WorldWideScience

Sample records for cesium space experiment

  1. Dose mapping experiments of refurbished cesium irradiator

    International Nuclear Information System (INIS)

    Full text: Cesium irradiator is a technology demonstration facility for irradiation of food commodities to achieve various purposes like control of sprouting in onion and potato, insect disinfestations of cereals and pulses, quarantine treatment of fresh fruits and vegetables and shelf life extension of perishable foods. The facility was installed in 1968 and recently refurbished with the new control console. The current source strength (137Cs) of the irradiator is 44.3 kCi. The real success of irradiation of food commodities lies in the adequate delivery of radiation dose to achieve the particular purpose of irradiation. Therefore, evaluation of dose distribution pattern in the product trays of the irradiation facility is of paramount importance. Two sets of dose mapping experiments of the product trays of the facility were carried out to find out the dose distribution profile and dose uniformity ratio. Reference standard dosimeter Fricke was used for the experiment. The standardized ionic concentrations of Fricke dosimeter are Ferrous Ammonium Sulphate (FeSO4(NH4)2SO4 6H2O ) - 1 mM, Sodium Chloride (NaCl) - 1 mM, Sulphuric acid (H2SO4) - 400 mM. The Optical Density (O.D) evaluation was carried out using Spectrophotometry with wave length of 304 nm. The dosimetry tray was partitioned into two planes namely bottom plane and top plane using card-board sheets. Polypropylene vials containing Fricke solution were prepared and fixed on the planes. Each plane was containing nine numbers of dosimeters. The product thickness was around 9 cm. The temperatures of irradiation and measurements were 30 deg C and 28 deg C respectively. The first set of experiment was intended to find out the dose distribution profile throughout the irradiation chamber. The dose rate at Dmin position was observed as 3.69 Gy/min with a poor Dose Uniformity Ratio (DUR) of 6.5. In order to improve the dose rate and DUR the second set of the experiment was carried out with modified product geometry

  2. Test evaluation of a cesium vapor source and regulator for thermionic space power systems

    International Nuclear Information System (INIS)

    This paper presents the results of nearly 8000 hours of testing of a fully developed cesium vapor source on the integrated TOPAZ II Ya-21U thermionic space power system. The test period included 4000 hours of system thermal vacuum operation and evaluation by Russian specialists at the Central Design Bureau for Machine Building (CDBMB), St. Petersburg, Russia; nearly 4000 hours of thermal vacuum tests at the Thermionic Systems Evaluation Test (TSET) laboratory; and mechanical tests at the Sandia National Laboratories (SNL), Albuquerque, NM. Testing of the non-nuclear Ya-21U system provided significant information for evaluation and characterization of the cesium vapor source that could not be obtained by development and qualification testing of only components. The Ya-21U system and cesium vapor source were subjected to excessive, unplanned stress levels during the system evaluation tests which resulted in leakage of oxygen into the cesium subsystem and cesium vapor from the TFEs. The information and experience gained during the thermionic system evaluation test are useful for improvement of future cesium vapor subsystem designs, test support equipment, and system test procedures. copyright 1996 American Institute of Physics

  3. Increasing the Space Charge Limit and Other Effects of Cesium Seeding in Hydrogen Negative Ion Sources

    International Nuclear Information System (INIS)

    The role of cesium seeding in increasing the negative ion current in volume sources is described. By a reduction in the local plasma potential the current of extracted electrons is vastly reduced. As a result, cesium increases the fraction of the transverse space charge limit available to the ions by as much as a factor of three. In addition, cesium can increase the total space charge limit by injection of Cs+ into the presheath-a newly recognized phenomenon consistent with experimental measurements and determined from application of a Double-Vlasov model for negative ion extraction

  4. Vector Cesium Magnetometer for the nEDM Experiment

    International Nuclear Information System (INIS)

    Full text: We use optical pumping combined with magnetic resonance in a Cesium vapor cell in order to measure the magnetic field. A Vector Cs Magnetometer uses multiple laser beams to follow the dynamics of the spin in 3D. The 3D signal is used to extract the Larmor frequency of the spins, and to extract the direction of the magnetic field through the path of the spins. The magnetometer was successfully tested in a proof of principle experiment. Its measured performance is ∼50 pT/Hz1/2 for the directions perpendicular to the magnetic field, and ∼500 fT/Hz1/2 for the direction parallel to the magnetic field. (author)

  5. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  6. Broadband Vibrational Cooling of Cold Cesium Molecules: Theory and Experiments

    Institute of Scientific and Technical Information of China (English)

    D. Sofikitis; A. Fioretti; S. Weber; M. Viteau; A. Chotia; R. Horchani; M. Allegrini; B. Chatel; D. Comparat; P. Pillet

    2009-01-01

    The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample of cold molecules, initially distributed over several vibrational levels, has thus been transfered into a single selected vibrational level of the singlet X1∑g ground electronic state. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. In this paper we briefly report the main experimental results and then address, in a detailed way by computer simulations, the perspectives for a "complete" cooling of the molecules, including also the rotational degree of freedom. Since the pumping process strongly depends on the rclative shape of the ground and excited potential curves, ro-vibrational cooling through different excited states is theoretically compared.

  7. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  8. Some probe experiments on a high energy cesium ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Hubach, R. A.; Peppin, G. B.

    1963-03-31

    A probe has been developed which is, in effect, a directional Langmuir probe. The directional quality is necessary for use in a beam of high energy ions to eliminate the effects of the streaming ions on the probe operation. This probe has been utilized to measure the back-streaming (albedo) electron component to verify the bottle model of space-charge neutralization. It has also been possible to infer the density of slow ions in the beam created by gas ionization and to infer a value of the cross section for such gas ionization which .agrees with the anticipated value. (auth)

  9. Translocation of cesium in plants after foliar deposition - Experiments and models

    International Nuclear Information System (INIS)

    The translocation of cesium from the foliage to the edible parts as function of the time period between deposition and harvest has been determined for cereals, potatoes, green beans and carrots. From the results the following conclusions can be drawn: 1. The maximum of the cesium translocation is 40 to 50 and 70 to 90 days before harvest for cereals and potatoes respectively. For green beans a maximum was observed after deposition 15 days before harvest; 2. The variations of the translocation factors are less if the translocation is normalized to the yield; 3. The translocation factors are in good agreement with those of other investigators. The agreement between the experimental series is better for a normalization of the translocation factor on the yield; 4. For cereals and potatoes the translocation can be described with gaussian functions which are consistent with the physiological development of cereals and potatoes. Although the approach in ECOSYS tends to over predict slightly the translocation for barley and potatoes there is a good overall agreement between the experiments and this model; 5. According to the investigations available the translocation of cesium can be predicted within a factor of 3 for cereals and a factor of 4 for potatoes. Sources of the uncertainties besides the biological variability and the inherent experimental error are differences in the development of the plants due to weather conditions, farm management and plant diseases. (9 refs., 5 figs.)

  10. Electron electric dipole moment experiment using electric-field quantized slow cesium atoms

    OpenAIRE

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey

    2007-01-01

    A proof-of-principle electron electric dipole moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal lbar mF rbar and, along with the low (approximately 3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small r...

  11. Results of space experiments

    International Nuclear Information System (INIS)

    Life science research in space was started in Europe with the first Biostack experiment flown onboard Apollo 16 in 1972. Biostack was designed to investigate the biological effects of single heavy ions of cosmic radiation. Among several undertakings towards this goal, the Biostack achieved the highest precision in the determination of the spatial correlation of the observed biological response of single test organisms to the passage of single heavy ions, which is the mandatory requirement. It also provided information on the influence of additional space-flight factors, such as microgravity, on radiation effects and measurements of the spectrum of charge and energy of the cosmic radiation. The experiment was performed as an international cooperation effort. This report gives a summary of the biological data accumulated in this and the follow-on experiments of the Biostack program. (orig.)

  12. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    International Nuclear Information System (INIS)

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  13. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, Raphael

    2010-07-21

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  14. Batch sorption experiments with iodine, bromine, strontium, sodium and cesium on Grimsel mylonite

    International Nuclear Information System (INIS)

    Promylonite surrounding the fracture at the migration site was not available in sufficient amounts, so mylonite from an adjacent fault zone was used. All the work has been carried out in glove boxes in a nitrogen atmosphere with very low O2 and CO2 levels. Mylonite was equilibrated with the natural Grimsel groundwater (NGW) prior to sorption experiments. The first series of sorption experiments was carried out without shaking. This caused sedimentation of the mylonite and led to slow kinetics. In the later experiments therefore, gentle, continuous agitation was used. No sorption of iodine and bromine on mylonite was observed under the experimental conditions used. It was observed that the sorption coefficient of 85Sr and 22Na were not affected by varying nuclide concentrations, provided these were kept much below their natural levels in NGW. This indicates that, in this nuclide concentration range, isotopic exchange takes place. Sorption coefficients did not vary with the rock/water ratio. Experiments with a bulky displacing cation suggested that some sodium ions were on less accessible internal sites and this could account for the slow kinetics for sodium. Further experiments with samples with smaller particle size confirmed this hypothesis. Batch sorption experiments on mylonite at initial cesium concentrations of between 3,2.10-8 and 5,0.10-4 M showed that sorption was reversible and non-linear; sorption coefficients were between 3800 and 21 ml/g. Increasing the potassium concentration in the solution led to reduced sorption of cesium, suggesting that Cs and K compete for the sorption sites. At the lowest Cs concentration used, sorption appears to be due to exchange with K at specific sites on mica, together with possible isotopic exchange. For these conditions and by making some assumptions, a Cs sorption coefficient for waters with different concentrations could be estimated. (author) 7 figs., 12 tabs., 42 refs

  15. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    International Nuclear Information System (INIS)

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |mF| and, along with the low (≅3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system

  16. Electron electric dipole moment experiment using electric-field quantized slow cesium atoms

    CERN Document Server

    Amini, Jason M; Gould, Harvey

    2007-01-01

    A proof-of-principle electron electric dipole moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal mF and, along with the low (approximately 3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  17. Revisiting the capture velocity of a cesium magneto-optical trap: model, simulation and experiment

    International Nuclear Information System (INIS)

    In this work, we have explored ab initio the capture process in a magneto-optical trap by theory, simulation and experiment. We measured the capture velocity vc of a cesium vapor cell magneto-optical trap (VCMOT) from its capture rate R and developed an exact model for the capture rate of a VCMOT in terms of its capture velocity, background density and trap laser beam diameter. We measured the capture velocity of a cesium VCMOT for various trap laser intensities and magnetic field gradients. We observed that the capture velocity is a damping force as well as a restoring force phenomenon. We supported our findings by performing simulations for single atom trajectories in a 1D cesium MOT. Finally, we concluded that two MOTs can have the same capture velocities but very different capture rates, thereby revealing that these are two fundamentally different characteristics of the MOT. (paper)

  18. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    Science.gov (United States)

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity. PMID:11015933

  19. Experimental and analytical study on cesium iodide behavior in piping in wave experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, A.; Igarashi, M.; Hashimoto, K.; Sugimoto, J. [Japan Atomic Energy Research Inst., Dep. of Reactor Safety Research, Tokai-mura (Japan); Yoshino, T. [Toshiba Advanced System Corp., Isago Kawasaki-ku (Japan)

    1996-12-01

    The WAVE (Wide range Aerosol model VErification) experiments have been performed at JAERI to investigate cesium iodide (CsI) deposition onto an inner surface of piping wall under typical severe accident conditions. The test facility consists of a dish containing CsI powder, electrical heaters and a straight pipe of 1.5 m in length with diameter of 0.042m. Nitrogen gas and superheated steam were injected into the pipe to carry the vaporized CsI and to simulate the thermohydraulic condition for the PWR hot-leg inlet. Analyses of the experiments have been conducted with a three-dimensional thermohydraulic code, SPRAC and the radionuclide behavior analysis codes, ART and VICTORIA. A clear difference was found in the deposition behavior between nitrogen and steam conditions as carrier gases. For nitrogen gas, the analyses well reproduced the experimental results by closely coupling the CsI behavior and the detailed thermohydraulic analyses. For steam carrier gas, on the contrary, the experimental results could not be well reproduced without the use of larger aerosol size. Since the observed enhancement of aerosol size in superheated steam cannot be explained by existing models, it is necessary to further investigate this mechanisms by experiment and analysis. (author) 34 figs., 23 refs.

  20. Experimental and analytical study on cesium iodide behavior in piping in wave experiment

    International Nuclear Information System (INIS)

    The WAVE (Wide range Aerosol model VErification) experiments have been performed at JAERI to investigate cesium iodide (CsI) deposition onto an inner surface of piping wall under typical severe accident conditions. The test facility consists of a dish containing CsI powder, electrical heaters and a straight pipe of 1.5 m in length with diameter of 0.042m. Nitrogen gas and superheated steam were injected into the pipe to carry the vaporized CsI and to simulate the thermohydraulic condition for the PWR hot-leg inlet. Analyses of the experiments have been conducted with a three-dimensional thermohydraulic code, SPRAC and the radionuclide behavior analysis codes, ART and VICTORIA. A clear difference was found in the deposition behavior between nitrogen and steam conditions as carrier gases. For nitrogen gas, the analyses well reproduced the experimental results by closely coupling the CsI behavior and the detailed thermohydraulic analyses. For steam carrier gas, on the contrary, the experimental results could not be well reproduced without the use of larger aerosol size. Since the observed enhancement of aerosol size in superheated steam cannot be explained by existing models, it is necessary to further investigate this mechanisms by experiment and analysis. (author) 34 figs., 23 refs

  1. Ressac program plants analytical experiments study of a code modelling the soil to plant transfer factor of cesium

    International Nuclear Information System (INIS)

    The available data about the soil to plant transfer factor of cesium are numerous but very variable. The variation conditions of the transfer factor are studied with the help of laboratory experiments and the results analysed with the help of a multiple linear regression calculation. The results are applied to the soils and plants types the most frequently present around the French nuclear sites. A calculation model including the plant life conditions such as pH, water-soluble potassium and the available part of cesium in the water of the soil, is proposed. This model allows to predict the transfer factor with a better accuracy (up to ten times) than using the single ratio issue from the experimental data

  2. Exobiology experiments for space station

    Science.gov (United States)

    Devincenzi, D. L.; Griffiths, L. D.

    1985-01-01

    The benefits the Space Station could provide to the study of the origin, evolution, and distribution of life throughout the universe are described. Space Station experiments relevant to the cosmic evolution of biogenic elements and compounds, prebiotic chemical evolution, early evolution of life, and the evolution of advanced life forms are examined. The application of astronomical and astrometric observations to be obtained from the Space Station to the origin of life research is discussed.

  3. Demonstration of an Electron Electric Dipole Moment Experiment Using Electric-Field Quantization in a Cesium Cold Atom Fountain

    CERN Document Server

    Amini, J M; Amini, Jason M.; Gould, Harvey; Jr., Charles T. Munger

    2006-01-01

    A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to 200 pT or less, the electric field lifts the degeneracy between hyperfine levels of different|mF| and, along with the slow beam and fountain geometry, suppresses systematics from motional magnetic fields. Transitions are induced and the atoms polarized and analyzed in field-free regions. The feasibility of reaching a sensitivity to an electron EDM of 2 x 10 exp(-50) C-m [1.3 x 10 exp(-29) e-cm] in a cesium fountain experiment is discussed.

  4. Preliminary experiments for determining Kd values for cesium and strontium as part of site selection. Pt. 2: Experiments with clay materials

    International Nuclear Information System (INIS)

    To obtain Kd values to be used in the safety analyses for radioactive waste dumps experiments were done with clays and bentonite. Cesium and strontium concentrations were varied from 10-3M to 10-5M, temperatures between 20 deg C and 80 deg C. Natural as well as activated bentonites were investigated. Different methods of measuring the cation exchange capacity were applied

  5. Static and dynamic experiments for the retention of cesium in nitrate containing, nitric acid solutions

    International Nuclear Information System (INIS)

    The separation of cesium from medium active waste (MAW) of the Purex-Process by chromatographic methods is demonstrated using the inorganic ion exchanger ammoniummolybdatophosphate (AMP-1). Other inorganic exchangers like ammoniumhexacyanocobaltousferrate (NCFC), zirkoniumphosphate (ZPH) and antimonypentoxid (HAP) have shown for different pH-values a reasonable retention for cesium (NCFC (pH 12) : 35 g Cs/kgNCFC, ZPH(pH 7) : 100 g Cs/kgZPH and HAP (pH 2) : 55 g Cs/kgHAP). But with a high salt loading (300 g/l NaNO3) a loss of capacities occurs which does not allow the use of these exchangers, whereas AMP-1 is useful from a pH of 9 to conc. HNO3 with this high salt loadings with a capacity of 60 g Cs/kg AMP-1. (orig.)

  6. Photoemission from Graphene on Copper and Cesium Antimonide: Theory and Experiment

    Science.gov (United States)

    Finkenstadt, Daniel; Jensen, Kevin L.; Lambrakos, Samuel G.; Shabaev, Andrew; Moody, Nathan A.

    The work function is calculated using DFT for a substrate of flat copper on which a single layer of graphene is deposited. These calculations show a reduced work function, compared to bare copper, when graphene is deposited on a cathode. Based on our DFT-calculated results, a simple model using the transfer matrix approach gives the transmission probability near and above the barrier maximum. An important element of our model is the DFT-calculated, macroscopically-averaged electrostatic potential. Using this potential, graphene behaves as a resonant well for electrons transmitted between the substrate and vacuum regions. Another system to be discussed is graphene atop cesium antimonide, which has very low work function making it technologically useful, in particular for the development of an x-ray free electron laser. On cesium antimonide, we examine whether graphene may allow for the retention of an underlying cesium layer that is often damaged in high-field applications. A discussion of these results in light of recent experimental characterization at LANL will be given. Funding and support provide by ONR and DOE.

  7. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    Science.gov (United States)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release

  8. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  9. Space-QUEST: Experiments with quantum entanglement in space

    OpenAIRE

    2008-01-01

    The European Space Agency (ESA) has supported a range of studies in the field of quantum physics and quantum information science in space for several years, and consequently we have submitted the mission proposal Space-QUEST (Quantum Entanglement for Space Experiments) to the European Life and Physical Sciences in Space Program. We propose to perform space-to-ground quantum communication tests from the International Space Station (ISS). We present the proposed experiments in space as well as ...

  10. Mobility of cesium through the Callovo-Oxfordian claystones under partially saturated conditions

    International Nuclear Information System (INIS)

    The diffusion of cesium was studied in an unsaturated core of Callovo-Oxfordian claystone, which is a potential host rock for retrievable disposal of high-level radioactive wastes. In-diffusion laboratory experiments were performed on rock samples with water saturation degrees ranging from 81% to 100%. The analysis of both cesium concentration monitoring in the source reservoir and postmortem cesium rock concentration profile of the samples was carried out using a chemical-transport code where the sorption of cesium was described by a multi-site ion-exchange model. The results showed that cesium exhibited a clear trend related to the saturation degree of the sample. The more dehydrated the rock sample, the slower the decrease of cesium concentration, and the thinner the penetration depth of cesium was. The effective diffusion coefficient (De) for cesium decreased from 18.5 *10-11 m2 s-1 at full-saturation to 0.3 * 10-11 m2 s-1 for the more dehydrated sample. This decrease is almost 1 order of magnitude higher than that for tritiated water (HTO), although a similar behavior could have been expected, since cesium is known to diffuse in the same parts of the pore space as HTO in fully saturated claystones. (authors)

  11. Diffusion coefficients of cesium in un-irradiated graphite and comparison with those obtained from in-pile experiments

    International Nuclear Information System (INIS)

    Diffusion coefficients of trace-level cesium in un-irradiated IG-110 graphite were determined by thin-source annealing experiments. Thus obtained values of the diffusion coefficients were larger by 3-4 orders of magnitude than in-pile values for the same brand graphite. Activation energies of the diffusion coefficients for the un-irradiated graphite were 112 and 95 kJ/mol for two series of the laboratory experiments, which are considerably lower than the in-pile value of 157 kJ/mol. An extended diffusion-trap model is proposed to explain the decreased diffusion coefficient and the increased activation energy for the in-pile diffusion, by considering the trapping effect of irradiation-induced lattice defects. (orig.)

  12. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  13. ROTEX: space telerobotic flight experiment

    Science.gov (United States)

    Hirzinger, Gerd; Landzettel, Klaus L.; Heindl, J.

    1993-12-01

    In early 1993 the space robot technology experiment ROTEX flew with the space-shuttle Columbia (spacelab mission D2 on flight STS-55 from April 26 to May 6). A multisensory robot on board the space-craft successfully worked in autonomous modes, teleoperated by astronauts, as well as in different telerobotic ground control modes. These include on-line teleoperation and tele-sensor-programming, a task-level oriented programming technique involving `learning by showing' concepts in a virtual environment. The robot's key features were its multisensory gripper and the local sensory feedback schemes which are the basis for shared autonomy. The corresponding man-machine interface concepts using a 6 dof non-force- reflecting control ball and visual feedback to the human operator are explained. Stereographic simulation on ground was used to predict not only the robot's free motion but even the sensor based path refinement on board; prototype tasks performed by this space robot were the assembly of a truss structure, connecting/disconnecting an electric plug (orbit replaceable unit exchange ORU), and grasping free-floating objects.

  14. The Creation of Experience Spaces

    DEFF Research Database (Denmark)

    Pedersen, Michael Thyrrestrup

    2013-01-01

    in a co-creating production of imaginaries – a primary source for the experience economy. This relational approach to development and to periphery can be seen for example in different niche development projects - linking to discussions on the scale of development and the scale of periphery. The...... is increasingly sought used as an instrument for attracting people and economy. In the context of Danish cultural policy and planning, the governmental strategy of creating Culture Regions as a means to the goal of creating better cultural offers for people in the region; has led to a new spatial...... order in the area of culture. Culture Regions can be observed as a strategy to try to outbalance the differences in the geographical development in the field of culture. The theoretical point of departure will be finding its roots in spatial thoughts. Scale-space approach will be setting the scene for...

  15. Critical velocity experiments in space

    Science.gov (United States)

    Torbert, R. B.

    1988-01-01

    Published data from active space experiments designed to demonstrate the Alfven critical-velocity effect are compiled in graphs and compared with the predictions of numerical simulations. It is found that the discrepancies in the ionization yields obtained in shaped-charge releases of alkali metals are related to the macroscopic limits of time and energy in such releases. It is argued that the total ionization yield is an inadequate measure of the critical-velocity effect, and a new criterion based on eta, the efficiency of energy transfer from the recently ionized neutrals to a heated electron population, is proposed: the effect would be verified if eta values of 10 percent or greater were observed.

  16. Battery selection for space experiments

    Science.gov (United States)

    Francisco, David R.

    1992-10-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  17. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  18. Towards precision measurements of parity violation in cesium: construction of a new experiment using an active detection method by induced emission

    International Nuclear Information System (INIS)

    Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 μm. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible

  19. Space experiments with particle accelerators

    Science.gov (United States)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Roberts, W. T.; Chappell, C. R.; Reasoner, D. L.; Garriott, O. K.; Taylor, W. W. L.

    1984-01-01

    Electron and plasma beams and neutral gas plumes were injected into the space environment by instruuments on Spacelab 1, and various diagnostic measurements including television camera observations were performed. The results yield information on vehicle charging and neutralization, beam-plasma interactions, and ionization enhancement by neutral beam injection.

  20. Hybrid Experience Space for Cultural Heritage Communication

    DEFF Research Database (Denmark)

    Veirum, Niels Einar; Christensen, Mogens Fiil; Mayerhofer, Mikkel

    2006-01-01

    space. The Zea Case is a design scenario for the Museum of the Future showing how Cultural Heritage institutions can reinvent the rela-tion to the visitor and the neighbourhood. While Hybrid Experience Space can be used for Cultural Heritage Communication in traditional exhibitions we have reached for...... paper presents an actual experience design case in Zea Harbour, Greece dealing with these challenges using hybrid experience space communicating cultural heritage material. Ar-chaeological findings, physical reconstructions and digital models are mixed to effec-tively stage the interactive experience...

  1. Cesium magnetometers for the neutron electric dipole moment (nEDM) experiment

    International Nuclear Information System (INIS)

    Full text: One of the most important experiments in particle physics is the hunt for an EDM of a neutron. To achieve sensitivities to EDMs of a few times 10-28 e.cm, the magnetic field, including its spatial gradients, has to be precisely measured and controlled. To provide the required sensitivity of magnetic field measurements at the <100fT/√(Hz) level, a system of optically-pumped atomic Cs magnetometers has been developed at Fribourg University. The Cs sensor itself is a spherical, paraffin-coated and evacuated glass cell containing Cs vapour at room temperature. The present magnetometer system consists of 8 vacuum compatible and four vacuum and high voltage compatible sensors. The system is in constant evolution to adapt it to the operating environment of the nEDM experiment at the Paul Scherrer Institut. In this contribution, the current solutions and results of magnetic field measurements will be presented. (author)

  2. Laser-pumped cesium magnetometers for the PSI-nEDM experiment

    OpenAIRE

    Gröger, Stephan; Weis, Antoine; Dousse, Jean-Claude; Daum, Manfred

    2006-01-01

    Die vorliegende Arbeit beschreibt die Entwicklung eines Magnetfeldsensors mit hoher Auflösung für ein Grundlagenforschungsprojekt im Rahmen einer internationalen Kollaboration unter Beteilung der Freiburger Atomphysikgruppe. Das Ziel des Projekts ist die Durchführung eines Experiments am Paul Scherrer Institut (PSI) zur Bestimmung des elektrischen Dipolmoments des Neutrons (nEDM: neutron electric dipole moment), d. Die mögliche Existenz und vor allem die Grösse eines solchen Dipolmoments ist ...

  3. Analysis of microgravity space experiments Space Shuttle programmatic safety requirements

    Science.gov (United States)

    Terlep, Judith A.

    1996-01-01

    This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

  4. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  5. High temperature superconductivity space experiment (HTSSE)

    Science.gov (United States)

    Ritter, J. C.; Nisenoff, M.; Price, G.; Wolf, S. A.

    1991-01-01

    An experiment dealing with high-temperature superconducting devices and components in space is discussed. A variety of devices (primarily passive microwave and millimeter-wave components) has been procured and will be integrated with a cryogenic refrigerating and data acquisition system to form the space package, which will be launched in late 1992. This space experiment is expected to demonstrate that this technology is sufficiently robust to survive the space environment and that the technology has the potential to improve the operation of space systems significantly. The devices for the initial launch have been evaluated electrically, thermally, and mechanically, and will be integrated into the final space package early in 1991. The performance of the devices is summarized, and some potential applications of this technology in space systems are outlined.

  6. Cesium-137

    International Nuclear Information System (INIS)

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Cesium-137

  7. The City's new hybrid experience spaces

    DEFF Research Database (Denmark)

    Andersson, Lasse; Kiib, Hans

    2007-01-01

    .  We argue that " hybrid economy" and "hybrid space" can be understood as a linkage of "a traditional economy" to a new "experience economy", as well as  a merging of  "traditional private urban spaces" with "new types of public domains". This coupling is the departure point for the mental movement...... from an industrial mindset towards a new pragmatic philosophy in the development of our cities, cities based on knowledge and culture. The term "hybrid urban spaces" breaks down the traditional division between public and private and seeks to choreograph the city as the space of experience which both...... understand the notion of creative alliances between cultural institutions and business life as a basis for new urban development - the city's new hybrid experience spaces....

  8. Spaces of interaction, places for experience

    CERN Document Server

    Benyon, David

    2014-01-01

    Spaces of Interaction, Places for Experience is a book about Human-Computer Interaction (HCI), interaction design (ID) and user experience (UX) in the age of ubiquitous computing. The book explores interaction and experience through the different spaces that contribute to interaction until it arrives at an understanding of the rich and complex places for experience that will be the focus of the next period for interaction design. The book begins by looking at the multilayered nature of interaction and UX-not just with new technologies, but with technologies that are embedded in the world. Peop

  9. Cesium distribution and phases in proxy experiments on the incineration of radioactively contaminated waste from the Fukushima area

    International Nuclear Information System (INIS)

    After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. - Highlights: • Behavior of cesium in the waste incineration residues was investigated. • Bottom ash products were synthesized through combusting of stable cesium salts and RDF. • Microscopic and microanalytical techniques were applied. • Cesium distribution and phases were identified in bottom ash products. • Cesium is entrapped in silicate glass, minerals and metal-sulfide phases of bottom ash

  10. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  11. Fast critical experiment data for space reactors

    International Nuclear Information System (INIS)

    Data from a number of previous critical experiments exist that are relevant to the design concepts being considered for SP-100 and MMW space reactors. Although substantial improvements in experiment techniques have since made some of the measured quantities somewhat suspect, the basic criticality data are still useful in most cases. However, the old experiments require recalculation with modern computational methods and nuclear cross section data before they can be applied to today's designs. Recently, we have calculated about 20 fast benchmark critical experiments with the latest ENDF/B data and modern transport codes. These calculations were undertaken as a part of the planning process for a new series of benchmark experiments aimed at supporting preliminary designs of SP-100 and MMW space reactors

  12. Double-slit experiment in momentum space

    CERN Document Server

    Ivanov, I P; Surzhykov, A; Fritzsche, S

    2016-01-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space. We show that elastic scattering of vortex electrons proceeds via two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  13. Trapping characteristics for gaseous cesium generated from different cesium compounds by fly ash filter

    International Nuclear Information System (INIS)

    The purpose of this study is to evaluate the applicability of the fly ash ceramic foam filter to trap gaseous cesium generated during the OREOX and sintering processes of DUPIC green pellets. The trapping experiments of gaseous cesium generated from different cesium compounds using fly ash filters were carried out in a two-zone furnace under air and hydrogen (Ar/4% H2) conditions. XRD and SEM analyses were used to analyze reaction products of different cesium compounds with fly ash filters. To manufacture ceramic foam filters, fly ash with a Si/Al mole ratio of 2.1 and polyvinyl alcohol as binder were used. Reaction products formed by the trapping reaction of different cesium compounds with fly ash filters were investigated. The major reaction products of gaseous cesium generated from cesium silicate and CsI by fly ash filters indicated that pollucite (CsAlSi2O6) phase was formed under air and hydrogen conditions when the carrier gas velocity was 2 cm/sec. The minimum reaction temperature of fly ash filter with gaseous cesium was determined as about 600 deg. C. Finally, off-gas treatment system of sintering process in a hot cell of lMEF was explained as an application example of fly ash filter for trapping gaseous cesium. (author)

  14. Results of space experiment program "interferon"

    Science.gov (United States)

    Tálas, Margarita; Bátkai, László; Stöger, Ivana; Nagy, Károly; Hiros, László; Konstantinova, Irina; Rykova, Marina; Mozgovaya, Irina; Guseva, Olga; Kozharinov, Valerii

    The results of the biological space experiment "Interferon" performed by two international cosmonaut teams (26 May 1980, and 16 May 1981) aboard space laboratory Solyut-6 are reported: (1) Human lymphocytes separated from blood of healthy donors and placed into "Interferon I" equipment could be kept for 7 days in suspension culture under spaceflight conditons. Interferon production could be induced in human lymphocytes by preparations of different origin: virus, synthetic polyribonucleotides, bacterial protein and plant pigment. An increased lymphocyte interferon production in space laboratory compared to ground control was observed. (2) Human interferon preparations and interferon inducers placed in space laboratory at room temperature for 7 days maintained their biological activity. (3) A decrease of induced interferon production and natural killer activity of lymphocytes isolated from peripheral blood of cosmonauts was observed on the 1st day on Earth after 7-days spaceflight.

  15. Discovery of dynamical space: experiments and theory

    Science.gov (United States)

    Cahill, Reginald T.

    2015-09-01

    Recently the existence of space as a complex dynamical system was discovered, based upon various experiments going back to 1887. The early experiments by Michelson and Morley 1887, and Miller 1925/26, used light speed anisotropy detected with interferometers. Only in 2002 was the calibration theory first derived. More recently there have been other experimental techniques, including Doppler shift effects detected by NASA using spacecraft Earth flybys. The most recent technique uses current fluctuations through the nanotechnology reverse-biased Zener diode barrier potential, by using two detectors and measuring the time delay in correlations to determine speed and direction of the space flow. Physics has never had a knowledge of this dynamical space, and the theory is now well developed, and is now known to explain the origin of gravity, quantum fluctuations, bore hole g anomalies, galactic rotations, galactic lensing of light, universe dynamics, laboratory G measurements, and more. This dynamical space supports a coordinate system, and it was this that was originally thought to be space itself.

  16. Sorption of cesium on Latvian clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easily assimilate in organism expressly brawn woof. It is a problem if pollutant is a radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas (cesium content after good elute of clays are in table). We establish, that clay treated with 25 % sulfuric acid adsorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays. (author)

  17. Space experiments with particle accelerators (SEPAC)

    International Nuclear Information System (INIS)

    This chapter reports on experiments performed in the Spacelab 1 whose objectives are to study the vehicle charging in space and charging neutralization by using plasma and neutral gas plume, to study the beam-plasma interaction in space (e.g. wave excitation in the very low frequency to high frequency range in the interaction of the electron beam with space plasma and plasma heating resulting from the nonlinear beam-plasma interaction), to study the beam atmospheric interaction exciting artificial aurora and airglow, and to trace the magnetic field configuration of the magnetosphere and detect the field aligned electric field. Topics considered include SEPAC hardware, SEPAC operation, and the SEPAC follow-on mission. Includes a table and 3 drawings

  18. U.S. biological experiments in space

    Science.gov (United States)

    Klein, H. P.

    1981-01-01

    The history of biologic experimentation in space is traced. Early balloon and rocket borne animals showed no abnormalities on the macroscale, and biosatellite launches with bacteria and amoebae revealed no microscopic dysfunctions. Adult Drosophila flies on board Cosmos spacecraft died with a shortened lifespan, while their offspring lived full lifespans. Green pepper plants grown in weightlessness showed a different orientation, but no physiological disturbances. Normal bone growth in rats has been found to almost cease after 11 days in space, and the mean life span of red blood cells decreases by four days. A series of experiments designed by U.S. scientists will be performed on primates provided and flown by the U.S.S.R. Finally, experiments on board Spacelab will involve determination of the persistence of circadian rhythms in bacteria and humans.

  19. Spacelab experiments on space motion sickness

    Science.gov (United States)

    Oman, Charles M.

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurement of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  20. Space Experiments with Particle Accelerators: SEPAC

    Science.gov (United States)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  1. Exobiology experiment concepts for Space Station

    Science.gov (United States)

    Griffiths, Lynn D.; Devincenzi, Donald L.

    1987-01-01

    The exobiology discipline uses ground based and space flight resources to conduct a multidiscipline research effort dedicated to understanding fundamental questions about the origin, evolution, and distribution of life and life related molecules throughout the universe. Achievement of this understanding requires a methodical research strategy which traces the history of the biogenic elements from their origins in stellar formation processes through the chemical evolution of molecules essential for life to the origin and evolution of primitive and, ultimately, complex living species. Implementation of this strategy requires the collection and integration of data from solar system exploration spacecraft and ground based and orbiting observatories and laboratories. The Science Lab Module (SLM) of the Space Station orbiting complex may provide an ideal setting in which to perform certain classes of experiments which form the cornerstone of exobiology research. These experiments could demonstrate the pathways and processes by which biomolecules are synthesized under conditions that stimulate the primitive earth, planetary atmospheres, cometary ices, and interstellar dust grains. Exobiology experiments proposed for the Space Station generally fall into four classes: interactions among gases and grains (nucleation, accretion, gas-grain reactions), high energy chemistry for the production of biomolecules, physical and chemical processes occurring on an artificial comet, and tests of the theory of panspermia.

