeated vertical pointing measurements as well as instrument synergy with co-located micro-rain radar and distrometer measurements. The presentation gives insights into calibration procedures, the standardized operation procedures and recent synergistic research exploiting our radars operating at three different frequencies.

  1. Calibration of PKA meters against ion chambers of two geometries

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Pereira, Marco A.G.; Herdade, Silvio B.

    2011-01-01

    Kerma-area product (KAP or PKA) is a quantity that is independent of the distance to the X-ray tube focal spot and that can be used in radiological exams to assess the effective dose in patients. Clinical KAP meters are generally fixed in tube output and they are usually calibrated on-site by measuring the air kerma with an ion chamber and by evaluating the irradiated area by means of a radiographic image. Recently, a device was marketed (PDC, Patient Dose Calibrator, Radcal Co.), which was designed for calibrating clinical KAP meters with traceability to a standard laboratory. This paper presents a metrological evaluation of two methods that can be used in standard laboratories for the calibration of this device, namely, against a reference 30 cc ionization chamber or a reference parallel plates monitor chamber. Lower energy dependence was also obtained when the PDC calibration was made with the monitor chamber. Results are also shown of applying the PDC in hospital environment to the cross calibration of a clinical KAP meter from a radiology equipment. Results confirm lower energy dependence of the PDC relatively to the tested clinical meter. (author)

  2. Prototype development or multi-cavity ion chamber for depth dose measurement

    International Nuclear Information System (INIS)

    Nayak, M.K.; Sahu, T.K.; Haridas, G.; Bandyopadhyay, Tapas; Tripathi, R.M.; Nandedkar, R.V.

    2016-01-01

    In high energy electron accelerators, when the electrons interact with vacuum chamber or surrounding structural material, Bremsstrahlung x-rays are produced. It is having a broad spectrum extending up to the electron energies. Dose measured as a function of depth due to electromagnetic cascade will give rise to depth dose curve. To measure the online depth dose profile in an absorber medium, when high energy electron or Bremsstrahlung is incident, a prototype Multi-Cavity Ion Chamber (MCIC) detector is developed. The paper describes the design and development of the MCIC for measurement of depth dose profile

  3. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  4. A portable measurement system for subcriticality measurements by the Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1987-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the 252 Cf-source-driven neutron noise analysis method. 8 refs

  5. Construction of a scattering chamber for ion-beam analysis of environmental materials in undergraduate physics research

    Energy Technology Data Exchange (ETDEWEB)

    LaBrake, Scott M.; Vineyard, Michael F.; Turley, Colin F.; Moore, Robert D.; Johnson, Christopher [Department of Physics and Astronomy Union College, Schenectady, NY 12308 (United States)

    2013-04-19

    We have developed a new scattering chamber for ion-beam analysis of environmental materials with the 1.1-MV Pelletron accelerator at the Union College Ion-Beam Analysis Laboratory. The chamber was constructed from a ten-inch, Conflat, multi-port cross and includes a three-axis target manipulator and target ladder assembly, an eight-inch turbo pump, an Amptek X-ray detector, and multiple charged particle detectors. Recent projects performed by our undergraduate research team include proton induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses of atmospheric aerosols collected with a nine-stage cascade impactor in Upstate New York. We will describe the construction of the chamber and discuss the results of some commissioning experiments.

  6. Preliminary MCNP-POLIMI Simulations for the Evaluation of the ''Floor Effect'' Comparison of APSTNG and Cf Sources

    CERN Document Server

    Pozzi, S A

    2002-01-01

    The present simulations performed with the Monte Carlo code MCNP-POLIMI [1] have the scope of evaluating the associated-particle sealed tube neutron generator (APSTNG) for use as an interrogation source in the source-driven noise analysis method for the assay of nuclear materials. In the Nuclear Materials Identification System (NMIS) developed at the Oak Ridge National Laboratory, the time dependent cross-correlation of the timed neutron source and detector responses is one of the signatures acquired. Previous studies and measurements have demonstrated the sensitivity of this and other related signatures to fissile mass [2-3]. In a recent report [4], we outlined the advantages of the APSTNG interrogation source for use with NMIS when compared with the Cf-252 source. In particular, we showed that when the distance between the source and the sample and the sample and the detectors is large, the APSTNG source outperforms the Cf-252 in sensitivity to fissile mass. This is the case when performing measurements of ...

  7. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D2O-moderated 252Cf source

    International Nuclear Information System (INIS)

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li 2 B 4 O 7 , alone or in combination with CaSO 4 , (69%), 7 LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from 252 Cf moderated by 15-cm of D 2 O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a 238 PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li 2 B 4 O 7 type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, 7 LiF, and film. 12 refs., 1 fig., 5 tabs

  8. Optimization of time on CF_4/O_2 etchant for inductive couple plasma reactive ion etching of TiO_2 thin film

    International Nuclear Information System (INIS)

    Adzhri, R.; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md.; Hashim, U.; Ayub, R. M.

    2016-01-01

    In this work, we investigate the optimum etching of titanium dioxide (TiO_2) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF_4/O_2 gases as plasma etchant with ratio of 3:1, three samples of TiO_2 thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF_4 gases with plasma enhancement by O_2 gas able to break the oxide bond of TiO_2 and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  9. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  10. Inverse gamma ray dose rate effect in californium-252 RBE experiment with human T-1 cells irradiated in vitro

    International Nuclear Information System (INIS)

    Todd, P.; Feola, J.M.

    1986-01-01

    Metabolically deoxygenated suspensions of human T-1 cells were used to determine the RBE in hypoxia of low dose rate (LDR) Cf-252 radiation compared to LDR gamma radiation. Based upon the initial portion of the survival curves the RBE was 5.0 ± 1.0 for all components of the Cf-252 radiation and 7.1 ± 1.7 for the neutrons alone. An inverse dose rate effect was observed for LDR gamma radiation in which greater cell sensitivity was observed at lower dose rates and longer irradiation periods. It was demonstrated that there was little or no sublethal damage repair or cell progression during LDR at 21 deg C, and the observed decrease in cell survival probability with increasing irradiation time at a given dose was attributable to reoxygenation of the cell suspensions during the course of LDR exposures. (Auth.)

  11. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    CERN Document Server

    Bellwied, R; Bernardo, V; Caines, H; Christie, W; Costa, S; Crawford, H J; Cronqvist, M; Debbe, R; Dinnwiddie, R; Engelage, J; Flores, I; Fuzesy, R Z; Greiner, L; Hallman, T; Hoffmann, G; Huang, H Z; Jensen, P; Judd, E G; Kainz, K; Kaplan, M; Kelly, S; Lindstrom, P J; Llope, W J; Lo Curto, G; Longacre, R; Milosevich, Z; Mitchell, J T; Mitchell, J W; Mogavero, E; Mutchler, G S; Paganis, S; Platner, E; Potenza, R; Rotondo, F; Russ, D; Sakrejda, I; Saulys, A; Schambach, J; Sheen, J; Smirnoff, N; Stokely, C L; Tang, J; Trattner, A L; Trentalange, S; Visser, G; Whitfield, J P; Witharm, F; Witharm, R; Wright, M

    2002-01-01

    This report describes a multi plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGS E896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 T magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10 sup 6 Au ions per second.

  12. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  13. Etching of anode wire deposits with CF4/isobutane (80:20) avalanches

    International Nuclear Information System (INIS)

    Openshaw, R.; Henderson, R.S.; Faszer, W.; Salomon, M.

    1991-01-01

    An ionization exposure of 0.5 C per cm of wire in a gas mixture of CF 4 /isobutane (80:20) is shown to reverse anode wire damage in single-wire chambers. Several chambers aged in argon/ethane (50:50) and argon/ethane/ethanol (50:50:0.2) and having pulse height reduction of 25-30% have recovered pulse heights and currents to greater than 98% of their initial values. Inspection of the anode wires indicates that the thick deposits caused by the exposure in argon/ethane have been removed. Auger electron spectroscopy reveals only a thin residual layer containing primarily carbon and oxygen. This etching ability of CF 4 /isobutane (80:20) avalanches may explain the extremely good ageing characteristics previously reported for this mixture. (orig.)

  14. Experimentals on the energy-deposition of fast neutrons in phantoms

    International Nuclear Information System (INIS)

    Maier, E.

    1978-01-01

    The relative neutron sensitivities of a tissue-equivalent chamber and a carbon chamber with correction factors are given for four neutron energies and a 252 Cf-source. The necessary experimental and technical conditions for an application of the multi-detector mixed-field dosimetry with proportional counters are presented. The corrections accounting for charge recombination or the intensity decrease due to the chamber well are put on a theoretical basis. (DG) [de

  15. Radiation protection instruments based on tissue equivalent proportional counters: Part II of an international intercomparison

    International Nuclear Information System (INIS)

    Alberts, W.G.; Dietz, E.; Guldbakke, S.; Kluge, H.; Schumacher, H.

    1988-04-01

    This report describes the irradiation conditions and procedures of Part II of an international intercomparison of tissue-equivalent proportional counters used for radiation protection measurements. The irradiations took place in monoenergetic reference neutron fields produced by the research reactor and accelerator facilities of the PTB Braunschweig in the range from thermal neutrons to 14.8 MeV. In addition measurements were performed in 60 Co and D 2 O-moderated 252 Cf radiation fields. Prototype instruments from 7 European groups were investigated. The results of the measurements are summarized and compared with the reference data of the irradiations. (orig.) [de

  16. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  17. Ion chambers compliance results of Brazilian radiation therapy facilities.

    Science.gov (United States)

    Joana, G; Salata, C; Leal, P; Vasconcelos, R; Couto, N do; Teixeira, F C; Soares, A D; Santini, E S; Gonçalves, M

    2018-03-01

    The Brazilian Nuclear Energy Commission (cnen) has been making a constant effort to keep up to date with international standards and national needs to strengthen the status of radiological protection of the country. The guidelines related to radiation therapy facilities have been revised in the last five years in order to take into consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance in this matter. In the present work, we discuss the effectiveness of regulation and inspections to the enforcement of instrument calibration accuracy for the improvement of patient dosimetry and quality control. As a result, we observed that the number of calibrated instruments, mainly well chambers, is increasing each year. The same behavior is observed for instruments employed in technologically advanced radiation treatments such as intensity modulated radiotherapy, volumetric therapy and stereotatic radiosurgery. We ascribe this behavior to the new regulation.

  18. Wall attenuation and scatter corrections for ion chambers: measurements versus calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D W.O.; Bielajew, A F [National Research Council of Canada, Ottawa, ON (Canada). Div. of Physics

    1990-08-01

    In precision ion chamber dosimetry in air, wall attenuation and scatter are corrected for A{sub wall} (K{sub att} in IAEA terminology, K{sub w}{sup -1} in standards laboratory terminology). Using the EGS4 system the authors show that Monte Carlo calculated A{sub wall} factors predict relative variations in detector response with wall thickness which agree with all available experimental data within a statistical uncertainty of less than 0.1%. They calculated correction factors for use in exposure and air kerma standards are different by up to 1% from those obtained by extrapolating these same measurements. Using calculated correction factors would imply increases of 0.7-1.0% in the exposure and air kerma standards based on spherical and large diameter, large length cylindrical chambers and decreases of 0.3-0.5% for standards based on large diameter pancake chambers. (author).

  19. Dosimetry, instrumentation and exposure chambers for dc magnetic field studies

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1979-03-01

    The principal objective of this report is to describe in detail an exposure chamber that was developed at the Lawrence Berkeley Laboratory for automated, noninvasive studies of rodent physiology during exposure to high DC magnetic fields. A second objective is to discuss some of the unique instrumentation problems that must be overcome in order to record bioelectric signals from laboratory animals in the presence of a magnetic field. Finally, a description will be given of the various dosimetry techniques that can be employed for quantitation of magnetic field strength

  20. Design and manufacture of multi-electrode ion chamber for absolute photon-flux measurements of soft x-rays

    International Nuclear Information System (INIS)

    Yoshigoe, Akitaka; Teraoka, Yuden

    2001-03-01

    In order to measure the absolute photon-flux of soft x-rays at the photon energy region from 500 eV to 1500 eV, a sealed gas ion chamber with multi-electrodes was designed and manufactured. Actually we succeeded in measuring the photon-flux at the soft x-ray beamline, BL23SU, in the SPring-8. This report concretely describes the design and the adjustment of the sealed gas ion chamber with multi-electrodes. (author)

  1. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  2. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  3. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    International Nuclear Information System (INIS)

    Palmans, H.; Verhaegen, F.

