WorldWideScience

Sample records for cesium tungstates

  1. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    Thresiamma George; Sunny Joseph; Suresh Mathew

    2005-11-01

    Silver tungstate (Ag2WO4) nanoparticles in two different morphologies are prepared by controlling the reaction kinetics of aqueous precipitation. X-ray diffraction studies reveal that the silver tungstate nanoparticles are in the -phase. SEM images show the rod-like and fiber-like morphologies of the nanoparticles with high aspect ratios. The TGA and DTA studies show the high thermal stability of the nanorods. The average crystallite sizes (20–30 nm) of the rod-like silver tungstate estimated from TEM is consistent with the XRD results.

  2. Lattice dynamics of strontium tungstate

    Indian Academy of Sciences (India)

    Prabhatasree Goel; R Mittal; S L Chaplot; A K Tyagi

    2008-11-01

    We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable interatomic potentials to study the lattice dynamics of this class of compounds. The model parameters have been fitted with respect to the experimentally available Raman and infra-red frequencies and the equilibrium unit cell parameters. Inelastic neutron scattering measurements have been carried out in the triple-axis spectrometer at Dhruva reactor. The measured phonon density of states is in good agreement with the theoretical calculations, thus validating the inter-atomic potential developed.

  3. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  4. Thermal structural properties of calcium tungstate

    Energy Technology Data Exchange (ETDEWEB)

    Senyshyn, Anatoliy; Hoelzel, Markus [Technische Univ. Darmstadt (Germany). Inst. for Materials Science; Technische Univ. Muenchen, Garching (Germany). Forschungsneutronenquelle Heinz Maier-Leibnitz FRM-II; Hansen, Thomas [Institute Laue-Langevin, Grenoble (France); Vasylechko, Leonid [Lviv Polytechnic National Univ. (Ukraine). Semiconductor Electronics Dept.; Mikhailik, Vitaliy [Diamond Light Source, Harwell Science and Innovation Campus, Didcot (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Physics; Kraus, Hans [Oxford Univ. (United Kingdom). Dept. of Physics; Ehrenberg, Helmut [Technische Univ. Darmstadt (Germany). Inst. for Materials Science; IFW Dresden (Germany)

    2011-04-15

    The results of in-situ temperature-resolved powder diffraction studies of CaWO{sub 4} scheelite using both synchrotron radiation and neutron scattering are reported. The studies performed over a broad temperature range of 5-1773 K confirm the scheelite type of structure for calcium tungstate over the whole temperature range. The anisotropy of thermal expansion in calcium tungstate as well as the rigidity of WO{sub 4} complexes have been analysed in terms of bond distances, interatomic angles and anisotropic displacement parameters. The WO{sub 4}{sup 2-} complex anions showed a remarkable robustness in the whole studied temperature range, thus pointing out that the layered structure formed by two-dimensional CsCl-type arrangements of Ca cations and WO{sub 4} complexes is the primary reason for the anisotropy of thermal expansion in calcium tungstate. (orig.)

  5. Improved light yield of lead tungstate scintillators

    CERN Document Server

    Annenkov, A N; Hofstäetter, A; Korzhik, M V; Ligun, V; Lecoq, P; Missevitch, O V; Novotny, R; Peigneux, J P

    2000-01-01

    The application at medium and low energies of lead tungstate scintillators, so far optimized for the ECAL calorimeter of CMS for the future LHC, is strongly limited by their poor light yield. Suitable dopants like molybdenum and terbium can help to overcome this problem. Concepts, results, advantages and drawbacks of this approach are discussed. (11 refs).

  6. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  7. Cesium chloride: preventive medicine for radioactive cesium exposure?

    Science.gov (United States)

    Braverman, E R; Sohler, A; Pfeiffer, C C

    1988-06-01

    Cesium is produced in high yield fission of uranium and plutonium. Radioactive cesium needles are a radiation hazard for radiotherapists. In this age of nuclear reactors, i.e. Chernobyl, radioactive cesium exposure may be a growing problem. Furthermore, there are numerous therapeutic potentials for cesium therapy, i.e. cancer, depression and schizophrenia. We explored the clearance of cesium in man and found that an oral dose of 50 mg maintains elevated blood cesium levels for 80 days. Cesium is accumulated mainly in the red blood cell fraction. Larger doses (6-9 grams) produce no observed harmful effects and maintain elevated blood levels of cesium for more than a year. Our data suggests there is a threshold of maximum cesium saturation in blood; if maintained, any additional cesium exposure, i.e. radioactive cesium, would be excreted at a more rapid rate. It is probable that large cesium doses can protect against radiation toxicity by blocking sites on red blood cells and thereby result in increased excretion and clearance of the radioactive forms of cesium. This hypothesis should be easily testable in laboratory animals.

  8. Microhardness studies of nanocrystalline calcium tungstate

    Energy Technology Data Exchange (ETDEWEB)

    Anandakumar, V.M. [Department of Physics, Mahatma Gandhi College, Thiruvananthapuram (India); Khadar, M.A. [Centre for Nanoscience and Nanotechnology and Department of Physics, University of Kerala, Thiruvananthapuram (India)

    2008-02-15

    Nanocrystals of calcium tungstate (CaWO{sub 4}) of three different grain sizes were synthesized through chemical precipitation technique and the grain sizes and crystal structure were determined using the broadening of X-ray diffraction patterns and transmission electron microscopy. The microhardness of compacted pellets of nanocrystalline calcium tungstate (CaWO{sub 4}) with different grain sizes were measured using a Vickers microhardness tester for various applied loads ranging from 0.049 N to 1.96 N. The values of microhardness showed significant reverse indentation size effect at low indentation loads. The microhardness data obtained for samples of different grain sizes showed grain size dependent strengthening obeying normal Hall-Petch relation. The dependence of compacting pressure and annealing temperature on microhardness of the nanostructured sample with grain size of 13 nm were also studied. The samples showed significant increase in microhardness as the compacting pressure and annealing time were increased. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  10. Clinical effects of cesium intake.

    Science.gov (United States)

    Melnikov, Petr; Zanoni, Lourdes Zélia

    2010-06-01

    The knowledge about cesium metabolism and toxicity is sparse. Oral intake of cesium chloride has been widely promoted on the basis of the hypothesis referred to as "high pH cancer therapy", a complimentary alternative medicine method for cancer treatment. However, no properly confirmed tumor regression was reported so far in all probability because of neither theoretical nor experimental grounds for this proposal. The aim of the present review was to resume and discuss the material currently available on cesium salts and their applications in medicine. The presence of cesium in the cell does not guarantee high pH of its content, and there is no clinical evidence to support the claims that cancer cells are vulnerable to cesium. Cesium is relatively safe; signs of its mild toxicity are gastrointestinal distress, hypotension, syncope, numbness, or tingling of the lips. Nevertheless, total cesium intakes of 6 g/day have been found to produce severe hypokalemia, hypomagnesemia, prolonged QTc interval, episodes of polymorphic ventricular tachycardia, with or without torsade de pointes, and even acute heart arrest. However, full information on its acute and chronic toxicity is not sufficiently known. Health care providers should be aware of the cardiac complications, as a result of careless cesium usage as alternative medicine.

  11. Mineral resource of the month: cesium

    Science.gov (United States)

    Angulo, Marc A.

    2010-01-01

    The article offers information on cesium, a golden alkali metal derived from the Latin word caesium which means bluish gray. It mentions that cesium is the first element discovered with the use of spectroscopy. It adds that the leading producer and supplier of cesium is Canada and there are 50,000 kilograms of cesium consumed of the world in a year. Moreover, it states that only 85% of the cesium formate can be retrieved and recycled.

  12. Cesium diffusion in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  13. Cesium chloride-induced torsades de pointes.

    Science.gov (United States)

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-09-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear temporal relationship between cesium ingestion and the arrhythmia, which later resolved following discontinuation of cesium therapy. Serial cesium plasma and whole blood levels were measured over the ensuing six months and pharmacokinetic analysis was performed.

  14. Growth of transition metals on cerium tungstate model catalyst layers

    Science.gov (United States)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  15. Measurement of the Muon Stopping Power in Lead Tungstate

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    A large sample of cosmic ray events collected by the CMS detector is exploited to measure the specific energy loss of muons in the lead tungstate of the electromagnetic calorimeter. The measurement spans a momentum range from 5 GeV/c to 1 TeV/c. The results are consistent with the expectations over the entire range. The calorimeter energy scale, set with 120 GeV/c electrons, is validated down to the sub-GeV region using energy deposits, of order 100 MeV, associated with low-momentum muons. The muon critical energy in lead tungstate is measured to be 160+5/-6 plus or minus 8 GeV, in agreement with expectations. This is the first experimental determination of muon critical energy.

  16. Luminescence of lead-containing tungstates with perovskite structure

    NARCIS (Netherlands)

    Bleijenberg, K.C.; Blasse, G.

    1975-01-01

    The luminescence of perovskites with formula Sr1-xPbxLaLiWO6 and Ba2-xPbxMgWO6 is reported. The lower-energy emission in the lead-containing compounds is ascribed to a transition within a centre consisting of a tungstate octahedron with lead-ion neighbours. The presence of Bi3+ is SrLaLiWO6 causes a

  17. Rare-earth-ion-doped double-tungstate waveguides

    NARCIS (Netherlands)

    Pollnau, M.

    2007-01-01

    It has been recognized that the monoclinic double tungstates KY(WO4)2, KGd(WO4)2, and KLu(WO4)2 possess a high potential as rare-earth-ion-doped solid-state laser materials, partly due to the high absorption and emission cross-sections of rare-earth ions when doped into these materials. Besides, the

  18. Synthesis and Characterization of Novel Nanocrystalline Zirconium (IV Tungstate Semiconductor

    Directory of Open Access Journals (Sweden)

    S. Manoj

    2011-01-01

    Full Text Available Nanocrystalline zirconium (IV tungstate is prepared by chemical coprecipitation method using ethylene diamine tetra acetic acid as the templating agent. Elemental composition is determined by EDS. The characteristic bonding position is identified using FTIR. XRD is used to find the theoritical value of size and phase identification using JCPDS. Morphology is examined using SEM and HRTEM. UV absorption at 260 nm corresponds to an energy gap of 4.48 eV, characteristic of semiconducting nanoparticles.

  19. Synthesis and Characterization of Novel Nanocrystalline Zirconium (IV) Tungstate Semiconductor

    OpenAIRE

    Manoj, S.; Beena, B.

    2011-01-01

    Nanocrystalline zirconium (IV) tungstate is prepared by chemical coprecipitation method using ethylene diamine tetra acetic acid as the templating agent. Elemental composition is determined by EDS. The characteristic bonding position is identified using FTIR. XRD is used to find the theoritical value of size and phase identification using JCPDS. Morphology is examined using SEM and HRTEM. UV absorption at 260 nm corresponds to an energy gap of 4.48 eV, characteristic of semiconducting nanopar...

  20. Positorn annihilation study on point defects in lead tungstate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A study on point defects in lead tungstate (PbWO4) by using positron annihilation lifetime method is presented. The measurement was carried out for the cases of untreated, vacuum-annealed, oxygen- annealed and La-doped PbWO4 crystals. It was found that the components T2, which reflect the positron annihilation in point defects, are different from each other for each case. Some tentative models for the defects are discussed.

  1. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  2. Local structure of nanosized tungstates revealed by evolutionary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Timoshenko, Janis; Anspoks, Andris; Kuzmin, Alexei [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Kalinko, Alexandr [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France)

    2015-02-01

    Nanostructured tungstates, such as CoWO{sub 4} and CuWO{sub 4}, are very promising catalytic materials, particularly for photocatalytic oxidation of water. The high catalytic activity of tungstate nanoparticles partially is a result of their extremely small sizes, and, consequently, high surface-to-volume ratio. Therefore their properties depend strongly on the atomic structure, which differ significantly from that of the bulk material. X-ray absorption spectroscopy is a powerful technique to address the challenging problem of the local structure determination in nanomaterials. In order to fully exploit the structural information contained in X-ray absorption spectra, in this study we employ a novel evolutionary algorithm (EA) for the interpretation of the Co and Cu K-edges as well as the W L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) of nanosized CoWO{sub 4} and CuWO{sub 4}. The combined EA-EXAFS approach and simultaneous analysis of the W L{sub 3} and Co(Cu) K-edge EXAFS spectra allowed us for the first time to obtain a 3D structure model of the tungstate nanoparticles and to explore in details the effect of size, temperature and transition metal type. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Energy transfer between octahedral tungstate and uranate groups in oxides with perovskite structure

    NARCIS (Netherlands)

    Steen, A.C. van der; Hair, J.Th.W. de; Blasse, G.

    1975-01-01

    Energy transfer between tungstate and uranate groups in oxides with perovskite structure is reported. The critical distance for this process is about 25 Å. Evidence is given for energy transfer between tungstate groups. In this case the critical distance is estimated to be about 8 Å.

  4. The growth units and hydrothermal preparation of lead tungstate (PbWO4) crystallites

    Institute of Scientific and Technical Information of China (English)

    元如林; 施尔畏; 李汶军; 郑燕青; 吴南春; 仲维卓

    2000-01-01

    The crystal structure of lead tungstate (PbWO4) can be regarded as ordered combination of the tungsten oxide tetrahedrons (WO4) and lead ions (Pb2+). According to the growth unit model, the growth units of lead tungstate are the aggregations of the tungsten oxide tetrahedrons and lead cations with various geometry configurations. It is suggested that the favorable growth units of lead tungstate crystal are pyramidal, tetragonal prism and quadrangular units corresponding to geometric orientations of the simple forms of the crystal. Under low restricted growth conditions, the growth form of lead tungstate crystallites is the aggregation of the geometric configurations of these favorable growth units. The above conclusions are completely confirmed by the experiment on hydrothermal preparation of lead tungstate crystallites.

  5. The growth units and hydrothermal preparation of lead tungstate (PbWO4) crystallites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The crystal structure of lead tungstate (PbWO4) can be regarded as ordered combination of the tungsten oxide tetrahedrons (WO4) and lead ions (Pb2+). According to the growth unit model, the growth units of lead tungstate are the aggregations of the tungsten oxide tetrahedrons and lead cations with various geometry configurations. It is suggested that the favorable growth units of lead tungstate crystal are pyramidal, tetragonal prism and quadrangular units corresponding to geometric orientations of the simple forms of the crystal. Under low restricted growth conditions, the growth form of lead tungstate crystallites is the aggregation of the geometric configurations of these favorable growth units. The above conclusions are completely confirmed by the experiment on hydrothermal preparation of lead tungstate crystallites.

  6. Dual-Readout Calorimetry with Lead Tungstate Crystals

    CERN Document Server

    Akchurin, N; Cardini, A; Ferrari, R; Gaudio, G; Hauptman, J; Kim, H; La Rotonda, L; Livan, M; Meoni, E; Paar, H; Penzo, Aldo L; Pinci, D; Policicchio, Antonio; Popescu, S; Susinno, G; Roh, Y; Vandelli, W; Wigmans, R

    2008-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light to the signals, event by event. This information makes it possible to eliminate the dominating source of fluctuations and thus achieve an important improvement in hadronic calorimeter performance.

  7. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  8. Luminescence spectra of lead tungstate, spodumene and topaz crystals Thermoluminescence

    CERN Document Server

    Ramachandran, V

    2002-01-01

    A detailed set of thermoluminescence, cathodoluminescence and radioluminescence (TL, CLTL and RLTL) data of lead tungstate, Spodumene and Topaz have been reported for the first time over a wide temperature range from 25 to 500K. Lead tungstate (PbWO sub 4), a widely known scintillating material, gives TL glow peaks which are related to complex defect centres. Doping of this crystal with trivalent rare earth ions (La sup 3 sup + , Y sup 3 sup +) reduces the slow component of the emission thereby making it more suitable for its applications. The pentavalent dopants on the other hand, enhance the green emission and quench the blue emission at temperatures 100K. The origin and the irradiation temperature definitely have an effect on the spectrum. No strong relationship could be derived from the dose dependence data. Two less studied minerals, Spodumene and Topaz have also been investigated with the luminescence techniques. The glow peak near 250degC is thought to have originated from Mn sup 2 sup + centres. As th...

  9. Cesium chloride-induced torsades de pointes

    OpenAIRE

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-01-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear ...

  10. Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers.

    Directory of Open Access Journals (Sweden)

    Marta Amigó-Correig

    Full Text Available This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed.Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus.Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.

  11. Raman studies of A2MWO6 tungstate double perovskites.

    Science.gov (United States)

    Andrews, R L; Heyns, A M; Woodward, P M

    2015-06-21

    The Raman spectra of seven A(2)MWO(6) tungstate double perovskites are analysed. Ba(2)MgWO(6) is a cubic double perovskite with Fm3[combining macron]m symmetry and its Raman spectrum contain three modes that can be assigned in a straightforward manner. A fourth mode, the asymmetric stretch of the [WO(6)](6-) octahedron, is too weak to be observed. The symmetry of Ba(2)CaWO(6) is lowered to tetragonal I4/m due to octahedral tilting, but the distortion is sufficiently subtle that the extra bands predicted to appear in the Raman spectrum are not observed. The remaining five compounds have additional octahedral tilts that lower the symmetry to monoclinic P2(1)/n. The further reduction of symmetry leads to the appearance of additional lattice modes involving translations of the A-site cations and librations of the octahedra. Comparing the Raman spectra of fourteen different A(2)MWO(6) tungstate double perovskites shows that the frequency of the symmetric stretch (ν(1)) of the [WO(6)](6-) octahedron is relatively low for cubic perovskites with tolerance factors greater than one due to underbonding of the tungsten and/or M cation. The frequency of this mode increases rapidly as the tolerance factor drops below one, before decreasing gradually as the octahedral tilting gets larger. The frequency of the oxygen bending mode (ν(5)) is shown to be dependent on the mass of the A-site cation due to coupling of the internal bending mode with external A-site cation translation modes.

  12. Synergistic Effect of Tungstate and Benzotriazole on Corrosion Inhibition of Carbon Steel in Solutions Containing Cl-

    Institute of Scientific and Technical Information of China (English)

    LI Yan; XI Dan-li; LU Zhu

    2004-01-01

    The corrosion inhibition of tungstate, benzotriazole (BTA) and their combination in solutions containing Cl- was studied by electrochemical techniques. The results indicated that the inhibition efficiency of tungstate was higher than that of BTA. The efficiency increased with increasing concentration of tungstate or BTA. In the studies of synergistic effect of tungstate and BTA, it had been found that in Ph 9.0 solution, the largest Rt could be obtained with the concentration ratio of tungstate / BTA being 1:1. Lowering the Ph value of solution would reduce the efficiency of inhibitors, especially in binary inhibitors. Increasing the concentration of Cl- accelerated the corrosion of carbon steel in the solutions with various inhibitors, but the influence of Cl- on corroding rate in binary inhibitors was not so strong as in single component. The results of surface analysis showed that W, C, N, O and Fe elements existed in the protecting film formed with binary inhibitors. The thickness of the film was about 12-15nm.

  13. Cesium and strontium ion specific exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  14. Synthesis of lanthanum tungstate interconnecting nanoparticles by high voltage electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Keereeta, Yanee, E-mail: ynkeereeta@gmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-10-01

    Graphical abstract: - Highlights: • La{sub 2}(WO{sub 4}){sub 3} as one of semiconducting materials. • H.V. electrospinning was used to synthesize La{sub 2}(WO{sub 4}){sub 3} interconnecting nanoparticles. • A promising material for photoemission. - Abstract: Lanthanum tungstate (La{sub 2}(WO{sub 4}){sub 3}) interconnecting nanoparticles in the shape of fibers were successfully synthesized by electrospinning in combination with high temperature calcination. In this research, calcination temperature for the synthesis of the fibers evidently influenced the diameter, morphology and crystalline degree. The crystalline monoclinic La{sub 2}(WO{sub 4}){sub 3} fibers with 200–700 nm in diameter, two main Raman peaks at 945 and 927 cm{sup −1}, FTIR stretching modes at 936 and 847 cm{sup −1}, 2.02 eV energy gap and 415–430 nm blue emission were synthesized by calcination of inorganic/organic hybrid fibers at 750 °C for 5 h, characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV–visible spectroscopy and photoluminescence (PL) spectroscopy. The surface of the composite fibers before calcination was very smooth. Upon calcination the composite fibers at 750 °C for 5 h, they were transformed into nanoparticles join together in the shape of fibers with rough surface.

  15. Fascinating morphologies of lead tungstate nanostructures by chimie douce approach

    Energy Technology Data Exchange (ETDEWEB)

    George, Thresiamma; Joseph, Sunny; Sunny, Anu Tresa; Mathew, Suresh [Mahatma Gandhi University, School of Chemical Sciences (India)], E-mail: smathew_mgu@yahoo.com

    2008-04-15

    Lead tungstate occurs in nature as tetragonal stolzite of scheelite (CaWO{sub 4}) type and monoclinic raspite. In this work, we report, the typical growth of snowflake-like tetragonal stolzite and bamboo-leaf-like monoclinic raspite nanocrystals of PbWO{sub 4} via a simple aqueous precipitation method and a polyol (polyethylene glycol-200) mediated precipitation method at room temperature (27 deg. C). The synthesised PbWO{sub 4} nanocrystals were characterised by XRD, SEM, EDAX and TGA-DTA. The UV-Vis absorption and photoluminescence studies of PbWO{sub 4} nanocrystals in the two morphologies were performed. The nuclei of PbWO{sub 4} nanocrystals in aqueous medium self-assemble in a tetragonal manner to form the snowflake-like crystals. In polyol medium, PbWO{sub 4} nuclei preferentially grow by oriented attachment process to form the bamboo-leaf-like morphology. The specific morphology of the regularly assembled PbWO{sub 4} nanocrystals in the two phases finds applications in nanoelectronics and photonics. Compared to other well-known scintillators, PbWO{sub 4} is most attractive for high-energy physics applications, because of its high density, short decay time and high irradiation damage resistance.

  16. A comparative study of the proton transport properties of metal (IV) tungstates

    Indian Academy of Sciences (India)

    Alpana Parikh; Uma Chudasama

    2003-02-01

    Tetravalent metal acid (TMA) salts are cation exchangers due to the presence of structural hydroxyl groups. The presence of protons makes the TMA salt, a potential candidate for solid state protonic conduction. In the present endeavour, amorphous inorganic ion exchangers of the class of TMA salts, tin tungstate (SnW), titanium tungstate (TiW) and zirconium tungstate (ZrW) have been synthesized and characterized for elemental analysis, thermal analysis (TGA, DSC), FTIR spectroscopy and X-ray analysis. Chemical resistivity of these materials have been assessed in various acidic, basic and organic media. Ion exchange capacity has been determined and effect of heating on ion exchange capacity has been studied. The proton conduction behaviour of these materials has been studied by measuring specific conductance () at different temperatures in the range 30-175°C using HP 4192 A impedance analyzer. The specific conductance values for the three materials have been compared.

  17. Hydrothermal syntheses and characterization of uranyl tungstates with electro-neutral structural units

    Energy Technology Data Exchange (ETDEWEB)

    Balboni, Enrica; Burns, Peter C. [Univ. of Notre Dame, IN (United States). Dept. of Civil and Enviromental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry

    2015-11-01

    Two uranyl tungstates, (UO{sub 2})(W{sub 2}O{sub 7})(H{sub 2}O){sub 3} (1) and (UO{sub 2}){sub 3}(W{sub 2}O{sub 8})F{sub 2}(H{sub 2}O){sub 3} (2), were synthesized under hydrothermal conditions at 220 C and were structurally, chemically, and spectroscopically characterized. 1 Crystallizes in space group Pbcm, a = 6.673(5) Aa, b = 12.601(11) Aa, c = 11.552 Aa; 2 is in C2/m, a = 13.648(1) Aa, b = 16.852(1) Aa, c = 9.832(1) Aa, β = 125.980(1) {sup circle}. In 1 the U(VI) cations are present as (UO{sub 2}){sup 2+} uranyl ions that are coordinated by five oxygen atoms to give pentagonal bipyramids. These share two edges with two tungstate octahedra and single vertices with four additional octahedra, resulting in a sheet with the iriginite-type anion topology. Only water molecules are located in the interlayer. The structural units of 2 consist of (UO{sub 2}){sup 2+} uranyl oxy-fluoride pentagonal bipyramids present as either [UO{sub 2}F{sub 2}O{sub 3}]{sup -6} or [UO{sub 2}FO{sub 4}]{sup -5}, and strongly distorted tungstate octahedra. The linkage of uranyl pentagonal bipyramids and tungstate octahedra gives a unique sheet anion topology consisting of pentagons, squares and triangles. In 2, the uranyl tungstates sheets are connected into a novel electro-neutral three-dimensional framework through dimers of uranyl pentagonal bipyramids. These dimers connecting the sheets share an edge defined by F anions. 2 is the first example of a uranyl tungstate oxy-fluoride, and 1 and 2 are rare examples of uranyl compounds containing electro-neutral structural units.

  18. Role of sodium tungstate as a potential antiplatelet agent

    Directory of Open Access Journals (Sweden)

    Fernández-Ruiz R

    2015-05-01

    Full Text Available Rebeca Fernández-Ruiz,1,2 Marc Pino,3 Begoña Hurtado,4 Pablo García de Frutos,4 Carolina Caballo,3 Ginés Escolar,3 Ramón Gomis,1,2,5 Maribel Diaz-Ricart3 1Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS, Rosellón, Barcelona, 2Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, 3Hemotherapy–Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, 4Institutode Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d’Investigacions Biomediques August Pi i Sunyer, Rosellón, Barcelona, 5Hospital Clinic, Universitat de Barcelona, Villarroel, Barcelona, Spain Purpose: Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W, a protein tyrosine phosphatase 1B (PTP1B inhibitor, has been investigated in this study.Methods: Wild-type (WT and PTP1B knockout (PTP1B-/- mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed.Results: In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001. Results with Na2O4W were similar to those in untreated PTP1B-/- mice (5.0±0.3 mg. Treatment of the PTP1B-/- mice with Na2O4W modified only

  19. 40 CFR 721.10168 - Cesium tungsten oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  20. A comparative study of proton transport properties of metal (IV) tungstates and their organic derivatives

    Indian Academy of Sciences (India)

    Heemanshu Patel; Alpana Parikh; Uma Chudasama

    2005-04-01

    New hybrid inorgano–organic materials were synthesized by anchoring organic moieties, ortho chlorophenol and para chlorophenol onto metal (IV) tungstates viz. tin tungstate (SnW), titanium tungstate (TiW) and zirconium tungstate (ZW) to give SnWoCP, SnWpCP, TiWoCP, TiWpCP, ZWoCP and ZWpCP, respectively. The materials were characterized for elemental analysis, thermal analysis (TGA, DSC), X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials were assessed in several acidic, basic and organic media. Further, the study of transport properties of these materials has been explored by measuring proton conductivity at different temperatures in the range 30–175°C using HP4192A impedance analyser over a frequency range 5 Hz–13 MHz at a signal level below 1 V. Based on the specific conductance data and Arrhenius plots, a suitable mechanism was proposed and conductance performance of derivatized and nonderivatized materials compared.

  1. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.

    Science.gov (United States)

    Hollenstein, Kaspar; Comellas-Bigler, Mireia; Bevers, Loes E; Feiters, Martin C; Meyer-Klaucke, Wolfram; Hagedoorn, Peter-Leon; Locher, Kaspar P

    2009-06-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.

  2. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    NARCIS (Netherlands)

    Hollenstein, K.; Comellas-Bigler, M.; Bevers, L.E.; Feiters, M.C.; Meyer-Klaucke, W.; Hagedoorn, P.-L.; Locher, K.P.

    2009-01-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across th

  3. The construction of the CMS electromagnetic calorimeter: lead-tungstate (PWO) crystals

    CERN Multimedia

    2001-01-01

    APD (Avalanche PhotoDiodes) photodetectors are being glued onto the rear face of PWO (lead tungstate, PbWO4) crystals ready for assembly. Fig. 2 shows a PWO crystal and Fig. 3 five crystals put on a tray to feed the automatic measurement machine. Two APDs are shown on pictures n. 4 and 5.

  4. Direct Hydrothermal Precipitation of Pyrochlore-Type Tungsten Trioxide Hemihydrate from Alkaline Sodium Tungstate Solution

    Science.gov (United States)

    Li, Xiaobin; Li, Jianpu; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui

    2012-04-01

    Pyrochlore-type tungsten trioxide hemihydrate (WO3·0.5H2O) powder with the average particle size of 0.5 μm was prepared successfully from the weak alkaline sodium tungstate solution by using organic substances of sucrose or cisbutenedioic acid as the acidification agent. The influences of solution pH and acidification agents on the precipitation process were investigated. The results showed that organic acidification agents such as sucrose and cisbutenedioic acid could improve the precipitation of pyrochlore WO3·0.5H2O greatly from sodium tungstate solution compared with the traditional acidification agent of hydrochloric acid. In addition, the pH value of the hydrothermal system played a critical role in the precipitation process of WO3·0.5H2O, and WO3·0.5H2O precipitation mainly occured in the pH range of 7.0 to 8.5. The precipitation rate of tungsten species in the sodium tungstate solution could reach up to 98 pct under the optimized hydrothermal conditions. This article proposed also the hydrothermal precipitation mechanism of WO3·0.5H2O from the weak alkaline sodium tungstate solution. The novel method reported in this study has a great potential to improve the efficiency of advanced tungsten trioxide-based functional material preparation, as well as for the pollution-reducing and energy-saving tungsten extractive metallurgy.

  5. Perlite for permanent confinement of cesium

    Science.gov (United States)

    Balencie, J.; Burger, D.; Rehspringer, J.-L.; Estournès, C.; Vilminot, S.; Richard-Plouet, M.; Boos, A.

    2006-06-01

    We present the potential use of expanded perlite, a metastable amorphous hydrated aluminium silicate, as a permanent medium for the long-term confinement of cesium. The method requires simply a loading by mixing an aqueous cesium nitrate solution and expanded perlite at 300 K followed by densification by sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, upon careful heat treatment is demonstrated by X-ray diffraction. Leaching tests on the resulting glass-ceramics reveal a very low Cs departure of 0.5 mg m-2 d-1.

  6. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  7. Microbial accumulation of uranium, radium, and cesium

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested.

  8. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Science.gov (United States)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  9. Resonance Ionization Spectroscopy of Cesium Atoms in a Cesium Heat Pipe

    Science.gov (United States)

    Ardis, Robert G.; Gardner, Bernard W.; Smith, R. Seth

    1997-11-01

    A Cesium Heat Pipe has been constructed to produce a cesium metal vapor for use in laser spectroscopy. The heat pipe consists of a 24 inch stainless steel pipe with 2 inch diameter calcium fluoride windows on each end. Electric heaters are used to control the cesium vapor pressure. An argon buffer gas is used to maintain high transmittance through the end windows. Sensors are used to monitor both temperature and pressure. A Nd:YAG-pumped dye laser system is used to probe the cesium atoms via resonance ionization spectroscopy. Details of the construction of the heat pipe and the experimental setup will be presented. The results of the resonance ionization spectroscopy will be discussed. This experimental setup can be utilized with undergraduates in courses such as Optics, Laser Physics, and Senior Laboratory/Research.

  10. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.

    Science.gov (United States)

    Bevers, Loes E; Hagedoorn, Peter-Leon; Krijger, Gerard C; Hagen, Wilfred R

    2006-09-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [K(D)] of 17 +/- 7 pM) and molybdate (K(D) of 11 +/- 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low K(D) values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.

  11. Cesium vapor thermionic converter anomalies arising from negative ion emission

    Science.gov (United States)

    Rasor, Ned S.

    2016-08-01

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  12. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  13. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation.

  14. Studies of lead tungstate crystal matrices in high energy beams for the CMS electromagnetic calorimeter at the LHC

    CERN Document Server

    Alexeev, G; Baillon, Paul; Barney, D; Bassompierre, Gabriel; Bateman, E; Bell, K W; Benhammou, Ya; Bloch, P; Bomestar, D; Borgia, B; Bourotte, J; Burge, S R; Cameron, W; Chipaux, Rémi; Cockerill, D J A; Connolly, J; Dafinei, I; Denes, P; Depasse, P; Deiters, K; Dobrzynski, Ludwik; El-Mamouni, H; Faure, J L; Felcini, Marta; Finger, M H; Flügel, T; Gautheron, F; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Jääskeläinen, S; Katchanov, V A; Kennedy, B W; Kirn, T; Korzhik, M V; Lassila-Perini, K M; Lebeau, M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Ma, D; Martin, F; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Newbold, D; Newman, H; Oukhanov, M; Pacciani, L; Peigneux, J P; Pirro, S; Popov, S; Puljak, I; Purves, C; Renker, D; Rondeaux, F; Rosso, E; Rusack, R W; Rykaczewski, H; Schmitz, D; Schneegans, M; Schwenke, J; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Shevchenko, S; Shi, X; Sillou, D; Simohand, D; Singovsky, A V; Soric, I; Smith, B; Stephenson, R; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1997-01-01

    Using matrices of lead tungstate crystals energy resolutions better than 0.6% at 100 GeV have been achieved in the test beam in 1995. It has been demonstrated that a lead tungstate electromagnetic calorimeter read out by avalanche photodiodes can consistently achieve the excellent energy resolutions necessary to justify its construction in the CMS detector. The performance achieved has been understood in terms of the properties of the crystals and photodetectors.

  15. Tungstated zirconia as promising carrier for DeNOx catalysts with improved resistance towards alkali poisoning

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Rasmussen, Søren Birk;

    2006-01-01

    Use of biomass as an alternative to fossil fuels has achieved increasing interest since it is considered neutral regarding CO2 accumulation in the atmosphere. The by far most energy-efficient use of solid bio-resources in energy production is combustion in combined biomass and coal or oilfired po......, and NH3-TPD methods. The influence of calcination temperature of zirconia modified with tungsten oxide on the textural characteristics, acidity and catalytic performance was studied. The resistance of the catalysts towards model poisoning with potassium was found to depend dramatically...... on the crystallinity of the zirconia and on the surface acidity. Vanadia supported on tungstated zirconia calcined at 700 8C revealed superior catalytic performance and resistance towards alkali poisoning in comparison with a traditional catalyst. The improved poisoning resistance of the samples based on tungstated...

  16. Nano-Cesium for Anti-Cancer Properties: An Investigation into Cesium Induced Metabolic Interference.

    Science.gov (United States)

    Daza, Enrique A; Misra, Santosh K; Schwartz-Duval, Aaron S; Ohoka, Ayako; Miller, Callie; Pan, Dipanjan

    2016-10-03

    The use of cesium chloride (CsCl) for cancer therapy ("high pH therapy") has been theorized to produce anticancer properties by raising intracellular pH to induce apoptosis. Although considered as "alternative medicine", little scientific evidence supports this theory. Alternatively, cells have no cesium ion (Cs(+)) mediated channels for clearance. Thus, such unstable electrochemical distributions have the severe potential to disrupt electrochemical dependent cellular processes, such as glucose cotransporters. Hence, a detailed investigation of pH changing effects and glucose uptake inhibition are warranted as a possible cesium-induced anticancer therapy. We developed and characterized cesium nanoparticles (38 ± 6 nm), termed NanoCs, for nanoparticle-mediated internalization of the ion, and compared its treatment to free CsCl. Our investigations suggest that neither NanoCs nor CsCl drastically changed the intracellular pH, negating the theory. Alternatively, NanoCs lead to a significant decrease in glucose uptake when compared to free CsCl, suggesting cesium inhibited glucose uptake. An apoptosis assay of observed cell death affirms that NanoCs leads tumor cells to initiate apoptosis rather than follow necrotic behavior. Furthermore, NanoCs lead to in vivo tumor regression, where H&E analysis confirmed apoptotic cell populations. Thus, NanoCs performed pH-independent anticancer therapy by inducing metabolic stasis.

  17. Study of Radiation Damage in Lead Tungstate Crystals Using Intense High Energy Beams

    CERN Document Server

    Batarin, V; Butler, J; Cheung, H; Datsko, V S; Davidenko, A; Derevshchikov, A A; Dzhelyadin, R I; Fomin, Y; Frolov, V; Goncharenko, Yu M; Grishin, V; Kachanov, V A; Khodyrev, V Yu; Khroustalev, K; Konoplyannikov, A K; Konstantinov, A S; Kravtsov, V; Kubota, Y; Leontiev, V M; Lukanin, V S; Maisheev, V; Matulenko, Yu A; Melnik, Yu M; Meshchanin, A P; Mikhalin, N; Minaev, N G; Mochalov, V; Morozov, D A; Mountain, R; Nogach, L V; Pikalov, V A; Ryazantsev, A; Semenov, P A; Shestermanov, K E; Soloviev, L; Solovyanov, V L; Stone, S; Ukhanov, M N; Uzunian, A V; Vasilev, A; Yakutin, A; Yarba, J V

    2003-01-01

    We report on the effects of radiation on the light output of lead tungstate crystals. The crystals were irradiated by pure, intense high energy electron and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out at the 70-GeV proton accelerator in Protvino.

  18. Study of radiation damage in lead tungstate crystals using intense high-energy beams

    Energy Technology Data Exchange (ETDEWEB)

    Batarin, V.A.; Brennan, T.; Butler, J.; Cheung, H.; Datsko, V.S.; Davidenko, A.M.; Derevschikov, A.A.; Dzhelyadin, R.I.; Fomin, Y.V.; Frolov, V.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Khroustalev, K.; Konoplyannikov, A.K.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Leontiev, V.M.; Lukanin, V.S.; Maisheev, V.A.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Mountain, R.; Nogach, L.V.; Pikalov, V.A.; Ryazantsev, A.V.; Semenov, P.A. E-mail: semenov@mx.ihep.su; Shestermanov, K.E.; Soloviev, L.F.; Solovianov, V.L.; Stone, S.; Ukhanov, M.N.; Uzunian, A.V.; Vasiliev, A.N.; Yakutin, A.E.; Yarba, J

    2003-10-21

    We report on the effects of radiation on the light output of lead tungstate crystals. The crystals were irradiated by pure, intense high-energy electron and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out at the 70-GeV proton accelerator in Protvino.

  19. Impact of Sodium Tungstate and Tungsten Alloys on the Growth of Selected Microorganisms with Environmental Significance

    Science.gov (United States)

    2010-07-30

    Naval Health Research Center Detachment Environmental Health Effects Laboratory Report No: EHEL-10-01 Date: 30 July 2010 IMPACT OF SODIUM...DD MM YY) 30/07/2010 2. REPORT TYPE Technical 3. DATES COVERED (from – to) May 2009 – Oct 2009 4. TITLE IMPACT OF SODIUM TUNGSTATE AND...TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element

  20. High-power Yb- and Tm-doped double tungstate channel waveguide lasers

    NARCIS (Netherlands)

    Dalfsen, van K.; Geskus, D.; Ay, F.; Wörhoff, K.; Aravazhi, S.; Pollnau, M.

    2011-01-01

    The potassium double tungstates KGd(WO4)2, KY(WO4)2, and KLu(WO4)2 are excellent candidates for solid-state lasers because of their high refractive index of ~2.0-2.1, the large transition cross-sections of rare-earth (RE3+) ions doped into these hosts, and a reasonably large thermal conductivity of

  1. Solid-State Laser Cooling of Ytterbium-Doped Tungstate Crystals

    Science.gov (United States)

    2001-01-01

    KGW but with a slightly higher cooling figure-of-merit,13 and zirconium-barium-lanthanum-aluminum- sodium fluoride glass ( ZBLAN ). This figure shows...namely the heavy metal fluoride glass ZBLAN and yttrium aluminum garnet. Favorable properties of the ytterbium-tungstates include exceptionally high...had shown net cooling was an ytterbium-doped heavy metal fluoride glass . Reasons for the lack of success with other materials include energy transfer

  2. Tungstate decreases weight gain and adiposity in obese rats through increased thermogenesis and lipid oxidation.

    Science.gov (United States)

    Claret, Marc; Corominola, Helena; Canals, Ignasi; Saura, Josep; Barcelo-Batllori, Silvia; Guinovart, Joan J; Gomis, Ramon

    2005-10-01

    The increasing worldwide incidence of obesity and the limitations of current treatments raise the need for finding novel therapeutic approaches to treat this disease. The purpose of the current study was first to investigate the effects of tungstate on body weight and insulin sensitivity in a rat model of diet-induced obesity. Second, we aimed to gain insight into the molecular mechanisms underlying its action. Oral administration of tungstate significantly decreased body weight gain and adiposity without modifying caloric intake, intestinal fat absorption, or growth rate in obese rats. Moreover, the treatment ameliorated dislipemia and insulin resistance of obese rats. These effects were mediated by an increase in whole-body energy dissipation and by changes in the expression of genes involved in the oxidation of fatty acids and mitochondrial uncoupling in adipose tissue. Furthermore, treatment increased the number of small adipocytes with a concomitant induction of apoptosis. Our results indicate that tungstate treatment may provide the basis for a promising novel therapy for obesity.

  3. Cesium Atomic Fountain Clocks at NMIJ

    Science.gov (United States)

    2010-11-01

    shift in caesium fountain clocks,” Physical Review Letters, 98, 153002. [10] A. Takamizawa, Y. Shirakawa, S. Yanagimachi et al., 2010, “Proposal of a...beam of laser-cooled cesium atoms,” Physical Review, A 60, R4241-R4244. [13] V. Gerginov, N. Nemitz, S. Weyers, et al., 2010, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia, 47, 65-79.

  4. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  5. Surface interactions of cesium and boric acid with stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction.

  6. Polarizabilities and Shielding Factors of Ions in Cesium Halide Crystals with the Cesium Chloride Structure

    Science.gov (United States)

    Mahbubar, Rahman; Michihiro, Yoshitaka; Nakamura, Koichi; Kanashiro, Tatsuo

    2001-08-01

    The calculated results of the polarizabilities and the quadrupole shielding factor of the ions in cesium halide crystals with the cesium chloride structure are presented. The calculation is done on the basis of the self-consistent field local density approximation and the modified Sternheimer equation. The crystalline potential is treated by the spherical solid model. The size effect is seen in the values of the polarizabilities and the quadrupole shielding factor. The values of the polarizabilities and the quadrupole shielding factor of cesium ion show only slight change in different crystals. The values of chlorine ion show significant reduction and the amount of the reduction is different in the different crystals. The effect of the crystalline environment on the electron states is discussed.

  7. EFFECTS OF TUNGSTATE ON THE GROWTH OF DESULFOVIBRIO-GIGAS NCIMB-9332 AND OTHER SULFATE-REDUCING BACTERIA WITH ETHANOL AS A SUBSTRATE

    NARCIS (Netherlands)

    HENSGENS, CMH; NIENHUISKUIPER, ME; HANSEN, TA

    1994-01-01

    Growth of Desulfovibrio gigas NCIMB 9332 in mineral, vitamin-supplemented media with ethanol as substrate was strongly stimulated by the addition of tungstate (optimal level approximately 10(-7) M). At suboptimal tungstate concentrations, up to 1.0 mM acetaldehyde was detected in the culture superna

  8. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    DEFF Research Database (Denmark)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu;

    2015-01-01

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Ara...

  9. Cesium-associated hypokalemia successfully treated with amiloride.

    Science.gov (United States)

    Horn, Sarah; Naidus, Elliot; Alper, Seth L; Danziger, John

    2015-06-01

    Self-treatment of cancer with cesium chloride, despite proven lack of efficacy, continues to produce serious adverse effects. Among these is hypokalemia predisposing to life-threatening arrhythmia. The mechanism of cesium-associated hypokalemia (CAH) has not been described. We report urinary potassium wasting responsive to amiloride therapy in a cancer patient with CAH, and discuss possible mechanisms.

  10. Cesium-associated hypokalemia successfully treated with amiloride

    OpenAIRE

    Horn, Sarah; Naidus, Elliot; Alper, Seth L; Danziger, John

    2015-01-01

    Self-treatment of cancer with cesium chloride, despite proven lack of efficacy, continues to produce serious adverse effects. Among these is hypokalemia predisposing to life-threatening arrhythmia. The mechanism of cesium-associated hypokalemia (CAH) has not been described. We report urinary potassium wasting responsive to amiloride therapy in a cancer patient with CAH, and discuss possible mechanisms.

  11. Distillation device supplies cesium vapor at constant pressure

    Science.gov (United States)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  12. Phase equilibria diagrams, crystal growth peculiarities and Raman investigations of lead and sodium-bismuth tungstate-molybdate solid solutions

    Science.gov (United States)

    Lebedev, Andrei V.; Avanesov, Samvel A.; Yunalan, Tyliay M.; Klimenko, Valeriy A.; Ignatyev, Boris V.; Isaev, Vladislav A.

    2016-02-01

    In this paper a comprehensive study of lead and sodium-bismuth tungstate-molybdate solid solutions was carried out, including the clarification of their structural peculiarities and phase diagrams of PbMoO4-PbWO4 and NaBi(MoO4)2-NaBi(WO4)2 systems, the study of spontaneous Raman spectra of these compounds, as well as preliminary experiments on single crystals growth of lead tungstate-molybdate. The linewidths, peak and integral intensities of the totally symmetric Raman vibrations of solid solutions were estimated in comparison with known SRS-active crystals. The conditions of the Czochralski growth of optically transparent lead tungstate-molybdate mixed crystals were found and SRS effect was observed in these crystals when pumping by 12 ns 1064 nm laser pulses.

  13. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  14. [Surveillance of radioactive cesium in foods].

    Science.gov (United States)

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Ikarashi, Atsuko; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    We surveyed foods on the market from areas that had been exposed to radioactive materials contamination following the Fukushima accident. We used a NaI (Tl) scintillation spectrometer for the screening tests and a germanium semiconductor detector for the final tests. Test results from 1,427 samples showed that 6 samples (0.4%) exceeded the regulatory limit of 500 Bq/kg. Considering the detection rate of radioactive cesium in each food category, we suggest that it is necessary to continue monitoring fruits such as chestnuts and ginkgo nuts, mushrooms (especially raw wood-shiitake), mountain vegetables, and sea fish.

  15. Synthesis, characterization and application of an inorgano organic material: -chlorophenol anchored onto zirconium tungstate

    Indian Academy of Sciences (India)

    Beena Pandit; Uma Chudasama

    2001-06-01

    Tetravalent metal acid (TMA) salt zirconium tungstate (ZW) has been synthesized, followed by its derivatization using para-chlorophenol (CP). The resulting compound is abbreviated as ZWCP. ZWCP has been characterized for elemental analysis, spectral analysis (FTIR), X-ray analysis and thermal analysis (TGA). Its chemical stability has been assessed in various mineral acids, bases and organic solvents. Ion exchange capacity (IEC) has been determined and distribution behaviour towards several metal ions in different electrolyte solutions with varying concentrations has been studied and a few binary separations achieved.

  16. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  17. Seaweed against strontium and preussian blue against cesium

    Directory of Open Access Journals (Sweden)

    G Michanek

    1988-06-01

    Full Text Available The fact that alginates bind strontium and cyanates bind cesium and are capable of removing these elements from living organisms is scientifically verified. Zeolites offer another possibility for exchange of these ions. Practical research should be initiated to find the right doses and procedure to decrease the body burden of radioactive isotopes in reindeer.Alger mot strontium och berlinerblått mot cesium.Abstract in Swedish / Sammanfattning: Mitt budskap år kort: Alger binder strontium, Berlinerblått binder cesium, Sätt fart på forskning och forsök!