  2. Sorption of Cesium on Latvia clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easy assimilates in organism expressly brawn woof. It is a problem if pollutant is radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas. We establish that clay treated with 25% sulfuric acid absorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays

  3. Tourism Spaces: The New Experience Design

    Directory of Open Access Journals (Sweden)

    Sara Cipolletti

    2014-06-01

    Full Text Available The aim of this article is to offer a theoretical contribution to the organisation, design and significance of tourism spaces, at a time when tourist practices are experiencing both change and intensification. From an architectural perspective, the study seeks to understand the evolutionary link between holiday practices and spaces, interpreting tourism as a context of creative relations between people, aspects, things and the places in which practices take place.Based on this interpretation, the paper defines architectural and urban categories of tourism, briefly comparing various literature on tourist organisations. In the second part, through the examination of recent examples of tourist experiences, planning actions and their ability to generate new tourism landscapes are evaluated. For both places and tourist experiences, that which emerges and the fields of application involved constitute guidelines and development tools for a form of tourism design that is more knowledgeable about the encounter between tourists and residents, and more reliable given that it is founded on the distinctive features of territories. The study demonstrates that tourism spaces, if intended as contexts of creative relations between people, aspects, things and places in which practices take place, may now develop a certain potential that once again calls into question a series of much debated opposites, tourists - residents, free time - work time, holiday space - day-to-day space, attractive resources and their transformation into elements of tourism, which had otherwise previously been consolidated by the tourist phenomenon. In the end, tourism proves itself to be an imaginative impulse, which is capable of reinventing the qualities of places and successfully orientating urban events.

  4. Controlled Space Physics Experiments using Laboratory Magnetospheres

    Science.gov (United States)

    Mauel, M. E.; Kesner, J.; Garnier, D.

    2013-12-01

    Modern society's reliance on space-based platforms for a variety of economic and geopolitical purposes makes understanding the physics of the magnetosphere and "space weather'' one of the most important applications of plasma science. During the past decade, results from the CTX and LDX laboratory magnetospheres and from the RT-1 device at University of Tokyo, we have developed techniques to explore space physics using controlled experiments in laboratory magnetospheres. This presentation briefly reviews observations from the laboratory magnetospheres at Columbia University and MIT, including adiabatic drift-resonant transport, low-frequency MHD turbulence, and the formation of high-beta plasmas with profiles similar to Earth's inner magnetosphere. First principle validation of ``whole plasma'' space weather models have been completed in relevant magnetic geometry, including the spectrum and dynamics of turbulence successfully modeled with nonlinear bounce-averaged gyrokinetic simulations. Plans to explore Alfvénic dynamics and whistler wave trapping are discussed through the achievement of higher-density plasmas using radio-frequency heating. Photographs of the laboratory magnetospheres located at MIT (top) and Columbia University (bottom).

  5. Presence Experiences - the eventalisation of urban space

    DEFF Research Database (Denmark)

    Pløger, John

    2010-01-01

    Cultural events are, as part of an urban development strategy, about (symbolic) representations, but for the human beings participating in the event it may include acts of in/visibility (anonymity versus expressivity) and different articulations of meaning or subjectivity in space. A particular...... kind of event that cities are not so interested in supporting an unorganised or spontaneous event, even though they give cities the image of tolerance. All such singular events have the potential of shaping what is going to happen in a real contingent situation because they are affected by...... circumstances. Such events are attractive to the participants because of the possible outcome of being situatively placed within virtual connectivities and assemblages, or as in focus here, the attraction of the eventalisation of space and presence-experiences. Following Michel Foucault on ‘eventalisation’ and...

  6. Space experiments with particle accelerators. [Spacelab

    Science.gov (United States)

    Obayashi, T.

    1981-01-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  7. New Space Experiment Proposed for General Relativity

    CERN Document Server

    Biswas, Abhijit

    2008-01-01

    In the eighteenth century, the magnitude of the speed of light was first determined and proven to be finite against the contemporary view, independently by Ole Romer and Bradley. Einstein in the post-Maxwellian era, sensed that the tide of discoveries in electro-magnetism indicated a decline of the mechanical view, and replaced Newton's three absolutes -- mass, time and space, with a single one, the speed of light, which thus gained a more important status amongst the fundamental constants of nature. In 1849, Fizeau performed the first successful measurement of the speed of light using an earthbound apparatus. Many earthbound experiments were conducted later for determination of its magnitude till 1983, when it was frozen at a fixed value after determining it at an accuracy level of a fraction of a meter per second. More than half a century before the advent of space age, when perhaps it was unconceivable to do experiments for its determination in laboratories beyond the earth, Einstein had to adopt its terre...

  8. Cesium chemistry in irradiated fuel; cesium uranates

    International Nuclear Information System (INIS)

    The physico-chemical behaviour of fission products in nuclear fuel during and after irradiation has been studied extensively during the past decades. In spite of the large amount of chemical, crystallographic and thermodynamic data available, the knowledge on the very complicated UO2-fission product system is still far from complete. The paper discusses the multi variant character of uranium in cesium uranates, which has been assessed by a systematic X-ray Photoelectron Spectroscopy (XPS) study of a series of cesium uranates

  9. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  10. Deep space experiment to measure $G$

    CERN Document Server

    Feldman, Michael R; Schubert, Gerald; Trimble, Virginia; Kopeikin, Sergei; Lämmerzahl, Claus

    2016-01-01

    Responding to calls from the National Science Foundation (NSF) for new proposals to measure the gravitational constant $G$, we offer an interesting experiment in deep space employing the classic gravity train mechanism. Our setup requires three bodies: a larger layered solid sphere with a cylindrical hole through its center, a much smaller retroreflector which will undergo harmonic motion within the hole and a host spacecraft with laser ranging capabilities to measure round trip light-times to the retroreflector but ultimately separated a significant distance away from the sphere-retroreflector apparatus. Measurements of the period of oscillation of the retroreflector in terms of host spacecraft clock time using existing technology could give determinations of $G$ nearly three orders of magnitude more accurate than current measurements here on Earth. However, significant engineering advances in the release mechanism of the apparatus from the host spacecraft will likely be necessary. Issues with regard to the ...

  11. Battery selection for Space Shuttle experiments

    Science.gov (United States)

    Francisco, David R.

    1993-04-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

  12. Deep space experiment to measure G

    Science.gov (United States)

    Feldman, Michael R.; Anderson, John D.; Schubert, Gerald; Trimble, Virginia; Kopeikin, Sergei M.; Lämmerzahl, Claus

    2016-06-01

    Responding to calls from the National Science Foundation for new proposals to measure the gravitational constant G, we offer an interesting experiment in deep space employing the classic gravity train mechanism. Our setup requires three bodies: a larger layered solid sphere with a cylindrical hole through its center, a much smaller retroreflector which will undergo harmonic motion within the hole and a host spacecraft with laser ranging capabilities to measure round trip light-times to the retroreflector but ultimately separated a significant distance away from the sphere-retroreflector apparatus. Measurements of the period of oscillation of the retroreflector in terms of host spacecraft clock time using existing technology could give determinations of G nearly three orders of magnitude more accurate than current measurements here on Earth. However, significant engineering advances in the release mechanism of the apparatus from the host spacecraft will likely be necessary. Issues with regard to the stability of the system are briefly addressed.

  13. The Experiment and results of Laser Ranging to Space Debris

    OpenAIRE

    Zhongping, Zhang; Fumin, Yang; Haifeng, Zhang; Zhibo, Wu; Juping, Chen; Pu, Li; Wendong, Meng

    2011-01-01

    Space debris is a major problem for all space-active nations. Adopting high precision measuring techniques will help to produce the reliable and accurate catalogue for space debris and collision avoidance. Laser Ranging is a kind of real-time measuring technology with high precision for space debris observation. The first experiment of laser ranging to the space debris in China was performed at the Shanghai Observatory in July 2008 at the ranging precision of about 60- 80cm. The experiment re...

  14. Space Experiments with Particle Accelerators (SEPAC)

    Science.gov (United States)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  15. A fundamental study on cesium migration to sodium at low temperature

    International Nuclear Information System (INIS)

    Our experiment study aims to understand the behavior of cesium in severe accident of sodium cooled fast breeder reactor, especially cesium migration rate to sodium. In past study, exact migration rate of cesium to sodium has not been reported because of difficulty of the cesium-sodium interfacial area evaluations of gas bubble. In this study, we developed a pool-type experimental apparatus which can simplify the shape of interfacial area, and measured cesium migration rate in a low temperature range of 200degC to 300degC. The cesium migration rates obtained under the condition that the cesium mixed argon gas flow is the same temperature with sodium vary in the range of 10-3 - 10-1 mol/m2min and increase with increasing the system temperature. The difference of cesium migration rates between non-oxidized sodium surface and oxidized sodium surface is also clearly observed. (author)

  16. Computational analysis of cesium-diffusion in irradiation experiments under consideration of concentration- and release-measurements

    International Nuclear Information System (INIS)

    An important step on the way of forecasting a high-temperature reactor's fission-product release is to recalculate fission product profiles and releases, measured on coated fuel particles after having been irradiated in inpile-experiments. The diffusion coefficient which characterizes the hability of fission product retention is derived out-of-pile from laboratory annealing tests with irradiated fuel particles. Comparing calculated profiles and releases with measured ones, its application in the recalculation of irradiation experiments will answer the question of transmitting 'laboratory coefficients' onto reactor conditions. This work enlights the sequence of irradiation experiment's recalculation. Diffusion coefficients will be presented for the isotope Cs-137 in different material shells of the coated fuel particle. (orig.)

  17. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  18. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  19. Scintillator handbook with emphasis on cesium iodide

    Science.gov (United States)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  20. Decorporation of cesium-137

    International Nuclear Information System (INIS)

    Cesium radio-isotopes, especially cesium-137 (137Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, 137Cs is a major contaminant which can cause severe β, γirradiations and contaminations. 137Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the 137Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  1. Studies on release and deposition behaviour of cesium from contaminated sodium pools and cesium trap development for FBTR

    International Nuclear Information System (INIS)

    Investigations were carried out on the release and deposition behaviour of cesium from sodium pools in air-filled chamber in the temperature range of 673 to 873 K, using Cs-134 to simulate Cs-137. About 0.12 kg of sodium was loaded in a burn-pot together with 92.5 kBq of cesium. Experiments were carried out with 21% oxygen. Natural burning period of sodium and specific activity ratio between cesium and sodium showed a tendency to decrease and release fractions of both the species tended to increase with temperature. From the surface deposited aerosols it was observed that cesium has propensity to settle down closer to the point of release. A cesium trap has been developed for FBTR with RVC as getter material. Absorption kinetics and particle release behaviour studies pointed to its intended satisfactory performance in the plant. (author)

  2. Low-cost Active Structural Control Space Experiment (LASC)

    Science.gov (United States)

    Robinett, Rush; Bukley, Angelia P.

    1992-01-01

    The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.

  3. Game-Space: Unfolding Experiments in Subjectivity

    OpenAIRE

    Stenner, Jack; LeMieux, Patrick

    2009-01-01

    Using computer vision techniques and game engine technology, the interactive installation, Game-Space, explores subjectivity in mediated environments. The paper discusses the development of this work and its current conception as a machine for the experimental production of a new subjectivity in the form of a machinic hybrid.

  4. Analysis of radioactive cesium

    International Nuclear Information System (INIS)

    The procedure of analysis of cesium-137 in environmental samples is described. The standard measurement of cesium-137 is made by using a standard solution and a low background G-M counter system. Precipitation and dust are collected on a stainless steel pan. The collected samples are treated by evaporation and extraction or ion exchange and adsorption method. The sample is then quantitatively analyzed. The measurement of cesium-137 is made according to the standard of measurement. Samples collected from inland water and sea water are also treated by evaporation or ion exchange method. The measurements of cesium-137 are also made. This manual describes how to collect soil samples. The collected soil is dried and treated to make samples for activity measurement. Activity measurement is made according to the standard of measurement, then the data are analyzed. Samples are also collected from sediment of sea bottom or river bottom, agricultural products, milk, marine organisms, and daily foods. This manual describes on the methods to collect samples and the treatment to make samples for measurement. (Kato, T.)

  5. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  6. Hybrid Experience Space for Cultural Heritage Communication

    OpenAIRE

    Veirum, Niels Einar; Christensen, Mogens Fiil; Mayerhofer, Mikkel

    2006-01-01

    Cultural heritage institutions like the museums are challenged in the global experience society. On the one hand it is more important than ever to offer “authentic” and geographically rooted experiences at sites of historic glory and on the other hand the au-dience’s expectations are biased by daily use of experience products like computer-games, IMAX cinemas and theme parks featuring virtual reality installations. “It’s a question of stone-axe displays versus Disney-power installations” as o...

  7. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  8. Laser ignition application in a space experiment

    Science.gov (United States)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  9. EXCALIBIR - A space experiment in orbital debris lethality

    Science.gov (United States)

    Culp, Robert D.; Dickey, Michael R.

    1991-01-01

    The study proposes a space experiment using extended Space Shuttle external tanks to test the impact of orbital debris. The External Tank Calibrated Impact Response test, EXCALIBIR, is a low-cost low-risk, high-payoff approach to investigating the threat to resident space objects posed by untrackable orbital debris, to provide lethality data to the kinetic energy weapons community, and to aid in the testing of space and missile interceptor technology. This experiment is a feasible use of existing assets - the external tank, observation and data collection facilities, launch facilities, and interceptor technology and tests planned for other programs.

  10. ESRO study program for a space experiment on gravitation theories

    Science.gov (United States)

    Israel, G. M.

    1971-01-01

    ESRO is considering a space experiment which is the definition phase. A more complete utilization of space techniques, leading to highly accurate acceleration measurements in a heliocentric spacecraft, together with an improved laser signal propagation method (using a space-borne atomic clock), could substantially increase the validity of the gravitational time delay test during solar conjunction. Preliminary investigations of the primary required techniques were carried out. These studies included an orbit analysis, investigation of drag-free techniques, and studies of the time measuring instrument. These studies were used to define the framework of a space experiment on gravitation theories. A preliminary feasibility study of the mission is being undertaken.

  11. Sintered wire cesium dispenser photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  12. Light flash observation in space: Experiment ELFO

    International Nuclear Information System (INIS)

    They present the scientific case for a thorough investigation of light flashes (LFs) observed by astronauts since early lunar missions. A complete assessment of the phenomenon is achieved through a sophisticated helmet-like silicon detector put on the head of the astronauts. This device will be able to identify cosmic-ray nuclei and measure their energy and trajectory, in order to correlate each light flash with the single particle likely to produce this effect. In addition, a study of precise time-correlation between cosmic-ray impinging on the head of the cosmonaut and functions in the Central Nervous System (CNS) is addressed via investigation of the concurrent spontaneous bioelectrical cortical activity in the cortex (EEG) and of retinal and cortical responses at luminance and contrast stimuli (ERG, VEP). This joint knowledge will help to identify the interaction mechanism behind light flashes, and to build better models of the visual sensory processes. The silicon detector will also give information for a more accurate biological dosimetry by the knowledge of the relative fluences of the different particles: a contribution for a deeper understanding of the physiological modifications during long manned missions. The proposed apparatus is supposed to work on-board of the Russian MIR Space Station or, later, on board of the International Space Station ALPHA

  13. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    Science.gov (United States)

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  14. Students' Experience of University Space: An Exploratory Study

    OpenAIRE

    Cox, A. M.

    2011-01-01

    The last decade has seen a wave of new building across British universities, so that it would appear that despite the virtualization discourses around higher education, space still matters in learning. Yet studies of student experience of the physical space of the university are rather lacking. This paper explores the response of one group of students to learning spaces, including virtual ones, preferences for the location of independent study, and feelings about departmental buildings. It ex...

  15. AMS experiment takes off for Kennedy Space Center August 2010

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Geneva, 18 August 2010. The Alpha Magnetic Spectrometer (AMS), an experiment that will search for antimatter and dark matter in space, leaves CERN next Tuesday on the next leg of its journey to the International Space Station. The AMS detector is being transported from CERN to Geneva International Airport in preparation for its planned departure from Switzerland on 26 August, when it will be flown to the Kennedy Space Center in Florida on board a US Air Force Galaxy transport aircraft.

  16. Workplace and Language - Constructing the user experience of office space

    OpenAIRE

    Airo, Kaisa

    2014-01-01

    The employees are the companies' most valuable asset, therefore it is essential that the work environment meets the employees' needs and supports their performance. Still "the space" is often a neglected attribute in management discourse. Thus experience based knowledge of office users is a crucial element in developing workplaces and -spaces. This dissertation claims that language constructs experience of workplace because, although we live in a physical reality all our concepts, values a...

  17. Space Station Freedom as an engineering experiment station: An overview

    Science.gov (United States)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  18. Some scoping experiments for a space reactor

    International Nuclear Information System (INIS)

    Some scoping experiments were performed to evaluate fuel performance in a lithium heat pipe reactor operating at a nominal 1500K heat pipe temperature. Fuel-coolant and fuel-coolant-clad relationships showed that once a failed heat pipe occurs temperatures can rise high enough so that large concentrations of uranium can be transported by the vapor phase. Upon condensation this uranium would be capable of penetrating heat pipes adjacent to the failed pipe. The potential for propagation of failure exists with UO2 and a lithium heat pipe. Changing the composition of the metal of the heat pipe would have only a second order effect on the kinetics of the failure mechanism. Uranium carbide and nitride were considered as potential fuels which are nonreactive in a lithium environment. At high temperatures the nitride would be favored because of its better compatibility with potential cladding materials. Compositions of UN with small additions of YN appear to offer very attractive properties for a compact high temperature high power density reactor

  19. Engineering the Lidar In-space Technology Experiment

    Science.gov (United States)

    Couch, Richard H.; Moore, Chris L.

    1992-01-01

    The Lidar In-space Technology Experiment (LITE) is being developed by NASA for flight on the Space Shuttle in early 1994. A discussion of the NASA four-phase design process is followed by a short history of the experiment heritage. The instrument is then described at the subsystem level from an engineering point of view, with special emphasis on the laser and the receiver. Some aspects of designing for the space environment are discussed, as well as the importance of contamination control, and product assurance. Finally, the instrument integration and test process is described and the current status of the instrument development is given.

  20. The Experiment and results of Laser Ranging to Space Debris

    CERN Document Server

    Zhongping, Zhang; Haifeng, Zhang; Zhibo, Wu; Juping, Chen; Pu, Li; Wendong, Meng

    2011-01-01

    Space debris is a major problem for all space-active nations. Adopting high precision measuring techniques will help to produce the reliable and accurate catalogue for space debris and collision avoidance. Laser Ranging is a kind of real-time measuring technology with high precision for space debris observation. The first experiment of laser ranging to the space debris in China was performed at the Shanghai Observatory in July 2008 at the ranging precision of about 60- 80cm. The experiment results show that the return signals from the targets with the range of 900 km were quite strong with the power of 40W (2J@20Hz), 10ns pulse width laser at 532nm wavelength. The performances of preliminary laser ranging system and the observed results in 2008 and 2010 are introduced in the paper.

  1. An in-space wireless energy transmission experiment

    Energy Technology Data Exchange (ETDEWEB)

    McSpadden, J.O.; Little, F.E. [Texas A and M Univ., College Station, TX (United States); Duke, M.B. [Lunar and Planetary Inst., Houston, TX (United States); Ignatiev, A. [Univ. of Houston, TX (United States). Space Vacuum Epitaxy Center

    1996-12-31

    The concept for an orbiting power satellite capable of supplying the needs of several co-orbiting manufacturing satellites is similar to the central power station and distribution network found on Earth. An experiment for testing a portion of such an ``Orbital Power and Light`` space power utility system--a retrodirective phased array energy transmission system in space--is described. The experiment will demonstrate the ability of a wireless power transmission system to acquire and maintain a target in space. The experiment will consist of a planar phased array antenna on the Space Shuttle beaming to a target rectenna with a pilot guide beam on the free flying Wake Shield Facility (WSF).

  2. Model Experiments for the Determination of Airflow in Large Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Model experiments are one of the methods used for the determination of airflow in large spaces. This paper will discuss the formation of the governing dimensionless numbers. It is shown that experiments with a reduced scale often will necessitate a fully developed turbulence level of the flow...

  3. Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    Science.gov (United States)

    Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)

    1986-01-01

    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

  4. Materials International Space Station Experiment (MISSE): Overview, Accomplishments and Future Needs

    Science.gov (United States)

    deGroh, Kim K.; Jaworske, Donald A.; Pippin, Gary; Jenkins, Philip P.; Walters, Robert J.; Thibeault, Sheila A.; Palusinski, Iwona; Lorentzen, Justin R.

    2014-01-01

    8, yielding long-duration space environmental performance and durability data that enable material validation, processing recertification and space qualification; improved predictions of materials and component lifetimes in space; model verification and development; and correlation factors between space-exposure and ground-facilities enabling more accurate in-space performance predictions based on ground-laboratory testing. A few of the many experiment results and observations, and their impacts, are provided. Those highlighted include examples on improved understanding of atomic oxygen scattering mechanisms, LEO coating durability results, and polymer erosion yields and their impacts on spacecraft design. The MISSE 2 Atomic Oxygen Scattering Chamber Experiment discovered that the peak flux of scattered AO was determined to be 45 deg from normal incidence, not the model predicted cosine dependence. In addition, the erosion yield (E(sub y)) of Kapton H for AO scattered off oxidized-Al is 22% of the E(sub y) of direct AO impingement. These results were used to help determine the degradation mechanism of a cesium iodide detector within the Hubble Space Telescope Cosmic Origins Spectrograph Experiment. The MISSE 6 Indium Tin Oxide (ITO) Degradation Experiment measured surface electrical resistance of ram and wake ITO coated samples. The data confirmed that ITO is a stable AO protective coating, and the results validated the durability of ITO conductive coatings for solar arrays for the Atmosphere-Space Transition 2 Explorer program. The MISSE 2, 6 and 7 Polymer Experiments have provided LEO AO Ey data on over 120 polymer and composites samples. The flight E(sub y) values were found to range from 3.05 x 10(exp -26) cu cm/atom for the AO resistant polymer CORIN to 9.14 x 10(exp -26) cu cm/atom for polyoxymethylene (POM). In addition, flying the same polymers on different missions has advanced the understanding of the AO E(sub y) dependency on solar exposure for polymers

  5. Achievements of Space Scientific Experiments Aboard SJ-8 Satellite

    Institute of Scientific and Technical Information of China (English)

    XIE Jingchang; WAN Shixin; ZHANG Pu; LIN Hai; LIU Fang; HU Wenrui

    2008-01-01

    As scientific experiment payloads, microgravity experiments of fluid physics, life science,combustion science, physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-day orbital flight. The experimental payloads and an experiment support system constituted the microgravity experiment system of the flight mission. This article has presented the briefs of the scientific achievements of these space experiments, the composition and performance of the Microgravity Experimental System (MES) and the general picture of the overall flight mission, respectively.

  6. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  7. Cesium-137 in biosphere

    International Nuclear Information System (INIS)

    The behaviour of cesium-137 in environment is reviewed. Problems on 137Cs migration in environment, on metabolism andbiological effects are considered. Data on nuclide accumulation in various plants, ways of their entering the man's organism are presented. It is marked that the rate of 137Cs metabolism in the man's organism depends considerably on age, sex, temperature of environment, conditions for activity, water and mineral metabolism and some other factors. It is shown that the annual effective equivalent dose per capita will increase to 2000 yr. up to 1 μSv, that constitutes 0.05% of the average value of irradiation by a natural source

  8. Lead-Free Experiment in a Space Environment

    Science.gov (United States)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  9. Experiment 305: Pathophysiology of Mineral Loss During Space Flight

    Science.gov (United States)

    Arnaud, Claude D.; Cann, Christopher E.

    1995-01-01

    The objective of this SLS-2 experiment was to determine the pathophysiology of mineral loss during space flight. This was to be accomplished by (1) determining the concentrations of blood minerals and of calciotropic hormones (parathyroid hormone-PTH, vitamin D metabolites) before, during, and after a 14 day shuttle flight, and (2) determining, by calcium kinetic analysis (using stable calcium isotopes), the influence of space flight on intestinal calcium absorption .

  10. Experience and representation in modern physics : the reshaping of space

    OpenAIRE

    Blum, A; Renn, J.; Schemmel, M.

    2016-01-01

    The paper discusses the interplay of experience and representation in disciplinarily structured science using the example of the fundamental changes in the concepts of space and time brought about by the advanced formalism of twentieth-century physics, which enabled the integration of a growing corpus of experiential knowledge. In particular the question of why certain parts of experiential knowledge had an impact on concepts of space and time, while other parts did not have such an impact, i...

  11. The Space System for the High Energy Transient Experiment

    OpenAIRE

    Dill, Bob; Fleeter, Rick; WARNER, RICHARD; Martel, Francois; Ricker, George

    1992-01-01

    The High Energy Transient Experiment (HETE) is an astrophysics project funded by NASA and led by the Center for Space Research (CSR) at the Massachusetts Institute of Technology (MIT). It has for principal goal the detection and precise localization of the still mysterious sources of gamma ray bursts. The project is original in many respects. HETE will provide simultaneous observations of bursts in the gamma, X-ray and UV ranges from the same small (250 Ibms) space platform. A network of grou...

  12. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  13. Sorption of cesium on Olkiluoto mica gneiss, granodiorite and granite

    International Nuclear Information System (INIS)

    Cesium was selected as a model to study the sorption in bedrock occurring by ion exchange mechanism. The aim of the study was to supplement the existing data on sorption occurring by ion exchange mechanism in bedrock of the candidate sites for spent fuel disposal at Olkiluoto. The sorption of cesium was studied on crushed mica gneiss, tonalite (granodiorite) and granite in artificial groundwaters. Fresh water was represented by Allard water, pH 8 and pH 7, and saline water by Ol-So water, pH 7 and pH 9. In addition, a Na-Ca-Cl brine water and its 1:10 dilution were used as simulants. Cesium concentrations were between 10-8 and 10-3 mol/l. The distribution coefficients of the sorption, Rd and Ra values were determined by batch method. Isotherms were partly non-linear with slopes 0.7 - 1.0 depending on rock and water. At the end of the sorption experiment, the water was analysed for cations exchanged for cesium. The sorption of cesium was also studied as a function of ionic strength. The ionic strength increased in the order Allard < 0l-Br 1:10 < 0l-So < 0l-Br. The sorption of cesium was lower at higher ionic strength and higher Cs concentration. The mineral composition of rocks was determined by thin section analysis, and the sorption distribution ratios on thin sections in the different waters were determined by batch technique. The minerals, that sorbed most cesium were determined by autoradiography. These were biotite, muscovite and chlorite. Cordierite in mica gneiss also sorbed cesium very effectively. (orig.)

  14. Sorption of cesium on Olkiluoto mica gneiss, granodiorite and granite

    Energy Technology Data Exchange (ETDEWEB)

    Huitti, T.; Hakanen, M. [Univ. of Helsinki (Finland). Lab. of Radiochemistry; Lindberg, A. [Geological Survey of Finland, Espoo (Finland)

    1998-09-01

    Cesium was selected as a model to study the sorption in bedrock occurring by ion exchange mechanism. The aim of the study was to supplement the existing data on sorption occurring by ion exchange mechanism in bedrock of the candidate sites for spent fuel disposal at Olkiluoto. The sorption of cesium was studied on crushed mica gneiss, tonalite (granodiorite) and granite in artificial groundwaters. Fresh water was represented by Allard water, pH 8 and pH 7, and saline water by Ol-So water, pH 7 and pH 9. In addition, a Na-Ca-Cl brine water and its 1:10 dilution were used as simulants. Cesium concentrations were between 10{sup -8} and 10{sup -3} mol/l. The distribution coefficients of the sorption, R{sub d} and R{sub a} values were determined by batch method. Isotherms were partly non-linear with slopes 0.7 - 1.0 depending on rock and water. At the end of the sorption experiment, the water was analysed for cations exchanged for cesium. The sorption of cesium was also studied as a function of ionic strength. The ionic strength increased in the order Allard < 0l-Br 1:10 < 0l-So < 0l-Br. The sorption of cesium was lower at higher ionic strength and higher Cs concentration. The mineral composition of rocks was determined by thin section analysis, and the sorption distribution ratios on thin sections in the different waters were determined by batch technique. The minerals, that sorbed most cesium were determined by autoradiography. These were biotite, muscovite and chlorite. Cordierite in mica gneiss also sorbed cesium very effectively. (orig.) 12 refs.

  15. Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D$_1$ line

    CERN Document Server

    Auzinsh, M; Ferber, R; Gahbauer, F; Kalnins, U; Kalvans, L; Rundans, R; Sarkisyan, D

    2014-01-01

    We have measured magneto-optical signals obtained by exciting the $D_1$ line of cesium atoms confined to an extremely thin cell (ETC), whose walls are separated by less than one micrometer, and developed an improved theoretical model to describe these signals with experimental precision. The theoretical model was based on the optical Bloch equations and included all neighboring hyperfine transitions, the mixing of the magnetic sublevels in an external magnetic field, and the Doppler effect, as in previous studies. However, in order to model the extreme conditions in the ETC more realistically, the model was extended to include a unified treatment of transit relaxation and wall collisions with relaxation rates that were obtained directly from the thermal velocities of the atoms and the length scales involved. Furthermore, the interaction of the atoms with different regions of the laser beam were modeled separately to account for the varying laser beam intensity over the beam profile as well as saturation effec...

  16. A robot in space as a large space structures control experiment

    Science.gov (United States)

    Gran, R.

    1983-01-01

    The control systems design issues for large space structures can be addressed by a robotics experiment which defines a teleoperator or a robot or uses the RMS. The robotics control demonstration brings the large space structures control technology to an effective state of readiness and provides a useful robot when the experiment is finished. Three major options in such an experiment are the RMS, a flexible arm that is going to be put on the Shuttle for other reasons, or a dexetrous manipulator or teleoperator.

  17. A Closed Ecological System in a Space Experiment

    Science.gov (United States)

    Strauch, S. M.; Schuster, M.; Lebert, M.; Richter, P.; Schmittnagel, M.; Hader, D.-P.

    2008-06-01

    The Russian FOTON-M3 mission, a satellite for mid-length experiments in space and recovery afterwards, included a closed artificial ecosystem (OMEGAHAB for Oreochromis Mossambicus-Euglena Gracilis-Aquatic HABitat) with the photosynthetic flagellate Euglena gracilis as oxygen producer and larvae of Oreochromis mossambicus, a Tilapia species, as consumer. During the 12-day orbital flight the algae were observed 10 minutes per day by means of a miniaturized microscope to analyse their swimming behavior. The fishes were also filmed to monitor their development and movement. An identical experiment was carried out as ground control. A data downlink provided the measured temperature values of the space experiment every day to readjust the temperature of the ground reference in order to eliminate the influence of the different temperature on the velocity of the development of the fishes. The system worked very well and confirmed the design in principle. OMEGAHAB was the most successful German experiment of that kind as yet.

  18. Optical observations on critical ionization velocity experiments in space

    International Nuclear Information System (INIS)

    A number of Critical Ionization Velocity (CIV) experiments have been performed in space. CIV has been observed in laboratory experiments, but experiments in space have been inconclusive. Most space experiments have used barium which ionizes easily, and with emission lines from both neutrals and ions in the visible optical observations can be made from the ground. Also other elements, such as xenon, strontium and calcium, have been used. High initial ionization in some barium release experiments has been claimed due to CIV. However, a number of reactions between barium and the ambient plasma have been suggested as more likely processes. Currently the most popular process in this debate is charge exchange with O+. This process has a large cross section, but is it large enough? The cross section for charge exchange with calcium should be even larger, but in a double release of barium and calcium (part of the NASA CRRES release experiments) most ionization was observed from the barium release. Moreover, if charge exchange is the dominant process, the amount of ionization should relate to the oxygen ion density, and that does not appear to be the case. Other processes, such as associative ionization, have also been proposed, but yields are uncertain because the reaction rates are very poorly known

  19. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  20. Space experiments of thermocapillary convection in two-liquid layers

    Institute of Scientific and Technical Information of China (English)

    周炳红; 刘秋生; 胡良; 姚永龙; 胡文瑞

    2002-01-01

    In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method .A reasonable agreement between the experimental investigation and the numerical results is obtained.

  1. Mission Possible: BioMedical Experiments on the Space Shuttle

    Science.gov (United States)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical

  2. Space Debris Radar Experiments at the Medicina VLBI Dish

    Science.gov (United States)

    Pupillo, G.; Montebugnoli, S.; Di Martino, M.; Salerno, E.; Bartolini, M.; Pluchino, S.; Schilliro, F.; Anselmo, L.; Portelli, C.; Konovalenko, A.; Nabatov, A.

    2009-03-01

    In 2007 three space debris detection tests were performed in the framework of a monitoring program carried out by the Istituto Nazionale di Astrofisica - INAF - in collaboration with the Italian Space Agency - ASI. The observations were made by using the bistatic radar technique. The INAF 32 m radiotelescope located at Medicina (Bologna, Italy) was used as receiver whereas the Ukrainian 70 m parabolic antenna located at Evpatoria was utilized as transmitter. The aim of the experiment was to test the sensitivity of the Medicina-Evpatoria radar system in space debris detection, and to validate and optimize the hardware setup. Measurements were mainly carried out on inactive satellites and catalogued space debris. However the search for new fragments in LEO was also performed during the campaign. This paper reports on results of these observations.

  3. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    Science.gov (United States)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  4. Space stability investigations of optical coatings by earth- and space-based experiments

    Science.gov (United States)

    Hacker, Erich; Weissbrodt, P.; Raupach, L.; Lauth, Hans; Kappel, H.; Wagner, S.; Schmitt, Dirk-Roger

    1994-09-01

    Optical components for space optics - especially coated optical elements which represent the external surfaces of optical space instrumentation - have to work under harsh operation conditions like thermal loads, irradiation by photons, electrons and protons, as well as in atomic oxygen environments at low earth orbits. Additionally they have to withstand other cross contamination coming from the spacecraft. Therefore, the stability against these influences is a decisive factor for the application performance of optical coatings in space-borne devices. Some very recent results, based on the Surface Effects Sample Monitor (SESAM) flight experiment carried out aboard the ORFEUS-Shuttle Pallet Satellite (SPAS), STS-51, Discovery, are presented here along with laboratory experiments in an UHV-surface analysis system. The topics include ground simulation of selective and complex particle bombardment of optical coating analyzed by XPS as well as the verification of these results by flight experiments in combination with optical measurements (transmission, scattering).

  5. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,mf=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,mf=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,mf=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  6. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  7. On time and space double-slit experiments

    Science.gov (United States)

    Bauer, M.

    2014-11-01

    Unlike the usual interference experiment with two slits separated in space, a time double-slit experiment uses the equivalent of a single slit covered by a shutter that is opened and closed and then quickly opened and closed again. Such experiments have recently been performed, providing further confirmation of wave-particle duality. In either type of experiment, the wave function beyond the slit(s) initially has two peaks that then spread and interfere. This article derives the results of these experiments in a schematic, but analytic solution of the time-dependent Schrödinger equation with appropriate initial conditions. In the space double-slit case, in addition to the transverse interference pattern, the time evolution at a fixed position exhibits an oscillating transient behavior similar to that obtained in the time double-slit experiment. Finally, the schematic model also reproduces the observed progressive visibility of the interference pattern obtained as a movable mask is displaced in front of the double-slit.

  8. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  9. Photobiology in Space - an Experiment on Spacelab-I

    Science.gov (United States)

    Horneck, G.; Bücker, H.; Dose, K.; Martens, K. D.; Mennigmann, H. D.; Reitz, G.; Requardt, H.; Weber, P.

    1984-12-01

    The joint European/US Spacelab Mission I, scheduled for October 1983 for a 9 day lasting Earth-orbiting flight, provides a laboratory system for various disciplines of science, including exobiology. On the pallet, in the experiment ES 029 “Microorganisms and Biomolecules in Space Hard Environment” 316 dry samples of Bacillus subtilis spores will be exposed to space vacuum and/or selected wavelengths of solar UV radiation. After recovery action spectra of inactivation, mutation induction, reparability and photochemical damage in DNA and protein will be determined. The results will contribute to the understanding of the mechanism of the increased UV sensitivity of bacterial spores in vacuo and to a better assessment of the chance of survival of resistant life forms in space and of interplanetary transfer of life.

  10. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  11. Measurement of critical contact angle in a microgravity space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Concus, P.; Finn, R.; Weislogel, M.

    1999-06-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the NASA USML-2 Space Shuttle flight. The experiment's double proboscis containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  12. Measurement of critical contact angle in a microgravity space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Concus, P. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.; Finn, R. [Department of Mathematics, Stanford University, CA (United States); Weislogel, M. [NASA Lewis Research Center, Cleveland, OH (United States)

    2000-03-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the interface configuration experiment on board the NASA USML-2 Space Shuttle flight. The experiment's ''double proboscis'' containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium. (orig.)

  13. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 108 than the best achievements to date of ground-based devices. (author)

  14. Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS)

    Science.gov (United States)

    Wilson, Thomas L.; Wefel, John P.

    1999-01-01

    In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.