    1995-01-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire's multiple scattering theory and Vavilov's energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program's accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented

  4. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    International Nuclear Information System (INIS)

    Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia Junyi; DiBianca, Frank A.

    2007-01-01

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ∼50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1 . The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications

  5. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    Science.gov (United States)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  6. Etching of anode wire deposits with CF4/isobutane (80:20) avalanches

    International Nuclear Information System (INIS)

    Openshaw, R.; Henderson, R.S.; Faszer, W.; Salomon, M.

    1990-11-01

    An ionization exposure of 0.5 coulombs per cm of wire in a gas mixture of CF 4 /isobutane (80:20) is shown to reverse anode wire damage in single-wire chambers. Several chambers aged in argon/ethane (50:50) and argon/ethane/ethanol (50:50:0.2) and having pulse height reductions of 25-30% have recovered pulse heights and currents to greater than 98% of their initial values. Inspection of the anode wires indicates that the thick deposits caused by the exposure in argon/ethane have been removed. Auger electron spectroscopy reveals only a thin residual layer containing primarily carbon and oxygen. This etching ability of CF 4 /isobutane (80:20) avalanches may explain the extremely good ageing characteristics previously reported for this mixture. (Author) (13 refs., 3 tabs., 11 figs.)

  7. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2003-01-01

    Full Text Available In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2  MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating are reported in terms of the molecular desorption yields for H_{2}, CH_{4}, CO, Ar, and CO_{2}. Unexpected large values of molecular yields per incident ion up to 2×10^{4} molecules/ion have been observed. The reduction of the ion-induced desorption yield due to continuous bombardment with lead ions (beam cleaning has been investigated for five different stainless steel vacuum chambers. The implications of these results for the vacuum system of the future Low Energy Ion Ring and possible remedies to reduce the vacuum degradation are discussed.

  8. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Matrix photoionization and radiolysis of the fluorobromomethanes. Infrared spectra and photochemistry of CFBr2+, CF2Br+, CF3+, and the parent cations

    International Nuclear Information System (INIS)

    Prochaska, F.T.; Andrews, L.

    1978-01-01

    The molecules CFBr 3 , CF 2 Br 2 , CF 3 Br, and C-13 enriched CF 3 Br have been subjected to matrix radiolysis and argon resonance photoionization during condensation with excess argon at 15 K. Infrared spectra showed stable and free radical products and new absorptions due to charged species. The molecular ion bands exhibited different behavior on filtered high-pressure mercury arc photolysis. Absorptions reduced by 220 to 1000-nm light are assigned to CFBr 2 + , CF 2 Br + , and CF 3 + ; other bands destroyed by photolysis are assigned to the parent cations. Li and Na atom reactions with the fluorobromomethane molecules confirmed the identification of the CFBr 2 and CF 2 Br free radicals. Other product bands destroyed by mercury arc light, some of which were generated upon photolysis of the sodium-fluorobromomethane samples, are assigned to molecular anions. 5 figures, 6 tables

  10. Advisory Committee for the Calibration Standards of Ionizing Radiation Measurement: Section 3. Neutron measurements

    International Nuclear Information System (INIS)

    1982-01-01

    Section III (Mesures neutroniques) of the Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants held its fifth meeting in May 1981. Recent work carried out at BIPM in the field of neutron measurements was reported. The status of a full-scale 252 Cf neutron source intercomparison (10 7 s - 1 ) and of several restricted comparisons was discussed. Intercomparisons of fast neutron fluence rates are in progress ( 115 In(n,n') 115 Insup(m); NB/Zr) or will take place in the near future ( 115 n(n,#betta#) 116 Insup(m); 235 U and 238 U fission chambers). An intercomparison of neutron dosimetry standards by circulating tissue-equivalent ion chambers will be prepared and organized by BIPM. Finally, there was a broad exchange of information on work in progress at the various laboratories represented at the meeting [fr

  11. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    Science.gov (United States)

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical

  12. Detector Characterization Report, Response Related to Linear Movement and Radiation Levels for an Oak Ridge National Laboratory (ORNL)-Developed Ion Chamber and a Commercial Ion Chamber

    International Nuclear Information System (INIS)

    Chiaro, P.J.

    2001-01-01

    Recent activities regarding the safeguarding of radioactive material have indicated there is a need to use radiation sensors to monitor intentional or unintentional material movement. Existing radiation detection systems were not typically designed for this type of operation since most of their use accounted for monitoring material while the material is stationary. To ensure that a radiation monitoring system is capable of detecting the movement of radioactive material, a series of tests were needed. These tests would need to be performed in known radiological conditions, under controlled environmental conditions, and at known movement speeds. The Radiation Effects Facility (REF), located at the Radiation Calibration Laboratory, provided the necessary capabilities to perform these tests. This report provides a compilation of the results from a characterization of two different sensors--a simple, air ionization chamber-based sensor developed at ORNL that consists of an ion chamber connected to a separate amplifier, and an Eberline model RO-7-LD. The RO-7-LD is also an air ionization chamber-based sensor, but the electronics are in the same physical package

  13. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. The ALICE time projection chamber - a technological challenge in LHC heavy ion physics

    CERN Document Server

    Bächler, J

    2004-01-01

    The Time Projection Chamber is the main tracking detector in the central region of the ALICE experiment. This paper addresses the specific technological challenges for the detector and the solutions adopted to cope with the extreme particle densities in LHC heavy ion collisions. We will present the major components of the detector with an outlook of its expected performance in the LHC heavy ion program, as well as recent results from the comprehensive ALICE TPC test facility. (3 refs).

  17. A new approach for the evaluation of the effective electrode spacing in spherical ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, Ahmed M., E-mail: maghrabism@yahoo.com [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Tersa Street 12211, Giza P.O. Box: 136 (Egypt); Shqair, Mohammed [Physics Department, Faculty of Science and Humanities, Sattam Bin Abdul Aziz University, Alkharj (Saudi Arabia)

    2016-10-21

    Proper determination of the effective electrode spacing (d{sub eff}) of an ion chamber ensures proper determination of its collection efficiency either in continuous or in pulsed radiation in addition to the proper evaluation of the transit time. Boag's method for the determination of d{sub eff} assumes the spherical shape of the internal electrode of the spherical ion chambers which is not always true, except for some cases, its common shape is cylindrical. Current work provides a new approach for the evaluation of the effective electrode spacing in spherical ion chambers considering the cylindrical shape of the internal electrode. Results indicated that d{sub eff} values obtained through current work are less than those obtained using Boag's method by factors ranging from 12.1% to 26.9%. Current method also impacts the numerically evaluated collection efficiency (f) where values obtained differ by factors up to 3% at low potential (V) values while at high V values minor differences were noticed. Additionally, impacts on the evaluation of the transit time (τ{sub i}) were obtained. It is concluded that approximating the internal electrode as a sphere may result in false values of d{sub eff}, f, and τ{sub i}.

  18. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  19. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    International Nuclear Information System (INIS)

    Landolt, R.R.; Hem, S.L.

    1983-01-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well

  20. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  1. Single-particle and collective properties around closed shells probed by in-source laser spectroscopy

    CERN Document Server

    Cocolios, Thomas Elias; Van Duppen, P

    2010-01-01

    Resonant laser ionisation is a very versatile tool in nuclear physics, used for the production of clean radioactive ion beams as well as for the study of ground-state and isomer properties. In this Ph.D. work, many aspects of resonant laser ionisation are investigated, from improving the performance of laser ion sources at ISOL facilities to the measurement of magnetic dipole moments and charge radii. The LISOL gas catcher ion source relies on resonant laser ionisation for increased efficiency and selectivity. Using a $^{252}$Cf fission source, the element dependence of the non-resonant contribution to the ion beam has been investigated. The efficiency of extraction for a non-laser-ionised element ranges from 0.03% for krypton to 74% for ceasium. A relationship with the ionisation potential is proposed, although a few elements like rubidium and cerium do not verify this relationship. In order to suppress those non-resonantly-ionised elements, two new approaches are proposed. First, the dual-chamber gas catche...

  2. Molecular desorption of stainless steel vacuum chambers irradiated with 42 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating) are reported in terms of the molecular desorption yields for H/sub 2 /, CH/sub 4/, CO, Ar, and CO/sub 2/. (16 refs).

  3. Systematic uncertainties in the Monte Carlo calculation of ion chamber replacement correction factors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. L. W.; La Russa, D. J.; Rogers, D. W. O. [Ottawa Carleton Institute of Physics, Carleton University, Campus Ottawa, Ottawa, Ontario KIS 5B6 (Canada)

    2009-05-15

    In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P{sub repl} or p{sub cav}p{sub dis}) for ion chambers by Monte Carlo calculation. By ''direct'' we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study, and the accuracy of the LDW method applied to ion chambers in a {sup 60}Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P{sub repl} values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff {Delta}, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the {Delta} value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P{sub repl} values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P{sub repl} values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P{sub repl} values using the two direct methods.

  4. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Atmospheric chemistry of CH3CHF2 (R-152a): mechanism of the CH3CF2O2+HO2 reaction

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Andersen, Mads Peter Sulbæk

    2004-01-01

    FTIR smog chamber techniques have been used to investigate the mechanism of the reaction of CH3CF2O2 with HO2 radicals in 100-700 Torr of synthetic air at 296 K. The reaction gives CH3CF2OOH and COF2 in molar yields of 0.53 +/- 0.05 and 0.47 +/- 0.05, respectively. Results are discussed with resp......FTIR smog chamber techniques have been used to investigate the mechanism of the reaction of CH3CF2O2 with HO2 radicals in 100-700 Torr of synthetic air at 296 K. The reaction gives CH3CF2OOH and COF2 in molar yields of 0.53 +/- 0.05 and 0.47 +/- 0.05, respectively. Results are discussed...

  6. Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Wallington, TJ

    2004-01-01

    Smog chambers equipped with FTIR spectrometers were used to study the Cl atom and OH radical initiated oxidation of CH3O(CF2CF2O)(n)CH3 (n = 1-3) in 720 +/- 20 Torr of air at 296 +/- 3 K. Relative rate techniques were used to measure k(Cl + CH3O(CF2CF2O)(n)CH3) (3.7 +/- 10.7) x 10(-13) and k......(OH + CH3O(CF2CF2O)(n)CH3) = (2.9 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) leading to an estimated atmospheric lifetime of 2 years for CH3O(CF2CF2O),CH3. The Cl initiated oxidation of CH3O(CF2CF2O),CH3 in air diluent gives CH3O(CF2CF2O)(n)C(O)H in a yield which is indistinguishable from 100 Further...... oxidation leads to the diformate, H(O)CO(CF2CF2O)(n)C(O)H. A rate constant of k(Cl + CH3O(CF2CF2O)(n)CHO) = (1.81 +/- 0.36) x 10(-13) cm(3) molecule(-1) s-1 was determined. Quantitative infrared spectra for CH3O(CF2CF2O)(n)CH3 (n = 1-3) were recorded and used to estimate halocarbon global warming potentials...

  7. Upset due to a single particle caused propagated transients in a bulk CMOS microprocessor

    International Nuclear Information System (INIS)

    Leavy, J.F.; Hoffmann, L.F.; Shoran, R.W.; Johnson, M.T.

    1991-01-01

    This paper reports on data pattern advances observed in preset, single event upset (SEU) hardened clocked flip-flops, during static Cf-252 exposures on a bulk CMOS microprocessor, that were attributable to particle caused anomalous clock signals, or propagated transients. SPICE simulations established that particle strikes in the output nodes of a clock control logic flip-flop could produce transients of sufficient amplitude and duration to be accepted as legitimate pulses by clock buffers fed by the flip-flop's output nodes. The buffers would then output false clock pulses, thereby advancing the state of the present flip-flops. Masking the clock logic on one of the test chips made the flip-flop data advance cease, confirming the clock logic as the source of the SEU. By introducing N 2 gas, at reduced pressures, into the SEU test chamber to attenuate Cf-252 particle LET's, a 24-26 MeV-cm 2 /mg LET threshold was deduced. Subsequent tests, at the 88-inch cyclotron at Berkeley, established an LET threshold of 30 MeV-cm 2 /mg (283 MeV Cu at 0 degrees) for the generation of false clocks. Cyclotron SEU tests are considered definitive, while Cf-252 data usually is not. However, in this instance Cf-252 tests proved analytically useful, providing SEU characterization data that was both timely and inexpensive

  8. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument

    Science.gov (United States)

    McFadden, J. P.; Kortmann, O.; Curtis, D.; Dalton, G.; Johnson, G.; Abiad, R.; Sterling, R.; Hatch, K.; Berg, P.; Tiu, C.; Gordon, D.; Heavner, S.; Robinson, M.; Marckwordt, M.; Lin, R.; Jakosky, B.