  18. Immobilization of cesium in alkaline activated fly ash matrix

    Science.gov (United States)

    Fernandez-Jimenez, A.; Macphee, D. E.; Lachowski, E. E.; Palomo, A.

    2005-11-01

    The immobilization potential of alkaline activated fly ash (AAFA) matrices for cesium has been investigated. The presence of Cs in the AAFA pastes, prepared using 8M NaOH solution as activator, showed no significant adverse effects on mechanical strength or microstructure, nor were significant quantities of Cs leached following application of the Toxic Characteristic Leaching Procedure (TCLP) and American Nuclear Society (ANS) 16.1 leaching protocols. Microstructural analysis shows Cs associated with the main reaction product in the AAFA suggesting that cesium is chemically bound rather than physically encapsulated. It is proposed that cesium is incorporated into the alkaline aluminosilicate gel, a precursor for zeolite formation.

  19. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K; Boyes, E D; Gai, P L [York JEOL Nanocentre (United Kingdom); Shiju, N R; Brown, D R, E-mail: pgb500@york.ac.u [Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH (United Kingdom)

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 A = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  20. Adsorptional removal of methylene blue by guar gum-cerium (IV) tungstate hybrid cationic exchanger.

    Science.gov (United States)

    Gupta, V K; Pathania, Deepak; Singh, Pardeep; Kumar, Amit; Rathore, B S

    2014-01-30

    Guar gum-cerium (IV) tungstate nanocomposite (GG/CTNC) cationic exchanger was synthesized using simple sol gel method. The GG/CTNC was characterized using X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectrophotometer (EDX). The XRD studies confirmed amorphous and fibrous in nature of GG/CTNC. The high percentage of oxygen in the nanocomposite material confirmed the functionality tungstate (WO4(-)). The ion exchange capacity of GG/CTNC for Na(+) ion was observed to be 1.30 mequivg(-1). The hybrid exchanger was used as potential adsorbent for the removal of methylene blue (MB) from aqueous system. The correlation coefficients value indicated a good fit of monolayer Langmuir model to the adsorption of methylene blue onto GG/CTNC. The adsorption kinetic study revealed that the adsorption process followed the pseudo second order kinetic. The Gibbs free energy (ΔG) values confirmed the spontaneous nature of adsorption process.

  1. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    Science.gov (United States)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  2. Ultra-high, broadband gain in a lattice-engineered, Yb-doped double tungstate channel waveguide

    NARCIS (Netherlands)

    Geskus, D.; Aravazhi, S.; Bernhardi, E.H.; Agazzi, L.; García-Blanco, S.M.; Pollnau, M.

    2012-01-01

    150 dB/cm gain over 55 nm wavelength range between 977-1032 nm is obtained in a 47.5% Yb-doped potassium double tungstate waveguide amplifier. The dependence of luminescence lifetime and gain on Yb concentration is investigated.

  3. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    Science.gov (United States)

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  4. Atmospheric transmission for cesium DPAL using TDLAS

    Science.gov (United States)

    Rice, Christopher A.; Perram, Glen P.

    2012-03-01

    The cesium (Cs) Diode Pumped Alkali Laser (DPAL) operates near 894 nm, in the vicinity of atmospheric water vapor absorption lines. An open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope has been used to study the atmospheric transmission characteristics of Cs DPALs over extended paths. The ruggedized system has been field deployed and tested for propagation distances of greater than 1 km. By scanning the diode laser across many free spectral ranges, many rotational absorption features are observed. Absolute laser frequency is monitored with a High Finesse wavemeter to an accuracy of less than 10 MHz. Phase sensitive detection is employed with an absorbance of less than 1% observable under field conditions.

  5. Low-work-function surfaces produced by cesium carbonate decomposition

    Science.gov (United States)

    Briere, T. R.; Sommer, A. H.

    1977-01-01

    Cesium carbonate (Cs2CO3) was heated to the decomposition temperature of approximately 600 C. The nonvolatile decomposition products were condensed on a nickel substrate while the carbon dioxide was removed by pumping. The deposited material is characterized by an effective work function of between 1.05 and 1.15 eV at 450 K and by photoemission in the visible and near-infrared region of the spectrum. It is suggested that the deposited material consists of Cs2O, possibly Cs2O2, and adsorbed cesium. Silver, evaporated from a heated silver bead, produced the typical photoemissive and thermionic properties of a silver-oxygen-cesium (S-1) photocathode. The material may be of interest for thermionic energy converters and for the formation of silver-oxygen-cesium photocathodes.

  6. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Mohamad, E-mail: rizwan@nucl.kyushu-u.ac.jp; Uozumi, Yusuke; Matsuo, Kazuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov [Joint Institute for Nuclear Research, JINR, Joliot-Curie Str.6, Dubna (Russian Federation)

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  7. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang Li Yuan; Zhu Ren Yuan; Liu Dun Can

    2000-01-01

    Light monitoring will serve as an inter calibration for CMS lead tungstate crystals in situ at LHC, which is crucial for maintaining crystal calorimeter's sub percent constant term in the energy resolution. This paper presents the design of the CMS ECAL monitoring light source and high level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of Y doped PbWO//4 crystals were investigated, and were used to study monitoring linearity and sensitivity as a function of the wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. 29 Refs.

  8. Specific directions of ultrasound propagation in double potassium tungstates for light modulation.

    Science.gov (United States)

    Mazur, M M; Mazur, L I; Pozhar, V E

    2017-01-01

    Acousto-optical characteristics of double potassium tungstates are analyzed and specific directions for light modulation are found. First, an important subgroup of elasto-optic coefficients of KYb(WO4)2 and KLu(WO4)2 crystals are calculated with use of experimental data. It is revealed that with proper choice of ultrasound direction the acousto-optical figure-of-merit approximately 2 times exceeds the maximum value detected in previous experiments. Another unique direction is determined, which permits modulation of randomly polarized light. The elasto-optic characteristics of KYb(WO4)2 and KLu(WO4)2 crystals are compared to those of previously investigated materials of the same crystal group: KY(WO4)2, KGd(WO4)2.

  9. Anodic oxides on InAlP formed in sodium tungstate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, A. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Skeldon, P. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)], E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Echeverria, F. [Corrosion and Protection Group, University of Antioquia, Medellin (Colombia); Graham, M.J.; Sproule, G.I.; Moisa, S.; Quance, T. [Institute for Microstructural Sciences, National Research Council of Canada, Montreal Road, Ottawa K1A 0R6 (Canada); Habazaki, H. [Graduate Engineering School, Hokkaido University, N13 W8, Kita-ku, Sapporo 060-8628 (Japan)

    2010-02-15

    Amorphous anodic oxide films on InAlP have been grown at high efficiency in sodium tungstate electrolyte. The films are shown to comprise an outer layer containing indium species, an intermediate layer containing indium and aluminium species and an inner layer containing indium, aluminium and phosphorus species{sub .} The layering correlates with the influence on cation migration rates of the energies of In{sup 3+}-O, Al{sup 3+}-O and P{sup 5+}-O bonds, which increase in this order. The film surface becomes increasingly rough with increase of the anodizing voltage as pores develop in the film, which appear to be associated with generation of oxygen gas.

  10. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    CERN Document Server

    Ferri, Federico

    2012-01-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers and LEDs to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalize the ECAL response to the changes measured by the monitoring system. These include low energy di-photon resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This talk describes how the monitoring system ...

  11. Experimental Study of the Lead Tungstate Scintillator Proton-Induced Damage and Recovery

    CERN Document Server

    Auffray, Etiennette; Singovski , A

    2011-01-01

    Lead tungstate (PbWO4, or PWO) scintillating crystals are used by two of the four experiments at the Large Hadron Collider (LHC): 75848 in CMS and 17920 in ALICE. For the CMS electromagnetic calorimeter, one of the most important crystal properties is its radiation hardness. With the increase of luminosity, the radiation level will increase drastically, particularly in the high pseudorapidity regions of the calorimeter. Beside the effects of color-centre formation caused by gamma-radiation, additional measurable effect originated by hadron irradiation could appear, which will further deteriorate the optical transmission of the crystals and therefore their efficiency. In this paper, we will present results of the proton-induced damage in PWO and a study of optical transmission recovery at different temperatures and under different light-induced "bleaching" conditions for proton-irradiated crystals.

  12. Comparison between high-energy proton and charged pion induced damage in Lead Tungstate calorimeter crystals

    CERN Document Server

    Lecomte, P; Nessi-Tedaldi, F; Pauss, F; Renker, D

    2007-01-01

    A Lead Tungstate crystal produced for the electromagnetic calorimeter of the CMS experiment at the LHC was cut into three equal-length sections. The central one was irradiated with 290 MeV/c positive pions up to a fluence of (5.67 +- 0.46)x10^13 /cm^2, while the other two were exposed to a 24 GeV/c proton fluence of (1.17 +- 0.11) x 10^13/ cm^2. The damage recovery in these crystals, stored in the dark at room temperature, has been followed over two years. The comparison of the radiation-induced changes in light transmission for these crystals shows that damage is proportional to the star densities produced by the irradiation.

  13. The pressure-amorphized state in zirconium tungstate: a precursor to decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Akhilesh K [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sastry, V S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sahu, P Ch [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mary, T A [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)

    2004-02-25

    In contrast to widely accepted view that pressure-induced amorphization arises due to kinetic hindrance of equilibrium phase transitions, here we provide evidence that the metastable pressure-amorphized state in zirconium tungstate is a precursor to decomposition of the compound into a mixture of simple oxides. This is from the volume collapse {delta}V across amorphization, which is obtained for the first time by measuring linear dimensions of irreversibly amorphized samples during their recovery to the original cubic phase upon isochronal annealing up to 1000 K. The anomalously large {delta}V of 25.7 {+-} 1.2% being the same as that expected for the decomposition indicates that this amorphous state is probably a precursor to kinetically hindered decomposition. A P-T diagram of the compound is also proposed.

  14. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang Liang Ying; Zhu, R Y; Liu, D T

    2001-01-01

    Light monitoring will serve as an intercalibration for Compact Muon Solenoid (CMS) lead tungstate crystals in situ at the Large Hadronic Collider, which is crucial for maintaining crystal calorimeter's subpercent constant term in the energy resolution. This paper presents the design of the CMS electromagnetic calorimeter monitoring light source and high-level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of yttrium-doped PbWO/sub 4/ crystals were investigated and were used to study monitoring linearity and sensitivity as a function of wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. (12 refs).

  15. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Li Yuan Zhang; Ren Yuan Zhu; Duncan, Liu

    2000-01-01

    Light monitoring will serve as an inter calibration for the CMS lead tungstate crystals in situ at LHC, which is crucial for maintaining the crystal calorimeter's sub percent constant term in energy resolution. This paper presents the design of the CMS ECAL monitoring light source and high level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of Y doped PbWO/sub 4/ crystals were investigated, and were used to study monitoring linearity and sensitivity as a function of the wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. (13 refs).

  16. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang, L; Wei, Q; Zhu, R Y; Liu, D T

    2002-01-01

    Light monitoring will track variations of the calibration of the CMS lead tungstate crystals in situ at LHC, which is crucial for maintaining crystal calorimeter's subpercent constant term in the energy resolution. This paper presents the design of the CMS ECAL monitoring light source and high level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of yttrium doped PbWO/sub 4/ crystals were investigated, and were used to study monitoring linearity and sensitivity as a function of wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. (13 refs).

  17. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  18. Cesium-induced QT-interval prolongation in an adolescent.

    Science.gov (United States)

    O'Brien, Catherine E; Harik, Nada; James, Laura P; Seib, Paul M; Stowe, Cindy D

    2008-08-01

    Alternative medicine is becoming increasingly popular, especially with terminally ill patients. Most alternative remedies have not been adequately studied or proven effective for the diseases for which they are promoted. In the worst cases, these therapies are harmful. We describe a 16-year-old girl with metastatic hepatocellular carcinoma who experienced cesium-induced QT-interval prolongation after the start of a cesium chloride-based alternative treatment regimen. She had received seven courses of chemotherapy, with a cumulative doxorubicin dose of 500 mg/m(2) over 5 months, resulting in minimal tumor regression. Against the advice of her oncologist, she abandoned traditional therapy and started an alternative regimen that included cesium chloride supplements. Two weeks later, the patient went to a local emergency department after experiencing two brief syncopal episodes. An electrocardiogram revealed occasional premature ventricular contractions, a QTc interval of 683 msec (normal range for females 450-460 msec), and R on T phenomenon. She was admitted to the hospital and later experienced monomorphic ventricular tachycardia, which resolved spontaneously. Lidocaine therapy was started, and the patient was transferred to a cardiac intensive care unit at our hospital. Her plasma cesium level was 2400 microg/dl (normal cesium level was 1800 microg/dl, and her QTc interval was 494 msec. According to the Naranjo adverse drug reaction probability scale, cesium was the probable cause of the patient's arrhythmia. In animal models, cesium chloride has induced cardiac arrhythmias, including torsade de pointes. It inhibits delayed rectifier potassium channels in the myocardium, causing delayed repolarization and QT-interval prolongation. Patients with cancer should be aware that alternative remedies may be harmful and ineffective. Because patients may be unlikely to self-report alternative remedies, health care providers should specifically ask their patients about any

  19. Cesium toxicity: a case of self-treatment by alternate therapy gone awry.

    Science.gov (United States)

    Lyon, Andrew W; Mayhew, William J

    2003-02-01

    Cesium salts have been used in animal models to induce cardiac arrhythmias for several decades, but the sequelae of human cesium toxicity have seldom been described. The authors describe a case of cesium toxicity manifested by syncope, polymorphic ventricular tachycardia, hypokalemia, and a QT interval prolonged to 650 milliseconds that resolved over 4 days following withdrawal of cesium. The patient had a 2-year history of colon cancer and had self-treated with cesium chloride, 3 g/d, for several weeks, using cesium as a form of alternate therapy for cancer. The authors describe the pathophysiologic correlates and risks of cesium consumption and conclude that cesium toxicity should be considered among the differential diagnoses of prolonged QT interval.

  20. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    Science.gov (United States)

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya; Han, Minwoo; Kusano, Miyako; Khandelia, Himanshu; Saito, Kazuki; Shin, Ryoung

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium were investigated. Through chemical library screening, 14 chemicals were isolated as ‘cesium accumulators’ in Arabidopsis thaliana. Of those, methyl cysteinate, a derivative of cysteine, was found to function within the plant to accumulate externally supplemented cesium. Moreover, metabolite profiling demonstrated that cesium treatment increased cysteine levels in Arabidopsis. The cesium accumulation effect was not observed for other cysteine derivatives or amino acids on the cysteine metabolic pathway tested. Our results suggest that methyl cysteinate, potentially metabolised from cysteine, binds with cesium on the surface of the roots or inside plant cells and improve phytoaccumulation. PMID:28230101

  1. Ion microscopy based on laser-cooled cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Viteau, M.; Reveillard, M.; Kime, L.; Rasser, B.; Sudraud, P. [Orsay Physics, TESCAN Orsay, 95 Avenue des Monts Auréliens – ZA Saint-Charles – 13710 Fuveau (France); Bruneau, Y.; Khalili, G.; Pillet, P.; Comparat, D. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Bât. 505, 91405 Orsay (France); Guerri, I. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Fioretti, A., E-mail: andrea.fioretti@ino.it [Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy); Ciampini, D.; Allegrini, M.; Fuso, F. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy)

    2016-05-15

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130 pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1–5 keV range are obtained with a resolution around 40 nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis. - Highlights: • We realize a Focused Ion Beam with an ionic source based on laser cooled cesium atoms. • Ionization involves excitation of the laser cooled atoms to Rydberg states. • We use the cesium FIB system to image different materials. • We use the cesium FIB to produce permanent modifications on surfaces. • In the present configuration, the focused probe size of the cesium FIB prototype is about 300 nm for beam energies in the 2–5 keV range.

  2. A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons

    CERN Document Server

    Dissertori, G.; Nessi-Tedaldi, F.; Pauss, F.; Wallny, R.; Spikings, R.; Van der Lelij, R.; Arnau Izquierdo, G.

    2012-01-01

    The anticipated performance of calorimeter crystals in the environment expected after the planned High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN has to be well understood, before informed decisions can be made on the need for detector upgrades. Throughout the years of running at the HL-LHC, the detectors will be exposed to considerable fluences of fast hadrons that have been shown to cause cumulative transparency losses in Lead Tungstate scintillating crystals. In this study, we present direct evidence of the main underlying damage mechanism. Results are shown from a test that yields a direct insight into the nature of the hadron-specific damage in Lead Tungstate calorimeter crystals exposed to 24 GeV/c protons.

  3. Expanded Industrial Experiments of Free-alkali Recovery from Sodium Tungstate Solution by the Membrane Electrolysis Process

    Institute of Scientific and Technical Information of China (English)

    刘玉岭; 古海云; 檀柏梅; 桑建新

    2001-01-01

    The expanded industrial experiments were conducted with practical industrial liquor to separate free alkali from sodium tungstate solution by electrolysis with cation-exchange membrane. Experimental results show that on the condition that the temperature is 50-55 ℃ and the current:density is 1000 A/m2, the single electrolysis cell is operated stably and 80% free-alkali in mass fraction is separated from the anode feed liquor of sodium tungstate, with electric ef ficiency up to more than 88% and the unit energy consumption E lower than 1900 kWh/t; while three electrolysis cells in series are operated, under the condition that the temperature is 60-65 ℃ and the current density is 1000 A/m2, the elec tric efficiency can reach higher than 88% and the unit energy consumption E can be lower than 2250 kWh/t.

  4. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    Energy Technology Data Exchange (ETDEWEB)

    Fegan, S., E-mail: fegan@ge.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Auffray, E. [CERN, European Organisation for Nuclear Research, Geneva (Switzerland); Battaglieri, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Buchanan, E. [University of Glasgow, Glasgow G12 8QQ (United Kingdom); Caiffi, B.; Celentano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Colaneri, L.; D' Angelo, A. [Istituto Nazionale di Fisica Nucleare, Sezione Roma2 Tor Vergata and Università degli studi di Roma Tor Vergata, Via Scientifica 1, 00133 Roma (Italy); De Vita, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Dormenev, V. [II. Physikalisches Institut, Universität Gießen, 35392 Gießen (Germany); Fanchini, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Lanza, L. [Istituto Nazionale di Fisica Nucleare, Sezione Roma2 Tor Vergata and Università degli studi di Roma Tor Vergata, Via Scientifica 1, 00133 Roma (Italy); Novotny, R.W. [II. Physikalisches Institut, Universität Gießen, 35392 Gießen (Germany); and others

    2015-07-21

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  5. Applications of cesium in the perovskite solar cells

    Science.gov (United States)

    Ye, Fengjun; Yang, Wenqiang; Luo, Deying; Zhu, Rui; Gong, Qihuang

    2017-01-01

    Perovskite solar cells have experienced an unprecedented rapid development in the power conversion efficiency (PCE) during the past 7 years, and the record PCE has been already comparable to the traditional polycrystalline silicon solar cells. Presently, it is more urgent to address the challenge on device stability for the future commercial application. Recently, the inorganic cesium lead halide perovskite has been intensively studied as one of the alternative candidates to improve device stability through controlling the phase transition. The cesium (Cs)-doped perovskites show more superior stability comparing with organic methylammonium (MA) lead halide perovskite or formamidinium (FA) lead halide perovskite. Here, recent progress of the inorganic cesium application in organic–inorganic perovskite solar cells (PSCs) is highlighted from the viewpoints of the device efficiency and the device stability. Project supported by the 973 Program of China (No. 2015CB932203), the National Natural Science Foundation of China (Nos. 61377025, 91433203), and the Young 1000 Talents Global Recruitment Program of China.

  6. Controllable evaporation of cesium from a dispenser oven

    Science.gov (United States)

    Fantz, U.; Friedl, R.; Fröschle, M.

    2012-12-01

    This instrument allows controlled evaporation of the alkali metal cesium over a wide range of evaporation rates. The oven has three unique features. The first is an alkali metal reservoir that uses a dispenser as a cesium source. The heating current of the dispenser controls the evaporation rate allowing generation of an adjustable and stable flow of pure cesium. The second is a blocking valve, which is fully metallic as is the body of the oven. This construction both reduces contamination of the dispenser and enables the oven to be operated up to 300 °C, with only small temperature variations (metal at a cold spot is significantly hindered. The last feature is an integral surface ionization detector for measuring and controlling the evaporation rate. The dispenser oven can be easily transferred to the other alkali-metals.

  7. Dating of mine waste in lacustrine sediments using cesium-137

    Science.gov (United States)

    Rember, W. C.; Erdman, T. W.; Hoffmann, M. L.; Chamberlain, V. E.; Sprenke, K. F.

    1993-11-01

    For over a century Medicine Lake in northern Idaho has received heavy-metal-laden tailings from the Coeur d'Alene mining district. Establishing the depositional chronology of the lake bottom sediments provides information on the source and rate of deposition of the tailings. Cesium-137, an isotope produced in the atmosphere by nuclear bomb tests, was virtually absent in the environment prior to 1951, but reached its apex in 1964. Our analysis of cesium-137 in the sediments of Medicine Lake revealed that 14 cm of fine-grained tailings were deposited in the lake from 1951 to 1964 and tailing deposition downstream was greatly reduced by the installation of tailings dams in the district in 1968. Cesium-137 analysis is accomplished by a fairly simple gamma-ray counting technique and should be a valuable tool for analyzing sedimentation in any lacustrine environment that was active during the 1950s and 1960s.

  8. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  9. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  10. CAFS: A Cesium Atomic Frequency Standard for GPS block IIR

    Science.gov (United States)

    Wisnia, Jeffry A.

    1993-01-01

    Kernco, Inc. was selected to design the Cesium Atomic Frequency Standards (CAFS) for the GPS Block IIR NAVSTAR satellites. These spacecraft are scheduled to be launched in the mid-1990's to replenish and upgrade the existing constellation of Global Positioning System satellites. The Block IIR CAFS output frequency is 13.4003378 MHz, the 686th submultiple of the cesium atomic resonance frequency. Using an integer submultiple simplifies the design of the atomic frequency standard's rf multiplier circuits, eliminating the secondary frequency synthesizer needed in previous designs. The GPS Block IIR CAFS design, particularly the improvements made on our earlier Block II design is described. Test results are included.

  11. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    Science.gov (United States)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-01

    High concentrations of cesium (Cs+) inhibit plant growth but the detailed mechanisms of Cs+ uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs+, chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs+ tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs+ concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs+. Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs+ tolerance enhancer isolated here renders plants tolerant to Cs+ by inhibiting Cs+ entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  12. Sorption of cesium in young till soils

    Energy Technology Data Exchange (ETDEWEB)

    Lusa, Merja; Lempinen, Janne; Ahola, Hanna; Soederlund, Mervi; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry; Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Consulting Engineers, Helsinki (Finland); Ikonen, Ari T.K. [Posiva Oy, Eurajoki (Finland)

    2014-10-01

    Soil samples from three forest soil pits were examined down to a depth of approximately three metres using 1 M ammonium acetate extraction and microwave-assisted extraction with concentrated nitric acid (HNO{sub 3}), to study the binding of cesium (Cs) at Olkiluoto Island, southern Finland. Ammonium acetate was used to extract the readily exchangeable Cs fractions roughly representing the Cs fraction in soil which is available for plants. Microwave-assisted HNO{sub 3} extraction dissolves various minerals, e.g. carbonates, most sulphides, arsenides, selenides, phosphates, molybdates, sulphates, iron (Fe) and manganese (Mn) oxides and some silicates (olivine, biotite, zeolite), and reflects the total Cs concentrations. Cs was mostly found in the strongly bound fraction obtained through HNO{sub 3} extraction. The average Cs concentrations found in this fraction were 3.53 ± 0.30 mg/kg (d.w.), 3.06 ± 1.86 mg/kg (d.w.) and 1.83 ± 0.42 mg/kg (d.w.) in the three soil pits, respectively. The average exchangeable Cs found in the ammonium acetate extraction in all three sampling pits was 0.015 ± 0.008 mg/kg (d.w.). In addition, Cs concentrations in the soil solution were determined and in situ distribution coefficients (K{sub d}) for Cs were calculated. Furthermore, the in situ K{sub d} data was compared with the Cs K{sub d} data obtained using the model batch experiments. The in situ K{sub d} values were observed to fairly well follow the trend of batch sorption data with respect to soil depth, but on average the batch distribution coefficients were almost an order of magnitude higher than the in situ K{sub d} data. In situ Cs sorption data could be satisfactory fitted with the Langmuir sorption isotherm, but the Freundlich isotherm failed to fit the data. Finally, distribution coefficients were calculated by an ion exchange approach using soil solution data, the cation exchange capacity (CEC) as well as Cs to sodium (Na) and Cs to potassium (K) ion exchange selectivity

  13. Photo- and electroluminescence properties of lanthanide tungstate-doped porous anodic aluminum oxide

    Science.gov (United States)

    Staninski, Krzysztof; Piskuła, Zbigniew; Kaczmarek, Małgorzata

    2017-02-01

    A new cathode material for the potential use in light-emitting devices, based on porous anodic alumina (PAA), aluminum and ITO layers has been synthesized. Porous alumina samples with ordered pore arrays were prepared electrochemically from high purity Al sheet in H2SO4 and H3PO4. To be able to apply the matrix obtained in the electroluminescence cell, the thickness of the barrier layer of aluminum oxide was decreased by slow reduction of the anodization voltage to zero. The luminescence and electroluminescence (EL) properties of the Al2O3 matrix admixtured with Eu3+ and Tb3+ ions as well as europium and terbium tungstates, were determined. The particles of inorganic luminophore were synthesized on the walls of the matrix cylindrical nanopores in the two-step process of immersion in solutions of TbCl3 or EuCl3 and Na2WO4. The effect of the nanopores diameter and the thickness of the porous Al2O3 layer on the intensity and relative yield of electroluminescence was analyzed, the best results were obtained for 80-90 μm PAA layers with 140 nm nanopores.

  14. Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins.

    Science.gov (United States)

    Vigonsky, Elena; Ovcharenko, Elena; Lewinson, Oded

    2013-04-02

    In all kingdoms of life, ATP Binding Cassette (ABC) transporters participate in many physiological and pathological processes. Despite the diversity of their functions, they have been considered to operate by a largely conserved mechanism. One deviant is the vitamin B12 transporter BtuCD that has been shown to operate by a distinct mechanism. However, it is unknown if this deviation is an exotic example, perhaps arising from the nature of the transported moiety. Here we compared two ABC importers of identical substrate specificity (molybdate/tungstate), and find that their interactions with their substrate binding proteins are utterly different. One system forms a high-affinity, slow-dissociating complex that is destabilized by nucleotide and substrate binding. The other forms a low-affinity, transient complex that is stabilized by ligands. The results highlight significant mechanistic divergence among ABC transporters, even when they share the same substrate specificity. We propose that these differences are correlated with the different folds of the transmembrane domains of ABC transporters.

  15. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    Science.gov (United States)

    Ferri, Federico

    2012-12-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalise the ECAL response to the changes measured by the monitoring system. These include low energy diphoton resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This paper describes how the monitoring system is operated, how the corrections are obtained, and the resulting ECAL performance.

  16. Infrared spectroscopic and laser characterization of Tm in disordered double tungstates

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Torres, J.M.; Han, X.; Garcia-Cortes, A.; Serrano, M.D. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz 3, E-28049 Madrid (Spain); Zaldo, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz 3, E-28049 Madrid (Spain)], E-mail: cezaldo@icmm.csic.es; Valle, F.J. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, c/Kelsen 5, E-28049 Madrid (Spain); Mateos, X.; Rivier, S.; Griebner, U.; Petrov, V. [Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, 2A Max-Born-Street, D-12489 Berlin (Germany)

    2008-01-15

    The relative energy and characteristics of the Tm{sup 3+} levels in tetragonal double tungstate (DT) and double molybdate (DMo) crystals are investigated by low temperature optical spectroscopy with special emphasis on NaLa(WO{sub 4}){sub 2}. In this host the transition bandwidths are intermediate between those found in ordered monoclinic DT and in other disordered tetragonal DT and DMo crystals. This allows for better band resolution of the S{sub 4} site symmetry features in the disordered scheelite-like structure. The potential of such Tm-doped crystals for building infrared tunable lasers is discussed on the basis of the calculated cross sections and their comparison with the experimental photoluminescence. Information on the crystal growth and Tm{sup 3+} spectroscopic details are provided. Tm:NaLa(WO{sub 4}){sub 2} laser operation with the available sample is more efficient for {sigma}-polarized configuration. Up to 200 mW of output power was obtained at {lambda} = 1888 nm and laser tunability extends from 1789 to 1950 nm.

  17. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Science.gov (United States)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan N., Pethan; Kumar Balla, Putra; Chary Komandur, V. R.

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol-gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO3) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV-vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  18. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R., E-mail: kvrchary@iict.res.in

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO{sub 3}) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH{sub 3} TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  19. Synthesis and Crystal Structure of Ammonium cis-Dioxo Dibenzilato Tungstate (VI) Dihydrate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; JIANG Ya-Qi; ZHANG Hui; ZHOU Zhao-Hui

    2004-01-01

    A mononuclear tungsten-benzilate, (NH4)2[WO2(Ph2COCOO)2]·2H2O was ob- tained by the reaction of ammonium tungstate(VI) with excess benzilic acid in ethanol solution at pH 5~6. The title compound crystallizes in monoclinic system, space group P21/n with a = 8.1078(5), b = 25.797(2), c = 13.6815(8) (A。), β = 91.001(1)°, V = 2861.1(3) (A。)3, Dc = 1.719 g/cm3, F(000) = 1472, C28H32N2O10W, Mr = 740.41,μ(MoKα) = 4.097 mm-1 and Z = 4. The full-matrix least-squares refinement resulted in R = 0.033 and Rw = 0.068 for 3974 observed reflections with I >2σ(I). The tungsten atom is six-coordinated by two cis-oxo groups and two bidentate benzilate ligands through deprotonated α-alkoxyl and α-carboxyl groups, forming a stable five-membered chelate ring. The compound has a distorted octahedral geometry, which is mainly attributable to the bulky ligand-ligand repulsions.

  20. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    Science.gov (United States)

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  1. ROLE OF TUNGSTEN IN THE AQUEOUS PHASE HYDRODEOXYGENATION OF ETHYLENE GLYCOL ON TUNGSTATED ZIRCONIA SUPPORTED PALLADIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Flores, Oscar G.; Karim, Ayman M.; Wang, Yong

    2014-11-15

    The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ, respectively. For comparison purposes, the activity of the catalytic materials used in this work was obtained using a well-defined set of operating conditions. The catalytic activity measurements show that the overall intrinsic activity of Pd particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Brønsted acid sites and electron-deficient Pd species present on Pd-mWZ.

  2. Characterization of CALET prototype TASC lead tungstate calorimeter using CERN beam test data

    Science.gov (United States)

    Javaid, Amir

    2013-04-01

    The CALorimetric Electron Telescope (CALET) is a high-energy cosmic ray experiment that will be placed on the International Space Station in 2014. The primary goals of CALET are to measure the cosmic ray electron spectra from 1 GeV to 20 TeV, gamma rays from 10 GeV to 10 TeV, and protons and nuclei from 10 GeV up to 1000 TeV. The detector consists of three main components: a Charge Detector (CHD), Imaging Calorimeter (IMC), and Total Absorption Calorimeter (TASC). The TASC consists of 192 lead tungstate (PbWO4) logs arranged in 12 layers. An understanding of the major characteristics of the TASC is important for accurately determining the incident particle shower energy deposition. In September 2012, a prototype CALET detector was exposed to electron, muon, and proton beams from the Super Proton Synchrotron (SPS) at CERN. Muon beams can be used to determine the detector response to minimum ionizing particles (MIP). In the present paper, we discuss the response of the TASC logs to muon beams as a function of position, and signal attenuation during propagation. Included is a discussion of parameterizations of position-dependent muon energy deposition and signal attenuation functions for the TASC logs based on the CERN beam test data.

  3. Photocatalytic generation of syngas using combustion-synthesized silver bismuth tungstate.

    Science.gov (United States)

    de Tacconi, Norma R; Timmaji, Hari Krishna; Chanmanee, Wilaiwan; Huda, Muhammad N; Sarker, Pranab; Janáky, Csaba; Rajeshwar, Krishnan

    2012-08-27

    Silver bismuth tungstate (AgBiW(2)O(8)) nanoparticles were prepared for the first time by solution combustion synthesis by using the corresponding metal nitrates as the precursor and urea as the fuel. These nanoparticles were subsequently modified with Pt catalyst islands using a photocatalytic procedure and used for the photogeneration of syngas (CO+H(2)). Formic acid was used for this purpose for the in situ generation of CO(2) and its subsequent reduction to CO. In the absence of Pt modification, H(2) was not obtained in the gas products evolved. These results were compared with those obtained with acetic acid in place of formic acid. The combustion process was simulated by thermogravimetry and the synthesized powder was characterized using transmission electron microscopy, diffuse reflectance UV/Vis spectroscopy, X-ray diffraction, surface area measurements, and X-ray photoelectron spectroscopy. Tauc plots derived from the diffuse reflectance data yielded an optical band gap of 2.74 eV. The photocatalytic activity of these nanoparticles was superior to a sample prepared by solid-state synthesis. Mechanistic aspects are finally presented, as are structural models and electronic calculations, using density functional theory (DFT).

  4. Surface Electrical Conductivity of Single Crystal Spinel in Cesium Vapour.

    Science.gov (United States)

    2007-11-02

    magnesium aluminate spinel at temperatures ranging from 573K to 923K, in the presence of cesium vapour at pressures up to 1Torr. The interest in spinel has...in the core of a nuclear reactor. In contrast to magnesium oxide and alumina, electron irradiation of spinel produces no dislocation structures

  5. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E.; Tornos, J.

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  6. Fundamental study of cesium decontamination from soil by superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp; Nishijima, Shigehiro

    2013-11-15

    Highlights: •The method for the soil decontamination by the superconducting magnet is proposed. •Cesium ion can be absorbed by Prussian blue in potassium iodide wash fluid. •It is possible to recover Cs{sup +} ion-adsorbing Prussian blue with a high rate by HGMS. •It is expected that HGMS can be applied to the actual soil decontamination. -- Abstract: The radioactive substances have been spread out all over the surrounding area of Fukushima Daiichi Nuclear Power Plant caused by the accident in March 2011. Decontamination and volume reduction of radioactive substances, especially cesium ion, are desired issue. This study proposed a decontamination method of the soil by the magnetic separation using superconducting magnet. Cesium ion was adsorbed by Prussian blue in the potassium iodide solution. We succeeded in separating selectively the cesium ion-adsorbed Prussian blue out of the liquid phase by high gradient magnetic separation. High recovery ratio of the Prussian blue was achieved by this method.

  7. Membrane-based separation technologies for cesium, strontium, and technetium

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, T.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with 3M, St. Paul, Minnesota, working in cooperation with IBC Advanced Technologies, American Fork, Utah.

  8. Suspension of superfluid helium using cesium-coated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C.; Giese, C.F.; Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    1996-03-01

    We report results of an experiment which demonstrates that a layer of superfluid helium can be suspended over a cesium-coated orifice. By measuring the layer thickness with a capacitance bridge, we have shown in two runs that fluid layers up to 2 mm thick were suspended over a 70-{mu}m-diam cesium-coated orifice in a platinum foil for over 2 h in a cryostat held at 1.2 K. The effect depends on the recently established fact that superfluid helium does not wet cesium-coated surfaces. As a consequence, superfluid helium is expected to form a stable meniscus across such a cesium-coated hole. The observed depths of suspended helium are consistent with a simple theoretical model based on this picture. We briefly discuss the possible application of this method to the performance of a proposed experiment to study quantum coherence in superfluid helium by directing pulsed beams of helium atoms at such a suspended layer of fluid. {copyright} {ital 1996 The American Physical Society.}

  9. Preparation of cesium targets for gamma-spectroscopic studies

    Science.gov (United States)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.

    2000-11-01

    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  10. Cesium-137 Levels Detected in Otters from Austria

    Directory of Open Access Journals (Sweden)

    Gutleb A.C.

    1991-02-01

    Full Text Available Pollution seems to be one of the most important causes for the decline of the European otter (Lutra lutra. The accident in the Chernobyl nuclear power plant added another aspect to environmental pollution. Few data on cesium-137 contents in otters are available, so levels were measured in 3 otters from Austria. All levels found were very low.

  11. Selective extraction of cesium: from compound to process; Extraction selective du cesium: de la molecule au procede

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.; Eymard, S.; Tournois, B.; Dozol, J.F. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  12. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate.

    Science.gov (United States)

    Fraqueza, Gil; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-02-01

    Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were

  13. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Taoufyq, A. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Ezahri, M.; Benlhachemi, A.; Bakiz, B. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Villain, S.; Guinneton, F. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Gavarri, J.-R., E-mail: gavarri.jr@univ-tln.fr [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France)

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.

  14. Optimization of the scintillation parameters of the lead tungstate crystals for their application in high precision electromagnetic calorimetry; Optimisation des parametres de scintillation des cristaux de tungstate de plomb pour leur application dans la calorimetrie electromagnetique de haute precision

    Energy Technology Data Exchange (ETDEWEB)

    Drobychev, G

    2000-04-12

    In the frame of this dissertation work scintillation properties of the lead tungstate crystals (PWO) and possibilities of their use were studied foreseeing their application for electromagnetic calorimetry in extreme radiation environment conditions of new colliders. The results of this work can be summarized in the following way. 1. A model of the scintillations origin in the lead tungstate crystals which includes processes influencing on the crystals radiation hardness and presence of slow components in scintillations was developed. 2. An analysis of the influences of the PWO scintillation properties changes on the parameters of the electromagnetic calorimeter was done. 3. Methods of the light collection from the large scintillation elements of complex shape made of the birefringent scintillation crystal with high refraction index and low light yield in case of signal registration by a photodetector with sensitive surface small in compare with the output face of scintillator were Studied. 4. Physical principles of the methodology of the scintillation crystals certification during their mass production foreseeing their installation into a calorimeter electromagnetic were developed. Correlations between the results of measurements of the PWO crystals parameters by different methods were found. (author)

  15. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  16. Nutrients and cancer: an introduction to cesium therapy.

    Science.gov (United States)

    Sartori, H E

    1984-01-01

    A brief overview on the relevance in dietary factors in both development and prevention of cancer is presented. The pharmacologic properties of various food ingredients are discussed. Establishing of a special diet for the cancer patient is suggested. In addition, avoidance of certain foods is recommended to counteract mucus production of cancer cells. Evaluation of the nutrient content of certain diets in regions with low incidence of cancer has advanced the use of certain alkali metals, i.e., rubidium and cesium, as chemotherapeutic agents. The rationale for this approach termed the "high pH" therapy resides in changing the acidic pH range of the cancer cell by cesium towards weak alkalinity in which the survival of the cancer cell is endangered, and the formation of acidic and toxic materials, normally formed in cancer cells, is neutralized and eliminated.

  17. Cesium-137, a drama recounted; Cesio-137, um drama recontado

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Suzane de Alencar

    2013-01-15

    The radiological accident with Cesium-137, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. Cesium-137, a drama recounted is a textual experimentation based on real events and characters picked out from statements reported in various narratives about the radiological accident. (author)

  18. Fiber laser system for cesium and rubidium atom interferometry

    CERN Document Server

    Diboune, Clément; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre

    2016-01-01

    We present an innovative fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing fiber components at these wavelengths, we demonstrate an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium. This result highlights the promising nature of such laser system especially for Cs manipulation for which no fiber laser system has been reported. It offers new perspectives for the development of atomic instruments dedicated to onboard applications and opens the way to a new generation of atom interferometers involving three atomic species $^{85}$Rb, $^{87}$Rb and $^{133}$Cs for which we propose an original laser architecture.

  19. New thermodynamic regularity for cesium over the whole liquid range

    CERN Document Server

    Ghatee, M H

    2001-01-01

    In this paper we derive an equation of state for liquid cesium based on a suggested potential function in accord to the characteristics large attraction and soft repulsion at the asymptotes of interaction potentials. By considering the interaction of nearest adjacent atoms in dense fluid, the equation of state predicts that the isotherm is linear function of, where is the compression factor, is the molar volume, and is the molar density. The linear parameters are identified as interaction coefficients related to attraction and repulsion, and are used to evaluate the molecular parameters with interesting implications. The isotherm is intended to resolve the particular thermodynamic properties of alkali metals, which have been known for their unusual change of the nature of intermolecular force as the characteristic metal-nonmetal transition range is approached. When applied to liquid cesium, the isotherms persist linear over the whole liquid range including the metal non-metals transition range and at the crit...

  20. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    Science.gov (United States)

    Zhang, Jun-Hai; Zeng, Xian-Jin; Li, Qing-Meng; Huang, Qiang; Sun, Wei-Min

    2013-05-01

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the Λ scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The |Fg = 3> → |Fe = 4> resonance pumping can result in the ground state |Fg = 4, mF = 4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg = 4> → |Fe = 3> transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.

  1. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  2. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  3. Study About Origin of Radioactive Cesium in Wild Mushroom in Japan

    OpenAIRE

    鎌田, 素之; 角田, 光淳

    2016-01-01

    Radioactive cesium, released from the Fukushima I nuclear power plant that destroyed by Great East Japan Earthquake, has been detected from various agricultural products. Especially, wild mushrooms are known to assimilate radioactive cesium and other heavy metals. In this study, we focused on the concentration of radioactive cesium in wild mushrooms in Japan, calculated the ratio of 134Cs/137Cs and discussed on their origin whether they were released from the Fukushima I nuclear power plant o...

  4. Fatal Cesium Chloride Toxicity After Alternative Cancer Treatment

    OpenAIRE

    Sessions, Daniel; Heard, Kennon; Kosnett, Michael

    2013-01-01

    Background: Cesium chloride (CsCl) is sold as a treatment for several types of cancers. The purported mechanism of action is alkalinization of relatively acidic neoplastic cells. The efficacy of CsCl has not been demonstrated in controlled experiments. Oral and intravenous CsCl use has been associated with seizures, cardiotoxicity, syncope, and death. Although intratumoral treatment with various antineoplastic agents is described, no cases of intratumoral cancer treatment with CsCl have been ...

  5. Cesium pentazolate: A new nitrogen-rich energetic material

    Science.gov (United States)

    Steele, Brad A.; Stavrous, Elissaios; Prakapenka, Vitali B.; Radousky, Harry; Zaug, Joseph; Crowhurst, Jonathan C.; Oleynik, Ivan I.

    2017-01-01

    We report theoretical and experimental evidence for a new class of high-nitrogen content energetic material compounds consisting of molecular pentazoles, which are stabilized in the crystal phase upon introduction of elemental cesium. First-principles structural predictions show that the material with composition CsN5 is thermodynamically stable above 15 GPa. Indexing of the measured X-ray diffraction spectra indicate the synthesis of this material at 60 GPa as well its stability upon decompression down to 24 GPa.

  6. MECHANISM OF CESIUM EXCHANGE WITH POTASSIUM TITANIUM HEXACYANOFERRATE

    Institute of Scientific and Technical Information of China (English)

    XuShiping; SunYongxia; 等

    1998-01-01

    The mechanism of cesium exchange on potassium titanium hexacyanoferrate (KTiFC) is described in this paper.The dependence of the exchange rate on temperature,particle granule size,and shaking frequency is studied.The results show that ion exchange process is controlled by liquid film diffusion in granule particle.An exchange reaction occurs mainly between K+ in the exchanger and Cs+ in the solution.

  7. Studies on the Separation of Cesium From Fission Products

    Institute of Scientific and Technical Information of China (English)

    QIANLi-juan; ZHANGSheng-dong; GUOJing-ru; CUIAn-zhi; YANGLei; WUWang-suo

    2003-01-01

    135Cs is a long-life fission product. When measuring its thermal cross section, we must separate radiochemical purity cesium from fission products. Except for decontaminating radio- nuclides, others which can be activated must be avoided to come into solution. So ion exchanger is used. Inorganic ion exchangers have received increased attention because of their high resistance to radiation and their very efficient separation of alkali metal ions.

  8. Cesium chloride protects cerebellar granule neurons from apoptosis induced by low potassium.

    Science.gov (United States)

    Zhong, Jin; Yao, Weiguo; Lee, Weihua

    2007-10-01

    Neuronal apoptosis plays a critical role in the pathogenesis of neurodegenerative disorders, and neuroprotective agents targeting apoptotic signaling could have therapeutic use. Here we report that cesium chloride, an alternative medicine in treating radiological poison and cancer, has neuroprotective actions. Serum and potassium deprivation induced cerebellar granule neurons to undergo apoptosis, which correlated with the activation of caspase-3. Cesium prevented both the activation of caspase-3 and neuronal apoptosis in a dose-dependent manner. Cesium at 8 mM increased the survival of neurons from 45 +/- 3% to 91 +/- 5% of control. Cesium's neuroprotection was not mediated by PI3/Akt or MAPK signaling pathways, since it was unable to activate either Akt or MAPK by phosphorylation. In addition, specific inhibitors of PI3 kinase and MAP kinase did not block cesium's neuroprotective effects. On the other hand, cesium inactivated GSK3beta by phosphorylation of serine-9 and GSK3beta-specific inhibitor SB415286 prevented neuronal apoptosis. These data indicate that cesium's neuroprotection is likely via inactivating GSK3beta. Furthermore, cesium also prevented H(2)O(2)-induced neuronal death (increased the survival of neurons from 72 +/- 4% to 89 +/- 3% of control). Given its relative safety and good penetration of the brain blood barrier, our findings support the potential therapeutic use of cesium in neurodegenerative diseases.

  9. Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan.

    Science.gov (United States)

    Kakehi, Shigeho; Kaeriyama, Hideki; Ambe, Daisuke; Ono, Tsuneo; Ito, Shin-ichi; Shimizu, Yugo; Watanabe, Tomowo

    2016-03-01

    Large quantities of radioactive materials were released into the air and the ocean as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, caused by the 2011 Tohoku earthquake and the subsequent major tsunami off the Pacific coast. There is much concern about radioactive contamination in both the watershed of the Abukuma River, which flows through Fukushima Prefecture, and its estuary, where it discharges into the sea in Miyagi Prefecture. We investigated radioactive cesium dynamics using mixing diagrams obtained from hydrographic observations of the Abukuma River Estuary. Particulate radioactive cesium dominates the cesium load in the river, whereas the dissolved form dominates in the sea. As the salinity increased from <0.1 to 0.1-2.3, the mixing diagram showed that dissolved radioactive cesium concentrations increased, because of desorption. Desorption from suspended particles explained 36% of dissolved radioactive cesium in estuarine water. However, the dissolved and particulate radioactive cesium concentrations in the sea decreased sharply because of dilution. It is thought that more than 80% of the discharged particulate radioactive cesium was deposited off the river mouth, where the radioactive cesium concentrations in sediment were relatively high (217-2440 Bq kg(-1)). Radioactive cesium that was discharged to the sea was transported southward by currents driven by the density distribution.