  15. Improvement of cesium retention in uranium dioxide by additional phases

    International Nuclear Information System (INIS)

    The objective of this study is to improve the cesium retention in nuclear fuel. A bibliographic survey indicates that cesium is rapidly released from uranium dioxide in an accident condition. At temperatures higher than 1500 deg C or in oxidising conditions, our experiments show the difficulty of maintaining cesium inside simulated fuel. Two ternary systems are potentially interesting for the retention of cesium and to reduce the kinetics of release from the fuel: Cs2O-Al2O3-SiO2 et Cs2O-ZrO2-SO2. The compounds CsAISi2O6 and Cs2ZrSi6O15 were studied from 1200 deg C to 2000 deg C by thermogravimetric analysis. The volumetric diffusion coefficients of cesium in these structures, in solid state as well as in liquid one, were measured. A fuel was sintered with (Al2O3 + SiO2) or (ZrO2 + SiO2) and the intergranular phase was characterized. In the presence of (Al2O3 + SiO2), the sintering is realized at 1610 deg C in H2. It is a liquid phase sintering. On the other end, with (ZrO2 + SiO2), the sintering is a low temperature one in oxidising atmosphere. Finally, cesium containing simulated fuels were produced with these additives. According to the effective diffusion coefficients that were measured, the additives improved the retention of cesium. We have predicted the improvement that could be hoped for in a nuclear reactor, depending on the dispersion of the intergranular additives, the temperature and the degree of oxidation of the UO2+x. We wait for a factor of 2 for x=0 and more than 8 for x=0.05, up to 2000 deg C. (author). 148 refs., 122 figs., 34 tabs

  16. Sorption of cesium in intact rock

    Energy Technology Data Exchange (ETDEWEB)

    Puukko, E. [Univ. of Helsinki, Dept. of Chemistry (Finland)

    2014-04-15

    The mass distribution coefficient K{sub d} is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R{sub d} is determined using crushed rock which causes uncertainty in converting the R{sub d} values to K{sub d} values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs{sup +} and it is sorbed by ion exchange. The tracer used in the experiments was {sup 134}Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  17. Removal and adsorption of radioactive cesium from contaminated soil caused by the Fukushima Daiichi Nuclear Power Station accident

    International Nuclear Information System (INIS)

    The removal and adsorption of radioactive cesium, 137Cs or 134Cs, from contaminated soil was investigated using various extractants: sodium hydroxide, hydrochloric acid, and sulfuric acid. In this experiment, a sand sample was used as contaminated soil. Although the radioactive cesium could not be removed from the soil by using sodium hydroxide, 64% of the removal efficiency was provided at room temperature when 10 M hydrochloric acid was used. Eighty percent of the radioactive cesium was removed by using 1 M sulfuric acid containing 0.1 M thiourea at 90℃. A more than 90% removal efficiency was obtained by increasing of the volume of sulfuric acid containing thiourea. The same result was obtained using custom-made radioactive cesium removal equipment. The adsorption of the radioactive cesium was also investigated. In an experiment of concerning adsorption, contaminated water containing radioactive cesium was prepared from a contaminated sand sample. More than 96% adsorption was obtained using zeolite (clinoptilolite). However, when commercial activated carbon was used, most the radioactive cesium was hardly removed. The influence of shaking time on the adsorption of radioactive cesium was investigated by a batch-system using zeolite. As a result, a shaking time of at least 5 min showed that the radioactive cesium was quantitatively adsorbed to zeolite. The adsorptive behavior of the radioactive cesium by a flow-system was also examined using zeolite. (author)

  18. Source term estimation using air concentration measurements and a Lagrangian dispersion model - Experiments with pseudo and real cesium-137 observations from the Fukushima nuclear accident

    Science.gov (United States)

    Chai, Tianfeng; Draxler, Roland; Stein, Ariel

    2015-04-01

    A transfer coefficient matrix (TCM) was created in a previous study using a Lagrangian dispersion model to provide plume predictions under different emission scenarios. The TCM estimates the contribution of each emission period to all sampling locations and can be used to estimate source terms by adjusting emission rates to match the model prediction with the measurements. In this paper, the TCM is used to formulate a cost functional that measures the differences between the model predictions and the actual air concentration measurements. The cost functional also includes a background term which adds the differences between a first guess and the updated emission estimates. Uncertainties of the measurements, as well as those for the first guess of source terms are both considered in the cost functional. In addition, a penalty term is added to create a smooth temporal change in the release rate. The method is first tested with pseudo observations generated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at the same location and time as the actual observations. The inverse estimation system is able to accurately recover the release rates and performs better than a direct solution using singular value decomposition (SVD). It is found that computing ln(c) differences between model and observations is better than using the original concentration c differences in the cost functional. The inverse estimation results are not sensitive to artificially introduced observational errors or different first guesses. To further test the method, daily average cesium-137 air concentration measurements around the globe from the Fukushima nuclear accident are used to estimate the release of the radionuclide. Compared with the latest estimates by Katata et al. (2014), the recovered release rates successfully capture the main temporal variations. When using subsets of the measured data, the inverse estimation method still manages to identify most of the

  19. Thim's Experiment and Exact Rotational Space-Time Transformations

    CERN Document Server

    Hsu, Leonardo

    2014-01-01

    Thim measured the transverse Doppler shift using a system consisting of a stationary antenna and pickup, in addition to a number of intermediate antennas mounted on the rim of a rotating disk. No such shift was detected, although the experiment should have had enough sensitivity to measure it, as predicted by the Lorentz transformations. However, using the Lorentz transformations to analyze the results of experiments involving circular motion, while commonly done, is inappropriate because such an analysis involves non-inertial frames, which are outside the range of validity of special relativity. In this paper, we re-analyze Thim's experiment using exact rotational space-time transformations, finding that his null result is consistent with theoretical predictions.

  20. Plutonium and Cesium Colloid Mediated Transport

    Science.gov (United States)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  1. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  2. Preliminary Assessment Of Space Infrared Experiment's (SIRE) Potential For Contamination

    Science.gov (United States)

    Mah, D. L.; Muscari, J. A.

    1982-02-01

    This paper presents the results of a contamination analysis and computer modeling study performed for the Space Infrared Experiment (SIRE) using the Space Transport System (STS) Shuttle Orbiter as the launch vehicle for the proposed seven-day sortie mission. These results will provide an accurate description of the deposition levels on the telescope primary mirror and of the molecular number column density (NCD) along the telescope line-of-sight. The planned Helium Purge System was assumed not to be operating. The contribution to the contamination environment of any cargo element, other than SIRE and its pallet, was not considered in this study. The study considers five potential contamination sources, including the flash evaporator vent effluents and the vernier reaction control system (VCS) engines plume constituents.

  3. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Science.gov (United States)

    Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.

    2013-03-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.

  4. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    International Nuclear Information System (INIS)

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) carbon target.

  5. Short-range inverse-square law experiment in space

    Science.gov (United States)

    Strayer, D. M.; Paik, Ho Jung; Vol Moody, M.

    2003-06-01

    The objective of ISLES (inverse-square law experiment in space) is to perform a null test of Newton's law on the ISS with a resolution of one part in 105 at ranges from 100 μm to 1 mm. ISLES will be sensitive enough to detect axions with the strongest allowed coupling and to test the string-theory prediction with R⩾5 μm. To accomplish these goals on the rather noisy International Space Station, the experiment is set up to provide immunity from the vibrations and other common-mode accelerations. The measures to be applied for reducing the effects of disturbances will be described in this presentation. As designed, the experiment will be cooled to less than 2 K in NASA's low temperature facility the LTMPF, allowing superconducting magnetic levitation in microgravity to obtain very soft, low-loss suspension of the test masses. The low-damping magnetic levitation, combined with a low-noise SQUID, leads to extremely low intrinsic noise in the detector. To minimize Newtonian errors, ISLES employs a near-null source of gravity, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a distance of 100 μm to 1 mm. The signal is detected by a supercon-ducting differential accelerometer, making a highly sensitive sensor of the gravity force generated by the source mass.

  6. Space Experiment on Tuber Development and Starch Accumulation for CELSS

    Science.gov (United States)

    Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.

    1997-01-01

    Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  7. A 12 years brazilian space education activity experience

    Science.gov (United States)

    Stancato, Fernando; Gustavo Catalani Racca, João; Ballarotti, MaurícioG.

    2001-03-01

    A multidisciplinary group of students from the university and latter also from the high school was formed in 1988 with the objective to make them put in practice their knowledge in physics, chemistry and mathematics and engineering fields in experimental rocketry. The group was called "Grupo de Foguetes Experimentais", GFE. Since that time more than 150 students passed throw the group and now many of them are in the space arena. The benefits for students in a space hands-on project are many: More interest in their school subjects is gotten as they see an application for them; Interrelation attitudes are learned as space projects is a team activity; Responsibility is gained as each is responsible for a part of a critical mission project; Multidisciplinary and international experience is gotten as these are space project characteristics; Learn how to work in a high stress environment as use to be a project launch. This paper will cover the educational experiences gotten during these years and how some structured groups work. It is explained the objectives and how the group was formed. The group structure and the different phases that at each year the new team passes are described. It is shown the different activities that the group uses to do from scientific seminars, scientific club and international meetings to technical tours and assistance to rocket activities in regional schools. It is also explained the group outreach activities as some launches were covered by the media in more then 6 articles in newspaper and 7 television news. In 1999 as formed an official group called NATA, Núcleo de Atividades Aerospaciais within the Universidade Estadual de Londrina, UEL, by some GFE members and teachers from university. It is explained the first group project results.

  8. Space Weathering of Olivine: Samples, Experiments and Modeling

    Science.gov (United States)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2016-01-01

    Olivine is a major constituent of chondritic bodies and its response to space weathering processes likely dominates the optical properties of asteroid regoliths (e.g. S- and many C-type asteroids). Analyses of olivine in returned samples and laboratory experiments provide details and insights regarding the mechanisms and rates of space weathering. Analyses of olivine grains from lunar soils and asteroid Itokawa reveal that they display solar wind damaged rims that are typically not amorphized despite long surface exposure ages, which are inferred from solar flare track densities (up to 10 (sup 7 y)). The olivine damaged rim width rapidly approaches approximately 120 nm in approximately 10 (sup 6 y) and then reaches steady-state with longer exposure times. The damaged rims are nanocrystalline with high dislocation densities, but crystalline order exists up to the outermost exposed surface. Sparse nanophase Fe metal inclusions occur in the damaged rims and are believed to be produced during irradiation through preferential sputtering of oxygen from the rims. The observed space weathering effects in lunar and Itokawa olivine grains are difficult to reconcile with laboratory irradiation studies and our numerical models that indicate that olivine surfaces should readily blister and amorphize on relatively short time scales (less than 10 (sup 3 y)). These results suggest that it is not just the ion fluence alone, but other variable, the ion flux that controls the type and extent of irradiation damage that develops in olivine. This flux dependence argues for caution in extrapolating between high flux laboratory experiments and the natural case. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind processing of olivine.

  9. Laser Calibration Experiment for Small Objects in Space

    Science.gov (United States)

    Campbell, Jonathan; Ayers, K.; Carreras, R.; Carruth, R.; Freestone, T.; Sharp, J.; Rawleigh, A.; Brewer, J.; Schrock, K.; Bell, L.; Howell, Joe (Technical Monitor)

    2001-01-01

    The Air Force Research Laboratory/Directed Energy Directorate (AFRL/DE) and NASA/Marshall Space Flight Center (MSFC) are looking at a series of joint laser space calibration experiments using the 12J 15Hz CO2 High Performance CO2 Ladar Surveillance Sensor (FU-CLASS) system on the 3.67 meter aperture Advanced Electro-Optics System (AEOS). The objectives of these experiments are to provide accurate range and signature measurements of calibration spheres, demonstrate high resolution tracking capability of small objects, and support NASA in technology development and tracking projects. Ancillary benefits include calibrating radar and optical sites, completing satellite conjunction analyses, supporting orbital perturbations analyses, and comparing radar and optical signatures. In the first experiment, a Global Positioning System (GPS)/laser beacon instrumented microsatellite about 25 cm in diameter will be deployed from a Space Shuttle Hitchhiker canister or other suitable launch means. Orbiting in low earth orbit, the microsatellite will pass over AEOS on the average of two times per 24-hour period. An onboard orbit propagator will activate the GPS unit and a visible laser beacon at the appropriate times. The HI-CLASS/AEOS system will detect the microsatellite as it rises above the horizon, using GPS-generated acquisition vectors. The visible laser beacon will be used to fine-tune the tracking parameters for continuous ladar data measurements throughout the pass. This operational approach should maximize visibility to the ground-based laser while allowing battery life to be conserved, thus extending the lifetime of the satellite. GPS data will be transmitted to the ground providing independent location information for the microsatellite down to sub-meter accuracies.

  10. Capacity building in emerging space nations: Experiences, challenges and benefits

    Science.gov (United States)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  11. Gravitropic mechanisms derived from space experiments and magnetic gradients.

    Science.gov (United States)

    Hasenstein, Karl H.; Park, Myoung Ryoul

    2016-07-01

    Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex

  12. Meteoroid/space debris impacts on MSFC LDEF experiments

    Science.gov (United States)

    Finckenor, Miria

    1992-01-01

    The many meteoroid and space debris impacts found on A0171, A0034, S1005, and other MSFC experiments are considered. In addition to those impacts found by the meteoroid and debris studies, numerous impacts less than 0.5 mm were found and photographed. The flux and size distribution of impacts is presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  13. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    International Nuclear Information System (INIS)

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 ± 15 Bq.m-2 for South region to 15 ± 2 Bq.m-2 for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  14. Ionizing mechanisms in a cesium plasma irradiated with a ruby laser

    Science.gov (United States)

    Shimada, K.; Robinson, L. B.

    1975-01-01

    A cesium filled diode--laser plasmadynamic converter was built to investigate the feasibility of converting laser energy to electrical energy at large power levels. Experiments were performed with a pulsed ruby laser to determine the quantity of electrons and cesium ions generated per pulse of laser beam and to determine the output voltage. A current density as high as 200 amp/sq cm from a spot of approximately 1 sq mm area and an open circuit voltage as high as 1.5 volts were recorded. A qualitative theory was developed to explain these results. In the operation of the device, the laser beam evaporates some of the cesium and ionizes the cesium gas. A dense cesium plasma is formed to absorb further the laser energy. Results suggest that the simultaneous absorption of two ruby laser photons by the cesium atoms plays an important role in the initial ionization of cesium. Inverse bremsstrahlung absorption appears to be the dominant mechanism in subsequent processes. Recombinations of electrons and cesium ions appear to compete favorably with the simultaneous absorption of two photons.

  15. The International Space Station human life sciences experiment implementation process

    Science.gov (United States)

    Miller, L. J.; Haven, C. P.; McCollum, S. G.; Lee, A. M.; Kamman, M. R.; Baumann, D. K.; Anderson, M. E.; Buderer, M. C.

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment. c 2001. Elsevier Science Ltd. All rights reserved.

  16. Preparation of guinea pig macrophage for electrophoretic experiments in space

    Science.gov (United States)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  17. Cesium in the nutrient cycle

    International Nuclear Information System (INIS)

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland

  18. Cesium contamination of heather honey

    International Nuclear Information System (INIS)

    In heather honey from Lueneburger Heide, FRG, relatively high values of cesium activity were found (up to about 650 Bq/kg). Activity values for heather honey, Calluna vulgaris plants and soil were measured. It is assumed that the origin of this activity is the direct Chernobyl fallout. There may also be a high transfer of cesium from the soil to the Calluna vulgaris plant, but in order to determine the transfer factor, fresh plants are needed, which have grown later than in spring 1986. (author) 21 refs.; 2 figs.; 2 tabs

  19. Characterization of quantum efficiency and robustness of cesium-based photocathodes

    Science.gov (United States)

    Montgomery, Eric J.

    High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-current electron beams for photoinjection applications like free electron lasers. In photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser wavelengths to maintain high current density. But faced with contamination, heating, and ion back-bombardment, the highest efficiency photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the work herein presents careful, focused studies on cesium-based photocathodes, particularly motivated by the cesium dispenser photocathode. This is a novel device comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under controlled heating cesium diffuses from the reservoir through the porous substrate and across the surface to replace cesium lost to harsh conditions---recently shown to significantly extend the lifetime of cesium-coated metal cathodes. This work first reports experiments on coated metals to validate and refine an advanced theory of photoemission already finding application in beam simulation codes. Second, it describes a new theory of photoemission from much higher quantum efficiency cesium-based semiconductors and verifies its predictions with independent experiment. Third, it investigates causes of cesium loss from both coated metal and semiconductor photocathodes and reports remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details continued advances in cesium dispenser design with much-improved operating characteristics: lower temperature

  20. Space qualified nanosatellite electronics platform for photon pair experiments

    CERN Document Server

    Cheng, Cliff; Tan, Yue Chuan; Ling, Alexander

    2015-01-01

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  1. Preparing normal tissue cells for space flight experiments.

    Science.gov (United States)

    Koch, Claudia; Kohn, Florian P M; Bauer, Johann

    2016-01-01

    Deterioration of health is a problem in modern space flight business. In order to develop countermeasures, research has been done on human bodies and also on single cells. Relevant experiments on human cells in vitro are feasible when microgravity is simulated by devices such as the Random Positioning Machine or generated for a short time during parabolic flights. However, they become difficult in regard to performance and interpretation when long-term experiments are designed that need a prolonged stay on the International Space Station (ISS). One huge problem is the transport of living cells from a laboratory on Earth to the ISS. For this reason, mainly rapidly growing, rather robust human cells such as cancer cells, embryonic cells, or progenitor cells have been investigated on the ISS up to now. Moreover, better knowledge on the behavior of normal mature cells, which mimic the in vivo situation, is strongly desirable. One solution to the problem could be the use of redifferentiable cells, which grow rapidly and behave like cancer cells in plain medium, but are reprogrammed to normal cells when substances like retinoic acid are added. A list of cells capable of redifferentiation is provided, together with names of suitable drugs, in this review. PMID:25806650

  2. Pilot Experiments for the i-Space Project by NASDA

    Science.gov (United States)

    Nirei, Yoshihiko; Seki, Masakuni; Shigeta, Tsutomu; Inagaki, Kazunori

    Project")" as part of its research and development into the space infrastructure needed to deal with the materialization of a society with broadband Internet access. fields such as the Internet, education, health, disaster control and the Intelligent Transport System (ITS), using research "the Engineering Test Satellite VIII (ETS-VIII)", "the Wideband Internetworking engineering test and Demonstration Satellite (WINDS)" being researched and developed, and "the Quasi-Zenith Satellite System" which is still being studied. geostationary satellites capable of receiving sounds or data transmitted portably. It will be used for tests and providing evidence for the technical developments needed for communications, broadcasts and measurements in the early 21st century. information needed in an information technology-based society. It will be used not only in Japan, but also in broad areas throughout the Asia-Pacific region. NASDA is now working together with CRL on the research and development of the satellite, with a launch planned for 2005. communications in cities, is also now being studied in preparation for more specific research and development. about each category as mentioned above by utilization of some commercial satellites until these test satellites are launched. is introduced along with the various promotion activities of possible satellite experiments. The topic includes: 1) Abstract of the i-Space Project 2) Instance of the pilot experiments: Development an effective system and application for measures to deal with disasters.

  3. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  4. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  5. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  6. Space flight effects on antioxidant molecules in dry tardigrades : the TARDIKISS experiment

    OpenAIRE

    Angela Maria Rizzo; Tiziana Altiero; Paola Antonia Corsetto; Gigliola Montorfano; Roberto Guidetti; Lorena Rebecchi

    2015-01-01

    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARD...

  7. Effect of electrolytes concentration on recovery of cesium from AMP-PAN by Electrodialysis-Ion Exchange (EDIX)

    International Nuclear Information System (INIS)

    Cesium from the simulated acidic waste solution was separated using Ammonium Molybdophosphate (AMP) - Polyacrylonitrile (PAN) ion exchange resin in column operations. Electrodialysis - Ion exchange (EDIX) has been tried for the recovery of cesium from the AMP-PAN which was saturated with cesium. The electrodialysis setup consists of three compartments; cesium loaded AMP-PAN is placed in the middle compartment and is separated from the anode and cathode compartments by cation exchange membranes. Ammonium sulphate was used as anolyte and HNO3 as catholyte. 0.1N HNO3 was circulated in the middle compartment containing AMP-PAN to keep the resin in acidic form. On application of potential, the ammonium ions from the anode compartment migrate towards cathode through the middle compartment where they exchange with cesium ions on the resin and the exchanged cesium ions migrate towards cathode to get concentrated. Some part of cesium is recovered in the middle compartment due to convection. Cesium recovery from the AMP-PAN in the electrodialysis setup was studied at different anolyte and catholyte concentrations. All the experiments were carried out at constant current density of 40 mA/cm2 for 15h. It was found that more than 50% of cesium recovery was observed for all the experiments studied and recovery percentage increased with increasing the anolyte concentration. It was observed that the electrolytes concentration affects the voltage drop across the cell

  8. Space Environment NanoSat Experiment (SENSE) - A New Frontier in Operational Space Environmental Monitoring (Invited)

    Science.gov (United States)

    Kalamaroff, K. I.; Thompson, D. C.; Cooke, D. L.; Gentile, L. C.; Bonito, N. A.; La Tour, P.; Sondecker, G.; Bishop, R. L.; Nicholas, A. C.; Doe, R. A.

    2013-12-01

    The Space Environmental NanoSat Experiment (SENSE) program is a rapid development effort of the USAF Space and Missiles Center Development Planning Directorate (SMC/XR) which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner. The three primary objectives for the SENSE mission are: 1) to develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations; 2) to mature CubeSat bus and sensor component technology readiness levels; and 3) to demonstrate the operational utility of CubeSat measurements by flowing validated, low-latency data into operational space weather models. SENSE consists of two 3-U CubeSats built by Boeing Phantom Works. Both satellites are 3-axis stabilized with star cameras for attitude determination and are equipped with a Compact Total Electron Density Sensor (CTECS) to provide radio occultation measurements of total electron content and L-band scintillation. One satellite has a Cubesat Tiny Ionospheric Photometer (CTIP) monitoring 135.6 nm photons produced by the recombination of O+ ions and electrons. The other satellite has a Wind Ion Neutral Composite Suite (WINCS) to acquire simultaneous co-located, in situ measurements of atmospheric and ionospheric density, composition, temperature and winds/drifts. Mission data will be used to improve current and future space weather models and demonstrate the utility of data from CubeSats for operational weather requirements. Launch is scheduled for November 2013, and we will discuss the first 30 days of on-orbit operations.

  9. Vitrification of spent organic ion exchange resins- 137Cesium volatility during oxidation

    International Nuclear Information System (INIS)

    Organic ion exchange (IX) resins are used to purify coolant water in nuclear power plants. The spent IX resins contain 137Cesium as major long-lived radioisotope. Their vitrification requires complete combustion of organic matter. 137Cesium volatility during their oxidation is most important factor for selection of oxidation procedure. Based on TGA studies, copper and vanadate catalysts were selected respectively for cationic and anionic IX resins to oxidise them at 500-700 degC. Experiments were conducted with 137Cesium and catalyst loaded cationic and anionic resins. About 56 to 60% 137Cesium was released from cationic resins in 3 hours. 137Cesium release from cationic resins could be brought down to 19 to 22% by addition of glass formers. The 137Cesium releases from anionic resins were nearly same for 2 hours heating. In absence of glass formers, the catalyst on anionic resins formed molten mass, which was difficult to remove. Experiment with one litre of 137Cesiuin loaded mixed cationic and anionic resins released 16.8% 137Cesium to off gases and formed a slag having specific gravity of 1.73 due to difficulty in oxidising last traces of carbon. The volume reduction factor achieved was 18.2 as against 68 expected for complete oxidation of IX resins. The higher volume reduction factor can be achieved by using improved oxidation procedure in scaling up studies. (author)

  10. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    Science.gov (United States)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  11. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  12. Viscosity Measurement via Drop Coalescence: A Space Station Experiment

    Science.gov (United States)

    Antar, Basil; Ethridge, Edwin C.

    2010-01-01

    The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.

  13. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine;

    2016-01-01

    and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. CONCLUSION: We found that the four existential......BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. METHODS: The study builds on ethnographic fieldwork in a public school in Denmark...

  14. New calorimeters for space experiments: physics requirements and technological challenges

    International Nuclear Information System (INIS)

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described

  15. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  16. Preliminary results from the heavy ions in space experiment

    Science.gov (United States)

    Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.

    1992-01-01

    The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both of these objectives have practical as well as astrophysical consequences. In particular, the high atomic number of the ultraheavy galactic cosmic rays puts them among the most intensely ionizing particles in Nature. They are therefore capable of upsetting electronic components normally considered immune to such effects. The below cutoff heavy ions are intensely ionizing because of their low velocity. They can be a significant source of microelectronic anomalies in low inclination orbits, where Earth's magnetic field protects satellites from most particles from interplanetary space. The HIIS results will lead to significantly improved estimates of the intensely ionizing radiation environment.

  17. Recovery of In-Space Cubesat Experiments (RICE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ELORET Corporation, in collaboration with the Space Systems Design Laboratory of Georgia Institute of Technology, proposes developing and demonstrating a...

  18. Cesium separation Using Electrically Switched Ion Exchange

    International Nuclear Information System (INIS)

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electro-chemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 BV/h, the maxi-mum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked 5-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, break-through began at about 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures

  19. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights

    Science.gov (United States)

    Nechitailo, Galina S.; Kondyurin, Alexey

    2016-07-01

    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  20. FCJ-133 The Scripted Spaces of Urban Ubiquitous Computing: The experience, poetics, and politics of public scripted space

    Directory of Open Access Journals (Sweden)

    Christian Ulrik Andersen

    2011-12-01

    Full Text Available This article proposes and introduces the concept of ‘scripted space’ as a new perspective on ubiquitous computing in urban environments. Drawing on urban history, computer games, and a workshop study of the city of Lund the article discusses the experience of digitally scripted spaces, and their relation to the history of public spaces. In conclusion, the article discusses the potential for employing scripted spaces as a reinvigoration of urban public space.

  1. Specific interaction of cesium with the surface of calcium silicate hydrates

    International Nuclear Information System (INIS)

    The sorption of cesium at the calcium silicate hydrates (CSH) surface was investigated, both through sorption isotherm data and by solid-state NMR experiments. The sorption ability of CSH towards cesium is favored for low solid Ca/Si molar ratios, in agreement with the negative surface charge they develop then. A significant proportion of these sorbed cesium cations remains tightly bound to the surface sites forming, in dehydrated CSH, inner-sphere complexes, which can not be removed by alcohol washing. Chloride seems to present a lower affinity for CSH, even for high Ca/Si molar ratios, where the surface charge becomes positive. (orig.)

  2. Investigation of adsorption and wetting of 3He on cesium and cesiated glass

    International Nuclear Information System (INIS)

    Experiments have been carried out to investigate the binding of 3He on cesium substrates, using optical pumping to spin-polarize the atoms. The behavior of 3He on the walls at low temperature can be analyzed through the evolution of the nuclear magnetization of the sample. Preliminary results are presented, including: (1) adsorption studies of gaseous 3He on cesiated glass; (2) magnetic relaxation time of polarized liquid 3He on cesium and cesiated glass; (3) evidence for wetting of liquid 3He on cesium. 8 refs., 2 figs

  3. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  4. Structure of double hafnium and cesium sulfate

    International Nuclear Information System (INIS)

    The structure of a compound whose formula according to the structural investigation is Cssub(2+x)Hf(SOsub(4))sub(2+x)(HSOsub(4))sub(2-x)x3Hsub(2)O (x approximately 0.7) (a=10.220, b=12.004, c=15.767 A, space group Pcmn) is determined by diffractometric data (2840 reflections, anisotropic refinement, R=0.087). It is build of complex unions [Hf(SO4)4H2O]4-, Cs+ cations and water molecules. Eight O atoms surrounding Hf atom (dodecahedron Hf-O 2.10-2.22 A) belong to four sulphate groups and water molecule. Three sulphate groups are bidentate-cyclic, and one group - monodentate relative to Hf. The structure has a cesium deficit in particular positions

  5. The Space Science Lab: High School Student Solar Research Experience

    Science.gov (United States)

    Castelaz, Michael W.; Whitworth, C.; Harris, B.; David, C.

    2007-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have the unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The primary goal is to reach students who otherwise would not have this opportunity, and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. The students conduct their own research, and also interact with scientists around the world. A total of 54 students have spent a week at the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summers of 2006 and 2007. Students construct their own JOVE radio telescopes that they bring home to continue their observations during the academic year. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We report on results from student evaluations from the first year in 2006 and current session student experiences. We gratefully acknowledge support from the Burroughs Wellcome Fund - Student Science Enrichment Program

  6. SPAce Readiness Coherent Lidar Experiment: validation of observing system simulations

    Science.gov (United States)

    Emmitt, George D.; Miller, Timothy; Kavaya, Michael J.

    1998-12-01

    NASA recently approved a mission to fly a Doppler Wind Lidar on a US Space Shuttle. SPARCLE, managed by Marshall Space Flight Center in Huntsville, AL, is targeted for launch in March 2001. This mission is viewed as a necessary demonstration of a solid state lidar using coherent detection before committing resources to a 3-5 year research or operational mission. While, to many, this shuttle mission is seen as the first step in a series leading to a fully operational wind observing system, to others, it is a chance to validate predictions of performance based upon theoretical models, analyses of airborne and ground-based data and sophisticated observing system simulation experiments. The SPARCLE instrument is a 100 mJ, 6 Hz, diode pumped 2 micron laser with a .25 m telescope using heterodyne mixing in a fiber and an InGaAs detector. A 25 cm silicon wedge scanner will be used in step-stare modes with dwells ranging from 60 seconds to .5 seconds. Pointing knowledge is achieved with a dedicated GPS/INS mounted close to the lidar. NASA's hitchhiker program is providing the instrument enclosures and mission logistics support. An on- board data system in sized to record 80 Gbytes of raw signal from two 400 MHz A/D converters. On-board signal processing will be used to control the frequency of the Master Oscillator. SPARCLE is predicted to have a singleshot backscatter sensitivity near 5 by 10-6 m-1 sr-1. To achieve higher sensitivity, shot accumulation will be employed. Ground-based, 2 micron DWLs have been used to assess the benefits of shot accumulation. Airborne programs like MACAWS have provided good data st for evaluating various sampling strategies and signal processing algorithms. Using these real data to calibrate out simulation models, we can describe when and how well SPARCLE is expected to perform.

  7. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    International Nuclear Information System (INIS)

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met

  8. Cold cesium molecules produced directly in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Shan; Ji Zhong-Hua; Yuan Jin-Peng; Zhao Yan-Ting; Ma Jie; Wang Li-Rong; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magnetooptical trap with a good signal-to-noise ratio.These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology.The production rate of ultracold cesium molecules is up to 4× 104 s-1.We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy.We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters,which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.

  9. Trapping and cooling cesium atoms in a speckle field

    International Nuclear Information System (INIS)

    We present the results of two experiments where cold cesium atoms are trapped in a speckle field. In the first experiment, a YAG laser creates the speckle pattern and induces a far-detuned dipole potential which is a nearly-conservative potential. Localization of atoms near the intensity maxima of the speckle field is observed. In a second experiment we use two counterpropagating laser beams tuned close to a resonance line of cesium and in the lin perpendicular to lin configuration, one of them being modulated by a holographic diffuser that creates the speckle field. Three-dimensional cooling is observed. Variations of the temperature and of the spatial diffusion coefficient with the size of a speckle grain are presented. (orig.)

  10. The Need Of Laboratory Experiments In Parallel To Astrobiological Space Fligth Experiments

    Science.gov (United States)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplane- tary space conditions, test beds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity, which can be applied separately or in selected com- binations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or isolated biomolecules. The studies contribute to answer several questions of astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the chances and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. As an example, the ground controls that were performed in parallel with 3 BIOPAN flight experiments will be presented.

  11. Iodine and cesium behavior during the first PBF Severe Fuel Damage Test

    International Nuclear Information System (INIS)

    The results of iodine and cesium measurements made during the Severe Fuel Damage Scoping Test at the Power Burst Facility are presented. On-line gamma spectroscopy and grab samples of the test effluent were used to measure the isotopic release histories at four locations in the effluent sampling system. Total release fractions, release rates, analysis of filter debris, and sample line deposition characteristics are discussed. Iodine and cesium release rate constants measured during the experiment are compared with published NRC data

  12. Iodine and cesium behavior during the first PBF severe fuel damage test

    International Nuclear Information System (INIS)

    The results of iodine and cesium measurements made during the Severe Fuel Damage Scoping Test at the Power Burst Facility are presented. On-line gamma spectroscopy and grab samples of the test effluent were used to measure the isotopic release histories at four locations in the effluent sampling system. Total release fractions, release rates, analysis of filter debris, and sample line deposition characteristics are discussed. Iodine and cesium release rate constants measured during the experiment are compared with published NRC data

  13. Iodine and cesium behavior during the first PBF Severe Fuel Damage test: Chapter 4

    International Nuclear Information System (INIS)

    The results of iodine and cesium measurements made during the Severe Fuel Damage Scoping Test at the Power Burst Facility are presented. On-line gamma spectroscopy and grab samples of the test effluent were used to measure the isotopic release histories at four locations in the effluent sampling system. Total release fractions, release rates, analysis of filter debris, and sample line deposition characteristics are discussed. Iodine and cesium release rate constants measured during the experiment are compared with published NRC data

  14. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    Science.gov (United States)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and

  15. Space radiation measurements on-board ISS - The DOSMAP experiment

    International Nuclear Information System (INIS)

    The experiment 'Dosimetric Mapping' conducted as part of the science program of NASA's Human Research Facility (HRF) between March and August 2001 was designed to measure integrated total absorbed doses (ionising radiation and neutrons), heavy ion fluxes and its energy, mass and linear energy transfer (LET) spectra, time-dependent count rates of charged particles and their corresponding dose rates at different locations inside the US Lab at the International Space Station. Owing to the variety of particles and energies, a dosimetry package consisting of thermoluminescence dosemeter (TLD) chips and nuclear track detectors with and without converters (NTDPs), a silicon dosimetry telescope (DOSTEL), four mobile silicon detector units (MDUs) and a TLD reader unit (PILLE) with 12 TLD bulbs as dosemeters was used. Dose rates of the ionising part of the radiation field measured with TLD bulbs applying the PILLE readout system at different locations varied between 153 and 231 μGy d-1. The dose rate received by the active devices fits excellent to the TLD measurements and is significantly lower compared with measurements for the Shuttle (STS) to MIR missions. The comparison of the absorbed doses from passive and active devices showed an agreement within ±10%. The DOSTEL measurements in the HRF location yielded a mean dose equivalent rate of 535 μSv d-1. DOSTEL measurements were also obtained during the Solar Particle Event on 15 April 2001. (authors)

  16. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  17. Migration behavior of cesium in compacted sodium montmorillonite

    International Nuclear Information System (INIS)

    For safety assessments of geological disposal of high-level radioactive wastes, it is important to study the migration behavior of radioactive nuclides in compacted bentonite. In the present study, the apparent diffusion coefficients and activation energies of the diffusion were determined for cesium ions in compacted montmorillonite, a major clay mineral in bentonite. The activation energies obtained in the present study were 32.9 to 52.9 kJ mol-1, clearly higher than for the diffusion of cesium ions in free water, 16.2 kJ mol-1. The activation energies for Na-montmorillonite specimens with dry densities of 1.0, 1.2, and 1.4 x 103 kg m-3 were similar at approximately 34 kJ mol-1. When the dry density of the Na-montmorillonite specimens increases, the activation energy also increases, to reach 52.9 kJ mol-1 at 1.8 x 103 kg m-3. These findings suggest that the cesium in the compacted Na-montmorillonite diffuses with a different process from that in free water. Basal spacings were determined by the X-ray diffraction method for water-saturated, compacted Na-montmorillonite specimens. Three-water layer hydrate in the interlamellar space was observed for the Na-montmorillonite with dry densities of 1.0, 1.2, and 1.4 x 103 kg m-3, where the activation energies for the diffusion were nearly constant. Only the two-water layer hydrate was found in the Na-montmorillonite with dry densities of 1.6 and 1.8 x 103 kg m-3, in which the activation energy increases with the dry density. It is possible that the basal spacing could affect the migration behavior of cesium in compacted Na-montmorillonite. (author)

  18. Proposal of a Tethered Space Walking Robot - REX-J: Robot Experiment on JEM -

    Science.gov (United States)

    Oda, Mitsushige; Sawada, Hirotaka; Yoshi, Masahiro; Konoue, Kazuya; Kato, Hiroki; Suzuki, Satoshi; Hagiwara, Yusuke; Ueno, Taihei

    A unique space robot is proposed to support astronauts' EVA work. The robot moves around the surface of a space facility, e.g. a space station. Usefulness of the proposed robot system will be tested in 2012 on the International Space Station Japanese Experiment Module.