    2015-12-01

    The MAVEN SupraThermal And Thermal Ion Compostion (STATIC) instrument is designed to measure the ion composition and distribution function of the cold Martian ionosphere, the heated suprathermal tail of this plasma in the upper ionosphere, and the pickup ions accelerated by solar wind electric fields. STATIC operates over an energy range of 0.1 eV up to 30 keV, with a base time resolution of 4 seconds. The instrument consists of a toroidal "top hat" electrostatic analyzer with a 360° × 90° field-of-view, combined with a time-of-flight (TOF) velocity analyzer with 22.5° resolution in the detection plane. The TOF combines a -15 kV acceleration voltage with ultra-thin carbon foils to resolve H+, He^{++}, He+, O+, O2+, and CO2+ ions. Secondary electrons from carbon foils are detected by microchannel plate detectors and binned into a variety of data products with varying energy, mass, angle, and time resolution. To prevent detector saturation when measuring cold ram ions at periapsis (˜10^{1 1} eV/cm2 s sr eV), while maintaining adequate sensitivity to resolve tenuous pickup ions at apoapsis (˜103 eV/cm2 s sr eV), the sensor includes both mechanical and electrostatic attenuators that increase the dynamic range by a factor of 103. This paper describes the instrument hardware, including several innovative improvements over previous TOF sensors, the ground calibrations of the sensor, the data products generated by the experiment, and some early measurements during cruise phase to Mars.

  9. Effects of ionization chamber construction on dose measurements in a heterogeneity

    International Nuclear Information System (INIS)

    Mauceri, T.; Kase, K.

    1987-01-01

    Traditionally, measurements have been made in heterogeneous phantoms to determine the factors which should be applied to dose calculations, when calculating a dose to a heterogeneous medium. Almost all measurements have relied on relatively thin-walled ion chambers, with no attempt to match ion chamber wall material to the measuring medium. The recent AAPM dosimetry protocol has established that a mismatch between ion chamber wall and phantom material can have an effect on dose measurement. To investigate the affect of this mismatch of ion chamber wall material to phantom material, two parallel-plate ion chambers were constructed. One ion chamber from solid water, for measurements in a solid water phantom and the other from plastic lung material, for measurements in a plastic lung material phantom. Correction factors measured by matching ion chamber to media were compared to correction factors measured by using a thin-walled cavity ion chamber with no regard for matching wall and media for cobalt-60, 6-, 10- and 20-MV photon beams. The results demonstrated that the matching of ion chamber to measuring media can be ignored, provided that a small, approximately tissue-equivalent, thin-walled ion chamber is used for measuring the correction factors

  10. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); Arshad, M. K. Md., E-mail: mohd.khairuddin@unimap.edu.my; Hashim, U.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia)

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  11. Dark Matter Limits From a 2L C3F8 Filled Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alan Edward [Univ. of Chicago, IL (United States)

    2015-12-01

    The PICO-2L C3F8 bubble chamber search forWeakly Interacting Massive Particle (WIMP) dark matter was operated in the SNOLAB underground laboratory at the same location as the previous CF3I lled COUPP-4kg detector. Neutron calibrations using photoneutron sources in C3F8 and CF3I lled calibration bubble chambers were performed to verify the sensitivity of these target uids to dark matter scattering. This data was combined with similar measurements using a low-energy neutron beam at the University of Montreal and in situ calibrations of the PICO-2L and COUPP-4kg detectors. C3F8 provides much greater sensitivity to WIMP-proton scattering than CF3I in bubble chamber detectors. PICO-2L searched for dark matter recoils with energy thresholds below 10 keV. Radiopurity assays of detector materials were performed and the expected neutron recoil background was evaluated to be 1.6+0:3

  12. Numerical simulation of performance of heavy ion inertial confinement fusion target with ellipsoidal chamber

    International Nuclear Information System (INIS)

    Basin, A.A.; Vatulin, V.V.; Vakhlamova, L.L.; Vinokurov, P.A.; Dement'ev, Yu.A.; Eliseev, G.M.; Ermolovich, V.F.; Morenko, L.Z.; Morenko, A.I.; Remizov, G.N.; Romanov, Yu.A.; Ryabikina, N.A.; Skrypnik, S.I.; Skidan, G.I.; Tikhomirov, B.P.; Shagaliev, R.M.

    1996-01-01

    To solve the design problem of an inertial thermonuclear fusion facility requires the united efforts of scientists in various countries. In the field of heavy ion fusion a collaboration between scientists in Germany and Russia is under successful development. VNIIEF possesses advanced software for numerical simulation of the processes in thermonuclear target operation. This paper describes a target design suggested and being studied by scientists of Frankfurt University and GSI which is based on 2D non-stationary calculation of the X-ray energy transport and capsule compression. The target consists of a spherical capsule with DT fuel and an ellipsoidal chamber containment. The ion beam energy is released in two fixed converters located on the chamber axis symmetricall with respect to the capsule. The X-ray field is formed on the capsule surface with a set of special shields. The basic aim of our research is to estimate the effect of gas dynamic expansion of the chamber walls, shields and capsule on the target operation. To increase the reliability of the obtained results and the assessment of probable errors in predicting radiation field parameters and the capsule state, the calculations were accomplished in a kinetic arrangement with various techniques. (orig.)

  13. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  14. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-01-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252 Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235 U(n th , f).

  15. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    Chen Chingjiang; Liu Chichang; Lin Yuming

    1993-01-01

    A walk-in type radon test chamber of 23 m 3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  16. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  17. Use of polyethylene pellets in the design and construction of a storage safe, a transport vessel and a portable shield for californium-252

    International Nuclear Information System (INIS)

    Sharma, S.

    1986-01-01

    A storage and shielding facility for 300 μg of Californium-252 sources was designed and constructed. Though the safe was in a permanent location, the fact that it consisted of a lead bucket surrounded by polyethylene pellets made it simple, movable and inexpensive. If need be, more quantities of Cf-252 could be added without altering the basic design and sacrificing the radiation protection guidelines. The measured radiation levels from 300 μg of stored Cf-252 in and around the storage vault were lower than the expected dose rates by a factor of 5. The measured radiation levels around the occupied environs of the facility were below the maximum permissible yearly dose of 500mrem for non-occupational workers. A transport vessel was designed and constructed to carry up to 50 μg of Californium-252 sources. It consisted of a standard 55 gallon steel drum on casters containing cylindrical lead shield surrounded by polyethylene pellets. The measured maximum surface dose rates on the drum and at one meter away were within the radiation protection guidelines and were less than the expected dose rates. A portable shield was designed and constructed to protect the body in afterloading operations and handling of the sources. It consisted of polyethylene pellets in an aluminum box and an attached 10 cm thick plexiglass eye shield. The simple design, with the ease of using polyethylene pellets can be extended to construct bedside shields

  18. OligoG CF-5/20 normalizes cystic fibrosis mucus by chelating calcium.

    Science.gov (United States)

    Ermund, Anna; Recktenwald, Christian V; Skjåk-Braek, Gudmund; Meiss, Lauren N; Onsøyen, Edvar; Rye, Philip D; Dessen, Arne; Myrset, Astrid Hilde; Hansson, Gunnar C

    2017-06-01

    The goal of this study was to determine whether the guluronate (G) rich alginate OligoG CF-5/20 (OligoG) could detach cystic fibrosis (CF) mucus by calcium chelation, which is also required for normal mucin unfolding. Since bicarbonate secretion is impaired in CF, leading to insufficient mucin unfolding and thereby attached mucus, and since bicarbonate has the ability to bind calcium, we hypothesized that the calcium chelating property of OligoG would lead to detachment of CF mucus. Indeed, OligoG could compete with the N-terminus of the MUC2 mucin for calcium binding as shown by microscale thermophoresis. Further, effects on mucus thickness and attachment induced by OligoG and other alginate fractions of different length and composition were evaluated in explants of CF mouse ileum mounted in horizontal Ussing-type chambers. OligoG at 1.5% caused effective detachment of CF mucus and the most potent alginate fraction tested, the poly-G fraction of about 12 residues, had similar potency compared to OligoG whereas mannuronate-rich (M) polymers had minimal effect. In conclusion, OligoG binds calcium with appropriate affinity without any overt harmful effect on the tissue and can be exploited for treating mucus stagnation. © 2017 John Wiley & Sons Australia, Ltd.

  19. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  20. Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket

    Science.gov (United States)

    Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki

    2018-05-01

    A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.

  1. Particle and heavy ion transport code system, PHITS, version 2.52

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Noda, Shusaku; Ogawa, Tatsuhiko; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Niita, Koji; Iwase, Hiroshi; Chiba, Satoshi; Furuta, Takuya; Sihver, Lembit

    2013-01-01

    An upgraded version of the Particle and Heavy Ion Transport code System, PHITS2.52, was developed and released to the public. The new version has been greatly improved from the previously released version, PHITS2.24, in terms of not only the code itself but also the contents of its package, such as the attached data libraries. In the new version, a higher accuracy of simulation was achieved by implementing several latest nuclear reaction models. The reliability of the simulation was improved by modifying both the algorithms for the electron-, positron-, and photon-transport simulations and the procedure for calculating the statistical uncertainties of the tally results. Estimation of the time evolution of radioactivity became feasible by incorporating the activation calculation program DCHAIN-SP into the new package. The efficiency of the simulation was also improved as a result of the implementation of shared-memory parallelization and the optimization of several time-consuming algorithms. Furthermore, a number of new user-support tools and functions that help users to intuitively and effectively perform PHITS simulations were developed and incorporated. Due to these improvements, PHITS is now a more powerful tool for particle transport simulation applicable to various research and development fields, such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. (author)

  2. Study of the average charge states of 188Pb and 252,254No ions at the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Khuyagbaatar, J.; Ackermann, D.; Andersson, L.-L.; Ballof, J.; Brüchle, W.; Düllmann, Ch.E.; Dvorak, J.; Eberhardt, K.; Even, J.; Gorshkov, A.; Graeger, R.; Heßberger, F.-P.; Hild, D.; Hoischen, R.; Jäger, E.; Kindler, B.

    2012-01-01

    The average charge states of 188 Pb and 252,254 No ions in dilute helium gas were measured at the gas-filled recoil separator TASCA. Hydrogen gas was also used as a filling gas for measurements of the average charge state of 254 No. Helium and hydrogen gases at pressures from 0.2 mbar to 2.0 mbar were used. A strong dependence of the average charge state on the pressure of the filling gases was observed for both, helium and hydrogen. The influence of this dependence, classically attributed to the so-called “density effect”, on the performance of TASCA was investigated. The average charge states of 254 No ions were also measured in mixtures of helium and hydrogen gases at low gas pressures around 1.0 mbar. From the experimental results simple expressions for the prediction of average charge states of heavy ions moving in rarefied helium gas, hydrogen gas, and in their mixture were derived.

  3. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-01-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO 2 -laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges

  4. Neutron/gamma dose separation by the multiple-ion-chamber technique

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1983-01-01

    Many mixed n/γ dosimetry systems rely on two dosimeters, one composed of a tissue-equivalent material and the other made from a non-hydrogenous material. The paired chamber technique works well in fields of neutron radiation nearly identical in spectral composition to that in which the dosimeters were calibrated. However, this technique is drastically compromised in phantom due to the degradation of the neutron spectrum. The three-dosimeter technique allows for the fall-off in neutron sensitivity of the two non-hydrogenous dosimeters. Precise and physically meaningful results were obtained with this technique with a D-T source in air and in phantom and with simultaneous D-T neutron and 60 Co gamma ray irradiation in air. The MORSE-CG coupled n/γ three-dimensional Monte Carlo code was employed to calculate neutron and gamma doses in a water phantom. Gamma doses calculated in phantom with this code were generally lower than corresponding ion chamber measurements. This can be explained by the departure of irradiation conditions from ideal narrow-beam geometry. 97 references

  5. New fit of thermal neutron constants (TNC for 233,235U, 239,241Pu and 252Cf(sf: Microscopic vs. maxwellian data

    Directory of Open Access Journals (Sweden)

    Pronyaev Vladimir G.