  10. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  11. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  12. Structural characterization of bismuth rare earth tungstates obtained by fast microwave-assisted solid-state synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, G.N.; Melo, L.F.L. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza – CE (Brazil); Castro, M.C.; Ayala, A.P. [Departamento de Física, Universidade Federal do Ceará (Brazil); Menezes, A.S. de [Departamento de Física – CCET, Universidade Federal do Maranhão, Campus do Bacanga, 65085-580 São Luís, MA (Brazil); Fechine, P.B.A., E-mail: fechine@ufc.br [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza – CE (Brazil)

    2013-05-15

    A new synthetic route was used to obtain bismuth rare earth tungstates: BiREWO{sub 6}, where RE = Y, Gd and Nd. These materials were obtained by microwave radiation in air at 900–1100 °C for 10 min, depend on the rare earth composition in the ceramic. Structural characterization was performed by X-ray powder diffraction, Infrared and Raman spectroscopy. It was observed that all samples are isostructural materials with monoclinic phase with space group A12/m1 and member of the Aurivillius family, as Bi{sub 2}WO{sub 6} ferroelectric phase. It was observed moderated values for dielectric measurements (14<ε{sub r}{sup ′}>19 and 0.018 < tg δ > 0.079) at microwaves frequencies, which can be used as Dielectric Resonator Antenna or for size reduction of the electric device. - Highlights: ► New synthetic route to obtain bismuth rare earth tungstates by microwave radiation. ► Vibration spectroscopy was based in Group Theory and observed in FTIR and Raman. ► BiGdWO{sub 6} presented simultaneously higher ε{sub r}{sup ′} and smaller tg δ values at microwaves frequencies. ► The samples can be used as a DRA or for size reduction of the electric device.

  13. Tungstate as a synergist to phosphonate-based formulation for corrosion control of carbon steel in nearly neutral aqueous environment

    Indian Academy of Sciences (India)

    B V Appa Rao; M Venkateswara Rao; S Srinivasa Rao; B Sreedhar

    2010-07-01

    Synergistic inhibition of corrosion of carbon steel in low chloride aqueous medium using tungstate as a synergist in combination with ,-(phosphonomethyl) glycine (BPMG) and zinc ions is presented. The synergistic action of tungstate has been established through the present studies. The new ternary inhibitor formulation is effective in neutral and slightly acidic as well as slightly alkaline media. Potentiodynamic polarisation studies inferred that the formulation functions as a mixed inhibitor. Impedance studies of the metal/solution interface revealed that the surface film is highly protective. Characterisation by X-ray photoelectron spectroscopy (XPS) of the surface film formed in presence of the inhibitor revealed the presence of iron, phosphorus, nitrogen, oxygen, carbon, zinc and tungsten in the surface film. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of iron oxides/hydroxides, zinc hydroxide, heteropolynuclear complex [Fe(III), Zn(II)-BPMG] and WO3. Reflection absorption FTIR spectroscopic studies also supported the presence of these compounds in the surface film. Morphological features of the metal surface studied in the absence and presence of the inhibitor by scanning electron microscopy (SEM) are also presented. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  14. A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Marina Ratova

    2016-07-01

    Full Text Available A novel powder handling technique was used to allow the deposition of bismuth tungstate coatings onto commercial titanium dioxide photocatalytic nanoparticles. The coatings were deposited by reactive pulsed DC magnetron sputtering in an argon/oxygen atmosphere. The use of an oscillating bowl with rotary particle propagation, positioned beneath two closed-field planar magnetrons, provided uniform coverage of the titania particle surfaces. The bismuth/tungsten atomic ratio of the coatings was controlled by varying the power applied to each target. The resulting materials were characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX, Brunauer–Emmett–Teller (BET surface area measurements, transmission electron microscopy (TEM, and UV-visible diffuse reflectance spectroscopy. Photocatalytic properties under visible light irradiation were assessed using an acetone degradation test. It was found that deposition of bismuth tungstate onto titania nanoparticles resulted in significant increases in visible light photocatalytic activity, compared to uncoated titania. Of the coatings studied, the highest photocatalytic activity was measured for the sample with a Bi/W atomic ratio of 2/1.

  15. Radioactive cesium. Dynamics and transport in forestal food-webs; Radioaktivt cesium. Dynamik och transport i skogliga naeringsvaevar

    Energy Technology Data Exchange (ETDEWEB)

    Palo, T.; Nelin, P. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Animal Ecology; Bergman, R.; Nylen, T. [FOA NBC Defence, Umeaa (Sweden)

    1995-12-01

    This report summarises results from a radioecological study during 1994-1995 concerning turnover, redistribution and loss of radioactive Cesium (134 and 137) in boreal forest ecosystems, as well as uptake and transfer in important food-chains over moose, vole and vegetation. The basis for this report are 9 publications published 1994-95. These reports are presented in summary form. 9 refs, 17 figs.

  16. Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal.

    Directory of Open Access Journals (Sweden)

    Corinne Appia-Ayme

    Full Text Available The RpoE and CpxR regulated envelope stress responses are extremely important for Salmonella Typhimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ity(S or ity(R mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water.

  17. Novel Inducers of the Envelope Stress Response BaeSR in Salmonella Typhimurium: BaeR Is Critically Required for Tungstate Waste Disposal

    Science.gov (United States)

    Appia-Ayme, Corinne; Patrick, Elaine; J. Sullivan, Matthew; Alston, Mark J.; Field, Sarah J.; AbuOun, Manal; Anjum, Muna F.; Rowley, Gary

    2011-01-01

    The RpoE and CpxR regulated envelope stress responses are extremely important for SalmonellaTyphimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND) multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ityS or ityR mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water. PMID:21886814

  18. Low-temperature flux growth of sulfates, molybdates, and tungstates of Ca, Sr, and Ba and investigation of doping with $Mn^{6+}$

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Ehrentraut, D.; Pollnau, M.; Garcia-Revilla, S.; Valiente, R.

    2004-01-01

    The growth of undoped and $Mn^{6+}$-doped molybdates and tungstates of alkali-earth metals and BaSO4 has been investigated. Single crystals were grown by the flux method within the temperature range of 600–475 °C, using the ternary NaCl–KCl–CsCl solvent. Sizes of undoped crystals increase within the

  19. Biospeciation of tungsten in the serum of diabetic and healthy rats treated with the antidiabetic agent sodium tungstate.

    Science.gov (United States)

    Gómez-Gómez, M Milagros; Rodríguez-Fariñas, Nuria; Cañas-Montalvo, Benito; Domínguez, Jorge; Guinovart, Joan; Cámara-Rica, Carmen

    2011-05-30

    It is known that oral administration of sodium tungstate preserves the pancreatic beta cell function in diabetic rats. Healthy and streptozotocin-induced diabetic rats were treated with sodium tungstate for one, three or six weeks, after which the species of W in serum, were analysed. An increase in serum W with treatment time was observed. After six weeks, the serum W concentration in diabetic rats (70 mg L(-1)) was about 4.6 times higher than in healthy specimens. This different behaviour was also observed for Cu accumulation, while the Zn pattern follows the contrary. The patterns observed in the retention of Cu and Zn may be attributable to a normalization of glycaemia. The speciation analysis of W was performed using 2D separations, including an immunoaffinity packing and a SEC (Size Exclusion Chromatography) column coupled to an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) for elemental detection. Ultrafiltration data together with SEC-ICP-MS results proved that around 80% of serum W was bound to proteins, the diabetic rats registering a higher W content than their healthy counterparts. Most of the protein-bound W was due to a complex with albumin. An unknown protein with a molecular weight higher than 100 kDa was also found to bind a small amount of W (about 2%). MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-of-Flight) analysis of the desalted and concentrated chromatographic fractions confirmed albumin as the main protein bound to tungstate in rat serum, while no binding to transferrin (Tf) was detected. The interaction between glutathione and W was also evaluated using standard solutions; however, the formation of complexes was not observed. The stability of the complexes between W and proteins when subjected to more stringent procedures, like those used in proteomic methodologies (denaturing with urea or SDS, boiling, sonication, acid media, reduction with β-mercaptoethanol (BME) or DTT (dithiotreitol) and alkylation with

  20. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  1. [Variation in amount of radioactive cesium before and after cooking dry shiitake and beef].

    Science.gov (United States)

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    We investigated the change of radioactive cesium content in food due to cooking in order to estimate the internal radiation exposure due to from radioactive materials in food. Our results revealed that soaking dry shiitake in water decreased the radioactive cesium content by about 50%, compared with that present in uncooked shiitake. Radioactive cesium in beef was decreased by about 10%, 12%, 60-65% and 80% by grilling, frying, boiling and stewing, respectively, compared to uncooked beef. For cooked beef, the decrease in the ratio of radioactive cesium was significantly different among the types of cooking. The decrease ratio of radioactive cesium in boiled and stewed beef was 8 times higher than that in grilled and fried beef.

  2. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  3. Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata

    DEFF Research Database (Denmark)

    Ammam, Fariza; Tremblay, Pier-Luc; Lizak, Dawid Mariusz

    2016-01-01

    CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the only product generated by S. ovata during autotrophic growth. In this study, trace elements in S. ovata growth medium were optimized to improve MES and gas fermentation productivity. Augmenting tungstate concentration...... resulted in a 2.9-fold increase in ethanol production by S. ovata during H2:CO2-dependent growth. It also promoted electrosynthesis of ethanol in a S. ovata-driven MES reactor and increased acetate production 4.4-fold compared to unmodified medium. Furthermore, fatty acids propionate and butyrate were...... oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. This study presented here shows...

  4. Tungstate Oxide for Absorbing Near Infrared Light%新型纳米氧化钨的近红外吸收性能

    Institute of Scientific and Technical Information of China (English)

    徐磊; 夏海平

    2012-01-01

    采用化学沉淀法制备纳米氧化钨粉体,并用氢氮混合气对其进行还原处理,分析了还原处理温度对氧化钨化学组成的影响,用 X 射线粉末衍射仪表征了纳米氧化钨粒子的晶相与化学组成,采用扫描电子显微镜观察了该粒子还原处理前后的晶相形貌,并测定了由该纳米颗粒还原前后制得的胶状液体从可见光到近红外波长范围内的吸收光谱和透过光谱。研究表明:还原后的氧化钨纳米粒子对 1400~1600nm 和 1900~2200nm 波段的近红外光具有显著的吸收增强效应,同时对可见光具有很高的透过性,这种具有特殊光学吸收特性的纳米氧化钨可望在新型太阳能热屏蔽器件的设计中得到应用。%A nano-powder of tungstate oxide was firstly prepared by a chemical precipitation process, and then the powder was reduced in H2/N2 gases at a high temperature. The phase and chemical composition of tungstate oxide before and after reduction were investigated by X-ray powder diffraction. The morphology of tungstate oxide before and after reduction was observed by scanning electron microscope. The absorption and transmittance spectra of tungstate oxide in a sol state from visible to near infrared wavelength were determined. The results indicated that the tungstate oxide after reduction had a high absorbance in 1 400-1 600 nm and 1 900-2 200 nm wave band for near infrared light and a high transmittance for visible light. It is suggested that the nano-powder of tungstate oxide with the special absorbing characteristics may be promising to be applied in the design for novel solar heat shielding.

  5. Adsorption of sodium and cesium on aggregates of C60

    Science.gov (United States)

    Harnisch, Martina; Daxner, Matthias; Scheier, Paul; Echt, Olof

    2016-09-01

    We explore the formation of C60 sodium and C60 cesium complexes in superfluid helium nanodroplets. Anomalies in mass spectra of these doped droplets reveal anomalies in the stability of ions. (C60) m Cs+ n ions ( m ≤ 6) are particularly abundant if they contain n = 6 m + 1 cesium atoms; (C60) m Cs2+ n dications ( m ≤ 3 or 5) are abundant if n = 6 m + 2. These findings are consistent with the notion that alkali metal atoms (A) transfer their valence electrons into the three-fold degenerate lowest unoccupied orbital of C60, resulting in particularly stable C60A6 building blocks. However, (C60) 4CsCs2+ n dications display an entirely different pattern; instead of an expected anomaly at n = 6 × 4 + 2 = 26 we observe a strong odd-even alternation starting at n = 6. Also surprising is the effect of adding one H2O or CO2 molecule to (C60) m Cs n mono- or dications; anomalies shift by two units as if the impurity were acting as an acceptor for two valence electrons from the alkali metal atoms.

  6. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  7. Morphological and electrical properties of zirconium vanadate doped with cesium

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2014-09-01

    Full Text Available Cesium doped zirconium vanadate ZrV2O7 with different Cs dopant content (Cs/Zr varied from 0 to 0.5 in weight ratio were fabricated by hydrothermal technique at 120 °C for 60 min. The synthesized materials are thermally treated using microwave technique. The structural and morphological properties of the synthesized materials and thermally treated samples were investigated using XRD and SEM respectively. It was evident that all synthesized specimens have cubic phase structural without any extra phase but after heat treatment Orthorhombic phase appear with doped samples. However, the morphological structure of the doped synthesized materials has transferred from nanoparticles into rods aspect with heat treatment for the different dopant ratio. Moreover, the electrical properties of both the synthesized and thermally treated materials are studied by AC impedance measurements. The results indicated that the ionic conductivity of Cs-doped ZrV2O7 materials decreased by increasing the dopant ratio while that thermally treated samples the ionic conductivity increase by increasing the dopant ratio. Finally, the concentration of cesium dopants is found to play crucial role in tuning the morphology and electrical properties of nanostructures.

  8. Structure and bonding in crystalline cesium uranyl tetrachloride under pressure.

    Science.gov (United States)

    Osman, Hussien H; Pertierra, Pilar; Salvadó, Miguel A; Izquierdo-Ruiz, F; Recio, J M

    2016-07-21

    A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies.

  9. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun-Hai; Zeng Xian-Jin; Li Qing-Meng; Huang Qiang; Sun Wei-Min

    2013-01-01

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations.The process,described by a three-level model with the A scheme,shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms.The |Fg =3> → |Fe-4> resonance pumping can result in the ground state |Fg =4,mF =4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg =4.To enhance the anisotropy in the ground state,we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg =4> → |Fe =3>transition,in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.

  10. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  11. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    Energy Technology Data Exchange (ETDEWEB)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D. [Graduate School of Engineering, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan); Sawada, K. [EcoTopia Science Institute, Nagoya University, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan)

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  12. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  13. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards

    Science.gov (United States)

    Remer, D. S.; Moore, R. C.

    1985-01-01

    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  14. The Diagnostics Of Hydrogen-Cesium Plasma Using Fully Relativistic Electron Impact Cross Sections

    Science.gov (United States)

    Priti, Priti; Dipti, Dipti; Gangwar, Reetesh; Srivastava, Rajesh

    2016-10-01

    Electron excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma relevant to the negative ion based neutral beam injectors for the ITER project. The calculated cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. The calculated plasma parameters are compared with the available experimental and theoretical results.

  15. Comparative analysis of cesium and potassium uptake in onion Allium cepa L.

    Science.gov (United States)

    Urban, P. Ł.; Bystrzejewska-Piotrowska, G.

    2003-01-01

    Cesium uptake in onion (from 0.3 mM CsCl solution traced with 137CsCl) has been examined. The highest uptake occurred at pH 4-5 and it decreased with increasing pH. The intensity of Cs translocation depended on acidity of the solution. For acidic solutions, translocation of cesium into bulbs and leaves was greater than in case of alkaline solutions, where most of the cesium remained in the roots. Addition of potassium into the solutions (millimolar K concentrations) inhibits Cs uptake. The potassium pH-influx/efflux characteristic does not coincide with the Cs uptake.

  16. Fission of Multiply Charged Cesium and Potassium Clusters in Helium Droplets - Approaching the Rayleigh Limit

    OpenAIRE

    Renzler, Michael; Harnisch, Martina; Daxner, Matthias; Kranabetter, Lorenz; Kuhn, Martin; Scheier, Paul; Echt, Olof

    2016-01-01

    Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that th...

  17. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  18. Effect of Rare Earth Elements on Exchange Performances of Cesium Ion-Sieve

    Institute of Scientific and Technical Information of China (English)

    张惠源; 王榕树; 林灿生; 张先业

    2003-01-01

    The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particular, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity variation on Cs-IS owing to introduction of rare earth elements into HLLW were studied. Though rare earth elements exhibit a small influence on the distribution coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some extent. This interruption on the selectivity to Cs+ can be significantly eliminated provided an appropriate ratio of liquid to solid V:m is used.

  19. Cesium leaching from {gamma}-irradiated CsA and CsX zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Enrique [Universidad Autonoma Metropolitana, Iztapalapa, A. P. 55-532, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 Mexico, D.F. (Mexico)], E-mail: lima@xanum.uam.mx; Ibarra, Ilich A.; Lara, Victor [Universidad Autonoma Metropolitana, Iztapalapa, A. P. 55-532, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 Mexico, D.F. (Mexico); Bosch, Pedro [Instituto de Investigaciones en Materiales, A. P. 70-360, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Bulbulian, Silvia [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, 11801 Mexico, D.F. (Mexico)

    2008-12-30

    The present study discusses the effect of {gamma}-irradiation on Cs{sup +}-exchanged X and A zeolites. The incorporation of Cs{sup +} ions into A and X zeolites was performed using three different cesium salts (chloride, nitrate or acetate). Cs{sup +} ions immobilized into the vitrified zeolites by thermal treatment are located in different sites of the zeolite networks. It is found that {gamma}-irradiation favors cesium retention depending on the cesium precursor salt used in the cationic exchange step.

  20. Application of Cesium isotopes in daily life; Aplicacoes dos isotopos do Cesio no cotidiano

    Energy Technology Data Exchange (ETDEWEB)

    Jordao, B.O.; Quaresma, D.S.; Carvalho, R.J., E-mail: bjordan@on.br, E-mail: dansq@on.br, E-mail: carvalho@on.br [Observatorio Nacional (ON/LPTF), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Tempo e Frequencia; Peixoto, J.G.P., E-mail: guilherm@ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Metrologia das Radiacoes Ionizantes

    2014-07-01

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically {sup 133}Cesium isotope and radioisotope {sup 137}Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  1. First-principles study of cesium adsorption to weathered micaceous clay minerals

    Science.gov (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  2. A New Pumping-Probing Scheme for the Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    陈景标; 朱程锦; 王凤芝; 杨东海

    2001-01-01

    A new pumping-probing scheme for the optically pumped cesium beam frequency standard has been experimentally tested in our laboratory. The stability of the optically pumped cesium beam frequency standard was measured by comparing its 10 MHz output with an HP5071A commercial cesium atomic clock. The result shows that the frequency stability for the 1 s and 30000s sample times are 1.2 × 10-11 and 3.7 × 10-13, respectively. It was proved that the new pumping scheme works well.

  3. a Biokinetic Model for CESIUM-137 in the Fetus

    Science.gov (United States)

    Jones, Karen Lynn

    1995-01-01

    Previously, there was no method to determine the dose to the embryo, fetus, fetal organs or placenta from radionuclides within the embryo, fetus, or placenta. In the past, the dose to the fetus was assumed to be equivalent to the dose to the uterus. Watson estimated specific absorbed fractions from various maternal organs to the uterine contents which included the fetus, placenta, and amniotic fluid and Sikov estimated the absorbed dose to the embryo/fetus after assuming 1 uCi of radioactivity was made available to the maternal blood.^{1,2} However, this method did not allow for the calculation of a dose to individual fetal organs or the placenta. The radiation dose to the embryo or fetus from Cs-137 in the fetus and placenta due to a chronic ingestion by the mother was determined. The fraction of Cs-137 in the maternal plasma crossing the placenta to the fetal plasma was estimated. The absorbed dose from Cs-137 in each modelled fetal organ was estimated. Since there has been more research regarding potassium in the human body, and particularly in the pregnant woman, a biokinetic model for potassium was developed first and used as a basis and confirmation of the cesium model. Available pertinent information in physiology, embryology, biokinetics, and radiation dosimetry was utilized. Due to the rapid growth of the fetus and placenta, the pregnancy was divided into four gestational periods. The numerous physiological changes that occurred during pregnancy were considered and an appropriate biokinetic model was developed for each of the gestational periods. The amount of cesium in the placenta, embryo, and fetus was estimated for each period. The dose to the fetus from cesium deposited in the embryo or fetus and in the placenta was determined for each period using Medical Internal Radiation Dosimetry (MIRD) methodology. An uncertainty analysis was also performed to account for the variability of the parameters in the biokinetic model based on the experimental data

  4. Ion microscopy based on laser-cooled cesium atoms.

    Science.gov (United States)

    Viteau, M; Reveillard, M; Kime, L; Rasser, B; Sudraud, P; Bruneau, Y; Khalili, G; Pillet, P; Comparat, D; Guerri, I; Fioretti, A; Ciampini, D; Allegrini, M; Fuso, F

    2016-05-01

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis.

  5. Coherence properties of nanofiber-trapped cesium atoms.

    Science.gov (United States)

    Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-06-14

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  6. Coherence properties of nanofiber-trapped cesium atoms

    CERN Document Server

    Reitz, D; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-01-01

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time $T_2^\\ast=0.6$ ms and an irreversible dephasing time $T_2^\\prime=3.7$ ms. By theoretically modelling the signals, we find that, for our experimental parameters, $T_2^\\ast$ and $T_2^\\prime$ are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  7. Morphological effects in the quantum yield of cesium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Barbo, F. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Bertolo, M. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Bianco, A. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Braem, A. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Cerasari, S. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Coluzza, C. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Dell`Orto, T. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Fontana, S. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Margaritondo, G. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Nappi, E. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Paic, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Piuz, F. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Sanjines, R. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Scognetti, T. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Sgobba, S. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments

    1995-07-15

    We demonstrated that polycrystalline cesium iodide (CsI) on large area Ni/Au coated printed board provides a quantum efficiency (QE) higher by a factor of 2 than the films deposited on the standard Cu/Au printed circuits. This is the most important result of the present systematic study of the QE lateral inhomogeneity for CsI on different substrates. We found a strong correlation between the QE lateral variation and the morphological homogeneity of the films. The QE was measured by UV photoelectron emission microscopy and spatially resolved X-ray photoemission, and the morphology studies were performed by secondary electron microscopy, X-ray diffraction and scanning tunneling microscopy. (orig.).

  8. Hyperfine relaxation of an optically pumped cesium vapor

    Energy Technology Data Exchange (ETDEWEB)

    Tornos, J.; Amare, J.C.

    1986-07-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a sigma-polarized D/sub 1/-light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D/sub 0/ = 0.101 +- 0.010 cm/sup 2/s/sup -1/ at 0/sup 0/C and 760 Torr; relaxation cross section by Cs-Ar collisions, sigma/sub c/ = (104 +- 5) x 10/sup -23/ cm/sup 2/; relaxation cross section by Cs-Cs (spin exchange) collisions, sigma/sub e//sub x/ = (1.63 +- 0.13) x 10/sup -14/ cm/sup 2/.

  9. New Efimov resonances in an ultracold cesium gas

    Energy Technology Data Exchange (ETDEWEB)

    Zenesini, Alessandro; Berninger, Martin; Besler, Stefan; Naegerl, Hanns-Christoph; Ferlaino, Francesca [Institut fuer Experimentalphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria); Huang, Bo; Grimm, Rudolf [Institut fuer Experimentalphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria); Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck (Austria)

    2011-07-01

    Efimov trimer states represent the paradigm of universality in few-body physics. Although these exotic three-body weakly-bound states have been experimentally investigated in an increasing number of ultracold atomic systems, many fundamental aspects remain unclear. An intriguing open question is related to how short-range physics influences the Efimov effect in real systems. Short range contributions are commonly included in universal theory via a single parameter, known as ''three-body parameter''. An open question is whether this parameter is constant or whether it can vary significantly when Feshbach resonances are employed for interaction tuning. Cesium is a very promising candidate to address this issue because of the many broad and narrow Feshbach resonances with different partial-wave character. Our experimental results reveal new Efimov features close to different Feshbach resonances and shed new light on the three-body parameter.

  10. Mercury and cesium-137 in urban gray squirrels

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, J.H. (Univ. of Georgia, Athens); Davis, A.H.; Bigler, W.J.; Hoff, G.L.

    1980-08-01

    Recent emphasis upon the revitalization of major cities has underscored a need for urban wildlife management. Intensive management of the wildlife populations indigenous to metropolitan areas will enhance our quality of life in many ways. One important benefit is that certain species can serve as sensitive indicators of environmental change. The gray squirrel (Sciurus carolinensis) is usually abundant in cities and they are often subject to a variety of destructive environmental factors. In an attempt to evaluate the gray squirrel as an indicator of zoonoses and pollutants, the Health Program Office of the Department of Health and Rehabilitative Services conducted a multifaceted study in Jacksonvlle, Florida during 1974. This report presents baseline measurements of body burdens of mercury and cesium-137.

  11. Trade study for the disposition of cesium and strontium capsules

    Energy Technology Data Exchange (ETDEWEB)

    Claghorn, R.D.

    1996-03-01

    This trade study analyzes alternatives for the eventual disposal of cesium and strontium capsules currently stored at the Waste Encapsulation and Storage Facility as by-product. However, for purposes of this study, it is assumed that at some time in the future, the capsules will be declared high-level waste and therefore will require disposal at an offsite geologic repository. The study considered numerous alternatives and selected three for detailed analysis: (1) overpack and storage at high-level waste canister storage building, (2) overpack at the high-level waste vitrification facility followed by storage at a high-level waste canister storage building, and (3) blend capsule contents with other high-level waste feed streams and vitrify at the high-level waste vitrification facility.

  12. Fission of Multiply Charged Cesium and Potassium Clusters in Helium Droplets - Approaching the Rayleigh Limit

    CERN Document Server

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kuhn, Martin; Scheier, Paul; Echt, Olof

    2016-01-01

    Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as $Cs_{19}^{3+}$ are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.

  13. Biological effects of cesium-137 injected in beagle dogs of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C. [and others

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.

  14. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  15. Preparation, structure and application of a new ecomaterials cesium ion-sieve

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new ecomaterials cesium ion-sieve (Cs-IS), which has high selectivity to cesium and excellent acid resistance, is prepared with zirconyl molybdopyrophosphate as its matrix by specific chemical sieve-making means. Cs-IS has large exchange capacity ( 1.83mmol@g-1) and high distribution coefficient (4.09 x 104 mL@ L-1) in the medium of 3 mol@ L- 1 HNO3. In the static exchange with strongly acidic high-level radioactive liquid waste (HLLW) (3 mol@ L-1 HNO3), Cs-IS exhibits high exchange rate for cesium (above 96.53 % ) and large separation factor (greater than 958.41). These indicate the possible use of Cs-IS in cesium-137 selective removal and recovery from highly saline acidic HLLW system.

  16. Cold cesium molecules produced directly in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Shan; Ji Zhong-Hua; Yuan Jin-Peng; Zhao Yan-Ting; Ma Jie; Wang Li-Rong; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magnetooptical trap with a good signal-to-noise ratio.These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology.The production rate of ultracold cesium molecules is up to 4× 104 s-1.We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy.We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters,which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.

  17. Synthesis of novel calix[4]crown telomers and selective extraction of cesium ions

    Institute of Scientific and Technical Information of China (English)

    Hai Bing Li; Yuan Yin Chen; De Jun Xiong; Jun Yan Zhan; Cui Ping Han

    2007-01-01

    p-tert-Butylcalix[4]diazacrown-4 telomer, which contains hard and soft ion binding sites, was synthesized. It exhibited high selectivity toward cesium ions. The binding sites may complex alkali metal ions selectively.

  18. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  19. Total deposition of cesium-137 measured in Finland during the exercise `RESUME 95` in August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Geer, L.E. De; Vintersved, I.; Arntsing, R. [National Defence Research Establisment, Nuclear Detection Group, Stockholm (Sweden)

    1997-12-31

    In the exercise called `RESUME 95` the Nuclear Detection Group from the National Defence Research Establishment in Stockholm participated with field gamma ray measurements combined with soil sampling and profile measurements. The results are presented in this report for the measurements of cesium-137. We considered the measurements of cesium-137 at the airfield the most important part of the in-situ exercise. Data was of course collected also for cesium-134 and natural radionuclides but time has not permitted a full analysis of these radionuclides. The methodology would, however, be the same as applied for cesium-137. Less attention was paid for area II and due to limited personnel resources the search exercise was not fully carried out. (au).

  20. 湿法分解钨酸钴的热力学分析%Thermodynamic analysis of cobalt tungstate ’s hydrometallurgical decomposition

    Institute of Scientific and Technical Information of China (English)

    易军; 曹才放

    2013-01-01

    When treating scraps WC-Co hard metal with oxygen or air, cobalt tungstate insoluble in water forms in the oxidation products. Thermodynamic equilibriums of Co-W-H 2O system and Co-W-C-H2O system were studied respectively obtaining a series of equilibrium diagrams to investigate issues related to hydrometallurgical decomposition of cobalt tungstate. The results show that cobalt tungstate is relatively stable in neutral solution. Cobalt tungstate can be decomposed by acid or alkali under certain conditions. Tungsten and cobalt can be separated at the same time. In addition, the decomposition reaction of cobalt tungstate with carbonate can be accomplished at lower excess coefficient of carbonate due to its strong thermodynamic tendency. Solution PH value has a remarkable effect on the reaction.%采用空气(或氧气)氧化法处理WC-Co硬质合金废料时,钴和钨将形成难溶于水的化合物钨酸钴。针对湿法分解钨酸钴的问题,分别对Co-W-H2O体系和Co-W-C-H2O体系进行了热力学分析,获得了一系列平衡关系图。结果表明,钨酸钴在中性溶液中可稳定存在,采用酸分解或碱分解的方式,均可使钨酸钴分解,并实现钨和钴的分离。碳酸盐分解钨酸钴的热力学趋势较大,分解反应可在较低的碳酸盐过量系数下完成。此外,溶液pH值对碳酸盐分解钨酸钴具有较大的影响。

  1. Calculation of fully relativistic cross sections for electron excitation of cesium atom and its application to the diagnostics of hydrogen-cesium plasma

    Science.gov (United States)

    Priti; Dipti; Gangwar, R. K.; Srivastava, R.

    2017-01-01

    Electron impact excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma, which is relevant to the negative ion based neutral beam injectors for the ITER project. As an application, the calculated detailed cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. Other processes such as radiative population transfer, electron impact ionization and mutual neutralization of Cs+ ion with negative hydrogen ion along with their reverse processes are also taken into account. The calculated cross-sections and the extracted plasma parameters from the present model are compared with the available experimental and theoretical results.

  2. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium

    Science.gov (United States)

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-12-01

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents.

  3. Export of radioactive cesium from agricultural fields under simulated rainfall in Fukushima.

    Science.gov (United States)

    Thai, Phong K; Suka, Yuma; Sakai, Masaru; Nanko, Kazuki; Yen, Jui-Hung; Watanabe, Hirozumi

    2015-06-01

    In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h(-1)) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of (134)Cs and (137)Cs) in the runoff sediments was ∼3500 Bq kg(-1) dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the (137)Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.

  4. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  5. Review and assessment of technologies for the separation of cesium from acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Brooks, K.P.; Kurath, D.E.

    1994-09-01

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and {open_quote}other{close_quote} technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development.

  6. Enhanced electronic injection in organic light-emitting diodes by incorporating silver nanoclusters and cesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Chung; Gao, Chia-Yuan [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Sze, Po-Wen [Department of Electro-Optical Science and Engineering, Kao Yuan University, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-10-01

    Highlights: • The localized electric field around SNCs is enhanced. • When the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained. • The structure for efficient electron injection is critical to characteristics of the device. - Abstract: The influence of the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure (CSC-EIS) on the performance of organic light-emitting diodes is investigated in this study. The silver nanoclusters (SNCs) are introduced between the electron-injection layers by means of thermal evaporation. When the CSC-EIS replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained because the electron-injection barrier between the cathode and the electron-transport layer is remarkably reduced from 1.2 to 0 eV. In addition, surface plasmon resonance effect will cause the enhanced localized electric field around the SNCs, resulting that electron-injection ability is further enhanced from the cathode to the emitting layer.

  7. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  8. The effects of K+ growth conditions on the accumulation of cesium by the bacterium Thermus sp. TibetanG6

    Institute of Scientific and Technical Information of China (English)

    WANG; Hailei; KONG; Fanjing; ZHENG; Mianping

    2006-01-01

    The accumulation of cesium by the bacterium Thermus sp. TibetanG6 was examined under different K+ growth conditions. The effects of external pH and Na+ on the accumulation of cesium were also studied, and the mechanism involved was discussed. K+ regimes played an important role in the accumulation of cesium by the strain TibetanG6. The quantity of cesium accumulated (24 h) was much higher in K+-deficient regime than that in K+-sufficient regime. The pH and Na+ had different effects on the accumulation of cesium in the two K+ regimes. IR spectra analyses indicated that the biosorption is a process of homeostasis with cesium initially accumulated on the cell wall.

  9. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    Science.gov (United States)

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium.

  10. A Simulation Study on the Feasibility of Radio Enhancement Therapy with Calcium Tungstate and Hafnium Oxide Nanoparticles

    CERN Document Server

    Sherck, Nicholas J

    2016-01-01

    Herein is a simulation study on the radio enhancement potential of calcium tungstate (CaWO4) and hafnium oxide (HfO2) nanoparticles (NPs) relative to gold (Au) NPs. The work utilizes the extensively studied Au NP as the "gold standard" to which the novel materials can be compared. All three materials were investigated in-silico with the software Penetration and Energy Loss of Positrons and Electrons (PENELOPE) developed by Francesc Salvat and distributed in the United States by the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory. The aims are: (1) Do CaWO4 and HfO2 NPs function like Au?, and (2) if not, how else might they function to enhance radio therapy? Our investigations have found that HfO2 likely functions as Au, but not as effectively. CaWO4 likely does not function as Au, and we propose that CaWO4 may exhibit cancer killing traits through its intrinsic UV luminescence property.

  11. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    Science.gov (United States)

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-01-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities. PMID:28338074

  12. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    Science.gov (United States)

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-03-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.

  13. Hydrothermal synthesis and light absorption of cesium tungsten bronze%铯钨青铜的水热合成及其光吸收性能

    Institute of Scientific and Technical Information of China (English)

    彭战军; 史非; 唐乃岭; 刘敬肖

    2013-01-01

    The CsxWO3 powders were synthesized by hydrothermal method in citric acid solution using sodium tungstate and cesium carbonate as raw materials. The XRD patterns indicated that CsxWO3 powders have hexagonal Cs0.32WO3 crystal structure. The diffuse reflectance absorption spectra showed that the near-infrared absorption performance of CsxWO3 powder were improved with the increasing of citric acid content and reaction time and CsxWO3 powder showed good near-infrared absorption performance. The film transmittance spectra indicate that the film of CsxWO3 synthesized by reaction 3 d with 0. 55 mol/L citric acid had good photochromic properties and near-infrared shielding properties. The near-infrared shielding properties were improved after UV irradiation.%以碳酸铯和钨酸钠为原料,通过水热合成法在柠檬酸溶液中合成铯钨青铜(CsxWO3)粉体.研究了不同合成工艺条件对合成的CsxWO3粉体的微观结构和光吸收性能的影响,并探讨了紫外光照对CsxWO3薄膜的近红外遮蔽性能的影响.XRD分析表明,所合成的CsxWO3的结构为六方Cs0.32WO3.漫反射吸收光谱表明,随着水热反应时间延长、柠檬酸含量的增多,CsxWO3粉体在短波近红外光区的吸收逐渐增强,表现出强烈的近红外吸收性能.薄膜的透射光谱表明,在柠檬酸浓度为0.55 mol/L、无乙醇参与反应3d所合成的CsrWO3薄膜具有良好的近红外遮蔽性能和光致变色性能,并且经紫外光照射后其薄膜的近红外遮蔽趋势进一步增强.

  14. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  15. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.

    Science.gov (United States)

    Karamanis, D; Assimakopoulos, P A

    2007-05-01

    Aluminum-pillared-layered montmorillonites (PILMs) were tested for their potential application in the removal of copper or cesium from aqueous solutions. By varying the initial conditions, several PILMs were prepared and characterized by means of X-ray fluorescence (XRF), proton induced gamma-ray emission (PIGE), X-ray diffraction (XRD) and sorption isotherms. Uptake of metals was studied by means of XRF spectrometry for copper sorption or gamma-ray spectrometry for cesium, using 137Cs as radiotracer. The sorption kinetics and capacity of PILMs were determined in relation to the effects of factors such as the initial metal concentration, initial pH of the solution and the presence of competitive cations. Kinetic studies showed that an equilibrium time of few minutes was needed for the adsorption of metal ions on PILMs. A pseudo-first-order equation was used to describe the sorption process for either copper or cesium. The most effective pH range for the removal of copper and cesium was found to be 4.0-6.0 and 3.0-8.0, respectively. Cesium sorption isotherms were best represented by a two-site Langmuir model while copper isotherms followed the Freundlich or the two-site Langmuir model. Cesium sorption experiments with inorganic or organic competitive cations as blocking agents revealed that the high selective sites of PILMs for cesium sorption (1-2% of total) are surface and edge sites in addition to interlayer exchange sites. In copper sorption, the two sites were determined as interlayer sites of PILMs after restoring their cation exchange capacity and sites associated with the pillar oxides.

  16. Research progress of modification and application of bismuth tungstate photocatalyst%Bi2WO6光催化剂的改性及其应用研究进展

    Institute of Scientific and Technical Information of China (English)

    罗序燕; 赵东方; 黄瑞宇; 祝婷; 邓金梅; 谢小华

    2015-01-01

    Bi2WO6因其能吸收可见光、催化活性高,是一种非常有潜力的光催化剂。综述了Bi2WO6催化剂的制备、修饰改性以及在处理有机污水方面的应用,并对今后Bi2WO6光催化剂的研究方向进行了展望。%Bismuth tungstate is a promising photocatalyst because of narrow band gap and ability of absorbing visible light. In this paper, the preparation ,modification and application of sewage treatment of bismuth tungstate photocatalyst were reviewed. Finally, the direction of future development of bismuth tungstate photocatalyst was prospected.

  17. Chromatic instabilities in cesium-doped tungsten bronze nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Kenji, E-mail: kenji-adachi@ni.smm.co.jp; Ota, Yosuke; Tanaka, Hiroyuki; Okada, Mika; Oshimura, Nobumitsu; Tofuku, Atsushi [Ichikawa Research Laboratories, Sumitomo Metal Mining Co., Ltd., Ichikawa 272-8588 (Japan)

    2013-11-21

    Nanoparticles of alkali-doped tungsten bronzes are an excellent near-infrared shielding material, but exhibit slight chromatic instabilities typically upon applications of strong ultra-violet light or heating in humid environment, which acts detrimentally to long-life commercial applications. Origin of the chromatic instabilities in cesium-doped tungsten bronze has been investigated, and it has been found that the coloration and bleaching processes comprised electronic exchanges which accelerate or depress the polaron excitation and the localized surface plasmon resonance. Coloration on UV illumination is evidenced by electron diffraction as due to the formation of H{sub x}WO{sub 3}, which is considered to take place in the surface Cs-deficient WO{sub 3} region via the double charge injection mechanism. On the other hand, bleaching on heating in air and in humid environment is shown to accompany the extraction of Cs and electrons from Cs{sub 0.33}WO{sub 3} by X-ray photoelectron spectroscopy and X-ray diffraction analysis and is concluded to be an oxidation of Cs{sub 0.33}WO{sub 3} on the particle surface.

  18. The crystal structures of potassium and cesium trivanadates

    Science.gov (United States)

    Evans, H.T.; Block, S.

    1966-01-01

    Potassium and cesium trivanadates are monoclinic and isomorphous, space group P21/m, with the following dimensions (Z = 2): KV3O8, a = 7.640 A, b = 8.380 A, c = 4.979 A, ??= 96?? 57???; CsV3O8, a = 8.176 A, b = 8.519 A, c = 4.988 A, ?? = 95?? 32???. The crystal structure of KV3O8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV3O8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO6, octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V2O8, which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.

  19. Photoionization spectroscopy of excited states of cold cesium dimers

    CERN Document Server

    Bouloufa, Nadia; Viteau, Matthieu; Chotia, Amodsen; Fioretti, Andrea; Gabbanini, Carlo; Allegrini, Maria; Aymar, Mireille; Comparat, Daniel; Dulieu, Olivier; Pillet, Pierre

    2010-01-01

    Photoionization spectroscopy of cold cesium dimers obtained by photoassociation of cold atoms in a magneto-optical trap is reported here. In particular, we report on the observation and on the spectroscopic analysis of all the excited states that have actually been used for efficient detection of cold molecules stabilized in the triplet a^3Sigma_u^+ ground state. They are: the (1)^3Sigma_g^+ state connected to the 6s+6p asymptote, the (2)^3Sigma_g^+ and (2)^3Pi_g states connected to the 6s+5d asymptote and finally the (3)^3Sigma_g^+ state connected to the 6s + 7s asymptote. The detection through these states spans a wide range of laser energies, from 8000 to 16500 cm-1, obtained with different laser dyes and techniques. Information on the initial distribution of cold molecules among the different vibrational levels of the a^3Sigma_u^+ ground state is also provided. This spectroscopic knowledge is important when conceiving schemes for quantum manipulation, population transfer and optical detection of cold cesi...

  20. Ion exchange performance of commercial crystalline silicotitanates for cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J. [and others

    1996-03-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A&M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na{sup +}. The materials also showed excellent chemical and radiation stability. Together, the high selectivity and stability of the CSTs made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia National Laboratories and UOP have teamed under a Cooperative Research and Development Agreement (CRADA) to develop CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by the Sandia and Texas A&M team consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications.

  1. Chromatic instabilities in cesium-doped tungsten bronze nanoparticles

    Science.gov (United States)

    Adachi, Kenji; Ota, Yosuke; Tanaka, Hiroyuki; Okada, Mika; Oshimura, Nobumitsu; Tofuku, Atsushi

    2013-11-01

    Nanoparticles of alkali-doped tungsten bronzes are an excellent near-infrared shielding material, but exhibit slight chromatic instabilities typically upon applications of strong ultra-violet light or heating in humid environment, which acts detrimentally to long-life commercial applications. Origin of the chromatic instabilities in cesium-doped tungsten bronze has been investigated, and it has been found that the coloration and bleaching processes comprised electronic exchanges which accelerate or depress the polaron excitation and the localized surface plasmon resonance. Coloration on UV illumination is evidenced by electron diffraction as due to the formation of HxWO3, which is considered to take place in the surface Cs-deficient WO3 region via the double charge injection mechanism. On the other hand, bleaching on heating in air and in humid environment is shown to accompany the extraction of Cs and electrons from Cs0.33WO3 by X-ray photoelectron spectroscopy and X-ray diffraction analysis and is concluded to be an oxidation of Cs0.33WO3 on the particle surface.

  2. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  3. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water.

    Science.gov (United States)

    Frawley, Rachel P; Smith, Matthew J; White, Kimber L; Elmore, Susan A; Herbert, Ron; Moore, Rebecca; Staska, Lauren M; Behl, Mamta; Hooth, Michelle J; Kissling, Grace E; Germolec, Dori R

    2016-09-01

    Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.

  4. A new ion-selective electrode based on aluminium tungstate for Fe(III) determination in rock sample, pharmaceutical sample and water sample

    Indian Academy of Sciences (India)

    Mu Naushad

    2008-12-01

    An inorganic cation exchanger, aluminum tungstate (AT), has been synthesized by adding 0.1 M sodium tungstate gradually into 0.1 M aluminium nitrate at pH 1.2 with continuous stirring. The ion exchange capacity for Na+ ion and distribution coefficients of various metal ions was determined on the column of aluminium tungstate. The distribution studies of various metal ions showed the selectivity of Fe(III) ions by this cation exchange material. So, a Fe(III) ion-selective membrane electrode was prepared by using this cation exchange material as an electroactive material. The effect of plasticizers viz. dibutyl phthalate (DBP), dioctylphthalate (DOP), di-(butyl) butyl phosphate (DBBP) and tris-(2-ethylhexylphosphate) (TEHP), has also been studied on the performance of membrane sensor. It was observed that the membrane containing the composition AT: PVC: DBP in the ratio 2 : 20 : 15 displayed a useful analytical response with excellent reproducibility, low detection limit, wide working pH range (1–3.5), quick response time (15 s) and applicability over a wide concentration range of Fe(III) ions from 1 × 10-7 M to 1 × 10-1 M with a slope of 20 ± 1 mV per decade. The selectivity coefficients were determined by the mixed solution method and revealed that the electrode was selective for Fe(III) ions in the presence of interfering ions. The electrode was used for atleast 5 months without any considerable divergence in response characteristics. The constructed sensor was used as indicator electrode in the potentiometric titration of Fe(III) ions against EDTA and Fe(III) determination in rock sample, pharmaceutical sample and water sample. The results are found to be in good agreement with those obtained by using conventional methods.

  5. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of cesium by copper ferrocyanide followed a Freundlich model. Black-Right-Pointing-Pointer Decontamination factor of cesium was higher in lab-scale test than that in jar test. Black-Right-Pointing-Pointer A countercurrent two-stage adsorption-microfiltration process was achieved. Black-Right-Pointing-Pointer Cesium concentration in the effluent could be calculated. Black-Right-Pointing-Pointer It is a new cesium removal process with a higher decontamination factor. - Abstract: Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3 {mu}g/L, the dosage of CuFC was 40 mg/L and the adsorption time was 20 min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75 {mu}g/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  6. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca2+-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition

    OpenAIRE

    Fraqueza, Gil; de Carvalho, Luís A. E. Batista; Marques, M. Paula M.; Maia, Luisa; Ohlin, C. André; Casey, William H.; Aureliano, M.

    2012-01-01

    Recently we demonstrated that the decavanadate (V10) ion is a stronger Ca2+-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V10 interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the p...

  7. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition.

    Science.gov (United States)

    Fraqueza, Gil; Batista de Carvalho, Luís A E; Marques, M Paula M; Maia, Luisa; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-11-07

    Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These

  8. Development of radiopure cadmium tungstate crystal scintillators from enriched {sup 106}Cd and {sup 116}Cd to search for double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F. A.; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V.; Kropivyansky, B. N.; Mokina, V. M.; Nikolaiko, A. S.; Poda, D. V.; Podviyanuk, R. B.; Tretyak, V. I. [Institute for Nuclear Research, Kyiv (Ukraine); Barabash, A. S.; Konovalov, S. I.; Umatov, V. I. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Belli, P.; Bernabei, R.; D' Angelo, S. [INFN, Section of Rome Tor Vergata, Rome, Italy and Department of Physics, University of Rome Tor Vergata, Rome (Italy); Brudanin, V. B. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cappella, F.; Incicchitti, A. [INFN, Section of Rome La Sapienza, Rome, Italy and Department of Physics, University of Rome La Sapienza, Rome (Italy); Caracciolo, V. [INFN, Gran Sasso National Laboratories, Assergi (Aq), Italy and Department of Physics, University of L' Aquila, L' Aquila (Italy); and others

    2013-08-08

    Cadmium tungstate crystal scintillators enriched in {sup 106}Cd up to 66% ({sup 106}CdWO{sub 4}) and in {sup 116}Cd up to 82% ({sup 116}CdWO{sub 4}) have been developed. The low radioactive contamination of the crystals measured on the level of ≤ 1.5 mBq/kg ({sup 40}K), ≤ 0.005 - 0.012 mBq/kg ({sup 226}Ra), 0.04 - 0.07 mBq/kg ({sup 228}Th) allows to carry out high sensitivity experiments to search for double beta processes in {sup 106}Cd and {sup 116}Cd.