  19. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    Science.gov (United States)

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  20. Selective extraction of cesium: from compound to process

    International Nuclear Information System (INIS)

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  1. The physics of space and time III: Classification of space-time experiments and the twin paradox

    CERN Document Server

    Field, J H

    2008-01-01

    A nomenclature for inertial frames and a notation for space and time coordinates is proposed to give an unambigous description of space-time experiments in special relativity. Of particular importance are the concepts of `base' and `travelling' frames and `primary' and `reciprocal' experiments. A detailed discussion of the twin paradox is presented. The physical basis of the differential aging effect is found to be a relativistic relative-velocity transformation relation, not, as hitherto supposed, the spurious `length contraction' effect.

  2. Activity of cesium-134 and cesium-137 in game and mushrooms in Poland

    International Nuclear Information System (INIS)

    The activity of cesium-134 and cesium-137 was measured in mushrooms and game in 1986-1991. The samples were collected all over Poland and most of the measurements were carried out for export purposes. The results indicate that the activity ratio of cesium-137 to cesium-134 in some samples is not comparable to that with fallout after the Chernobyl accident. The analysis of some samples of mushrooms from 1985 showed that the activity of cesium-137 was higher compared to any other foodstuff. The level of contamination varied greatly throughout Poland

  3. Direct-reading dosimeters for space life science experiments

    Science.gov (United States)

    Thomson, I.; Mackay, G.

    Future space missions will require more detailed knowledge of radiation effects on electronics and humans. The longer the flight duration, the greater the potential hazard, as is shown in an overview of space radiation issues. Space radiation is very different from radiation of concern in terrestrial applications; not only is the physical nature of the radiation different, but its temporal and spatial variations add another dimension of complexity. It is very important to be able to measure space radiation with real time electronic devices which are small and can measure the different types of space radiation and warn of dangerously high levels. New, direct-reading electronic radiation monitoring techniques are described along with their application to dosimetry in space. It is shown that miniature silicon sensors can be used for the separate measurement of trapped high-energy protons and electrons, and cosmic rays. Two examples are used to illustrate the potential of these new technologies in life sciences and electronics applications.

  4. New features in recent critical velocity ionization experiments in space

    International Nuclear Information System (INIS)

    The authors review some new features observed in recent critical ionization velocity (CIV) space experiments: CRIT1, CRIT2, CRRES, IBSS, ATLAS-1, and APEX. In the two releases of CRIT1, the one with higher ionization featured a double pulse electric field structure while the other featured a single pulse. In both releases, the longitudinal electric field was larger than the transverse one. In CRIT2, a plasma density cavity was clearly present following the passage of the neutral cloud. Charge exchange or simply elastic collision may explain the cavity. Unlike in CRIT1, no single or double pulse electric field structure showed up in CRIT2. The electrostatic wave spectra in CRIT1 and CRIT2 showed no sign of prominent lower hybrid frequency, although the lower hybrid plasma instability has been widely believed to be the centrally important mechanism responsible for accelerating electrons to ionization energies in CIV. In CRIT2, electrons arrived at the detector before the neutral cloud. In CRRES, two pairs of gas release yielded inconsistent ionization results. The barium gas ionizations were different from each other by a factor of ten. The calcium gas ionization was about two order of magnitude lower than that predicted by charge exchange along, even if CIV did not occur. Surprisingly, in IBSS, not only the plasma density did not show any rapid increase but also it actually decreased during gas releases. In ATLAS-1, the Langmuir probe biased at a fixed potential showed two orders of magnitude increase in current collection in less than 1 ms. Yet, the rapid ionization yield in ATLAS-1 may be completely accounted for by means of charge exchange along, without invoking CIV. In APEX, ground observation failed to detect any ionization. Some of these new features are puzzling and unexpected. Potentially they may lead to a new generation of CIV theories soon

  5. First-principles study of cesium adsorption to weathered micaceous clay minerals

    Science.gov (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  6. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  7. The YES2 Experience: Towards Sustainable Space Transportation using Tethers

    NARCIS (Netherlands)

    Van der Heide, E.J.; Kruijff, M.; Ockels, W.J.

    2008-01-01

    Today there is no common vision on sustainable space transportation. Rockets expel gasses and solid rockets often small particles. These have negative effect on the environment, but it is not understood to what extent. With ever growing demand for access to space, sustainable technology developments

  8. Experiences in riding a technology roller coaster to deep space

    Science.gov (United States)

    Varghese, P.; Lehman, D.; Livesay, L.; Rayman, M.

    2001-01-01

    Deep Space 1(DS1) was the first mission of NASA's New Millennium program and was chartered to flight test twelve high-risk, enabling technologies important for future space and Earth science programs on both a fast schedule and a low budget.

  9. Analysis of ATLAS FLB-EC6 Experiment using SPACE Code

    International Nuclear Information System (INIS)

    The new code is named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). As a part of code validation effort, simulation of ATLAS FLB(Feedwater Line Break) experiment using SPACE code has been performed. The FLB-EC6 experiment is economizer break of a main feedwater line. The calculated results using the SPACE code are compared with those from the experiment. The ATLAS FLB-EC6 experiment, which is economizer feedwater line break, was simulated using the SPACE code. The calculated results were compared with those from the experiment. The comparisons of break flow rate and steam generator water level show good agreement with the experiment. The SPACE code is capable of predicting physical phenomena occurring during ATLAS FLB-EC6 experiment

  10. PIXE analyses of cesium in rice grains

    Science.gov (United States)

    Sugai, Hiroyuki; Ishii, Keizo; Matsuyama, Shigeo; Terakawa, Atsuki; Kikuchi, Yohei; Takahashi, Hiroaki; Ishizaki, Azusa; Fujishiro, Fumito; Arai, Hirotsugu; Osada, Naoyuki; Karahashi, Masahiro; Nozawa, Yuichiro; Yamauchi, Shosei; Kikuchi, Kosuke; Koshio, Shigeki; Watanabe, Koji

    2014-01-01

    The Fukushima nuclear power plant accident released vast amounts of radioactive material into the environment. For instance, 134Cs and 137Cs have half-lives of about 2 and 30 years, respectively, and emit many harmful gamma rays. In 2012, rice with radioactivity >100 Bq/kg was occasionally reported in Fukushima prefecture. To determine where and how cesium accumulates in rice, we grew rice in soil containing stable cesium and investigated the distribution of cesium in rice using particle-induced X-ray emission (PIXE). This study found that cesium is accumulated in bran and germ at high concentrations, and white rice contains 40% of the cesium found in brown rice.

  11. Particle detection technology for space-borne astroparticle experiments

    CERN Document Server

    Pohl, Martin

    2014-01-01

    I review the transfer of technology from accelerator-based equipment to space-borne astroparticle detectors. Requirements for detection, identification and measurement of ions, electrons and photons in space are recalled. The additional requirements and restrictions imposed by the launch process in manned and unmanned space flight, as well as by the hostile environment in orbit, are analyzed. Technology readiness criteria and risk mitigation strategies are reviewed. Recent examples are given of missions and instruments in orbit, under construction or in the planning phase.

  12. The ALTEA experiment onboard the International Space Station

    International Nuclear Information System (INIS)

    The knowledge of the composition of the radiation environment is an important information for all the radiation safety issues needed for the planning of future long manned space missions. The ALTEA detector is on board the International Space Station since July 2006 and during this period it has performed a detailed measurement of the radiation environment. In this paper we present a summary of past measures and results.

  13. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  14. Cesium exchange reaction on natural and modified clinoptilolite zeolites

    International Nuclear Information System (INIS)

    Cesium cation exchange reaction with K, Na, Ca and Mg ions on natural and modified clinoptilolite has been studied. Batch cation-exchange experiments were performed by placing 0.5 g of clinoptilolite into 10 ml or 20 ml of 1 x 10-3M CsCl solution for differing times. Two type deposits of clinoptilolite zeolites from, Nizny Hrabovec (NH), Slovakia and Metaxades (MX), Greece were used for ion-exchange study. The distribution coefficient (Kd) and sorption capacity (Γ) were evaluated. For the determination of K, Na, Ca and Mg isotachophoresis method, the most common cations in exchange reaction was used. Cesium sorption was studied using 137Cs tracer and measured by γ-spectrometry. (author)

  15. Modeling the evolution of cesium diffusion front in argillaceous rock: effects of the 3D microstructure

    International Nuclear Information System (INIS)

    homogeneous diffusive medium in the modeling. Due to the complexity of the investigated material, a data reduction procedure had to be developed without losing critical information concerning the microstructure of the rock. Sub-volumes of 4 x 4 voxels were defined from the original set of data, and an averaged contaminant flux was systematically calculated in all three spatial directions. The calculations were carried out with COMSOL MultiphysicsR software by maintaining a fixed cesium concentration gradient between two opposite faces of the sub-volume. According to Fick's first law, the calculated flux is proportional to the effective diffusion coefficient in the gradient direction. This space dependant data set for the effective diffusion coefficient was then used to model contaminant diffusion in the rock sample. A sorption isotherm derived from independent batch sorption experiments was used to characterize the cesium/clay interaction. By adjusting the values for the transport parameters, it was possible to deduce values for the anisotropic effective diffusion coefficient for the clay fraction. Subsequently, such data can be compared with those obtained from other diffusion experiments on all scales assuming homogeneous, isotropic transport properties in their modeling. In addition, such a comparison will contribute to the still unresolved issue of up-scaling of transport parameters. (authors)

  16. Fabrication and performance of fl y ash granule filter for trapping gaseous cesium

    Directory of Open Access Journals (Sweden)

    Park Jang Jin

    2015-09-01

    Full Text Available Although a disk-type fly ash filter has shown a good performance in trapping gaseous cesium, it has difficulty in charging filters into a filter container and discharging waste filters containing radioactive cesium from a container by remote action. To solve the difficulty of the disk-type fly ash filter, five types of granule filters, including a ball type, tube type, and sponge-structure type have been made. Among them, the best filter type was chosen through simple crucible tests. The five types of granule filters packed into containers were loaded into five alumina crucibles of 50 cc. Five grams of CsNO3 was used as a gaseous cesium source. They were then placed in a muffle furnace and heated to 900°C and maintained for 2 hours. After the experiment, the weights of the cesium trapped filters were measured. Among the five types of granule filters, the sponge-structure type granule filter was the best, which has the highest trapping capacity of cesium. Its capacity is 0.42 g-Cs/g-filter. The chosen sponge-structure type granule filters and disk-type filters have been tested using a two-zone tube furnace. Cs volatilization and Cs trapping zones were maintained at 900 and 1000°C, respectively. Sixteen grams of CsNO3 was used as a gaseous cesium source. The cesium trapping profile of the sponge-structure type granule filters was almost similar to that of the disk-type fly ash filters. For both cases, cesium was successfully trapped within the third filter.

  17. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  18. Laboratory based space experiments using an ion implanter

    International Nuclear Information System (INIS)

    The Accelerator Centre at the University of Manitoba has been active in recent years in the study of materials relevant to the space industry and in the characterization of such materials. Plans are in place to extend this work on the ion implantation of materials to new areas of research in which more esoteric physical processes are examined on Earth prior to the development of structures for space vehicles or planetary study. This paper consists of two parts, the first a summary of recent research to be published in refereed scientific literature, the second an outline of future plans using existing facilities. (author)

  19. Tourism and spaces of anonymity: An Israeli lesbian woman's travel experience

    OpenAIRE

    Poria, Yaniv

    2006-01-01

    This study examines an Israeli lesbian woman's travel experience based on the analysis of her published diary. The comparison of her experience and attitudes towards various spaces (e.g. her apartment, open spaces near her home, and locations in which she is involved in tourist activity) suggests that her perception of the space as 'free from people she knows' allows her and her partner to benefit from anonymity, live a lesbian lifestyle and benefit from sense of existential...

  20. Quantum optics experiments to the International Space Station ISS: a proposal

    OpenAIRE

    Scheidl, Thomas; Wille, Eric; Ursin, Rupert

    2012-01-01

    We propose performing quantum optics experiments in an ground-to-space scenario using the International Space Station, which is equipped with a glass viewing window and a photographer's lens mounted on a motorized camera pod. A dedicated small add-on module with single-photon detection, time-tagging and classical communication capabilities would enable us to perform the first-ever quantum optics experiments in space. We present preliminary design concepts for the ground and flight segments an...

  1. The Deployable Structures Experiment: Design of a Low-Cost, Responsive R&D Space Mission

    OpenAIRE

    Cohen, Dan; Greeley, Scott; Kemper, Shane; King, Jim; Davis, Larry; Spanjers, Gregory; Winter, James; Adler, Aaron

    2004-01-01

    The Air Force Research Laboratory (AFRL) Space Vehicles Directorate has developed the Deployable Structures Experiment (DSX) to research technologies needed for large space structures and apertures, high-power generation, and survivability in the high radiation environment of a medium earth orbit (MEO). DSX is designed to perform five basic research experiments that coupled together provides DoD with the technological understanding needed to achieve transformational capability in space survei...

  2. Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94

    Science.gov (United States)

    Coho, William K.; Weiland, Karen J.; VanZandt, David M.

    1998-01-01

    A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

  3. Cesium and strontium exchange properties of marsh soils

    International Nuclear Information System (INIS)

    The cesium and strontium exchange properties of some typical marsh soils of the estuary and lower river Weser region were described. Soil samples were taken according to the existing soil maps 1:25000 of Lower Saxony e.g. a “sea marsh soil”. a “brackish marsh soil”, and a “river marsh soil”. The exchange properties were determined by Cs/Ca and Sr/Ca exchange curves (Q/I relations) as generally used in soil potassium research. In addition to the Q/I relations the following investigations were carried out: - Cs and Sr desorption experiments (one time equilibration with Ca++ solutions) - Cs and Sr reexchange experiments (eight times equilibration with water, Ca++, Ba++, and K+ solutions) - the naturally-occuring Cs and Sr contents of the soils including amounts caused by imissions or fallout, respectively - clay mineral composition and swelling of layer silicates due to saturation with Ca++, Sr++, Cs+, and K+ ions. Q/I relations as well as desorption and reexchange experiments indicated strong cesium and low strontium fixation by the soils investigated. This was considered the reason for the stronger transfer of Sr from soil to plants as compared with Cs. Furthermore, the reexchange experiment revealed nearly complete reversibility of the Sr sorption reactions by equilibration with the divalent cations Ca++ and Ba++ and some Sr fixation after treatment with K+ solutions. However, cesium was much better reexchanged by K+ than by Ca++ and Ba++ ions. This led to the conclusion that Cs fixed in interlayer positions of clay minerals could be remobilized by potassium and ammonium fertilization. The naturally-occuring Cs contents of the soils were found to be below the detection limit of the analytical methods used. The contents of naturally-occuring exchangeable Sr, however, was in agreement with the amounts of “labile Sr” as derived from the Sr/Ca exchange curves. Concerning the cesium exchange properties a clear distinction between “sea and river marsh

  4. Space debris: Orbital microparticulates impacting LDEF experiments favour a natural extraterrestrial origin

    Science.gov (United States)

    Mcdonnell, Tony

    1991-01-01

    The results of work carried out at the Unit for Space Sciences at the University of Kent at Canterbury, United Kingdom, on the micrometeoroid and space debris environment of near Earth space are described. The primary data for the research program is supplied by an examination of several types of exposed surface from the NASA Long Duration Exposure Facility (LDEF), including an experiment dedicated to the detection of micrometeoroids and space debris provided by the University.

  5. Surface tension of liquid dilute solutions of lead-cesium and bismuth-cesium systems

    International Nuclear Information System (INIS)

    Method of the maximal pressure in a drop was used to measure the surface tension of 15 liquid dilute solutions of lead-cesium system in 0-0.214 at% concentration range and of 12 diluted solutions of bismuth-cesium system in 0-0.160 at.% cesium range from solidification temperature up to 500 dec C. It was found that cesium was characterized as surfactant in lead and bismuth melts. It was established that the temperature coefficient of surface tension changes sufficiently in maximally diluted solutions of alkali metals in bismuth and lead melts. Effect of sodium, potassium, rubidum and cesium on the value of surface tension of lead and bismuth was systematized. Growth of activity in sodium, potassium, rubidium and cesium series was noted

  6. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  7. Setting priorities for space research: An experiment in methodology

    Science.gov (United States)

    1995-01-01

    In 1989, the Space Studies Board created the Task Group on Priorities in Space Research to determine whether scientists should take a role in recommending priorities for long-term space research initiatives and, if so, to analyze the priority-setting problem in this context and develop a method by which such priorities could be established. After answering the first question in the affirmative in a previous report, the task group set out to accomplish the second task. The basic assumption in developing a priority-setting process is that a reasoned and structured approach for ordering competing initiatives will yield better results than other ways of proceeding. The task group proceeded from the principle that the central criterion for evaluating a research initiative must be its scientific merit -- the value of the initiative to the proposing discipline and to science generally. The group developed a two-stage methodology for priority setting and constructed a procedure and format to support the methodology. The first of two instruments developed was a standard format for structuring proposals for space research initiatives. The second instrument was a formal, semiquantitative appraisal procedure for evaluating competing proposals. This report makes available complete templates for the methodology, including the advocacy statement and evaluation forms, as well as an 11-step schema for a priority-setting process. From the beginning of its work, the task group was mindful that the issue of priority setting increasingly pervades all of federally supported science and that its work would have implications extending beyond space research. Thus, although the present report makes no recommendations for action by NASA or other government agencies, it provides the results of the task group's work for the use of others who may study priority-setting procedures or take up the challenge of implementing them in the future.

  8. Application of Cesium isotopes in daily life

    International Nuclear Information System (INIS)

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically 133Cesium isotope and radioisotope 137Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  9. Decontamination of radioactive cesium in soil

    International Nuclear Information System (INIS)

    Agricultural soil containing radioactive cesium was decontaminated using an extraction method involving aqueous potassium solutions. Results demonstrated that the potassium solution could extract radioactive cesium from soil artificially contaminated with 137Cs, although extraction rate decreased as time after contamination increased. However, visual examination of radioactivity distribution in soil samples significantly contaminated by the accident at the Fukushima Daiichi nuclear power plant showed that radioactive cesium also existed as insoluble particles. Therefore, reducing the volume of radioactive wastes generated from soil decontamination requires a physical decontamination method combined with chemical treatment. (author)

  10. Studies on cesium uptake by phenolic resins

    International Nuclear Information System (INIS)

    The selective removal of cesium by phenolic ion-exchange resins from highly salted alkaline radioactive solutions was studied. The resins were synthesized by alkaline polycondensation of phenol, resorcinol, catechol, and resorcinol-catechol mixture with formaldehyde and characterized for their moisture regain, ion-exchange (H+ → Na+) capacity, and distribution coefficient (KD) for cesium. The effects of open and sealed curing of the polymers on their properties were studied. The effect of Na+, NaOH, and Cs+ concentration on the uptake of cesium by resorcinol-formaldehyde resin was investigated, in particular. The chemical, thermal, and radiation stabilities of the polymers were also studied

  11. Interpretation of laboratory experiments of interest to space physics

    International Nuclear Information System (INIS)

    The merits and limitations of experiments designed for studies of: 1) solar wind interaction with magnetospheres (terrella experiments) and non-magnetized bodies, 2) neutral lines and sheets, 3) wave-particle interactions, 4) anomalous resistivity, 5) double layers, 6) magnetically field-aligned electric fields in strong magnetic mirrors, and 7) the critical ionization velocity of a plasma moving through natural gas, are discussed. (Auth.)

  12. Laboratory experiments on the electrodynamic behavior of tethers in space

    Science.gov (United States)

    Stenzel, Reiner L.; Urrutia, Manuel J.

    1991-01-01

    The transient current systems between tethered plasmas in a large magnetoplasma are investigated experimentally for extrapolation to electrodynamic tethers in space. The studies measure the perturbed magnetic fields and the current density associated with pulsed currents to electrodes in three-dimensional space and time. The electrodes excite electron whistlers because they produce fields that dominantly couple to electrons, allowing pulsed currents to propagate and disperse as whistler wave packets. The wave packets evolve into force-free, flux-ropelike field configurations, and a whistler 'wedge' is formed in the plasma due to 'eddy' currents caused by insulated tethers with dc currents. Substantial radiation into the whistler mode happens with moving VLF antennas as well as tethers, and the wave spread within the ray cone is the most significant characteristic event. The wave spread widens the current channel, incites current closure, and is also associated with a 'phantom loop' phenomenon.

  13. Embodied Space: a Sensorial Approach to Spatial Experience

    Science.gov (United States)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  14. Still Life. The Experience of Space in Modernist Prose

    DEFF Research Database (Denmark)

    Tygstrup, Frederik

    2007-01-01

    book abstract Modernism has constituted one of the most prominent fields of literary studies for decades. While it was perhaps temporarily overshadowed by postmodernism, recent years have seen a resurgence of interest in modernism on both sides of the Atlantic. These volumes respond to a need for...... philosophical, environmental, urban, and political domains, including issues of race and space, gender and fashion, popular culture and trauma, science and exile, ­all of which have an urgent bearing on the poetics of modernity...

  15. Method for monitoring radioactive cesium concentration in water using cesium adsorption disk and GM survey meter

    International Nuclear Information System (INIS)

    A method for monitoring radioactive cesium concentration in water using a cesium adsorption disk and a GM survey meter has been developed to ascertain whether the water quality meets standards on radiological contaminants in water. In this method, both dissolved and suspended forms of radioactive cesium are collected on the cesium adsorption disk by means of filtration of a water sample. Beta count rate of the disk is converted into radioactivity using a conservative calibration factor obtained here. The present method was applied to monitoring of decontaminated water of an outdoor school swimming pool in Date City after Fukushima Daiichi Nuclear Power Plant accident. (author)

  16. Example of cesium sorption database in natural minerals

    International Nuclear Information System (INIS)

    In the database of the National Institute for Materials Science (MatNavi), the adsorption data of cesium, strontium, and iodine have been published. Among these data, the authors picked up the data of cesium adsorption against natural ores, which were measured and compiled by the authors, graphically expressed them for clarifying the overall trends, and described each mineral’s adsorption characteristics and future challenges. The partition coefficients for the following minerals are compiled: bentonite, acid clay, montmorillonite, beidellite, vermiculite, illite, mordenite, zeolite, etc. Many of the recorded data in MatNavi are the data obtained in the systems without existence of a large amount of competing ions. On the other hand, in the accumulated water at the Fukushima Daiichi Nuclear Power Station, competing ions due to seawater are contained. In the immersion liquid of incineration fly ash and the immersion liquid of plants/vegetation, too, competing ions are considered to be contained. Accumulation of adsorption data under different solution conditions are considered important. In addition, the concentrations of radioactive cesium in decontamination target are lower values by 5-7 orders, compared with the lower limit of 0.01 ppm in the existing data. In face of experiments, the influence of adsorption to containers and filters cannot be neglected. (A.O.)

  17. LOFT L9-1 Experiment Simulation using the SPACE Code

    International Nuclear Information System (INIS)

    SPACE (Safety and Performance Analysis Code for Nuclear Power Plants), for safety analysis and design of a PWR (Pressurized Water Reactor) was developed by Korean Industry. As the first phase, the demo version of the SPACE code was released in March 2010. The code has been verified and improved according to the Verification and Validation (V and V) matrix prepared for the SPACE code as the second phase of the development. In this study, LOFT L9-1 experiment has been simulated using the SPACE code as one aspect of the V and V work. The results from this experiment were compared with tests of the SPACE codes. The Korea nuclear industry has been developing the SPACE code for safety analysis and design of a PWR. The LOFT L9-1 experiment has been simulated for the SPACE code V and V. The results have been compared with those of the experiment. Through the evaluation of LOFT L9-1 experiment using the SPACE code, it is concluded that the SPACE code has a capability to predict the system response caused by a loss-of-feedwater accident

  18. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 104 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  19. MIT-NASA/KSC space life science experiments - A telescience testbed

    Science.gov (United States)

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  20. Cesium and strontium in Black Sea macroalgae

    International Nuclear Information System (INIS)

    The trace level of metals and particularly radioactive ones should be monitored to evaluate the transfer along the trophic chain, assess the risk for biota and can be used for global changes assessment. Plants respond rapidly to all changes in the ecosystem conditions and are widely used as indicators and predictors for changes in hydrology and geology. In this work we represent our successful development and applications of a methodology for monitoring of stable and radioactive strontium and cesium in marine biota (Black Sea algae's). In case of radioactive release they are of high interest. We use ED-XRF, gamma spectrometers and LSC instrumentation and only 0.25 g sample. Obtained results are compared with those of other authors in same regions. The novelty is the connection between the radioactive isotopes and their stable elements in algae in time and space scale. All our samples were collected from Bulgarian Black Sea coast. - Highlights: • An extraction chromatography method for radiochemical separation of Sr and Cs. • Assessment of Sr and Cs accumulation capacity of six Black Sea macroalgae species. • Connection between the isotopes and their stable elements content in algae. • Assessment of Sr and Cs content in ecosystems along the Bulgarian coast

  1. Primary and reciprocal space-time experiments, relativistic reciprocity relations and Einstein's train-embankment thought experiment

    CERN Document Server

    Field, J H

    2008-01-01

    The concepts of primary and reciprocal experiments and base and travelling frames in special relativity are concisely described and applied to several different space-time experiments. These include Einstein's train/embankment thought experiment and a related thought experiment, due to Sartori, involving two trains in parallel motion with different speeds. Spatially separated clocks which are synchronised in their common proper frame are shown to be so in all inertial frames and their spatial separation to be Lorentz invariant. The interpretions given by Einstein and Sartori of their experiments, as well as those given by the present author in previous papers, are shown to be erroneous.

  2. The Plastic Scintillator Detector of the DAMPE space experiment

    Science.gov (United States)

    Sun, Zhiyu

    2016-07-01

    The DArk Matter Explorer (DAMPE) is a satellite based experiment aiming for dark matter search and many other topics astronomy interested. The Plastic Scintillator Detector (PSD) gives DAMPE the ability to measure charge of the crossing particles and separate gamma from electrons, which are necessary for achieving the goals of the experiment. The PSD is composed by 82 scintillator counters and read at both ends by a total of 162 photomultiplier tubes. In this paper, we describe the final design of DAMPE-PSD, the expected performances, and shows some results of the beam test carried on at CERN.

  3. Small craters on the meteoroid and space debris impact experiment

    Science.gov (United States)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  4. NASA uses Eclipse RCP Applications for Experiments on the International Space Station

    Science.gov (United States)

    Cohen, Tamar

    2013-01-01

    Eclipse is going to space for the first time in 2013! The International Space Station (ISS) is used as a site for experiments any software developed as part of these experiments has to comply with extensive and strict user interface guidelines. NASA Ames Research Center's Intelligent Robotics Group is doing 2 sets of experiments, both with astronauts using Eclipse RCP applications to remotely control robots. One experiment will control SPHERES with an Android Smartphone on the ISS the other experiment will control a K10 rover on Earth.

  5. Optical and Scanning Electron Microscopy of the Materials International Space Station Experiment (MISSE) Spacecraft Silicone Experiment

    Science.gov (United States)

    Hung, Ching-cheh; de Groh, Kim K.; Banks, Bruce A.

    2012-01-01

    Under a microscope, atomic oxygen (AO) exposed silicone surfaces are crazed and seen as "islands" separated by numerous crack lines, much analogous to mud-tile cracks. This research characterized and compared the degree of AO degradation of silicones by analyzing optical microscope images of samples exposed to low Earth orbit (LEO) AO as part of the Spacecraft Silicone Experiment. The Spacecraft Silicone Experiment consisted of eight DC 93-500 silicone samples exposed to eight different AO fluence levels (ranged from 1.46 to 8.43 10(exp 21) atoms/sq cm) during two different Materials International Space Station Experiment (MISSE) missions. Image analysis software was used to analyze images taken using a digital camera. To describe the morphological degradation of each AO exposed flight sample, three different parameters were selected and estimated: (1) average area of islands was determined and found to be in the 1000 to 3100 sq mm range; (2) total length of crack lines per unit area of the sample surface were determined and found to be in the range of 27 to 59 mm of crack length per sq mm of sample surface; and (3) the fraction of sample surface area that is occupied by crack lines was determined and found to be in the 25 to 56 percent range. In addition, average crack width can be estimated from crack length and crack area measurements and was calculated to be about 10 mm. Among the parameters studied, the fraction of sample surface area that is occupied by crack lines is believed to be most useful in characterizing the degree of silicone conversion to silicates by AO because its value steadily increases with increasing fluence over the entire fluence range. A series of SEM images from the eight samples exposed to different AO fluences suggest a complex sequence of surface stress due to surface shrinkage and crack formation, followed by re-distribution of stress and shrinking rate on the sample surface. Energy dispersive spectra (EDS) indicated that upon AO

  6. Long Duration Exposure Facility (LDEF) preliminary findings: LEO space effects on the space plasma-voltage drainage experiment

    Science.gov (United States)

    Blakkolb, Brian K.; Yaung, James Y.; Henderson, Kelly A.; Taylor, William W.; Ryan, Lorraine E.

    1992-01-01

    The Space Plasma-High Voltage Drainage Experiment (SP-HVDE) provided a unique opportunity to study long term space environmental effects on materials because it was comprised of two identical experimental trays; one tray located on the ram facing side (D-10), and the other on the wake facing side (B-4) of the LDEF. This configuration allows for the comparison of identical materials exposed to two distinctly different environments. The purpose of this work is to document an assessment of the effects of five and three quarters years of low Earth orbital space exposure on materials comprising the SP-HVDE (experiment no. A0054). The findings of the materials investigation reported focus on atomic oxygen effects, micrometeor and debris impact site documentation, thermal property measurements, and environmentally induced contamination.

  7. Experiments with suspended cells on the Space Shuttle

    Science.gov (United States)

    Morrison, D. R.; Chapes, S. K.; Guikema, J. A.; Spooner, B. S.; Lewis, M. L.

    1992-01-01

    Spaceflight experiments since 1981 have demonstrated that certain cell functions are altered by micro-g. Biophysical models suggest that cell membranes and organelles should not be affected directly by gravity, however, the chemical microenvironment surrounding the cell and molecular transport could be altered by reduced gravity. Most experiments have used suspended live cells in small chambers without stirring or medium exchange. Flight results include increased attachment of anchorage-dependent human cells to collagen coated microcarriers, reduced secretion of growth hormone from pituitary cells, decreased mitogenic response of lymphocytes, increased Interferon-alpha by lymphocytes, increased Interleukin-1 and Tumor Necrosis Factor secretion by macrophages. Related experiments on cells immediately postflight and on procaryotic cells have shown significant changes in secretory capacity, cell proliferation, differentiation and development. Postulated mechanism include altered cell-cell interactions, altered calcium ion transport, effects on cell cytoskeleton, transport of transmitters and interactions with receptors. The discussion includes use of new molecular methods, considerations for cell environmental control and a preview of several experiments planned for the Shuttle and Spacelab flights to study the basic effects of microgravity on cellular physiology and potential interactions of spaceflight with radiation damage and cellular repair mechanisms.

  8. Cesium and strontium ion specific exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  9. Space Flight Effects on Antioxidant Molecules in Dry Tardigrades: The TARDIKISS Experiment

    Directory of Open Access Journals (Sweden)

    Angela Maria Rizzo

    2015-01-01

    Full Text Available The TARDIKISS (Tardigrades in Space experiment was part of the Biokon in Space (BIOKIS payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134 docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE, further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research.

  10. Space flight experience with the Shuttle Orbiter control system

    Science.gov (United States)

    Cox, K. J.; Daly, K. C.; Hattis, P. D.

    1983-01-01

    Experience gained through the Shuttle Orbital Flight Test program has matured the engineering understanding of the Shuttle on-orbit control system. The geneology of the control systems (called digital autopilots, or DAPs, and used by the Shuttle for on-orbit operations) is reviewed, the flight experience gained during the flight test program is examined within the context of preflight analysis and test results, and issues for the operational phase of the Shuttle, including constraints upon both operations and analysis still required to increase confidence in the Shuttle's ability to handle capabilities not experienced during the flight test program are addressed. Two orbital autopilots have resulted from computer memory and time constraints on a flight control system, with many different, flight phase unique requirements. The transition DAP, used for insertion and deorbit, has more active sensors and redundancy but a less complex data processing scheme excluding state estimation with fewer choices of operational mode.

  11. Stable vacuum UV CCD detectors designed for space flight experiments

    Science.gov (United States)

    Socker, Dennis G.; Marchywka, Mike; Taylor, G. C.; Levine, P.; Rios, R.; Shallcross, F.; Hughes, G.

    1993-01-01

    Thinned, backside-illuminated, p-channel CCD images are under development which can exploit the surface potential in VUV applications, yielding enhanced quantum efficiency to wavelengths as short as 1100 A. The current goal is production of large-format, 5-micron pixel imagers for spectrographic and imaging VUV spaceflight experiments. Model predictions of the effect of device design on quantum efficiency, well capacity, and crosstalk are presented for such 5-micron-approaching pixel sizes.

  12. Short-range inverse-square law experiment in space

    Science.gov (United States)

    Paik, H. J.; Moody, M. V.

    2002-01-01

    Newton's inverse-square law is a cornerstone of General Relativity. Its validity has been demonstrated to better than one part in thousand in ranges greater than 1 cm. The range below 1 mm has been left largely unexplored, due to the difficulties associated with designing sensitive short-range experiments. However, the theoretical rationale for testing Newton's law at ranges below 1 mm has become very strong recently.

  13. Space Technology 5 Post-Launch Ground Attitude Estimation Experience

    Science.gov (United States)

    Harman, Richard R.

    2007-01-01

    The Space Technology (ST)-5 satellites were launched March 22, 2006 on a Pegasus XL launch vehicle into a Sun-synchronous orbit. The three micro-satellites which constituted the ST-5 mission were kept in a formation which allowed three successive measurements taken of the Earth s magnetic field in order to study short term fluctuations of the field. The attitude of each satellite was computed on the ground using data from the science grade magnetometer as well as the miniature spinning Sun sensor (MSSS) which was the primary attitude sensor. Attitude and orbit maneuvers were performed using a single axial cold gas thruster. This paper describes the ground attitude estimation process and performance as well as anomaly resolutions.