    2017-01-01

    Full Text Available An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986 was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data. Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.

  6. Scattering chamber for the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Goodman, C.D.; Corum, J.E.

    1977-09-01

    A conceptual design is presented for a 62-in.-diam. general purpose scattering chamber to be used for nuclear research with heavy ions. The detector rotation mechanism is based on large diameter (approx. 58 in.) peripherally driven rings. This leaves the central region open for detectors and other apparatus and permits the use of a perpendicular ring for rotating a detector out of the reaction plane. A precision target slide with provisions for removing the entire slide under vacuum is part of the design. Access and viewing ports on the dished top and in the reaction plane will be provided. Cryogenic pumping will be used to keep the vacuum free from hydrocarbon vapors, water vapor, and oxygen

  7. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  8. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    H.-P. Dorn

    2013-05-01

    Full Text Available The detection of atmospheric NO3 radicals is still challenging owing to its low mixing ratios (≈ 1 to 300 pptv in the troposphere. While long-path differential optical absorption spectroscopy (DOAS has been a well-established NO3 detection approach for over 25 yr, newly sensitive techniques have been developed in the past decade. This publication outlines the results of the first comprehensive intercomparison of seven instruments developed for the spectroscopic detection of tropospheric NO3. Four instruments were based on cavity ring-down spectroscopy (CRDS, two utilised open-path cavity-enhanced absorption spectroscopy (CEAS, and one applied "classical" long-path DOAS. The intercomparison campaign "NO3Comp" was held at the atmosphere simulation chamber SAPHIR in Jülich (Germany in June 2007. Twelve experiments were performed in the well-mixed chamber for variable concentrations of NO3, N2O5, NO2, hydrocarbons, and water vapour, in the absence and in the presence of inorganic or organic aerosol. The overall precision of the cavity instruments varied between 0.5 and 5 pptv for integration times of 1 s to 5 min; that of the DOAS instrument was 9 pptv for an acquisition time of 1 min. The NO3 data of all instruments correlated excellently with the NOAA-CRDS instrument, which was selected as the common reference because of its superb sensitivity, high time resolution, and most comprehensive data coverage. The median of the coefficient of determination (r2 over all experiments of the campaign (60 correlations is r2 = 0.981 (quartile 1 (Q1: 0.949; quartile 3 (Q3: 0.994; min/max: 0.540/0.999. The linear regression analysis of the campaign data set yielded very small intercepts (median: 1.1 pptv; Q1/Q3: −1.1/2.6 pptv; min/max: −14.1/28.0 pptv, and the slopes of the regression lines were close to unity (median: 1.01; Q1/Q3: 0.92/1.10; min/max: 0.72/1.36. The deviation of individual regression slopes from unity was always within the combined

  9. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  10. CF3+ fragmentation by electron impact ionization of perfluoro-propyl-vinyl-ethers, C5F10O, in gas phase

    Science.gov (United States)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    The gas phase fragmentations of perfluoro-propyl-vinyl ether (PPVE, C5F10O) are studied experimentally. Dominant fragmentations of PPVE are found to be the result of a dissociative ionization reaction, i.e., CF3+ via direct bond cleavage, and C2F3O- and C3F7O- via electron attachment. Regardless of the appearance energy of around 14.5 eV for the dissociative ionization of CF3+, the observed ion efficiency for the CF3+ ion was extremely large the order of 10-20 cm-2, compared with only 10-21 cm-2 for the other channels. PPVE characteristically generated CF3+ as the largest abundant ion are advantageous for use of feedstock gases in plasma etching processes.

  11. Development of methods of transport of nuclear reaction products by helium jet, in connection with the ALICE accelerator

    International Nuclear Information System (INIS)

    Deprun, C.; Gauvin, H.; Le Beyec, Y.

    1976-01-01

    The He-jet transport systems for use with the heavy-ion accelerator ALICE at Orsay are described in detail. The dependence of the gas flow rate on various parameters (pressure, length and diameter of the capillary) was investigated. Off-line measurements were carried out with a 252 Cf source. Effect on collection yield of UV radiation and additives to the helium was checked. The influence of the distance between the target and the capillary on the collection efficiency for short-lived isotopes of Yb was investigated. Some other useful details are also discussed (collector, volume of the reaction chamber, etc.). Various applications of the He-jet method are described: particle identification, angular distribution of reaction products, mass identification of radioactive nuclei. (Auth.)

  12. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  13. 48 CFR 53.301-252 - Standard Form 252, Architect-Engineer Contract.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 252, Architect-Engineer Contract. 53.301-252 Section 53.301-252 Federal Acquisition Regulations System FEDERAL..., Architect-Engineer Contract. EC01MY91.035 EC01MY91.036 ...

  14. Atmospheric Chemistry of cis-CF3CH=CHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Nielsen, Ole John; Johnson, Matthew Stanley

    2009-01-01

    Long path length FTIR-smog chamber techniques were used to measure k(OH + cis-CF3CH@CHF) = (1.20 ± 0.14) 1012 and k(O3 + cis-CF3CH@CHF) = (1.65 ± 0.16) 1021 cm3 molecule 1 s1 in 700 Torr of N2/O2 diluent at 296 K. The OH initiated oxidation of cis-CF3CH@CHF gives CF3CHO and HCOF in molar yields w...

  15. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    International Nuclear Information System (INIS)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Sann, H.; Young, J.C.

    1987-01-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon 40 Ar and 0.30e fwhm for 1.08 GeV/nucleon 139 La and 139 La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with σ≅100 μm. (orig.)

  16. Measurements of ion mobility and GEM discharge studies for the upgrade of the ALICE time projection chamber

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00507268

    2018-02-20

    ALICE is one of the four experiments at the Large Hadron Collider (LHC). The quark-gluon plasma, which is predominantly produced in lead-lead collisions at LHC, is of particular interest for ALICE. After the long shut-down 2 (2019-2021) the LHC will provide lead-lead collisions at an increased interaction rate of 50 kHz. In order to examine every event at this interaction rate the ALICE Time Projection Chamber (TPC) needs to be upgraded. The TPC’s ReadOut Chambers (ROCs) are currently multi-wire proportional chambers. To prevent space charge build-up of slow ions, drifting from the ROCs into the TPC, a gating grid is used. The corresponding closure time imposes a dead time on the TPC read out, which prohibits data taking at a readout rate higher than 3 kHz. New ROCs have therefore been designed, relying on stacks of Gas Electron Multiplier (GEM) foils for the gas amplification, allowing for continuous readout. With the new ROCs, a certain fraction of ions will be drifting at all time into the TPC. Knowing t...

  17. The cloud chamber. A wonderful instrument for discoveries

    International Nuclear Information System (INIS)

    Fadel, Kamil

    2012-01-01

    The author proposes an overview of the various applications and discoveries based on the use of the cloud chamber or Wilson chamber: blood flow rate measurements, investigation of alpha radiation (interaction of an alpha particle with gas atoms), investigation of beta radioactivity with the evidence of the existence of the neutrino, confirmation of a relativistic effect, discovery of the neutron in the 1930's, uranium fission, evidence of the cosmic origin of a ionizing radiation in the 1930's. The author briefly evokes the technological evolutions of these cloud chambers

  18. Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte

    International Nuclear Information System (INIS)

    Saikia, D.; Hussain, A.M.P.; Kumar, A.; Singh, F.; Avasthi, D.K.

    2006-01-01

    In an attempt to increase the Li ion diffusivity in gel polymer electrolytes, the effects of Li 3+ ion irradiation in P(VDF-HFP)-(PC + DEC)-LiCF 3 SO 3 electrolyte system, with five different fluences, is studied. Irradiation with swift heavy ions shows enhancement in conductivity at low fluences and decreased in conductivity at higher fluences with respect to pristine polymer electrolyte films. Maximum room temperature ionic conductivity after irradiation is found to be 2.6 x 10 -3 S/cm. This interesting result could be attributed to the fact that, higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in decrease in ionic conductivity. XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at high fluences (>10 11 ions/cm 2 ). In FTIR spectra the absorption band intensities around 3025 cm -1 and 2985 cm -1 decrease upon irradiation with a fluence of 5 x 10 1 ions/cm 2 suggesting chain scission and increase upon irradiation with a fluence of 5 x 10 12 ions/cm 2 indicating cross-linking. FTIR analyses corroborate the conductivity and XRD results

  19. Atmospheric chemistry of CF3CH‗CH2 and C4F9CH‗CH2

    DEFF Research Database (Denmark)

    Nakayama, T.; Takahashi, K.; Matsumi, Y.

    2007-01-01

    FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CHCH2 in 700 Torr of N-2/O-2, diluent at 296 K. The Cl atom initiated oxidation of CF3CHCH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70...

  20. Preparation of fluoropolymer-based ion-track membranes. Structure of latent tracks and pretreatment effect

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Nuryanthi, Nuryanthi; Koshikawa, Hiroshi; Sawada, Shinichi; Hakoda, Teruyuki; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari

    2012-01-01

    High-energy heavy-ion induced damage, called latent tracks m organic polymers can sometimes be etched out chemically to give submicro- and nano-sized pores. Our focus is placed on ion-track membranes of poly(vinylidene fluoride) (PVDF), a type of fluoropolymer, which were previously considered as a matrix of polymer electrolyte fuel-cell membranes. There have been no optimized methods of preparing the PVDF-based ion-track membranes. We thus examined chemical structures of the defects created in the track, and accordingly, presented a pretreatment technique for achieving more efficient track etching. A 25 μm-thick PVDF film was bombarded with 1.1 GeV 238 U or 450 MeV 129 Xe ions. In the multi-purpose chamber, degradation processes were monitored in-situ by FT-IR spectroscopy and residual gas analysis as a function of the fluence up to 6.0 x 10 11 ions/cm 2 . The films irradiated at 8 ions/cm 2 were etched in a 9 M KOH aqueous solution at 80degC. We also performed the conductometric etching, which allows monitoring of pore evolution versus etching time by recording the electrical conductance through the membrane. At fluences above 1 x 10 10 ions/cm 2 , the film showed two new absorption bands identified as double-bond stretching vibrations of in-chain unsaturations -CH=CF- and fluorinated vinyl groups -CF 2 CH=CF 2 . These defects would result from the evolution of HF. The knowledge of the solubility in a permanganate alkaline solution and our preliminary experiment suggested the importance of oxidized tracks for the easy introduction of the etching agent. We finally found that the pretreatment with ozone could oxidize the double bonds in the tracks, thereby vigorously promoting track etching before breakthrough. (author)

  1. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  2. Poster - Thurs Eve-09: Evaluation of a commercial 2D ion-chamber array for intensity modulated radiation therapy dose measurements.

    Science.gov (United States)

    Mei, X; Bracken, G; Kerr, A

    2008-07-01

    Experimental verification of calculated dose from a treatment planning system is often essential for quality assurance (QA) of intensity modulated radiation therapy (IMRT). Film dosimetry and single ion chamber measurements are commonly used for IMRT QA. Film dosimetry has very good spatial resolution, but is labor intensive and absolute dose is not reliable. Ion chamber measurements are still required for absolute dose after measurements using films. Dosimeters based on 2D detector arrays that can measure 2D dose in real-time are gaining wider use. These devices provide a much easier and reliable tool for IMRT QA. We report the evaluation of a commercial 2D ion chamber array, including its basic performance characteristics, such as linearity, reproducibility and uniformity of relative ion chamber sensitivities, and comparisons between measured 2D dose and calculated dose with a commercial treatment planning system. Our analysis shows this matrix has excellent linearity and reproducibility, but relative sensitivities are tilted such that the +Y region is over sensitive, while the -Y region is under sensitive. Despite this behavior, our results show good agreement between measured 2D dose profiles and Eclipse planned data for IMRT test plans and a few verification plans for clinical breast field-in-field plans. The gamma values (3% or 3 mm distance-to-agreement) are all less than 1 except for one or two pixels at the field edge This device provides a fast and reliable stand-alone dosimeter for IMRT QA. © 2008 American Association of Physicists in Medicine.

  3. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  4. Ionization efficiency of a COMIC ion source equipped with a quartz plasma chamber

    International Nuclear Information System (INIS)

    Suominen, P.; Stora, T.; Sortais, P.; Medard, J.