  9. Potential of Calendula alata for phytoremediation of stable cesium and lead from solutions.

    Science.gov (United States)

    Borghei, Mehdi; Arjmandi, Reza; Moogouei, Roxana

    2011-10-01

    Calendula alata plants were tested for their potential to remove stable cesium and lead from solutions in a 15-day period. The plants were grown hydroponically and placed in solutions containing CsCl and Pb(C₂H₃O₂)₂ at different concentrations (0.6, 2 and 5 mg l⁻¹). When plants were incubated in CsCl solutions 46.84 ± 2.12%, 41.35 ± 1.59%, and 52.06 ± 1.02% cesium was found to be remediated after 15 days. Moreover, more than 99% lead was removed from the Pb(C₂H₃O₂)₂ solution in all three concentrations after 15 days during the same period. When both CsCl and Pb(C₂H₃O₂)₂ were supplemented together in the solution, 9.92 ± 1.22%, 45.56 ± 3.52%, and 46.16 ± 1.48% cesium and 95.30 ± 0.72%, 96.64 ± 0.30%, and 99.02 ± 0.04% lead were removed after 15 days. The present study suggests that hydroponically grown C. alata could be used as a potential candidate plant for phytoremediation of cesium and lead from solutions; however, plants were found to be more efficient for the remediation of lead than cesium.

  10. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2013-01-01

    Full Text Available In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+ on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the kaolin. Paper handsheets were prepared containing various percentages of the modified kaolin. The mechanical and optical properties of paper handsheets were studied. The prepared paper handsheets were irradiated by gamma irradiation using different doses. Fourier transform infrared (FTIR spectroscopy was used to study the effect of kaolin modification by cesium and gamma irradiation on paper handsheets properties. The results indicated that modified kaolin enhanced the mechanical and optical properties of paper handsheets. Electron spin resonance (ESR spectroscopy and laser-induced breakdown spectroscopy (LIBS were also used. They provided rapid, sensitive and nondestructive techniques in differentiating between different questioned documents. This study presents a new concept in manufacturing security papers and anticounterfeiting applications.

  11. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction.

    Science.gov (United States)

    Fortes, A Dominic

    2015-07-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond.

  12. On halide derivatives of rare-earth metal(III) oxidomolybdates(VI) and -tungstates(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Schleid, Thomas; Hartenbach, Ingo [Stuttgart Univ. (Germany). Inst. for Inorganic Chemistry

    2016-11-01

    Halide derivatives of rare-earth metal(III) oxidomolybdates(VI) have been investigated comprehensively over the last decade comprising the halogens fluorine, chlorine, and bromine. Iodide-containing compounds are so far unknown. The simple composition REXMoO{sub 4} (RE=rare-earth element, X=halogen) is realized for X=F almost throughout the complete lanthanide series as well as for yttrium. While ytterbium and lutetium do not form any fluoride derivative, for lanthanum, only a fluoride-deprived compound with the formula La{sub 3}FMo{sub 4}O{sub 16} is realized. Moreover, molybdenum-rich compounds with the formula REXMo{sub 2}O{sub 7} are also known for yttrium and the smaller lanthanoids. For X=Cl the composition REClMoO{sub 4} is known for yttrium and the whole lanthanide series, although, four different structure types were identified. Almost the same holds for X=Br, however, only two different structure types are realized in this class of compounds. In the case of halide derivatives of rare-earth metal(III) oxidotungstates(VI) the composition REXWO{sub 4} is found for chlorides and bromides only, so far. Due to the similar size of Mo{sup 6+} and W{sup 6+} cations, the structures found for the tungstates are basically the same as for the molybdates. With the larger lanthanides, the representatives for both chloride and bromide derivates exhibit similar structural motifs as seen in the molybdates, however, the crystal structure cannot be determined reliably. In case of the smaller lanthanoids, the chloride derivatives are isostructural with the respective molybdates, although the existence ranges differ slightly. The same is true for rare-earth metal(III) bromide oxidotungstates(VI).

  13. Comparison of organic and inorganic ion exchange materials for removal of cesium and strontium from tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    This work is part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff are investigating novel ion exchangers for use in nuclear waste remediation (groundwater, high-level waste (HLW), and low-level waste (LLW)). Waste components targeted for remediation include cesium, strontium, and technetium.

  14. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  15. Continuous Separation of Cesium Based on NiHCF/PTCF Electrode by Electrochemically Switched Ion Exchange

    Institute of Scientific and Technical Information of China (English)

    孙斌; 郝晓刚; 王忠德; 张忠林; 刘世斌; 官国清

    2012-01-01

    Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switched ion exchange (ESIX) electrode in a packed bed for continuous separation for cesium ions. The morphologies of the prepared electrodes were characterized by scanning electron microscopy and the effects of solution concentration on the ion-exchange capacity of the electrodes were investigated by cyclic voltammetry technique. Cycling stability and long-term storage stability of NiHCF/PTCF electrodes were also studied. The NiHCF/PTCF electrodes with excellent ion-exchange ability were used to assemble a diaphragm-isolated ESIX reactor for cesium separation. Continuous separation of cesium and regeneration of NiHCF/PTCF electrode based on the diaphragm-isolated reactor were performed in a laboratory-scale two-electrode system.

  16. The effects of using Cesium-137 teletherapy sources as a radiological weapon (dirty bomb)

    CERN Document Server

    Liolios, Theodore

    2009-01-01

    While radioactive sources used in medical diagnosis do not pose a great security risk due to their low level of radioactivity, therapeutic sources are extremely radioactive and can presumably be used as a radiological weapon. Cobalt-60 and Cesium-137 sources are the most common ones used in radiotherapy with over 10,000 of such sources currently in use worldwide, especially in the developing world, which cannot afford modern accelerators. The present study uses computer simulations to investigate the effects of using Cesium-137 sources from teletherapy devices as a radiological weapon. Assuming a worst-case terrorist attack scenario, we estimate the ensuing cancer mortality, land contamination, evacuation area, as well as the relevant evacuation, decontamination, and health costs in the framework of the linear risk model. The results indicate that an attack with a Cesium-137 dirty bomb in a large metropolitan city (especially one that would involve several teletherapy sources) although would not cause any sta...

  17. Phosphate ceramic solidification and stabilization of cesium-containing crystalline silicotitanate resins.

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A.

    1999-05-11

    This paper reports on the fabrication and testing of magnesium potassium phosphate (MKP)-bonded cesium-loaded crystalline silicotitanate (CST) resins. Typical waste loading of CST resins in the final waste forms was 50 wt.%. Physical and chemical characterization of the MKP materials has shown them to be physically, chemically, and mineralogically stable. Long-term durability studies (using the AN 16.1 standard test) showed a leachability index of {approx}18 for cesium in the phosphate matrix when exposed to deionized water under ambient and elevated temperatures. Leaching of cesium was somewhat higher than in glass waste forms as per PCT and MCC-1 tests. MKP-based final waste forms showed no significant weight changes after exposure to aqueous media for {approx}90 days, indicating the highly insoluble nature of the phosphate matrix. In addition, durability of the CST-MKP waste forms was further established by freeze-thaw cycling tests.

  18. Selection of chemotherapy for metastatic mammary cancer by effect on cesium-131 uptake.

    Science.gov (United States)

    Ferguson, D J; Harper, P V

    1977-09-01

    Cesium-131 was administered intravenously to 39 patients with superficial metastases of mammary carcinoma and the concentration in tumor was compared with that in normal tissue by application of a detector in vivo, before and after 1 to 5 days of chemotherapy with cyclophosphamide (CP), 5-fluorouracil (FU), or diethylstilbestrol. A change of the cesium concentration ratio (tumor/normal tissue) greater than 15% after brief treatment correctly predicted the therapeutic effect after 1 to 39 months on the tumors that were tested in 30 of 33 tests. No reliable correlation could be made in the remaining 21 tests in which the change of ratio was less than 15%. The concentration of cesium-131 in the skin, fat, and skeletal muscle of mice was not appreciably altered by treatment for 5 days with CP or FU.

  19. Method of Preparation for High-Purity Nanocrystalline Anhydrous Cesium Perrhenate

    Directory of Open Access Journals (Sweden)

    Katarzyna Leszczyńska-Sejda

    2017-03-01

    Full Text Available This paper is devoted to the preparation of high-purity anhydrous nanocrystalline cesium perrhenate, which is applied in catalyst preparation. It was found that anhydrous cesium perrhenate with a crystal size <45 nm can be obtained using cesium ion sorption and elution using aqueous solutions of perrhenic acid with subsequent crystallisation, purification, and drying. The following composition of the as-obtained product was reported: 34.7% Cs; 48.6% Re and <2 ppm Bi; <3 ppm Zn; <2 ppm As; <10 ppm Ni; < 3 ppm Mg; <5 ppm Cu; <5 ppm Mo; <5 ppm Pb; <10 ppm K; <2 ppm Na; <5 ppm Ca; <3 ppm Fe.

  20. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs.

  1. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  2. Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation

    Energy Technology Data Exchange (ETDEWEB)

    A. Clearfield; A. I. Bortun; L. A. Bortun; E. A. Bhlume; P. Sylvester; G. M. Graziano

    2000-09-01

    During the past 50 years, nuclear defense activities have produced large quantities of nuclear waste that now require safe and permanent disposal. The general procedure to be implemented involves the removal of cesium and strontium from the waste solutions for disposal in permanently vitrified media. This requires highly selective sorbents or ion exchangers. Further, at the high radiation doses present in the solution, organic exchangers or sequestrants are likely to decompose over time. Inorganic ion exchangers are resistant to radiation damage and can exhibit remarkably high selectivities. We have synthesized three families of tunnel-type ion exchangers. The crystal structures of these compounds as well as their protonated phases, coupled with ion exchange titrations, were determined and this information was used to develop an understanding of their ion exchange behavior. The ion exchange selectivities of these phases could be regulated by isomorphous replacement of the framework metals by larger or smaller radius metals. In the realm of layered compounds, we prepared alumina, silica, and zirconia pillared clays and sodium micas. The pillared clays yielded very high Kd values for Cs+ and were very effective in removing Cs+ from groundwaters. The sodium micas also had a high affinity for Cs+ but an even greater attraction for S42+. They also possess the property of trapping these ions permanently as the layers slowly decrease their interlayer distance as loading occurs. Sodium nonatitanate exhibited extremely high Kd values for Sr2+ in alkaline tank wastes and should be considered for removal of Sr2+ in such cases. For tank wastes containing complexing agents, we have found that adding Ca2+ to the solution releases the complexed Sr2+ which may then be removed with the CST exchanger.

  3. Simultaneous determination of some trace metal impurities in high-purity sodium tungstate using coprecipitation and inductively coupled plasma atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    MA Xiaoguo; KUANG Tongchun; LIU Qianjun

    2004-01-01

    A method based on the combination of coprecipitation with inductively coupled plasma atomic emission spec trometry (ICP-AES) was developed for the determination of impurities in high-purity sodium tungstate. Six elements (Co,Cu, Fe, Mn, Ni, and Pb) were coprecipitated by lanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of some factors on the recoveries of the analytes and on the residual amount of sodium tungstate were investigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matching calibration curve method was used for the analysis. It is shown that the elements mentioned above can be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4, 0.2, 0.1, 0.6, and 1.3 μg.g-1, respectively. The recoveries vary from 92.5% to 108%, and the relative standard deviations (RSDs) are in the range of 3.1%-5.5%.

  4. Reactive-oxygen-species-mediated Cdc25C degradation results in differential antiproliferative activities of vanadate, tungstate, and molybdate in the PC-3 human prostate cancer cell line.

    Science.gov (United States)

    Liu, Tong-Tong; Liu, Yan-Jun; Wang, Qin; Yang, Xiao-Gai; Wang, Kui

    2012-02-01

    The differential antiproliferative effects of vanadate, tungstate, and molybdate on human prostate cancer cell line PC-3 were compared and the underlying mechanisms were investigated. The results demonstrate that all of the three oxoanions can cause G(2)/M cell cycle arrest, which is evidenced by the increase in the level of phosphorylated Cdc2 at its inactive Tyr-15 site. Moreover, even if the difference in cellular uptake among the three oxoanions is excluded from the possible factors affecting their antiproliferative activity, vanadate exerted a much more potent effect in PC-3 cells than the other two oxoanions. Our results also reveal that reactive oxygen species (ROS)-mediated degradation of Cdc25C rather than Cdc25A or Cdc25B is responsible for vanadate-induced G(2)/M cell cycle arrest. We propose a possible mechanism to clarify the differential effect of the three oxoanions in biological systems beyond just considering that they are structural analogs of phosphate. We suggest that ROS formation is unlikely to be involved in the biological function of tungstate and molybdate, whereas the redox properties of vanadium may be important factors for it to exert pharmacological effects. Further, given the evidence from epidemiology studies of the association between diabetes and prostate cancer, the possibility of vanadate as a good candidate as both an antidiabetic and an anticancer agent or a chemopreventive agent is indicated.

  5. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  6. Safety evaluation for packaging (onsite) for cesium chloride capsules with type W overpacks

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, J.C.

    1997-09-15

    This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of the Hazardous Material Packaging and Shipping manual, WHC-CM-2-14. This design supports the one-time onsite shipment of 16 cesium chloride capsules with Type W overpacks from the 324 Building to the 224T Building at the Waste Encapsulation and Storage Facility (WESF). The SEP is valid for a one-time onsite shipment or until August 1, 1998, whichever occurs first.

  7. Synthesis of novel calixcrown derivatives with selective complexation towards cesium ions

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Juan Du; Li Hua Yuan; Dong Zhang; Gui Ping Dan; Yuan You Yang; Wen Feng

    2011-01-01

    A series of novel calix [4]arenecrown-6 derivatives with an alkenyl loop of various sizes 5-8 were synthesized via intramolecular ring closing olefin metathesis and characterized by 1H NMR, 13C NMR and ESI-HRMS. Their complexation property towards cesium ion was studied by 'H NMR technique. Two-phase extraction of alkali metal ions using UV-vis spectroscopy revealed remarkably different extractabilities. These results indicate that the complexation capacities towards cesium ions can be tuned and controlled through cooperative regulation of the strain of the loop and conformational change of calixcrown skelton.

  8. Computational study of organo-cesium complexes and the possibility of lanthanide/actinide ions substitution

    Science.gov (United States)

    Rabanal-León, Walter A.; Martinez-Ariza, Guillermo; Roberts, Sue A.; Hulme, Christopher; Arratia-Pérez, Ramiro

    2015-11-01

    Relativistic DFT calculations suggest that two organo-cesium complexes studied herein afford large HOMO-LUMO gaps of around 2.4 eV with the PBE xc-functional, which accounts for their stability. Energy decomposition studies suggest these two complexes are largely ionic with about 20% covalency. However, when the Cs+ ions are substituted by the isoelectronic La3+ and Th4+, their predicted ionicity decreases significantly. The significant increase in covalence indicates that employing Ugi reaction cascades that afford tetramic acid-based organo-cesium complexes may be extended to La3+ and Th4+ organometallics.

  9. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  10. Filter Performance of a Cesium Faraday Optical Filter at 852 nm

    Institute of Scientific and Technical Information of China (English)

    掌蕴东; 贾晓玲; 毕勇; 马祖光; 王骐

    2002-01-01

    We have investigated a cesium Faraday filter at 852nm in relatively weak and strong magnetic fields, theoretically and experimentally. With a cesium cell of 0.02m length in an axial magnetic field of 0.06T, the line-centre operation has been achieved. The calculated peak transmission reached 99% with a full width at half maximum (FWHM) bandwidth of only 3.9 GHz. The measured FWHM bandwidth of the filter is 3.29 GHz, which is in general agreement with the theoretical result.

  11. Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    S. Salazar, M.McNaughton, P.R. Fresquez

    2006-03-01

    The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).

  12. Electromagnetically-induced transparency in a multi-V-type system in cesium atomic vapour

    Institute of Scientific and Technical Information of China (English)

    赵建明; 尹王保; 汪丽蓉; 肖连团; 贾锁堂

    2002-01-01

    Electromagnetically-induced transparency is observed in a three-level multi-V-type system in cesium vapour atroom temperature. The absorption property is measured and the hyperfine structures of atomic states can be determined.The results of the experiment agree with the theoretical analysis.

  13. Cyclotron production of cesium radionuclides as analogues for francium-221 biodistribution

    Science.gov (United States)

    Finn, R.; McDevitt, M.; Sheh, Y.; Lom, C.; Qiao, J.; Cai, S.; Burnazi, E.; Nacca, A.; Pillarsetty, N.; Jaggi, J.; Scheinberg, D.

    2005-12-01

    In our clinical investigations focussing on improved therapeutic treatment of specific tumors we have concentrated on a targeted therapy approach utilizing designed radiolabeled monoclonal antibodies as the cytotoxic reagent. The physical characteristics of the alpha particle emitting radionuclide bismuth-213 including the short half-life of 45.6 min, has shown promise for the treatment of specific cancers such as leukemias and lymphomas or micrometastatic carcinomas. In an effort to increase the cytocidal effect of the HuM195, a humanized monoclonal antibody carrier to the CD33 antigen expressed on leukemia cells, our focus is directed toward an "internal" nano-generator composed of Ac-225 radionuclide, the parent of the bismuth-213. The actinium-225 radionuclide decays through several short-lived, alpha emitting daughters including francium-221, astatine-217 and bismuth-213. In order to study the biodistribution and the pharmacokinetics of the individual daughter nuclide, francium-221, the cyclotron production and separation of cesium radionuclides, specifically cesium-132, from a natural xenon gas target was undertaken. The choice of cesium as an analogue for francium was predicated upon both elements being in Group 1A alkali metals and cesium radionuclide possesses a sufficient half-life to allow biodistribution studies to be performed. The preliminary experimental results of this investigation are presented.

  14. Deciphering the measured ratios of Iodine-131 to Cesium-137 at the Fukushima reactors

    CERN Document Server

    Matsui, T

    2011-01-01

    We calculate the relative abundance of the radioactive isotopes Iodine-131 and Cesium-137 produced by nuclear fission in reactors and compare it with data taken at the troubled Fukushima Dai-ichi nuclear power plant. The ratio of radioactivities of these two isotopes can be used to obtain information about when the nuclear reactions terminated.

  15. Observation of microporous cesium salts of 12-tungstosilicic acid using scanning transmission electron microscopy.

    Science.gov (United States)

    Hiyoshi, Norihito; Kamiya, Yuichi

    2015-06-21

    Heteropolyanions and their arrays in microporous cesium salts of 12-tungstosilicic acid, Cs2.5H1.5[SiW12O40] and Cs4.0[SiW12O40], were observed by aberration-corrected scanning transmission electron microscopy. Microstructures that form micropores in the polyoxometalates were visualized.

  16. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.

    Science.gov (United States)

    Jang, J G; Park, S M; Lee, H K

    2016-11-15

    The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior.

  17. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  18. Evaluation of Factors Affecting Cesium Extraction Performance by Calix[4]Arene Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Rumppe, J.L.; Delmau, L.

    2004-01-01

    Novel aza-crown derivatives of dioctyloxy-calix[4]arene crown-6 were examined for their cesium extraction performance at different pH levels. These studies are of interest in addressing high-level waste tank remediation and the removal of 137Cs, a major contributor to heat and radiation generation. Preliminary studies were done to assess the performance of these calixarene compounds under varying conditions. Results showed an increase of cesium extraction with pH as well as expected trends in diluent effects and anion selectivity. Poor extraction performance of some aza-crown derivatives raised questions regarding the possibility of intramolecular hydrogen-bonding. A novel methylated derivative was used to address these questions. Additional experiments were conducted to determine the extraction effect on pH. Results indicate an increase in cesium extraction with pH, as shown in preliminary studies. Mono-aza derivatives were shown to exhibit better cesium extraction performance than their di-aza counterparts. The methylated derivative showed poorer extraction performance than the non-methylated derivative, indicating that completely removing the possibility of intramolecular hydrogen-bonding has negative effects on extraction performance. This suggests that the hydrogen-bonding facilitates anion co-extraction, which would lead to better overall extraction. Mono-aza derivatives were shown to cause unexpected changes in pH. This could possibly be attributed to protonation of the calix crown.

  19. Removal of cesium ion in aqueous solution using immobilized sericite beads

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Choong [Kwandong University, Gangneung (Korea, Republic of); Kim, Jong-Oh [Hanyang University, Seoul (Korea, Republic of); Lee, Seung-Mok [Gangneung-Wonju National University, Gangneung (Korea, Republic of)

    2014-07-15

    To apply sericite effectively in the adsorption process, it was immobilized by entrapment method using sodium alginate. Since the immobilized sericite beads have excellent mechanical strength and swelling characteristics, channeling of flow and the increase of pressure drop were not observed through column operations. In addition, it was also stable under pH 10 and 45 .deg. C of cesium solution. The maximum adsorption capacity and Langmuir adsorption constant was 1.430mg/g and 2.329 L/mg, respectively, at initial pH 5 of cesium solution in batch type and the Langmuir model with higher correlation coefficient of 0.997 fits experimental data better than Freundlich model. The breakthrough point emerged around 15 (1.0 mL/min) and 20 bed volumes (0.5 mL/min), and the cesium ions bound to the immobilized sericite beads were readily released and quantitatively recovered by a few bed volumes of 1.0M of HNO{sub 3} solution. Furthermore, bed volumes of cesium ions for firstly reused sericite beads can be still maintained as 18, which shows good regeneration ability.

  20. Carbon, cesium and iodine isotopes in Japanese cedar leaves from Iwaki, Fukushima

    DEFF Research Database (Denmark)

    Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.;

    2016-01-01

    Japanese cedar leaves from Iwaki, Fukushima were analyzed for carbon, cesium and iodine isotopic compositions before and after the 2011 nuclear accident. The Δ14C values reflect ambient atmospheric 14C concentrations during the year the leaves were sampled/defoliated, and also previous year...

  1. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1

  2. Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911

    Science.gov (United States)

    Kim, Sung Hyun

    Through collaborative efforts at Texas A&M University and Sandia National Laboratories, a crystalline silicotitanate (CST), which shows extremely high selectivity for radioactive cesium removal in highly concentrated sodium solutions, was synthesized. The effect of hydrogen peroxide on a CST under cesium ion exchange conditions has been investigated. The experimental results with hydrogen peroxide showed that the distribution coefficient of cesium decreased and the tetragonal phase, the major component of CST, slowly dissolved at hydrogen peroxide concentrations greater than 1 M. A simple and novel experimental apparatus for a single-layer ion exchange column was developed to generate experimental data for estimation of the intraparticle effective diffusivity. A mathematical model is presented for estimation of effective diffusivities for a single-layer column of CST granules. The intraparticle effective diffusivity for Cs was estimated as a parameter in the analytical solution. By using the least square method, the effective diffusivities of 1.56 +/- 0.14 x 10-11 m2/s and 0.68 +/- 0.09 x 10-11 m2/s, respectively, were obtained. The difference in the two values was due to the different viscosities of the solutions. A good fit of the experimental data was obtained which supports the use of the homogeneous model for this system. A counter-current ion exchange (CCIX) process was designed to treat nuclear waste at the Savannah River Site. A numerical method based on the orthogonal collocation method was used to simulate the concentration profile of cesium in the CCIX loaded with CST granules. To maximize cesium loading onto the CST and minimize the volume of CST, two design cases of a moving bed, where the fresh CST is pulsed into the column at certain periods or at certain concentration of cesium, were investigated. Simulation results showed that cesium removal behavior in the pilot-scale test of CCIX experiment, where the column length is 22 ft and the CST is pulsed

  3. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  4. Sorption and desorption of cesium on rapakivi granite and its minerals

    Energy Technology Data Exchange (ETDEWEB)

    Huitti, T.; Hakanen, M. [Helsinki Univ. (Finland); Lindberg, A. [Geological Survey of Finland, Espoo (Finland)

    2000-04-01

    Batch sorption experiments of cesium were performed for rapakivi granite and its main minerals, and also for some fracture minerals. The main minerals quartz, potassium feldspar, plagioclase, biotite and hornblende were magnetically separated from crushed rapakivi granite. The fracture minerals were chlorite, dolomite and kaolinite. Sorption was studied in fresh and saline reference waters containing cesium in the range of 10{sup -8} to 10{sup -3} mol/l. The distribution ratios for rapakivi granite generally decreased with an increasing Cs concentration and an increasing ionic strength. For fresh rapakivi granite, the sorption behaviour was rather complex in both fresh and saline reference waters, being complex for the other alteration stages only in saline water. Sorption increased unexpectedly when the initial cesium concentration was raised to 10{sup -5} - 10{sup -4} mol/l. The sorption on rapakivi granite was non-linear, especially in saline water. Sorption was reversible for rapakivi granite. The sorption on the minerals proved to be very non-linear, especially on biotite. Sorption was also reversible for biotite and kaolinite. For the other minerals, sorption was irreversible to some degree. As to the sorption of cesium investigated by studying thin sections of rapakivi granite and their autoradiograms, the most dominating mineral was biotite. The water analyses made during the sorption experiment revealed the exchange of potassium and cesium. The corresponding changes were difficult to detect in saline water. Calculation of the R{sub d} values for the rock, based on the R{sub d} values of minerals and the portions of minerals in the rock, yielded smaller distribution ratios than the values determined for the rock. (orig.)

  5. Synthesis of gels with basis of titanium tungstates as matrixes of radioactive generators; Sintesis de geles a base de titanio tungstenatos como matrices de generadores radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Galico C, L

    2005-07-01

    The heteropolyanions, compounds formed by the union of molybdates or tungstates polyanions with atoms of metals like zirconium, titanium, cerium, thorium, tin, etc., have been used as generator matrixes of {sup 99m} Tc or {sup 188} Re. Particularly they have been studied and produced successfully in our laboratory, generators of {sup 99} Mo/ {sup 99}m Tc at basis of gels zirconium molybdates and titanium molybdates. Considering that the molybdenum and tungsten, as well as the technetium and the rhenium, its belong to the same groups of transition metals, it is feasible that gels can be synthesized at basis of titanium tungstates, continuing a methodology similar to that of the gels titanium molybdates or zirconium molybdates, to produce generators {sup 188} W/ {sup 188} Re. The {sup 188} Re possess nuclear characteristics that make it attractive for therapeutic applications, since, it emits {beta}{sup -} particles of a great energy (2.12 MeV); joined to the possibility of being able to unite to different ligands (bifunctional agents) and biomolecules (antibodies or fragments of proteins), as it makes the {sup 99m} Tc, useful in radioimmunotherapy. Commercially the {sup 188} Re generators use a chromatographic column loaded with alumina where the {sup 188} Re, it is adsorbed and eluted the {sup 188} ReO{sub 4}{sup -} by means of a saline solution The alumina adsorbs around 0.2% of the {sup 188} Re, situation that forces to use {sup 188} Re of a high specific activity. The use of the gels technology, allows to work with medium or low specific activities of {sup 188} Re, opening the possibility of their production in countries whose nuclear capacity is medium or low. In particular, the synthesized gels with basis of titanium offer the possibility of being synthesized with non active material, for later on to be irradiated and directly produce the generator, since, the titanium {sup 51} Ti, unique radioisotope produced by the titanium, has a half life of 5.79 min. This

  6. A study of high-energy proton induced damage in Cerium Fluoride in comparison with measurements in Lead Tungstate calorimeter crystals

    CERN Document Server

    Dissertori, G; Luckey, D; Nessi-Tedaldi, F; Otto, Th; Pauss, F; Roesler, S; Urscheler, Ch

    2010-01-01

    A Cerium Fluoride crystal produced during early R&D studies for calorimetry at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking its recovery, to a fluence Phi_p=(2.12 +- 0.15) x 10EE14 cm-2. Results on proton-induced damage to the crystal and its spontaneous recovery after both irradiations are presented here, along with some new, complementary data on proton-damage in Lead Tungstate. A comparison with FLUKA Monte Carlo simulation results is performed and a qualitative understanding of high-energy damage mechanism is attempted.

  7. Acquired long QT syndrome and monomorphic ventricular tachycardia after alternative treatment with cesium chloride for brain cancer.

    Science.gov (United States)

    Dalal, Anuj K; Harding, John D; Verdino, Ralph J

    2004-08-01

    Individuals searching for symptomatic relief or a potential cure are increasingly seeking and using nontraditional therapies for their various diseases. Little is known about the potential adverse effects that patients may encounter while undergoing these alternative treatments. Cesium chloride is an unregulated agent that has been reported to have antineoplastic properties. Cesium chloride is advertised as an alternative agent for many different types of cancers and can be purchased easily on the Internet. Recently, QT prolongation and polymorphic ventricular tachycardia were reported in several patients taking cesium chloride as alternative treatment for cancer. We report acquired QT prolongation and sustained monomorphic ventricular tachycardia in a patient who self-initiated and completed a course of cesium chloride as adjunctive treatment for brain cancer.

  8. Spin-dependent asymmetry functions in the elastic and inelastic electron-cesium scattering at intermediate energies

    CERN Document Server

    Roth, B

    2001-01-01

    In this thesis the measurements of the relative differential cross section, the exchange asymmetry, the spin-orbit asymmetry, and the interference asymmetry for the electron scattering on cesium atoms from 4 to 18 eV is described. (HSI)

  9. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  10. Cesium Platinide Hydride 4Cs2 Pt⋅CsH: An Intermetallic Double Salt Featuring Metal Anions.

    Science.gov (United States)

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-11-14

    With Cs9 Pt4 H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9 Pt4 H exhibits a complex crystal structure containing Cs(+) cations, Pt(2-) and H(-) anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the "alloy" cesium-platinum, or better cesium platinide, Cs2 Pt, and the salt cesium hydride CsH according to Cs9 Pt4 H≡4 Cs2 Pt⋅CsH.

  11. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    Science.gov (United States)

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  12. The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jie; Cai, Qiuxia; Wan, Yan; Wan, Shaolong; Wang, Li; Lin, Jingdong; Mei, Donghai; Wang, Yong

    2016-09-02

    In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3* to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivity are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM

  13. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, Raphael

    2010-07-21

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  14. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  15. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    Science.gov (United States)

    Fokapić, S.; Bikit, I.; Mrđa, D.; Vesković, M.; Slivka, J.; Mihaljev, Ž.; Ćupić, Ž.

    2007-04-01

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450°C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  16. Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.-H. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Li, M.-H. [Institute of Hydrological Sciences, National Central University, Jungli 320, Taiwan (China); Yeh, W.-C.; Wei, Y.-Y. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan (China); Teng, S.-P. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)], E-mail: spteng@ess.nthu.edu.tw

    2008-12-30

    Utilization of local Taiwan laterite (LTL) to remove aqueous cesium was investigated in this work under the conditions of various contact time, cesium (Cs) loading and temperature. Experimental results show that adsorption is instantaneous. Freundlich and Langmuir simulation results demonstrate that local Taiwan laterite has high affinity and sorption capacity for Cs at low temperatures, which may be attributed to enhanced desorption as temperature increased. Thermodynamic parameters including {delta}H, {delta}G and {delta}S were calculated and it is indicated that Cs adsorption on LTL is an exothermic, spontaneous and physical adsorption reaction. Moreover, the adsorbed Cs is distributed evenly on the LTL surface, which is confirmed by SEM/EDS mapping images. Furthermore, the absence of apparent shifting or broadening of the kaolinite signal in XRD patterns after Cs adsorption is an indication of the non-expanding characteristic of kaolinite structure.

  17. Light storage via coherent population oscillation in a thermal cesium vapor

    CERN Document Server

    de Almeida, A J F; Maynard, M -A; Laupretre, T; Bretenaker, F; Felinto, D; Goldfarb, F; Tabosa, J W R

    2014-01-01

    We report on the storage of light via the phenomenon of Coherent Population Oscillation (CPO) in an atomic cesium vapor at room temperature. In the experiment the optical information of a probe field is stored in the CPO of two ground states of a Lambda three-level system formed by the Zeeman sublevels of the hyperfine transition F = 3 - F' = 2 of cesium D2 line. We show directly that this CPO based memory is very insensitive to stray magnetic field inhomogeneities and presents a lifetime which is mainly limited only by atomic motion. A theoretical simulation of the measured spectra was also developed and is in very good agreement with the experiment.

  18. Precision mass measurements of cesium isotopes—new entries in the ISOLTRAP chronicles

    Science.gov (United States)

    Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, Ch; Cakirli, R. B.; Eronen, T.; George, S.; Herfurth, F.; Herlert, A.; Kowalska, M.; Kreim, S.; Litvinov, Yu A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-04-01

    Alkali ion beams are among the most intense produced by the ISOLDE facility. These were the first to be studied by the ISOLTRAP mass spectrometer and ever since, new measurements have been regularly reported. Recently the masses of very neutron-rich and short-lived cesium isotopes were determined at ISOLTRAP. The isotope 148Cs was measured directly for the first time by Penning-trap mass spectrometry. Using the new results, the trend of two-neutron separation energies in the cesium isotopic chain is revealed to be smooth and gradually decreasing, similar to the ones of the barium and xenon isotopic chains. Predictions of selected microscopic models are employed for a discussion of the experimental data in the region.

  19. Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune.

    Science.gov (United States)

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight (134)Cs and 607,000 Bq kg(-1) dry weight (137)Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil.

  20. Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18

    Institute of Scientific and Technical Information of China (English)

    Dong Hui-Jie; Wang Ting; Li Chang-Yong; Zhao Jian-Ming; Zhang Lin-Jie

    2013-01-01

    The Stark structures in a cesium atom around n =18 are numerically calculated.The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot,and those with a large |m| shift downward a little within 1100 V/cm.All components of P states shift downward.Experimental work has been performed in ultracold atomic cesium.Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field,and Stark spectra with 丨m丨=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time.The observed spectra are analyzed in detail.The relative transition probability is calculated.The experimental results are in good agreement with our numerical computation.

  1. Study on Growth and Optical, Scintillation Properties of Thallium Doped Cesium Iodide –Scintillator Crystal

    Directory of Open Access Journals (Sweden)

    B. Ravi

    2014-06-01

    Full Text Available Single crystal of Thallium doped cesium Iodide –Scintillator crystal was grown using vertical Bridgeman technique. The grown crystal was included for cutting and polishing for the characterization purpose and this crystal was studied by optical transmission properties, photo luminescence and thermally luminescence characteristics. Gamma-ray detectors were fabricated using the grown crystal that showed good linearity and nearly 7.5% resolution at 662 keV.

  2. Evaporative cooling of cesium atoms in the gravito-optical surface trap

    CERN Document Server

    Hammes, M; Grimm, R

    2000-01-01

    We report on cooling of an atomic cesium gas closely above an evanescent-wave. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude. In a series of measurements of heating and spin depolarization an incoherent background of resonant photons in the evanescent-wave diode laser light was found to be the limiting factor at this stage.

  3. The effects of using Cesium-137 teletherapy sources as a radiological weapon (dirty bomb)

    OpenAIRE

    Liolios, Theodore

    2009-01-01

    While radioactive sources used in medical diagnosis do not pose a great security risk due to their low level of radioactivity, therapeutic sources are extremely radioactive and can presumably be used as a radiological weapon. Cobalt-60 and Cesium-137 sources are the most common ones used in radiotherapy with over 10,000 of such sources currently in use worldwide, especially in the developing world, which cannot afford modern accelerators. The present study uses computer simulations to investi...

  4. Strategic Design and Optimization of Inorganic Sorbents For Cesium, Strontium and Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Nyman, M.; Clearfield, A.; Maginn, E.

    2006-06-01

    The basic science goal in this project identifies structure/affinity relationships for selected radionuclides and existing sorbents. The task will apply this knowledge to the design and synthesis of new sorbents that will exhibit increased affinity for cesium, strontium and actinide separations. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to nonradioactive separations.

  5. Analysis of SubRamsey Patterns in Cesium Beam Frequency Standards

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG Yiqiu

    2001-01-01

    Using a precise probability expres-sion under excessive microwave power condition, theRamsey patterns in a cesium atomic beam frequencystandard with Ramsey separated oscillating fields havebeen carefully analyzed by numerical method. TwosubRamsey patterns are produced on both sides ofthe central Ramsey pattern. All factors, including mi-crowave power, excitation region length, drift regionlength and atomic velocity distribution, which affectthe subRamsey pattern have been analyzed, and someexplanations coming from approximated theory havebeen corrected in this paper.

  6. Prussian blue as an antidote for radioactive thallium and cesium poisoning

    Directory of Open Access Journals (Sweden)

    Altagracia-Martinez M

    2012-06-01

    Full Text Available Marina Altagracia-Martínez, Jaime Kravzov-Jinich, Juan Manuel Martínez-Núñez, Camilo Ríos-Castañeda, Francisco López-NaranjoDepartments of Biological Systems and Health Care, Biological and Health Sciences Division, Universidad Autónoma Metropolitana-Xochimilco, Mexico DF, MexicoBackground: Following the attacks on the US on September 11, 2001, potentially millions of people might experience contamination from radioactive metals. However, before the specter of such accidents arose, Prussian blue was known only as an investigational agent for accidental thallium and cesium poisoning. The purpose of this review is to update the state of the art concerning use of Prussian blue as an effective and safe drug against possible bioterrorism attacks and to disseminate medical information in order to contribute to the production of Prussian blue as a biodefense drug.Methods: We compiled articles from a systematic review conducted from January 1, 1960 to March 30, 2011. The electronic databases consulted were Medline, PubMed, the Cochrane Library, and Scopus.Results: Prussian blue is effective and safe for use against radioactive intoxications involving cesium-137 and thallium. The US Food and Drug Administration has approved Prussian blue as a drug, but there is only one manufacturer providing Prussian blue to the US. Based on the evidence, Prussian blue is effective for use against radioactive intoxications involving cesium-137 and thallium, but additional clinical research on and production of Prussian blue are needed.Keywords: Prussian blue, radioactive cesium, thallium, intoxication, biodefense drug

  7. Mössbauer study on the gamma radiolysis of anhydrous cesium tris (oxalato) ferrate(III)

    Science.gov (United States)

    Ladriere, J.; Senterre, V.; Apers, D.

    1992-04-01

    The final product of the gamma radiolysis of anhydrous cesium tris(oxalato) ferrate(III) has been identified by Mössbauer spectroscopy as Cs2Fe(ox)2. The radiolytic decomposition proceeds as a first-order process due to the original compound depletion and to the radiolytic stability of the ferrous compound. Lamb-Mössbauer factors measurements indicate that the recoilless fractions of the iron species are practically unaffected by the radiolysis.

  8. The Effect of Cesium Vapour on the Bulk Conductivity of Plasma - Sprayed Alumina

    Science.gov (United States)

    2007-11-02

    from the NaK coolant channels by a 50 [tm gap filled with helium at around 100 Torr. Ideally there would be no contact between the outer metallic ...reservoir of the liquid metal . The reservoir consists of a one inch diameter stainless steel cylinder clamped between two copper blocks. Cartridge heaters...Cesium is contained within the inter-electrode gap by a metal -ceramic seal at each end of the TFE. Therefore under normal operating conditions the

  9. Photon Driven Transformation of Cesium Lead Halide Perovskites from Few-Monolayer Nanoplatelets to Bulk Phase.

    Science.gov (United States)

    Wang, Yue; Li, Xiaoming; Sreejith, Sivaramapanicker; Cao, Fei; Wang, Zeng; Stuparu, Mihaiela Corina; Zeng, Haibo; Sun, Handong

    2016-12-01

    Influence of light exposure on cesium lead halide nanostructures has been explored. A discovery of photon driven transformation (PDT) in 2D CsPbBr3 nanoplatelets is reported, in which the quantum-confined few-monolayer nanoplatelets will convert to bulk phase under very low irradiation intensity (≈20 mW cm(-2) ). Benefiting from the remarkable emission color change during PDT, the multicolor luminescence photopatterns and facile information photo-encoding are established.

  10. Spatial variability and the fate of cesium in coastal sediments near Fukushima, Japan

    Directory of Open Access Journals (Sweden)

    E. Black

    2014-05-01

    Full Text Available Quantifying the amount of cesium incorporated into marine sediments as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP accident has proven challenging due to the limited multi-core sampling from within the 30 km zone around the facility, the inherent spatial heterogeneities in ocean sediments, and the potential for inventory fluctuations due to physical, biological, and chemical processes. Using 210Pb, 234Th, 137Cs, and 134Cs profiles from 20 sediment cores, coastal sediment inventories were reevaluated. A minimum 137Cs sediment inventory of 100 ± 50 TBq was found for an area of 55 000 km2 using cores from this study and a total of 130 ± 60 TBq using an additional 181 samples. These inventories represent less than 1% of the estimated 15–30 PBq of cesium released during the FDNPP disaster and constitute ~ 90% of the total coastal inventory of 137Cs remaining in 2012. The time needed for surface sediment activities (0 to 3 cm at the 20 locations to reduce by 50% via bioturbation was estimated to range from 0.4 to 26 years, indicating a much greater persistence of cesium in the sediments relative to coastal water activities. However, due to the observed variability in mixing rates, grain size, and inventories, additional cores are needed to further improve estimates and capture the full extent of cesium penetration into the shallow coastal sediments, which was deeper than 14 cm for all cores retrieved from water depths less than 150 m.

  11. Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell

    Institute of Scientific and Technical Information of China (English)

    黄家强; 张建伟; 王时光; 王力军

    2015-01-01

    We report an experimental study on the temperature and number evolution of cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F=4)→62P3/2(F0=5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. The number of cold atoms first declines slowly from 2.1 × 109 to 3.7 × 108 and then falls drastically. A theoretical model for the number evolution is built and includes the instantaneous temperature of the cold atoms and a fraction p, which represents the part of cold cesium atoms elastically reflected by the coated cell wall. The theory is overall in good agreement with the experimental result, and a nonzero value is obtained for the fraction p, which indicates that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the coated cell wall. These results can provide helpful insight for precision measurements based on diffuse laser cooling.

  12. DFB-ridge laser diodes at 894 nm for Cesium atomic clocks

    Science.gov (United States)

    von Bandel, N.; Garcia, M.; Lecomte, M.; Larrue, A.; Robert, Y.; Vinet, E.; Driss, O.; Parrilaud, O.; Krakowski, M.; Gruet, F.; Matthey, R.; Mileti, G.

    2016-02-01

    Time and frequency applications are in need of high accuracy and high stability clocks. Optically pumped compact industrial Cesium atomic clocks are a promising approach that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of the laser diodes that are used. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for ground applications. This work will provide key experience for further space technology qualification. III-V Lab is in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894 nm (D1 line of Cesium) and 852 nm (D2 line). LTF-Unine is in charge of their spectral characterisation. The use of D1 line for pumping will provide simplified clock architecture compared to the D2 line pumping thanks to simpler atomic transitions and a larger spectral separation between lines in the 894 nm case. Also, D1 line pumping overcomes the issue of unpumped "idle states" that occur with D2 line. The modules should provide narrow linewidth (= 10 Hz and 109 Hz2/Hz @ f >= 10 Hz.

  13. Inhibition of sodium current by taurine magnesium coordination compound prevents cesium chloride-induced arrhythmias.

    Science.gov (United States)

    Yin, Yongqiang; Wen, Ke; Wu, Yanna; Kang, Yi; Lou, Jianshi

    2012-05-01

    The mechanism(s) by which taurine magnesium coordination compound (TMCC) inhibits experimental arrhythmias remains poorly understood. The purpose of this study was to observe the effects of TMCC against cesium chloride-induced arrhythmia in the rabbit heart and find whether the antiarrhythmic activity is related to inhibition of sodium current. Early afterdepolarization was induced by 1.5 mM cesium chloride (1 ml kg(-1)) through intravenous injection. The monophasic action potentials (MAP) and electrocardiograms were simultaneously recorded. The effect of TMCC on functional refractory periods (FRPs) in the left atrium was also observed in vitro. Arrhythmias onset was significantly retarded by TMCC. The number of ventricular premature contractions and incidence of monophasic ventricular tachycardia and polyphasic ventricular tachycardia in 10 min were decreased by TMCC. These effects can be abolished by veratridine (10 μg kg(-1)). MAP duration at 90% repolarization was significantly prolonged by TMCC, which can be prolonged even longer by veratridine (10 μg kg(-1)). In vitro experiments showed that FRPs was prolonged by TMCC which can be cancelled by veratridine (10 μg kg(-1)). TMCC prevents cesium chloride-induced arrhythmias, and inhibition of sodium current, in part, contributes to the antiarrhythmic effect of TMCC.

  14. Immobilization of Cesium Traps from the BN-350 Fast Reactor (Aktau, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Michelbacher; C. Knight; O. G. Romanenko; I. L. Tazhibaeva; I. L. Yakovlev; A. V. Rovneyko; V. I. Maev; D. Wells; A. Herrick

    2011-03-01

    During BN-350 reactor operations and also during the initial stages of decommissioning, cesium traps were used to decontaminate the reactor’s primary sodium coolant. Two different types of carbon-based trap were used – the MAVR series, low ash granulated graphite adsorber (LAG) contained in a carrier designed to be inserted into the reactor core during shutdown; and a series of ex-reactor trap accumulators(TAs) which used reticulated vitreous carbon (RVC) to reduce Cs-137 levels in the sodium after final reactor shutdown. In total four MAVRs and seven TAs were used at BN-350 to remove an estimated cumulative 755 TBq of cesium. The traps, which also contain residual sodium, need to be immobilized in an appropriate way to allow them to be consigned as waste packages for long term storage and, ultimately, disposal. The present paper reports on the current status of the implementation phase, with particular reference to the work done to date on the trap accumulators, which have the most similarity with the cesium traps used at other reactors.

  15. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  16. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  17. Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater.

    Science.gov (United States)

    Lee, Keun-Young; Kim, Kwang-Wook; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-15

    Finding a striking peculiarity of nanomaterials and evaluating its feasibility for practical use are interesting topics of research. We investigated the application of nanozeolite's outstanding reactivity for a rapid and effective method for radioactive cesium removal in the wastewater generated from nuclear power plant accident, as a new concept. Extremely fast removal of cesium, even without stirring, was achieved by the nanozeolite at efficiencies never observed with bulk materials. The nanozeolite reached an adsorption equilibrium state within 1 min. Cesium adsorption by nanozeolite was demonstrated at reaction rates of orders of magnitude higher than that of larger zeolite phases. This observation was strongly supported by the positive correlation between the rate constant ratio (k2,bulk/k2,nano) and the initial Cs concentrations with a correlation coefficient (R(2)) of 0.99. A potential drawback of a nanoadsorbent is the difficulty of particle settling and separation because of its high dispersivity in solution. However, our results also demonstrated that the nanozeolite could be easily precipitated from the high-salt solution with ferric flocculant. The flocculation index reached a steady state within 10 min. A series of our experimental results met the goal of rapid processing in the case of emergency by applying the well-suited nanozeolite adsorption and flocculation.

  18. Derivation of cesium-137 residual radioactive material guidelines for the Peek Street site, Schenectady, New York

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.; Nimmagadda, M.; Yu, C.

    1992-01-01

    Residual radioactive material guidelines for cesium-137 were derived for the Peek rk. The derivation was based on the requirement that the Street site in Schenectady, New York. The derivation was based on the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Peek Street site should not exceed a dose of 100 mrem/yr following remedial action. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD was used in this evaluation. Three potential scenarios were considered for the site on the assumption that for a period of 1,000 years following remedial action, the site wig be utilized without radiological restrictions. The scenarios vary with regard to use of the site, time spent at the site, and sources of food consumed. Results indicate that the basic dose limit of 100 mrem/yr will not be exceeded for cesium-137 within 1,000 years, provided that the soil concentration of cesium-137 at the Peek Street site does not exceed the following levels: 98 pCi/g for Scenario A (industrial worker: the expected scenario), 240 pCi/g for Scenario B (recreationist: a plausible scenario), and 34 pCi/g for Scenario C (resident farmer ingesting food produced in the decontaminated area: a plausible scenario).