  14. Effects of acute and chronic experimental contamination on direct cesium 137 uptake by the eel, Anguilla anguilla L

    International Nuclear Information System (INIS)

    This study covers the effects of different types of contamination on direct cesium 137 uptake by the eel. In the first experiment (acute contamination), simulating a waste discharge, the fish were kept in water with a rapidly decreasing cesium 137 activity. In a second experiment (chronic contamination), the water activity increased constantly, simulating increasing waste frequency and activity levels. Irrespective of the type of contamination, radiocesium retention by eels is low (<1% of initial activity); comparable specific activity levels, concentration factors (FC <= 2 after 36 days) and cesium 137 body distribution, were obtained. Therefore, direct cesium 137 uptake by the eel is very low and the water contamination mode alone cannot explain the major concentration factor variations observed in situ

  15. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  16. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  17. T-Rex: A Japanese Space Tether Experiment

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Electrodynamic tether (EDT) thrusters work by virtue of the force a magnetic field exerts on a wire carrying an electrical current. The force, which acts on any charged particle moving through a magnetic field (including the electrons moving in a current-carrying wire), were concisely expressed by Lorentz in 1895 in an equation that now bears his name. The force acts in a direction perpendicular to both the direction of current flow and the magnetic field vector. Electric motors make use of this force: a wire loop in a magnetic field is made to rotate by the torque the Lorentz Force exerts on it due to an alternating current in the loop times so as to keep the torque acting in the same sense. The motion of the loop is transmitted to a shaft, thus providing work. Although the working principle of EDT thrusters is not new, its application to space transportation may be significant. In essence, an EDT thruster is just a clever way of getting an electrical current to flow in a long orbiting wire (the tether) so that the Earth s magnetic field will accelerate the wire and, consequently the payload attached to the wire. The direction of current flow in the tether, either toward or away from the Earth along the local vertical, determines whether the magnetic force will raise or lower the orbit. The bias voltage of a vertically deployed metal tether, which results just from its orbital motion (assumed eastward) through Earth s magnetic field, is positive with respect to the ambient plasma at the top and negative at the bottom. This polarization is due to the action of the Lorentz force on the electrons in the tether. Thus, the natural current flow is the result of negative electrons being attracted to the upper end and then returned to the plasma at the lower end. The magnetic force in this case has a component opposite to the direction of motion, and thus leads to a lowering of the orbit and eventually to re-entry. In this generator mode of operation the Lorentz Force

  18. Removal of cesium from wastewater: A cesium-specific ion exchange resin

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Laboratory (SRL) have applied for a patent for an ion exchange resin that will remove cesium from water. Radioactive cesium-137 is a fission product of nuclear reactor operations. Cesium may enter the water of spent fuel holding basins through defects in fuel cladding. Control of cesium in these basins is desirable to keep personnel exposure to a minimum. Cesium is also present in the waste from reprocessing of defense nuclear reactor fuel. Research has been underway at SRL for over a decade to improve management of high-level reprocessing waste. The current technology separates the waste into soluble and insoluble components. Radioactive constituents are removed from the soluble component stream and combined with the insoluble components, which are then converted to a glass for long-term storage. Cesium is the most radioactive constituent of the soluble components stream. The SRL resin is a resorcinol-formaldehyde condensation polymer highly specific for cesium and is about 10 times more effective in removal of cesium than other ion exchange resins evaluated for use in processing defense nuclear waste. Tests have been run at SRL using both simulated and actual waste streams

  19. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  20. Special relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Raogudimetla, V. S.

    1994-01-01

    There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the

  1. Design and Development of the Observation and Analysis of Smectic Islands in Space Experiment

    Science.gov (United States)

    Hall, Nancy Rabel; Tin, Padetha; Sheehan, C. C.; Stannarius, R.; Trittel, T.; Clark, N.; Maclennan, J.; Glaser, M.; Park, C.

    2012-01-01

    The primary objective of Observation and Analysis of Smectic Islands in Space (OASIS) experiment is to exploit the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics

  2. Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space

    International Nuclear Information System (INIS)

    We present projects for future space missions using new quantum devices based on ultracold atoms. They will enable fundamental physics experiments testing quantum physics, physics beyond the standard model of fundamental particles and interactions, special relativity, gravitation and general relativity

  3. A search for experiments to exploit the space shuttle environment, volume 2

    Science.gov (United States)

    Fenn, J. B.

    1979-01-01

    Institutions and laboratories in India, Japan, and Western Europe which were visited during a search for experiments to exploit the space shuttle environment are described. The facilities and current research interests of the various centers are discussed with particular emphasis given to the Indian Space Research Organization.

  4. The Consolidated Planning and Scheduling System for Space Transportation and Space Station operations - Successful development experience

    Science.gov (United States)

    Hornstein, Rhoda S.; Willoughby, John K.; Gardner, Jo A.; Shinkle, Gerald L.

    1993-01-01

    In 1992, NASA made the decision to evolve a Consolidated Planning System (CPS) by adding the Space Transportation System (STS) requirements to the Space Station Freedom (SSF) planning software. This paper describes this evolutionary process, which began with a series of six-month design-build-test cycles, using a domain-independent architecture and a set of developmental tools known as the Advanced Scheduling Environment. It is shown that, during these tests, the CPS could be used at multiple organizational levels of planning and for integrating schedules from geographically distributed (including international) planning environments. The potential for using the CPS for other planning and scheduling tasks in the SSF program is being currently examined.

  5. Managing fear in public space : young feminists’ intersectional experiences through Participatory Action Research

    OpenAIRE

    Zárate, Maria Rodó de

    2015-01-01

    Introduction In this paper I seek to contribute to feminist geographies of fear by analyzing the ways young feminists in a medium-sized non-metropolitan city of Catalonia manage fear and discomfort in public spaces. Through empirical and analytical methodologies that provide participatory insights to the intersectional and spatial experience of oppression and privilege, I examine their uses and    experiences of public space focusing on the personal and collective strategies they develop to f...

  6. INSPIRE: Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Franzen, K. A.; Garcia, L. N.; Webb, P. A.; Green, J. L.

    2007-12-01

    The INSPIRE Project is a non-profit scientific and educational corporation whose objective is to bring the excitement of observing very low frequency (VLF) natural radio waves to high school students. Underlying this objective is the conviction that science and technology are the underpinnings of our modern society, and that only with an understanding of these disciplines can people make correct decisions in their lives. Since 1989, the INSPIRE Project has provided specially designed radio receiver kits to over 2,500 students and other groups to make observations of signals in the VLF frequency range. These kits provide an innovative and unique opportunity for students to actively gather data that can be used in a basic research project. Natural VLF emissions that can be studied with the INSPIRE receiver kits include sferics, tweeks, whistlers, and chorus, which originate from phenomena such as lightning. These emissions can either come from the local atmospheric environment within a few tens of kilometers of the receiver or from outer space thousands of kilometers from the Earth. VLF emissions are at such low frequencies that they can be received, amplified and turned into sound that we can hear, with each emission producing in a distinctive sound. In 2006 INSPIRE was re-branded and its mission has expanded to developing new partnerships with multiple science projects. Links to magnetospheric physics, astronomy, and meteorology are being identified. This presentation will introduce the INSPIRE project, display the INSPIRE receiver kits, show examples of the types of VLF emissions that can be collected and provide information on scholarship programs being offered.

  7. Chemical forms of radioactive Cs in soils originated from Fukushima Dai-ichi Nuclear Power Plant accident, as studied by extraction experiments

    International Nuclear Information System (INIS)

    We conducted extraction experiments on soil samples contaminated with radioactive cesium originated from the Fukushima Dai-ichi nuclear power plant (FDNPP) accident in Japan in March 2011. The experimental results suggested that the majority of the radioactive cesium deposited on land surface was first adsorbed on exchangeable sites of clay minerals, and eventually it was strongly fixed in interlayer spaces of some 2:1 clay minerals. The experiment revealed that a very small amount of Cs-137 extractable with acetic acid solution existed in the surface soil layer. (author)

  8. Elastic and inelastic scattering of cesium, cesium iodide, and cesium chloride by argon and xenon in the crossed atomic and molecular beams

    International Nuclear Information System (INIS)

    Velocity and angular distributions of cesium atoms and two cesium halide molecules scattered by rare gas atoms have been measured for the following systems at the indicated initial relative collision energies, anti E: Cs + Ar, anti E = 0.94, 1.29, and 1.85 kcal/mole; Cs + Xe, E = 1.15, 1.91, and 3.10 kcal/mole; Csl + Ar, anti E = 1.06, 1.46, and 2.08 kcal/mole; CsI + Ar, anti E = 1.36, 1.63, and 1.94 kcal/mole; CsI + Xe, anti E = 1.52, 2.52, and 4.09 kcal/mole. At the collision energies indicated the atom-atom scattering can only be elastic. Thus the experiments with those systems can be used for apparatus calibration and a standard of comparison for the diatom-atom experiments. The velocity distributions in the diatom-atom systems are analyzed for the relative contributions of elastic and inelastic scattering

  9. Mass spectrometer experiments for the European space probe Giotto

    Science.gov (United States)

    Neumann, G.

    The Particulate Impact Analyzer (PIA) and Neutral Mass Spectrometer (NMS) experiments to be carried on board the Giotto cometary probe are presented. The NMS is designed to determine the chemical composition of gases and ions in the coma of Halley's Comet based on the ue of two spectrometers: an electrostatic parallel-plate analyzer, and a similar analyzer coupled with a magnetic analyzer with double-focusing geometry. The sensor structure consists of a monolithic multi-rib milled body with integral fixation points, with provisions for electromagnetic and thermal isolation, and dust protection. The PIA is intended for the measurement of the physical and chemical characteristics of cometary dust particles. It is based on an instrument comprising an entrance baffle and shutter unit, a target unit at which the dust is ionized, a light flash detector marking the flash of ionization, an acceleration grid sending the ions into the time-of-flight unit, and a multiplier unit for recording the time of flight spectrum. A microprocessor-based electronics system housed in a separate case next to the sensor performs tasks of power supply, signal processing, data processing and flow control.

  10. The space experiment CERASP: Definition of a space-suited radiation source and growth conditions for human cells

    Science.gov (United States)

    Hellweg, Christine E.; Baumstark-Khan, Christa; Spitta, Luis; Thelen, Melanie; Arenz, Andrea; Franz, Markus; Schulze-Varnholt, Dirk; Berger, Thomas; Reitz, Günther

    The combined action of ionizing radiation and microgravity will continue to influence future space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. It has been estimated that on a 3-year mission to Mars about 3% of the bodies' cell nuclei would have been hit by one iron ion with the consequence that nuclear DNA will be heavily damaged. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. DNA repair studies in space on bacteria, yeast cells and human fibroblasts, which were irradiated before, flight, gave contradictory results: from inhibition of repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. The space experiment CERASP (CEllular Responses to RAdiation in SPace) to be performed at the International Space Station (ISS) is aimed to supply basic information on the cellular response in microgravity to radiation applied during flight. It makes use of a recombinant human cell line as reporter for cellular signal transduction modulation by genotoxic environmental conditions. The main biological endpoints under investigation will be gene activation based on enhanced green fluorescent protein (EGFP, originally isolated from the bioluminescent jellyfish Aequorea victoria) expression controlled by a DNA damage-dependent promoter element which reflects the activity of the nuclear factor kappa B (NF- κB) pathway. The NF- κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, anti-apoptosis and tumorgenesis. For radiation exposure during space flight a radiation source has been constructed as damage accumulation by cosmic radiation will certainly be insufficient for analysis. The space experiment specific hardware consists of a specially designed radiation source made up of the β-emitter promethium-147, combined with a

  11. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  12. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Science.gov (United States)

    Alpat, Behcet

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  13. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  14. Space, the final frontier: A critical review of recent experiments performed in microgravity.

    Science.gov (United States)

    Vandenbrink, Joshua P; Kiss, John Z

    2016-02-01

    Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space. PMID:26795156

  15. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Science.gov (United States)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  16. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  17. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    International Nuclear Information System (INIS)

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  18. Experiment on diffuse reflection laser ranging to space debris and data analysis

    International Nuclear Information System (INIS)

    Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm–228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m. (paper)

  19. Experiment on diffuse reflection laser ranging to space debris and data analysis

    Science.gov (United States)

    Sun, Hao; Zhang, Hai-Feng; Zhang, Zhong-Ping; Wu, Bin

    2015-06-01

    Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m. Supported by the National Natural Science Foundation of China.

  20. Experiment of Diffuse Reflection Laser Ranging to Space Debris and Data Analysis

    CERN Document Server

    Sun, Hao; Zhang, ZhongPing; Wu, Bin

    2014-01-01

    Space debris has been posing a serious threat to human space activities and is needed to be measured and cataloged. As a new technology of space target surveillance, the measurement accuracy of DRLR (Diffuse Reflection Laser Ranging) is much higher than that of microwave radar and electro-optical measurement. Based on laser ranging data of space debris from DRLR system collected at SHAO (Shanghai Astronomical Observatory) in March-April 2013, the characteristics and precision of the laser ranging data are analyzed and its applications in OD (Orbit Determination) of space debris are discussed in this paper, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39cm-228cm. When the data is sufficient enough (4 arcs of 3 days), the orbit accuracy of space debris can be up to 50m.

  1. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments

  2. Recovery of cesium ion from the aqueous solution by the electric occlusion using a porous aluminum electrode

    International Nuclear Information System (INIS)

    Using stable isotopic cesium with the concentration that simulated the pollution level around the Fukushima Daiichi Nuclear Power Station, the authors examined the occlusion capacity of a porous aluminum electrode based on a beaker-level experiment. A tested aluminum sample was made of metallic aluminum particles having an average particle diameter of 0.2 mm and a porosity of 50%. A cesium standard solution had 4 ppm of cesium chloride concentration, equivalent to 12.86 GBq/L when converted to radioactive cesium. A platinum anode and a porous aluminum cathode were used in the experiment. With occlusion time and applied voltage increased, cesium concentration decreased, reaching the concentration of trace with the applied voltage of 100 V for 90 min for occlusion, and nearly 0 ppm after 120 min. The occlusion capacity of the porous aluminum electrode was unabated even after 20 times of repetitions, exhibiting a high durability. The elution amount of the occluded cesium was 2.1% through washing, and 0.16% after reverse voltage added, which proved the effectiveness of the porous aluminum electrode. A similar effect was confirmed even in strontium. (A.O.)

  3. Radioactive cesium in Finnish mushrooms

    International Nuclear Information System (INIS)

    Surveillance of radioactive cesium in Finnish mushrooms was started in 1986 at STUK. Results of the surveillance programs carried out in Lapland and other parts of Finland are given in this report. More than 2000 samples of edible mushrooms have been analysed during 1986-2008. The 137Cs detected in the mushrooms mainly originates from the 137Cs deposition due to the accident at the Chernobyl nuclear power plant in 1986. The 137Cs concentrations of mushrooms in the end of 1970s and in the beginning of 1980s varied from some ten to two hundred becquerels per kilogram originating from the nuclear weapon test period. The uneven division of the Chernobyl fallout is seen in the areal variation of 137Cs concentrations of mushrooms, the 137Cs concentrations being about tenfold in the areas with the highest deposition compared to those where the deposition was lowest. After the Chernobyl accident the maximum values in the 137Cs concentrations were reached during 1987-88 among most species of mushrooms. The 137Cs concentrations have decreased slowly, being in 2008 about 40 per cent of the maximum values. The 137Cs concentrations may be tenfold in the mushroom species with high uptake of cesium (Rozites caperatus, Hygrophorus camarophyllus, Lactarius trivialis) compared to the species with low uptake (Albatrellus ovinus, Leccinum sp.) picked in the same area. The 137Cs contents in certain species of commercial mushrooms in Finland still exceed the maximum permitted level, 600 Bq/kg, recommended to be respected when placing wild game, wild berries, wild mushrooms and lake fish on the market (Commission recommendation 2003/274/Euratom). Therefore, the 137Cs concentrations of mushrooms should be measured before placing them on the market in the areas of the highest 137Cs deposition, except for Albatrellus ovinus, Boletus sp. and Cantharellus cibarius. The 137Cs concentrations of common commercial mushroom species, Cantharellus tubaeformis and Craterellus cornucopioides often

  4. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  5. Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of novel potassium cesium iron zirconium phosphate by simple solution method. • Characterization of the compound by various spectroscopic techniques. • Immobilization of cesium into the langbeinite structure with negligible leachability of cesium. • Comparative leachability study of cesium immobilized langbeinite phosphate and sodium zirconium phosphate. - Abstract: A potassium cesium iron zirconium phosphate, KCsFeZrP3O12, was synthesized by simple solution method for the first time. Powder X-ray diffraction analysis confirmed that the compound crystallizes in cubic langbeinite structure (space group: P213) with the cell parameters of a = 10.103 (2) Å and V = 1031 Å3. Fourier transform infrared spectrum showed the stretching and bending vibrational bands of phosphate tetrahedra. Energy dispersive X-ray analysis proved the presence of elements. Leachability of a powder specimen was studied by MCC-5 test for a period of one month. Inductive coupled plasma and atomic absorption spectroscopic results revealed the negligible leaching of cesium. The normalized mass loss of potassium, iron, zirconium and phosphorous were found to be in the order of 10−4–10−3 g/m2, 10−6–10−4 g/m2, 10−5–10−3 g/m2and 10−4–10−3 g/m2 respectively. For comparison, a cesium zirconium phosphate (CsZr2P3O12) with the sodium zirconium phosphate structure was synthesized, and its leach rates of zirconium and phosphorous were comparable to those of the langbeinite phase. The cesium leach rate was negligible for both compounds

  6. Research on decontamination of cesium contaminated soil by electrokinetic process

    International Nuclear Information System (INIS)

    In this research, electrokinetic process was applied for the decontamination of cesium contaminated soil. As a result, about 4.0 times cesium removal was achieved by applying a DC electric field of 80 V/m to comparing zero electric field in treatment for 30 days. Therefore, the electrokinetic process has a possibility to decontamination of cesium contaminated soil. (author)

  7. Leachability of cobalt and cesium from natural and chemically treated zeolites

    International Nuclear Information System (INIS)

    The determination of leachability of radioisotopes of cesium and cobalt from preloaded zeolites in distilled water, base solution and acid solution has been studied. For the experiment, we used natural and chemically treated zeolites. The zeolites before leaching were calcined at different temperatures. (author). 8 refs., 5 figs., 2 tabs

  8. Cesium accumulation by bacterium Thermus sp.TibetanG7: hints for biomineralization of cesiumbearing geyserite in hot springs in Tibet, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bacterium Thermus sp. TibetanG7, isolated from hot springs in Tibet, China, was examined for the ability to accumulate cesium from solutions. Environmental conditions were simulated and the effects of pH, K+, Na+ and K+-regimes were then studied to determine the possible role of the bacterium in the formation of cesium-bearing geyserite around these hot springs. In despite of the inhibition of K+ and Na+, the bacterium Thermus sp. TibetanG7 revealed noticeable accumulation of cesium from solutions, with maximum accumulations of 53.49 and 40.41 μmol Cesium/g cell dry weight in Na+ and K+ inhibition experiments, respectively. The accumulation of cesium by this microorganism is rapid, with 40%―50% accumulated within the first 5 min. K+-deficient cells showed a much higher capacity of cesium accumulation compared with K+-sufficient cells. It is evident that the bacteria within the genus thermus play a significant role in the cesium assembly. The formation of cesium-bearing geyserite is also considered.

  9. Monitoring of radioactive cesium in Kawasaki derived from the Fukushima Daiichi Nuclear Power Plant accident by a sequential leaching method for airborne particulate matter

    International Nuclear Information System (INIS)

    The Fukushima daiichi nuclear power plant (FDNPP) was seriously damaged by the huge earthquake and subsequent tsunami on 11 March 2011, and has released large amounts of radioactive materials into the environment. Since the accident, radioactive cesium originating from the FDNPP accident was detected over a wide range of the northeastern half of Honshu, the main island of Japan, including the Kanto region. The long-term monitoring of the activities of FDNPP-derived radioactive cesium in surface air must provide important knowledge concerning the dispersion processes of radioactive cesium and its supply to the atmosphere. In this study, we focused on airborne particulate matters (APM) collected at Kawasaki city, Kanagawa. The aim of this study was to obtain the time series date of radioactive cesium activities and to characterize the chemical properties of radioactive cesium in the APM. Consequently, we obtained the following information. Until the spring of 2014, both of the FDNPP-derived 134Cs and the 137Cs activities in the APM, which were still detected, decreased to ca. 10-5 times those observed just after the FDNPP accident. Specifically, their activities decreased rapidly until September, 2011, and then their decrease rates slowed down. Sequential leaching experiments revealed that the chemical properties of radioactive cesium in the APM differed from those in soil; significant amounts of radioactive cesium in the APM existed as a water-soluble form, whereas most of the radioactive cesium in soil was insoluble in water. (author)

  10. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  11. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    Science.gov (United States)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  12. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    Science.gov (United States)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  13. Cesium ion uptake by moss (Hypnum cupressiforme)

    International Nuclear Information System (INIS)

    Lower land mosses uptake water and minerals from the atmosphere. They can collect metals polluting the air and radioactive fallout elements so they can be suitable for monitoring of these substances. Cesium ion uptake by Hypnum cupressiforme is studied by a radioactive tracer, 134Cs. The quantity of cesium ion in different celluar locations and the capacity of ion uptake is determined. The total capacity is found to be several times 10-3 mol g-1 and is therefore of the same order of magnitude as the cation exchange capacity of ion exchangers. The kinetics and reversibility of the process is studied as well. (orig.)

  14. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  15. Environmental transfer of radio-cesium

    International Nuclear Information System (INIS)

    A large amount of Cs 134 and 137 were emitted from the destroyed reactors of Fukushima Daiichi Nuclear Power Station and deposited on the soil surface of vast area including forests, fields, and residential areas. The present report explains mainly land transfer behaviors of cesium which deposited on the surface soils, absorbed into soil particles as time passed on and finally became difficult to move from the particles (aging effect). Depth-distribution of radio-cesium in rice paddy and grassland as well as the change over years is presented. Changes with the passage of time of Cs 137 concentrations in leaves of spinach, wormwood, and persimmon are also provided. (S. Ohno)

  16. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  17. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    Science.gov (United States)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  18. LDEF (Prelaunch), S0001 : Space Debris Impact Experiment, Tray F11

    Science.gov (United States)

    1994-01-01

    LDEF (Prelaunch), S0001 : Space Debris Impact Experiment, Tray F11 The Space Debris Impact Experiment consist of two (2) three sixteenth (3/16th) inch thick chromic anodized aluminum panels mounted in a three (3) inch deep peripheral LDEF experiment tray. The side of the panels exposed to the LDEF interior are painted black with Chemglaze Z-306 flat black paint over a Chemglaze 9924 wash primer. The panels are attached to the aluminum tray structure with non-magnetic stainless steel fasteners. The panel coatings, a thin layer of chromic anodize facing out and the Chemglaze Z-306 black paint facing the LDEF interior, contribute significantly to thermal control of the LDEF spacecraft. The photograph shown is a photograph of a spare flight Debris experiment tray and is used as a prototype for descriptive purposes only. An individual photograph of each Debris Experiment tray was not taken prior to installation of the tray on the LDEF.

  19. Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space

    Science.gov (United States)

    Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin

    2014-08-01

    This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA-SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.

  20. Preliminary analysis of WL experiment number 701: Space environment effects on operating fiber optic systems

    Science.gov (United States)

    Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.

    1991-01-01

    A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.

  1. Near room temperature X-ray and Gamma ray spectroscopic detectors for future space experiments

    OpenAIRE

    Yadav, J.S.; Savitri, S.; Malkar, J. P.

    2005-01-01

    New generation Cadmium Telluride (CZT & CdTe) solid state detectors can provide high quantum efficiency with reasonably good energy resolution and can operate at near room temperature; an unique advantage for space experiments. We present here results of our study of small diode detectors as well as large area pixel detectors. Our study is aimed at developing near room temperature hard X-ray spectroscopy detectors for ASTROSAT and other future Indian space science missions.We have studied a S...

  2. Analysis of Fluorinated Polyimides Flown on the Materials International Space Station Experiment

    Science.gov (United States)

    Finckenor, M. M.; Rodman, L.; Farmer, B.

    2015-01-01

    This Technical Memorandum documents the results from the Materials on International Space Station Experiment (MISSE) series involving fluorinated polyimide films analyzed at NASA Marshall Space Flight Center. These films may be used in thermal control, sunshield, solar sail, solar concentrator, and other lightweight polymer film applications. Results include postflight structural integrity, visual observations, determination of atomic oxygen erosion yield, and optical property changes as compared to preflight values.

  3. The service telemetry and control device for space experiment “GRIS”

    Science.gov (United States)

    Glyanenko, A. S.

    2016-02-01

    Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.

  4. The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle

    Science.gov (United States)

    Cipriano, Leonard F.; Ballard, Rodney W.

    1988-01-01

    The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.

  5. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    Science.gov (United States)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  6. Cesium ion exchange using actual waste: Column size considerations

    International Nuclear Information System (INIS)

    It is presently planned to remove cesium from Hanford tank waste supernates and sludge wash solutions using ion exchange. To support the development of a cesium ion exchange process, laboratory experiments produced column breakthrough curves using wastes simulants in 200 mL columns. To verify the validity of the simulant tests, column runs with actual supernatants are being planned. The purpose of these actual waste tests is two-fold. First, the tests will verify that use of the simulant accurately reflects the equilibrium and rate behavior of the resin compared to actual wastes. Batch tests and column tests will be used to compare equilibrium behaviors and rate behaviors, respectively. Second, the tests will assist in clarifying the negative interactions between the actual waste and the ion exchange resin, which cannot be effectively tested with simulant. Such interactions include organic fouling of the resin and salt precipitation in the column. These effects may affect the shape of the column breakthrough curve. The reduction in column size also may change the shape of the curve, making the individual effects even more difficult to sort out. To simplify the evaluation, the changes due to column size must be either understood or eliminated. This report describes the determination of the column size for actual waste testing that best minimizes the effect of scale-down. This evaluation will provide a theoretical basis for the dimensions of the column. Experimental testing is still required before the final decision can be made. This evaluation will be confined to the study of CS-100 and R-F resins with NCAW simulant and to a limited extent DSSF waste simulant. Only the cesium loading phase has been considered

  7. A study of strontium and cesium sorption on granite

    International Nuclear Information System (INIS)

    The diffusion and sorption of cesium and strontium in crushed granite particles is discussed. Sorption experiments have been performed with one granite from Finnsjoen outside Forsmark on the east coast of Sweden and one granite from the Stripa mine in central Sweden. Granite samples have been crushed and screened, and six different particle size fractions from 0.10-0.12 mm to 4-5 mm of each rock have been used in the experiments. The initial concentrations of inactive cesium and strontium were 10-15 ppm. The experimental data indicate that the amount of sorption is dependent not only on the mass of granite particles, but also to some extent on the size of the particles. An attempt has been made to distinguish between sorption on external surfaces and inner surfaces. The amount of external surface adsorption was found to vary from 15-40 % of the total adsorption capacity for the particle size fraction 0.10-0.12 mm to a few percent or less for the largest particles used. (Auth.)

  8. Preliminary analyses of WL experiment No. 701, space environment effects on operating fiber optic systems

    Science.gov (United States)

    Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1992-01-01

    A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.

  9. Traveling-wave tube reliability estimates, life tests, and space flight experience

    Science.gov (United States)

    Lalli, V. R.; Speck, C. E.

    1977-01-01

    Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.

  10. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  11. Thoughts on "Experience of Space in Japan." Implications for Music Therapy

    Directory of Open Access Journals (Sweden)

    Isabelle Mairiaux

    2006-11-01

    Full Text Available This article presents thoughts on the experience of space, developed from a research study I have been doing during two years immersed in a very singular context where the familiar university environment contrasted with the – for me – completely unknown Japanese culture. The research study explains my motivation as well as my theme of the research: "the experience of space." The influence that my situation of being immersed in Japanese culture had on my hypothesis and research process are also developed. The study introduces some aspects of my experience of space in two different contexts: the context of everyday life experiences in Japan and the context of the butoh dance. Each context helped me to discover aspects of the experience of space, and possible implications for the music therapy context are then developed. In the study I sum up some of the discoveries underlining the negative and positive aspects this research process has led to. Finally, I evoke the learning of "humility," which is the dimension of the process most difficult to share in this article. The research study brought up some interesting subjects to investigate more in the future. One important discovery was the interdependency between perception and language (as a part of culture and the way this implies a special attention in the music therapy context. Another interesting remark concerns the concept of boundary, and I argue that the Japanese concept of "Ma" is precious in relation to the therapeutic challenge of approaching this concept with an open mind.

  12. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  13. Anomalous wetting of helium on cesium

    International Nuclear Information System (INIS)

    The authors report studies of the anomalous wetting of a cesium substrate by a liquid helium film by means of the technique of third sound. A hysteretic pre-wetting transition is observed as a function of the amount of helium in the experimental cell. 10 refs., 2 figs

  14. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  15. The blue drama: narratives of the victim's suffering of Cesium-137 radiological event

    International Nuclear Information System (INIS)

    This research presents a dramatic approach to the Cesium-137 Radiological Event. The event, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The ethnography’s output follows a theoretical experiment with the notions of drama and event. In order to better understand the pattern of this event, I analyzed narratives such as romances, arts, photographs, news, documentaries, films, academic bibliography and stories that emerged from the research field. I argue that the narratives politicize the discourses of victimization and the suffering experience. The dramatic form of narratives and symbols concentrates on emotions and promotes the emotional commitment of the subjects on the trial. The drama articulates the relationship between the narratives and the event and creates a tactful space that arouses the recognition of victims through the narrative form and the suffering language. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. (author)

  16. A tentative assessment of cesium 137 direct and indirect transfer rates in a simplified fresh water food chain

    International Nuclear Information System (INIS)

    A comparison was made of the direct transfer of cesium from water to carps and the indirect transfer via the food. In a first experiment on chronic contamination of carps by water, the kinetics and distribution of cesium in the organs of the carps were studied. Equilibrium was not reached on the 56th day, 4% of the initial water activity had been retained by the carps and the concentration factor was below 10. The highest specific activities were found in the transit organs. In a second experiment, the water activity varied by alternating contamination and decontamination. A fluctuating equilibrium was reached on the 22nd day. The concentration factor was of the same order of magnitude than in the previous experiment. Indirect contamination of fish by ingestion of contaminated daphnids was studied in a third experiment. Cesium levels in carps increased with the cumulated activities in meals, and the uptake rate in fish was 4%. Both decorporation and biological half-lives (30-40 days) were independent of the contamination routes. The respective significance of the transfer pathways is discussed taking into account the biomass pyramids to be found in the nature. It is estimated that in a cesium environment, 70% of the carp activity should come from the diet and 30% from the water. The concentration factor would then be 75 instead of 22 when only direct transfer of cesium from water to fish is considered

  17. Enacting identities: children’s narratives on person, place and experience in fixed and hybrid spaces

    OpenAIRE

    Ibrahim, Nayr

    2016-01-01

    Where adults go, children follow. The reality of a globalized, interconnected world, characterised by the mobility of people, goods and knowledge, across physical and virtual spaces and time, has had a significant impact on children’s early experiences of language, literacy and identity. Children are not peripheral to, but constitute an integral part of these transnational, translocal experiences. Consequently, they learn to function in diverse language contact situations from birth or from a...

  18. Race Has Always Mattered: An Intergeneration Look at Race, Space, Place, and Educational Experiences of Blacks

    OpenAIRE

    Yull, Denise G.

    2014-01-01

    Within school settings race continues to be one of the most formidable obstacles for Black children in the United States (US) school system. This paper expands the discussions of race in education by exploring how the social links among race, space, and place provide a lens for understanding the persistence of racism in the educational experiences of Black children. This paper examines how differences in a rural versus urban geographical location influence a student’s experience with race, ra...

  19. Improvement of cesium retention in uranium dioxide by additional phases; Amelioration de la retention du cesium dans le dioxyde d`uranium au moyen de phases exogenes

    Energy Technology Data Exchange (ETDEWEB)

    Gamaury Dubois, S.

    1995-09-19

    The objective of this study is to improve the cesium retention in nuclear fuel. A bibliographic survey indicates that cesium is rapidly released from uranium dioxide in an accident condition. At temperatures higher than 1500 deg C or in oxidising conditions, our experiments show the difficulty of maintaining cesium inside simulated fuel. Two ternary systems are potentially interesting for the retention of cesium and to reduce the kinetics of release from the fuel: Cs{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} et Cs{sub 2}O-ZrO{sub 2}-SO{sub 2}. The compounds CsAISi{sub 2}O{sub 6} and Cs{sub 2}ZrSi{sub 6}O{sub 15} were studied from 1200 deg C to 2000 deg C by thermogravimetric analysis. The volumetric diffusion coefficients of cesium in these structures, in solid state as well as in liquid one, were measured. A fuel was sintered with (Al{sub 2}O{sub 3} + SiO{sub 2}) or (ZrO{sub 2} + SiO{sub 2}) and the intergranular phase was characterized. In the presence of (Al{sub 2}O{sub 3} + SiO{sub 2}), the sintering is realized at 1610 deg C in H{sub 2}. It is a liquid phase sintering. On the other end, with (ZrO{sub 2} + SiO{sub 2}), the sintering is a low temperature one in oxidising atmosphere. Finally, cesium containing simulated fuels were produced with these additives. According to the effective diffusion coefficients that were measured, the additives improved the retention of cesium. We have predicted the improvement that could be hoped for in a nuclear reactor, depending on the dispersion of the intergranular additives, the temperature and the degree of oxidation of the UO{sub 2+x}. We wait for a factor of 2 for x=0 and more than 8 for x=0.05, up to 2000 deg C. (author). 148 refs., 122 figs., 34 tabs.

  20. Our experience in the evaluation of the thermal comfort during the space flight and in the simulated space environment.

    Science.gov (United States)

    Novak, L

    1991-01-01

    The paper presents the results of the mathematical modelling the effects of hypogravity on the heat output by the spontaneous convection. The theoretical considerations were completed by the experiments "HEAT EXCHANGE 1" performed on the biosatellite "KOSMOS 936". In the second experiment "HEAT EXCHANGE 2" accomplished on the board of the space laboratory "SALYUT 6" was studied the effect of the microgravity on the thermal state of a man during the space flight. Direct measurement in weightlessness prowed the capacity of the developed electric dynamic katathermometer to check directly the effect of the microgravity on the heat output by the spontaneous convection. The role of the heat partition impairment's in man as by the microgravity, so by the inadequate forced convection are clearly expressed in changes of the skin temperature and the subjective feeling of the cosmonaut's thermal comfort. The experimental extension of the elaborated methods for the flexible adjustment of the thermal environment to the actual physiological needs of man and suggestions for the further investigation are outlined. PMID:11537122

  1. Assessment of the KAERI 6*6 reflood experiment using the SPACE code

    International Nuclear Information System (INIS)

    Nuclear industries in Korea are developing the nuclear safety analysis code named SPACE (Safety and Performance Analysis Code) which is based on a multi-dimensional, two-fluid, three-field model for a licensing application of pressurized water reactors. A reflood heat transfer phenomena can be predicted with using a general wall heat transfer model or a separate reflood heat transfer model of the SPACE code based on a user option. The reflood heat transfer package takes into account the two-dimensional heat conduction effects near the quench fronts. This paper briefly introduces the heat transfer models of the SPACE code regarding the reflood heat transfer phenomena, and the preliminary assessment results against KAERI 6*6 reflood heat transfer experiments using the general film boiling and the reflood heat transfer models. The objectives of these assessments are to examine the preliminary prediction capabilities of the SPACE code against the reflood phenomena, and to suggest future directions for improvement. Both the general wall heat transfer and the reflood heat transfer models of the SPACE code predicts reasonably the wall temperature behavior and quenching time. However, for a high reflooding velocity, the SPACE code showed slightly earlier quenching than the experiment because of a faster water accumulation in the test section. Thus, physical models such as droplet entrainment, interfacial drag, and droplet diameter should be checked and improved for the high flooding rates. (authors)

  2. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  3. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    International Nuclear Information System (INIS)

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy's Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite trademark CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration

  4. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Science.gov (United States)

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  5. Thermal design, analysis, and testing of the CETA Space Shuttle Flight Experiment

    Science.gov (United States)

    Witsil, Amy K.; Foss, Richard A.

    1990-01-01

    Attention is given to the Crew and Equipment Translation Aid (CETA) Space Shuttle flight experiment designed to demonstrate techniques and equipment for propelling and restraining crew during EVA. Emphasis is placed on the thermal analysis of the CETA hardware, including thermal design trade-offs, modeling assumptions, temperature predictions, and testing activities.

  6. Students' Experience of Problem-Based Learning in Virtual Space

    Science.gov (United States)

    Gibbings, Peter; Lidstone, John; Bruce, Christine

    2015-01-01

    This paper reports outcomes of a study focused on discovering qualitatively different ways students experience problem-based learning in virtual space. A well-accepted and documented qualitative research method was adopted for this study. Five qualitatively different conceptions are described, each revealing characteristics of increasingly complex…

  7. The large area crop inventory experiment: An experiment to demonstrate how space-age technology can contribute to solving critical problems here on earth

    Science.gov (United States)

    1977-01-01

    The large area crop inventory experiment is being developed to predict crop production through satellite photographs. This experiment demonstrates how space age technology can contribute to solving practical problems of agriculture management.

  8. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Science.gov (United States)

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  9. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  10. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  11. The MicroBooNE Experiment and the Impact of Space Charge Effects

    CERN Document Server

    Mooney, Michael

    2015-01-01

    MicroBooNE is an experiment designed to both probe neutrino physics phenomena and develop the LArTPC (Liquid Argon Time Projection Chamber) detector technology. The MicroBooNE experiment, which began taking data this year, is the first large LArTPC detector in the U.S. This experiment is the beginning of a path of detectors (both on the surface and underground) envisioned for the U.S. SBL (Short-BaseLine) and LBL (Long-BaseLine) programs. In order to interpret the data from the experiments on the surface, the impact of space charge effects must be simulated and calibrated. The space charge effect is the build-up of slow-moving positive ions in a detector due to, for instance, ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors. The LArTPC utilized in the MicroBooNE experiment is expected to be modestly impacted from the space charge effect, with the e...