    2012-01-01

    Increased ionization efficiencies of light noble gases and molecules are required for new physics experiments in present and future radioactive ion beam facilities. In order to improve these beams, a new COMIC-type ion source with fully quartz made plasma chamber was tested. The beam current stability is typically better than 1 % and beams are easily reproducible. The highest efficiency for xenon is about 15 %. However, the main goal is to produce molecular beam including radioactive carbon (in CO or CO 2 ), in which case the efficiency was measured to be only about 0.2%. This paper describes the experimental prototype and its performance and provides ideas for future development. This paper is followed by the associated poster. (authors)

  5. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. A scintillation proportional imaging chamber and its application to heavy ion detection

    International Nuclear Information System (INIS)

    Suzuki, Masayo; Takahashi, Tan

    1992-01-01

    We propose a new type of gaseous detector which can visualize individual ionization tracks produced by heavy ions. This instrument would provide us with an experimental method to investigate the radial dose distribution associated with heavy ion tracks, thus offering experimental data to be directly compared to the theoretical works done so far. We describe a prototype of the detector which has been constructed and is currently being tested in our laboratory. (author)

  7. An ionization-chamber type of focal-plane detector for heavy ions

    International Nuclear Information System (INIS)

    Erskine, J.R.; Braid, T.H.; Stolfzfus, J.C.

    1976-01-01

    A focal-plane detector for heavy ions is described in which energy loss and total energy are measured with a gridded ionization chamber, and position along the focal plane and angle of incidence are measured with two resistive-wire proportional counters. The clean geometry of the detector makes it especially attractive for use with heavy ions of high specific ionization. Typical position resolutions of 1.0-1.5mm (fwhm) were observed over a 50 cm length of the detector in the focal plane of a split-pole magnetic spectrograph. Special tests were made which suggest that the limiting position resolution is 0.76 mm or better. The resolution of the energy-loss signal was typically 4.5% (fwhm). The resolution of the total energy signal was 1.0-1.5% (fwhm) for small entrance apertures of the spectrograph, although 0.7% resolution was observed under special circumstances. The angle of incidence was measured with an uncertainty of about 1.2% (fwhm). The availability of the many parameters needed for particle identification makes this detector especially useful for the study of weak reaction channels in heavy-ion-induced reactions. (Auth.)

  8. VizieR Online Data Catalog: SNe II light curves & spectra from the CfA (Hicken+, 2017)

    Science.gov (United States)

    Hicken, M.; Friedman, A. S.; Blondin, S.; Challis, P.; Berlind, P.; Calkins, M.; Esquerdo, G.; Matheson, T.; Modjaz, M.; Rest, A.; Kirshner, R. P.

    2018-01-01

    Since all of the optical photometry reported here was produced as part of the CfA3 and CfA4 processing campaigns, see Hicken+ (2009, J/ApJ/700/331) and Hicken+ (2012, J/ApJS/200/12) for greater details on the instruments, observations, photometry pipeline, calibration, and host-galaxy subtraction used to create the CfA SN II light curves. (8 data files).

  9. Procurement specification high vacuum test chamber and pumping system

    International Nuclear Information System (INIS)

    1976-01-01

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown

  10. Assessment of the neutron component in a neutron-gamma field of a californium-252 source

    International Nuclear Information System (INIS)

    Tetteh, G.K.

    1978-12-01

    Experiments have been performed to determine the percentages of the different components in the radiation field of californium-252 which has now some clinical applications. Using Rossi Chambers in conjunction with absorption investigations involving lead and aluminium thimbles, it is observed that the dose rates due to the different components are: neutrons 54%; gammas 30%; betas 16%

  11. Atmospheric chemistry of CF3C(O)O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C(O)O2NO2

    DEFF Research Database (Denmark)

    Wallington, T.J.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    A pulse radiolysis technique has been used to measure a rate constant of (6.6 +/- 1.3) x 10(-12) cm3 molecule-1 s-1 for the association reaction between CF3C(O)O2 radicals and NO2 at 295 K and one atmosphere total pressure of SF6 diluent. A FTIR/smog chamber system was used to study the thermal...... decomposition CF3C(O)O2NO2. The rate of decomposition of CF3C(O)O2NO2 was independent of the total pressure of N2 diluent over the range 100-700 Torr and was fit by the expression k-1 = (1.9(-1.5)+7.6) x 10(16) exp[(-14000 +/- 480)/T] s-1. Implications for the atmospheric chemistry of CFC replacements...

  12. Particle desorption mass spectrometric surface characterization

    International Nuclear Information System (INIS)

    Summers, W.R.

    1986-01-01

    The feasibility of utilizing 252 Cf-Particle Desorption Mass Spectrometry (PDMS) to characterize the surface region of solid samples has been evaluated. The PDMS experiment was adapted to an ultrahigh vacuum (UHV) environment and was configured so as to allow the analysis of thick as well as thin samples. This apparatus included an in situ sputter cleaning/depth profiling facility. The mass resolution was variable from 300 to 200 at 133 daltons by changing the drift length from 27 cm to 20 cm. Desorbed ions were focused by using either a dual grid assembly or an einzel lens. The overall instrumental transmission efficiency with the einzel lens operative was approximately 50%. The applicability of 252 Cf-PDMS to samples that were thick and insulating was demonstrated in the analysis of geological specimens. Pollucite, Microcline, Amblygonite, and Lepidolite were analyzed without complications associated with sample thickness or charge accumulation. Substitution occurring between the alkali metals in the environment was observed by PDMS and was corroborated by SIMS, XPS, and EMP analyses. The analysis of NBM SRM glasses addressed the suitability of combining the PDMS technique was sputter etching. This application demonstrated the ability of this technique to sense changes in the chemical environment brought about by sputter cleaning. The analysis of these samples also allowed the estimation of detection limits for lithium, rubidium, and cesium in a glass matrix as 300 ppm, 400 ppm, and 400 ppm, respectively. Sputter depth profiling combined with 252 Cf-PDMS analysis of an aluminum layer on a silicon substrate established the utility of the PDMS technique in surface characterization

  13. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  14. Etching properties of BLT films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Kim, Dong Pyo; Kim, Kyoung Tae; Kim, Chang Il

    2003-01-01

    CF 4 /Ar plasma mass content and etching rate behavior of BLT thin films were investigated in inductively coupled plasma (ICP) reactor as functions of CF 4 /Ar gas mixing ratio, rf power, and dc bias voltage. The variation of relative volume densities for F and Ar atoms were measured by the optical emission spectroscopy (OES). The etching rate as functions of Ar content showed the maximum of 803 A/min at 80 % Ar addition into CF 4 plasma. The presence of maximum etch rate may be explained by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction. The role of Ar ion bombardment includes destruction of metal (Bi, La, Ti)-O bonds as well as support of chemical reaction of metals with fluorine atoms

  15. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Science.gov (United States)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.

  16. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    KAUST Repository

    Morber, Jenny Ruth; Wang, Xudong; Liu, Jin; Snyder, Robert L.; Wang, Zhong Lin

    2009-01-01

    involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber

  17. Atmospheric chemistry of trans-CF3CH=CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbaek; Nilsson, Elna Johanna Kristina; Nielsen, Ole John

    2008-01-01

    Long path length Fourier transform infrared (FTIR)–smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OH radicals and O3 with trans-3,3,3-trifluoro-1-chloropropene, t-CF3CH CHCl, in 700 Torr total pressure at 295±2K. Values of k(Cl + t-CF3CH CHCl) = (5...

  18. Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization

    International Nuclear Information System (INIS)

    Cruz, Wilbert; Narayanasamy, Ganesh; Papanikolaou, Niko; Stathakis, Sotirios

    2015-01-01

    Purpose: In this study a dosimetric comparison utilizing continuous data acquisition and discrete data acquisition is examined using IBA Blue Phantom (IBA Dosimetry, Schwarzenbruck, Germany) and PTW (PTW, Freiberg, Germany) MP3-M water tanks. The tanks were compared according to several factors including set up time, ease of use, and data acquisition times. A tertiary objective is to study the response of several ionization chambers in the two tanks examined. Methods: Measurements made using a Varian 23EX LINAC (Varian Medical Systems, Palo Alto, CA) include PDDs and beam profiles for various field sizes with IBA CC13, PTW Semiflex 31010, PTW Pinpoint N31016, and PTW 31013 ion chambers for photons (6, 18 MV) and electrons (6, 9, 12, 15, and 18 MeV). Radial and transverse profile scans were done at depths of maximum dose, 5 cm, 10 cm, and 20 cm using the same set of tanks and detectors for the photon beams. Radial and transverse profile scans were done at depth of maximum dose for the electron beams on the same tanks and chambers. Data processing and analysis was performed using PTW's MEPHYSTO Navigator software and IBA's OmniPro Accept version 6.6 for the respective water tank systems. Results: PDD values agree to within 1% and dmax to within 1 mm for the PTW MP3-M tank using PTW 31010 and Blue Phantom using IBA CC13 chamber, respectively and larger discrepancy with the PTW PinPoint N31016 chamber at 6 MV. With respect to setup time the PTW MP3-M and IBA Blue phantom tank took about 20 and 40 min, respectively. Scan times were longer by 5–15 min per field size in the PTW MP3-M tank for the square field sizes from 1 cm to 40 cm as compared to the IBA Blue phantom. However, data processing times were higher by 7 min per field size with the IBA system. Conclusions: Tank measurements showed little deviation with the higher energy photons as compared to the lower energy photons with regards to the PDD measurements. Chamber construction as well as tank

  19. Ion-induced desorption from stainless-steel vacuum chambers has been studied with a view to improving the dynamic pressure in the future LEIR ion accumulator ring for the LHC.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    This picture shows part of a vacuum chamber fully equipped with St707 non-evaporable getter (NEG) strips which were bombarded in Linac3 with lead ions at 4.2 MeV/u. A change of the surface morphology is visible where the Pb53+ ions impacted under grazing incidence onto the NEG.

  20. New facility for ion beam materials characterization and modification at Los Alamos

    International Nuclear Information System (INIS)

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs

  1. Practical aspects of trapped ion mass spectrometry, 4 theory and instrumentation

    CERN Document Server

    March, Raymond E

    2010-01-01

    The expansion of the use of ion trapping in different areas of mass spectrometry and different areas of application indicates the value of a single source of information drawing together diverse inputs. This book provides an account of the theory and instrumentation of mass spectrometric applications and an introduction to ion trapping devices.

  2. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ying [Argonne National Laboratory, Argonne, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Lian, Tiangan [Electric Power Research Institute, Palo Alto, CA 94304 (United States)

    2015-09-15

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 10{sup 19} ions/m{sup 2} (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite–austenite phase boundary and presence of M{sub 23}C{sub 6} carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M{sub 23}C{sub 6} carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M{sub 23}C{sub 6} carbides at 350 °C and 400 °C.

  3. Atmospheric chemistry of HFE-7000 (CF(3)CF (2)CF (2)OCH (3)) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF (3)CF (2)CF (2)CH (2)OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms.

    Science.gov (United States)

    Díaz-de-Mera, Yolanda; Aranda, Alfonso; Bravo, Iván; Rodríguez, Diana; Rodríguez, Ana; Moreno, Elena

    2008-10-01

    The adverse environmental impacts of chlorinated hydrocarbons on the Earth's ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C-F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF(3)CF(2)CF(2)OCH(3)) (1) and its isomer CF(3)CF(2)CF(2)CH(2)OH (2). Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube-mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266-333 and 298-353 K for reactions of HFE-7000 and CF(3)CF(2)CF(2)CH(2)OH, respectively. The measured room temperature rate constants were k(Cl+CF(3)CF(2)CF(2)OCH(3)) = (1.24 +/- 0.28) x 10(-13) cm(3) molecule(-1) s(-1)and k(Cl+CF(3)CF(2)CF(2)CH(2)OH) = (8.35 +/- 1.63) x 10(-13) cm(3) molecule(-1) s(-1) (errors are 2sigma + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k (1)(266-333 K) = (6.1 +/- 3.8) x 10(-13)exp[-(445 +/- 186)/T] cm(3) molecule(-1) s(-1) and k (2)(298-353 K) = (1.9 +/- 0.7) x 10(-12)exp[-(244 +/- 125)/T] cm(3) molecule(-1) s(-1) (errors

  4. High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma

    Directory of Open Access Journals (Sweden)

    Chia-Pin Yeh

    2016-08-01

    Full Text Available Reactive ion etching (RIE technology for iridium with CF4/O2/Ar gas mixtures and aluminum mask at high temperatures up to 350 °C was developed. The influence of various process parameters such as gas mixing ratio and substrate temperature on the etch rate was studied in order to find optimal process conditions. The surface of the samples after etching was found to be clean under SEM inspection. It was also shown that the etch rate of iridium could be enhanced at higher process temperature and, at the same time, very high etching selectivity between aluminum etching mask and iridium could be achieved.