  19. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  20. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium

    Science.gov (United States)

    Vipin, Adavan Kiliyankil; Fugetsu, Bunshi; Sakata, Ichiro; Isogai, Akira; Endo, Morinobu; Li, Mingda; Dresselhaus, Mildred S.

    2016-11-01

    On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.

  1. WESF cesium capsule behavior at high temperature or during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive /sup 137/Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800/sup 0/C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs.

  2. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on the SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.

  3. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Bong, Sang Bum; Park, Chan Woo; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium.

  4. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    Science.gov (United States)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  5. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Volchek, Konstantin, E-mail: Konstantin.Volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Kuang, Wenxing [SAIC Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L{sup -1} at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  6. The effect of organic amendment on mobility of cesium in tropical soils - The effect of organic amendment on sorption mechanisms for cesium and cobalt in tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, M.A.V.; Santos-Oliveira, R. [Instituto de Engenharia nuclear/CNEN. Rua Helio de Almeida, 75. Cidade Universitaria - Ilha do Fundao, Rio de Janeiro, RJ. CEP 21941-906 (Brazil); Garcia, R.J.L.; Ferreira, A.C.M.; Rochedo, E.R.R.; Sobrinho, G.A.N. [Instituto de Radioprotecao e Dosimetria/CNEN. Av. Salvador Allende s /no. Rio de Janeiro, RJ. CEP: 22780-160 (Brazil); Perez, D.V. [Centro Nacional de Pesquisa de Solos/EMBRAPA. R. Jardim Botanico, 1024.Rio de Janeiro, RJ, CEP: 22460-000 (Brazil); Wasserman, J.C. [dUFF Network of Environment and Sustainable Development (REMADS-UFF), University Federal Fluminense, Niteroi, RJ (Brazil)

    2014-07-01

    This work aimed to investigate the mechanisms involved in the sorption of {sup 137}Cs and {sup 60}Co as a function of the physico-chemical properties of some types of Brazilian soils and the changes on the behavior of these radionuclides due to changes in soil properties promoted by organic amendment. The experimental study was conducted in a controlled area, where pots containing different types of soils (Ferralsol, Nitisol and Histosol) and different doses of organic amendment (no amendment; 2 kg.m{sup -2} and 4 kg.m{sup -2}) were spiked with {sup 137}Cs and {sup 60}Co. The organic amendment used in this experiment was obtained in the Unit of Compost of the Organic Material of Pinheiral (RJ, Brazil), where the compost is made up from the leaves swept from the streets of the Pinheiral city. The mobility of these radionuclides in the soil was assessed through sequential chemical extraction and desorption studies as a function of pH. The bioavailability was evaluated through the effective absorption of radionuclide by root crops (Raphanus sativus, L). This study evidenced that the organic amendment plays an important role in the desorption processes of cobalt and cesium, reducing desorption of both nuclides beneath higher organic amendment dose. This behavior was observed in acid conditions as well in alkaline. However extreme acid conditions may mobilize both radionuclides, although cobalt mobility was shown to be more sensitive to low pH than cesium. (authors)

  7. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  8. A study of mechanisms responsible for incorporation of cesium and radiocesium into fruitbodies of king oyster mushroom (Pleurotus eryngii)

    Energy Technology Data Exchange (ETDEWEB)

    Bystrzejewska-Piotrowska, Grazyna [Isotope Laboratory, Faculty of Biology, Warsaw University, 02-096 Warsaw, Miecznikowa 1 (Poland)], E-mail: byst@biol.uw.edu.pl; Bazala, Michal A. [Isotope Laboratory, Faculty of Biology, Warsaw University, 02-096 Warsaw, Miecznikowa 1 (Poland)

    2008-07-15

    Ex vitro cultures of Pleurotus eryngii were carried out under controlled conditions using sterile medium composed of barley seeds. The influence of alkali and alkaline earth element salts (CsCl, KCl, NaCl, RbCl, and CaCl{sub 2}) and tetraethylammonium chloride on incorporation of cesium, potassium, sodium, rubidium and calcium, and their distribution within fruitbodies, was examined. The results show that incorporation of cesium into fruitbodies was not suppressed by Na{sup +} and Rb{sup +} or tetraethylammonium chloride. However, it was inhibited by Ca{sup 2+} and stimulated by high concentrations of K{sup +}. The inhibition of cesium incorporation by Ca{sup 2+}, lack of influence of tetraethylammonium chloride and stimulation by high K{sup +} concentrations suggest that there may exist two pathways of passive transport of cesium in mycelium: (i) uptake mediated by a non-specific potassium channel localised in plasmalemma (similar to voltage-insensitive cation channel, VICC) followed by diffusive transport inside hyphae and (ii) extracellular transport from the medium through inter-hyphal cavities into fruitbodies. The results highlight distinctiveness of mechanisms responsible for the uptake and incorporation of cesium in mushrooms and plants.

  9. Cesium accumulation by bacterium Thermus sp.TibetanG7: hints for biomineralization of cesiumbearing geyserite in hot springs in Tibet, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bacterium Thermus sp. TibetanG7, isolated from hot springs in Tibet, China, was examined for the ability to accumulate cesium from solutions. Environmental conditions were simulated and the effects of pH, K+, Na+ and K+-regimes were then studied to determine the possible role of the bacterium in the formation of cesium-bearing geyserite around these hot springs. In despite of the inhibition of K+ and Na+, the bacterium Thermus sp. TibetanG7 revealed noticeable accumulation of cesium from solutions, with maximum accumulations of 53.49 and 40.41 μmol Cesium/g cell dry weight in Na+ and K+ inhibition experiments, respectively. The accumulation of cesium by this microorganism is rapid, with 40%―50% accumulated within the first 5 min. K+-deficient cells showed a much higher capacity of cesium accumulation compared with K+-sufficient cells. It is evident that the bacteria within the genus thermus play a significant role in the cesium assembly. The formation of cesium-bearing geyserite is also considered.

  10. Synthesis and Characterization of Cu(II Substituted Hexa Tungstate and Molybdate of the Anderson Type Anion [Xn+M6O24]-(12-n

    Directory of Open Access Journals (Sweden)

    K. C. Dey

    2008-01-01

    Full Text Available Sodium salts of copper substituted heteropoly compounds having molecular formula Na10[CuIIWVI6O24].22H2O(1 and Na10[CuIIMoVI6O24]. 19H2O(2 analogous to the Anderson type anion [Xn+M6O24]─(12-n were synthesized according to the literature method. Compound(1 was synthesized from aqueous acidic solution containing sodium tungstate and copper chloride and compound(2 from sodium molybdate and copper chloride solution. The elemental analyses show 1:6 atomic ratio of the heteroatom to the addenda in both the compounds. The IR spectra for both the compounds are in good agreement with the reported formulae. A small deviation in IR spectra are observed than that established for Keggin anions. CuO6 acts as hetero group which replaces MO6 (M=W or Mo from the Anderson structure. The thermal analyses of the compounds show the loss of the peripheral water molecules. The molecular weight of the compound (1 and (2 have been found as 2212.5 and 1600.5 respectively.

  11. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E.; Hernandez-Cordoba, Manuel [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)

    2008-06-15

    A number of chemical modifiers have been assessed for the direct determination of indium in soils using electrothermal atomic absorption spectrometry and slurry sampling. The best results were obtained when the graphite atomizer was impregnated with sodium tungstate, which acts as a permanent chemical modifier. Slurries were prepared by suspending 100 mg sample in a solution containing 1% (v/v) concentrated nitric acid and 10% (v/v) concentrated hydrofluoric acid and then 15-{mu}L aliquots were directly introduced into the atomizer. Standard indium solutions prepared in the suspension medium in the range 4-80 {mu}g L{sup -1} indium were used for calibration. The relative standard deviation for ten consecutive measurements of a 40 {mu}g L{sup -1} indium solution was 2.8%. The limit of detection in soils was 0.1 {mu}g g{sup -1}. The reliability of the procedures was confirmed by analysing two standard reference materials and by using an alternative procedure. (orig.)

  12. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.

    Science.gov (United States)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Gao, Shanmin

    2004-02-06

    A general synthetic route has been developed for the growth of metal phosphide, oxide, sulfide, and tungstate nanowires in aqueous solution. In detail, cetyltrimethylammonium cations (CTA(+)) can be combined with anionic inorganic species along a co-condensation mechanism to form lamellar inorganic-surfactant intercalated mesostructures, which serve as both microreactors and reactants for the growth of nanowires. For example, GaP, InP, gamma-MnO(2), ZnO, SnS(2), ZnS, CdWO(4), and ZnWO(4) nanowires have been grown by this route. To the best of our knowledge, this is the first time that the synthesis of GaP and InP nanowires in aqueous solution has been achieved. This strategy is expected to extend to grow nanowires of other materials in solution or by vapor transport routes, since the nanowire growth of any inorganic materials can be realized by selecting an appropriate reaction and its corresponding lamellar inorganic-surfactant precursors.

  13. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames Iowa 50011-3020 USA; Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames Iowa 50011-3020 USA; Department of Materials Sciences and Engineering, Iowa State University, Ames Iowa 50011-3111 USA

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2- and H- anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H≡4 Cs2Pt∙CsH.

  14. One Pot Synthesis and Characterization of Cesium Doped SnO2 Nanocrystals via a Hydrothermal Process

    Institute of Scientific and Technical Information of China (English)

    K. Kaviyarasu; Prem Anand Devarajan; S. Stanly John Xavier; S. Augustine Thomas; S. Se]vakumar

    2012-01-01

    The physico-chemical properties of cesium doped SnO2 nanocrystals synthesized by wet chemical method have been investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), inductively coupled plasma (ICP), atomic absorption spectroscopic (AAS) analyses, UV-vis-NIR spectral studies and dielectric studies were carried out for both pure SnO2 and cesium doped SnO2 nano-samples. All samples of SnO2 did not show any metallic cluster, but the sample containing cesium as a dopant displayed significant activity. The products formed were chloride and water representing a competitive advantage from the stand point of environmental protection.

  15. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Vipin, Adavan Kiliyankil; Hu, Baiyang; Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp

    2013-08-15

    Highlights: • Prussian blue was encapsulated in calcium/alginate beads. •The Prussian blue encapsulated beads were reinforced using carbon nanotubes. • Adsorption behaviors toward cesium were studied with the aid of appropriate mathematical models. • The beads showed high efficiency over a wide range of pH, potassium and sodium ion concentrations. • Continuous column analysis proved that the beads are suitable for large-scale water treatments. -- Abstract: Prussian blue encapsulated in alginate beads reinforced with highly dispersed carbon nanotubes were prepared for the safe removal of cesium ions from aqueous solutions. Equilibrium and kinetic studies were conducted using different models and the goodness of mathematical fitting of the experimental data on the adsorption isotherms was in the order Langmuir > Freundlich, and that of the kinetic models were in the order of pseudo second order > pseudo first order. Fixed bed adsorption column analysis indicated that the beads can be used for large scale treatment of cesium contaminated water.

  16. The role of cesium suboxides in low-work-function surface layers studied by X-ray photoelectron spectroscopy - Ag-O-Cs

    Science.gov (United States)

    Yang, S.-J.; Bates, C. W., Jr.

    1980-01-01

    The oxidation of cesium on silver substrates has been studied using photoyield measurements and X-ray photoelectron spectroscopy. The occurrence of two O1s peaks in the core-level spectrum at 527.5 and 531.5-eV binding energy for cesium and oxygen exposures giving the optimum photoyield proves that two oxides of cesium exist in high-photoyield surfaces, and not Cs2O alone as previously thought. From the shape and position of the cesium peaks and the Auger parameter, the assignment of the O1s peaks at 527.5- and 531.5-eV binding energies to oxygen in Cs2O and Cs11O3, respectively, can be made. Hence the total cesium-oxygen layer is a mixed phase consisting of Cs2O + Cs11O3, approximately 20-40 A thick.

  17. Use of cesium-137 methodology in the evaluation of superficial erosive processes

    Directory of Open Access Journals (Sweden)

    Avacir Casanova Andrello

    2003-06-01

    Full Text Available Superficial erosion is one of the main soil degradation agents and erosion rates estimations for different edaphicclimate conditions for the conventional models, as USLE and RUSLE, are expensive and time-consuming. The use of cesium-137 antrophogenic radionuclide is a new methodology that has been much studied and its application in the erosion soil evaluation has grown in countries as USA, UK, Australia and others. A brief narration of this methodology is being presented, as the development of the equations utilized for the erosion rates quantification through the cesium-137 measurements. Two watersheds studied in Brazil have shown that the cesium-137 methodology was practicable and coherent with the survey in field for applications in erosion studies.A erosão superficial é um dos principais agentes de degradação dos solos e estimativas das taxas de erosão para diferentes condições edafoclimáticas pelos modelos tradicionais como USLE, RUSLE, são onerosos e demorados. Uma metodologia que tem sido muito estudada e sua aplicação no estudo da erosão vem crescendo em países como EUA, Reino Unido, Austrália, e outros, é a do uso do radionuclídeo antropogênico césio-137. Um resumo da história desta metodologia é apresentado, assim como a evolução das equações utilizadas para quantificar as taxas de erosão através da medida do césio-137. Duas bacias estudadas no Brasil mostraram que a metodologia do césio-137 é viável e coerente com as observações em campo para aplicação no estudo da erosão.

  18. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  19. Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin

    Science.gov (United States)

    Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.

    2015-03-01

    The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.

  20. The chemical durability of glass and graphite-glass composite doped with cesium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hamodi, Nasir H., E-mail: nasirhamodi@yahoo.co.uk [School of Mechanical, Aerospace and Civil Engineering (MACE)/University of Manchester, Pariser Building, F-floor, Manchester M13 9PL (United Kingdom); Abram, Timothy J. [School of Mechanical, Aerospace and Civil Engineering (MACE)/University of Manchester, Pariser Building, F-floor, Manchester M13 9PL (United Kingdom); Lowe, Tristan; Cernik, Robert J. [Henry Mosley Imaging Facility, Material Science Centre, University of Manchester, Manchester M13 9PL (United Kingdom); Lopez-Honorato, Eddie [Centro de Investigacion y Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo. Carretera Saltillo-Monterrey km 13.5, 25900 Ramos Arizpe, Coahuila (Mexico)

    2013-01-15

    The role of temperature in determining the chemical stability of a waste form, as well as its leach rate, is very complex. This is because the dissolution kinetics is dependent both on temperature and possibility of different rate-controlling mechanisms that appear at different temperature regions. The chemical durability of Alumina-Borosilicate Glass (ABG) and Glass-Graphite Composite (GGC), bearing Tristructural Isotropic (TRISO) fuel particles impregnated with cesium oxide, were compared using a static leach test. The purpose of this study is to examine the chemical durability of glass-graphite composite to encapsulate coated fuel particles, and as a possible alternative for recycling of irradiated graphite. The test was based on the ASTM C1220-98 methodology, where the leaching condition was set at a temperature varying from 298 K to 363 K for 28 days. The release of cesium from ABG was in the permissible limit and followed the Arrhenius's law of a surface controlled reaction; its activation energy (E{sub a}) was 65.6 {+-} 0.5 kJ/mol. Similar values of Ea were obtained for Boron (64.3 {+-} 0.5) and Silicon (69.6 {+-} 0.5 kJ/mol) as the main glass network formers. In contrast, the dissolution mechanism of cesium from GGC was a rapid release, with increasing temperature, and the activation energy of Cs (91.0 {+-} 5 kJ/mol) did not follow any model related to carbon kinetic dissolution in water. Microstructure analysis confirmed the formation of Crystobalite SiO{sub 2} as a gel layer and Cs{sup +1} valence state on the ABG surface.

  1. Estimation of retention factor of cesium in sodium pool under fuel pin failure scenario in SFR

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep, Arjun [Computational Simulation Section, Safety Engineering Division, Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rao, P. Mangarjuna, E-mail: pmr@igcar.gov.in [Computational Simulation Section, Safety Engineering Division, Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nashine, B.K.; Chellapandi, P. [Computational Simulation Section, Safety Engineering Division, Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We model retention factor of cesium in infinite dilute solution of sodium pool. Black-Right-Pointing-Pointer We study variation in retention factor with cover gas temperature gradient. Black-Right-Pointing-Pointer Increasing height and temperature difference decreases the retention factor. Black-Right-Pointing-Pointer In infinite dilution regime retention factor is independent of cesium inventory. Black-Right-Pointing-Pointer The retention factor is useful in estimating source term in cover gas region. - Abstract: Radioactive source term in argon (Ar) cover gas region of the primary vessel due to cesium (Cs) leaked from the failed fuel pins into the primary coolant of Sodium cooled Fast Reactor (SFR) depends on its thermodynamic and kinetic behavior with the coolant sodium. Evaluation of this source term requires detailed knowledge on the distribution of Cs between large volume of the liquid sodium, and the inert Ar cover gas. Solute-solvent combination like liquid Cs and sodium, with relative volatility greater than unity, is an important system to be analyzed in the context of SFR safety. Distribution of Cs between Ar cover gas and liquid sodium pool is complicated by the imposition of temperature difference across the cover gas region and its resultant enrichment of the more volatile solute. An analytical model has been developed to obtain the geometry dependent Retention Factor (RF) of Cs in the sodium pool as a function of the height of cover gas, initial mass inventory of Cs, the temperature difference across the cover gas region (between the sodium pool surface and top roof bottom plate) for an infinite dilute solution of Cs in the sodium pool. The model predicted results are validated with available experimental results in the literature and found that they are fairly in good agreement. In the infinite dilute solution (IDS) regime sodium pool is having the retention capacity to keep the Cs from being released into

  2. Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changping, E-mail: melindazhang@yahoo.com.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Zhao Jun; Zhang Dong; Deng Yue [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-08-15

    The removal of cesium from an aqueous solution by an adsorption-microfiltration (AMF) process was investigated in jar tests and lab-scale tests. The adsorbent was K{sub 2}Zn{sub 3}[Fe(CN){sub 6}]{sub 2}. The obtained cesium data in the jar test fit a Freundlich-type isotherm well. In the lab-scale test, the mean cesium concentration of the raw water and the effluent were 106.87 {mu}g/L and 0.59 {mu}g/L, respectively, the mean removal of cesium was 99.44%, and the mean decontamination factors (DF) and concentration factors (CF) were 208 and 539, respectively. The removal of cesium in the lab-scale test was better than that in the jar test because the old adsorbents remaining in the reactor still had adsorption capacity with the premise of no significant desorption being observed, and the continuous renewal of the adsorbent surface improved the adsorption capacity of the adsorbent. Some of the suspended solids were deposited on the bottom of the reactor, which would affect the mixing of adsorbents with the raw water and the renewing of the adsorbent surface. Membrane fouling was the main physical fouling mechanism, and the cake layer was the main filtration resistance. Specific flux (SF) decreased step by step during the whole period of operation due to membrane fouling and concentration polarization. The quality of the effluent was good and the turbidity remained lower than 0.1 NTU, and the toxic anion, CN{sup -}, could not be detected because of its low concentration, this indicated that the effluent was safe. The AMF process was feasible for practical application in the treatment of liquid waste containing cesium.

  3. Design of a Carousel Process for Removing Cesium from SRS Waste Using Crystalline Silicotitanate Ion Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    1999-01-15

    Designs of a three-column carousel process based on crystalline silicotitanate (CST) ion exchanger have been developed for removing radioactive 137Cs+ from Savannah River Site's (SRS) nuclear wastes. A multicomponent ion exchange equilibrium model (Zheng et al., 1997) from Texas A&M University, which is based on batch data obtained from CST powder, is used to generate cesium loading data at different cesium concentrations for various types of SRS wastes. These loading data are fit to the Langmuir equation to obtain effective single-component cesium isotherm parameters. The predictions are in reasonable agreement with batch test data obtained from CST powder, an early CST pellet batch (38B), and a later batch (IE911) using two SRS waste simulants. The ratios between experimental cesium distribution coefficients and predicted values are between 0.56 and 1.0. The variation appears to be due to inadequate equilibration time in some of the batches. Mass transfer parameters are estimated by analyzing column data of a simulated SRS waste and Melton Valley Storage Tank W29 (MVST-W29) waste. The intraparticle diffusivity estimated for the two wastes can be well correlated by means of the Stokes-Einstein equation.Simulations are performed to determine the length of the mass transfer zone for given feed compositions, Cs+ concentrations, and linear velocities. In order to ensure high column utilization during both the transient and cyclic steady state periods, the length of a single segment in the carousel process is chosen to be the mass transfer zone length after the concentration wave achieves a constant pattern. Analysis of the dimensionless groups in the differential mass balance equations reveals that the normalized mass transfer zone length is linearly proportional to the particle Peclet number. The proportionality constant is a function of the waste composition and the Cs+ concentration in the waste. The higher the effective Cs+ capacity and the higher the Cs

  4. Optical and evaporative cooling of cesium atoms in the gravito-optical surface trap

    CERN Document Server

    Hammes, M; Druzhinina, V; Moslener, U; Manek-Hönninger, I; Grimm, R

    2000-01-01

    We report on cooling of an atomic cesium gas closely above an evanescent-wave atom mirror. At high densitities, optical cooling based on inelastic reflections is found to be limited by a density-dependent excess temperature and trap loss due to ultracold collisions involving repulsive molecular states. Nevertheless, very good starting conditions for subsequent evaporative cooling are obtained. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude.

  5. Enhanced four-wave mixing via crossover resonance in cesium vapor

    CERN Document Server

    de Silans, T Passerat; Felinto, D; Tabosa, J W R

    2011-01-01

    We report on the observation of enhanced four-wave mixing via crossover resonance in a Doppler broadened cesium vapor. Using a single laser frequency, a resonant parametric process in a double-$\\Lambda$ level configuration is directly excited for a specific velocity class. We investigate this process in different saturation regimes and demonstrate the possibility of generating intensity correlation and anti-correlation between the probe and conjugate beams. A simple theoretical model is developed that accounts qualitatively well to the observed results.

  6. Theoretical analysis of parity violation induced by neutral currents in atomic cesium

    Energy Technology Data Exchange (ETDEWEB)

    Bouchiat, C.; Piketty, C.A.; Pignon, D. (Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique)

    1983-07-04

    In this paper we give a theoretical analysis of the parity violation phenomena in nS-n'S transitions in atomic cesium induced by the electron-nucleus neutral-current interaction. The actual observation of parity violation consists in the measurement of an interference between the p.v. electric dipole amplitude E/sub 1/sup(pv) with the electric amplitude induced by a static electric field. Our theoretical work must then include a calculation of the diagonal and non-diagonal polarizabilities of the states of atomic cesium. We have used a one-electron model proposed by Norcross which incorporates some many-body effects like the electric screening induced by the core polarization in a semi-empirical way. Our calculated values of the diagonal and non-diagonal polarizabilities of the nS states are in good agreement with the existing measurements; this confirms the already well-established success of the model in predicting the radiative transitions in cesium. We present theoretical arguments supported by detailed numerical computations showing that the one-particle matrix element of the parity-violating electron-nucleus interaction and the parity-violating electric dipole amplitude E/sub 1/sup(pv) itself weakly depend on the shape of the one-electron potential provided the binding energies of the valence states are reproduced accurately. Furthermore it turns out that because of a compensation mechanism, the parity-violating transition is induced by the radiation field outside the ion core region where the screening can be described simply in terms of the measurable cesium ion polarizability. Our results are then used to extract, from the Ecole Normale Superieure experiment, a value of the weak charge Qsub(w)= -57.1+-9.4 (r.m.s. statistical deviation) +-4.7 (systematic uncertainty). This number is to be compared with the prediction of the Weinberg-Salam model with electro-weak radiative corrections: Qsub(w)=-68.6+-3.0.

  7. Parity violation in atomic cesium and alternatives to the standard model of electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bouchiat, C.; Piketty, C.A. (Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique)

    1983-08-18

    We study the implications of the recent observation of a parity violation in atomic cesium. After a discussion of the uncertainties associated with the atomic physics calculations we derive conservative bounds for the weak charge Qsub(W). These bounds are used to put constraints on alternatives to the standard electroweak model, involving an 'extra U(1)' gauge group. We analyze the possibility that the extra gauge boson might be very light and give, as a by-product, the typical range of momentum transfer explored in atomic parity violation experiments.

  8. A theoretical analysis of parity violation induced by neutral currents in atomic cesium

    Science.gov (United States)

    Bouchiat, C.; Piketty, C. A.; Pignon, D.

    1983-07-01

    In this paper we give a theoretical analysis of the parity violation phenomena in nS - n'S transitions in atomic cesium induced by the electron-nucleus neutral-current interaction. The actual observation of parity violation consists in the measurement of an interference between the p.v. electric dipole amplitude Elpv with the electric amplitude induced by a static electric field. Our theoretical work must then include a calculation of the diagonal and non-diagonal polarizabilities of the states of atomic cesium. We have used a one-electron model proposed by Norcross which incorporates some many-body effects like the electric screening induced by the core polarization in a semi-empirical way. Our calculated values of the diagonal and non-diagonal polarizabilities of the nS states are in good agreement with the existing measurements; this confirms the already well-established success of the model in predicting the radiative transitions in cesium. We present theoretical arguments supported by detailed numerical computations showing that the one-particle matrix element of the parity-violating electron-nucleus interaction and the parity-violating electric dipole amplitude Elpv itself weakly depend on the shape of the one-electron potential provided the binding energies of the valence states are reproduced accurately. Furthermore it turns out that because of a compensation mechanism, the parity-violating transition is induced by the radiation field outside the ion core region where the screening can be described simply in terms of the measurable cesium ion polarizability. Our results are then used to extract, from the Ecole Normale Supérieure experiment, a value of the weak charge Qw = -57.1 ± 9.4 (r.m.s. statistical deviation) ± 4.7 (systematic uncertainty). This number is to be compared with the prediction of the Weinberg-Salam model with electro-weak radiative corrections: Qw = -68.6 ± 3.0. A general discussion of the uncertainties of the atomic physics

  9. Universality of the three-body parameter for Efimov states in ultracold cesium.

    Science.gov (United States)

    Berninger, M; Zenesini, A; Huang, B; Harm, W; Nägerl, H-C; Ferlaino, F; Grimm, R; Julienne, P S; Hutson, J M

    2011-09-16

    We report on the observation of triatomic Efimov resonances in an ultracold gas of cesium atoms. Exploiting the wide tunability of interactions resulting from three broad Feshbach resonances in the same spin channel, we measure magnetic-field dependent three-body recombination loss. The positions of the loss resonances yield corresponding values for the three-body parameter, which in universal few-body physics is required to describe three-body phenomena and, in particular, to fix the spectrum of Efimov states. Our observations show a robust universal behavior with a three-body parameter that stays essentially constant.

  10. Digital Square-Wave Frequency Modulated Microwave Sources for a Miniature Optically Pumped Cesium Beam Clock

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; ZHU Chengjin; LIU Ge; WANG Fengzhi; WANG Yiqiu; YANG Donghai

    2001-01-01

    Three different digital frequencymodulated microwave sources have been designed andapplied to our miniature optically pumped cesiumbeam clock.The main features and their influenceon clock accuracy have been experimentally tested.Itis proved that a digital square-wave frequency modu-lated microwave source using a microprocessor con-trolled direct-digital frequency synthesizer (DDFS)for our miniature optically pumped cesium beamclock works well,the frequency short term stability2 × 10 11/x r and the long term stability 3.5 x 10-13 forone day sample time have been obtained.

  11. Microcrystalline hexagonal tungsten bronze. 1. Basis of ion exchange selectivity for cesium and strontium.

    Science.gov (United States)

    Griffith, Christopher S; Luca, Vittorio; Hanna, John V; Pike, Kevin J; Smith, Mark E; Thorogood, Gordon S

    2009-07-06

    The structural basis of selectivity for cesium and strontium of microcrystalline hexagonal tungsten bronze (HTB) phase Na(x)WO(3+x/2).zH(2)O has been studied using X-ray and neutron diffraction techniques, 1D and 2D (23)Na magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and radiochemical ion exchange investigations. For the HTB system, this study has shown that scattering techniques alone provide an incomplete description of the disorder and rapid exchange of water (with tunnel cations) occurring in this system. However, 1D and 2D (23)Na MAS NMR has identified three sodium species within the HTB tunnels-species A, which is located at the center of the hexagonal window and is devoid of coordinated water, and species B and C, which are the di- and monohydrated variants, respectively, of species A. Although species B accords with the traditional crystallographic model of the HTB phase, this work is the first to propose and identify the anhydrous species A and monohydrate species C. The population (total) of species B and C decreases in comparison to that of species A with increasing exchange of either cesium or strontium; that is, species B and C appear more exchangeable than species A. Moreover, a significant proportion of tunnel water is redistributed by these cations. Multiple ion exchange investigations with radiotracers (137)Cs and (85)Sr have shown that for strontium there is a definite advantage in ensuring that any easily exchanged sodium is removed from the HTB tunnels prior to exchange. The decrease in selectivity (wrt cesium) is most probably due to the slightly smaller effective size of Sr(2+); namely, it is less of a good fit for the hexagonal window, ion exchange site. The selectivity of the HTB framework for cesium has been shown unequivocally to be defined by the structure of the hexagonal window, ion exchange site. Compromising the geometry of this window even in the slightest way by either (1) varying the cell volume through

  12. TMI-2 core debris-cesium release/settling test. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D W; Johnson, D A

    1984-12-01

    Cesium release, turbidity and airborne potential tests were conducted on 50 grams of TMI-2 core debris materials. The tests were performed on the debris in two conditions: on the as-received core debris specimen, and after crushing the debris to alter the particle size distribution. The crushing was intended to simulate the breakup of TMI-2 core material that may occur during reactor defueling. These tests are intended to assist GPU Nuclear in predicting the effect of defueling on the reactor environment.

  13. Accumulation of uranium, cesium, and radium by microbial cells: bench-scale studies

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.; Shumate, S.E. II

    1982-07-01

    This report describes bench-scale studies on the utilization of microbial cells for the concentration and removal of uranium, radium, and cesium from nuclear processing waste streams. Included are studies aimed at elucidating the basic mechanism of uranium uptake, process development efforts for the use of a combined denitrification-uranium removal process to treat a specific nuclear processing waste stream, and a preliminary investigation of the applicability of microorganisms for the removal of /sup 137/Cs and /sup 226/Ra from existing waste solutions.

  14. The Effect of Carbonate, Oxalate and Peroxide on the Cesium Loading of Ionsiv IE-910 and IE-911

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.F.

    2000-12-19

    The Savannah River Site (SRS) continues to examine three processes for the removal of radiocesium from high-level waste. One option involves the use of crystalline silicotitanate (CST) as a non-elutable ion exchange medium. The process uses CST in its engineered form - IONSIV IE-911 made by UOP, LLC. - in a column to contact the liquid waste. Cesium exchanges with sodium ions residing inside the CST particles. The design disposes of the cesium-loaded CST by vitrification within the Defense Waste Processing Facility.

  15. Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    CERN Document Server

    Harding, Philip J; Mosk, Allard P; Vos, Willem L

    2014-01-01

    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-...

  16. Research on ultracold cesium molecule long-range states by high-resolution photoassociative spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WANG LiRong; MA Jie; JI WeiBang; WANG GuiPing; XIAO LianTuan; JIA SuoTang

    2008-01-01

    In this paper, an ultra-high resolution photoassociation spectroscopy study on photoassociation of cesium atoms is reported. The cold cesium gas in the mag-neto-optical trap is illuminated by a photoassociation laser with red-tuning as large as 40 cm-1 below the 6S1/2 + 6P3/2 dissociation limit, and the photoassoclation to the excited state ultracold molecule is detected. High signal-to-noise ratio is obtained by using the lock-in detection of the fluorescence from the modulated cold Cs at-oms. The O-g, and O+u, long-range states which correspond to 6S1/2 + 6P3/2 diSsocia-tion limit are present in the photoassociation spectrum. The effective coefficients of leading long-range interactions and the corresponding vibrational quantum num-ber are obtained using LeRoy-Bernstein Law. It is found that photoassociation process creates rotating molecules and the high J value is a hint that higher partial waves participate in the PA process in the presence of trapping laser.

  17. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    Directory of Open Access Journals (Sweden)

    Ahmed S. Helal

    2016-05-01

    Full Text Available Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD, was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC. SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES. The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS, X-Ray Fluorescence spectrometry (XRF and Superconducting QUantum Interference Device (SQUID magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  18. Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite

    Science.gov (United States)

    Mobtaker, Hossein Ghasemi; Yousefi, Taher; Pakzad, Seyed Mohammadreza

    2016-12-01

    A nano-composite of copper hexacyanoferrate@polyacrylonitrile@magnetite (CuHCNPAN) was synthesized through chemical co-precipitation. The product were characterized using FT IR, XRD, SEM and TG techniques. The results of FTIR, XRD confirmed the composite formation. The SEM images showed that the particles are 20-60 nm in diameter. The composite showed high mechanical, chemical and thermal stability. The nano composite was used for removal of cesium ions from waste solutions. Effect of various parameters such as contact time, initial concentration, pH, competition ions and temperature were studied. After the metal ion adsorption process the magnetic separation of adsorbent from absorbents was carried out through external magnetic field. Maximum sorption capacity was about 260 mg/g. The kinetic studies showed that the equilibrium was achieved at 5 h and the experimental data fitted by the second order model. The adsorption isotherm was best modeled by Longmuir isotherm. The endothermic and spontaneous (and entropy increasing) nature of sorption process were approved by thermodynamic results. The results cleared which the synthesized CuHCNPAM composite is promising adsorbent for removal of cesium ions from nuclear waste.

  19. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  20. New Calix[4]arene dibenzocrown ethers for selective sensing of cesium ion in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung; Kim, Jong Kuk [Konyang University, Nonsan (Korea, Republic of); Choi, Wang Kyu; Lee, Kune Woo; Oh, Won Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    1,3-dialkoxycalix[4]arene dibenzocrown ethers (6-9) were successfully synthesized in the fixed 1,3-alternate conformation with over 90% yields by the reaction of corresponding 1,3dialkoxycalix[4]arenes 2-5 with dibenzodimesylate 13 in acetonitrile as a solvent in the presence of cesium carbonate as a base. In view of cyclization yield, the use of dimesylate is found to be better than that of dibenzoditosylate. With an unusual AB pattern in {sup 1}H NMR spectrum for compound 9, it is suggested that conformational structure of 1,3-diallyloxycalix[4]arene dibenzocrown ether be less flexible than that of usual 1,3-alternate calixcrown ether, probably due to steric effects of two ally1 group. Complexation of the corresponding calix[4]arene 6-9 toward alkali metal ions using single flux method through bulk liquid membrane system was found to give a high cesium selectivity. 28 refs., 1 tab., 1 fig.

  1. Experimental approaches to assessing the impact of a cesium chloride radiological dispersal device

    Science.gov (United States)

    Lee, S.; Gibb, Snyder E.; Barzyk, J.; McGee, J.; Koenig, A.

    2008-01-01

    The US EPA, as a part of the Chemical, Biological, Radiological-Nuclear, and Explosives (CBRNE) Research and Technology Initiative (CRTI) project team, is currently working to assess the impacts of an urban radiological dispersion device (RDD) and to develop containment and decontamination strategies. Three efforts in this area are currently underway: development of a laboratory-scale cesium chloride deposition method to mimic a RDD; assessment of cesium (Cs) penetration depth and pathways in urban materials using two dimensional (2-D) mapping laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS); and experimental determination of distribution coefficients (kd) for Cs in water-building material systems. It is critical that, when performing laboratory-scale experiments to assess the fate of Cs from an RDD, the Cs particle deposition method mimics the RDD deposition. Once Cs particles are deposited onto urban surfaces, 2-D mapping of Cs concentrations using LA-ICP-MS is a critical tool for determining Cs transport pathways through these materials. Lastly, distribution coefficients are critical for understanding the transport of Cs in urban settings when direct measurements of its penetration depth are unavailable. An assessment of the newly developed deposition method along with preliminary results from the penetration experiments are presented in this paper.

  2. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    Science.gov (United States)

    Helal, Ahmed S.; Decorse, Philippe; Perruchot, Christian; Novak, Sophie; Lion, Claude; Ammar, Souad; El Hage Chahine, Jean-Michel; Hémadi, Miryana

    2016-05-01

    Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs) with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD), was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC). SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES). The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS), X-Ray Fluorescence spectrometry (XRF) and Superconducting QUantum Interference Device (SQUID) magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  3. Phase noise analysis of voltage controlled oscillator used in cesium atomic clock

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-03-01

    Coherent population trapping (CPT) cesium frequency standard plays a significant role in precision guidance of missile and global positioning system (GPS). Low noise 4.596 GHz voltage controlled oscillator (VCO) is an indispensable part of microwave signal source in cesium frequency standard. Low-phase noise is also the most important and difficult performance indicator of VCO. Starting from phase noise analysis method proposed by Leeson, the formulas about the relationship between phase noise of output signal of oscillator feedback model and phase fluctuation spectrum of amplifier, phase noise of oscillator are derived in this paper. Finally, the asymptote model of microwave oscillator is proposed based on the formula derivation. The experiment shows that when the reverse bias voltage of variode is 1.8 V, the designed oscillation frequency of VCO is 4.596 GHz, the power is ‑1 dBm and the DC power consumption is 19.6 mW. The tendency of phase noise simulation curve and actual test curve conform to asymptote model. The phase noise in 1 and 10 kHz is, respectively, ‑60.86 and ‑86.58 dBc/Hz. The significance of the paper lies in determining the main factors influencing oscillator phase noise and providing guiding direction for the design of low-phase noise VCO.

  4. Incorporation of cesium into phosphates of apatitic and rhabdophane lattices. Application to the conditioning of separated radionuclides; Incorporation du cesium dans des phosphates de structure apatitique et rhabdophane. Application au conditionnement des radionucleides separes

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, L

    2003-04-01

    Two phosphate-based materials were investigated for cesium immobilization after its partitioning from spent nuclear fuel: apatites and rhabdophanes. The incorporation of cesium into the apatitic lattice creates steric stresses. These stresses induce the formation of secondary phases which are rapidly leached. The effectiveness of the cesium immobilization in this material is not therefore validated. A second phosphate CsCaNd(PO{sub 4}){sub 2} was consistently found at the end of the leach test and its properties were further characterized. The structure of CsCaNd(PO{sub 4}){sub 2}, which is rhabdophane-like, is made of large channels which enable the incorporation of the largest alkaline cations. The synthesis involves two intermediates: the monazite, NdPO{sub 4}, and a soluble phosphate, CsCaPO{sub 4}. The study of a rhabdophane with 10 wt.% of cesium reveals satisfactory intrinsic properties: a thermal stability up to 1100 C and a leach rate of 10{sup -2} g/(m{sup 2}.d). The next step will be to improve the reaction yield. (author)

  5. Transporting dynamics of radioactive cesium in a forest ecosystem and its discharge processes

    Energy Technology Data Exchange (ETDEWEB)

    Iseda, Kohei; Ohte, Nobuhito; Tanoi, Keitaro; Endo, Izuki; Oda, Tomoki; Kato, Hiroyu [Graduate School of Agricultural and Life Sciences, University of Tokyo (Japan)

    2014-07-01

    A lot of radioactive substance including {sup 137}Cs, {sup 134}Cs fell out to Tohoku and Kanto region in particular Fukushima prefecture after the accident of Fukushima-daiichi nuclear power plant. Generally, cesium tends to attach to clay particle and organic matter. These clay particle and organic matter can potentially flow out from the forest through the river to the downstream not only as particulate matter but also dissolved matter. It is likely that behavior of cesium is similar to sediment locomotion. The objective of this study is to understand transporting dynamics of radioactive cesium inside and outside of the forest. We started investigations on transporting dynamics of cesium in the forest upper stream of Kami-Oguni river in Date city Fukushima prefecture located in about 50 km from the nuclear power plant since July 2012. We conducted river water sampling at 9 points along the river from the uppermost stream to the middle reaches during low flow condition once a month. We also sampled river water during storm event for 5 times in order to capture the change of {sup 137}Cs concentration in a flood stage. Samples were filtered and separated into particulate and dissolved matters using glass micro-fiber filters (GF/F). Samples were analyzed their {sup 137}Cs concentration by Germanium semiconductor detector at University of Tokyo. During low flow condition, {sup 137}Cs was detected only a very small amount both in particulate and dissolved matters. In contrast, during high flow condition, {sup 137}Cs was detected about 10-100 times higher than that of during low flow condition in particulate matter. We estimated discharge flux of {sup 137}Cs from the forest using the relations between water discharge and {sup 137}Cs concentration. It was 0.977 Bq/(m2 day ) (2012/8/31-2013/4/19). In the forest, we set 2 deciduous tree plots (Quercus serrata, Zelkova serrata and so on) and 1 evergreen confer plot (Cyptomeria japonica). Atmospheric depositions of {sup 137

  6. 用钨酸钠分离法研究诏安湾甲藻休眠孢子%Study on dinoflagellate resting cysts in Zhaoan Bay using method of sodium tungstate separation

    Institute of Scientific and Technical Information of China (English)

    顾海峰; 蓝东兆

    2001-01-01

    本文介绍了一种分离富集沉积物中甲藻休眠孢子的新方法——钨酸钠法,并用这种方法在诏安湾沉积物中分离到了12种甲藻休眠孢子.%This article states a new method to separate dinoflagellate resting cyst from sediment——method of sodium tungstate separation. We also separate 12 dinoflagellate resting cysts from sediment in Zhaoan Bay using this method.

  7. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    2000-08-23

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

  8. All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11.

    Science.gov (United States)

    Chen, Chien-Yu; Lin, Hung-Yu; Chiang, Kai-Ming; Tsai, Wei-Lun; Huang, Yu-Ching; Tsao, Cheng-Si; Lin, Hao-Wu

    2017-03-01

    Vacuum-sublimed inorganic cesium lead halide perovskite thin films are prepared and integrated in all-vacuum-deposited solar cells. Special care is taken to determine the stoichiometric balance of the sublimation precursors, which has great influence on the device performance. The mixed halide devices exhibit exceptional stabilized power conversion efficiency (11.8%) and promising thermal and long-term stabilities.

  9. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    Science.gov (United States)

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  10. Sugar-metal ion interactions: The coordination behavior of cesium ion with lactose, D-arabinose and L-arabinose

    Science.gov (United States)

    Jiang, Ye; Xue, Junhui; Wen, Xiaodong; Zhai, Yanjun; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Kou, Kuan; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2016-04-01

    The novel cesium chloride-lactose complex (CsCl·C12H22O10 (Cs-Lac), cesium chloride-D-arabinose and L-arabinose complexes (CsCl·C5H10O5, Cs-D-Ara and Cs-L-Ara) have been synthesized and characterized using X-ray diffraction, FTIR, FIR, THz and Raman spectroscopies. Cs+ is 9-coordinated to two chloride ions and seven hydroxyl groups from five lactose molecules in Cs-Lac. In the structures of CsCl-D-arabinose and CsCl-L-arabinose complexes, two kinds of Cs+ ions coexist in the structures. Cs1 is 10-coordinated with two chloride ions and eight hydroxyl groups from five arabinose molecule; Cs2 is 9-coordinated to three chloride ions and six hydroxyl groups from five arabinose molecules. Two coordination modes of arabinose coexist in the structures. α-D-arabinopyranose and α-L-arabinopyranose appear in the structures of Cs-D-Ara and Cs-L-Ara complexes. FTIR and Raman results indicate variations of hydrogen bonds and the conformation of the ligands after complexation. FIR and THz spectra also confirm the formation of Cs-complexes. Crystal structure, FTIR, FIR, THz and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-lactose, cesium chloride-D- and L-arabinose complexes.

  11. Tracing cohesive sediment transportation at river mouths around Tokyo, Japan by Cesium originated from Fukushima Daiichi Power Plant

    Science.gov (United States)

    koibuchi, Y.

    2012-12-01

    Sediment transport at river mouths, which consists of suspended-load and bed-load, has not been fully understood, since bed-load transport of cohesive sand is difficult to observe. Especially, the impact of sediment transport on the total amount of fine-grained cohesive sediment has not been elucidated. Cesium-134 and cesium-137 were spread from the Fukushima Daiichi Nuclear Power Plant (FDNPP) after the earthquake of March 11 of 2011, and attached to the fine-grained sand on the land. The contaminated sand flowed into the river mouths through the rivers possibly due to the complex physical processes in estuarine areas. To evaluate the fine-grained sediment transport around Tokyo and Tokyo Bay, field observations were carried out utilizing radionuclide originated from FDNPP as an effective tracer. The cohesive sediment transport at three different river mouths around Tokyo was successfully quantified. The cohesive sediment transport deposited in the estuary was found to be greatly dependent on the land use, geometry, river discharge and salinity. In addition,the transport driven by the rainfall was minute, and its behavior was quite different from suspended solids. Although further field observations of radionuclide are necessary, it is clear that fine-grained sediment in the bay from rivers already settled on the river mouth by aggregation. The settled sand will not move even in rainfall events. Consequently, the transport of radionuclide to the Pacific Ocean may not occur.; Cesium distribution around Tokyo Bay ; Cesium Concentration in Edogawa river

  12. Documentation associated with the WESF preparation for receiving 25 cesium capsules from the Applied Radiant Energy Corporation (ARECO)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M.W.

    1996-10-21

    The purpose of this report is to compile all documentation associated with facility preparation of WESF to receive 25 cesium capsules from ARECO. The WESF validated it`s preparedness by completing a facility preparedness review using a performance indicator checklist.

  13. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, Carol J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate salt feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.

  14. Inelastic neutron scattering studies of phonon spectra, and simulations of pressure-induced amorphization in tungstates A W O4 (A =Ba ,Sr ,Ca , and Pb )

    Science.gov (United States)

    Goel, Prabhatasree; Gupta, M. K.; Mittal, R.; Rols, S.; Achary, S. N.; Tyagi, A. K.; Chaplot, S. L.

    2015-03-01

    Lattice dynamics and high-pressure phase transitions in A W O4 (A =Ba ,Sr ,Ca , and Pb ) have been investigated using inelastic neutron scattering experiments, ab initio density functional theory calculations, and extensive molecular dynamics simulations. The vibrational modes that are internal to W O4 tetrahedra occur at the highest energies consistent with the relative stability of W O4 tetrahedra. The neutron data and the ab initio calculations are found to be in excellent agreement. The neutron and structural data are used to develop and validate an interatomic potential model. The model is used for classical molecular dynamics simulations to study their response to high pressure. We have calculated the enthalpies of the scheelite and fergusonite phases as a function of pressure, which confirms that the scheelite to fergusonite transition is second order in nature. With increase in pressure, there is a gradual change in the A O8 polyhedra, while there is no apparent change in the W O4 tetrahedra. We found that all the four tungstates amorphize at high pressure. This is in good agreement with available experimental observations which show amorphization at around 45 GPa in BaW O4 and 40 GPa in CaW O4 . Further molecular dynamics simulations at high pressure and high temperature indicate that application of pressure at higher temperature hastens the process of amorphization. On amorphization, there is an abrupt increase in the coordination of the W atom while the bisdisphenoids around the A atom are considerably distorted. The pair-correlation functions of the various atom pairs corroborate these observations. Our observations aid in predicting the pressure of amorphization in SrW O4 and PbW O4 .