  12. The Komplast Experiment: Space Environmental Effects after 12 Years in LEO (and Counting)

    Science.gov (United States)

    Golden, J. L.; Shaevich, S.; Aleksandrov, N. G.; Shumov, A. E.; Novikov, L. S.; Alred, J. A.; Shindo, D. J.; Kravchenko, M.

    2014-01-01

    The Komplast materials experiment was designed by the Khrunichev Space Center, together with other Russian scientific institutes, and has been carried out by Mission Control Moscow since 1998. The purpose is to study the effect of the low earth orbit (LEO) environment on exposed samples of various spacecraft materials. The Komplast experiment began with the launch of the first International Space Station (ISS) module on November 20, 1998. Two of eight experiment panels were retrieved during Russian extravehicular activity in February 2011 after 12 years of LEO exposure, and were subsequently returned to Earth by Space Shuttle "Discovery" on the STS-133/ULF-5 mission. The retrieved panels contained an experiment to detect micrometeoroid and orbital debris (MMOD) impacts, radiation sensors, a temperature sensor, several pieces of electrical cable, both carbon composite and adhesive-bonded samples, and many samples made from elastomeric and fluoroplastic materials. Our investigation is complete and a summary of the results obtained from this uniquely long-duration exposure experiment will be presented.

  13. MICROGRAVITY EXPERIMENTS OF TWO-PHASE FLOW PATTERNS ABOARD MIR SPACE STATION

    Institute of Scientific and Technical Information of China (English)

    赵建福; 解京昌; 林海; 胡文瑞; A.V. Ivanov; A.Yu. Belyaev

    2001-01-01

    A first experimental study on two-phase flow patterns at a long-term,steady microgravity condition was conducted on board the Russian Space Station "MIR" in August 1999. Carbogal and air are used as the liquid and the gas phase,respectively. Bubble, slug, slug-annular transitional, and annular flows are observed.A new region of annular flow with lower liquid superficial velocity is discovered,and the region of the slug-annular transitionalfiow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase flow patterns in the present experiments are discussed.

  14. The role of integral experiments and nuclear cross section evaluations in space nuclear reactor design

    International Nuclear Information System (INIS)

    The importance of the nuclear and neutronic properties of candidate space reactor materials to the design process has been acknowledged as has been the use of benchmark reactor physics experiments to verify and qualify analytical tools used in design, safety, and performance evaluation. Since June 1966, the Cross Section Evaluation Working Group (CSEWG) has acted as an interagency forum for the assessment and evaluation of nuclear reaction data used in the nuclear design process. CSEWG data testing has involved the specification and calculation of benchmark experiments which are used widely for commercial reactor design and safety analysis. These benchmark experiments preceded the issuance oflthe industry standards for acceptance, but the benchmarks exceed the minimum acceptance criteria for such data. Thus, a starting place has been provided in assuring the accuracy and uncertainty of nuclear data important to space reactor applications. (FI)

  15. Experience with the Hubble Space Telescope: 20 years of an archetype

    CERN Document Server

    Lallo, Matthew

    2012-01-01

    The Hubble Space Telescope's mission is summarized, with special emphasis placed on the Space Telescope Science Institute's unique experience with Hubble's behavior as an astronomical telescope in the environment of low earth orbit for over two decades. Historical context and background are given, and the project's early scientific expectations are described. A general overview of the spacecraft is followed by a more detailed look at the optical design, both as intended and as built. Basic characteristics of the complete complement of science instruments are also summarized. Experience with the telescope on-orbit is reviewed, starting with the major initial problems, solutions, human servicing missions, and the associated expansion of the observatory's capabilities over this time. Specific attention is then given to understanding Hubble's optical quality and pointing/jitter performance, two fundamental characteristics of a telescope. Experience with-and the important mitigation of-radiation damage and contami...

  16. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  17. Replacing the Singlet Spinor of the EPR-B Experiment in the Configuration Space with Two Single-Particle Spinors in Physical Space

    Science.gov (United States)

    Gondran, Michel; Gondran, Alexandre

    2016-04-01

    Recently, for spinless non-relativistic particles, Norsen (Found Phys 40:1858-1884, 2010) and Norsen et al. (Synthese 192:3125-3151, 2015) show that in the de Broglie-Bohm interpretation it is possible to replace the wave function in the configuration space by single-particle wave functions in physical space. In this paper, we show that this replacment of the wave function in the configuration space by single-particle functions in the 3D-space is also possible for particles with spin, in particular for the particles of the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen experiment.

  18. Challenges and experiences of a participative green space development in Budapest-Józsefváros

    Directory of Open Access Journals (Sweden)

    Attila Csaba Kondor

    2008-01-01

    Full Text Available This article is an attempt to present the theoretical and practical backgrounds of a participative green space development in Hungary. The renewed green space, Mátyás square is located in District VIII of Budapest, known as Józsefváros. The neighbourhood of Mátyás square had a very negative image, neglected residential areas extended into the heart of the district suffered by different social problems. The local government of Józsefváros elaborated the so called Magdolna Quarter Programme, that contains the details of the social rehabilitation of surroundings of Mátyás square. In frame of this programme – co-financed by EU through GreenKeys Project – the square has been renewed, a collaborative and participative green space development has been fulfilled. The authors were engaged in this model programme, they attempt to summarize briefly the experiences of this unique project of Budapest. The local residents were successfully involved into the planning and the implementation of the project. The participation was considerably efficient, however the experience shows that a participative project may be shorter than the project leaders thought. As a result of this activities the Urban Green Space Strategy of Józsefváros and a computer program for monitoring of green spaces were compiled as well.

  19. Intercomparison of luminescence detectors for space radiation dosimetry within Proton-ICCHIBAN experiments

    Science.gov (United States)

    Uchihori, Yukio; Ploc, Ondrej; Yasuda, Nakahiro; Berger, Thomas; Hajek, Michael; Kodaira, Satoshi; Benton, Eric; Ambrozova, Iva; Kitamura, Hisashi

    2012-07-01

    Luminescence detectors for space radiation dosimetry are frequently used to estimate personal and environmental doses in the International Space Station and other space vehicles. Detector responses for cosmic rays and their secondaries were investigated for a long time and it is well-known that luminescence detectors have dependencies of response on LET (Linear Energy Transfer). Some of luminescence detectors show over-response to gamma rays (used for routine calibration) and others have similar responses to gamma rays. But, because of lack of sufficient and reliable calibration data in the low LET region (about 1 keV/μm), it is the responses of these detectors at LET is poorly known. Protons make up the dominant portion of the fluence from space radiation, so the LET region corresponding to energetic protons must be characterized very well. For that purpose, calibration and intercomparison experiments were performed using relatively low energy (30 to 80 MeV) proton beams at the National Institute of Radiological Sciences, Chiba, Japan. In this paper, the results of these intercomparison experiments, including high energy protons and light ions, are reported and illustrate the response of luminescence detectors in the low LET region. This research will help improve our understanding of space dosimeters and reliable dose measurement for astronauts and cosmonauts in low earth orbit.

  20. Prospects for ultrahigh-energy particle observation based on the lunar orbital LORD space experiment

    Science.gov (United States)

    Ryabov, V. A.; Chechin, V. A.; Gusev, G. A.; Maung, K. T.

    2016-08-01

    The problem of searching for highest-energy cosmic rays and neutrinos in the Universe is reviewed. Possibilities for using the radio method for detecting particles of energies above the GZK cut-off are analyzed. The method is based on the registration of coherent radio emission produced by cascades of most energetic particles in radio-transparent lunar regolith. The Luna-Resurs Orbiter space mission to be launched in the near future (2020) involves the Lunar Orbital Radio Detector (LORD). The design of the LORD space instrument and its scientific potentialities for registration of low-intense cosmic ray particle fluxes of energies above the GZK cut-off up to 1024eV are discussed. The designed LORD module (including the antenna, amplification, and data-acquisition systems) now is under construction. Exposure and capabilities of the LORD space experiment for detection of ultrahigh-energy cosmic rays and neutrinos have been compared with those for well-known current and proposed experiments. The LORD space experiment will make it possible to obtain important information on the highest-energy particles in the Universe, to verify modern models for the origin and the propagation of ultrahigh-energy cosmic rays and neutrinos.

  1. The Impact of Space Experiments on our Knowledge of the Physics of the Universe

    Science.gov (United States)

    Giovannelli, Franco; Sabau-Graziati, Lola

    2004-05-01

    With the advent of space experiments it was demonstrated that cosmic sources emit energy practically across all the electromagnetic spectrum via different physical processes. Several physical quantities give witness to these processes which usually are not stationary; those physical observable quantities are then generally variable. Therefore simultaneous multifrequency observations are strictly necessary in order to understand the actual behaviour of cosmic sources. Space experiments have opened practically all the electromagnetic windows on the Universe. A discussion of the most important results coming from multifrequency photonic astrophysics experiments will provide new inputs for the advance of the knowledge of the physics, very often in its more extreme conditions. A multitude of high quality data across practically the whole electromagnetic spectrum came at the scientific community's disposal a few years after the beginning of the Space Era. With these data we are attempting to explain the physics governing the Universe and, moreover, its origin, which has been and still is a matter of the greatest curiosity for humanity. In this paper we will try to describe the last steps of the investigation born with the advent of space experiments, to note upon the most important results and open problems still existing, and to comment upon the perspectives we can reasonably expect. Once the idea of this paper was well accepted by ourselves, we had the problem of how to plan the exposition. Indeed, the exposition of the results can be made in different ways, following several points of view, according to: - a division in diffuse and discrete sources; - different classes of cosmic sources; - different spectral ranges, which implies in turn a sub-classification in accordance with different techniques of observations; - different physical emission mechanisms of electromagnetic radiation; - different vehicles used for launching the experiments (aircraft, balloons, rockets

  2. Perception, experience and the use of public urban spaces by residents of urban neighbourhoods

    Directory of Open Access Journals (Sweden)

    Nataša Bratina Jurkovič

    2014-06-01

    Full Text Available In cities, public green open spaces offer residents a potentially better quality of life. The behavioural patterns by which people experience and use these spaces is therefore a valuable source of information for spatial planning. Indeed, studying how these spaces are used has also shown a significant difference between the intentions of planners and users. Only the frequency of visits to these public green spaces ultimately testifies to their appropriate and successful planning. Based on empirical research conducted in a residential area of Ljubljana, this article addresses the significance and methods of obtaining information on the experience and use of urban open spaces by residents of that neighbourhood. The article identifies factors (that could also be used by planners that significantly impact satisfaction levels among the intended users of the neighbourhood. The focus group method and socio spatial schema method were used, based on the assumption that a multi method approach provides more accurate and reliable information that is verifiable, and therefore more useful in developing planning policies. According to the research findings, residents perceive their “neighbourhood” to be the area around their home in which they know each other and socialise with neighbours. The factors that trigger a sense of satisfaction with their neighbourhood are well maintained green areas in the vicinity of their home, parks with trees that provide spaces for a variety of activities, tree lined streets, green areas connected into a system, the opportunity to use these areas for recreation and sports, and street furniture for rest or play. The spatial elements that hinder the use of such open spaces are, in particular, busy streets, unprotected pedestrian crossings, large garage areas and car parking.

  3. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    Institute of Scientific and Technical Information of China (English)

    Behcet ALPAT

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91)with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998.The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module inearly 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches forthe antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the im-proved physics capabilities of AMS02 on ISS.

  4. The Sileye--Alteino experiment on board the International Space Station

    International Nuclear Information System (INIS)

    The experiment Sileye-3/Alteino was placed on board the International Space Station on 27 April 2002. The instrument is constituted by a cosmic ray silicon detector and an electroencephalograph. The main scientific aims include the investigation of the Light Flash phenomenon, the study of astronaut brain activity in space when subject to cosmic rays, the measurement of the radiation environment and the nuclear abundances inside the ISS. The instrument cosmic ray detector was active for 130 hours. In addition 6 astronaut Light Flash observation sessions were held, resulting in the observation of this phenomenon on the ISS

  5. Students Pave Way for First Microgravity Experiments on International Space Station

    Science.gov (United States)

    1999-01-01

    A Memphis student working at the University of Alabama in Huntsville prepares samples for the first protein crystal growth experiments plarned to be performed aboard the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  6. Student Pave Way for First Microgravity Experiments on International Space Station

    Science.gov (United States)

    1999-01-01

    Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  7. Experience from the Student Programme REXUS/BEXUS: A Stepping Stone to a Space Career

    Science.gov (United States)

    Berquand, A.

    2015-09-01

    The aim of this paper is to give an inside view to the REXUS/BEXUS programme from the perspective of a student who has been involved in the project. Each year, the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), in cooperation with the European Space Agency (ESA), offer the opportunity to European University Students to fly an experiment on board sounding rockets or stratospheric balloons in the frame of the REXUS/BEXUS programme. From December 2012 to May 2014 a team of master students from KTH, the Royal Institute of Technology, worked on ISAAC project, an atmospheric experiment launched on board REXUS 15. The author was part of this student team and was involved in the whole process of the ISAAC project from design building and testing phases to the launch campaign and results analysis. The points raised in this article were presented on the occasion of a keynote speech during the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, in Tromsø (Norway) from the 7th to the 12th ofJune 2015. The aim of this presentation was to demonstrate the benefits of hands-on Education programme at University level. In addition to the research opportunities, future space engineers and scientists can profit from a first practical experience under the supervision of experimented experts. The results of the ISAAC project were also presented in the frame of this conference [1].

  8. Sorption and desorption of cesium on rapakivi granite and its minerals

    International Nuclear Information System (INIS)

    Batch sorption experiments of cesium were performed for rapakivi granite and its main minerals, and also for some fracture minerals. The main minerals quartz, potassium feldspar, plagioclase, biotite and hornblende were magnetically separated from crushed rapakivi granite. The fracture minerals were chlorite, dolomite and kaolinite. Sorption was studied in fresh and saline reference waters containing cesium in the range of 10-8 to 10-3 mol/l. The distribution ratios for rapakivi granite generally decreased with an increasing Cs concentration and an increasing ionic strength. For fresh rapakivi granite, the sorption behaviour was rather complex in both fresh and saline reference waters, being complex for the other alteration stages only in saline water. Sorption increased unexpectedly when the initial cesium concentration was raised to 10-5 - 10-4 mol/l. The sorption on rapakivi granite was non-linear, especially in saline water. Sorption was reversible for rapakivi granite. The sorption on the minerals proved to be very non-linear, especially on biotite. Sorption was also reversible for biotite and kaolinite. For the other minerals, sorption was irreversible to some degree. As to the sorption of cesium investigated by studying thin sections of rapakivi granite and their autoradiograms, the most dominating mineral was biotite. The water analyses made during the sorption experiment revealed the exchange of potassium and cesium. The corresponding changes were difficult to detect in saline water. Calculation of the Rd values for the rock, based on the Rd values of minerals and the portions of minerals in the rock, yielded smaller distribution ratios than the values determined for the rock. (orig.)

  9. The Effect of Pressure and Organic Constituents on the Cesium Ion Exchange Performance of IONSIV IE-911

    International Nuclear Information System (INIS)

    capacity or slower cesium sorption rate in these limited-duration batch contact tests as a result of pretreatment do not necessarily imply reduced dynamic performance in a flowing ion-exchange application. The experiments that provided the bases for the currently proposed facility design used caustic-pretreated IE-911. Another report will assess whether the presence of the organic compounds in the waste solution impeded column performance

  10. Cesium Sorption from Concentrated Acidic Tank Wastes Using Ammonium Molybdophosphate-polyacrylonitrile Composite Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen; Mann, Nicholas Robert; Tranter, Troy Joseph; Sebesta, F.; John, J.; Motl, A.,

    2002-10-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogrovimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 °C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions.

  11. Dual cesium and rubidium atomic fountain with a 10-16 level accuracy and applications

    International Nuclear Information System (INIS)

    Atomic fountains are the most accomplished development of the atomic clocks based on the cesium atom whose hyperfine resonance defines the SI second since 1967. Today these systems are among those which realize the second with the best accuracy. We present the last developments of the cold cesium and rubidium atom dual fountain experiment at LNE-SYRTE. This unique dual setup would allow to obtain an outstanding resolution in fundamental physics tests based on atomic transition frequency comparisons. In order to enable operation with both atomic species simultaneously, we designed, tested and implemented on the fountain new collimators which combine the laser lights corresponding to each atom. By comparing our rubidium fountain to another cesium fountain over a decade, we performed a test of the stability of the fine structure constant at the level of 5 * 10-16 per year. We carried on the work on the clock accuracy and we focused on the phase gradients effects in the interrogation cavity and on the microwave leakage. The fountain accuracy has been evaluated to 4 * 10-16 for the cesium clock and to 5 * 10-16 for the refurbished rubidium clock. As a powerful instrument of metrology, our fountain was implicated in many clock comparisons and contributed many times to calibrate the International Atomic Time. Furthermore, we used the fountain to perform a new test of Lorentz local invariance. (author)

  12. Separation of cesium-137 from uranium fission products via a NeoflonR column supporting tetraphenylboron

    International Nuclear Information System (INIS)

    Cesium is a member of the Group I alkali metals, very reactive earth metals that react vigorously with both air and water. The chemistry of cesium is much like the chemistry of neighboring elements on the periodic table, potassium and rubidium. This close relation creates many problems in plant-life exposed to cesium because it is so easily confused for potassium, an essential nutrient to plants. Radioactive 134Cs and 137Cs are also chemically akin to potassium and stable cesium. Uptake of these radioactive isotopes from groundwater by plant-life destroys the plant-life and can potentially expose humans to the radioactive affects of 134Cs and 137Cs. Much experimental work has been focused on the separation of 137Cs from uranium fission products. In previous experimental work performed a column consisting of Kel-F supporting tetraphenylboron (TPB) was utilized to separate 137Cs from uranium fission products. It is of interest at this time to attempt the separation of 134Cs from 0.01M EDTA using the same method and Neoflon in the place of Kel-F as the inert support. The results of this experiment give a separation efficiency of 88% and show a linear relationship between the column bed length and the separation efficiency obtained. (author)

  13. Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hengxuan; Zhao, Xuan, E-mail: zhxinet@tsinghua.edu.cn; Wei, Jiying; Li, Fuzhi

    2014-08-15

    Highlights: • A novel pathway of synthesizing magnetic hexacyanoferrate material was developed. • The synthesized material can offer a high capacity for sorption of cesium. • The material can offer a fast removal of cesium in kinetic performance. • The fine M-PTH particle can be easily separated from wastewater for recirculation. - Abstract: The rapid development of the nuclear power plant in China leads to increasing attention to the treatment of low-level radioactive wastewater (LLRW). One of possibilities is the application of inorganic adsorbent like potassium titanium hexacyanoferrate (PTH), which can exhibit the effective adsorption of cesium. In this paper, the PTH material was optimized by means of being loaded on magnetite substrate. The synthesized material (magnetic PTH, M-PTH), with a particle size of less than 100 nm, can offer a high capacity and favorable kinetic performance, however, without difficulties of separation from the LLRW due to its magnetic characterizations. The batch experiments demonstrate that cesium sorption isotherm of M-PTH coincide well with Langmuir model. The calculated capacity amounts to 0.517 mmol/g, approximately 1.5 times the capacity of zeolite materials. The sorption process follows the pseudo-second-order sorption model. In the initial phase the rate-controlling step is intraparticle diffusion. With the Cs accumulation on the particle surface, external diffusion performs an important role together with intraparticle diffusion.

  14. Leaching of cesium and uranium from spent PWR fuel in the gel-state clays

    International Nuclear Information System (INIS)

    The amounts of cesium and uranium released from crushed spent PWR fuel in the gel-state clays with a few ml of supernatant at hot cell temperature under Ar-atmosphere have been measured. The fractions of cesium dissolved from the fuel for 873 days were 0.29 and 0.25% in Boom clay/Boom-clay water and Ca-bentonite/synthetic granitic groundwater, respectively. These cesium fractions were very close to the gap inventory of cesium, which was determined to be around 0.30% in the previous experiment. The fraction of uranium released up to 193 days in the Boom clay media was 0.011% and this fraction has been retained until 873 days. Such this phenomenon was also obtained in the Ca-bentonite media even though the released fraction was higher than that in Boom clay. The increase of less than 0.001% in the dissolved uranium fraction between 193 and 873 days suggests that the long-term leach rate of uranium from spent fuel would be much less than 24 μg·m-2·day-1. (author)

  15. Strontium-90 and cesium-137 in milk

    International Nuclear Information System (INIS)

    The milk samples have been collected from 30 prefectures by prefectural public health laboratories and institutes (raw milk: 4 times per year for the report to WHO, and raw and city milk: 2 times per year), and analysed for strontium-90 and cesium-137 content at Japan Chemical Analysis Center. Collected samples were the raw milk and the city ones for the producing districts and the consuming ones, respectively. Three liters of fresh milk were carbonized in each prefectural public health laboratories and institutes, and then it was asked at Japan Chemical Analysis Center. The ask to which both some carriers and hydrochloric acid were added, was destroyed under heating. The nuclides was dissolved into hydrochloric acid and filtrated, after it was added with nitric acid and heated to dryness. The filtrate was radiochemically analysed for strontium-90 and cesium-137 using the method recommended by Science and Technology Agency. (author)

  16. Cesium stress and adaptation in pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Industrialization and acid rain have led to a marked increment on the bioavailability of numerous metals. These metallic pollutants pose a serious threat to the ecosystem due to their ability to interact negatively with living organisms. Thus, considerable effort has been directed towards the development of environmentally-friendly technologies tailored to the management of metal wastes. As microbes are known to adapt to most environmental stresses, they constitute organisms of choice in the study of molecular adaptation processes. The adaptive features may be subsequently engineered for biotechnological applications. Cesium, a monovalent metal with chemical similarities to potassium but no know essential biological function has become a cause of environmental concern owing to its accidental release from the Chernobyl nuclear accident. This study examines the impact of cesium on the soil microbe Pseudomonas fluorescensts, and discusses the possibilities of its use in management of this nuclear waste. 15 refs., 3 figs

  17. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Two kinds of cesium uranates, Cs2UO4 and Cs2U2O7, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U3O8 and Cs2CO3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs2UO4 and Cs2U2O7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs2UO4 and Cs2U2O7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  18. Structural, thermal behaviour and vibrational study of a new mixed cesium-ammonium tellurate

    Indian Academy of Sciences (India)

    Wafa Ben Aribia; Makki Abdelmouleh; Van Der Lee; Ahlem Kabadou

    2012-03-01

    Synthesis, crystal structure, thermal characterization, FTIR and Raman measurements are given for a new mixed compound cesium-ammonium tellurate. X-ray study showed that the [Cs0.92(NH4)0.08]2TeCl4Br2 compound crystallizes in the tetragonal space group P4/mnc, with a = 7.452 (1) Å, c = 10.544 (3) Å and Z = 2. The refinement converged at room temperature to = 0.093 and = 0.076. The structure is considered as isolated octahedral TeCl4Br$^{2−}_{2}$. These anions show a 4° rotation around the fourfold axis against the cubic arrangement of the K2PtCI6 type structure. The monovalent cations (Cs+/NH$^{+}_{4}$) are located between the octahedra ensuring the stability of the structure by ionic and hydrogen bonding contacts: Cs…Cl/Br and N-H$\\ldots\\ldots$Cl/Br. A DTA/TGA experiment at high temperature reveals one endothermic peak at 780K for this compound. At low temperature a transition from phase I to phase II was detected at 213K by DSC. This transition, confirmed by Raman analysis, can be attributed to an order-disorder phase transition.

  19. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  20. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    International Nuclear Information System (INIS)

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad

  1. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Stek, M. Jr.; Minard, P.; Cruess, D.F.

    1984-06-01

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad.

  2. Sorption of cesium 137 by steel from sodium melt

    International Nuclear Information System (INIS)

    Sorption of cesium-137 radionuclide by Kh18N10T steel from sodium melt at different temperatures (150-450 deg C) has been studied. Equilibrium coefficients of cesium distribution between sodium and steel are determined, which depend on the conditions of sorption realization, such as cesium concentration in sodium melt, the content of oxygen admixture in sodium and the state of sorbing surface

  3. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  4. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134Cs+137Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134Cs+137Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  5. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  6. Materials on the International Space Station-forward technology solar cell experiment

    International Nuclear Information System (INIS)

    This paper describes the forward technology solar cell experiment (FTSCE), which is a space experiment built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA) as part of the materials on the International Space Station (MISSE) program. The goal is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2 ft x 2 ft x 4 in. metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally 1 year, the PEC will be retrieved and returned to Earth. This paper presents the design of the experiment, the electrical data measured on the experiment solar cells, and the results of environmental testing of the system

  7. Transport calculations and accelerator experiments needed for radiation risk assessment in space

    International Nuclear Information System (INIS)

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be belter estimated. Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed. The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials. (orig.)

  8. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  9. The flight experiment ANITA—a high performance air analyser for manned space cabins

    Science.gov (United States)

    Stuffler, T.; Mosebach, H.; Kampf, D.; Honne, A.; Tan, G.

    2004-08-01

    Analysing Interferometer for Ambient Air (ANITA) is a flight experiment as precursor for a permanent continuous trace gas monitoring system on the International Space Station (ISS). For over 10 years, under various ESA contracts the flight experiment was defined, designed, breadboarded and set up. For the safety of the crew, ANITA can detect and quantify quasi on-line and simultaneously 32 trace gases with ppm or sub-ppm detection limits. The self-standing measurement system is based on Fourier Transform Infrared Spectrometer (FTIR) technology. The system represents a versatile air monitor allowing for the first time the detection and monitoring of trace gas dynamics of a spacecraft atmosphere. It is envisaged to accommodate ANITA in a Destiny (US LAB) Express Rack on the ISS. The transportation to the ISS is planned with the first ATV 'Jules Verne'. The options are either the Space Shuttle or the Automated Transfer Vehicle.

  10. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    Science.gov (United States)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency

  11. Proposed experiment to study the critical ionization velocity theory in space

    International Nuclear Information System (INIS)

    A simple, novel experiment is suggested to verify the critical ionization hypothesis in space. The experiment involves the isentropic expansion of gas through a carefully chosen nozzle and skimmer so that the formation of dimers and trimers is enhanced. Because of the reduced ionization potentials of these species and because of the increased mass, it is expected that the critical ionization velocity will be lowered considerably even for simple gases such as N2. The release of the gas aboard the space shuttle, whose orbiting velocity is about 7.3 km s/sup -1/, will provide the necessary velocity relative to the ambient ions to ionize the dimers and trimers. The advantages of this method over previously tried or proposed methods are briefly discussed

  12. Development of low energy ion beam system for space charge compensation experiments

    International Nuclear Information System (INIS)

    A low energy ion beam system for space charge compensation (SCC) experiments was developed and evaluated. This system was designed for observation of SCC of a positive ion beam with an electron beam. The system consisted of the ion source chamber and the SCC experiment chamber. The ion source chamber was equipped with the compact microwave ion source for low voltage extraction. Ion current at initial position of the analysis chamber was 84 μA at extraction voltage of 500 V, and satisfied a condition to observe the SCC effect clearly. In order to evaluate the SCC, we measured the arrival ion current by supplying thermionic electrons, which were extracted from a tungsten filament driven by ac voltage. As the electron supply, the arrival ion current increased from 40 to 68 μA at the potential of filament of +3 eV which produced the thermionic electron with extremely low energy extracted by space charge of the ion beam

  13. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  14. Race Has Always Mattered: An Intergeneration Look at Race, Space, Place, and Educational Experiences of Blacks

    Directory of Open Access Journals (Sweden)

    Denise G. Yull

    2014-01-01

    Full Text Available Within school settings race continues to be one of the most formidable obstacles for Black children in the United States (US school system. This paper expands the discussions of race in education by exploring how the social links among race, space, and place provide a lens for understanding the persistence of racism in the educational experiences of Black children. This paper examines how differences in a rural versus urban geographical location influence a student’s experience with race, racism, and racial identity across four generations of Black people in the context of school and community. Implications for research and practice are discussed.

  15. First observations of proton induced power MOSFET burnout in space: The CRUX experiment on APEX

    International Nuclear Information System (INIS)

    Ground testing has shown that power MOSFETs are susceptible to burnout when irradiated with heavy ions and protons. Satellite data from the Cosmic Ray Upset Experiment (CRUX) demonstrate that single event burnouts (SEBs) on 100-volt and 200-volt power MOSFETs can and do occur in space. Few SEBs occurred on the 100-volt devices, all at L1 > 3. The 200-volt devices experience many SEBs at L D-S) was greater than 85% of maximum rated voltage. CRUX flight lot devices were ground tested with protons. The SEB rates calculated with the cross-sections from the ground tests show close agreement with the measured rates

  16. Status of Animal Experiments on International Space Station, and Animal Care Activities in Japan

    Science.gov (United States)

    Izumi, Ryutaro; Ishioka, Noriaki; Yumoto, Akane; Ito, Isao; Shirakawa, Masaki

    We would like to introduce animal experiments status on International Space Station (ISS) of Japan. Aquatic Habitat (AQH) was launched at 2012 July, by H-II Transfer Vehicle (HTV, ‘Kounotori’) from Tanegashima island in Japan, which could house small fish (Medaka, or Zebrafish) at most three months. First experiment using AQH was carried out for two months from Oct. 26, 2012, and second experiment would start from February, 2014. Mice housing hardware is now under development. For animal care activities, current topic in Japan is self-estimation for animal experiment status by each institute, and to open the result for public. JAXA conducted self-estimation of fiscal year 2011 (from 2011 April until 2012 March) for the first time, and would continue every fiscal year. JAXA already have its own animal care regulation, under animal care law and policy in Japan, and also referred COSPAR animal care guideline. And this year, JAXA made handbook for animal experiments in space (only Japanese).

  17. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  18. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    Science.gov (United States)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this

  19. Distribution and retention of cesium in Swedish boreal forest ecosystems

    International Nuclear Information System (INIS)

    The retention and distribution of cesium in forest environments are being studied at three locations in Sweden. The main part of the cesium found in the soil was recovered in horizons rich in organic matter. The cesium was retained in the soil organic matter in a more or less extractable form. As different soil types have a different distribution pattern of organic matter the distribution of cesium will depend on the forest soil type. The clay content in Swedish forest soils is in general low which will mitigate the retention of cesium in the soil mineral horizons. The cesium present in the tree was considered to be an effect of assimilation by the tissues in the canopy as well as by the roots. The redistribution of cesium within the trees was extensive which was considered to be an effect of a high mobility of cesium in the close system of a forest environment. The cesium will remain in the forest environment for a considerable time but can be removed by forest practice, by leaching out of the soil profile or by the radioactive decay. (au)

  20. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  1. Virtual adult ears reveal the roles of acoustical factors and experience in auditory space map development

    OpenAIRE

    Campbell, Robert A. A.; King, Andrew J; Nodal, Fernando R.; Schnupp, Jan W. H.; Carlile, Simon; Doubell, Timothy P.

    2008-01-01

    Auditory neurons in the superior colliculus (SC) respond preferentially to sounds from restricted directions to form a map of auditory space. The development of this representation is shaped by sensory experience, but little is known about the relative contribution of peripheral and central factors to the emergence of adult responses. By recording from the SC of anesthetized ferrets at different age points, we show that the map matures gradually after birth; the spatial receptive fields (SRFs...

  2. Apollo experience report: Simulation of manned space flight for crew training

    Science.gov (United States)

    Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.

    1973-01-01

    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.

  3. RECOMBINATION AT DISLOCATION LEVELS LOCATED IN THE SPACE CHARGE REGION. EBIC CONTRAST EXPERIMENTS AND THEORY

    OpenAIRE

    Farvacque, J.; Sieber, B.

    1989-01-01

    Recombination at dislocations located in the space charge region (SCR) of a Schottky diode has been previously evidenced by EBIC contrats experiments [1] in the case of non intentionally n type CdTe. A depth-dependent recombination probability was, then, phenomenologically ascribed to the dislocation, in order to fit theoretical EBIC curves as a function of the beam accelerating voltage Eo obtained for dislocations perpendicular to the surface, with experimental ones. A variable radius ε(z) w...

  4. Early Results of the Multi-Application Survivable Tether (MAST) Space Tether Experiment

    OpenAIRE

    Hoyt, Robert; Voronka, Nestor; Newton, Tyrel; Barnes, Ian; Shepherd, Jack; Frank, S. Scott; Slostad, Jeff; Jaroux, Belgacem; Twiggs, Robert

    2007-01-01

    The Multi-Application Survivable Tether (MAST) Experiment utilizes three tethered picosatellites to study the survivability of space tether structures and materials in the low Earth orbit environment. The MAST picosatellites initially deployed as a single body from a CubeSat PPOD deployer were designed to subsequently deploy a 1,000 meter long multi-line "Hoytether" between two of the picosatellites. The third picosatellite will then slowly crawl up and down the tether photographing it and tr...

  5. Eating in the streets of Maracaibo: public space, social visibility and urban experience

    OpenAIRE

    Mariana Gómez

    2008-01-01

    In Maracaibo, street food has a remarkable presence and a great importance as a distinctive urban and cultural practice. This article aims at a phenomenological characterization of street-food activities in this Venezuelan city, focusing in the outlining and analysis of the experience and appropriation of public space by the institutions, subjects and practices involved in eating in the streets, and especially through a brief examination of the diverse meanings attributed to street food an...

  6. Experiences of technology-rich innovation in European schools within the Open Discovery Space project

    OpenAIRE

    Peinado, Sonia; José Miguel MOTA; Anke BERNS; Manuel PALOMO-DUARTE; Dodero, Juan Manuel; Martellos, Stefano; Doran, Rosa; Aušra LINGYTE; Arnold, Christine J.; Bissinger, Kerstin; Kouzov, Orlin; Chelioti, Eleni; Stephanos CHEROUVIS; Stergiopoulos, Petros

    2015-01-01

    The Open Discovery Space (ODS) project was conceived to introduce innovative resource-based teaching and learning practices in European schools, to promote the creation of communities between European school members and to boost the demand for open educational resources among teachers. After 3 years of applying the ODS innovation model, more than 2,000 European schools have carried out diverse experiences of technology-rich innovation to achieve the project aims. This paper describes the expe...

  7. Cesium sorption and desorption behavior of clay minerals

    International Nuclear Information System (INIS)

    Cesium sorption and desorption of clay minerals (montmorillonite, beidellite, nontronite, weathered biotite, rectorite and illite) were investigated by consecutive sorption-desorption (CSD) experiments. In batch sorption experiment, two solutions with different Cs concentration 10-3 and 10-7 mol/L) were used. In batch desorption experiments, Cs sorbed samples in sorption experiments were treated 5 times with 1 mol/L ammonium acetate solution. In the case of CSD experiments using 10-3 mol/L Cs solution, the exchangeable cations (Na, Ca, and K) in the clay samples affected to the sorption ratio of Cs, and this effect depended on the type of clay mineral. The desorption ratios of untreated, Na-exchanged and Ca-exchanged weathered biotite ranged from 23 to 33%, while that of other samples was over 80%. In the case of CSD experiments using 10-7 mol/L Cs solution, the sorption ratio of montmorillonite was smaller than that of the other clay samples. In desorption experiments, more than 10-9 mol sorbed Cs remained in 1.0 g of the sample after 5 extraction times. These results indicate that all examined clay samples are able to strongly adsorb Cs with a capacity of more than 10-9 mol/g. (author)

  8. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  9. [Choice of plant light status for space greenhouse: results of ground-based experience].

    Science.gov (United States)

    Berkovich, Iu A

    2000-01-01

    To decide on the light status of plants in space greenhouse, a theoretical study was undertaken to correlate specific productivity of space greenhouse with illumination characteristics including vertical PAR flux density (I), photoperiod (tau), and crop leaf index (L). It was demonstrated that in pace with I the daily productivity per a volume unit tended to monotonously approach maximum at I = Ip, whereas the greenhouse energy efficiency ME peaked at I = IE, IK crop photosynthesis. Proposed are compromise criteria to optimize illumination as a maximum of linear combination of MV and ME and coefficients which account for the cost of a space station volume unit and a unit of board power supply, and as maximum of product Q = MV.ME. Experimental results serve as the basis for a technique for determination of the best, by the Q criterion, light status parameters for three types of space greenhouses: research growth chamber for synchronous cultivation of leaf mustard, wheat growth chamber with fixed crop density, and green conveyer for cultivation of Brassica pekinensis (Lour Rupor). For the last mentioned Q effective I and tau values differed with the conveyer step. The technique allows design of ground-based experiments aimed at determination of the most effective light status of space-grown crops. PMID:10732194

  10. The Rhetoric of Multi-Display Learning Spaces: exploratory experiences in visual art disciplines

    Directory of Open Access Journals (Sweden)

    Bligh, Brett

    2010-04-01

    Full Text Available Multi-Display Learning Spaces (MD-LS comprise technologies to allow the viewing of multiple simultaneous visual materials, modes of learning which encourage critical reflection upon these materials, and spatial configurations which afford interaction between learners and the materials in orchestrated ways. In this paper we provide an argument for the benefits of Multi-Display Learning Spaces in supporting complex, disciplinary reasoning within learning, focussing upon our experiences within postgraduate visual arts education. The importance of considering the affordances of the physical environment within education has been acknowledged by the recent attention given to Learning Spaces, yet within visual art disciplines the perception of visual material within a given space has long been seen as a key methodological consideration with implications for the identity of the discipline itself. We analyse the methodological, technological and spatial affordances of MD-LS to support learning, and discuss comparative viewing as a disciplinary method to structure visual analysis within the space which benefits from the simultaneous display of multiple partitions of visual evidence. We offer an analysis of the role of the teacher in authoring and orchestration and conclude by proposing a more general structure for what we term ‘multiple perspective learning’, in which the presentation of multiple pieces of visual evidence creates the conditions for complex argumentation within Higher Education.

  11. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    Science.gov (United States)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  12. Cesium-137 accident lessons in Goiania, Goias State, Brazil

    International Nuclear Information System (INIS)

    This document relates the experience obtained by several professionals which had an important role in the cesium-137 accident occurred in Goiania, Goias State, Brazil in September, 1987. It's divided into chapters, according to the action area - medical, nursing, social assistance, odontological and psychological. At first, some notions of radioprotection are explained, followed by the accident history and by the doctors and nurses action during the emergency phase and the medical, odontological, social and psychological assistance to the victims. The social assistance report shows some statistical data about the economic, occupational and social conditions of the accident victims. It is shown some information about the health institutions and the sanitary care in the ionizing radiation and about the occupational radiological protection in Goiania

  13. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station

    Science.gov (United States)

    Yano, Sachiko; Kasahara, Haruo; Masuda, Daisuke; Tanigaki, Fumiaki; Shimazu, Toru; Suzuki, Hiromi; Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Tayama, Ichiro; Tsuchiya, Yoshikazu; Kamisaka, Seiichiro

    2013-03-01

    In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence

  14. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  15. Significant enhancement of negative secondary ion yields by cluster ion bombardment combined with cesium flooding.

    Science.gov (United States)

    Philipp, Patrick; Angerer, Tina B; Sämfors, Sanna; Blenkinsopp, Paul; Fletcher, John S; Wirtz, Tom

    2015-10-01

    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment. PMID:26378890

  16. An isotope dilution-precipitation process for removing radioactive cesium from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Harold, E-mail: rogers22@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States); Bowers, John; Gates-Anderson, Dianne [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Developed an isotope dilution-precipitation treatment process for Cs-137 contaminated water. Black-Right-Pointing-Pointer Waste seeded with non-radioactive Cs-133 prior to precipitation with sodium tetraphenylborate. Black-Right-Pointing-Pointer Final Cs-137 concentrations below DOE discharge limit of 3.0 Multiplication-Sign 10{sup -6} {mu}Ci/mL can be achieved. Black-Right-Pointing-Pointer Synthetic wastewater, and industrial low level radioactive proof of principle studies completed. - Abstract: A novel isotope dilution-precipitation method has been developed to remove cesium-137 from radioactive wastewater. The process involves adding stable cesium chloride to wastewater in order to raise the total cesium concentration, which then allows both the stable and radioactive cesium ions to be precipitated together using sodium tetraphenylborate. This process was investigated utilizing laboratory solutions to determine stable cesium dose rates, mixing times, effects of pH, and filtration requirements. Once optimized, the process was then tested on synthetic wastewater and aqueous low-level waste. Experiments showed the reaction to be very quick and stable in the pH range tested, 2.5-11.5. The wastewater may need to be filtered using a 0.45-{mu}m filter, though ferric sulfate has been shown to promote coagulation and settling, thereby eliminating the necessity for filtration. This investigation showed that this isotope dilution-precipitation process can remove Cs-37 levels below the U.S. Department of Energy's (DOE) Derived Concentration Standard (DCS) of 3.0 Multiplication-Sign 10{sup -6} {mu}Ci/mL using a single dosage, potentially allowing the wastewater to be discharged directly to sanitary sewers.

  17. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    Science.gov (United States)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  18. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  19. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    Science.gov (United States)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  20. Cesium and strontium sorption behavior in amended agricultural soils

    Science.gov (United States)

    Mehmood, Khalid; Hofmann, Diana; Burauel, Peter; Vereecken, Harry; Berns, Anne E.

    2014-05-01

    Biogas digestates and biochar are emerging soil amendments. Biochar is a byproduct of pyrolysis process which is thermal decomposition of biomass to produce syngas and bio-oil. The use of biochar for soil amendment is being promoted for higher crop yields and carbon sequestration. Currently, the numbers of biogas plants in Germany are increasing to meet the new energy scenarios. The sustainability of biogas industry requires proper disposal options for digestate. Biogas digestates being rich in nutrients are beneficial to enhance agricultural productions. Contrary to the agronomical benefits of these organic amendments, their use can influence the mobility and bioavailability of soil contaminants due to nutrients competition and high organic matter content. So far, the impact of such amendments on highly problematic contaminants like radionuclides is not truly accounted for. In the present study, sorption-desorption behavior of cesium and strontium was investigated in three soils of different origin and texture. Two agricultural soils, a loamy sand and a silty soil, were amended with biochar and digestate in separate experiments, with field application rates of 25 Mg/ha and 34 Mg/ha, respectively. For comparison a third soil, a forest soil, was incubated without any amendment. The amendments were mixed into the top 20 cm of the field soils, resulting in final concentrations of 8-9 g biochar/Kg soil and 11-12 g digestate/Kg soil. The soils were incubated for about six months at room temperature. Sorption-desorption experiments were performed with CsCl and SrCl2 after pre-equilibrating the soils with CaCl2 solutions. The amendments with field application rates did not have a significant effect on the relevant soil parameters responsible for the sorption behavior of the two radionuclides. Comparatively, the soil type lead to distinctive differences in sorption-desorption dynamics of the two radionuclides. Cesium showed a higher affinity for silty soil followed by

  1. Light storage via coherent population oscillation in a thermal cesium vapor

    CERN Document Server

    de Almeida, A J F; Maynard, M -A; Laupretre, T; Bretenaker, F; Felinto, D; Goldfarb, F; Tabosa, J W R

    2014-01-01

    We report on the storage of light via the phenomenon of Coherent Population Oscillation (CPO) in an atomic cesium vapor at room temperature. In the experiment the optical information of a probe field is stored in the CPO of two ground states of a Lambda three-level system formed by the Zeeman sublevels of the hyperfine transition F = 3 - F' = 2 of cesium D2 line. We show directly that this CPO based memory is very insensitive to stray magnetic field inhomogeneities and presents a lifetime which is mainly limited only by atomic motion. A theoretical simulation of the measured spectra was also developed and is in very good agreement with the experiment.

  2. Evaluation of Airborne Precision Spacing in a Human-in-the-Loop Experiment

    Science.gov (United States)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2005-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes with significant costs: financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precisely spacing aircraft at the runway threshold, with a resulting reduction in the spacing bu er required under today s operations. At NASA's Langley Research Center, the Airspace Systems program has been investigating airborne technologies and procedures that will assist the flight crew in achieving precise spacing behind another aircraft. A new spacing clearance allows the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from an assigned, leading aircraft and calculates the appropriate speed for the ownship to fly to achieve the desired spacing interval, time- or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system-wide benefits and stability to a string of arriving aircraft. An experiment was recently performed at the NASA Langley Air Traffic Operations Laboratory (ATOL) to test the flexibility of Airborne Precision Spacing operations under a variety of operational conditions. These included several types of merge and approach geometries along with the complementary merging and in-trail operations. Twelve airline pilots and four controllers participated in this simulation. Performance and questionnaire data were collected from a total of eighty-four individual arrivals. The pilots were able to achieve precise spacing with a mean error of 0.5 seconds and a standard deviation of 4.7 seconds. No statistically significant di erences in spacing performance were found between in

  3. Interval Management with Spacing to Parallel Dependent Runways (IMSPIDR) Experiment and Results

    Science.gov (United States)

    Baxley, Brian T.; Swieringa, Kurt A.; Capron, William R.

    2012-01-01

    An area in aviation operations that may offer an increase in efficiency is the use of continuous descent arrivals (CDA), especially during dependent parallel runway operations. However, variations in aircraft descent angle and speed can cause inaccuracies in estimated time of arrival calculations, requiring an increase in the size of the buffer between aircraft. This in turn reduces airport throughput and limits the use of CDAs during high-density operations, particularly to dependent parallel runways. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) concept uses a trajectory-based spacing tool onboard the aircraft to achieve by the runway an air traffic control assigned spacing interval behind the previous aircraft. This paper describes the first ever experiment and results of this concept at NASA Langley. Pilots flew CDAs to the Dallas Fort-Worth airport using airspeed calculations from the spacing tool to achieve either a Required Time of Arrival (RTA) or Interval Management (IM) spacing interval at the runway threshold. Results indicate flight crews were able to land aircraft on the runway with a mean of 2 seconds and less than 4 seconds standard deviation of the air traffic control assigned time, even in the presence of forecast wind error and large time delay. Statistically significant differences in delivery precision and number of speed changes as a function of stream position were observed, however, there was no trend to the difference and the error did not increase during the operation. Two areas the flight crew indicated as not acceptable included the additional number of speed changes required during the wind shear event, and issuing an IM clearance via data link while at low altitude. A number of refinements and future spacing algorithm capabilities were also identified.

  4. First Look at Results from the Metal Oxide Space Cloud (MOSC) Experiment

    Science.gov (United States)

    Caton, R. G.; Pedersen, T. R.; Parris, R. T.; Groves, K. M.; Bernhardt, P. A.; Cannon, P. S.

    2013-12-01

    During the moon down period from 28 April to 10 May 2013, the NASA Sounding Rocket Program successfully completed a series of two launches from the Kwajalein Atoll for the Air Force Research Laboratory's Metal Oxide Space Cloud (MOSC) experiment. Payloads on both Terrier Improved Orion rockets flown during the mission included two 5 kg of canisters of Samarium (Sm) powder in a thermite mix for immediate expulsion and vaporization and a two-frequency Coherent Electromagnetic Radio Tomography (CERTO) beacon provided by the Naval Research Laboratory. The launches were carefully timed for dusk releases of Sm vapor at preselected altitudes creating artificially generated layers lasting several hours. A host of ground sensors were deployed to fully probe and characterize the localized plasma cloud produced as a result of charge exchange with the background oxygen (Sm + O → SmO+ + e-). In addition to incoherent scatter probing of the ionization cloud with the ALTAIR radar, ground diagnostics included GPS and CERTO beacon receivers at five locations in the Marshall Islands. Researchers from QinetiQ and the UK MOD participated in the MOSC experiment with the addition of an HF transmitting system and an array of receivers distributed across multiple islands to examine the response of the HF propagation environment to the artificially generated layer. AFRL ground equipment included a pair of All-Sky Imagers, optical spectrographs, and two DPS-4D digisondes spaced ~200 km apart providing vertical and oblique soundings. As the experimental team continues to evaluate the data, this paper will present a first look at early results from the MOSC experiment. Data collected will be used to improve existing models and tailor future experiments targeted at demonstrating the ability to temporarily control the RF propagation environment through an on-demand modification of the ionosphere. Funding for the launch was provided by the DoD Space Test Program.

  5. Fluid physics and transport phenomena studies aboard the international space station: Planned experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Space Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there are a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with an unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  6. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    Science.gov (United States)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  7. Laser-pumped cesium magnetometers for high-resolution medical and fundamental research

    OpenAIRE

    Groeger, Stephan; Bison, Georg; Knowles, Paul E.; Wynands, Robert; Weis, Antoine

    2007-01-01

    Laser-pumped cesium magnetometers allow highly sensitive magnetometry at room temperature. We report on applications of that technique in biomagnetic diagnostics and in a neutron electric dipole moment (nEDM) experiment. In the biomagnetic application the magnetic field from the beating human heart is detected using a gradiometer, which reaches an intrinsic sensitivity of 80 fT/Hz1/2. The device can record time-resolved magnetic field maps above the human body surface with a spatial resolutio...

  8. Direct mass measurements on rubidium, cesium and francium isotopes far from stability

    International Nuclear Information System (INIS)

    A double focusing mass spectrometer has been set on line with the ISOLDE isotope separator at CERN in order to measure directly the masses of the short lived isotopes which are produced there. The first experiments have been performed on the heaviest alkali elements rubidium, cesium and francium. Unpublished results obtained for the francium isotopes 204-210, 224-228Fr are briefly presented. (orig./AH)

  9. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal

  10. Effects of potassium and nitrogen groundwater pollution on the migration of cesium-137 through the geological environment

    International Nuclear Information System (INIS)

    Effects of potassium and nitrogen groundwater pollution on the migration of cesium-137 through the geological environment were studied for the territories of Russia, Ukraine, Belarus. Migration rate of cesium-137 deposited as a result of the Chernobyl accident increases in geologic media (soils, rocks, and groundwater) polluted by potassium and ammonium originating from long-term fertilizers use. This effect manifests itself in the fact that radiocesium penetrates deeper into soils of arable lands than it does into virgin soils. Laboratory experiments show the sorption capacity of sandy soils with respect to cesium-137 is 2.5-9.2 times lower in the presence of solutions of chlorides and nitrates of potassium and ammonium and is 1.3-2.0 times lower in the presence of sodium nitrate solution. 26 refs.; 2 figs

  11. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  12. The LTP Experiment on LISA Pathfinder: Operational Definition of TT Gauge in Space

    CERN Document Server

    Armano, Michele

    2011-01-01

    The European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) are planning the Laser Interferometer Space Antenna (LISA) mission in order to detect GW. The need of accurate testing of free-fall and knowledge of noise in a space environment similar to LISA's is considered mandatory a pre-phase for the project. Therefore the LISA Pathfinder mission has been designed by ESA to fly the LISA Technology Package (LTP), aiming at testing free-fall by measuring the residual acceleration between two test-bodies in the dynamical scheme we address as "drag-free". The spectral map of the residual acceleration as function of frequency will convey information on the local noise level, thus producing a picture of the environmental working conditions for LISA itself. The thesis contains abundant material on the problem of compensating static gravity, the development of a theory of orthogonalization of reference and cross-talk for the LTP experiment. The construction of the laser detection proced...

  13. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    Science.gov (United States)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  14. Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil.

    Science.gov (United States)

    Djedidi, Salem; Kojima, Katsuhiro; Yamaya, Hiroko; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Watanabe, Izumi; Yokoyama, Tadashi

    2014-09-01

    The effects of inoculation with Bacillus and Azospirillum strains on growth and cesium accumulation of five plant species, Komatsuna, Amaranth, sorghum, common millet and buckwheat, grown on cesium-spiked soil were assessed for potential use in cesium remediation. Pot experiments were performed using "artificially" Cs-contaminated soil. Three treatments were applied based on Cs location in the soil. For a soil height of 15 cm in the pots, Cs was added as follows: in the top five cm to imitate no ploughing condition; in the bottom five cm simulating inverted ploughing; and uniformly distributed Cs reproducing normal plowing. Generally, inoculation of Cs-exposed plants significantly enhanced growth and tolerance to this element. Transfer factor (ratio of Cs concentration in the plant tissues to that in surrounding soil) was strongly influenced by Cs distribution, with higher values in the top-Cs treatment. Within this treatment, inoculation of Komatsuna with Bacillus and Azospirillum strains resulted in the greatest transfer factors of 6.55 and 6.68, respectively. Cesium content in the shoots was high in the Azospirillum-inoculated Komatsuna, Amaranth, and buckwheat, i.e., 1,830, 1,220, and 1,030 µg per pot, respectively (five plants were grown in each pot). Therefore, inoculation of Komatsuna and Amaranth with the strains tested here could be effective in enhancing Cs accumulation. The decrease of Cs transfer under uniform- and bottom-Cs treatments would suggest that countermeasures aiming at decreasing the transfer of Cs could rely on ploughing practices. PMID:25002227

  15. Distillation device supplies cesium vapor at constant pressure

    Science.gov (United States)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  16. Coronagraphic demonstration experiment using aluminum mirrors for space infrared astronomical observations

    CERN Document Server

    Oseki, Shinji; Ishihara, Daisuke; Enya, Keigo; Haze, Kanae; Kotani, Takayuki; Kaneda, Hidehiro; Nishiyama, Miho; Abe, Lyu; Yamamuro, Tomoyasu

    2015-01-01

    For future space infrared astronomical coronagraphy, we perform experimental studies on the application of aluminum mirrors to a coronagraph. Cooled reflective optics is required for broad-band mid-infrared observations in space, while high-precision optics is required for coronagraphy. For the coronagraph instrument originally proposed for the next-generation infrared astronomical satellite project SPICA (SCI: SPICA Coronagraph Instrument), we fabricated and evaluated the optics consisting of high-precision aluminum off-axis mirrors with diamond-turned surfaces, and conducted a coronagraphic demonstration experiment using the optics with a coronagraph mask. We first measured the wave front errors (WFEs) of the aluminum mirrors with a He-Ne Fizeau interferometer to confirm that the power spectral densities of the WFEs satisfy the SCI requirements. Then we integrated the mirrors into an optical system and evaluated the overall performance of the system. As a result, we estimate the total WFE of the optics to b...

  17. Scientific investigations planned for the Lidar in-Space Technology Experiment (LITE)

    Science.gov (United States)

    Mccormick, M. P.; Winker, D. M.; Browell, E. V.; Coakley, J. A.; Gardner, C. S.; Hoff, R. M.; Kent, G. S.; Melfi, S. H.; Menzies, R. T.; Platt, C. M. R.

    1993-01-01

    The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series of flights on the space shuttle beginning in 1994. Employing a three-wavelength Nd:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.

  18. The role of space charge in spin-resolved photoemission experiments

    International Nuclear Information System (INIS)

    Spin-resolved photoemission is one of the most direct ways of measuring the magnetization of a ferromagnet. If all valence band electrons contribute, the measured average spin polarization is proportional to the magnetization. This is even the case if electronic excitations are present, and thus is of particular interest for studying the response of the magnetization to a pump laser pulse. Here, we demonstrate the feasibility of ultrafast spin-resolved photoemission using free electron laser (FEL) radiation and investigate the effect of space charge on the detected spin polarization. The sample is exposed to the radiation of the FEL FLASH in Hamburg. Surprisingly, the measured spin polarization depends on the fluence of the FEL radiation: a higher FEL fluence reduces the measured spin polarization. Space-charge simulations can explain this effect. These findings have consequences for future spin-polarized photoemission experiments using pulsed photon sources

  19. Space-charge neutralization experiment with a low-energy proton beam

    International Nuclear Information System (INIS)

    The mechanism of space-charge neutralization of a low-energy proton beam is investigated both experimentally and theoretically. In the experiment, the transverse profile of a 500 keV proton beam delivered by a duoplasmatron source is accurately measured at the end of a 3 m long drift space. Profile measurements are performed by an imaging technique using a scintillating screen and an intensified CCD camera. Measurement results done with different beam intensities (between 0.5 and 15 mA) and various residual-gas pressures are described. They show that, at high beam current an increase of the gas pressure results in a reduction of the beam spot, which indicates an increase of the value of the neutralization coefficient. On the other hand, the behavior is the opposite at low beam current: the beam size increases with the gas pressure. An interpretation of these experimental results is proposed. (author)

  20. Gravitational Redshift Experiment with the Space Radio Telescope RadioAstron

    CERN Document Server

    Litvinov, D; Belousov, K; Bietenholz, M; Biriukov, A; Fionov, A; Gusev, A; Kauts, V; Kovalenko, A; Kulagin, V; Poraiko, N; Rudenko, V

    2015-01-01

    A unique test of general relativity is possible with the space radio telescope RadioAstron. The ultra-stable on-board hydrogen maser frequency standard and the highly eccentric orbit make RadioAstron an ideal instrument for probing the gravitational redshift effect. Large gravitational potential variation, occurring on the time scale of $\\sim$24 hr, causes large variation of the on-board H-maser clock rate, which can be detected via comparison with frequency standards installed at various ground radio astronomical observatories. The experiment requires specific on-board hardware operating modes and support from ground radio telescopes capable of tracking the spacecraft continuously and equipped with 8.4 or 15 GHz receivers. Our preliminary estimates show that $\\sim$30 hr of the space radio telescope's observational time are required to reach $\\sim 2\\times10^{-5}$ accuracy in the test, which would constitute a factor of 10 improvement over the currently achieved best result.

  1. Simulation experiments of the effect of space environment on bacteriophage and DNA thin films

    Science.gov (United States)

    Fekete, A.; Ronto, Gy; Hegedus, M.; Modos, K.; Berces, A.; Kovacs, G.; Lammer, H.; Panitz, C.

    2004-01-01

    The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Calocube-A highly segmented calorimeter for a space based experiment

    Science.gov (United States)

    D`Alessandro, R.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Cauz, D.; Chiari, M.; Daddi, N.; Detti, S.; Fasoli, M.; Finetti, N.; Gregorio, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Miritello, M.; Mori, N.; Pacini, L.; Papini, P.; Pauletta, G.; Pirzio, F.; Rappazzo, G. F.; Rappoldi, A.; Ricciarini, S.; Santi, L. G.; Spillantini, P.; Starodubtsev, O.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifiro, A.; Trimarchi, M.; Vannuccini, E.; Vedda, A.; Zampa, G.; Zampa, N.; Zerbo, B.

    2016-07-01

    Future research in High Energy Cosmic Ray Physics concerns fundamental questions on their origin, acceleration mechanism, and composition. Unambiguous measurements of the energy spectra and of the composition of cosmic rays at the "knee" region could provide some of the answers to the above questions. Only ground based observations, which rely on sophisticated models describing high energy interactions in the earth's atmosphere, have been possible so far due to the extremely low particle rates at these energies. A calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification, especially when coupled to a dE/dx measuring detector, and thus overcome some of the limitations plaguing ground based experiments. For this to be possible very large acceptances are needed if enough statistic is to be collected in a reasonable time. This contrasts with the lightness and compactness requirements for space based experiments. A novel idea in calorimetry is discussed here which addresses these issues while limiting the mass and volume of the detector. In fact a small prototype is currently being built and tested with ions. In this paper the results obtained will be presented in light of the simulations performed.

  3. Data Analysis of a Space Experiment: Common Software Tackles Uncommon Task

    Science.gov (United States)

    Wilkinson, R. Allen

    1998-01-01

    Presented here are the software adaptations developed by laboratory scientists to process the space experiment data products from three experiments on two International Microgravity Laboratory Missions (IML-1 and IML-2). The challenge was to accommodate interacting with many types of hardware and software developed by both European Space Agency (ESA) and NASA aerospace contractors, where data formats were neither commercial nor familiar to scientists. Some of the data had been corrupted by bit shifting of byte boundaries. Least-significant/most-significant byte swapping also occurred as might be expected for the various hardware platforms involved. The data consisted of 20 GBytes per experiment of both numerical and image data. A significant percentage of the bytes were consumed in NASA formatting with extra layers of packetizing structure. It was provided in various pieces to the scientists on magnetic tapes, Syquest cartridges, DAT tapes, CD-ROMS, analog video tapes, and by network FIP. In this paper I will provide some science background and present the software processing used to make the data useful in the months after the missions.

  4. Results of the Fluid Merging Viscosity Measurement International Space Station Experiment

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William; Antar, Basil

    2009-01-01

    The purpose of FMVM is to measure the rate of coalescence of two highly viscous liquid drops and correlate the results with the liquid viscosity and surface tension. The experiment takes advantage of the low gravitational free floating conditions in space to permit the unconstrained coalescence of two nearly spherical drops. The merging of the drops is accomplished by deploying them from a syringe and suspending them on Nomex threads followed by the astronaut s manipulation of one of the drops toward a stationary droplet till contact is achieved. Coalescence and merging occurs due to shape relaxation and reduction of surface energy, being resisted by the viscous drag within the liquid. Experiments were conducted onboard the International Space Station in July of 2004 and subsequently in May of 2005. The coalescence was recorded on video and down-linked near real-time. When the coefficient of surface tension for the liquid is known, the increase in contact radius can be used to determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Recent fluid dynamical numerical simulations of the coalescence process will be presented. The results are important for a better understanding of the coalescence process. The experiment is also relevant to liquid phase sintering, free form in-situ fabrication, and as a potential new method for measuring the viscosity of viscous glass formers at low shear rates.

  5. Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, CD

    2006-01-27

    To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

  6. The capillary channel flow experiments on the International Space Station: experiment set-up and first results

    Science.gov (United States)

    Canfield, P. J.; Bronowicki, P. M.; Chen, Y.; Kiewidt, L.; Grah, A.; Klatte, J.; Jenson, R.; Blackmore, W.; Weislogel, M. M.; Dreyer, M. E.

    2013-05-01

    This paper describes the experiments on flow rate limitation in open capillary channel flow that were performed on board the International Space Station in 2011. Free surfaces (gas-liquid interfaces) of open capillary channels balance the pressure difference between the flow of the liquid in the channel and the ambient gas by changing their curvature in accordance with the Young-Laplace equation. A critical flow rate of the liquid in the channel is exceeded when the curvature of the free surface is no longer able to balance the pressure difference and, consequently, the free surface collapses and gas is ingested into the liquid. This phenomenon was observed using the set-up described herein and critical flow rates are presented for steady flow over a range of channel lengths in three different cross-sectional geometries (parallel plates, groove, and wedge). All channel shapes displayed decreasing critical flow rates for increasing channel lengths. Bubble ingestion frequencies and bubble volumes are presented for gas ingestion at supercritical flow rates in the groove channel and in the wedge channel. At flow rates above the critical flow rate, bubble ingestion frequency appears to depend on the flow rate in a linear fashion, while bubble volume remains more or less constant. The performed experiments yield vast data sets on flow rate limitation in capillary channel flow in microgravity and can be utilised to validate numerical and analytical methods.

  7. Near minimum-time maneuvers of the advanced space structures technology research experiment (ASTREX) test article: Theory and experiments

    Science.gov (United States)

    Vadali, Srinivas R.; Carter, Michael T.

    1994-01-01

    The Phillips Laboratory at the Edwards Air Force Base has developed the Advanced Space Structures Technology Research Experiment (ASTREX) facility to serve as a testbed for demonstrating the applicability of proven theories to the challenges of spacecraft maneuvers and structural control. This report describes the work performed on the ASTREX test article by Texas A&M University under contract NAS119373 as a part of the Control-Structure Interaction (CSI) Guest Investigator Program. The focus of this work is on maneuvering the ASTREX test article with compressed air thrusters that can be throttled, while attenuating structural excitation. The theoretical foundation for designing the near minimum-time thrust commands is based on the generation of smooth, parameterized optimal open-loop control profiles, and the determination of control laws for final position regulation and tracking using Lyapunov stability theory. Details of the theory, mathematical modeling, model updating, and compensation for the presence of 'real world' effects are described and the experimental results are presented. The results show an excellent match between theory and experiments.

  8. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis

    International Nuclear Information System (INIS)

    Highlights: ► A continuous cesium separation and regeneration process based on ESIX could be achieved by a diaphragm-isolated reactor. ► The adsorption/desorption rate of Cs+ could be increased by applied potential. ► H3O+ played a dual role of electrolyte and competitor. ► A pseudo-first-order kinetics model could be used to describe the adsorption rate of cesium in the ESIX process. ► The ESIX of cesium consisted of ESIX step and ion diffusion step. - Abstract: A series of experiments were performed to evaluate the continuous separation of cesium based on an electrochemically switched ion exchange (ESIX) process using a diaphragm-isolated reactor with two identical nickel hexacyanoferrate/porous three-dimensional carbon felt (NiHCF/PTCF) electrodes as working electrodes. The effects of applied potential, initial concentrations and pH values of the simulation solutions on the adsorption of cesium ion were investigated. The adsorption rate of cesium ion in the ESIX process was fitted by a pseudo-first-order reaction model. The experiments revealed that the introduction of applied potential on the electrodes greatly enhanced the adsorption/desorption rate of Cs+ and increased the separation efficiency. H3O+ was found to play a dual role of electrolyte and competitor, and the adsorption rate constant showed a curve diversification with an increase in pH value. Also, it was found that the electrochemically switched adsorption process of Cs+ by NiHCF/PTCF electrodes proceeded in two main steps, i.e., an ESIX step with a fast adsorption rate and an ion diffusion step with a slow diffusion rate. Meanwhile, the NiHCF/PTCF film electrode showed adsorption selectivity for Cs+ in preference to Na+.

  9. Sorption of cesium on bentonite: The role of calcite

    International Nuclear Information System (INIS)

    Full text: Since bentonite is investigated for its use in Engineered Barriers Systems as backfill material, many studies of their surfaces properties have been performed in the past years to qualify and quantify adsorption on their surfaces, which can be one of the major processes limiting migration of radionuclides away from a disposal site. Nevertheless, most of these studies concerned simplified systems, such as Na-montmorillonite in mono-electrolyte solution. As ion-exchange processes are of importance in water-clays interactions, adsorption of natural major ions has also to be taken into account for natural systems. The aim of this work is (i) to quantify the sorption of the natural major cations on the montmorillonite surface, (ii) to compare the sorption of cesium, in two different systems, a simple one (Na-montmorillonite in NaNO3 0.05 Mol.L-1) and a complex one (natural bentonite in a synthetic natural water) and then (iii) to assess the influence of the natural major ions on this sorption, and to identify the role of the calcite phase present in bentonite. The methodology used consists in several batch experiments, first considering a very simple solution (NaNO3), then using mixtures of two different electrolytes, and lastly using a synthetic natural water. A surface complexation model, describing the surface of clays as a mixture of ion-exchange and complexation surface sites, is used to provide interpretations and quantifications of the sorption processes. Observed results indicate that affinity for the montmorillonite surface is greatest for Ca, then Mg and then K. The sorption of cesium is strongly affected by the presence in solution of Ca, witch can come from the partial dissolution of calcite. (author)

  10. Sorption of cesium on bentonite: The role of calcite

    International Nuclear Information System (INIS)

    Full text: Since bentonite is investigated for its use in Engineered Barriers Systems as backfill material, many studies of their surfaces properties have been performed in the past years to qualify and quantify adsorption on their surfaces, which can be one of the major processes limiting migration of radionuclides away from a disposal site. Nevertheless, most of these studies concerned simplified systems, such as Na-montmorillonite in mono-electrolyte solution. As ion-exchange processes are of importance in water-clays interactions, adsorption of natural major ions has also to be taken into account for natural systems. The aim of this work is (i) to quantify the sorption of the natural major cations on the montmorillonite surface; (ii) to compare the sorption of cesium, in two different systems, a simple one ( Na-montmorillonite in NaNO3 0.05 Mol.L-1) and a complex one (natural bentonite in a synthetic natural water) and then; (iii) to assess the influence of the natural major ions on this sorption, and to identify the role of the calcite phase present in bentonite. The methodology used consists in several batch experiments, first considering a very simple solution (NaNO3), then using mixtures of two different electrolytes, and lastly using a synthetic natural water. A surface complexation model, describing the surface of clays as a mixture of ion-exchange and complexation surface sites, is used to provide interpretations and quantifications of the sorption processes. Observed results indicate that affinity for the montmorillonite surface is greatest for Ca, then Mg and then K. The sorption of cesium is strongly affected by the presence in solution of Ca, witch can come from the partial dissolution of calcite. This study is one part of a work supported by ANDRA on the retention properties of bentonite materials. (author)

  11. Ion and electron thermoemission of cesium alumosilicates

    International Nuclear Information System (INIS)

    Relationships between and electron thermoemission of cesium aluminosilicate were studied. Measurements were made at 5.10-8-5.10-9 Tor and temperatures up to 1400 deg C. The effect of additions refractory metals Ti, Mo, Cu and Ir was studied. Ion thermoemission in the pulse regime was also studied. Conclusions are drawn that capacity depends upon additions. The temperature dependence of thermoionic emission current has two maxima and is characterized by instability in time. A conclusion is drawn that aluminosilicate thermionic cathodes can be reckoned as cathodes of a film type

  12. Cesium-137 in grass from Chernobyl fallout

    International Nuclear Information System (INIS)

    Grass ecosystem was monitored for 137Cs, a relatively long-lived radionuclide, for about 16 years since the Chernobyl reactor accident occurred on April 26, 1986. Cesium-137 in grass gramineae or poaceae the species, ranged from 122.9 Bq kg-1 (September 4, 1986) to 5.8 mBq kg-1 (October 16, 2001) that is a range of five orders of magnitude. It was observed that there was a trend of decreasing 137Cs with time reflecting a removal half-time of 40 months (3 1/3 years), which is the ecological half-life, T ec of 137Cs in grassland

  13. Extraction of radioactive cesium from ash of flammable radioactive material

    International Nuclear Information System (INIS)

    Huge amount of radioactive materials was released by the hydrogen explosion at Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake on March 11, 2011. Suppression of the volume of radioactive materials stored by decontamination works is strongly required since the preparation of storage places is not easy. We are developing the technology for separation and concentration of radioactive cesium using nano-particle, Prussian blue, as a cesium adsorption material which has a high efficiency and good selectivity. We propose a method in which radioactive cesium is extracted from the ash of flammable materials into the water and the Prussian blue nano-particles are added to the water to collect cesium. The volume of radioactive wastes contaminated by cesium is expected to be cut down with these processes. (J.P.N.)

  14. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  15. Genotoxicity Testing on the International Space Station: Preparatory Work on the Experiment TRIPLE-LUX

    Science.gov (United States)

    Stojicic, N.; Walrafen, D.; Rabbow, E.; Baumstark-Khan, C.; Rettberg, P.; Weisshaar, M. P.; Horneck, G.

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SWITCH test, which is part of the German space experiment ``Gene, immune and cellular responses to single and combined space flight conditions'' (TRIPLE-LUX) which has been selected by NASA to be performed on the International Space Station. It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). This luminescent/fluorescent bioassay for rapid toxicity (genotoxicity and cytotoxicity) testing, the SWITCH test (SWITCH: {S}almonella {W}eighting of {I}nduced {T}oxicity {C}yto/GenoTox for Human {H}ealth), makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-Lux test and the LAC-Fluoro test. The SWICH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of ß-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation of various qualities (from UVC to UVA) have given insights into cellular mechanisms

  16. A space standards application to university-class microsatellites: The UNISAT experience

    Science.gov (United States)

    Graziani, Filippo; Piergentili, Fabrizio; Santoni, Fabio

    2010-05-01

    Hands-on education is recognized as an invaluable tool to improve students' skills, to stimulate their enthusiasm and to educate them to teamwork. University class satellite programs should be developed keeping in mind that education is the main goal and that university satellites are a unique opportunity to make involved students familiar with all the phases of space missions. Moreover university budgets for education programs are much lower than for industrial satellites programs. Therefore two main constraints must be respected: a time schedule fitting with the student course duration and a low economic budget. These have an impact on the standard which can be followed in university class satellite programs. In this paper university-class satellite standardization is discussed on the basis of UNISAT program experience, reporting successful project achievements and lessons learned through unsuccessful experiences. The UNISAT program was established at the Scuola di Ingegneria Aerospaziale by the Group of Astrodynamics of the University of Rome "La Sapienza" (GAUSS) as a research and education program in which Ph.D. and graduate students have the opportunity to gain hands-on experience on small space missions. Four university satellites (UNISAT, UNISAT-2, UNISAT-3, UNISAT-4), weighing about 10 kg, have been designed, manufactured, tested and launched every two years since 2000 in the framework of this program In the paper, after a brief overview of new GAUSS programs, an analysis of the UNISAT satellites ground test campaign is carried out, identifying the most critical procedures and requirements to be fulfilled. Moreover a device for low earth orbit low-cost satellite end-of-life disposal is presented; this system (SIRDARIA) complies with the international guidelines on space debris.

  17. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    Science.gov (United States)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  18. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    Science.gov (United States)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  19. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  20. Flight Experiments On Energy Scaling For In-Space Laser Propulsion

    International Nuclear Information System (INIS)

    As a preparatory study on space-borne laser propulsion, flight experiments with a parabolic thruster were carried out on an air cushion table. The thruster was mounted like a sail on a puck, allowing for laser-driven motion in three degrees of freedom (3 DOF) in artificial weightlessness. Momentum coupling is derived from point explosion theory for various parabolic thruster geometries with respect to energy scaling issues. The experimental data are compared with theoretical predictions and with results from vertical free flights. Experimental results for the air-breakdown threshold and POM ablation inside the thruster are compared with fluence data from beam propagation modeling.

  1. Low scatter and surface figure histories of the Space Infrared Experiment (SIRE) primary mirrors

    Science.gov (United States)

    Hammer, M. D. M.; Wirick, M. P.

    Data has been accumulated over a four year period documenting the total integrated scatter (TIS), bidirectional reflectance distribution function (BRDF), and surface figure for the primary mirrors of the Space Infrared Experiment (SIRE). The scatter data shows that degradation of an order of magnitude in TIS can be expected to occur in roughly 19 months at a Los Angeles laboratory climate, when using present storage techniques. The surface figure of the mirrors is shown to have little or no degradation with aging (less than or equal to 1/4-wave HeNe), but to have high dependency upon proper mounting and installation procedures. Cleaning and storage techniques are also presented.

  2. Environmental control and life support systems analysis for a Space Station life sciences animal experiment

    Science.gov (United States)

    So, Kenneth T.; Hall, John B., Jr.; Thompson, Clifford D.

    1987-01-01

    NASA's Langley and Goddard facilities have evaluated the effects of animal science experiments on the Space Station's Environmental Control and Life Support System (ECLSS) by means of computer-aided analysis, assuming an animal colony consisting of 96 rodents and eight squirrel monkeys. Thirteen ECLSS options were established for the reclamation of metabolic oxygen and waste water. Minimum cost and weight impacts on the ECLSS are found to accrue to the system's operation in off-nominal mode, using electrochemical CO2 removal and a static feed electrolyzer for O2 generation.

  3. The AFP-675 Far Ultraviolet Cameras experiment - Observations of the far-UV space environment

    Science.gov (United States)

    Carruthers, George R.; Morrill, Jeff S.; Dohne, Brian C.; Christensen, Susan A.

    1993-01-01

    The NRL's Far UV Cameras experiment flew aboard the Shuttle Orbiter on STS-39, in 1991: obtaining 105-200 nm measurements of the upper atmosphere, astronomical targets, and the Shuttle environment. Attention is presently given to observations of O2 density vs altitude in the nighttime atmosphere, the nocturnal ionosphere, Space Shuttle FUV glow, and photometry for both the stars and diffuse sources of 12 star fields at high and low galactic latitudes. The first FUV observations of the extended region of reflection nebulosity in Scorpius are included.

  4. Nuclear radiation interference and damage effects in charged particle experiments for extended space missions.

    Science.gov (United States)

    Trainor, J. H.; Teegarden, B. J.

    1971-01-01

    Demonstration that meaningful galactic and solar cosmic radiation measurements can be carried out on deep space missions. The radioisotopic thermoelectric generators (RTGs) which must be used as a source of power and perhaps of heat are a problem, but with proper separation from the experiments, with orientation, and with some shielding the damage effects can be reduced to an acceptable level. The Pioneer spacecraft are crucial in that they are targeted at the heart of Jupiter's radiation belts, and should supply the details of those belts. The subsequent Grand Tour opportunities can be selected for those periods which result in larger distances of closest approach to Jupiter if necessary.

  5. The solar cell experiment of the first Brazilian complete space mission satellite

    International Nuclear Information System (INIS)

    The first satellite of the Brazilian full space mission will host a solar cell experiment (SCE). The objective of the SCE is to qualify, in real mission, the solar cells developed at the University of Sao Paulo. The solar cell array consists of 6 p-n junction single crystal silicon, 10Ω.cm, n-type phosphorus doped subtracts, 2 x 2cm2 area cells. The objective of this paper is to describe the development of the solar cell experiment and the mathematical procedures used for the determination of the I x V curve output parameters. This method is based in the numerical fit of the voltage versus temperatures curve of the SCE cells as telemetered by the satellite. A laboratory simulation of the electrical behavior of the SCE has shown that analytical method is excellent for the interpretation of the telemetered SCE signal

  6. The relative benefits of green versus lean office space: three field experiments.

    Science.gov (United States)

    Nieuwenhuis, Marlon; Knight, Craig; Postmes, Tom; Haslam, S Alexander

    2014-09-01

    Principles of lean office management increasingly call for space to be stripped of extraneous decorations so that it can flexibly accommodate changing numbers of people and different office functions within the same area. Yet this practice is at odds with evidence that office workers' quality of life can be enriched by office landscaping that involves the use of plants that have no formal work-related function. To examine the impact of these competing approaches, 3 field experiments were conducted in large commercial offices in The Netherlands and the U.K. These examined the impact of lean and "green" offices on subjective perceptions of air quality, concentration, and workplace satisfaction as well as objective measures of productivity. Two studies were longitudinal, examining effects of interventions over subsequent weeks and months. In all 3 experiments enhanced outcomes were observed when offices were enriched by plants. Implications for theory and practice are discussed. PMID:25068481

  7. An Innovation Teaching Experience Following Guidelines of European Space of Higher Education in the Interactive Learning

    Science.gov (United States)

    Zamorano, M.; Rodríguez, M. L.; Ramos-Ridao, A. F.; Pasadas, M.; Priego, I.

    The Area of Environmental Technology in Department of Civil Engineering has developed an innovation education project, entitled Application of new Information and Communication Technologies in Area of Environmental Technology teaching, to create a Web site that benefits both parties concerned in teaching-learning process, teachers and students. Here teachers conduct a supervised teaching and students have necessary resources to guide their learning process according to their capacities and possibilities. The project has also included a pilot experience to introduce European Space of Higher Education (ESHE) new teaching concept based on student's work, in one subject of Environmental Science degree, considering interactive learning complementary to presence teaching. The experience has showed strength and weakness of the method and it is the beginning in a gradual process to guide e-learning education in future.

  8. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  9. Microbial uptake of uranium, cesium, and radium

    International Nuclear Information System (INIS)

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed

  10. Determination of modelling parameter in the fluctuation and migration of Cesium in soils

    International Nuclear Information System (INIS)

    Cesium radionuclide is one of fission products with high level activity and long life, of about 30 years, therefore it is used as an indicator of a fission product released from a nuclear reactor or a radioactive waste storage. The migration process of cesium in soil is influent by physical and chemical properties of soil and environment in which the sorption process occurred. The data of the physical and chemical properties and the radionuclide retardation in such area are needed for the study of mathematical models of radionuclide migration. The experiment has been performed in laboratory by using soils with particle sizes of -4 - 4.48x10-2 cm/second; the longitudinal dispersivity 0.030 - 0.241 cm; the coefficient of longitudinal dispersion was 4.96x10-5 - 7.69x10-3 cm2/second and retardation factor was 2.30 - 3.39

  11. Chemical treatment of aqueous radioactive Cesium-137 waste using Ferri Chloride

    International Nuclear Information System (INIS)

    Ferric Chloride 6H2O was used for treatment of liquid radioactive wastes containing Cesium-137. Various concentration of ferric chloride 6H2O have been added into the waste at different pH and speed of stirrer. The treatment was based on the coagulans-flocculation and coprecipitation mechanisms. The best result of this experiment was achieved by adding 300 ppm of Ferric chloride 6 H2O into liquid waste on following condition the rate Stirrer was 250 rpm. At this condition, it was found that the separation efficiency and the decontamination factor were 83.32 % and 5.99. The activity of decreasing of aqueous radioactive Cesium-137 waste was 2.10 x 10-4 Ci/l to 3.50 x 10-5 Ci/l

  12. X-ray experiments for Space applications in intermediate energy range

    CERN Document Server

    Yadav, Vipin K; Nandi, Anuj; Palit, Sourav

    2009-01-01

    X-ray experiments in the intermediate energy range (1-50 keV) are carried out at the Indian Centre for Space Physics (ICSP), Kolkata for space application. The purpose is to carry out developmental studies of space instruments to observe energetic phenomena from compact objects (black hole and compact stars) and active stars and their testing and evaluation. The testing/evaluation setup primarily consists of an X-ray generator, various X-ray imaging masks, an X-ray imager (CMOS) and an X-ray spectrometer (Si-PIN photo-diode). The X-ray generator (Mo target) operates in 1-50 kV anode voltage, and 1-30 mA beam current. A 45 feet long shielded collimator is used to collimate the beam which leads to the detector chamber having a 30 arc-sec angular diameter. Two types of imaging masks are used - conventional Coded Aperture Masks (CAM) and Tungsten Fresnel half-period zone-plates (ZPs) having angular resolutions of a few tens of arc-sec. The Moire fringe pattern produced by the composite shadows of two ZPs is inver...

  13. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development. PMID:23701214

  14. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution

    International Nuclear Information System (INIS)

    In order to identify a more efficient biosorbent for 137Cs, we have investigated the biosorption behavior and mechanism of 137Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of 137Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of 137Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of 137Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of 137Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. - Highlights: • Microorganisms isolated from a cesium solution are considered as a biosorbent to remove cesium ions. • The biosorption equilibrium is fitted well to a Langmuir model with a correlation coefficient of 0.9997. • First attempt to explore biosorption mechanisms using PIXE and EPBS. • Living and dead microorganisms have different biosorption mechanisms. • The biosorption of 137Cs involved a two-step process: passive and active

  15. NASA's Rodent Research Project: Validation of Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen

  16. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    International Nuclear Information System (INIS)

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive 137Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L-1 at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  17. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Volchek, Konstantin, E-mail: Konstantin.Volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Kuang, Wenxing [SAIC Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L{sup -1} at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  18. The Cold Atom Laboratory: a facility for ultracold atom experiments aboard the International Space Station

    Science.gov (United States)

    Aveline, David; CAL Team

    2016-05-01

    Spread across the globe there are many different experiments in cold quantum gases, enabling the creation and study of novel states of matter, as well as some of the most accurate inertial sensors currently known. The Cold Atom Laboratory (CAL), being built at NASA's Jet Propulsion Laboratory (JPL), will be a multi-user facility that will allow the first study of ultracold quantum gases in the microgravity conditions of the International Space Station (ISS). The microgravity environment offers a wealth of advantages for studies of cold atoms, including expansion into extremely weak traps and achieving unearthly cold temperatures. It will also enable very long interaction times with released samples, thereby enhancing the sensitivity of cold atom interferometry. We will describe the CAL mission objectives and the flight hardware architecture. We will also report our ongoing technology development for the CAL mission, including the first microwave evaporation to Bose-Einstein condensation (BEC) on a miniaturized atom chip system, demonstrated in JPL's CAL Ground Testbed. We will present the design, setup, and operation of two experiments that reliably generate and probe BECs and dual-species mixtures of Rb-87 and K-39 (or K-41). CAL is scheduled to launch to the ISS in 2017. The CAL mission is supported by NASA's SLPS and ISS-PO. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract with the National Aeronautics and Space Administration.

  19. EUV multilayer coated mirrors for atto-physics, photolithography and space experiments: Software design procedure

    International Nuclear Information System (INIS)

    Extreme ultraviolet multilayer coatings consist of periodic or aperiodic stack of two or more material layers in the nanometric scale. They are fundamental in a very wide range of applications: in atto-physics they allow manipulation of high order harmonics by compressing ultrafast pulses in the atto-second regime; in the free electron laser beamlines they can be used to select the proper harmonics while rejecting unwanted ones; in space experiments they are employed in astrophysical instrumentation dedicated to space weather studies for the observation of solar disk and coronal plasmas; in microelectronics industry they are used as coatings of mirrors and projection masks in extreme ultraviolet lithographic apparatus for integrated circuit production. The more and more sophisticated level of such experiments and apparatus required the realization of multilayers with very strict requirements; in particular high control of reflecting curve shape and phase, and stability with respect to deposition process can be achieved only by deposition of aperiodic structure. Optimization of such structures usually requires a quite complex mathematical approach; an innovative software tool to perform such designs is presented.

  20. Movie of phase separation during physics of colloids in space experiment

    Science.gov (United States)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  1. Phase separation during the Experiment on Physics of Colloids in Space

    Science.gov (United States)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  2. EUV multilayer coated mirrors for atto-physics, photolithography and space experiments: Software design procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pelizzo, Maria G., E-mail: pelizzo@dei.unipd.i [CNR-INFM LUXOR Lab., via Trasea 7, 35131 Padova (Italy); UNIPD-DEI LUXOR Lab., via Gradenigo 6B, 35131 Padova (Italy); Suman, M. [CNR-INFM LUXOR Lab., via Trasea 7, 35131 Padova (Italy); UNIPD-DEI LUXOR Lab., via Gradenigo 6B, 35131 Padova (Italy); Windt, D.L. [RXO LLC 1361 Amsterdam Ave., Suite 3B, NY 10027 (United States); Zuppella, P.; Nicolosi, P. [CNR-INFM LUXOR Lab., via Trasea 7, 35131 Padova (Italy); UNIPD-DEI LUXOR Lab., via Gradenigo 6B, 35131 Padova (Italy)

    2010-11-11

    Extreme ultraviolet multilayer coatings consist of periodic or aperiodic stack of two or more material layers in the nanometric scale. They are fundamental in a very wide range of applications: in atto-physics they allow manipulation of high order harmonics by compressing ultrafast pulses in the atto-second regime; in the free electron laser beamlines they can be used to select the proper harmonics while rejecting unwanted ones; in space experiments they are employed in astrophysical instrumentation dedicated to space weather studies for the observation of solar disk and coronal plasmas; in microelectronics industry they are used as coatings of mirrors and projection masks in extreme ultraviolet lithographic apparatus for integrated circuit production. The more and more sophisticated level of such experiments and apparatus required the realization of multilayers with very strict requirements; in particular high control of reflecting curve shape and phase, and stability with respect to deposition process can be achieved only by deposition of aperiodic structure. Optimization of such structures usually requires a quite complex mathematical approach; an innovative software tool to perform such designs is presented.

  3. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    Science.gov (United States)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  4. Space, place and atmosphere. Emotion and peripherical perception in architectural experience

    Directory of Open Access Journals (Sweden)

    Juhani Pallasmaa

    2014-07-01

    Full Text Available Architectural experiences are essentially multi-sensory and simultaneous, and a complex entity is usually grasped as an atmosphere, ambience or feeling. In fact, the judgement concerning the character of a space or place calls for categories of sensing that extend beyond the five Aristotelian senses, such as the embodied existential sense, and, as a result, the entity is perceived in a diffuse, peripheral and unconscious manner. Paradoxically, we grasp an atmosphere before we have consciously identified its constituent factors and ingredients. «We perceive atmospheres through our emotional sensibility – a form of perception that works incredibly quickly, and which we humans evidently need to help us survive», Peter Zumthor suggests. We are mentally and emotionally affected by works of art before we understand them, or we may not understand them intellectually at all. Sensitive artists and architects intuit experiential and emotive qualities of spaces, places and images. This capacity calls for a specific kind of imagination, an emphatic imagination. Atmospheres are percieved peripherally through diffuse vision interacting with other sense modalities, and they are experienced emotionally rather than intellectually. The studies on the differentiation of the two brain hemispheres suggest that atmospheres are perceived through the right hemisphere. Somewhat surprisingly, atmospheres are more conscious objectives in literature, cinema, theater, painting and music than in architecture, which has been traditionally approached formally and perceived primarily through focused vision. Yet, when we see a thing in focus, we are outsiders to it, whereas the experience of being in a space calls for peripheral and unfocused perception. One of the reasons for the experiential poverty of contemporary settings could be in the poverty of their peripheral stimuli.

  5. The LTP Experiment on LISA Pathfinder: Operational Definition of TT Gauge in Space

    Science.gov (United States)

    Armano, Michele

    2011-10-01

    The European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) are planning the Laser Interferometer Space Antenna (LISA) mission in order to detect GW. The need of accurate testing of free-fall and knowledge of noise in a space environment similar to LISA's is considered mandatory a pre-phase for the project. Therefore the LISA Pathfinder mission has been designed by ESA to fly the LISA Technology Package (LTP), aiming at testing free-fall by measuring the residual acceleration between two test-bodies in the dynamical scheme we address as "drag-free". The spectral map of the residual acceleration as function of frequency will convey information on the local noise level, thus producing a picture of the environmental working conditions for LISA itself. The thesis contains abundant material on the problem of compensating static gravity, the development of a theory of orthogonalization of reference and cross-talk for the LTP experiment. The construction of the laser detection procedure starting from GR and differential geometry arguments is carried on. Effort was put in pointing out the physical motivations for the choices made in several other papers by the author and colleagues. In this perspective the thesis is meant as a summary tool for the LTP collaboration. In the second part of the thesis we summarize our contributions for a measurement of G onboard LTP and review on possible tests of fundamental physics the mission might embody. A wide part of the thesis is now part of the LTP Operation Master Plan, describing the real science and operations onboard LISA Pathfinder. This thesis was defended on September 26th, 2006 at the University of Como, Italy.

  6. Project Based Learning experiences in the space engineering education at Technical University of Madrid

    Science.gov (United States)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta

    2015-10-01

    This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.

  7. Spatial variability and Cesium-137 inventories in native forest

    International Nuclear Information System (INIS)

    With the nuclear fission discovery and development of nuclear weapons in 1940s, artificial radioisotopes were introduced in the environment. This contamination is due to worldwide fallout by superficial nuclear tests realized from early 1950s to late 1970s by USA, former URSS, UK, France and China. One of theses radioisotopes that have been very studied is cesium-137. Cesium-137 has a half-life of 30.2 years and its biological behavior is similar to the potassium. The behavior in soil matrix, depth distribution, spatial variability and inventories values of cesium-137 has been determinate for several regions of the world. In Brazil, some research groups have worked on this subject, but there are few works published about theses properties of cesium-137. The aim of this paper was study the depth distribution, spatial variability, and inventory of cesium-137 in native forest. Two native forests (Mata 1 and Mata UEL) were sampling in region of Londrina, PR. The results shows that there is a spatial variability of 40% for Mata 1 and 42% for Mata UEL. The depth distribution of cesium-137 for two forests presented a exponential form, characteristic to undisturbed soil. Cesium-137 inventory determinate for Mata 1 was 358 Bq m-2 and for Mata UEL was 320 Bq m-2. (author)

  8. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    Science.gov (United States)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  9. Design and Preparation of a Particle Dynamics Space Flight Experiment, SHIVA

    Science.gov (United States)

    Trolinger, James; L'Esperance, Drew; Rangel, Roger; Coimbra, Carlos; Wiltherow, William

    2003-01-01

    ABSTRACT This paper describes the flight experiment, supporting ground science, and the design rationale for project SHIVA (Spaceflight Holography Investigation in a Virtual Apparatus). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravity often dominates the equations of motion of a particle in a fluid, so microgravity provides an ideal environment to study the other forces, such as the pressure and viscous drag and especially the Basset history force. We have developed diagnostic recording methods using holography to save all of the particle field optical characteristics, essentially allowing the experiment to be transferred from space back to earth in what we call the "virtual apparatus" for on-earth microgravity experimentation. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply new analytical solutions developed by members of the team as reported in the 2001 Conference (Banff, Canada). In addition to employing microgravity to augment the fundamental study of these forces, the resulting data will allow us to quantify and understand the ISS environment with great accuracy. This paper shows how we used both experiment and theory to identify and resolve critical issues and produce an optimal the study. We examined the response of particles of specific gravity from 0.1 to 20, with radii from 0.2 to 2mm. to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. To observe some of the interesting effects predicted by the new solutions requires the precise location of the position of a particle in three dimensions. To this end we have developed digital holography algorithms that enable particle position location to a small fraction of a pixel in a CCD array. The spaceflight system will record holograms both on film and electronically. The electronic holograms can be downlinked providing real time data, essentially acting like a remote window into the ISS

  10. Pollution of drug-technical materials by cesium-137

    International Nuclear Information System (INIS)

    Drug-technical raw materials are medicinal plants (flowers, folium, grasses, mushrooms, roots, fruits, berry, kidney, cortex), used in pharmacy. To limit receipt cesium-137 in people body in 1993 in the Republic of Belarus were created 'Temporary permission levels of the cesium-137 radionuclides contents in drug-technical raw materials' were created (TPL-1993). The permission levels of cesium-137 are following: for drug-technical raw material (flowers, folium, grass, mushrooms, roots and other plants parts) - 1850 Bq/kg, for dried up fruits and berries - 2590 Bq/kg. (Author)

  11. Synthesis and peculiarities of the cesium zeolite crystal structure (cesite)

    International Nuclear Information System (INIS)

    An attempt is made to synthesize cesium zeolite by introduction of amorphous seed crystals which correspond by composition with cesium-containing zeolite into the aluminosilicate gel, since this method can produce zeolite with a crystal structure it would not adopt under the usual conditions. It is seen that during crystablization upon introduction of a seed crystal the cesium content in zeolite decreases. A more complete structural elucidation of zeolite obtained by the suggested method was carried out by x0ray and IR spectral analyses. The data of x-ray analysis showed that the structures of synthesized zeolite and binary octagonal pores are similar

  12. PKE-Nefedov: plasma crystal experiments on the International Space Station

    International Nuclear Information System (INIS)

    The plasma crystal experiment PKE-Nefedov, the first basic science experiment on the International Space Station (ISS), was installed in February 2001 by the first permanent crew. It is designed for long-term investigations of complex plasmas under microgravity conditions. 'Complex plasmas' contain ions, electrons, neutrals and small solid particles - normally in the micrometre range. These microparticles obtain thousands of elementary charges and interact with each other via a 'screened' Coulomb potential. Complex plasmas are of special interest, because they can form liquid and crystalline states (Thomas et al 1994 Phys. Rev. Lett. 73 652-5, Chu and I 1994 Phys. Rev. Lett. 72 4009-12) and are observable at the kinetic level. In experiments on Earth the microparticles are usually suspended against gravity in strong electric fields. This creates asymmetries, stresses and pseudo-equilibrium states with sufficient free energy to readily become unstable. Under microgravity conditions the microparticles move into the bulk of the plasma (Morfill et al 1999 Phys. Rev. Lett. 83 1598), experiencing much weaker volume forces than on Earth. This allows investigations of the thermodynamics of strongly coupled plasma states under substantially stress-free conditions. In this first paper we report our results on plasma crystals, in particular the first experimental observations of bcc lattice structures

  13. Fluid Merging Viscosity Measurement (FMVM) Experiment on the International Space Station

    Science.gov (United States)

    Antar, Basil N.; Ethridge, Edwin; Lehman, Daniel; Kaukler, William

    2007-01-01

    The concept of using low gravity experimental data together with fluid dynamical numerical simulations for measuring the viscosity of highly viscous liquids was recently validated on the International Space Station (ISS). After testing the proof of concept for this method with parabolic flight experiments, an ISS experiment was proposed and later conducted onboard the ISS in July, 2004 and subsequently in May of 2005. In that experiment a series of two liquid drops were brought manually together until they touched and then were allowed to merge under the action of capillary forces alone. The merging process was recorded visually in order to measure the contact radius speed as the merging proceeded. Several liquids were tested and for each liquid several drop diameters were used. It has been shown that when the coefficient of surface tension for the liquid is known, the contact radius speed can then determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Experimental and numerical results will be presented in which the viscosity of different highly viscous liquids were determined, to a high degree of accuracy, using this technique.

  14. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Science.gov (United States)

    Yi, Grace T.; deGroh, Kim, K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  15. Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission

    Science.gov (United States)

    Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.

    1993-01-01

    In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a

  16. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Separation of 137cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137Cs leach rate was 0.001 gm/cm2/d. (author)

  17. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Directory of Open Access Journals (Sweden)

    Ravinder eJerath

    2015-08-01

    Full Text Available The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information is filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  18. Regenerative water supply for an interplanetary space station: The experience gained on the space stations “Salut”, “Mir”, ISS and development prospects

    Science.gov (United States)

    Bobe, Leonid; Samsonov, Nikoly; Gavrilov, Lev; Novikov, Vladimir; Tomashpolskiy, Mihail; Andreychuk, Peter; Protasov, Nikoly; Synjak, Yury; Skuratov, Vladimir

    2007-06-01

    Based on the experience in operation of Russian space stations Salut, Mir and International space station ISS the station's water balance data, parameters and characteristics of the systems for water recovery have been obtained. Using the data design analysis an integrated water supply system for an interplanetary space station has been performed. A packaged physical/chemical system for water supply is composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. The take off mass of the packaged water supply system (including expendables, redundancy hardware, equivalent mass of power consumption and of thermal control) is appropriate for Mars missions. The international space station is indispensable for verifying innovative processes and new water recovery systems intended for missions to Mars.

  19. A space radiation shielding model of the Martian radiationenvironment experiment (MARIE)

    Energy Technology Data Exchange (ETDEWEB)

    Atwell, William; Saganti, Premkumar; Cucinotta, Francis A.; Zeitlin, Cary J.

    2004-12-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.

  20. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    International Nuclear Information System (INIS)

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset

  1. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    Science.gov (United States)

    Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Particle aggregation in microgravity: Informal experiments on the International Space Station

    Science.gov (United States)

    Love, Stanley G.; Pettit, Donald R.; Messenger, Scott R.

    2014-05-01

    We conducted experiments in space to investigate the aggregation of millimeter- and submillimeter-sized particles in microgravity, an important early step in planet formation. Particulate materials included salt (NaCl), sugar (sucrose), coffee, mica, ice, Bjurböle chondrules, ordinary and carbonaceous chondrite meteorite fragments, and acrylic and glass beads, all triply confined in clear plastic containers. Angular submillimeter particles rapidly and spontaneously formed clusters strong enough to survive turbulence in a protoplanetary nebula. Smaller particles generally aggregated more strongly and quickly than larger ones. We observed only a weak dependence of aggregation time on particle number density. We observed no strong dependence on composition. Round, smooth particles aggregated weakly or not at all. In a mixture of particle types, some phases aggregated more readily than others, creating selection effects that controlled the composition of the growing clumps. The physical process of aggregation appears to be electrostatic in nature.

  3. International Space Station United States Orbital Segment Oxygen Generation System On-Orbit Operational Experience

    Science.gov (United States)

    Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.

    2008-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  4. The Komplast Experiment: Space Environmental Effects after 12 Years in LEO (and Counting)

    Science.gov (United States)

    Shaevich, S. K.; Aleksandrov, N. G.; Shumov, A. E.; Novikov, L. S.; Alred, J. A.; Shindo, D. J.; Kravchenko, M.; Golden, J. L.

    2013-01-01

    The Komplast materials experiment was designed by the Khrunichev State Research and Production Space Center, together with other Russian scientific institutes, and has been carried out by Mission Control Moscow since 18. Komplast panels fitted with material samples and sensors were located on the International Space Station (ISS) Functional Cargo Block (FGB) module exterior surface. Within the framework of this experiment, the purpose was to study the effect of the low earth orbit (LEO) environment on exposed samples of various materials. The panels were sent into orbit with the FGB when it launched on November 20, 1998. Panels #2 and #10 were retrieved during Russian extravehicular activity in February 2011 and sealed within cases to temporarily protect the samples from exposure to air until they could be studied on the ground. Panel #2 contained an experiment to detect micrometeoroid and orbital debris (MMOD) impacts, radiation and UV sensors, several pieces of electrical cable, and samples made from elastomeric and fluoroplastic materials. Panel #10 contained a temperature sensor, and both carbon composite and adhesive-bonded samples. A figure shows the location of panels #2 and #10 on the FGB module aft endcone. The panels were subsequently returned to Earth by Space Shuttle Discovery on the STS-133/ULF-5 mission after 12 years of LEO exposure and opened in an argon chamber at the Institute of Nuclear Physics at Moscow State University in July 2011. Based on the results of analyzing the readings from sensors located on Komplast panels and in studying material samples from the panels, the comprehensive effect of spaceflight factors on the FGB (at the locations of Panels #2 and #10) was evaluated. Total solar exposure was determined to be 960 +/- 200 kJ/square cm or 21,000 equivalent solar hours. Because of location of these two panels and the ISS flight attitude, atomic oxygen (AO) fluence was relatively low for such a long duration exposure, approximately 1.5x

  5. Structural control sensors for CASES. [Control, Astrophysics and Structures Experiment in Space

    Science.gov (United States)

    Davis, Hugh W.; Sharkey, John P.; Carrington, Connie K.

    1990-01-01

    The Remote Attitude Measurement Sensor (RAMS) is currently baselined to meet two important sensor needs for CASES (Control, Astrophysics and Structures Experiment in Space). First, as a tip displacement sensor, RAMS is designed to provide accurate knowledge of the position and orientation of the boom tip assembly. Secondly, as a boom motion tracker, it is designed to monitor 43 reflective targets which are distributed along the length of the boom and provide displacment information for post facto processing. The design and operation of RAMS as these two types of sesnors are described, and attention is given to how RAMS interfaces with the CASES closed-loop control system and how systems identification is accommodated.

  6. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  7. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10-7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/2/2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  8. A search for experiments to exploit the space shuttle environment, volume 1

    Science.gov (United States)

    Fenn, J. B.

    1979-01-01

    A search for worthwhile experiments in pure and applied physics and chemistry which might take advantage of conditions achievable aboard the space shuttle is documented. Of particular interest were the very large pumping speeds at high or ultra high vacuum, the highly nonequilibrium composition of the ambient atmosphere, and the relative absence of gravitational effects. Ideas and suggestions were solicated in the course of visits to 31 research establishments in Western Europe, India, and Japan; conversations with over 90 scientists; and presentations at 3 international meetings. Intriguing possibilities emerged in the following arenas: (1) spectroscopy of the transition state in chemical reactions; (2) flame structure and analysis; (3) solid propellant combustion; (4) analysis of atmospheric composition; (5) turbulence effects on aerosol coagulation.

  9. Radiation damage of electronic components to be used in a space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, M.; Alpat, B.; Battiston, R.; Bizzarri, M.; Blasko, S.; Di Masso, L.; Fiori, E.M.; Papi, A.; Scolieri, G

    2002-12-01

    Commercial off-the-shelf components can be successfully used in scientific payloads installed in spacecraft flying on Low Earth Orbits (LEO). Several experiments (AMS01, NINA) have already used these components, some others are planning to use them (AMS02, PAMELA and GLAST). In order to establish the reliability of these components careful tests need to be performed according to space qualification rules. There are two main types of possible damage that needs to be tested: the total dose damage and the single event effects (SEE). In this paper we will describe the physical cause of both the effects, explain how to conduct a test according to ESA/SSC standard rules and give some examples of components that have been tested by the AMS collaboration.

  10. Thermal and Mechanical Testing of Neoprene Gloves Used in a Space Shuttle Microgravity Glove Box Experiment

    Science.gov (United States)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.

  11. Performance of a radiatively cooled system for quantum optomechanical experiments in space

    CERN Document Server

    Pilan-Zanoni, André; Johann, Ulrich; Aspelmeyer, Markus; Kaltenbaek, Rainer; Hechenblaikner, Gerald

    2015-01-01

    The performance of a radiatively cooled instrument is investigated in the context of optomechanical quantum experiments, where the environment of a macroscopic particle in a quantum-superposition has to be cooled to less than 20\\,K in deep space. A heat-transfer analysis between the components of the instrument as well as a transfer-function analysis on thermal oscillations induced by the spacecraft interior and by dissipative sources is performed. The thermal behaviour of the instrument in an orbit around a Lagrangian point and in a highly elliptical Earth orbit is discussed. Finally, we investigate further possible design improvements aiming at lower temperatures of the environment of the macroscopic particle. These include a mirror-based design of the imaging system on the optical bench and the extension of the heat shields.

  12. Biosorption of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Some fundamental aspects of the biosorption of metals by microbial cells were investigated. These studies were carried out in conjunction with efforts to develop a process to utilize microbial cells as biosorbents for the removal of radionuclides from waste streams generated by the nuclear fuel cycle. It was felt that an understanding of the mechanism(s) of metal uptake would potentially enable the enhancement of the metal uptake phenomenon through environmental or genetic manipulation of the microorganisms. Also presented are the results of a preliminary investigation of the applicability of microorganisms for the removal of 137cesium and 226radium from existing waste solutions. The studies were directed primarily at a characterization of uranium uptake by the yeast, Saccharomyces cerevisiae, and the bacterium, Pseudomonas aeruginosa

  13. Double manganese(III) cesium triphosphate

    International Nuclear Information System (INIS)

    Double triphosphates have been identified in research on interactions in the P2O5-M2O3-Cs2O-H2O system, where M(III) = Al, Ga, Cr, Fe, at 570-770K, which have the M(III)Cs2 - P3O10 composition; here we report the identification of a new phase made under analogous conditions in a system containing Mn(III) together with some of its physicochemical properties. The product was analyzed for phosphorus by a colorimetric method, for manganese by titration with EDTA, and for cesium by atomic absorption. The x-ray phase analysis was performed with a DRON-3.0 diffractometer. The IR spectra were recorded. Thermogravimetry indicates that the product is MnCs2P3O10·H2O

  14. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  15. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  16. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    International Nuclear Information System (INIS)

    The expected performance of a proposed ion exchange column using SuperLig(regsign) 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig(regsign) 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig(regsign) 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig(regsign) 644 resin for application in the RPP pretreatment facility

  17. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  18. Virtual adult ears reveal the roles of acoustical factors and experience in auditory space map development.

    Science.gov (United States)

    Campbell, Robert A A; King, Andrew J; Nodal, Fernando R; Schnupp, Jan W H; Carlile, Simon; Doubell, Timothy P

    2008-11-01

    Auditory neurons in the superior colliculus (SC) respond preferentially to sounds from restricted directions to form a map of auditory space. The development of this representation is shaped by sensory experience, but little is known about the relative contribution of peripheral and central factors to the emergence of adult responses. By recording from the SC of anesthetized ferrets at different age points, we show that the map matures gradually after birth; the spatial receptive fields (SRFs) become more sharply tuned and topographic order emerges by the end of the second postnatal month. Principal components analysis of the head-related transfer function revealed that the time course of map development is mirrored by the maturation of the spatial cues generated by the growing head and external ears. However, using virtual acoustic space stimuli, we show that these acoustical changes are not by themselves responsible for the emergence of SC map topography. Presenting stimuli to infant ferrets through virtual adult ears did not improve the order in the representation of sound azimuth in the SC. But by using linear discriminant analysis to compare different response properties across age, we found that the SRFs of infant neurons nevertheless became more adult-like when stimuli were delivered through virtual adult ears. Hence, although the emergence of auditory topography is likely to depend on refinements in neural circuitry, maturation of the structure of the SRFs (particularly their spatial extent) can be largely accounted for by changes in the acoustics associated with growth of the head and ears. PMID:18987192

  19. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    Science.gov (United States)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  20. 3D Printing in Zero-G Experiment, In Space Manufacturing (LPS, 4)

    Science.gov (United States)

    Bean, Quincy; Cooper, Ken; Werkheiser, Niki

    2015-01-01

    The 3D Printing in Zero-G Experiment has been an ongoing effort for several years. In June 2014 the technology demonstration 3D printer was launched to the International Space Station. In November 2014 the first 21 parts were manufactured in orbit marking the beginning of a paradigm shift that will allow astronauts to be more self-sufficient and pave the way to larger scale orbital manufacturing. Prior to launch the 21 parts were built on the ground with the flight unit with the same feedstock. These ground control samples are to be tested alongside the flight samples in order to determine if there is a measurable difference between parts built on the ground vs. parts built in space. As of this writing, testing has not yet commenced. Tests to be performed are structured light scanning for volume and geometric discrepancies, CT scanning for density measurement, destructive testing of mechanical samples, and SEM analysis for inter-laminar adhesion discrepancies. Additionally, an ABS material characterization was performed on mechanical samples built from the same CAD files as the flight and ground samples on different machine / feedstock combinations. The purpose of this testing was twofold: first to obtain mechanical data in order to have a baseline comparison for the flight and ground samples and second to ascertain if there is a measurable difference between machines and feedstock.