  5. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  6. Subcriticality determination of nuclear fuel assembly by Mihalczo method

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Watanabe, Shoji; Nishina, Kojiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao.

    1986-01-01

    To establish a technique of on-site subcriticality determination suitable for the criticality safety management of nuclear fuel assembly, the applicability of the method proposed by Mihalczo was examined with the Tank-type Critical Assembly (TCA) of the Japan Atomic Energy Research Institute. In the Mihalczo method, cross power spectral densities and auto power spectral densities are evaluated from the output currents of an ionization chamber containing 252 Cf neutron source and two neutron detectors. The principle of this method is that the spectral ratio formed by the power spectral densities mentioned can be related to the subcriticality by the help of a stochastic theory. Throughout our data processing, an improved formula taking account of the neutron extinction at a detection process was used. Up to the subcriticality of 15 dollars, the Mihalczo method agreed with the water-level worth method, which has been a standard method of reactivity determination at the TCA facility. The systems treated in the present report hold symmetry concerning the nuclear fuel configuration and the 252 Cf chamber position. It was clarified that, contrary to Mihalczo's assertion, the factor converting the spectral ratio to a subcriticality depends on subcriticality itself. (author)

  7. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    Science.gov (United States)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the

  8. A parallel plate avalanche chamber for relativistic heavy ions

    International Nuclear Information System (INIS)

    Burgei, R.

    1989-01-01

    In order to determine the interaction point of relativistic heavy ions in the Diogene target, we have built and tested an X-Y low pressure parallel plate avalanche chamber. It uses three thin metallized foils and is filled with isobutane. A preliminary study shows that it is the only detector with the required specifications: efficiency, accurate position determination and a small uniform amount of material for the particle beam to go through. The electronics system is designed for reliability, easy adjustments and high stability. The interaction point is given on delay-line read-out. This represents the optimum compromise between low price and good performance. Laboratory measurements of gain, efficiency and position accuracy are done with an alpha-particle source. Two of these detectors are working at the Saturne National Laboratory. They allow the trajectory of several tens of particles (among a million per second) to be reconstructed. With an argon beam at 400 MeV per nucleon, the position uncertainty in the target has been measured to be 0.5 mm (standard deviation). This uncertainty is 0.3 mm for each detector, with an efficiency of 94 per cent. Our set-up, which is now operational, improves the accuracy of the results and speed of analysis of Diogene experiments devoted to the study of central collisions between heavy ions [fr

  9. Responses of sensitive and tolerant bush beans (Phaseolus vulgaris L.) to ozone in open-top chambers are influenced by phenotypic differences, morphological characteristics, and the chamber environment

    Energy Technology Data Exchange (ETDEWEB)

    Elagoez, Vahram [Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: velagoz@nsm.umass.edu; Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-08-15

    Responses of bush bean (Phaseolus vulgaris L.) lines 'S156' (O{sub 3}-sensitive) and 'R123' (O{sub 3}-tolerant), and cultivars 'BBL 290' (O{sub 3}-sensitive) and 'BBL 274' (O{sub 3}-tolerant) to ambient ozone (O{sub 3}) were investigated during the 2001 and 2002 growing seasons. Seedlings were grown in pots inside open-top chambers (OTCs), with charcoal filtered (CF) and non-filtered (NF) ambient air, and in non-chambered ambient air (AA) plots. Growth parameters from individual plants were evaluated after harvests at the end of vegetative (V{sub 4}) and reproductive (R{sub 10}) growth phases. Results at V{sub 4} indicated that CF did not provide additional benefits over NF in 'S156' in 2001 and 2002. In contrast, exposure to CF significantly impaired the growth of 'R123'. At the end of R{sub 10}, 'S156' produced more pods, most of which remained immature, and contained fewer seeds or were more frequently aborted, whereas pods produced in 'R123' reached pod maturation and senescence more consistently. Despite increased seed weights inside the OTCs, as observed in 'S156', differences between the two lines were insignificant when grown outside OTCs. Results from the 'BBL 290'/'BBL 274' pair, especially at V{sub 4} phase, remained inconclusive. Plant morphological characteristics, variabilities in environmental conditions, and 'chamber effects' inside OTCs were influential in determining plant response to ambient O{sub 3}. - Phenotypic differences, morphological characteristics, and 'chamber effects' inside OTCs are equally influential in determining the responses of beans to O{sub 3}.

  10. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  11. Two-quasineutron states in 98248Cf and 98250Cf and the neutron-neutron residual interactions

    International Nuclear Information System (INIS)

    Katori, K.; Ahmad, I.; Friedman, A. M.

    2008-01-01

    Two-quasineutron states in 248 Cf and 250 Cf were investigated by single-neutron transfer reactions, 249 Cf(d,t) 248 Cf and 249 Cf(d,p) 250 Cf. The majority of levels observed were assigned to 12 bands in 248 Cf and six bands in 250 Cf, constructed from the single-particle states in neighboring Cf nuclei. The effective two-body interactions between two odd neutrons coupled outside a deformed core were deduced from the differences in the energies of the bandheads formed by the parallel and antiparallel coupling of the intrinsic spins of the two single-particle states

  12. Secondary Ion Mass Spectrometry SIMS XI

    Science.gov (United States)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  13. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  14. Pre-irradiation effects on ionization chambers used in radiation therapy

    International Nuclear Information System (INIS)

    McCaffrey, J P; Downton, B; Shen, H; Niven, D; McEwen, M

    2005-01-01

    Dosimetry protocols recommend that ionization chambers used in radiation therapy be pre-irradiated until they 'settle', i.e., until a stable reading is obtained. Previous reports have claimed that a lack of pre-irradiation could result in errors up to several per cent. Recently, data collected for a large number of commonly used ion chambers at the Institute for National Measurement Standards, NRC, Canada, have been collated and analysed, with additional data contributed by the National Physical Laboratory, UK. With this data set, it was possible to relate patterns of ion chamber behaviour to design parameters. While several mechanisms seem to contribute to this behaviour, the most obvious correlations implicate the type of insulator surrounding the central collector electrode, the extent of collector electrode shielding and possibly the area of the insulator exposed at the base of the active air volume. The results show that ion chambers with electrode connections guarded up to the active air volume settle quickly (∼9 min) and the change in response is small (less than ∼0.2%). For ion chambers where the guard connection surrounding the central collector does not extend up to the active air volume, settling times of 15-20 min and an associated change in response of up to 1% are typical. For some models of ion chambers, the irradiation rate may also play a role in settling behaviour. Settling times for the ion chambers studied here were found to be independent of beam quality. (note)

  15. Dark matter search results from the PICO-60 CF3I bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, M.; Debris, F.; Dhungana, N.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Grandison, A.; Hai, M.; Hall, J.; Harris, O.; Jin, M.; Krauss, C. B.; Lafrenière, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Maurya, D.; Mitra, P.; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Ramberg, E.; Robinson, A. E.; Rucinski, R.; Ruschman, M.; Scallon, O.; Seth, S.; Simon, P.; Sonnenschein, A.; Štekl, I.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.; Shkrob, I. A.

    2016-03-01

    New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining 48.2% of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out.

  16. Development of multi-layer ionization chamber for heavy-ion therapy

    International Nuclear Information System (INIS)

    Yajima, Kaori; Kusano, Yohsuke; Shimojyu, Takuya; Kanai, Tatsuaki

    2007-01-01

    In heavy-ion radiotherapy, depth dose distributions measured in water phantom are applied to estimate the dose distributions in a patient body. In order to obtain depth dose distributions in water phantom easily and rapidly, Multi-Layer Ionization Chamber (MLIC) was developed and had been adapted as a field dosimeter at NIRS since 2002. Production cross section of fragments in high Z material of the MLIC, however, is very different from those in water material. Then, empirical correction should be required. In order to obtain depth dose distributions with high accuracy, we have to use low Z material as a phantom, which are thought to produce similar fragments with water phantom. From this point of view, we have developed a new MLIC made up of low Z materials, PMMA and graphite film. (author)

  17. TH-E-BRE-03: A Novel Method to Account for Ion Chamber Volume Averaging Effect in a Commercial Treatment Planning System Through Convolution

    International Nuclear Information System (INIS)

    Barraclough, B; Li, J; Liu, C; Yan, G

    2014-01-01

    Purpose: Fourier-based deconvolution approaches used to eliminate ion chamber volume averaging effect (VAE) suffer from measurement noise. This work aims to investigate a novel method to account for ion chamber VAE through convolution in a commercial treatment planning system (TPS). Methods: Beam profiles of various field sizes and depths of an Elekta Synergy were collected with a finite size ion chamber (CC13) to derive a clinically acceptable beam model for a commercial TPS (Pinnacle 3 ), following the vendor-recommended modeling process. The TPS-calculated profiles were then externally convolved with a Gaussian function representing the chamber (σ = chamber radius). The agreement between the convolved profiles and measured profiles was evaluated with a one dimensional Gamma analysis (1%/1mm) as an objective function for optimization. TPS beam model parameters for focal and extra-focal sources were optimized and loaded back into the TPS for new calculation. This process was repeated until the objective function converged using a Simplex optimization method. Planar dose of 30 IMRT beams were calculated with both the clinical and the re-optimized beam models and compared with MapCHEC™ measurements to evaluate the new beam model. Results: After re-optimization, the two orthogonal source sizes for the focal source reduced from 0.20/0.16 cm to 0.01/0.01 cm, which were the minimal allowed values in Pinnacle. No significant change in the parameters for the extra-focal source was observed. With the re-optimized beam model, average Gamma passing rate for the 30 IMRT beams increased from 92.1% to 99.5% with a 3%/3mm criterion and from 82.6% to 97.2% with a 2%/2mm criterion. Conclusion: We proposed a novel method to account for ion chamber VAE in a commercial TPS through convolution. The reoptimized beam model, with VAE accounted for through a reliable and easy-to-implement convolution and optimization approach, outperforms the original beam model in standard IMRT QA

  18. Etching characteristic and mechanism of BST thin films using inductively coupled Cl2/Ar plasma with additive CF4 gas

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    BST thin films were etched with inductively coupled CF 4 /(Cl 2 +Ar) plasmas. The maximum etch rate of the BST thin films was 53.6 nm/min for a 10% CF 4 to the Cl 2 /Ar gas mixture at RF power of 700 W, DC bias of -150 V, and chamber pressure of 2 Pa. Small addition of CF 4 to the Cl 2 /Ar mixture increased chemical effect. Consequently, the increased chemical effect caused the increase in the etch rate of the BST thin films. To clarify the etching mechanism, the surface reaction of the BST thin films was investigated by X-ray photoelectron spectroscopy

  19. Impact of instrument response variations on health physics measurements

    International Nuclear Information System (INIS)

    Armantrout, G.A.

    1984-10-01

    Uncertainties in estimating the potential health impact of a given radiation exposure include instrument measurement error in determining exposure and difficulty in relating this exposure to an effective dose value. Instrument error can be due to design or manufacturing deficiencies, limitations of the sensing element used, and calibration and maintenance of the instrument. This paper evaluates the errors which can be introduced by design deficiencies and limitations of the sensing element for a wide variety of commonly used survey instruments. The results indicate little difference among sensing element choice for general survey work, with variations among specific instrument designs being the major factor. Ion chamber instruments tend to be the best for all around use, while scintillator-based units should not be used where accurate measurements are required. The need to properly calibrate and maintain an instrument appears to be the most important factor in instrument accuracy. 8 references, 6 tables

  20. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    Science.gov (United States)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  1. Performance of an extrapolation chamber in computed tomography standard beams

    International Nuclear Information System (INIS)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E.