  15. Cesium-137 as a tracer of soil turbation: example of the taiga landscapes of the Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Usacheva, Anna A.; Semenkov, Ivan N. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences, 119017, Moscow (Russian Federation)

    2014-07-01

    Cesium-137 is artificial radionuclide with 30.17 years half-life. However, this element can be found anywhere due to global atmospheric fallout. Its background storage is detected in landscapes: water, bottom sediments, plants and soils. Almost no one has studied the concentration of {sup 137}Cs in the landscapes of the North, because of its negligible storage. Cesium-137 is slightly mobile in the soils of the North. The cryogenic and other material movement is a typical feature of soils of the North. However, the dating of the soil turbations less than 100 years of age, using existing methods, is possible via long-term stationary observations. To determine the age of soil turbations quicker, one can use slightly mobile artificial radionuclides with medium or long half-life. Cesium-137 satisfies all the criteria. The aim of the work is to estimate suitable of cesium-137 as geo-tracer of soil turbation. According to our evaluation, the activity of the buried layers is less than 10 Bq*kg{sup -1} at the current {sup 137}Cs contamination of surface organic horizons (60-90 Bq*kg{sup -1}). A research has been conducted to study distribution of cesium-137 in the north and middle taiga landscapes of Western Siberia (Russia). Field research was carried out in 2012 in two study areas. The first study area 'Purpe' is located in the middle part of the Pur river basin, near Gubkinsky town (Yamalo-Nenets Autonomous Okrug). The second study area 'Noyabrsk' is located in the Ob and the Pur river watersheds, near Noyabrsk-city (Yamalo-Nenets Autonomous Okrug). Moss-grass-underwood layer (n=13) contains 22±20% of {sup 137}Cs total storage in the landscapes of oligo-trophic bogs with cryohistosols and pine forests on cryopodzols. The main reservoir of cesium-137 is soils (n=24) that accumulate 78±20% of its total landscape storage. The upper 10-cm soil layer contains 90% of {sup 137}Cs soil storage. Cesium-137 activity declines from shrubs and polytric layers

  16. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo; Park, Yong Joon; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is the optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)

  17. Sorption properties of cesium in soil%铯在土壤中的吸附性能研究

    Institute of Scientific and Technical Information of China (English)

    李爽; 倪师军; 张成江; 吴虹霁

    2009-01-01

    The sorption properties of cesium in the soil of a nuclear waste repository were investigated by column method. The effects of pH value, granularity of the soil, concentration of cesium solution on the sorption properties were also studied. The experiment results show that the equilibrium adsorptive quantity increases with the increasing of pH value and the initial concentration of cesium solution and decreases with the increasing of the grain size of the soil. This has no orderliness between equilibrium adsorptive quantity and pH value, the grain size of the soil. The most sorption rate of cesium in the soil of the primary election nuclear waste disposal is 65.9%, and the sorption properties are not well. So, people must use something which can adsorb cesium well as a barrier before the disposition.%用动态法测定了铯在某放射性废物处置预选场址土壤中的平衡吸附量,研究了水相pH值、土壤粒度及铯溶液浓度对土壤吸附铯的影响.pH值、溶液浓度越大,土壤平衡吸附量越大;土壤粒度越小,土壤平衡吸附量越大.用常用的吸附动力学方程对实验数据进行了拟合,并对吸附机理进行了探讨.实验结果表明,该放射性废物处置预选场址土壤对铯的最大吸附率为65.9%,吸附性能较差.

  18. The determination of Fukushima-derived cesium-134 and cesium-137 in Japanese green tea samples and their distribution subsequent to simulated beverage preparation.

    Science.gov (United States)

    Cook, Matthew C; Stukel, Matthew J; Zhang, Weihua; Mercier, Jean-Francois; Cooke, Michael W

    2016-03-01

    Health Canada's Radiation Protection Bureau has identified trace quantities of (134)Cs and (137)Cs in commercially available green tea products of Japanese origin. Referenced to March 11, 2011, the activity ratio ((134)Cs/(137)Cs) has been determined to be 1:1, which supports an origin from the Fukushima Dai-ichi Nuclear Power Plant accident. The upper limits of typical tea beverage preparation conditions were applied to the most contaminated of these green tea samples to determine the proportion of radiocesium contamination that would be available for human consumption. The distribution of radiocesium among the components of the extraction experiments (water, residual tea solid, and filter media) was determined by both conventional and Compton-suppressed gamma spectroscopy. The latter aided tremendously in providing a more complete radiocesium distribution profile, particularly for the shorter-lived (134)Cs. Cesium extraction efficiencies of 64 ± 7% and 64 ± 5% were determined based on (134)Cs and (137)Cs, respectively. Annual, effective dose estimates from ingestion of (137)Cs and (134)Cs (1.8-3.7 μSv), arising from the consumption of tea beverages prepared from the most contaminated of these samples, are insignificant relative to both total (∼ 2.4 mSv) and ingested (∼ 0.28 mSv) annual effective doses received from naturally occurring radioactive sources. As such, there is no health concern arising from the consumption of green tea beverages contaminated with radiocesium at the levels encountered in this study.

  19. Synthesis and characterization of poly-o-anisidine Sn(IV tungstate: A new and novel ‘organic–inorganic’ nano-composite material and its electro-analytical applications as Hg(II ion-selective membrane electrode

    Directory of Open Access Journals (Sweden)

    Asif A. Khan

    2012-07-01

    Full Text Available An organic–inorganic nano-composite poly-o-anisidine Sn(IV tungstate was chemically synthesized by sol–gel mixing of the incorporation of organic polymer o-anisidine into the matrices of inorganic ppt of Sn(IV tungstate in different mixing volume ratios. This composite material has been characterized using various analytical techniques like XRD (X-ray diffraction, FTIR (Fourier transform infrared, SEM (Scanning electron microscopy, TEM (Transmission electron microscopy and simultaneous TGA (Thermogravimetric analysis studies. On the basis of distribution studies, the material was found to be highly selective for Hg(II. Using this nano-composite cation exchanger as electro-active material, a new heterogeneous precipitate based on ion-sensitive membrane electrode was developed for the determination of Hg(II ions in solutions. The membrane electrode was mechanically stable, with a quick response time, and can be operated within a wide pH range. The electrode was also found to be satisfactory in electrometric titrations.

  20. Solvent-Free Mechanosynthesis of Composition-Tunable Cesium Lead Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Zhu, Zhi-Yuan; Yang, Qi-Qi; Gao, Lin-Feng; Zhang, Lei; Shi, An-Ye; Sun, Chun-Lin; Wang, Qiang; Zhang, Hao-Li

    2017-03-24

    A facile and green mechanosynthesis strategy free of solvent and high reaction temperature was developed to fabricate highly emissive cesium lead halide perovskite (CsPbX3) quantum dots (QDs). Their composition can be adjusted conveniently simply through mechanically milling/grinding stoichiometric combinations of raw reagents, thereby introducing a broad luminescence tunability of the product with adjustable wavelength, line width, and photoluminescence quantum yield. Desired CsPbX3 QDs "library" can thus be readily constructed in a way like assembling Lego building blocks. Hence, the method offered new avenues in the preparation of multicomponent cocrystals, adding one appealing apparatus to the tool box of perovskite-type QDs synthesis. Intriguingly, photoinduced dynamic study revealed the hole-transfer process of the as-prepared QDs toward electron donors, indicative of their potential in charge-transfer-based applications such as light-harvesting devices and photocatalysis.

  1. Numerical study of cesium effects on negative ion production in volume sources

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, Osamu; Niitani, Eiji [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1997-02-01

    Effects of cesium vapor injection of H{sup -} production in a tandem negative ion source are studied numerically as a function of plasma parameters. Model calculation is done by solving a set of particle balance equations in a steady-state hydrogen discharge plasmas. Here, the results which focus on gas pressure and electron temperature dependences of H{sup -} volume production are presented and discussed. With including H{sup -} surface production processes caused by both H atoms and positive hydrogen ions, enhancement of H{sup -} production and pressure dependence of H{sup -} production observed experimentally are well reproduced in the model. To enhance H{sup -} production, however, so-called electron cooling is not so effective if plasma parameters are initially optimized with the use of magnetic filter. (author)

  2. Characterizing passive coherent population trapping resonance in a cesium vapor cell filled with neon buffer gas

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi; Wang Jie-Ying; Diao Wen-Ting; He Jun; Wang Jun-Min

    2013-01-01

    We present a pair of phase-locked lasers with a 9.2-GHz frequency difference through the injection locking of a master laser to the RF-modulation sideband of a slave diode laser.Using this laser system,a coherent population trapping (CPT)signal with a typical linewidth of ~ 182 Hz is obtained in a cesium vapor cell filled with 30 Torr (4 kPa) of neon as the buffer gas.We investigate the influence of the partial pressure of the neon buffer gas on the CPT linewidth,amplitude,and frequency shift.The results may offer some references for CPT atomic clocks and CPT atomic magnetometers.

  3. Small cluster ions from source of negative ions by cesium sputtering

    CERN Document Server

    Wang, X M; Shao, L; Liu, J R; Chu, W K

    2002-01-01

    We investigated the delivery of small cluster ions using a source of negative ions by cesium sputtering (SNICS). The negative cluster ions of B sub n , C sub n , Si sub n , Co sub n , Cu sub n , Ge sub n , Au sub n , GeB sub n and SiB sub n have been extracted by SNICS. Adequate beam current of some small clusters was obtained by changing several parameters for cluster ion yield. After a comprehensive study of the operation parameters, such as target material selection, target geometry, sputtering voltage and current, the small cluster ion current can be increased by several orders of magnitude, with little change on the monomer ion yield.

  4. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..

  5. Generation of ultraviolet radiation with wide angular tolerance in cesium lithium borate crystal

    Indian Academy of Sciences (India)

    Gopal C Bhar; Pathik Kumbhakar; Anil K Chaudhary

    2000-09-01

    Tangential phase-matching has been realised in cesium lithium borate (CLBO) crystal for the first time for the generation of fourth harmonic (266 nm) of Nd:YAG and third harmonic (226.7 nm) of a dye laser radiation by second harmonic generation and sum-frequency mixing with the angular tolerance as large as 22 mrad and 21 mrad respectively, over one of the interacting beams. An energy conversion efficiency of 15% for fourth harmonic generation is obtained with a 5.5 mm thick crystal and with the average pump powers only 170 and 70 mW. A set of Sellmeier dispersion equations for the CLBO crystal have also been formulated.

  6. Parity violation in atomic cesium and alternatives to the standard model of electroweak interactions

    Science.gov (United States)

    Bouchiat, C.; Piketty, C. A.

    1983-08-01

    We study the implications of the recent observation of a parity violation in atomic cesium. After a discussion of the uncertainties associated with the atomic physics calculations we derive conservative bounds for the weak charge QW. These bounds are used to put constraints on alternatives to the standard electroweak model, involving an ``extra U(1)'' gauge group. We analyze the possibility that the extra gauge boson might be very and give, as a by-product, the typical range of momentum transfer explored in atomic parity violation experiments. Laboratoire Propre du Centre National de la Recherche Scientifique associée à l'Ecole Normale Supérieure et à l'Université de Paris Sud.

  7. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    Science.gov (United States)

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  8. Testing Universality of Efimov Physics in an Ultracold Mixture of Lithium and Cesium Atoms

    Science.gov (United States)

    Johansen, Jacob; Desalvo, Brian; Chin, Cheng

    2016-05-01

    We conduct a survey of Li-Cs-Cs Efimov resonances in a 6 Li-133 Cs mixture in the magnetic field range of 800 to 950 G. In this region, limiting our study to the two lowest Zeeman levels of lithium and the lowest Zeeman level of cesium, there are five Feshbach resonances which may be probed. The Cs-Cs scattering length at these resonances varies from -3600 a0 to +1000 a0, allowing us to study the impact of the Cs-Cs scattering length on the Efimov resonance positions. In addition, a combination of broad and narrow Feshbach resonances in this magnetic field range allows us to probe the influence of molecular physics on the Efimov effect, particularly the variation of the three-body parameter.

  9. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Edward J. Maginn

    2009-11-09

    The primary objective of the Notre Dame component of the project was computational in nature. The goal was to provide a design tool for the synthesis of optimized sorbents for the removal of cesium, strontium and actinides from nuclear waste solutions. Molecular modeling enables us to observe and better understand the molecular level interactions that govern the selectivity of specific radionuclides in a particular sorbent. The research focused on the development and validation of a suitable and transferable model for all the cations and ion exchangers of interest, nd then subsequent simulations which determined the siting and mobility of water and cations. Speciic accomplishments include: (1) improving existing intermolecular force fields to accurately model the sorbents of interest; (2) utilizing energy-minimizations and molecular dynamics simulations for structural prediction of CST and niobium-substituted CST materials; (3) determining Na+/water positions in polyoxoniobate materials using molecular dynamics simulations; and (4) developing Hybrid Monte Carlo methods for improved structural prediction.

  10. Sorption of cesium, radium, protactinium, uranium, neptunium and plutonium on rapakivi granite

    Energy Technology Data Exchange (ETDEWEB)

    Huitti, T.; Hakanen, M. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Lindberg, A. [Geological Survey of Finland, Espoo (Finland)

    1996-12-01

    The aim of the study is to determine the sorption of cesium, radium, protactinium, uranium, neptunium and plutonium on rapakivi granite in the brackish groundwater of Haestholmen (site of the Loviisa-1, Loviisa-2 reactors). The studies were carried out under aerobic (Cs, Ra, Pa, U, Np, Pu) and anaerobic (Np, Pa, Pu, Tc) laboratory conditions. The cation exchange capasity was determined for the rock and the diffusion of tritiated water in the rocks of different degree of alteration. The sorption and diffusion properties of the rocks are briefly compared with those of host rocks at other sites under investigation by the Finnish company Posiva Oy for the final disposal of spent fuel. (29 refs.).

  11. Neutron powder diffraction and theory-aided structure refinement of rubidium and cesium ureate

    Energy Technology Data Exchange (ETDEWEB)

    Sterri, Kjersti B.; Deringer, Volker L.; Houben, Andreas; Jacobs, Philipp [RWTH Aachen Univ. (Germany). Inst. of Inorganic Chemistry; Kumar, Chogondahalli M.N. [Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science (JCNS), Outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Oak Ridge National Laboratory, TN (United States). Chemical and Engineering Materials Div.; Dronskowski, Richard [RWTH Aachen Univ. (Germany). Inst. of Inorganic Chemistry; RWTH Aachen Univ. (Germany). Juelich-Aachen Research Alliance (JARA-HPC)

    2016-08-01

    Urea (CN{sub 2}H{sub 4}O) is a fundamental biomolecule whose derivatives are abundant throughout chemistry. Among the latter, rubidium ureate (RbCN{sub 2}H{sub 3}O) and its cesium analog (CsCN{sub 2}H{sub 3}O) have been described only very recently and form the first structurally characterized salts of deprotonated urea. Here, we report on a neutron diffraction study on the aforementioned alkaline-metal ureates, which affords the positions for all hydrogen atoms (including full anisotropic displacement tensors) and thus allows us to gain fundamental insights into the hydrogen-bonding networks in the title compounds. The structure refinements of the experimental neutron data proceeded successfully using starting parameters from ab initio simulations of atomic positions and anisotropic displacement parameters. Such joint experimental-theoretical refinement procedures promise significant practical potential in cases where complex solids (organic, organometallic, framework materials) are studied by powder diffraction.

  12. Photoemission and optical constant measurements of Cesium Iodide thin film photocathode

    CERN Document Server

    Triloki,; Gupta, Nikita; Jammal, Nabeel F A; Singh, B K

    2014-01-01

    Performance of cesium iodide (CsI) as a reflective photocathode is presented. Absolute quantum efficiency (QE) measurement of 500 nm thick CsI film has been carried out in the wavelength range of 150 nm to 200 nm. Optical absorbance of 500 nm thick CsI film in the spectral range of 190 nm to 900 nm is analyzed and optical energy band gap is calculated using Tauc plot. To see the dispersive behavior of CsI film, refractive index has been determined by envelop plot of transmittance data, using Swanepoel method. Additional information on morphological and elemental composition results of CsI film, gained by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively are also reported in present work.

  13. [Characteristics of mitochondria and myocardium ultrastructure of rats following chronic incorporation of cesium radionuclides 137 Cs].

    Science.gov (United States)

    Gritsuk, A I; Matiukhina, T G; Koval', A N; Sergeenko, S M; Svergun, V T; Verner, A I; Gritsuk, N A

    2002-01-01

    Ultrastructure, tissue respiration and oxidative phosphorilation were studies in the myocardium of animals after chronic natural irradiation by 137Cs in quantities that can in reality threaten population of radionuclide-polluted regions. Decline in the respiratory activity of the myocardium and ultrastructural disorders can be attributed to the effects of ions of radioactive Cs which is also a potassium antagonist. A hypothesis has been put forward according to which cesium blocks potassium channels in mitochondria and thus changes the volume and configuration of internal mitochondrial membranes, and impacts the respiratory processes. In the opinion of the authors, these changes characterize the mitochondrial phase of apoptosis which, in the event of chronic exposure to radionuclides, is a compensatory-adaptive mechanism eliminating the least immutable subpopulation of cardiomyocites.

  14. New data for Cesium from soil in Cluj-Napoca town after Cernobyl accident

    Directory of Open Access Journals (Sweden)

    Dan C. Niţă

    2011-08-01

    Full Text Available Cesium 137 deposits are due to serious nuclear disaster (such as Chernobyl and nuclearweapons tests. Due to the wide range of uses in environmental studies is important to know thatradionuclide concentrations in environment. Soil samples were measured, in which 137 Cs activitiesvaries between 4.3 and 114.3 Bq / kg. The highest concentrations were found in the top layers of thesoil. From the soil depth profiles it can be observed the 137 Cs migration. Horizontal and verticalmigration depends mainly on water runoff and the concentration of radionuclides, hydrological regimeand the type of soil. It is important to know the amount of radionuclides in the soil because there arealready developed models which describe the radionuclides migration in different environments. One ofthe most studied radionuclide Cs-137 is due to its abundance and relatively long half-life. If theconcentration of the radionuclides exceeds a certain value, it might be a threat to human health.

  15. Determination of the hyperfine coupling constant of cesium 7S1/2 state

    CERN Document Server

    Yang, Guang; Yang, Baodong; Wang, Junmin

    2016-01-01

    We report the hyperfine splitting (HFS) measurement of cesium (Cs) 7S1/2 state by optical-optical double-resonance spectroscopy in the 6S1/2-6P3/2-7S1/2 (852 nm + 1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry-Perot cavity. From the measured HFS between F"= 3 and F"= 4 manifolds of Cs 7S1/2 state [HFS = 2183.273(37) MHz], we have determined the magnetic dipole hyperfine coupling constant [A = 545.818(09) MHz], which is in good agreement with the previous work but much more accurate.

  16. Selective removal of cesium and strontium using porous frameworks from high level nuclear waste.

    Science.gov (United States)

    Aguila, Briana; Banerjee, Debasis; Nie, Zimin; Shin, Yongsoon; Ma, Shengqian; Thallapally, Praveen K

    2016-05-01

    Efficient and cost-effective removal of radioactive (137)Cs and (90)Sr found in spent fuel is an important step for safe, long-term storage of nuclear waste. Solid-state materials such as resins and titanosilicate zeolites have been assessed for the removal of Cs and Sr from aqueous solutions, but there is room for improvement in terms of capacity and selectivity. Herein, we report the Cs(+) and Sr(2+) exchange potential of an ultra stable MOF, namely, MIL-101-SO3H, as a function of different contact times, concentrations, pH levels, and in the presence of competing ions. Our preliminary results suggest that MOFs with suitable ion exchange groups can be promising alternate materials for cesium and strontium removal.

  17. Estimation of Physical Properties of AN-107 Cesium and Technetium Eluate Blend

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    2001-06-12

    The objective of this study, as defined in the associated test specifications and task technical and quality assurance plan, was to estimate all the physical properties that are required to design the storage and transport facilities for the concentrated cesium and technetium eluates. Specifically, the scope of this study included: (1) modeling of the aqueous electrolyte chemistry of Tank 241-AN-107 Cs and Tc eluate evaporators, (2) process modeling of semi-batch and continuous evaporation operations, (3) determination of the operating vacuum and target endpoint of each evaporator, (4) calculation of the physical properties of the concentrated Cs and Tc eluate blend, and (5) development of the empirical correlations for the physical properties thus estimated.

  18. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Arnold, E-mail: aburger@fisk.edu [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-05

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.

  19. Generation of a twin beam at the cesium line and telecom wavelength by cavity phase matching.

    Science.gov (United States)

    Liu, Y H; Xie, Z D; Ling, W; Lv, X J; Zhu, S N

    2011-08-15

    Cavity phase matching has been recently demonstrated as a phase-matching method for efficient nonlinear frequency conversion in a microcavity. Here we extend it to the Type I configuration using a sub-coherent-length optical parametric oscillator consisting of an MgO-doped lithium niobate crystal sheet. It generates a tunable single-longitudinal-mode twin beam, which covers the cesium D2 line of 852.1 nm and the extended band of optical communication. This microcavity is capable of peak output power of 58 kW with a maximum conversion efficiency of 18.5%. Broad applications in the areas of light-atom interaction, spectroscopy, optical telecommunication, and quantum optics can be expected.

  20. Cesium-iodide-based nanocrystal for the detection of ionizing radiation

    Science.gov (United States)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.

    2016-05-01

    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  1. Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions.

    Science.gov (United States)

    Kang, Dong Jin; Seo, Young-Jin; Saito, Tsukasa; Suzuki, Hiroyuki; Ishii, Yasuyuki

    2012-08-01

    The present study reports the potential remediation of cesium (Cs) using napiergrass, which produces the largest biomass among the herbaceous plants in hydroponic culture containing stable Cs (Cs-133) at concentrations of 50, 150, 300, 1000, and 3,000 μM using cesium chloride (CsCl), with 0 μM Cs as a control concentration. Plant height was significantly decreased in higher Cs-treated conditions (300, 1000, and 3000 μM Cs) at 7 weeks after treatment (WAT), but tiller numbers tended to increase compared with the control plant. No significant difference was observed in the aboveground dry matter weight in all Cs treatments throughout the study period. Cs content in the roots, leaf blades, and leaf sheaths clearly increased with increasing Cs concentration in the solutions. Cs content in the aboveground parts (leaf blades and leaf sheaths) was consistently higher than in the roots at concentration of 3,000 μM. Total Cs contents in the aboveground parts were 6305 and 26,365 mg kg(-1) at 7WAT in 1000- and 3000-μM Cs treatments, respectively. Mean values of transfer factors (TFs) in the aboveground parts were 50 μM=0.78, 150 μM=1.02, 300 μM=0.86, 1,000 μM=0.68, and 3,000 μM=0.94, respectively at 7WAT. Due to its high Cs content and high TF in the aboveground parts, napiergrass may be a candidate plant with high potential for phytoremediation of Cs from Cs-137-contaminated soil.

  2. Development of partitioning method. Adsorption of cesium with mordenite in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Donnet, L.; Morita, Yasuji; Yamagishi, Isao; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    Adsorption of cesium with mordenite from a acidic solution, typically from a 0.5 mol/L nitric acid solution, was studied to examine the possibility to design a new separation scheme for partitioning of high-level liquid waste. Batch adsorption experiments showed that three mordenites examined (natural mordenite and two synthetic mordenites Zeolon 900Na and 900H) have very close behavior with the parameters of adsorption kinetics, the saturation capacity by Langmuir equation, the distribution coefficient of Cs and adsorption of other elements. In the Cs adsorption with the natural mordenite at 0.5 mol/L nitric acid, distribution coefficient was 1150 ml/g and the saturation capacity was 0.64 mmol/g. In the adsorption of Cs on column using the natural mordenite, the flow rate of the Cs solution modified only the 5% breakthrough point and gave no influence on the total capacity of Cs. Column experiments with a mixed solution of Cs, Rb, Na, Ba, Sr, Cr, Ni, Ru, Rh and Pd showed that cesium was adsorbed very selectively. Only about 4% of rubidium in a molar ratio were retained in the column. The total quantity of Cs and Rb adsorbed was 0.51 mmol/g at 0.5 mol/L nitric acid. Elution of Cs (and Rb) with 4 mol/L nitric acid was performed against the column of the loaded natural mordenite. The adsorbed Cs and Rb were well eluted, and a good mass balance was obtained between the adsorbed quantity by breakthrough curves and the quantity found in the eluate. (author)

  3. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Birdwell, Joseph F. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  4. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birdwell, Jr, Joseph F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duncan, Nathan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ensor, Dale [Tennessee Technological Univ., Cookeville, TN (United States); Hill, Talon G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rajbanshi, Arbin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roach, Benjamin D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szczygiel, Patricia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sloop, Jr., Frederick V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stoner, Erica L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Neil J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  5. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Rajewska, A., E-mail: aldonar@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Medrzycka, K.; Hallmann, E. [Gdansk University of Technology (Poland); Soloviov, D. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-01-15

    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  6. LOW-TEMPERATURE INFRARED REFLECTION SPECTRA OF LEAD TUNGSTATE CRYSTAL%钨酸铅晶体的低温红外反射谱

    Institute of Scientific and Technical Information of China (English)

    孙桂芳; 阮树仁; 牟娟; 钱霞; 盛淑芳

    2013-01-01

    The infrared reflection spectra of the Lead tungstate (PbWO4,PWO) crystal were measured at 77K,100K,200K and 300K.The measurement results show that the infrared reflection spectra of the PWO crystal have eight reflection peaks.The crystal structure of PWO crystal was stable at 77~ 300K.Using the Kramers-Kronig (K-K) relation,the data of infrared reflection spectra were processed.The transverse optical (TO) phonon frequency ωTO were obtained at different temperature.The temperature dependence of the lattice vibration mode was obtained.The results show that the frequencies of Pb2+ vibration mode changes toward higher wave numbers with the decrease of temperature,which are attributed to the thermal expansion.The frequencies of WO42-vibration mode changes toward lower wave numbers with the decrease of temperature,which are attributed to the anharmonic coupling of the phonos.%分别在77K、100K、200K和300K温度下测量了钨酸铅(PbWO4,PWO)晶体的红外反射谱,观察到8个反射峰;实验表明PWO晶体在低温77~300K范围内结构稳定.利用Kramers-Kronig(K-K)关系对样品的红外反射谱进行数据处理,获得了不同温度下各振动模的横光学(TO)声子频率ωTO,从而得到了PWO晶体各振动模的温度变化特性,研究表明:Pb2+离子的平动模频率随温度降低发生蓝移,主要是晶格的热膨胀影响;WO42-离子团的振动模频率随温度降低发生红移,主要是非简谐耦合作用影响.

  7. Metabolism of {sup 137}cesium, {sup 137}barium in the rat. Therapeutics of the contamination; Metabolisme du {sup 137}cesium, {sup 137}baryum chez le rat. Therapeutique de la contamination

    Energy Technology Data Exchange (ETDEWEB)

    Remy, J.; Philippon, A.; Lafuma, J.; Walter, C. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Departement de la Protection Sanitaire, Laboratoire de Radiopathologie

    1967-07-01

    The authors carry out research into the distribution kinetics, the metabolism and the excretion of {sup 137}Cs - {sup 137}Ba in the rat. They show that these phenomena are independent of the method of applying a single dose. The distribution tends to adopt in all cases a typical shape which remains the same depending on the body burden. Biological analysis of the state of the cesium in the biological media shows that it is transported in the free and ionised form. Considering the problem of the method of penetration of the cesium ion in the intracellular medium, and in particular by the in vivo and in vitro kinetic study of the plasma - red cell system, the authors make the assumption that an active transport of cesium occurs by the cell membrane. They thus arrive at an overall picture of the cesium distribution in the organism which is essentially characterized by a dynamic distribution equilibrium between two compartments: 99 per cent of the cesium accumulates in the intracellular pool, 1 per cent in the extracellular liquids. This latter compartment is open to the emunctories. Because, of the active transport by the cell membranes, the intracellular pool is filled rapidly but discharge is slow. This phenomenon is the limiting factor in the decrease of the body burden. From this representation, the authors deduce the reasons for the relative failure of the various therapeutic methods examined up till now by themselves or by other authors. The stimulation of the natural emunctories in the case of diuretics for example, can only improve the purification of the extracellular compartment. Now this latter contains only 1 per cent of the body burden and recharging is slow. Furthermore the methods designed to counteract or inhibit the active transport of cesium by the cell membrane are still at the present time incompatible with the survival of the cell. (authors) [French] Les auteurs etudient experimentalement la cinetique de distribution, le metabolisme et l

  8. MODELING OF ION-EXCHANGE FOR CESIUM REMOVAL FROM DISSOLVED SALTCAKE IN SRS TANKS 1-3, 37 AND 41

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F

    2007-08-15

    This report presents an evaluation of the expected performance of engineered Crystalline Silicotitanate (CST) and spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from dissolved saltcake in SRS Tanks 1-3, 37 and 41. The application presented in this report reflects the expected behavior of engineered CST IE-911 and spherical RF resin manufactured at the intermediate-scale (approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in RF resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary. As such, the predictions provided within this report should provide reasonable estimates of production-scale column performance. Two versions of the RF cesium isotherm were used. The older version provides a conservative estimate of the resin capacity while the newer version more accurately fits the most recent experimental data.

  9. Experimental contamination of pink shrimps by caesium 137; Contamination experimentale de crevettes roses par le cesium 137

    Energy Technology Data Exchange (ETDEWEB)

    Ancellin, J.; Michon, G.; Vilquin, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors describe first of all the technique used for the determination of cesium 137 concentration factors in the pink shrimp (Leander Serratus Pennant). Experiments over three months have shown that the specific activity of the shrimps becomes stable between the thirtieth and the fortieth day. The concentration factors then have values between 30 and 40. These results are similar to those obtained by other authors. (authors) [French] Les auteurs decrivent tout d'abord la technique utilisee pour la determination des facteurs de concentration du Cesium 137 chez la crevette rose (Leander Serratus Pennant). Le resultat des experimentations menees pendant trois mois montre que l'activite specifique des crevettes se stabilise entre le trentieme et le quarantieme jour. Les facteurs de concentration se situent alors entre 30 et 40, Ces donnees sont comparables a celles obtenues par d'autres auteurs. (auteur)

  10. Studier av radioaktivt cesium i svenska renar. Oversikt over pågående undersokningar 1986

    Directory of Open Access Journals (Sweden)

    Gustaf Åhman

    1986-06-01

    Full Text Available I samband med den forskning och forsöksverksamhet som bedrivits vid renforsöksavdelningen har vi arbetat med metodik och teknik som kan tillämpas vid studier av radioaktivt cesium i renbetesväxter och i renar. På betessidan har vi bl.a. arbetat med kontaminering av tungmetaller från gruvindustrin och nitrat efter kvävegödsling. Omfattande studier har utförts av renens mineralstatus och mineralämnesomsättning. Erfarenheter och kunskaper från dessa områden har utnyttjats for planering och genomförande av de studier som nu pågår beträffande radioaktivt cesium i renbetesväxter och renar.

  11. A study on the fission product release behavior during DUPIC pellet fabrication and the characteristics of cesium trapping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Jin Myeong; Park, Geun Il; Nam, Seung Hee; Park, Jang Jin; Lee, Jung Won; Yang, Myung Seung [Korea Atomic Energy Reserach Institute, Daejon (Korea, Republic of)

    2001-11-15

    During the OREOX and sintering process in DUPIC fuel fabrication, fission products would be released from the spent fuel material. Radioactivity measurement using gamma spectrometry technique was performed to identify the radionuclide species released from the spent fuel material at high temperatures up to 1700 deg. C. It was revealed that Cs-137 is the main fission product released from the spent fuel material, and about 99% of Cs-137 is released during sintering process. Therefore, the trapping characteristics of inactive cesium using the fly ash filter in off-gas stream at high temperature was investigated in terms of reaction temperature, carrier gas and gas velocity. The amount of trapped cesium by the fly ash filter was increased with increasing reaction temperature, whereas it was decreased with increasing gas velocity.

  12. Extraction of Cesium from the Irradiated Nuclear Waste by 4(5),4'(5')-Bis[1-hydroxyalkylbenzo]-21-crown-7

    Institute of Scientific and Technical Information of China (English)

    Ying DU; Wen Jun CHEN; Sheng Ying QIN

    2004-01-01

    4(5),4'(5')-Bis[l-hydroxyalkylbenzo]-21-crown-7 (A-C) have been synthesized by two-step reactions from dibenzo-21-crown-7 (DB21C7). Extraction of cesium cation from nitric acid solutions by A-C has been investigated in nitromethane. Under the conditions of various concentration of HNO3 or NaNO3, the extractabilities of A and B were superior to that of DB21C7.

  13. Copper Ferrocyanide-Functionalized Magnetic Adsorbents Using Polyethyleneimine Coated Fe3O4 Nanoparticles for the Removal of Radioactive Cesium.

    Science.gov (United States)

    Yang, Hee-Man; Hong, Sang Bum; Cho, Yong Suk; Lee, Kune-Woo; Seo, Bum-Kyoung; Moon, Jei-Kwon

    2016-03-01

    Copper ferrocyanide-functionalized magnetic nano-adsorbents were successfully synthesized by electrostatic coating of citric acid coated Fe3O4 nanoparticles with polyethyleneimine, and immobilizing copper and ferrocyanide on the surfaces of polyethyleneimine-coated nanoparticles. Radioactive cesium (Cs) adsorption tests were conducted to investigate the effectiveness of the copper ferrocyanide-functionalized magnetic nano-adsorbents toward the removal of radioactive Cs.

  14. Whole-Body Counter Evaluation of Internal Radioactive Cesium in Dogs and Cats Exposed to the Fukushima Nuclear Disaster

    Science.gov (United States)

    Wada, Seiichi; Ito, Nobuhiko; Watanabe, Masamichi; Kakizaki, Takehiko; Natsuhori, Masahiro; Kawamata, Jun; Urayama, Yoshio

    2017-01-01

    As a result of the 2011 nuclear incident that occurred at the Fukushima Nuclear Power Plant, a large number of abandoned dogs and cats were left within the disaster zone. A small number of these animals were rescued and cared for at shelters. Prior to the dispersal of these animals to their owners or fosterers, we evaluated the degree of internal radiocesium contamination using a specially designed whole-body counter. We conducted 863 non-invasive measurements of gamma rays due to internal radioactive cesium for 68 dogs and 120 cats at one shelter. After plotting graphs of 137Cs density we generated exponential functions of decay from seven dogs and six cats. From the regression formulae, we were able to determine the biological half-lives as 38.2 days for dogs and 30.8 days for cats. We found that in dogs there was a correlation between the biological half-life of radioactive cesium and age. Using our data, we estimated whole-body densities for each cat and dog at the time when they were rescued. We found that there were deviations in the data distributions among the different species, likely due to the timing of rescue, or living habits prior to rescue. A significant correlation was found when extracted feline reproductive organs were analyzed; the coefficients for the estimation of whole-body densities were approximately 7-fold higher than those based on the extracted feline reproductive organs. This may be due to the fact that majority of the radioactive cesium accumulates within muscular tissue with less distribution in other organs. It is possible to plan the appropriate management period in an animal shelter based on the use of the biological half-life of radioactive cesium calculated in this study. We believe that the correlations we uncovered in this work would be of great use for the management of companion animals in the event of a future nuclear accident. PMID:28099476

  15. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high

  16. Input contribution and vertical migration of plutonium, americium and cesium in lake sediments (Belham Tarn, Cumbria, UK)

    Energy Technology Data Exchange (ETDEWEB)

    Michel, H.; Barci-Funel, G.; Barci, V.; Ardisson, G. [Lab. de Radiochimie et de Radioecologie, Univ. de Nice Sophia Antipolis, Nice (France)

    2002-07-01

    The record of the global atmospheric fallout could be found in the lake sediments. A mass balance for fallout radionuclides in Blelham Tarn and its catchment is established. The sediment activity contribution is coming from direct atmospheric fallout and from indirect atmospheric fallout via the catchment. The catchement activity is conveyed to the sediment by the rivers and the direct streaming. A comparison of the fallout and the sediment inventory allows the activity estimation of these different contributions and to understand the mobility of these elements on the catchment and in the sediments. The study of activity profile in sediment core allows to characterise the different radioactive events occurred in the past. For the lake Blelham, the results show two cesium activity peaks and only one peak for transuranic activities. The deepest peaks correspond to the atmospheric nuclear test fallout in the sixties (1963) and the second peak to the Chernobyl accident (1986). The activity ratio {sup 239-240}Pu/{sup 137}Cs allows estimating the ratio between cesium activities in sediments coming from these two events. Plutonium and cesium diffusion coefficients are calculated with a simple analytical model. (orig.)

  17. Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution.

    Science.gov (United States)

    Kadam, Avinash A; Jang, Jiseon; Lee, Dae Sung

    2016-09-01

    This work focused on the development of pectin-stabilized magnetic graphene oxide Prussian blue (PSMGPB) nanocomposites for removal of cesium from wastewater. The PSMGPB nanocomposite showed an improved adsorption capacity of 1.609mmol/g for cesium, compared with magnetic graphene oxide Prussian blue, magnetic pectin Prussian blue, and magnetic Prussian blue nanocomposites, which exhibited adsorption capacities of 1.230, 0.901, and 0.330mmol/g, respectively. Increased adsorption capacity of PSMGPB nanocomposites was attributed to the pectin-stabilized separation of graphene oxide sheets and enhanced distribution of magnetites on the graphene oxide surface. Scanning electron microscopy images showed the effective separation of graphene oxide sheets due to the incorporation of pectin. The optimum temperature and pH for adsorption were 30°C and 7.0, respectively. A thermodynamic study indicated the spontaneous and the exothermic nature of cesium adsorption. Based on non-linear regression, the Langmuir isotherm fitted the experimental data better than the Freundlich and Tempkin models.

  18. Atomic parity violation in heavy alkalis: detection by stimulated emission for cesium and traps for cold francium

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinetti, St

    2004-07-01

    The present work deals with the recent advances of atomic spectroscopy experiments on cesium and francium, which aim at precise parity violation (PV) measurements in these atoms. Within the framework of a 'double-badged thesis', the candidate devoted himself on the one hand to the preliminary PV measurement (8% accuracy) of the present Cs experiment at the Kastler-Brossel laboratory in Paris and on the other hand to the preparation of a Fr radioactive atomic sample (production and trapping) at the LNL (INFN) in Italy. The two experiments are at very different stages. The measurements reported for cesium were actually made possible thanks to the work initiated in 1991, for the PV detection by stimulated emission. The Italian experiment is instead in a beginning stage: in order to probe the properties of francium, which is unstable, a number of atoms large enough has to be first produced and collected. The PV schemes which proved to be well suited for cesium are a solid starting point for the case of francium. (author)

  19. Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides.

    Science.gov (United States)

    Avramenko, Valentin; Bratskaya, Svetlana; Zheleznov, Veniamin; Sheveleva, Irina; Voitenko, Oleg; Sergienko, Valentin

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  20. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Avramenko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Bratskaya, Svetlana, E-mail: sbratska@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Zheleznov, Veniamin; Sheveleva, Irina [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Voitenko, Oleg [Far Eastern Federal University, Laboratory of Electron Microscopy and Image Processing, 27, Oktyabr' skaya Street, Vladivostok 690950 (Russian Federation); Sergienko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  1. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  2. Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Stockmann, T. Jane [Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne CH-1015 (Switzerland); Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 (Canada); Zhang, Jing; Montgomery, Anne-Marie [Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 (Canada); Ding, Zhifeng, E-mail: zfding@uwo.ca [Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 (Canada)

    2014-04-01

    Highlights: • Electroanalytical chemistry was employed to assess cesium ion extraction in biphasic systems. • Water|ionic liquid systems are much more efficient than traditional water|organic ones. • The metal ion to ligand stoichiometry and overall complexation constant were determined. • The stoichiometry was confirmed by mass spectrometry. • The ligand CMPO used in TRUEX processes was found to be effective for the FIT. Abstract: A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614⁺) and tetrakis(pentafluorophenyl)borate anion (TB⁻) was employed within a water|P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. ¹³⁷Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N'-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6 × 10¹¹ at the w|P66614TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δα, with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δα of 2 and 8.2 × 10⁷, respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were

  3. The burden of cesium 137 in forest clerks; Die Belastung mit Caesium 137 bei Beschaeftigten der Forstverwaltung

    Energy Technology Data Exchange (ETDEWEB)

    Piechotowski, I.; Jaroni, J. [Landesgesundheitsamt Baden-Wuerttemberg, Stuttgart (Germany); Link, B. [Arbeits- und Sozialministerium des Landes Baden-Wuerttemberg, Stuttgart (Germany); Groezinger, O. [Ministerium fuer Umwelt und Verkehr des Landes Baden-Wuerttemberg, Stuttgart (Germany)

    2000-07-01

    In 47 forest clerks from the regions Ortenau and Oberschwaben in south-west Germany the incorporation of cesium 137 and potassium 40 was measured in autumn 1994. Soil burden as well as burden of nutrition with cesium 137 are different in these regions for geological reasons and as a result of the nuclear accident of Chernobyl. Caused by low content of clay in Oberschwaben, the transfer of cesium to plants is assisted. Heavy rainfall after the nuclear accident led to an additional increase of burden. The median of the concentration of cesium 137 was 1.4 Bq/kg body weight. The median for potassium 40 was 58 Bq/kg body weight. For cesium 137 regional differences were observed. For persons from Oberschwaben the median for cesium 137 was with 2.8 Bq/kg body weight clearly higher than for persons from Ortenau with 0,6 Bq/kg body weight. Concerning nutrition habits, the clearest difference was found comparing persons who had ate a minimum of four portions of deer from the surroundings within the last four weeks with persons who had ate less than four portions of deer from the surroundings within the last four weeks. The difference was greater in Oberschwaben than in Ortenau. The effective dose of cesium 137 calculated on the basis of the incorporation is very low compared to natural radiation. This is also valid for persons from Oberschwaben. (orig.) [German] Im Herbst 1994 wurde bei insgesamt 47 Bediensteten der Forstverwaltung aus den Regionen Ortenaukreis und Oberschwaben die Inkorportation an Caesium 137 und Kalium 40 gemessen. Sowohl die Bodenbelastung als auch die Belastung von Nahrungsmitteln mit Caesium 137 unterscheiden sich in diesen Gebieten bedingt durch geologische Besonderheiten und in Folge des Reaktorunfalls von Tschernobyl. Aufgrund eines geringen Anteils an Tonerden wird in Oberschwaben der Caesiumtransfer in Pflanzen beguenstigt, eine zusaetzliche Erhoehung der Belastung erfolgte durch starke Niederschlaege nach dem Reaktorunfall. Die Konzentration fuer

  4. Evaluation of a method for removing cesium and reducing the volume of leaf litter from broad-leaved trees contaminated by the Fukushima Daiichi nuclear accident during the Great East Japan Earthquake.

    Science.gov (United States)

    Harada, Shigeki; Yanagisawa, Mitsunori

    2017-04-01

    The town of Marumori in southern Miyagi Prefecture borders on Fukushima Prefecture, and following the accident at the Fukushima Daiichi nuclear power plant, there were concerns about cesium deposition in forested areas. One of the authors of this paper has continually surveyed leaf litter from the forested areas. As leaf litter may be a source of cesium contamination from the forest to downstream areas, we considered a simplified version of wet oxidation, a method previously presented by one of the authors of this study, as a technology to reduce leaf litter weight and cesium concentration, separating radioactive nuclides from non-radioactive ones, in leaf litter. We tested our method in three experiments. Experiment 1 used new leaf litter (232 Bq/kg) from the surface of a small stream at the forest edge nearby an area with air dose level higher than the national standard threshold of 0.23 μSv/h for the implementation of governmental decontamination works. Experiment 2 applied wet oxidation to older leaf litter (705 Bq/kg) harvested from a pasture nearby the stream mentioned above. We also used the same leaf litter in experiment 3 for a cesium release tests using pure water. In experiment 1 and 2 we treated leaf litter with a sodium hypochlorite solution, optimizing sodium hypochlorite concentration and reaction temperature. We measured a 50-60% decrease in the leaf litter weight and a 60% decrease in the cesium concentration. Moreover, we also measured the amount of cesium washout. The cesium budget of experiment 1 showed no cesium gasification (wet oxidation avoids airborne cesium as this element is prone to be volatile at 600 °C), and that high sodium hypochlorite concentration and high temperature had a strong positive effect on leaf litter volume reduction and cesium decontamination. Experiment 2 confirmed the reproducibility of these results in leaves with different cesium concentration and harvested in different conditions. We could also explain the

  5. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    Science.gov (United States)

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells.

  6. Test report for cesium powder and pellets inner container decontamination method determination test

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.

    1998-08-17

    This report documents the decontamination method determination testing that was performed on three cesium powder and pellets inner container test specimens The test specimens were provided by B and W Hanford Company (BVMC). The tests were conducted by the Numatec Hanford Company (NHC), in the 305 Building. Photographic evidence was also provided by NHC. The Test Plan and Test Report were provided by Waste Management Federal Services, Inc., Northwest Operations. Witnesses to testing included a test engineer, a BC project engineer, and a BC Quality Assurance (QA) representative. The Test Plan was modified with the mutual decision of the test engineer, the BWHC project engineer, and the BVMC QA representative. The results of this decision were written in red (permanent type) ink on the official copy of the test procedure, Due to the extent of the changes, a summary of the test results are provided in Section 3.0 of this Test Report. In addition, a copy of the official copy field documentation obtained during testing is included in Appendix A. The original Test Plan (HNF-2945) will be revised to indicate that extensive changes were required in the field during testing, however, the test documentation will stand as is (i.e., it will not be retyped, text shaded, etc.) due to the inclusion of the test parameters and results into this Test Report.

  7. Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap

    Science.gov (United States)

    Li, Yuqing; Feng, Guosheng; Xu, Rundong; Wang, Xiaofeng; Wu, Jizhou; Chen, Gang; Dai, Xingcan; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2015-05-01

    We report a detailed study of effective magnetically levitated loading of cold atoms in a crossed dipole trap: an appropriate magnetic field gradient precisely compensates for the destructive gravitational force of the atoms and an additional bias field simultaneously eliminates the antitrapping potential induced by the magnetic field gradient. The magnetic levitation is required for a large-volume crossed dipole trap to form a shallow but very effective loading potential, making it a promising method for loading and trapping more cold atoms. For cold cesium atoms in the F =3 , m F =3 state prepared by three-dimensional degenerated Raman sideband cooling, a large number of atoms ˜3.2 ×106 have been loaded into a large-volume crossed dipole trap with the help of the magnetic levitation technique. The dependence of the number of atoms loaded and trapped in the dipole trap on the magnetic field gradient and bias field, respectively, is in good agreement with the theoretical analysis. The optimum magnetic field gradient of 31.13 G/cm matches the theoretical value of 31.3 G/cm well. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for many atomic species in high-field seeking states.

  8. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  9. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  10. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima.