    2017-01-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  2. Performance of an extrapolation chamber in computed tomography standard beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E., E-mail: mcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  3. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  4. Ions behaviour in a wilson chamber with internal self-command; Comportement des ions dans une chambre de wilson a autocommande interne

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H de; Tzara, C; Studinovski, J [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    Study, with the help of a self-commanded chamber, of ions behaviors created in this one by a {alpha} particle. The authors put in evidence the phenomenon of multiplication and recover the required conditions for the working of the proportional counters. They verify that the ions reach quickly a steady aggregation state in their gas-steam mixture. These aggregations have a middle mobility of about 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. They signal an unexpected phenomenon that they assign at a thermodynamic reason. (author) [French] Etude, a l'aide d'une chambre autocommandee, du comportement des ions crees dans celle-ci par une particule {alpha}. Les auteurs mettent en evidence le phenomene de multiplication et retrouvent les conditions requises pour le fonctionnement des compteurs proportionnels. Ils verifient que les ions atteignent rapidement un etat d'agregat stable dans leur melange gaz-vapeur. Ces agregats ont une mobilite moyenne d'environ 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. Ils signalent un phenomene inattendu qu'ils attribuent a une cause thermodynamique. (auteur)

  5. Design and performance of the large HERMES drift chambers

    International Nuclear Information System (INIS)

    Bernreuther, S.; Boettcher, H.; Ferstl, M.; Gute, A.; Harder, U.; Krause, B.; Meissner, F.; Nowak, W.D.; Schmidt, F.; Schwind, A.E.

    1995-01-01

    Big planar drift chambers built for the downstream tracking system of the HERMES spectrometer are described. Using the fast non-flammable gas mixture Ar/CO 2 /CF 4 (90/5/5) average spatial resolutions of about 180 μm per plane at efficiencies above 96% have been obtained from test run data analysis. (orig.)

  6. A virtual reality instrument: near-future perspective of computer simulations of ion optics

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    The method of accurate modeling of complex ion optical systems is presented. It combines using SIMION 3D (c) with external software generating input ion sets and processing results of ion trajectory simulations. This method was used to simulate time-of-flight (TOF) mass spectrometer of secondary neutrals SARISA (Surface Analysis by Resonance Ionization of Sputtered Atoms), and results of simulations were compared to results of the experiments. It is demonstrated that the accuracy of the presented modeling method is sufficient to reproduce experimental TOF (mass) spectra and dependencies of the instrument useful yield on sputtering and ionization conditions. A concept of 'virtual reality instrument' as a logical extension of the method is discussed

  7. Optimization of spherical ionization chambers for neutron diagnostics in Tokamak plants

    International Nuclear Information System (INIS)

    Hoenen, F.

    1983-05-01

    For the investigation of neutron emission from fusion plasmas Pulse-Ion-Chamber are favored because of their high temporal resolution, the availability of results immedately after the discharge and their insensitivity to hard X-rays. However to measure ion temperatures below 2 keV with the aid of neutron spectroscopy the detectors have to be improved. Difficulties arise from the fact that in Pulse-Ion-Chambers the pulse height is a function of the position in the chamber where the ion pairs are produced (Induction effect). It will be shown that the induction effect is smaller in spherical ionisation chambers than in cylindrical ones. This means an increase in energy resolution so that neutrons from the D(D,n) 3 He reaction can be analysed with an energy resolution of better than 3% in spherical chambers. (orig./HP) [de

  8. Linear Ion Traps in Space: The Mars Organic Molecule Analyzer (MOMA) Instrument and Beyond

    Science.gov (United States)

    Arevalo, Ricardo; Brinckerhoff, William; Mahaffy, Paul; van Amerom, Friso; Danell, Ryan; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Grubisic, Andrej; Goesmann, Fred; Cottin, Hervé

    2015-11-01

    Historically, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, from Venus (Pioneer Venus) to Saturn (Cassini-Huygens). However, linear ion trap (LIT) mass spectrometers have found a niche as smaller, versatile alternatives to traditional quadrupole analyzers.The core astrobiological experiment of ESA’s ExoMars Program is the Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2018 rover. The MOMA instrument is centered on a linear (or 2-D) ion trap mass spectrometer. As opposed to 3-D traps, LIT-based instruments accommodate two symmetrical ion injection pathways, enabling two complementary ion sources to be used. In the case of MOMA, these two analytical approaches are laser desorption mass spectrometry (LDMS) at Mars ambient pressures, and traditional gas chromatography mass spectrometry (GCMS). The LIT analyzer employed by MOMA also offers: higher ion capacity compared to a 3-D trap of the same volume; redundant detection subassemblies for extended lifetime; and, a link to heritage QMS designs and assembly logistics. The MOMA engineering test unit (ETU) has demonstrated the detection of organics in the presence of wt.%-levels of perchlorate, effective ion enhancement via stored waveform inverse Fourier transform (SWIFT), and derivation of structural information through tandem mass spectrometry (MS/MS).A more progressive linear ion trap mass spectrometer (LITMS), funded by the NASA ROSES MatISSE Program, is being developed at NASA GSFC and promises to augment the capabilities of the MOMA instrument by way of: an expanded mass range (i.e., 20 - 2000 Da); detection of both positive and negative ions; spatially resolved (<1 mm) characterization of individual rock core layers; and, evolved gas analysis and GCMS with pyrolysis up to 1300° C (enabling breakdown of refractory phases). The Advanced Resolution Organic Molecule Analyzer (AROMA) instrument, being developed through NASA

  9. Ion bombardment techniques - recent developments in SIMS

    International Nuclear Information System (INIS)

    Konarski, P.; Miśnik, M.

    2013-01-01

    We present a short review of cluster ion bombardment technique recently applied in SIMS. Many advantages of using cluster ion beams are specified over monoatomic ion species. Cluster ions open really new perspectives especially in organic based structures analysis. Nevertheless cluster ions are not the perfect solution and still new ideas of ion erosion in SIMS are needed. Another issue discussed is 'storing matter' technique applied for quantitative analysis in SIMS. Simple idea of sputter deposition of eroded material onto rotating substrate and then analysing the stored material allows to avoid strong matrix effects in SIMS. Presented are the results performed in Tele and Radio Research Institute, Warszawa, Poland. These are the first results of ‘storing matter’ technique performed in one analytical chamber of SIMS instrument. (authors)

  10. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    International Nuclear Information System (INIS)

    Bolte, W.J.; Collar, J.I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.

    2007-01-01

    The viability of using Bubble Chambers as dark matter particle detectors is considered. Techniques leading to the enhanced chamber stability needed for this new application are described in detail. Prototype trials show that sensitivity to the low-energy nuclear recoils induced by Weakly Interacting Massive Particles (WIMP) is possible in conditions of extreme insensitivity to minimum ionizing backgrounds. An understanding of detector response is demonstrated using existing theoretical models. We briefly comment on the prospects for detection of supersymmetric dark matter with large CF 3 I chambers

  11. A comparative study of the work involved in measuring profiles using ion chambers, a linear diode array and film

    International Nuclear Information System (INIS)

    Rykers, K.L.; RMIT University, Melbourne, VIC; Royal North Shore Hospital, St Leonards, NSW; Geso, M.; Brown, G.M.; Olilver, L.D.

    1996-01-01

    depth and -0.04 to 0.09 cm at 12.5 cm depth. Film profiles measured with the Scanditronix and Wellhoefer systems were essentially indistinguishable. Film profiles compared with ion chamber profiles agreed well in terms of field size, position, height of maximum and profile shape. Film profiles deviated most from ion chamber profiles in the post-penumbra regions. LDA measured profiles agreed well with the ion chamber profiles in the post-penumbra regions, field size and general profile shape but gave maximums with marginally greater amplitudes. Dynamic wedge profiles measured with film and the LDA exhibited the same trend in agreement as observed for physical wedge profiles. The method described for taking profile measurements with film held in solid water allows for the generation of data which is comparable with that measured with an ion chamber in real water. Film requires only one delivery of the wedged field to generate an infinite number of highly resolved profiles. The time needed to measure LDA profiles is significantly greater than that required when measuring with film. The 25 mm spacing of the diodes on the LDA requires it to be moved repeatedly with many measurements taken to give a single high resolution profile. The need to take multiple exposures to achieve high resolution profiles would also be a requirement of a multi channel ion chamber array

  12. Monte Carlo correction factors for a Farmer 0.6 cm3 ion chamber dose measurement in the build-up region of the 6 MV clinical beam

    International Nuclear Information System (INIS)

    Pena, J; Sanchez-Doblado, F; Capote, R; Terron, J A; Gomez, F

    2006-01-01

    Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm 3 ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface

  13. Dark Matter Time Projection Chamber : Recent R&D Results

    Science.gov (United States)

    Battat, J. B. R.; Ahlen, S.; Chernicoff, M.; Deaconu, C.; Dujmic, D.; Dushkin, A.; Fisher, P.; Henderson, S.; Inglis, A.; Kaboth, A.; Kirsch, L.; Lopez, J. P.; Monroe, J.; Ouyang, H.; Sciolla, G.; Tomita, H.; Wellenstein, H.

    2012-02-01

    The Dark Matter Time Projection Chamber collaboration recently reported a dark matter limit obtained with a 10 liter time projection chamber filled with CF4 gas. The 10 liter detector was capable of 2D tracking (perpendicular to the drift direction) and 2D fiducialization, and only used information from two CCD cameras when identifying tracks and rejecting backgrounds. Since that time, the collaboration has explored the potential benefits of photomultiplier tube and electronic charge readout to achieve 3D tracking, and particle identification for background rejection. The latest results of this effort is described here.

  14. Dicty_cDB: SLH252 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLH252 (Link to dictyBase) - - - - SLH252F (Link to Original site) SLH2...52F 158 - - - - - - Show SLH252 Library SL (Link to library) Clone ID SLH252 (Link to dictyBase) At...las ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/SL/SLH2-C/SLH2...52Q.Seq.d/ Representative seq. ID SLH252F (Link to Original site) R...epresentative DNA sequence >SLH252 (SLH252Q) /CSM/SL/SLH2-C/SLH252Q.Seq.d/ ACAGAATGGGTAAAGTACATGGTGGTTTGAATC

  15. The NA36 time projection chamber: An interim report on a TPC designed for a relativistic heavy ion experiment

    International Nuclear Information System (INIS)

    Diebold, G.E.

    1987-01-01

    Since its conception in the early 1970s, the Time Projection Chamber (TPC) has found application in several areas of particle physics ranging from e + e - collider experiments to rare decay studies of lepton nonconservation. A new and promising area of application for the TPC is the study of relativistic heavy ion collisions (RHIC). Presented here is an interim report on the first TPC for this field of physics, the NA36 TPC, being developed by Berkeley (LBL) for RHIC at the CERN SPS. Emphasis is placed on the operational and design considerations implemented to optimize the performance of the NA36 TPC in the study of central rapidity strange baryons produced in RHIC. The NA36 TPC volume is rectangular with an endcap area 0.5 m x 1.0 m and a maximum drift distance of 0.5 m. The drift volume is filled with Ar-CH 4 (9%) at one atmosphere. A total of 6400 channels of time digitizing electronics instrument 66% of the endcap in a wedge shaped area matched to fixed target kinematics. 6 refs., 5 figs

  16. 15 CFR 25.2 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... head means the Secretary of the Department of Commerce, or designee. Benefit means, except as the... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Definitions. 25.2 Section 25.2 Commerce and Foreign Trade Office of the Secretary of Commerce PROGRAM Fraud Civil Remedies § 25.2...

  17. Design and implementation of embedded ion mobility spectrometry instrument based on SOPC

    Science.gov (United States)

    Zhang, Genwei; Zhao, Jiang; Yang, Liu; Liu, Bo; Jiang, Yanwei; Yang, Jie

    2015-02-01

    On the hardware platform with single CYCLONE IV FPGA Chip based on SOPC technology, the control functions of IP cores of a Ion Mobility Spectrometry instrument was tested, including 32 bit Nios II soft-core processor, high-voltage module, ion gate switch, gas flow, temperature and pressure sensors, signal acquisition and communication protocol. Embedded operating system μCLinux was successfully transplanted to the hardware platform, used to schedule all the tasks, such as system initialization, parameter setting, signal processing, recognition algorithm and results display. The system was validated using the IMS diagram of Acetone reagent, and the instrument was proved to have a strong signal resolution.

  18. Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Austin Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Talou, Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stetcu, Ionel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kiedrowski, Brian Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jaffke, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivity of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.

  19. Ions behaviour in a wilson chamber with internal self-command; Comportement des ions dans une chambre de wilson a autocommande interne

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H. de; Tzara, C.; Studinovski, J. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    Study, with the help of a self-commanded chamber, of ions behaviors created in this one by a {alpha} particle. The authors put in evidence the phenomenon of multiplication and recover the required conditions for the working of the proportional counters. They verify that the ions reach quickly a steady aggregation state in their gas-steam mixture. These aggregations have a middle mobility of about 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. They signal an unexpected phenomenon that they assign at a thermodynamic reason. (author) [French] Etude, a l'aide d'une chambre autocommandee, du comportement des ions crees dans celle-ci par une particule {alpha}. Les auteurs mettent en evidence le phenomene de multiplication et retrouvent les conditions requises pour le fonctionnement des compteurs proportionnels. Ils verifient que les ions atteignent rapidement un etat d'agregat stable dans leur melange gaz-vapeur. Ces agregats ont une mobilite moyenne d'environ 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. Ils signalent un phenomene inattendu qu'ils attribuent a une cause thermodynamique. (auteur)

  20. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  1. CF and School

    Science.gov (United States)

    ... Accommodations for College Scholarships and Financial Aid 10 Things I Wish I Knew Before Coming to College CF and College: The Secret to Getting it All Done View All Managing My CF in College Resources ...

  2. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  3. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    International Nuclear Information System (INIS)

    Brown, R.A.

    1994-01-01

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures

  4. Technique for increasing dynamic range of space-borne ion composition instruments

    International Nuclear Information System (INIS)

    Burch, J.L.; Miller, G.P.; Santos, A. de los; Pollock, C.J.; Pope, S.E.; Valek, P. W.; Young, D.T.

    2005-01-01

    The dynamic range of ion composition spectrometers is limited by several factors, including saturation of particle counters and spillover of signals from highly dominant species into channels tuned to minor species. Instruments designed for composition measurements of hot plasmas in space can suffer greatly from both of these problems because of the wide energy range required and the wide disparity in fluxes encountered in various regions of interest. In order to detect minor ions in regions of very weak fluxes, geometry factors need to be as large as possible within the mass and volume resources available. As a result, problems with saturation by the dominant fluxes and spillover to minor-ion channels in plasma regions with intense fluxes become especially acute. This article reports on a technique for solving the dynamic-range problem in the few eV to several keV energy/charge range that is of central importance for space physics research where the dominant ion is of low mass/charge (typically H + ), and the minor ions are of higher mass/charge (typically O + ). The technique involves employing a radio-frequency modulation of the deflection electric field in the back section of an electrostatic analyzer in a time-of-flight instrument. This technique is shown to reduce H + counts by a controllable amount of up to factors of 1000 while reducing O + counts by only a few percent that can be calibrated

  5. Image timing and detector performance of a matrix ion-chamber electronic portal imaging device

    International Nuclear Information System (INIS)

    Greer, P.

    1996-01-01

    The Oncology Centre of Auckland Hospital recently purchased a Varian PortalVision TM electronic portal imaging device (EPID). Image acquisition times, input-output characteristics and contrast-detail curves of this matrix liquid ion-chamber EPID have been measured to examine the variation in imaging performance with acquisition mode. The variation in detector performance with acquisition mode has been examined. The HV cycle time can be increased to improve image quality. Consideration should be given to the acquisition mode and HV cycle time used when imaging to ensure adequate imaging performance with reasonable imaging time. (author)

  6. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry

    International Nuclear Information System (INIS)

    Kirby, Daniel; Parker, David; Green, Stuart; Hugtenburg, Richard; Wojnecki, Cecile; Palmans, Hugo

    2010-01-01

    Dosimetry using a PMMA phantom was performed in 15 and 29 MeV proton beams from the Birmingham cyclotron, with a Markus parallel-plate ionization chamber and GafChromic EBT and MD-V2-55 film. Simulations of the depth-dose curves were performed with FLUKA 2008.3 and MCNPX 2.5.0, which agreed almost perfectly with each other in range and only differed by 2% in the Bragg peak (BP) region. FLUKA was also used to calculate k Q factors for Markus chamber measurements as an improvement to the IAEA TRS-398 values in low-energy beams. FLUKA depth-dose simulations overestimate the BP height measured by ion chamber by about 10%, where the initial proton energy spread was estimated by fitting to the slope of the measured BP distal edge. Both GafChromic films showed an under-response in the BP compared to ion chamber; however, EBT exhibits this effect at lower energies than MD-V2-55. A possible reason for this is attributed to the shape and arrangement of the monomer particles being different in the active components of EBT and MD-V2-55. Relative effectiveness (RE) of both films is presented as functions of residual range R res in water and peak proton energy determined by FLUKA, with considerations for the spatial separation of the two active layers in each film. The proton energies at which RE reduces to 90% of maximum film response are 6.7 and 3.2 MeV for MD-V2-55 and EBT, respectively. Additionally, a beam quality correction factor (g Q,Q 0 ) is suggested for both GafChromic films, involving water-to-film stopping power ratios evaluated using ICRU recommendations, and a polymer yield factor G Q 0 /G Q . RE in this work is equated to the reciprocal of the polymer yield factor. The calculated values of (s w,film ) Q /(s w,film ) Q 0 are constant within 2.1% and 1.2% across the proton energy range of 1-300 MeV for EBT and MD-V2-55, respectively, so it is concluded that the polymer yield factor is the dominant factor causing the LET quenching effect.

  7. Chemistry of radiation damage to wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF 4 /iC 4 H 10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF 4 -rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF 4 , acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF 4 /iC 4 H 10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C 2 H 6 . Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl 3 F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  8. Calibration of neutron detectors on the Joint European Torus.

    Science.gov (United States)

    Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L

    2017-10-01

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  9. Measurement of the spark probability in single gap parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Golovkin, V.; Kholodenko, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Misyura, S.; Pojidaev, V.; Salicio, J.M.

    1996-01-01

    We present results on the measurements of the spark probability with CO 2 and CF 4 /CO 2 (80/20) mixture, at atmospheric pressure, using 1.5 mm gas gap parallel plate chambers, working at a gas gain ranging from 4.5 x 10 2 to 3.3 x 10 4 . (orig.)

  10. Multi-fold correlations between 252Cf (sf) fragments and fission neutrons/γ-rays

    International Nuclear Information System (INIS)

    Duering, I.; Jahnke, U.

    1993-01-01

    Direction-sensitive spectroscopy of fission fragments (twin ionization chamber with Frisch grids) was combined with the measurement of neutron multiplicity distribution (P(ν), average total γ-ray energy (2x2 π Gd-loaded scintillator) as well as energy and angular distribution of neutrons and γ-rays. Based on the careful account for necessary corrections, scission configurations given by mass asymmetry, elongation (total kinetic energy of fragments), and shape asymmetry (ν 1 /ν 2 ) can be studied exclusively in correlation with differential distributions of emission products. The scheme for correcting the neutron multiplicity distribution including its separation into the contributions from the complementary fragments is presented in detail. The mass yield for extreme anti ν 1 / anti ν 2 ratios show fine structures indicating the cold shape-asymmetric fission. (orig.)

  11. Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber

    International Nuclear Information System (INIS)

    Nie Min; Meng, Dennis Desheng; Sun Kai

    2009-01-01

    A new method is reported to form metal nanoparticles by sputter deposition inside a reactive ion etching chamber with a very short target-substrate distance. The distribution and morphology of nanoparticles are found to be affected by the distance, the ion concentration, and the sputtering time. Densely distributed nanoparticles of various compositions were fabricated on the substrates that were kept at a distance of 130 μm or smaller from the target. When the distance was increased to 510 μm, island structures were formed, indicating the tendency to form continuous thin film with longer distance. The observed trend for nanoparticle formation is opposite to the previously reported mechanism for the formation of nanoparticles by sputtering. A new mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results.

  12. The reaction of CF2Cl2 with gas-phase hydrated electrons

    Czech Academy of Sciences Publication Activity Database

    Lengyel, J.; van der Linde, Ch.; Fárník, Michal; Beyer, M. K.

    2016-01-01

    Roč. 18, č. 34 (2016), s. 23910-23915 ISSN 1463-9076 R&D Projects: GA ČR GA14-08937S Institutional support: RVO:61388955 Keywords : NEGATIVE-ION FORMATION * INFRARED RADIATIVE DISSOCIATION * POLAR MOLECULE COLLISIONS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016

  13. Experimental study of stopping powers for ions of intermediate atomic numbers

    International Nuclear Information System (INIS)

    Bucher, R.G.

    1975-01-01

    A technique has been developed to measure the energy loss as a function of ion atomic number for the fragments emitted by the spontaneous fission of 252 Cf; the atomic numbers of the fragments were directly measured by the detection of a characteristic K x-ray. The measured energy losses were compared with the theories of Lindhard and of Firsov, with the tabulation of Northcliffe and Schilling, and with the semiempirical formula of Moak and Brown. For the light fragments the measured values are in good agreement with the predictions of Moak--Brown and Northcliffe--Schilling; for the heavy fragments the measured values are approximately midway between the prediction of Moak--Brown and Northcliffe--Schilling and those of Lindhard for xi/sub epsilon/ = 2. The difference in the stopping powers for adjacent ion atomic numbers Z 1 was concluded to be (1.8 +- 0.2) percent for 40 less than or equal to Z 1 less than or equal to 45 at a velocity of 1.36 cm/ns and (2.0 +- 0.1) percent for 53 less than or equal to Z 1 less than or equal to 58 at a velocity of 1.04 cm/ns

  14. 7 CFR 3565.252 - Housing types.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Housing types. 3565.252 Section 3565.252 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, DEPARTMENT OF AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Property Requirements § 3565.252 Housing types. The property may...

  15. Biomedical neutron research at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1998-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy. (author)

  16. Optimization of phase analysis of refractory alloys in the gas-ion-reaction chamber

    International Nuclear Information System (INIS)

    Blumenkamp, H.J.; Hoven, H.; Koizlik, K.; Nickel, H.

    1980-04-01

    Reactor components outside the core which are under high thermal and mechanical stresses are made from refractory alloys. For basic research and for quality control, these materials are investigated by metallography, which is an independent group of characterization procedures as well as basis for many other methods. An important way of increasing the information about a material yielded by metallography is the expansions of phase contrast, in particular the phase contrasting in the gas-ion-reaction chamber. In this paper, the experimental procedure is described and the process of optimizing the procedure with respect to the Ni- and Fe-based refractory alloys examined in the IRW is discussed. (orig.) [de

  17. A new method for measuring the response time of the high pressure ionization chamber

    International Nuclear Information System (INIS)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-01-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers. - Highlights: ► A method for measuring response time of high pressure ionization chamber is proposed. ► A pulsed X-ray producer and a digital oscilloscope are used in the method. ► The response time of a 15 atm Xenon testing ionization chamber has been measured. ► The method has been proved to be simple, feasible and effective.

  18. 14 CFR 252.9 - Ventilation systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever the ventilation system is not fully functioning. Fully functioning for this purpose means operating so...

  19. Ion-stimulated Gas Desorption Yields of Electropolished, Chemically Etched, and Coated (Au, Ag, Pd, TiZrV) Stainless Steel Vacuum Chambers and St707 Getter Strips Irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator LINAC 3, has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting under grazing incidence on different accelerator-type vacuum chambers. Desorption yields for H2, CH4, CO, and CO2, which are of fundamental interest for future accelerator applications, are reported for different stainless steel surface treatments. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, palladium-, and getter-coated 316 LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 104 molecules/Pb53+ ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble-metal coating by up to 2 orders of magnitude. In addition, pressure rise measurements, the effectiveness of beam scrubbing with le...

  20. Evaluation of thermal stress in the anode chamber wall of a large volume magnetic bucket ion source

    International Nuclear Information System (INIS)

    Wells, Russell; Horiike, Hiroshi; Kuriyama, Masaaki; Ohara, Yoshihiro

    1984-02-01

    Thermal stress analysis was performed on the plasma chamber of the Large Volume Magnetic Multipole Bucket Ion Source (LVB) designed for use on the JT-60 NBI system. The energy absorbed by the walls of the plasma chambers of neutral beam injectors is of the order of 1% of the accelerator electrical drain power. A previous study indicates that a moderately high heat flux, of about 600W/cm 2 , is concentrated on the magnetic field cusp lines during normal full power operation. Abnormal arc discharges during conditioning of a stainless steel LVB produced localized melting of the stainless steel at several locations near the cusps lines. The power contained in abnormal arc discharges (arc spots) was estimated from the observed melting. Thermal stress analysis was performed numerically on representative sections of the copper LVB design for both stable and abnormal arc discharge conditions. Results show that this chamber should not fail due to thermal fatigue stesses arising from normal arc discharges. However, fatigue failure may occur after several hundred to a few thousand arc spots of 30mS duration at any one location. Limited arc discharge operation of the copper bucket was performed to partially verify the chamber's durability. (author)