    Science.gov (United States)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I; Murakami, Masashi; Tokuchi, Naoko; Ohashi, Mizue

    2015-11-01

    Since the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, large areas of the forests around Fukushima have become highly contaminated by radioactive nuclides. To predict the future dynamics of radioactive cesium ((137)Cs) in the forest catchment, it is important to measure each component of its movement within the forest. Two years after the accident, we estimated the annual transportation of (137)Cs from the forest canopy to the floor by litterfall, throughfall and stemflow. Seasonal variations in (137)Cs transportation and differences between forests types were also determined. The total amount of (137)Cs transported from the canopy to the floor in two deciduous and cedar plantation forests ranged between 3.9 and 11.0 kBq m(-2) year(-1). We also observed that (137)Cs transportation with litterfall increased in the defoliation period, simply because of the increased amount of litterfall. (137)Cs transportation with throughfall and stemflow increased in the rainy season, and (137)Cs flux by litterfall was higher in cedar plantation compared with that of mixed deciduous forest, while the opposite result was obtained for stemflow.

  11. Cesium Iodide Crystal Calorimeter of the Proton Computed Tomography (pCT) Imager

    Science.gov (United States)

    Missaghian, Jessica; Sadrozinski, Hartmut; Colby, Brian; Rykalin, Victor; Hurley, Ford

    2009-11-01

    Researchers at SCIPP, LLMU and NIU have collaborated to make a functioning proton imager. Proton Computed Tomography (pCT) is designated to be applied in proton therapy of human cancer systems. It will image head-sized phantom objects and provide excellent space and energy resolution using a silicon microstrip tracker and crystal calorimetry. The residual energy could be measured with precision of a few percent using a Cesium Iodide crystal calorimeter. A single element of the CsI(TI) calorimeter was tested in order to understand the behavior of the future calorimeter system. We present test results on a CsI(TI) calorimeter element with proton beams of 35, 100 and 200MeV. The detector element was designed to comply with the demands of high energy resolution of a few percent and a dynamic range of two orders of magnitude (1-300MeV) under a counting rate of 10 kHz per channel. We also report on cosmic measurement results of each crystal of the future calorimeter matrix. A detailed description of the calorimeter data acquisition system will be given.

  12. In vivo effects of chronic contamination with 137 cesium on testicular and adrenal steroidogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Grignard, Elise; Gueguen, Yann; Grison, Stephane; Gourmelon, Patrick; Souidi, Maamar [Institute for Radiological Protection and Nuclear Safety, Radiological Protection and Human Health Division, Radiobiology and Epidemiology Department, Laboratory of Experimental Toxicology, BP no 17, Fontenay-aux-Roses Cedex (France); Lobaccaro, Jean-Marc A. [UMR Universite Blaise Pascal-CNRS 6547, Physiologie Comparee et Endocrinologie Moleculaire, Centre de Recherche en Nutrition Humaine d' Auvergne, Aubiere Cedex (France)

    2008-09-15

    More than 20 years after Chernobyl nuclear power plant explosion, radionuclids are still mainly bound to the organic soil layers. The radiation exposure is dominated by the external exposure to gamma-radiation following the decay of {sup 137}Cs and by soil-to-plant-to-human transfer of {sup 137}Cs into the food chain. Because of this persistence of contamination with {sup 137}Cs, questions regarding public health for people living in contaminated areas were raised. We investigated the biological effects of chronic exposure to {sup 137}Cs on testicular and adrenal steroidogenesis metabolisms in rat. Animals were exposed to radionuclide in their drinking water for 9 months at a dose of 6,500 Bq/l (610 Bq/kg/day). Cesium contamination decreases the level of circulating 17{beta}-estradiol, and increases corticosterone level. In testis, several nuclear receptors messenger expression is disrupted; levels of mRNA encoding Liver X receptor {alpha} (LXR{alpha}) and LXR{beta} are increased, whereas farnesoid X receptor mRNA presents a lower level. Adrenal metabolism presents a paradoxical decrease in cyp11a1 gene expression. In conclusion, our results show for the first time molecular and hormonal modifications in testicular and adrenal steroidogenic metabolism, induced by chronic contamination with low doses of {sup 137}Cs. (orig.)

  13. Amorphous silicon pixel layers with cesium iodide converters for medical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Cho, G. [Lawrence Berkeley Lab., CA (United States); Goodman, C.A. [Air Techniques, Inc., Hicksville, NY (United States)] [and others

    1993-11-01

    We describe the properties of evaporated layers of Cesium Iodide (Thallium activated) deposited on substrates that enable easy coupling to amorphous silicon pixel arrays. The CsI(Tl) layers range in thickness from 65 to 220{mu}m. We used the two-boat evaporator system to deposit CsI(Tl) layers. This system ensures the formation of the scintillator film with homogenous thallium concentration which is essential for optimizing the scintillation light emission efficiency. The Tl concentration was kept to 0.1--0.2 mole percent for the highest light output. Temperature annealing can affect the microstructure as well as light output of the CsI(Tl) film. 200--300C temperature annealing can increase the light output by a factor of two. The amorphous silicon pixel arrays are p-i-n diodes approximately l{mu}m thick with transparent electrodes to enable them to detect the scintillation light produced by X-rays incident on the CsI(Tl). Digital radiography requires a good spatial resolution. This is accomplished by making the detector pixel size less then 50{mu}m. The light emission from the CsI(Tl) is collimated by techniques involving the deposition process on pattered substrates. We have measured MTF of greater than 12 line pairs per mm at the 10% level.

  14. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields

    CERN Document Server

    Jiao, Yuechun; Li, Jingkui; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2016-01-01

    We study Rydberg atoms modulated by strong radio-frequency (RF) fields with a frequency of 70 MHz. The Rydberg atoms are prepared in a room temperature cesium cell, and their level structure is probed using electromagnetically induced transparency (EIT). As the RF field increases from the weak- into the strong-field regime, the range of observed RF-induced phenomena progresses from AC level shifts through increasingly pronounced and numerous RF-modulation sidebands to complex state-mixing and level-crossings with high-l hydrogen-like states. Weak anharmonic admixtures in the RF field generate clearly visible modifications in the Rydberg-EIT spectra. A Floquet analysis is employed to model the Rydberg spectra, and good agreement with the experimental observations is found. Our results show that all-optical spectroscopy of Rydberg atoms in vapor cells can serve as an antenna-free, atom-based and calibration-free technique to measure and map RF electric fields and to analyze their higher-harmonic contents.

  15. Finite-temperature effects on a triatomic Efimov resonance in ultracold cesium

    CERN Document Server

    Huang, Bo; Grimm, Rudolf

    2015-01-01

    We report a thorough investigation of finite-temperature effects on three-body recombination near a triatomic Efimov resonance in an ultracold gas of cesium atoms. Our measurements cover a wide range from a near-ideal realization of the zero-temperature limit to a strongly temperature-dominated regime. The experimental results are analyzed within a recently introduced theoretical model based on a universal zero-range theory. The temperature-induced shift of the resonance reveals a contribution that points to an energy-dependence of the three-body parameter. We interpret this contribution in terms of the finite range of the van der Waals interaction in real atomic systems and we quantify it in an empirical way based on length scale arguments. A universal character of the corresponding resonance shift is suggested by observations related to other Efimov resonances and the comparison with a theoretical finite-temperature approach that explicitly takes the van der Waals interaction into account. Our findings are ...

  16. Interspecies Feshbach resonances in an ultracold, optically trapped Bose-Fermi mixture of cesium and lithium

    Energy Technology Data Exchange (ETDEWEB)

    Repp, Marc

    2013-05-08

    This thesis reports on the tunability of interactions in ultracold Bose-Fermi mixtures of Cesium and Lithium. The first realization of an optically trapped {sup 6}Li - {sup 133}Cs mixture enabled to perform trap loss spectroscopy measurements to identify magnetic Feshbach resonances. A total of 19 interspecies Feshbach resonances, all in the magnetic field range between 650 G and 950 G, were observed for the two energetically lowest spin states of each species. Two 5 G broad and especially two 60 G broad s-wave resonances give perspectives to produce a dipolar quantum gas of LiCs ground state molecules as well as to study the Efimov effect in highly mass imbalanced systems. In addition, a unique relative tunability of intra- and interspecies scattering lengths was found which makes the {sup 6}Li - {sup 133}Cs system also well suited for the investigation of polarons. Evaporative cooling was performed on optically trapped samples which contained only one of the species. In this way, Bose-Einstein condensates of {sup 6}Li molecules as well as {sup 133}Cs samples at a phase-space density of ρ = 4 . 10{sup -2} were prepared. All experiments were performed in a new apparatus, which has been designed and set up during this thesis.

  17. Finite-temperature effects on a triatomic Efimov resonance in ultracold cesium

    Science.gov (United States)

    Huang, B.; Sidorenkov, L. A.; Grimm, R.

    2015-06-01

    We report a thorough investigation of finite-temperature effects on three-body recombination near a triatomic Efimov resonance in an ultracold gas of cesium atoms. Our measurements cover a wide range from a near-ideal realization of the zero-temperature limit to a strongly temperature-dominated regime. The experimental results are analyzed within a recently introduced theoretical model based on a universal zero-range theory. The temperature-induced shift of the resonance reveals a contribution that points to an energy dependence of the three-body parameter. We interpret this contribution in terms of the finite range of the van der Waals interaction in real atomic systems and we quantify it in an empirical way based on length scale arguments. A universal character of the corresponding resonance shift is suggested by observations related to other Efimov resonances and the comparison with a theoretical finite-temperature approach that explicitly takes the van der Waals interaction into account. Our findings are of importance for the precise determination of Efimov resonance positions from experiments at finite temperatures.

  18. Dosimetry of a Cesium 137 source; Dosimetria de una fuente de Cesio 137

    Energy Technology Data Exchange (ETDEWEB)

    Torres R, J.G.; Manzanares A, E.; Vega C, H.R. [Unidades Academicas de Estudios Nucleares, Universidad de Zacatecas (Mexico)

    2005-07-01

    It was carried out a dosimetric study of a source of Cesium 137 used in investigations of Radiobiology. This radionuclide has a half life of 30.07 years and it emits photons of 661.657 keV with a probability of 85.2%. The source has been used in a series of experiments trending to observe the cellular response before the gamma rays, as well as for the calibration of equipment of radiological protection. For such reason it is important to determine the dosimetric properties. In this work it was determined the absorbed dose that this source takes when being placed in the center from a methylmethacrylate badge to three distances, 5, 10 and 15 cm. The dose was measured with thermoluminescent dosemeters and it was calculated by means of Monte Carlo method, also was derived an expression that allows to determine the dose starting from the information of the activity of the source and of the distance regarding the same one. (Author)

  19. Cesium-137 in deer: Savannah River Plant vs. southeastern coastal plain herds

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.R.; Rabon, E.W.; Dicks, A.S.

    1979-01-01

    The /sup 137/Cs content in deer killed during programmed hunts at the Savannah River Plant (SRP) has averaged 9.0 pCi/g. This value, based on measurements of 13,907 deer taken over 14 years (1965 to 1978), similar to the value obtained for 552 deer from other southeastern Coastal Plain locations, indicating the /sup 137/Cs content is due to fallout from the atmospheric testing of nuclear weapons rather than from SRP operations. The computerized SRP data base for each harvested deer includes age, sex, weight, cesium content, kill location, date, and the hunter's name. Analysis of these data enables the estimation of population dose from ingestion of the edible meat. Consumption of all edible meat from deer killed at SRP from 1965 to 1978 gives a whole body population dose of 196 man-rem from /sup 137/Cs. Assuming an annual consumption rate of 20 kg gives an average individual whole body dose of 13 mrem, about 10% of local annual background level. The radiation dose from /sup 40/K of natural potassium content of deer is comparable to the radiation dose from /sup 137/Cs.

  20. Stable solidification of cesium with an allophane additive by a pressing/sintering method

    Science.gov (United States)

    Zhang, Xiaoxia; Wu, Yan; Wei, Yuezhou; Mimura, Hitoshi; Matsukura, Minoru

    2017-03-01

    Pyrolysis of AMP/SiO2 adsorbed Cs (AMP-Cs/SiO2) occurred at > 400 °C sintering temperature, and Cs immobilisation decreased from 100% to 40% after sintering at 1200 °C. To safely dispose radioactive Cs, allophane was immobilized with AMP-Cs/SiO2 to prepare a stable form by using a pressing/sintering method. The structure of AMP-Cs/SiO2 collapsed, and cesium aluminosilicate formed more easily under conditions of higher sintering temperature (>800 °C) or increasing mixing ratio of allophane (mass ratio = 1:3 AMP-Cs/SiO2-allophane). The decomposition products of AMP-Cs/SiO2 were Cs2O, MoO3 and P2O5 at 1200 °C. Cs2O volatilisation was depressed by allophane addition, and a stable immobilisation phase of Cs4Al4Si20O48 formed. An immobilisation ratio of Cs of approximately 100% was maintained. The leachability of Cs for AMP-Cs/SiO2-allophane (1:3, 1200 °C) in distilled water at 25 °C and 90 °C for 15 days was estimated as 0.174% and 1.55%, respectively.

  1. Experimental and analytical study on cesium iodide behavior in piping in wave experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, A.; Igarashi, M.; Hashimoto, K.; Sugimoto, J. [Japan Atomic Energy Research Inst., Dep. of Reactor Safety Research, Tokai-mura (Japan); Yoshino, T. [Toshiba Advanced System Corp., Isago Kawasaki-ku (Japan)

    1996-12-01

    The WAVE (Wide range Aerosol model VErification) experiments have been performed at JAERI to investigate cesium iodide (CsI) deposition onto an inner surface of piping wall under typical severe accident conditions. The test facility consists of a dish containing CsI powder, electrical heaters and a straight pipe of 1.5 m in length with diameter of 0.042m. Nitrogen gas and superheated steam were injected into the pipe to carry the vaporized CsI and to simulate the thermohydraulic condition for the PWR hot-leg inlet. Analyses of the experiments have been conducted with a three-dimensional thermohydraulic code, SPRAC and the radionuclide behavior analysis codes, ART and VICTORIA. A clear difference was found in the deposition behavior between nitrogen and steam conditions as carrier gases. For nitrogen gas, the analyses well reproduced the experimental results by closely coupling the CsI behavior and the detailed thermohydraulic analyses. For steam carrier gas, on the contrary, the experimental results could not be well reproduced without the use of larger aerosol size. Since the observed enhancement of aerosol size in superheated steam cannot be explained by existing models, it is necessary to further investigate this mechanisms by experiment and analysis. (author) 34 figs., 23 refs.

  2. Cesium Gas Strongly Confined In One Dimension Sideband Cooling And Collisional Properties

    CERN Document Server

    Bouchoule, I; Petrov, D S; Salomon, C

    2002-01-01

    We study one-dimensional sideband cooling of Cesium atoms strongly confined in a far-detuned optical lattice. The Lamb-Dicke regime is achieved in the lattice direction whereas the transverse confinement is much weaker. The employed sideband cooling method, first studied by Vuletic et al.\\cite{Vule98}, uses Raman transitions between Zeeman levels and produces a spin-polarized sample. We present a detailed study of this cooling method and investigate the role of elastic collisions in the system. We accumulate $83(5)%$ of the atoms in the vibrational ground state of the strongly confined motion, and elastic collisions cool the transverse motion to a temperature of $2.8 \\mu $K=$0.7 \\hbar\\omega_{\\rm osc}/k_{\\rm B}$, where $\\omega_{\\rm osc}$ is the oscillation frequency in the strongly confined direction. The sample then approaches the regime of a quasi-2D cold gas. We analyze the limits of this cooling method and propose a dynamical change of the trapping potential as a mean of cooling the atomic sample to still ...

  3. Irreversible Wash Aid Additive for Cesium Mitigation. Small-Scale Demonstration and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Irreversible Wash Aid Additive process has been under development by the U.S. Environmental Protection Agency (EPA) and Argonne National Laboratory (Argonne). This process for radioactive cesium mitigation consists of a solution to wash down contaminated structures, roadways, and vehicles and a sequestering agent to bind the radionuclides from the wash water and render them environmentally immobile. The purpose of this process is to restore functionality to basic services and immediately reduce the consequences of a radiologically-contaminated urban environment. Research and development have resulted in a down-selection of technologies for integration and demonstration at the pilot-scale level as part of the Wide Area Recovery and Resiliency Program (WARRP) under the Department of Homeland Security and the Denver Urban Area Security Initiative. As part of developing the methods for performing a pilot-scale demonstration at the WARRP conference in Denver in 2012, Argonne conducted small-scale field experiments at Separmatic Systems. The main purpose of these experiments was to refine the wash water collection and separations systems and demonstrate key unit operations to help in planning for the large scale demonstration in Denver. Since the purpose of these tests was to demonstrate the operations of the system, we used no radioactive materials. After a brief set of experiments with the LAKOS unit to familiarize ourselves with its operation, two experiments were completed on two separate dates with the Separmatic systems.

  4. Interaction of radiation-generated free radicals with collagen and metalloproteins using cesium-137 gamma source

    Science.gov (United States)

    Shieh, James J.; Wierbicki, Eugen

    The interaction of collagen and metalloproteins with radiation-generated radicals has been studied using spectrophotometric, chromatographic, and ESR techniques. The hydroxyl radical (·OH) reacted with and caused polymerization of acid soluble collagen. Similar reactions were also observed in a ferrimyoglobin and cytochrome C system. Insoluble collagen from bovine muscle subjected to radiation is followed by a first-order process for the decay of free radicals, depending on relative humidity of the system. When the samples were irradiated with 3 kGy at 25°C by a Cesium-137 Irradiator, the observed half life (hr) of free radicals in the samples decreased with increase of relative humidity RH: 31% > 69% > 100%. When collagen, previously kept dry or under 31% RH, was irradiated with 3 kGy at 77°K (-196°C), the decay of free radicals reached a plateau with annealing at -120°C or higher. The decay kept decreasing with annealing at -100°C or higher temperature when collagen maintained at 69 and 100% RH was used. It is concluded that the free radicals in moistened collagen from bovine muscle decreased at a higher rate than in dried collagen. This suggests that free radicals may persist for a longer period of time in irradiated dry proteins of food or animal feed than in foods of higher moisture extent.

  5. Radical surgery compared with intracavitary cesium followed by radical surgery in cervical carcinoma stage IB

    Energy Technology Data Exchange (ETDEWEB)

    Tinga, D.J.; Bouma, J.; Aalders, J.G. (Dept. of Obstetrics and Gynaecology, State Univ. Hospital, Groningen (Netherlands)); Hollema, H. (Dept. of Pathology, State Univ. Hospital, Groningen (Netherlands))

    1990-01-01

    Forty-nine patients aged {le} 45 years, with cervical carcinoma stage IB ({le} 3 cm) were treated with either primary radical surgery (n = 26), or intracavitary irradiation followed by radical surgery (n = 23). With primary surgery, ovarian function had been preserved in 15 of the 25 patients, who were alive and well. Seven of the primary surgery patients were irradiated postoperatively and 2 others with a central recurrence were cured by irradiation. One other patient, who was not irradiated postoperatively, had an intestinal metastasis and died of the disease. If any of the adverse prognostic factors (as reported in the literature) had been considered as an indication for postoperative irradiation, 17 patients instead of 7 would have been irradiated after primary radical surgery. In the comparable group of 23 patients treated by intracavitary irradiation and radical surgery (and in 4 cases postoperative irradiation as well) there was no recurrence. There was no significant statistical difference between the treatment results in the cesium + surgery group and those who underwent primary radical surgery. Young patients with early cervical carcinoma without prognostic indicators for postoperative irradiation can benefit from primary radical surgery, because their ovarian function can be preserved. (authors).

  6. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  7. Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment

    Energy Technology Data Exchange (ETDEWEB)

    Thammawong, Chakrit; Opaprakasit, Pakorn [School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University (Thailand); Tangboriboonrat, Pramuan [Faculty of Science, Mahidol University, Department of Chemistry (Thailand); Sreearunothai, Paiboon, E-mail: paiboon_sree@siit.tu.ac.th [School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University (Thailand)

    2013-06-15

    A large amount of radioactive cesium (Cs) has been released into natural environment following the nuclear accident in Fukushima, Japan in 2011. Much effort has been directed at capturing Cs and remediation of the contaminated environment. However, conventional sorbents, such as Prussian blue and zeolites cannot be easily recovered once spread into an open environment. Here, we develop new nano-sorbent based on the magnetic nanoparticles (MNP) functionalized with Prussian blue (PB) that possess both high Cs adsorption capacity (96 mg Cs/g sorbent) and large distribution coefficient (3.2 Multiplication-Sign 10{sup 4} mL/g at 0.5 ppm Cs concentration). The developed sorbents possess good value of saturation magnetization (20 emu/g) allowing for rapid and ease of sorbent separation from the Cs solution after treatment using magnetic field. This Cs magnetic nano-sorbent can offer high potential for the use in large scale remediation of a Cs contaminated environment as well as the possibility of novel Cs decorporation drugs that can be magnetically assisted for accelerated excretion of radiocesium from the human body.

  8. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    Science.gov (United States)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  9. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    Science.gov (United States)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical-optical double-resonance spectroscopy with the Cs 6S1/2-6P3/2-7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry-Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  10. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima.

    Science.gov (United States)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the (137)Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of (137)Cs (10(-11) ~ 10(-9 )molL(-1) of (137)Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed "weathered biotite" (WB) in this study, from Fukushima sorbed (137)Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of (137)Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed (137)Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  11. Development of volume reduction method of cesium contaminated soil with magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Yukumatsu, Kazuki; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro [Osaka University, Osaka (Japan)

    2016-03-15

    In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil.

  12. Copper ferrocyanide functionalized magnetic nanoparticles using polyelectrolyte for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Man; Lee, Kune Woo; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, magnetite nanoparticles were coated with copper ferrocyanide for the adsorption of radioactive Cs-137 in an aqueous solution through the grafting of polyethyleneimine. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate Cs-137 from water was also evaluated. Magnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. Since the nuclear accident at the Fukushima Daiichi nuclear power station in 2011, a huge amount of radioactive contaminants has been released into the environment. Among the various radioactive contaminants, cesium (Cs)-137 (137Cs) is the most apprehensive element owing to its long half-life (30.2 years), high solubility in water, and strong radiation emission in the form of gamma rays (γ-rays). Various methods such as ion exchange solvent extraction and precipitation are applied for the remediation of Cs-137 contaminated water. In particular, metal ferrocyanides show a high selectivity toward Cs-137. However, the very fine powder form of metal ferrocyanide causes a difficult separation from water through filtration.

  13. Magic-wavelength optical dipole trap of cesium and rubidium atoms

    Science.gov (United States)

    Wang, Junmin; Cheng, Yongjie; Guo, Shanlong; Yang, Baodong; He, Jun

    2012-06-01

    Optical dipole traps (ODT) with far-off-resonance laser are important tools in more and more present cold-atom experiments, which allow confinement of laser-cooled atoms with a long storage time. Particularly, the magic wavelength ODT can cancel the position-dependent spatially inhomogeneous light shift of desired atomic transition, which is introduced by the ODT laser beam. Now it plays an important role in the state-insensitive quantum engineering and the atomic optical clock. To verify the magic wavelength or the magic wavelength combination for D2 line transition of cesium (Cs) and rubidium (Rb) atoms, we calculated and analyzed the light shift of the 133Cs 6S1/2 - 6P3/2 transition for a monochromatic ODT, and also the 87Rb 5S1/2 - 5P3/2 transition for a dichromatic ODT with a laser frequency ratio of 2:1. Also a dichromatic magic-wavelength ODT laser system for 87Rb atoms is proposed and experimentally realized by employing the quasi-phase-matched frequency doubling technique with telecom laser and fiber amplifier.

  14. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    Science.gov (United States)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Tieqiang; Zhang, Yu

    2016-08-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  15. Structural characterization of hollandite-type material intended for the specific containment of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Leinekugel-le-Cocq, A.Y.; Deniard, P.; Jobic, S.; Bart, F.; Evain, M.; Gautier, E

    2004-07-01

    Investigations on the Ba{sub 1}Cs{sub 0.28}Fe{sub 0.82}Al{sub 1.46}Ti{sub 5.72}O{sub 16} hollandite powdered compound, used as potential host for radioactive cesium waste, highlight an incommensurate modulated structure and the presence of an amorphous phase. On XRD pattern, this modulation leads to two wide peaks (2 {theta} =19.5 and 27 angle, {lambda} = 1.54059 A). The space group I4/m(0 0 {gamma}) 0 0 was determined thanks to the X-Ray of single crystal analysis on a simplified Ba{sub 1.16}Al{sub 2.32}Ti{sub 5.68}O{sub 16} material. The electron diffraction confirmed that this result could be transposed to our formulation Ba{sub 1}Cs{sub 0.28}Fe{sub 0.82}Al{sub 1.46}Ti{sub 5.72}O{sub 16}. This material exhibits a distribution of modulation vectors ranging from q = (0 0 0.30) to (0 0 0.48) explaining perfectly the two wide XRD peaks. In addition, an amorphous phase is observed and has been quantified (about 13%wt). (authors)

  16. Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion.

    Science.gov (United States)

    Kato, Souichiro; Goya, Eri; Tanaka, Michiko; Kitagawa, Wataru; Kikuchi, Yoshitomo; Asano, Kozo; Kamagata, Yoichi

    2016-02-17

    Interest in the interaction of microorganisms with cesium ions (Cs(+)) has arisen, especially in terms of their potent ability for radiocesium bioaccumulation and their important roles in biogeochemical cycling. Although high concentrations of Cs(+) display toxic effects on microorganisms, there have been only limited reports for Cs(+)-tolerant microorganisms. Here we report enrichment and isolation of Cs(+)-tolerant microorganisms from soil microbiota. Microbial community analysis revealed that bacteria within the phylum Bacteroidetes, especially Flavobacterium spp., dominated in enrichment cultures in the medium supplemented with 50 or 200 mM Cs(+), while Gammaproteobacteria was dominant in the control enrichment cultures (in the presence of 50 and 200 mM K(+) instead of Cs(+)). The dominant Flavobacterium sp. was successfully isolated from the enrichment culture and was closely related to Flavobacterium chungbukense with 99.5% identity. Growth experiments clearly demonstrated that the isolate has significantly higher tolerance to Cs(+) compared to its close relatives, suggesting the Cs(+)-tolerance is a specific trait of this strain, but not a universal trait in the genus Flavobacterium. Measurement of intracellular K(+) and Cs(+) concentrations of the Cs(+)-tolerant isolate and its close relatives suggested that the ability to maintain low intracellular Cs(+) concentration confers the tolerance against high concentrations of external Cs(+).

  17. Dealing with the aftermath of Fukushima Daiichi nuclear accident: decontamination of radioactive cesium enriched ash.

    Science.gov (United States)

    Parajuli, Durga; Tanaka, Hisashi; Hakuta, Yukiya; Minami, Kimitaka; Fukuda, Shigeharu; Umeoka, Kuniyoshi; Kamimura, Ryuichi; Hayashi, Yukie; Ouchi, Masatoshi; Kawamoto, Tohru

    2013-04-16

    Environmental radioactivity, mainly in the Tohoku and Kanto areas, due to the long living radioisotopes of cesium is an obstacle to speedy recovery from the impacts of the Fukushima Daiichi Nuclear Power Plant accident. Although incineration of the contaminated wastes is encouraged, safe disposal of the Cs enriched ash is the big challenge. To address this issue, safe incineration of contaminated wastes while restricting the release of volatile Cs to the atmosphere was studied. Detailed study on effective removal of Cs from ash samples generated from wood bark, household garbage, and municipal sewage sludge was performed. For wood ash and garbage ash, washing only with water at ambient conditions removed radioactivity due to (134)Cs and (137)Cs, retaining most of the components other than the alkali metals with the residue. However, removing Cs from sludge ash needed acid treatment at high temperature. This difference in Cs solubility is due to the presence of soil particle originated clay minerals in the sludge ash. Because only removing the contaminated vegetation is found to sharply decrease the environmental radioactivity, volume reduction of contaminated biomass by incineration makes great sense. In addition, need for a long-term leachate monitoring system in the landfill can be avoided by washing the ash with water. Once the Cs in solids is extracted to the solution, it can be loaded to Cs selective adsorbents such as Prussian blue and safely stored in a small volume.

  18. A cesium copper vanadyl-diphosphate: Synthesis, crystal structure and physical properties

    Science.gov (United States)

    Shvanskaya, Larisa; Yakubovich, Olga; Bychkov, Andrey; Shcherbakov, Vasiliy; Golovanov, Alexey; Zvereva, Elena; Volkova, Olga; Vasiliev, Alexander

    2015-02-01

    A non-centrosymmetric orthorhombic diphosphate, Cs2Cu1+x(VO)2-x(P2O7)2 (x=0.1) with a=13.7364(2) Å, b=9.2666(2) Å, c=11.5678(2) Å, Z=4, has been isolated. Its 3D framework is built from Cu atoms in square pyramidal and square planar coordination, VO5 tetragonal pyramids and P2O7 diphosphate groups, sharing vertices. Large channels are fulfilled by cesium atoms. The ESR study reveals a similarity in behaviour of two paramagnetic (Cu and V) subsystems. The temperature dependences of the ESR linewidth and static magnetic susceptibility data present evidences for a cluster type magnetic ordering in the title compound at T*=22 K. The weakness of the relevant anomalies reflects presumably obvious Cu2+ ions and (VO)2+ units disorder in the system. It is supposed that the charge and geometry of the framework are controlled by the Cu2+/(VO)2+ ratio; its variation may lead to a design of new materials.

  19. Structural, thermal behaviour and vibrational study of a new mixed cesium-ammonium tellurate

    Indian Academy of Sciences (India)

    Wafa Ben Aribia; Makki Abdelmouleh; Van Der Lee; Ahlem Kabadou

    2012-03-01

    Synthesis, crystal structure, thermal characterization, FTIR and Raman measurements are given for a new mixed compound cesium-ammonium tellurate. X-ray study showed that the [Cs0.92(NH4)0.08]2TeCl4Br2 compound crystallizes in the tetragonal space group P4/mnc, with a = 7.452 (1) Å, c = 10.544 (3) Å and Z = 2. The refinement converged at room temperature to = 0.093 and = 0.076. The structure is considered as isolated octahedral TeCl4Br$^{2−}_{2}$. These anions show a 4° rotation around the fourfold axis against the cubic arrangement of the K2PtCI6 type structure. The monovalent cations (Cs+/NH$^{+}_{4}$) are located between the octahedra ensuring the stability of the structure by ionic and hydrogen bonding contacts: Cs…Cl/Br and N-H$\\ldots\\ldots$Cl/Br. A DTA/TGA experiment at high temperature reveals one endothermic peak at 780K for this compound. At low temperature a transition from phase I to phase II was detected at 213K by DSC. This transition, confirmed by Raman analysis, can be attributed to an order-disorder phase transition.

  20. The Production of Negative Lithium Beams by Charge Exchange in Cesium Vapours

    CERN Document Server

    Re, Maurizio; Chines, Francesco; Cuttone, Giacomo; Menna, Mariano; Messina, Esteban; Stracener, Dan

    2005-01-01

    These measurements were carried out at the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory (ORNL-HRIBF) by researchers from the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Catania, Italy and local staff. The Charge Exchange Cell (CEC) consisted of a vacuum chamber containing cesium vapours at a variable temperature, T, in which positive ions accelerated from an ion source were transformed into negative ones by collisions with the Cs atoms. The main goal of this test was to measure the production efficiency for 7Li- ions at different operating conditions, such as 7Li+ beam energy (5 to 55 keV) and Cs temperature (190 to 300 °C). Moreover, the efficiency measurements performed with a 6Li+ projectile beam gave clear indications about the isotopic shift effect. These results are useful to estimate the charge exchange efficiency for 8, 9Li, which will be the first radioactive beams to be produced at the EXCYT facility (EXotics with CYclotro...

  1. The existence state in the soil of radioactive cesium from the Fukushima Dai-ichi nuclear power plant accident by imaging plate photograph

    Science.gov (United States)

    Satou, Yukihiko; Sueki, Keisuke

    2013-04-01

    In the accident of the Fukushima Daiichi nuclear power plant, the wide area in east Japan was polluted seriously with radioactive cesium. But, unlike Chernobyl, reactor core explosion did not occur in Fukushima. Therefore, it is thought that many radioactive nuclides emitted into the atmosphere were in the gas state and aerosol. However, when the imaging plate photographs of the surface soils in Fukushima was observed, many granular radionuclides existed. Then, in order to confirm a radioactive cesium of particle state, the treatment for the soils contaminated with radioactive cesium by using chemical operation was tried. Three type soils, that is, paddy soil, river sediment, and sea sand, were made applicable to research. The contaminated soil samples were collected in Fukushima and Ibaraki prefecture. Radioactivity concentrations of 137Cs and 134Cs were measured by using gamma-ray spectrometry with a high pure germanium (HPGe) detector. After the radioactively measurement, soils had been burned in oven for five hours in 500 degree Celsius. Concentrated hydrochloric acid was added to soil samples, and they were heated for three hours. These samples were divided into residue and elution by centrifugal separation, and then radioactivity of cesium contained in residue was measured. After chemical operations, 70% and 85% of radioactive cesium from river sediment and sea sand were extracted approximately into elution, respectively. In contrast, in the soil of the paddy field, only 30% of radioactive cesium was approximately eluted. When radiation image photograph of the residues of all three types of soils were taken and observed, the granular radioactive nuclides remained clearly in paddy soil and river sediment. In contrast, all the granular radioactive nuclides in sea sand disappeared after treatment. The results of above things that desorption of radioactive cesium depend on the kind of soil. Furthermore, it was suggested that there was radioactive cesium of

  2. Simulation of cesium nitrate extraction by a calixarene. Application to supported liquid membranes transport; Modelisation de l`extraction du nitrate de cesium par un calixarene. Application a la modelisation du transport a travers des membranes liquides supportees

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, C.

    1996-12-12

    This work fits into the general pattern of the CEA studies on the decontamination of liquid effluents containing long-lived radioactive isotopes. Some calixarenes have proved to be very effective to selectively extract the cesium of aqueous solutions whose composition simulates those of the effluents to be reprocessed. On account of the difficulty of the studied extraction mechanisms, a physical and chemical simulation has been necessary. The system takes into account: 1)a concentrated nitric acid aqueous phase and/or sodium nitrate 2)an organic phase constituted by the diluent 1,2-nitro-phenyl-octyl-ether and 1,3-diisopropoxy-calix(4)arene-couronne-6. The use of concentrated aqueous solutions requires to take into account variations to ideality by the mean of activity coefficients reckoning. The different theories on the reckoning of variations to ideality in aqueous or organic phases are described in the first part. The determination of cesium and sodium nitrates activity coefficients in very concentrated matrices has required an important theoretical and experimental study which is given in the second part. The aim of this study was indeed to complete the thermodynamic data of cesium and sodium nitrates aqueous solutions. The computerized tools required for the modeling are reviewed. The stoichiometry of the extracted species in the organic phase has been determined in the third part. The supported membrane technique is an original method of separation by liquid-liquid extraction. A membrane transport model has been developed and is given in the last part of this work. (O.M.). 128 refs.

  3. Synthesis and Near-Infrared Shielding Property of Cesium Tungsten Bronze with Induction of Citric Acid%柠檬酸诱导合成铯钨青铜及其近红外遮蔽性能

    Institute of Scientific and Technical Information of China (English)

    彭战军; 刘敬肖; 史非; 唐乃岭

    2012-01-01

    以钨酸钠和碳酸铯为原料,在水热条件下利用柠檬酸有机诱导合成出铯钨青铜(CsxWO3)粉体,并将其分散于聚乙烯醇(PVA)溶液中,在玻璃表面制备CsxWO3薄膜。用X射线衍射仪和能谱仪对CsxWO,粉体的结构和形貌进行了表征,借助紫外一可见分光光度计研究了CsxWO3粉体及薄膜的光吸收性能。结果表明:Cs0.32WO3粉体和薄膜为六方结构,与用同样工艺得到的WO3相比,CsxWO3粉体表现出强烈的近红外吸收性能,粉体吸光度高达1.96,其薄膜表现出良好的近红外遮蔽性能,近红外1100rim处的透光率与町见光区的最高透光率相比,下降了13%~18%;经过紫外光照射后,CsxWO3薄膜表现出良好的光致变色性能,且其近红外遮蔽性能进一步提高,特别是在柠檬酸浓度较高的前驱液中合成的CsxWO3,其薄膜近红外遮蔽性能提高的效果更为明显,近红外区1100nm处的透光率与可见光区的最高透光率相比,下降了26%。%Using sodium tungstate dihydrate and cesium carbonate as raw materials, cesium tungsten bronze (CsxWO3) powders were synthesized with citric acid as the organic inducer by hydrothermal method, and the CsxWO3 films were prepared on the surface of glass by dispersing the CsxWO3 powders into polyvinyl alcohol (PVA) solution, The structure and morphology of the obtained CsxWO3 powders were characterized by X-ray diffractometer and energy dispersive spectrometer. The light absorption of the as-prepared powder and film was investigated by an ultraviolet-visible spectrophotometer. The results indicated that the synthesized CsxWO3 powders were hexagonal Cs0.32WO3 crystals. In comparison with the tungsten oxide samples prepared by the same process, the obtained CsxWO3 powders showed strong near-infrared absorption with the absorbance up to 1.96; and the film showed good near-infrared shielding properties, with a decrease of 13%--18% of the

  4. Novel Approach for the Remediation of Radioactive Cesium Contaminated Soil with nano-Fe/Ca/CaO Dispersion Mixture in Dry Condition

    Directory of Open Access Journals (Sweden)

    Mallampati S. R.

    2013-04-01

    Full Text Available Present study, first time we developed a nano-Fe/Ca/CaO dispersion mixture based remediation and volume reduction method of real radioactive cesium contaminated soils. After soil samples treated with 10wt% of nano-Fe/Ca/CaO dispersion mixtures, emitting radiation intensity was reduced from 4.00 μSv/h to 0.95 μSv/h in non-magnetic fraction soils. While, after treatment, about 30wt% magnetic and 70wt% nonmagnetic fraction soils were separated, and it’s condensed radioactive cesium concentration was about 80% and 20%, respectively. By this way, cesium contaminated soil volume can be reduced. These preliminary results appear to be very promising and the simple mixing with the addition of nano-Fe/Ca/CaO may be considered potentially applicable for the remediation and separation of radioactive Cs contaminated soil in dry conditions.

  5. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dahu, E-mail: dingdahu@gmail.com [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Lei, Zhongfang; Yang, Yingnan [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Feng, Chuanping [School of Water Resources and Environment, China University of Geosciences (Beijing), Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, Beijing 100083 (China); Zhang, Zhenya, E-mail: zhang.zhenya.fu@u.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan)

    2014-04-01

    Highlights: • Novel biosorbent for cesium removal was derived from agricultural residue. • It could remove cesium effectively from aqueous solution. • Large size of granules makes it easy to be separated from solutions. • The volume of used biosorbent could be significantly reduced after incineration. • Incinerated biosorbent has a low volume and a low cost final disposal. - Abstract: A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni{sup II}HCF{sup III}-WS) was developed to selectively remove cesium ion (Cs{sup +}) from aqueous solutions. This paper showed the first integral study on Cs{sup +} removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2 h. As a special characteristic of Ni{sup II}HCF{sup III}-WS, acidic condition was preferred for Cs{sup +} removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni{sup II}HCF{sup III}-WS could selectively remove Cs{sup +} though the coexisting ions (Na{sup +} and K{sup +} in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni{sup II}HCF{sup III}-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni{sup II}HCF{sup III}-WS) was reduced after incineration (at 500 °C for 2 h). Due to its relatively high distribution coefficient and significant volume reduction, Ni{sup II}HCF{sup III}-WS is expected to be a promising material for Cs{sup +} removal in practice.

  6. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    Science.gov (United States)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  7. Uranium and cesium accumulation in bean (Phaseolus vulgaris L. var. vulgaris) and its potential for uranium rhizofiltration.

    Science.gov (United States)

    Yang, Minjune; Jawitz, James W; Lee, Minhee

    2015-02-01

    Laboratory scale rhizofiltration experiments were performed to investigate uranium and cesium accumulation in bean (Phaseolus vulgaris L. var. vulgaris) and its potential for treatment of uranium contaminated groundwater. During 72 h of rhizofiltration, the roots of the bean accumulated uranium and cesium to concentrations 317-1019 times above the initial concentrations, which ranged from 100 to 700 μg l(-1) in artificially contaminated solutions. When the pH of the solution was adjusted to 3, the ability to accumulate uranium was 1.6 times higher than it was for solutions of pH 7 and pH 9. With an initial uranium concentration of 240 μg l(-1) in genuine groundwater at pH 5, the bean reduced the uranium concentration by 90.2% (to 23.6 μg l(-1)) within 12 h and by 98.9% (to 2.8 μg l(-1)) within 72 h. A laboratory scale continuous clean-up system reduced uranium concentrations from 240 μg l(-1) to below 10 μg l(-1) in 56 h; the whole uranium concentration in the bean roots during system operation was more than 2600 μg g(-1) on a dry weight basis. Using SEM and EDS analyses, the uranium removal in solution at pH 7 was determined based on adsorption and precipitation on the root surface in the form of insoluble uranium compounds. The present results demonstrate that the rhizofiltration technique using beans efficiently removes uranium and cesium from groundwater as an eco-friendly and cost-effective method.

  8. [Improvement of gynecologic radium therapy through the afterloading method using cesium 137].

    Science.gov (United States)

    Fournier, D V; Senf, W; Kuttig, H; Kubli, F

    1976-03-01

    For all centers performing gynecological contact irradiation the use of afterloading techniques is urgently required, since they eliminate any radiation exposure to the personnel. The radio-therapist may position and control the empty applicators still free from radiation withoug haste. This procedure diminishes the occurrence of overdosages and underdosages. The care for the patients is possible without radiation exposure, and the morbidity of contact therapy can be reduced by occasional mobilization of the patient, the applicator without sources remaining at its place. The fully automatic apparatus "Curietron" using cesium-137 sources (0.662 MeV gamma emission, half-life period 26.6 years) with an equivalent source activity (factor 2.6) yields the dose distribution demanded in the gynecologic field which in practice is identical to that of Ra-226 (medium gamma emission 1 MeV, half-life period 1620 years). With similar dose distribution, a biological and therapeutical effect alike to Ra-226 may be expected from Cs-137. In comparison with Ra-226, the following advantages of Cs-137 may be mentioned: Lower half-value thickness of 5.5 mm lead (low expenses for radioprotection), less danger with handling (no emanation of radioactive gases), and lower contamination risks in case of breaking. The measured dose distributions at equivalent source activity and similar geometry of the applicators revealed the possibility with regard of all techniques of gynecologic irradiation utilized in our field of arriving at similar relative and absolute dose distributions by means of the Cs-137 afterloading technique. Whilst short-term afterloading irradiation with highly active sources, their radiobiological effectiveness being not yet ascertained, has to be tested at appropriate scientific centers, it is necessary to demand afterloading techniques with dosages and duration of irradiations approved over decades for all centers of gynecological contact therapy because of radiation

  9. Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice.

    Science.gov (United States)

    Goudarzi, Maryam; Weber, Waylon; Mak, Tytus D; Chung, Juijung; Doyle-Eisele, Melanie; Melo, Dunstana; Brenner, David J; Guilmette, Raymond A; Fornace, Albert J

    2014-01-01

    Cesium-137 is a fission product of uranium and plutonium in nuclear reactors and is released in large quantities during nuclear explosions or detonation of an improvised device containing this isotope. This environmentally persistent radionuclide undergoes radioactive decay with the emission of beta particles as well as gamma radiation. Exposure to (137)Cs at high doses can cause acute radiation sickness and increase risk for cancer and death. The serious health risks associated with (137)Cs exposure makes it critical to understand how it affects human metabolism and whether minimally invasive and easily accessible samples such as urine and serum can be used to triage patients in case of a nuclear disaster or a radiologic event. In this study, we have focused on establishing a time-dependent metabolomic profile for urine collected from mice injected with (137)CsCl. The samples were collected from control and exposed mice on days 2, 5, 20 and 30 after injection. The samples were then analyzed by ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC/TOFMS) and processed by an array of informatics and statistical tools. A total of 1,412 features were identified in ESI(+) and ESI(-) modes from which 200 were determined to contribute significantly to the separation of metabolomic profiles of controls from those of the different treatment time points. The results of this study highlight the ease of use of the UPLC/TOFMS platform in finding urinary biomarkers for (137)Cs exposure. Pathway analysis of the statistically significant metabolites suggests perturbations in several amino acid and fatty acid metabolism pathways. The results also indicate that (137)Cs exposure causes: similar changes in the urinary excretion levels of taurine and citrate as seen with external-beam gamma radiation; causes no attenuation in the levels of hexanoylglycine and N-acetylspermidine; and has unique effects on the levels of isovalerylglycine and

  10. Decontamination of cesium, strontium, and cobalt from aqueous solutions by bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.A. [Univ. of the Punjab, Lahore (Pakistan); Khan, S.A. [Government F.C. College, Lahore (Pakistan)

    1996-12-31

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic in nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.

  11. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Awual, Md. Rabiul, E-mail: awual.rabiul@jaea.go.jp [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Yaita, Tsuyoshi [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Taguchi, Tomitsugu [Nano-Structure Synthesis Research Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • DB24C8 crown ether was functionalized for preparation of conjugate adsorbent. • Radioactive {sup 137}Cs can be selectively removed by the conjugate adsorbent. • Adsorbent can effectively capture Cs even in the presence of a high amount Na and K. • Adsorbent is reversible and able to be reused without significant deterioration. - Abstract: Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs–π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  12. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Phytoremediation of radioactive wastes containing {sup 137}Cs and {sup 60}Co radionuclides. Black-Right-Pointing-Pointer Using water hyacinth for radioactive waste treatment. Black-Right-Pointing-Pointer Bioaccumulation of radionuclides from radioactive waste streams. Black-Right-Pointing-Pointer Factors affecting bioaccumulation of {sup 137}Cs and {sup 60}Co using floating plants. - Abstract: Phytoremediation is based on the capability of plants to remove hazardous contaminants present in the environment. This study aimed to demonstrate some factors controlling the phytoremediation efficiency of live floating plant, water hyacinth (Eichhornia crassipes), towards the effluents contaminated with {sup 137}Cs and/or {sup 60}Co. Cesium has unknown vital biological role for plant while cobalt is one of the essential trace elements required for plant. The main idea of this work i.e. using undesirable species, water hyacinth, in purification of radiocontaminated aqueous solutions has been receiving much attention. The controlling factors such as radioactivity concentration, pH values, the amount of biomass and the light were studied. The uptake rate of radiocesium from the simulated waste solution is inversely proportional to the initial activity content and directly proportional to the increase in mass of plant and sunlight exposure. A spiked solution of pH Almost-Equal-To 4.9 was found to be the suitable medium for the treatment process. The uptake efficiency of {sup 137}Cs present with {sup 60}Co in mixed solution was higher than if it was present separately. On the contrary, uptake of {sup 60}Co is affected negatively by the presence of {sup 137}Cs in their mixed solution. Sunlight is the most required factor for the plant vitality and radiation resistance. The results of the present study indicated that water hyacinth may be a potential candidate plant of high concentration ratios (CR) for phytoremediation of radionuclides

  13. Introduce lichen Lepraria incana as biomonitor of Cesium-137 from Ramsar, northern Iran.

    Science.gov (United States)

    Dalvand, Amin; Jahangiri, Ahmad; Iranmanesh, Jalil

    2016-08-01

    Lichens have been used as biomonitors of airborne radionuclides released in conjunction with nuclear bomb testing as well as nuclear power plant accidents. The potential of lichens for monitoringof radionuclides has been well documented. However, there are no studies that determine natural and artificial radionuclide monitoring by lichens, in Iran. Thus, as a first step, we have conducted a comparison of (137)Csactivity concentration capacity of three epiphytic lichen species including Lepraria incana, Xanthoria parietina and Ramalina farinacea from Ramsar Northern Iran. In this work, accumulation capacity of (137)Cs was determined in 36 lichen samples using a gamma spectrometer equipped with a high purity germanium (HPGe) detector. The results showed that highest accumulation capacity of (137)Cs in the lichen species was found in Lepraria incana and Xanthoria parietina, 30.2, 9.8 Bq/kg respectively, and lowest average accumulation capacity were found in Ramalina farinacea 2.7 Bq/kg (dry weight). This study showed that activity concentration (137)Cs is in crustose > foliose > fruticose lichens in the same biotope. Thus, crustose lichens are capable to accumulate higher (137)Cs than foliose and fruticose species because of different factors such as special morphological characteristics in these species and large surface/volume ratio or longer biological half-life of (137)Cs in lichen Lepraria incana. Therefore, Lepraria incana due to high concentration capability of (137)Cs (approximately 3 and 11 time higher than Xanthoria parietina and Ramalina farinacea, respectively), is introduced as biomonitor of Cesium-137 from Ramsar, North of Iran.

  14. Multi-decadal projections of surface and interior pathways of the Fukushima Cesium-137 radioactive plume

    Science.gov (United States)

    Rossi, Vincent; Van Sebille, Erik; Sen Gupta, Alexander; Garçon, Véronique; England, Matthew H.

    2013-10-01

    Following the March 2011 Fukushima disaster, large amounts of water contaminated with radionuclides, including Cesium-137, were released into the Pacific Ocean. With a half-life of 30.1 years, Cs-137 has the potential to travel large distances within the ocean. Using an ensemble of regional eddy-resolving simulations, this study investigates the long-term ventilation pathways of the leaked Cs-137 in the North Pacific Ocean. The simulations suggest that the contaminated plume would have been rapidly diluted below 10,000 Bq/m3 by the energetic Kuroshio Current and Kurushio Extension by July 2011. Based on our source function of 22 Bq/m3, which sits at the upper range of the published estimates, waters with Cs-137 concentrations >10 Bq/m3 are projected to reach the northwestern American coast and the Hawaiian archipelago by early 2014. Driven by quasi-zonal oceanic jets, shelf waters north of 45°N experience Cs-137 levels of 10-30 Bq/m3 between 2014 and 2020, while the Californian coast is projected to see lower concentrations (10-20 Bq/m3) slightly later (2016-2025). This late but prolonged exposure is related to subsurface pathways of mode waters, where Cs-137 is subducted toward the subtropics before being upwelled from deeper sources along the southern Californian coast. The model suggests that Fukushima-derived Cs-137 will penetrate the interior ocean and spread to other oceanic basins over the next two decades and beyond. The sensitivity of our results to uncertainties in the source function and to inter-annual to multi-decadal variability is discussed.

  15. Role of mesoscale eddies in transport of Fukushima-derived cesium isotopes in the ocean

    Science.gov (United States)

    Budyansky, M. V.; Goryachev, V. A.; Kaplunenko, D. D.; Lobanov, V. B.; Prants, S. V.; Sergeev, A. F.; Shlyk, N. V.; Uleysky, M. Yu.

    2015-02-01

    We present the results of in situ measurements of 134Cs and 137Cs released from the Fukushima Nuclear Power Plant (FNPP) collected at surface and different depths in the western North Pacific in June and July 2012. It was found that 15 month after the incident concentrations of radiocesium in the Japan and Okhotsk seas were at background or slightly increased level, while they had increased values in the subarctic front area east of Japan. The highest concentrations of 134Cs and 137Cs up to 13.5±0.9 and 22.7±1.5 Bq m-3 have been found to exceed ten times the background levels before the accident. Maximal content of radiocesium was observed within subsurface and intermediate water layers inside the cores of anticyclonic eddies (100-500 m). Even slightly increased content of radiocesium was found at some eddies at depth of 1000 m. It is expected that convergence and subduction of surface water inside eddies are main mechanisms of downward transport of radionuclides. In situ observations are compared with the results of simulated advection of these radioisotopes by the AVISO altimetric velocity field. Different Lagrangian diagnostics are used to reconstruct the history and origin of synthetic tracers imitating measured seawater samples collected in each of those eddies. The results of observations are consistent with the simulated results. It is shown that the tracers, simulating water samples with increased radioactivity to be measured in the cruise, really visited the areas with presumably high level of contamination. Fast water advection between anticyclonic eddies and convergence of surface water inside eddies makes them responsible for spreading, accumulation and downward transport of cesium rich water to the intermediate depth in the frontal zone.

  16. US Department of Energy, Westinghouse Hanford Company ARECO cesium transportation plan

    Energy Technology Data Exchange (ETDEWEB)

    Clements, E.P., Westinghouse Hanford

    1996-07-15

    The U.S. Department of Energy (DOE) is committed to the safe, efficient, and cost-effective transportation of all materials that support its various programs and activities. DOE strives to ensure that hazardous materials (particularly radioactive),hazardous substances, and hazardous mixed waste are handled and transported in compliance with all applicable federal, state,tribal, and local rules and regulations. This plan outlines the activities and responsibilities of DOE and other agencies that will be followed to conclude a significant movement of radioactive cesium (Cs) chloride capsules in a safe and uneventful manner. DOE-Headquarters (DOE-HQ) has directed that Cs capsules manufactured at the Waste Encapsulation and Storage Facility (WESF) be returned to WESF, located at DOE`s Hanford Site in southeast Washington State. Currently, there are 25 Cs capsules at the Applied Radiant Energy Corporation (ARECO)facility utilized for the polymerization of wood products in Lynchburg, Virginia, that requires removal as part of the overall Cs capsule return effort. This plan has been prepared in cooperation with member states of the Western Governors` Association (WGA) and the Southern States Energy Board (SSEB);the Council of State Governments Midwestern Office; and the Confederated Tribes of the Umatilla Indian Reservations, through whose jurisdictions these shipments will pass, and is an example of DOE-HQ`s commitment to early coordination and substantive involvement in its decision-making processes. This transportation plan identifies responsibilities, requirements,and procedures to ensure the success of the capsule return program. The plan summarizes transportation activities,organizational responsibilities, emergency preparedness guidelines, and other methods for achieving safe transport.

  17. Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste.

    Science.gov (United States)

    Stockmann, T Jane; Zhang, Jing; Montgomery, Anne-Marie; Ding, Zhifeng

    2014-04-22

    A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614(+)) and tetrakis(pentafluorophenyl)borate anion (TB(-)) was employed within a water|P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. (137)Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N'-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6×10(11) at the w|P66614TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δ(α), with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δ(α) of 2 and 8.2×10(7), respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were confirmed through isotopic distribution analysis of mass spectra obtained by the direct injection of an emulsified water-organic solvent mixture into an electron spray ionization mass spectrometer.

  18. Foliar uptake of cesium from the water column by aquatic macrophytes.

    Science.gov (United States)

    Pinder, J E; Hinton, T G; Whicker, F W

    2006-01-01

    The probable occurrence and rate of foliar absorption of stable cesium (133Cs) from the water column by aquatic macrophyte species was analyzed following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10(3)Lkg(-1)d(-1)) and a loss rate parameter k (d(-1)) were estimated for each species using time series of 133Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the 133Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u> or =0.75 x 10(3)Lkg(-1)d(-1). Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for 137Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  19. Foliar uptake of cesium from the water column by aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States); Hinton, T.G. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States)]. E-mail: thinton@srel.edu; Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2006-07-01

    The probable occurrence and rate of foliar absorption of stable cesium ({sup 133}Cs) from the water column by aquatic macrophyte species was analyzed following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10{sup 3} L kg{sup -1} d{sup -1}) and a loss rate parameter k (d{sup -1}) were estimated for each species using time series of {sup 133}Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the {sup 133}Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u {>=} 0.75 x 10{sup 3} L kg{sup -1} d{sup -1}. Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for {sup 137}Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  20. Selecting and applying cesium-137 conversion models to estimate soil erosion rates in cultivated fields.

    Science.gov (United States)

    Li, Sheng; Lobb, David A; Tiessen, Kevin H D; McConkey, Brian G

    2010-01-01

    The fallout radionuclide cesium-137 ((137)Cs) has been successfully used in soil erosion studies worldwide. However, discrepancies often exist between the erosion rates estimated using various conversion models. As a result, there is often confusion in the use of the various models and in the interpretation of the data. Therefore, the objective of this study was to test the structural and parametrical uncertainties associated with four conversion models typically used in cultivated agricultural landscapes. For the structural uncertainties, the Soil Constituent Redistribution by Erosion Model (SCREM) was developed and used to simulate the redistribution of fallout (137)Cs due to tillage and water erosion along a simple two-dimensional (horizontal and vertical) transect. The SCREM-predicted (137)Cs inventories were then imported into the conversion models to estimate the erosion rates. The structural uncertainties of the conversion models were assessed based on the comparisons between the conversion-model-estimated erosion rates and the erosion rates determined or used in the SCREM. For the parametrical uncertainties, test runs were conducted by varying the values of the parameters used in the model, and the parametrical uncertainties were assessed based on the responsive changes of the estimated erosion rates. Our results suggest that: (i) the performance/accuracy of the conversion models was largely dependent on the relative contributions of water vs. tillage erosion; and (ii) the estimated erosion rates were highly sensitive to the input values of the reference (137)Cs level, particle size correction factors and tillage depth. Guidelines were proposed to aid researchers in selecting and applying the conversion models under various situations common to agricultural landscapes.

  1. An Integrated Hydrologic Modeling Approach to Cesium-137 Transport in Forested Fukushima Watersheds

    Science.gov (United States)

    Siirila-Woodburn, E. R.; Steefel, C. I.; Williams, K. H.; Birkholzer, J. T.

    2015-12-01

    The 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan resulted in a significant dissemination of cesium-137 (Cs-137) over a wide area west of the plant, including the contamination of many watersheds and the subsequent evacuation of many communities. Today approximately 90% of on-land Cs-137 fallout following the accident resides in the upper 5 cm of forest soils. While this can be partially attributed to the forested composition of the prefecture (70%), there is also difficulty in cleanup efforts in these regions due to a lack of understanding and predictive capability of radioisotopes transport at the catchment to watershed scale. Subsequently, there is an uncertain, but likely long-term impact on local communities with implications for the use of nuclear energy use worldwide. Due to the complex nature of forest eco-hydrology, sophisticated modeling tools to accurately predict Cs-137 fluxes across different spatial and temporal scales are required. High fidelity, high resolution numerical modeling techniques in conjunction with parallel high performance computing is required to accurately determine transport and feedbacks in these complex systems. To better understand the fundamental transport of Cs-137, a watershed near the FDNPP is modeled with an integrated hydrologic model that includes variably saturated groundwater and overland flow in addition to atmospheric and vegetative processes via a coupled land surface model. Of specific interest is the impact of land cover type on hydrologic flow in the area, which will likely play an important role in erosion patterns and the consequent transport of Cs-137 strongly sorbed to surface soils. Risk management practices (for example, passive remediation versus active remediation such as targeted logging) for two principal tree types (evergreen and deciduous) are informed given the simulated responses to flow patterns assuming different quantities and spatial distribution patterns of each tree type.

  2. Control of the 133 cesium cold collisions, search for a variation of the fine structure constant using a dual rubidium-cesium atomic fountain; Controle des collisions froides du cesium {sup 133}Cs: tests de la variation de la constante de structure fine a l'aide d'une fontaine atomique double rubidium-cesium

    Energy Technology Data Exchange (ETDEWEB)

    Marion, H

    2005-03-15

    We developed a method of measurement of the frequency shift due to the collisions between cold atoms. This is the main systematic limitation for the accuracy of the Cs{sup 133} based fountains ({approx} 10{sup -15} in relative frequency). Consequently, we can measure this effect near 0.5% This opens prospects for improvements of the fountains performances in term of accuracy until 10{sup -16}. The fountain has also obtained a stability about 10{sup -14} at 1 s. We discovered for the first time, at very low magnetic field (5 {+-} 1 mG), Feshbach resonances. We also took a new absolute measurement of the hyperfine transition of the Rb{sup 87}, which is the most precise ever carried out and is used now as definition for the secondary standard. By comparing this value with those measured the previous years, we could carry out a test of the stability of the fine structure constant on the level of 10{sup -15} /yr. We led local comparisons between atomic fountains and the other fountains of the laboratory. Most stable it is unrolled with a combined stability of 5.10{sup -14} at 1 s. The behavior of the difference of the two clocks goes like white frequency noise up to 3.10{sup -16}. The assessment of the dual fountain accuracy budget has been evaluated at 7.10{sup -16} for the cesium part and 8.10{sup -16} for the rubidium part. We contributed to the realization of the scale of International Atomic Time, by series of calibrations of hydrogen masers. An atomic comparison of fountain by satellite links was tested between our laboratory and our German counterpart. This measurement has determined the good agreement between the two clocks. (author)

  3. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    Science.gov (United States)

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.

  4. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    Energy Technology Data Exchange (ETDEWEB)

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial `cold` simulated waste results and confirmed the selective removal provided by ligand-particle web technology.

  5. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  6. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  7. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  8. Study of the removal of cesium from aqueous solutions by graphene oxide; Estudo da remocao de cesio em solucoes aquosas por oxido de grafeno

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Vanessa N.; Rodrigues, Debora F. [University of Houston (UH), Houston, TX (United States); Vitta, Patricia B. Di [Universidade de Sao Paulo (STRES/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Setor Tecnico de Residuos Quimicos e Solventes; Oshiro, Mauricio T.; Vicente, Roberto; Hiromoto, Goro; Potiens Junior, Ademar; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%.

  9. Preparation of {sup 188}W/{sup 188}Re generators at base of {sup 188}W-titanium and zirconium tungstates by means of the sol-gel method; Preparacion de generadores {sup 188}W/{sup 188}Re a base de {sup 188}W-tungstenatos de titanio y zirconio mediante el metodo sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Rosales T, C.J. [Universidad Autonoma del Estado de Mexico, Paseo Colon esq. Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Monroy G, F.; Rivero G, T.; Rojas N, P. [ININ, Carretera Mexico-Toluca S/N, 52750 Estado de Mexico (Mexico)]. e-mail: c.j.rt@hotmail.com

    2007-07-01

    The {sup 188}Re possess nuclear characteristics that make it attractive for therapeutic application, given their {beta}{sup -} particle emission of high energy 0.764 keV besides the possibility of being able to unite to different ligands. The {sup 188}Re commercial generators use a chromatographic column loaded with alumina where the {sup 188}W is adsorbed and the {sup 188}ReO{sub 4}{sup -} eluted by means of a saline solution. The low capacity of the alumina that only it allows adsorber 0.2% in weight of {sup 188}W demand to use {sup 188}W of a high specific activity. An alternative of production of {sup 188}W / {sup 188}Re generators consists on substituting the high specific activity, for the use of a bigger quantity of {sup 188}W by means of the use of gels with the aid of tungstates. For that, in this work it intends the study of the gel synthesis conditions of {sup 188}W titanium and zirconium tungstates and their effect in the acting of the {sup 188}W / {sup 188}Re generators. The gels were synthesized by means of the sol-gel method starting from titanium and zirconium alcoxis, and solutions of {sup 188}W-sodium tungstates to different pH's. The use of the sol-gel methodology diminishes the time of synthesis of these gels almost in 60% in relation to the precipitation method commonly used. (Author)

  10. Structural characterization of hydrogen separating membranes based on lanthanide-tungstates; Strukturelle Charakterisierung von Wasserstoff trennenden Gasseparationsmembranen auf Lanthanoid-Wolframat-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Scherb, Tobias

    2011-08-26

    The global energy supply is currently the most controversial issue discussed in our society. Despite the increasing importance of renewable energies, the largest portion of electrical energy has its origin in fossil fuels. CO{sub 2}, emitted during combustion in power plants is known to be one of the greenhouse gases that contributes significantly to global climate change. The development of technologies for environmentally friendly power generation from coal and gas is an area of significant interest. One possibility is the capture and long-term storage of CO{sub 2} from the exhaust stream of fossil fuel power plants. In the pre-combustion process, CO{sub 2} and H{sub 2} can be separated after gasification of the fossil fuel. For this purpose gas-tight ceramic membranes with mixed electronic-protonic conductivity can be used. However, these materials have high requirements due to the extreme conditions in power plants. Mixed electronic-protonic conducting lanthanide tungstates (Ln{sub 6}WO{sub 12} Ln = lanthanide or yttrium) are promising materials, which are stable in CO{sub 2}-containing harsh environments. This work presents a study on structure-property relationships of Ln{sub 6}WO{sub 12}. The structural analysis was performed by the use of neutron and high-resolution X-ray diffraction methods for three exemplary systems (Ln = La, Nd, Y). Samples were prepared via solid state reaction (SSR), and also via a sol-gel approach (Pechini). For the systems LaWO and NdWO, new structural models were developed by combined Rietveld analysis and Fourier density maps. The latter was applied to determine the electron and nuclear density distribution. LaWO with a La/W ratio from 5.3 to 5.7 crystallizes with the space group F-43m and forms a superstructure due to a partially ordered arrangement of cations. On Wyckoff site 48h, up to 4.6 % W can be substituted by La. The oxygen atoms around tungsten are highly delocalized and 6 out of 24 possible split positions are occupied

  11. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil.

  12. Solubilities ,Densities and Refractive Indices of Rubidium Chloride or Cesium Chloride in Ethanol Aqueous Solutions at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    ZHAO,Wen-Xia; HU,Man-Cheng; JIANG,Yu-Cheng; LI,Shu-Ni

    2007-01-01

    The data of solubilities.densities and refractive indices of rubidium chloride or cesium chloride in the system C2H5OH-H2O were measured by using a simple accurate analytical method at different temperatures,with mass fractions of ethanol in the range of O to 1.0.In all cases,the presence of ethanol significantly reduced the solubility of rubidium chloride and cesium chloride in aqueous solution.The solubilities of the saturated solutions were fitted via polynomial equations as a function of the mass fraction of ethanol.The CsCl-C2H5OH-H2O temary system appeared in two liquid phases:alcoholic phase and water phase.when the mass fractions of ethanol were in the range of 10.37% to 49.59%at 35℃.Density and refractive index were also determined for the same ternary systems with varied unsaturated salt concentrations.Values for both experiment and theory were correlated with the salt concentrations and proportions of alcohol in the solutions.The equations proposed could also account for the saturated solutions.

  13. Assessing relationships between forest structure and soil erosion in mountainous forest using a Cesium-137 tracer technique

    Science.gov (United States)

    Choi, Kwanghun; Reineking, Björn

    2016-04-01

    The fallout radionuclides (FRNs) particularly Cesium-137 are known as a quantitatively reliable means of estimating sediment redistribution rates within agricultural landscapes and forested area. However, fewer studies have done using FRNs in forested areas even though understanding soil redistribution patterns in mountainous forest areas is one of the important issues for forest management. The objective of this study is to figure out key forest structures affecting soil redistribution rate. In this study, we estimated soil loss and gain rate at 50 points with various forest types and topography in steep mountainous forest area in the Experimental Forest of Kangwon National University in Kangwon Province, South Korea by the Cesium-137 tracing technique. The results show the factors related to the topography such as slope and water accumulation have little effect on soil redistribution rate. The shrub and small tree layer affect more on soil redistribution rate. Additionally, the data shows relatively higher erosion rate in Korean Pine tree plantation area (Pinus koraiensis Sieb. et Zucc.) than semi-natural deciduous and Quercus forests where shrubs and small trees are more prevalent.

  14. Engineering a lignocellulosic biosorbent--coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies.

    Science.gov (United States)

    Parab, Harshala; Sudersanan, M

    2010-02-01

    A novel method of engineering lignocellulosic biosorbent- coir pith (CP) by incorporation of nickel hexacyanoferrate (NiHCF), also referred to as Prussian blue analogue (PBA) inside its porous matrix is reported. Structural characterization confirmed the successful synthesis of NiHCF in the coir pith matrix. Sorption capacity of coir pith (CP) before and after loading of NiHCF was investigated for cesium (Cs) in batch equilibrium studies. Kinetic studies showed that the sorption process was rapid and saturation was attained within 30 min. The applicability of non linear Langmuir, Freundlich and Redlich Peterson isotherms was examined for the experimental data. The present studies revealed that there was nearly 100% increase in the sorption capacity of CP after its surface modification with NiHCF. Owing to its low cost, fast sorption kinetics and high uptake capacity, coir pith loaded with NiHCF (CP-NiHCF) seems to be one of the most promising biosorbents for recovery of cesium from liquid nuclear wastes.

  15. Direct Grout Stabilization of High Cesium Salt Waste: Salt Alternative Phase III Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.A.

    1998-12-07

    The direct grout alternative is a viable option for treatment/stabilization and disposal of salt waste containing Cs-137 concentrations of 1-3 Ci/gal. The composition of the direct grout salt solution is higher in sodium salts and contains up to a few hundred ppm Cs-137 more than the current reference salt solution. However it is still similar to the composition of the current reference salt solution. Consequently, the processing, setting, and leaching properties (including TCLP for Cr and Hg) of the direct grout and current saltstone waste forms are very similar. The significant difference between these waste solutions is that the high cesium salt solution will contain between 1 and 3 Curies of Cs-137 per gallon compared to a negligible amount in the current salt solution. This difference will require special engineering and shielding for a direct grout processing facility and disposal units to achieve acceptable radiation exposure conditions. The Cs-137 concentration in the direct grout salt solution will also affect the long-term curing temperature of the waste form since 4.84 Watts of energy are generated per 1000 Ci of Cs-137. The temperature rise of the direct grout during long-term curing has been calculated by A. Shaddy, SRTC.1 The effect of curing temperature on the strength, leaching and physical durability of the direct grout saltstone is described in this report. At the present time, long term curing at 90 degrees C appears to be unacceptable because of cracking which will affect the structural integrity as evaluated in the immersion test. (The experiments conducted in this feasibility study do not address the effect of cracking on leaching of contaminants other than Cr, Hg, and Cs.) No cracking of the direct grout or reference saltstone waste forms was observed for samples cured at 70 degrees C. At the present time the implications of waste form cracking at elevated curing temperatures has not been fully addressed. The direct grout falls within the

  16. Microbial mobilization of cesium from illite: Role of organic acids and siderophores

    Science.gov (United States)

    Hazotte, Alice; Peron, Olivier; Abdelouas, Abdesselam; Lebeau, Thierry

    2015-04-01

    Understanding the behavior of cesium (Cs) in soils and geological formations is interesting in the context of nuclear accidents and nuclear waste disposals. Indeed, this radionuclide with a 30-years half-life can contaminate crops and more generally the food chain. Cs with properties similar to potassium is known to be strongly accumulated in the clays of upper soil horizons. While excavation of contaminated soil cannot be feasible for the whole contaminated surfaces (huge volumes to be cleaned-up), in situ methods could provide a sustainable and low cost solution. Phytoextraction is one of a few solutions for in situ remediation of soils contaminated by trace elements and it preserves the quality of agricultural soils. However, many improvements are still needed to enhance phytoextraction effectiveness. The combination of bioaugmentation (soil inoculation with exogenous microorganisms) with phytoextraction is likely to increase the bioaccessibility of radionuclides and their accumulation in plants. The role of bacteria on soil-pollutants can be direct (direct metal complexation) and/or indirect (weathering of clays adsorbing Cs). This study aims to provide more specifically a mechanistic understanding of the bacterial mobilization of Cs from soil with the prospect of soil bioremediation. Bacterial metabolites of Pseudomonas fluorescens (ATCC 17400) were supplied to illite spiked with 0.1 and 1 mM of Cs. Purified siderophores including pyoverdine from P. fluorescens, or the whole metabolites from the bacterial culture supernatant were compared to low molecular weight organic acids (LMWOA) (citric and oxalic acids) at 0.04 mM, or synthetic chelants, i.e., acetohydroxamic acid (AHA) and desferrioxamine mesylate (DFOM) ranging from 50 µM up to 250 µM. The release of Cs and the structural alteration of illite (release of Al, Fe and Si) were monitored. When compared to the control, no release of Cs from illite was observed with LMWOA. On the contrary, a slight release

  17. Cobalt-60 and cesium-137 for the sterilization of food. Radiation treatment of food. Mit Kobalt 60 und Caesium 137 gegen Keime in Lebensmitteln. Strahlenbehandlung von Lebensmitteln

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-11-01

    The brief article discusses the reasons justifying in the eyes of the authors the irradiation of food with ionizing readiation, the irradiation technique applied using cobalt-60 and cesium-137 as a radiation source, and the possible secondary effects of the method. (VHE).

  18. Cs8.5W15O48 and CsW2O6 : Members of a New Homologous Series of Cesium Tungsten Oxides

    NARCIS (Netherlands)

    Cava, R.J.; Roth, R.S.; Siegrist, T.; Hessen, B.; Krajewski, J.J.; Peck, Jr.

    1993-01-01

    The crystal structures of two new reduced cesium tungsten oxides are reported. Along with the previously reported compound Cs6W11O36, they represent several members of a homologous series of layer compounds between the hexagonal tungsten bronze and pyrochlore structure types. The series formula is [

  19. Cesium cation templated selective synthesis of a "cone-shaped" sugar macrotricyclic cryptand: A dual anion-cation molecular recognition of potassium tartrate.

    Science.gov (United States)

    Porwanski, S; Moretti, F; Dumarcay-Charbonnier, F; Marsura, A

    2016-05-01

    Cesium templated Staudinger-aza-Wittig tandem reaction (S.A.W.) has been used in the synthesis of a bis-diazacrown-bis-cellobiosyl-tetra-ureido cryptand. A novel macrotricyclic compound having a "cone-shaped" configuration was selectively obtained. Additionally, first results on potential recognition properties of the cryptand are also given.

  20. Elucidating the structures and cooperative binding mechanism of cesium salts to the multitopic ion-pair receptor through density functional theory calculations.

    Science.gov (United States)

    Sadhu, Biswajit; Sundararajan, Mahesh; Velmurugan, Gunasekaran; Venuvanalingam, Ponnambalam

    2015-09-21

    Designing new and innovative receptors for the selective binding of radionuclides is central to nuclear waste management processes. Recently, a new multi-topic ion-pair receptor was reported which binds a variety of cesium salts. Due to the large size of the receptor, quantum chemical calculations on the full ion-pair receptors are restricted, thus the binding mechanisms are not well understood at the molecular level. We have assessed the binding strengths of various cesium salts to the recently synthesized multi-topic ion-pair receptor molecule using density functional theory based calculations. Our calculations predict that the binding of cesium salts to the receptor predominantly occurs via the cooperative binding mechanism. Cesium and the anion synergistically assist each other to bind favorably inside the receptor. Energy decomposition analysis on the ion-pair complexes shows that the Cs salts are bound to the receptor mainly through electrostatic interactions with small contribution from covalent interactions for large ionic radius anions. Further, QTAIM analysis characterizes the importance of different inter-molecular interactions between the ions and the receptor inside the ion-pair complexes. The role of the crystallographic solvent molecule contributes significantly by ~10 kcal mol(-1) to the overall binding affinities which is quite significant. Further, unlike the recent molecular mechanics (MM) calculations, our calculated binding affinity trends for various Cs ion-pair complexes (CsF, CsCl and CsNO3) are now in excellent agreement with the experimental binding affinity trends.

  1. An Alternative Method for Generating Arynes from ortho-Silylaryl Triflates: Activation by Cesium Carbonate in the Presence of a Crown Ether

    Directory of Open Access Journals (Sweden)

    Suguru Yoshida

    2015-06-01

    Full Text Available An alternative method for generating arynes from ortho-silylaryl triflates using cesium carbonate and 18-crown-6 is reported. The method was efficiently applied to a variety of reactions between several arynes and arynophiles. We also demonstrated that the efficiency of aryne generation is significantly affected by the alkali metal countercation of the carbonate.

  2. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in

  3. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Sakita, Shogo [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara City, Hiroshima 727-0023 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania)

    2014-08-30

    Graphical abstract: Schematic representation of possible mechanisms determining the Cs extraction and immobilization in fly ash during water, methanol or n-MCaS extraction. - Highlights: • nMCaS suspension for cesium extraction and immobilization in fly ash was developed. • Enhanced cesium immobilization was done by nanometallic Ca/CaO methanol suspension. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • nMCaS unique and a highly potential amendment for the remediation of Cs. - Abstract: In this work, the capability of nanometallic Ca/CaO methanol suspension in removing and/or immobilizing stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs) in contaminated fly ash was investigated. After a first methanol and second water washing yielded only 45% of {sup 133}Cs removal. While, after a first methanol washing, the second solvent with nanometallic Ca/CaO methanol suspension yielded simultaneous enhanced removal and immobilization about 99% of {sup 133}Cs. SEM-EDS analysis revealed that the mass percent of detectable {sup 133}Cs on the fly ash surface recorded a 100% decrease. When real radioactive cesium contaminated fly ash (containing an initial 14,040 Bq kg{sup −1134}Cs and {sup 137}Cs cumulated concentration) obtained from burning wastes from Fukushima were reduced to 3583 Bq kg{sup −1} after treatment with nanometallic Ca/CaO methanol suspension. Elution test conducted on the treated fly ash gave 100 Bq L{sup −1} total {sup 134}Cs and {sup 137}Cs concentrations in eluted solution. Furthermore, both ash content and eluted solution concentrations of {sup 134}Cs and {sup 137}Cs were much lower than the Japanese Ministry of the Environment regulatory limit of 8000 Bq kg{sup −1} and 150 Bq L{sup −1} respectively. The results of this study suggest that the nanometallic Ca/CaO methanol suspension is

  4. The dependence of equilibrium partition coefficient of cesium and iodine between sodium pool and the inert cover gas on the concentration in the pool

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Shinya, E-mail: miyahara.shinya@jaea.go.jp [FBR Plant Engineering Center, Japan Atomic Energy Agency, 1 Shiraki, Tsuruga, Fukui 919-1279 (Japan); Research Institute of Nuclear Engineering, University of Fukui, 1-3-9 Bunkyo, Fukui 910-8507 (Japan); Nishimura, Masahiro, E-mail: nishimura.masahiro@jaea.go.jp [O-arai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Nakagiri, Toshio, E-mail: nakagiri.toshio@jaea.go.jp [FBR Plant Engineering Center, Japan Atomic Energy Agency, 1 Shiraki, Tsuruga, Fukui 919-1279 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We measured equilibrium partition coefficients of cesium and iodine between liquid sodium pool and the inert cover gas. Black-Right-Pointing-Pointer The obtained empirical equations were consistent with Castleman's theoretical equations. Black-Right-Pointing-Pointer The effect of cesium concentration upon the partition coefficients was consistent with the theoretical values. Black-Right-Pointing-Pointer That of iodine concentration was incompatible with the theoretical consideration due to the formation of Na{sub 2}I{sub 2} in the cover gas. - Abstract: Equilibrium partition coefficients were experimentally measured for volatile fission products of cesium and iodine between liquid sodium pool and the inert cover gas. In the experiments, the 'transpiration method' was utilized in which the saturation vapor of sodium with cesium and iodine vapor in an isothermal evaporation pot was transported by inert carrier gas and trapped by filters outside the pot. The objectives of the experiments are to: (a)obtain the equilibrium partition coefficients of cesium and iodine at high temperature between 600 and 850 Degree-Sign C and, (b)study the dependence of the partition coefficients upon the concentration in the sodium pool. From the results of previous work and this study, the following empirical equations between the partition coefficients of cesium and iodine and the sodium pool temperature could be obtained: logKd(Cs)=(2173)/T -1.0487(from450to850 Degree-Sign C), logKd(I)=(-215)/T -0.271(from450to850 Degree-Sign C). These equations are consistent with Castleman's theoretical equations. The partition coefficients of cesium measured at five different points of mole concentration in the pool were almost consistent with the theoretical values and decreased with the increase in the concentration. On the other hand, the measured partition coefficients of iodine increased with the increase in the concentration in the

  5. Determination of tannin in feed using spectrophotometric method with sodium tungstate- phosphomolybdic acid%钨酸钠-磷钼酸比色分光光度法测定饲料中的单宁

    Institute of Scientific and Technical Information of China (English)

    潘娟; 商军; 黄士新

    2012-01-01

    The optimum condition of determination of tannin in feeds using spectrophotometric method with sodium tungstate - molybdphosphoric acid was studied. The linear range of the method for determination of tannin was from 0.50 to 6.00 mg/l and the limit of detection was 17.5 mg/kg. The method was simple, rapid and reliable for the determination of tannin in feeds.%试验研究了用丙酮溶液提取饲料中单宁,溶液经过滤后,取滤液加钨酸钠-磷钼酸混合溶液,显色后,在760 nm波长处测定吸光度值,标准曲线法测定饲料中单宁含量.单宁在0.50~6.00 mg/l浓度范围内与吸光度值呈良好的线性关系,线性回归方程为A=0.056 48×C+0.001 08,相关系数为0.999 7,方法的检出限为17.5 mg/kg.该方法操作简便、快速、结果准确,应用于饲料中单宁的测定,结果满意.

  6. The magnetic structures of double tungstates, NaM(WO{sub 4}){sub 2}, M=Fe, Cr: Examples for superexchange couplings mediated by [NaO{sub 6}]-octahedra

    Energy Technology Data Exchange (ETDEWEB)

    Nyam-Ochir, L. [School of Physics and Electronics, National University of Mongolia, 210646 Ulaanbaatar (Mongolia); Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany); Ehrenberg, H. [Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany); Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)], E-mail: h.ehrenberg@ifw-dresden.de; Buchsteiner, A. [Hahn Meitner Institute Berlin, D-14092 Berlin (Germany); Senyshyn, A.; Fuess, H. [Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany); Sangaa, D. [School of Physics and Electronics, National University of Mongolia, 210646 Ulaanbaatar (Mongolia)

    2008-12-15

    The crystal structures of the double tungstates NaM(WO{sub 4}){sub 2} with M=Fe, Cr and their solid solution are similar to the wolframite-type structure in the space group P2/c, but with doubled a lattice parameter. Magnetization and neutron-diffraction data reveal that NaFe(WO{sub 4}){sub 2} orders antiferromagnetically below 5 K with a commensurate propagation vector k=(1/2 ,1/2 ,1/2 ) and magnetic moments of Fe{sup 3+} ions oriented along the a-axis. NaCr(WO{sub 4}){sub 2} is antiferromagnetic below 10 K. Its magnetic structure is based on the propagation vector k=(1/2 ,1/2 ,0), and the magnetic moments of Cr{sup 3+} ions are aligned along the b-axis. The magnetic structure in the bc-plane is explained by a supersuperexchange mechanism. Long-range magnetic superexchange interactions along paths including [NaO{sub 6}]-octahedra are necessary to explain the observed magnetic structures. Mixed NaFe{sub x}Cr{sub 1-x}(WO{sub 4}){sub 2}, with x=0.25, 0.5, 0.75, do not indicate magnetic order, neither in magnetization nor neutron-diffraction data.

  7. Exposure to Lithium and Cesium Through Drinking Water and Thyroid Function During Pregnancy: A Prospective Cohort Study

    Science.gov (United States)

    Harari, Florencia; Bottai, Matteo; Casimiro, Esperanza; Palm, Brita

    2015-01-01

    Background: Impaired thyroid function is a common side effect of lithium medication. Recent data indicate that lithium exposure through drinking water, although providing much lower doses than the medication, may also affect thyroid hormone levels. However, the effects in susceptible groups like pregnant women are not known. Methods: In a population-based mother–child cohort in the Argentinean Andes (n = 194), an area with varying concentrations of lithium in the drinking water, we assessed lithium exposure repeatedly during pregnancy by measuring the concentrations in blood using inductively coupled plasma mass spectrometry. The markers of thyroid function included thyrotropin (TSH), free/total thyroxine (fT4/T4), free/total triiodothyronine (fT3/T3), thyroglobulin, and transthyretin in serum, sampled at the same time. Multiple potential confounders, including exposure to arsenic, cesium, and boron (elevated in water) as well as selenium and iodine (essential for thyroid function) were considered. Results: The lithium concentrations in blood [median 25 μg/L (0.0036 mmol/L); range 1.9–145 μg/L (0.000027–0.021 mmol/L)] correlated significantly with those in urine and drinking water (rs = 0.84, p < 0.001, and rs = 0.40, p < 0.001, respectively). Using linear quantile regression models, we found a positive association between blood lithium (log2 transformed) and TSH concentrations, particularly in the lowest percentiles of TSH (B = 0.20 mIU/L, [95% confidence interval 0.048–0.35] at the fifth percentile). We also found inverse associations of blood lithium with transthyretin, particularly at the highest percentiles, as well as with fT3 and T3, with less obvious variation across percentiles. Unexpectedly, blood cesium concentrations (median 111 μg/L, range 2.5–711 μg/L) were also inversely associated with fT3 and T3, particularly at the highest T3 percentiles, but not with TSH or transthyretin. Arsenic and boron

  8. Electrokinetic decontamination of porous media. Experimental study and modeling of the cesium transport through cementitious materials; Decontamination electrocinetique des milieux poreux. Etude experimentale et modelisation appliquees au cesium dans les materiaux cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Frizon, F.

    2003-04-02

    The aim of this work is to study the nuclear decontamination of cementitious materials by an electrokinetic method. Special attention is given to the understanding of the mechanisms leading to the removal of radioelements from the material. First, a bibliographic research allowed us to reduce the study to a normalized mortar and to cesium ions. This choice was confirmed by the experimental study of interactions between the contaminant and the material. Next, the efficiency of the electrokinetic decontamination was experimentally shown in laboratory conditions and electromigration was identified as the main transport phenomenon. Then, a numerical model was implemented in order to describe the ionic transport by electromigration. The results obtained were compared to experiments. Finally, some applications and developments of the electrokinetic process were proposed. (author)

  9. Measurement of parity violation in the 6S-7S transition of cesium using stimulated emission; Mesure de la violation de la parite sur la transition 6S-7S du cesium par emission stimulee dans une vapeur atomique

    Energy Technology Data Exchange (ETDEWEB)

    Lintz, M

    2005-11-15

    This document describes the design and implementation of a pump-probe polarimetry experiment in a cesium vapor, aiming at a 1% precision measurement of atomic parity violation (APV) induced by Z{sup 0} boson exchange. The experimental scheme, relying on induced emission by a probe laser, allows a detection efficiency close to unity, and the left-right asymmetry to be measured is amplified during the propagation of the probe beam in the excited vapour. The interest of the result presented here is to cross-check the unique previous result by an experiment with a completely different design, and hence with completely different systematics, that also allows measurements on long-lived isotopes especially {sup 135}Cs (nuclear spin 7/2 like {sup 133}Cs, half-life 3 million years). We have demonstrated improvements in polarimetry techniques (rejection of instrumental errors, implementation of a polarization magnifier), especially in pulsed polarimetry (doubly-differential, balanced-mode polarization analysis). But most importantly, the expected pump-probe chiral optical gain has been observed in a Cs vapor. The precision on the {theta}{sup pv} measurement has been improved to 2.6%, and the achieved signal/noise ratio allows measurements at the 1% precision level. The achieved precision on lm E{sub 1}{sup pv} is 2 x 10{sup -13} ea{sub 0}, 15 times better than the measurements obtained with the lead and thallium atoms. Our result is in agreement with the more precise Boulder result. The required amount of cesium is small enough to allow a measurement with {sup 135}Cs provided one takes reasonable radioprotection measures. (author)

  10. Understanding of amount and dynamics of radioactive cesium deposited on trees in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I. [The University of Tokyo, 113-8657, 1-1-1 Yayoi Bunkyo-ku, Tokyo (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, 263-8555, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan); Ohashi, Mizue [University of Hyogo, 670-0092, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo (Japan)

    2014-07-01

    The accident of Fukushima Daiichi nuclear power plant after the earthquake and Tsunami in March 11, 2011 caused large amount of radioactive cesium ({sup 134}Cs, {sup 137}Cs) deposition onto the forest in the surrounding areas. River water from the forest area is used for food production and also for drinking water in these regions. In order to predict how radioactive Cs diffuse and discharge from the forest catchments, it is important to understand the amount and dynamics of radioactive Cs deposited on the trees. In this report, we show our preliminary results of {sup 137}Cs deposition in forest. Study was conducted in the forest at the upstream of Kami-Oguni River catchment, northern part of Fukushima Prefecture. Three plots (2 deciduous stands and 1 Japanese cedar (Cryptomeria japonica) plantation) were set in the forest. Quercus serrata and C. japonica, a representative of deciduous and evergreen tree species in this region, were chosen from each plot. Sample trees were logged in October 2012. Stem samples were collected every 2 m from above the ground to tree top and separated into bark, sapwood and heartwood. Litter traps were set in each plot and collected every month. Leaf litter was classified among species. Also, soil samples were collected in the cylinder of 5 cm in diameter and maximum 30 cm in depth from the forest floor every month. {sup 137}Cs concentration of all samples were measured by germanium semiconductor detector or NaI(Tl) scintillation counter. Deposited {sup 137}Cs was attached strongly on the bark of Q. serrata at high concentration (9-18 kBq/kg) but there were no clear relationship with tree height. In C. japonica, {sup 137}Cs concentration was about half times lower than that of Q. serrata at 0-10 m part of the tree. {sup 137}Cs concentration in wood of C. japonica was higher than Q. serrata. {sup 137}Cs concentration of sapwood was as high as that of heartwood in C. japonica, but in Q. serrata, {sup 137}Cs concentration in sapwood was

  11. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture

    CERN Document Server

    Malins, Alex; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with 134Cs and 137Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modelling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modelling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rate...

  12. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Davis, V.T. [Test Support Division, Defense Threat Reduction Agency, West Desert Test Center, Dugway, UT 84022-5000 (United States)]. E-mail: vernon.davis@us.army.mil; Covington, A.M. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Duvvuri, S.S. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Kraus, R.G. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Emmons, E.D. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Thompson, J.S. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States)

    2007-08-15

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps.

  13. Temporal variation of cesium isotope concentrations and atom ratios in zooplankton in the Pacific off the east coast of Japan

    Science.gov (United States)

    Ikenoue, Takahito; Takata, Hyoe; Kusakabe, Masashi; Kudo, Natsumi; Hasegawa, Kazuyuki; Ishimaru, Takashi

    2017-01-01

    After the Fukushima Daiichi Nuclear Power Plant accident in March 2011, concentrations of cesium isotopes (133Cs, 134Cs, and 137Cs) were measured in zooplankton collected in the Pacific off the east coast of Japan from May 2012 to February 2015. The time series of the data exhibited sporadic 137Cs concentration peaks in zooplankton. In addition, the atom ratio of 137Cs/133Cs in zooplankton was consistently high compared to that in ambient seawater throughout the sampling period. These phenomena cannot be explained fully by the bioaccumulation of 137Cs in zooplankton via ambient seawater intake, the inclusion of resuspended sediment in the plankton sample, or the taxonomic composition of the plankton. Autoradiography revealed highly radioactive particles within zooplankton samples, which could be the main factor underlying the sporadic appearance of high 137Cs concentrations in zooplankton as well as the higher ratio of 137Cs/133Cs in zooplankton than in seawater.

  14. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  15. Modeling high speed growth of large rods of cesium iodide crystals by edge-defined film-fed growth (EFG)

    Science.gov (United States)

    Yeckel, Andrew

    2016-09-01

    A thermocapillary model of edge-defined film-fed growth (EFG) is developed to analyze an experimental system for high speed growth of cesium iodide as a model system for halide scintillator production. The model simulates heat transfer and fluid dynamics in the die, melt, and crystal under conditions of steady growth. Appropriate mass, force, and energy balances are used to compute self-consistent shapes of the growth interface and melt-vapor meniscus. The model is applied to study the effects of growth rate, die geometry, and furnace heat transfer on the limits of system operability. An inverse problem formulation is used to seek operable states at high growth rates by adjusting the overall temperature level and thermal gradient in the furnace. The model predicts that steady growth is feasible at rates greater than 20 mm/h for crystals up to 18 mm in diameter under reasonable furnace gradients.

  16. Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers.

    Science.gov (United States)

    Kaczmarek, Krzysztof T; Saunders, Dylan J; Sprague, Michael R; Kolthammer, W Steven; Feizpour, Amir; Ledingham, Patrick M; Brecht, Benjamin; Poem, Eilon; Walmsley, Ian A; Nunn, Joshua

    2015-12-01

    Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depths could only be generated for seconds, at most once per day, severely limiting the practicality of the technology. Here we report the generation of the highest observed transient (>10(5) for up to a minute) and highest observed persistent (>2000 for hours) optical depths of alkali vapors in a light-guiding geometry to date, using a cesium-filled Kagomé-type hollow-core photonic crystal fiber (HC-PCF). Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

  17. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    Energy Technology Data Exchange (ETDEWEB)

    Borai, E.H., E-mail: emadborai@yahoo.com [Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo 13759 (Egypt); Harjula, R.; Malinen, Leena; Paajanen, Airi [Chemistry Department, Laboratory of Radiochemistry, Helsinki University (Finland)

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs{sup +} ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  18. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    Science.gov (United States)

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  19. Alkaline-Side Extraction of Cesium from Savannah River Tank Waste Using a Calixarene-Crown Ether Extractant

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.V.; Delmau, L.H.; Haverlock, T.J.; Moyer, B.A.

    1998-12-01

    Results are presented supporting the viability of the alkaline-side CSEX process as a potential replacement for the In-Tank Precipitation process for removal of cesium from aqueous high-level waste (HLW) at the Savannah River Site (SRS). Under funding from the USDOE Efficient Separations and Crosscutting program, a flowsheet was suggested in early June of 1998, and in the following four months, this flowsheet underwent extensive testing, both in batch tests at ORNL and ANL and in two centrifugal-contactor tests at ANL. To carry out these tests, the initial ESP funding was augmented by direct funds from Westinghouse Savannah River Corporation. The flowsheet employed a solvent containing a calixarene-crown hybrid compound called BoBCalixC6 that was invented at ORNL and can now be obtained commercially for government use from IBC Advanced Technologies. This special extractant is so powerful and selective that it can be used at only 0.01 M, compensating for its expense, but a modifier is required for use in an aliphatic diluent, primarily to increase the cesium distribution ratio D{sub Cs} in extraction. The modifier selected is a relatively economical fluorinated alcohol called Cs3, invented at ORNL and so far available. only from ORNL. For the flowsheet, the modifier is used at 0.2 M in the branched aliphatic kerosene Isopar{reg_sign} L. Testing at ORNL and ANL involved simulants of the SRS HLW. After extraction of the Cs from the waste simulant, the solvent is scrubbed with 0.05 M HNO{sub 3} and stripped with a solution comprised of 0.0005 M HNO{sub 3} and 0.0001 M CsNO{sub 3}. The selection of these conditions is justified in this report, both on the basis of experimental data and underlying theory.

  20. Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Bontha, J.R.; Carson, K.J.; Elovich, R.J.; DesChane, J.R.

    1997-10-01

    The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV{reg_sign} IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A&M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 10{sup 4} and 10{sup 5}) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin.