WorldWideScience

Sample records for cesium removal process

  1. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  2. An isotope dilution-precipitation process for removing radioactive cesium from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Harold, E-mail: rogers22@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States); Bowers, John; Gates-Anderson, Dianne [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Developed an isotope dilution-precipitation treatment process for Cs-137 contaminated water. Black-Right-Pointing-Pointer Waste seeded with non-radioactive Cs-133 prior to precipitation with sodium tetraphenylborate. Black-Right-Pointing-Pointer Final Cs-137 concentrations below DOE discharge limit of 3.0 Multiplication-Sign 10{sup -6} {mu}Ci/mL can be achieved. Black-Right-Pointing-Pointer Synthetic wastewater, and industrial low level radioactive proof of principle studies completed. - Abstract: A novel isotope dilution-precipitation method has been developed to remove cesium-137 from radioactive wastewater. The process involves adding stable cesium chloride to wastewater in order to raise the total cesium concentration, which then allows both the stable and radioactive cesium ions to be precipitated together using sodium tetraphenylborate. This process was investigated utilizing laboratory solutions to determine stable cesium dose rates, mixing times, effects of pH, and filtration requirements. Once optimized, the process was then tested on synthetic wastewater and aqueous low-level waste. Experiments showed the reaction to be very quick and stable in the pH range tested, 2.5-11.5. The wastewater may need to be filtered using a 0.45-{mu}m filter, though ferric sulfate has been shown to promote coagulation and settling, thereby eliminating the necessity for filtration. This investigation showed that this isotope dilution-precipitation process can remove Cs-37 levels below the U.S. Department of Energy's (DOE) Derived Concentration Standard (DCS) of 3.0 Multiplication-Sign 10{sup -6} {mu}Ci/mL using a single dosage, potentially allowing the wastewater to be discharged directly to sanitary sewers.

  3. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  4. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    International Nuclear Information System (INIS)

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL

  5. Laboratory evaluation of an ion exchange process for removing cesium from Purex acid waste solutions

    International Nuclear Information System (INIS)

    A laboratory investigation was made of an ion exchange process for removing radioactive cesium from acidic Purex waste. Twenty-seven laboratory ion exchanger runs are reported. Parameters investigated include comparison of Zeolon-900, AW-500 and Duolite ARC-359 ion exchangers, pH of feed solutions, composition of sodium scrub solutions, composition of eluting solutions and overflow versus downflow elution. The cause and rate of zeolite degradation was investigated

  6. Industrial scale removal of cesium with hexacyanoferrate exchanger -- Process realization and test run

    International Nuclear Information System (INIS)

    At the Loviisa Nuclear Power Station (NPS) all liquid waste, i.e., spent resins and evaporator concentrates, have been stored in a large tank storage facility. Dominating radionuclides in the evaporator concentrates have been 134Cs and 137Cs. By removing cesium from the waste, purified liquid can be released within licensed release limits, and cobalt as a second dominating nuclide is left in a small waste volume on the bottom of the tank. Since 1985, the use of inorganic hexacyanoferrate-based materials for purification of cesium has been studied. A full-scale system for cesium removal, called the IVO-CsTreat System, was constructed in 1990 to 1991. A method to produce the ion exchanger in granular form in industrial scale was developed, and the facility to produce it was constructed. The ion exchange material was produced in 1991, and the full-scale purification facility was commissioned at the Loviisa NPS in October 1991. In the test run, 253 m3 of concentrate was purified between october 31, 1991 and June 11, 1992 with three ion exchange columns, each with a volume of 8 liters. A volume reduction factor of over 10,000 was achieved as the ratio of liquid and ion exchanger volume. The decontamination factor for cesium was ∼ 2,000

  7. ROBUSTNESS OF THE CSSX PROCESS TO FEED VARIATION: EFFICIENT CESIUM REMOVAL FROM THE HIGH POTASSIUM WASTES AT HANFORD

    International Nuclear Information System (INIS)

    This contribution finds the Caustic-Side Solvent Extraction (CSSX) process to be effective for the removal of cesium from the Hanford tank-waste supernatant solutions. The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. By use of a computerized CSSX thermodynamic model, it was calculated that the higher levels of potassium depress the cesium distribution ratio (DCs), as validated to within ±11% by the measurement of DCs values on various Hanford waste-simulant compositions. A simple analog model equation that can be readily applied in a spreadsheet for estimating the DCs values for the varying waste compositions was developed and shown to yield nearly identical estimates as the computerized CSSX model. It is concluded from the batch distribution experiments, the physical-property measurements, the equilibrium modeling, the flowsheet calculations, and the contactor sizing that the CSSX process as currently formulated for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds, albeit with more stages. For the most challenging Hanford waste composition tested, 31 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 2. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated based on experimental distribution ratios determined for an improved solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 0.010 M boric acid. The improved solvent and

  8. Development of a carousel ion-exchange process for removal of cesium-137 from alkaline nuclear waste

    International Nuclear Information System (INIS)

    A systematic model-based approach is used for development of an efficient carousel ion-exchange process for the selective removal of radioactive 137Cs+ from alkaline nuclear waste solutions. Equilibrium data for two resorcinol-formaledhyde (R-F) cation-exchange resins are correlated by an empirical equation of the Freundlich-Langmuir type over cesium/sodium concentration ratios of 10-9 to 10-2 and sodium concentrations of 1 to 6 N. The standard deviations are 3.5 and 6.6%, respectively. The data cannot be accurately described by mass action equations. A detailed rate model, developed in this study for the periodic countercurrent multicolumn operation of carousel systems, is used with the equilibrium correlations to simulate cesium breakthrough curves from R-F resin columns. Results show that accuracy of the predicted breakthrough curves are directly related to the accuracy of the isotherm data and correlations. Cesium breakthrough position is generally predicted to within 5% or less for 10 of 13 runs over linear superficial velocities of 0.16 to 8.8 cm/min, column lengths of 3.14 to 118.5 cm, and particle radii of 145 to 200 microm. One run shows later breakthrough than predicted as a result of a low potassium concentration in the feed. Two other runs show early breakthroughs as a result of channeling in poorly packed columns of a carousel system. Despite the channeling, strong thermodynamic self-sharpening effects helped establish constant pattern waves in the downstream columns. A case study for a pilot-scale carousel unit shows that 100% utilization of cesium capacity and maximum throughput can be achieved while containing the mass transfer zone within the downstream columns. Since intraparticle diffusion controls spreading of the breakthrough curves, reducing the particle radius from 200 to 145 microm increases throughput by 40%

  9. Removal of cesium from wastewater: A cesium-specific ion exchange resin

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Laboratory (SRL) have applied for a patent for an ion exchange resin that will remove cesium from water. Radioactive cesium-137 is a fission product of nuclear reactor operations. Cesium may enter the water of spent fuel holding basins through defects in fuel cladding. Control of cesium in these basins is desirable to keep personnel exposure to a minimum. Cesium is also present in the waste from reprocessing of defense nuclear reactor fuel. Research has been underway at SRL for over a decade to improve management of high-level reprocessing waste. The current technology separates the waste into soluble and insoluble components. Radioactive constituents are removed from the soluble component stream and combined with the insoluble components, which are then converted to a glass for long-term storage. Cesium is the most radioactive constituent of the soluble components stream. The SRL resin is a resorcinol-formaldehyde condensation polymer highly specific for cesium and is about 10 times more effective in removal of cesium than other ion exchange resins evaluated for use in processing defense nuclear waste. Tests have been run at SRL using both simulated and actual waste streams

  10. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134Cs+137Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134Cs+137Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  11. Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors

    International Nuclear Information System (INIS)

    An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste

  12. Research on decontamination of cesium contaminated soil by electrokinetic process

    International Nuclear Information System (INIS)

    In this research, electrokinetic process was applied for the decontamination of cesium contaminated soil. As a result, about 4.0 times cesium removal was achieved by applying a DC electric field of 80 V/m to comparing zero electric field in treatment for 30 days. Therefore, the electrokinetic process has a possibility to decontamination of cesium contaminated soil. (author)

  13. Evaluation of improved techniques for removing strontium and cesium from process wastewater and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The goal of this task is to evaluate new sorbent materials, ion-exchange materials, or other processes for groundwater and process wastewater decontamination that will be more selective for the removal of {sup 90}Sr and {sup 137}Cs than standard treatment methods. Laboratory studies will strive to obtain a quantitative understanding of the behavior of these new materials and to evaluate their sorption efficiency in reference to a standard benchmark treatment technique. Testing of the new materials will begin by conducting scoping tests where new treatment materials are compared with standard, commercially available materials in batch shaker tests. Sorption tests will be performed under various treatment conditions (e.g., pH, temperature, simulant waste composition) for the most promising materials. Additional testing with actual wastewater will be conducted with two or three of the most effective treatment methods. Once batch testing of a treatment method is completed, dynamic column tests will be performed using the most successful sorbents, to obtain the defining column operating parameters.

  14. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  15. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    International Nuclear Information System (INIS)

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

  16. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  17. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  18. Selective removal of cesium(I), strontium(II), barium(II) and lead(II) with ionizable lariat ethers in ion flotation process

    International Nuclear Information System (INIS)

    The work deals an application of ion flotation for selective removal of ion cesium(I), strontium(II), barium(II) and lead(II) from: (a) dilute and slightly acidic (pH=4 - 6) aqueous solutions of those ions at concentration -5 M; (b) radioactive sewages and waste solutions. The collective removal and separation of Cs(I), Sr(II), Ba(II), Pb(II) with macrocycle compounds, e.g. ionizable lariat ethers and non-ionizable foaming agent is shown

  19. Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Kobashigawa, Naoya; Ohkubo, Keiko; Terada, Hiroshi; Kishida, Naohiro; Akiba, Michihiro

    2012-09-15

    The presence of radionuclides at five water purification plants was investigated after an explosion at a nuclear power plant hit by the Great East Japan Earthquake on 11 March 2011. Radioactive iodine (¹³¹I) and cesium (¹³⁴Cs and ¹³⁷Cs) were detected in raw water in Fukushima and neighboring prefectures. ¹³¹I was not removed by coagulation-flocculation-sedimentation. ¹³¹I was removed by granular activated carbon (GAC) and powdered activated carbon (PAC) at a level of about 30%-40%, although ¹³¹I was not removed in some cases. This was also confirmed by laboratory-scale experiments using PAC. The removal percentages of ¹³¹I in river and pond waters by 25 mg dry/L of PAC increased from 36% to 59% and from 41% to 48%, respectively, with chlorine dosing before PAC. ¹³⁴Cs and ¹³⁷Cs were effectively removed by coagulation at both a water purification plant and in laboratory-scale experiments when turbidity was relatively high. In contrast, ¹³⁴Cs and ¹³⁷Cs in pond water with low turbidity were not removed by coagulation. This was because ¹³⁴Cs and ¹³⁷Cs in river water were present mainly in particulate form, while in pond water they were present mainly as cesium ions (¹³⁴Cs+ and ¹³⁷Cs+). However, the removal of ¹³⁴Cs and ¹³⁷Cs in pond water by coagulation increased markedly when ¹³⁴Cs and ¹³⁷Cs were mixed with sediment 24 h before coagulation. PMID:22717151

  20. Removal of cesium from aqueous solutions and radioactive waste stimulants by coprecipitated flotation

    International Nuclear Information System (INIS)

    Coprecipitated flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zinc hexacyanoferrate (ZnHCF) and subsequent flotation of the precipitate. Collectors of different types were tested but pyridinium chloride showed the best performance before undertaking the flotation investigations coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. The developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste stimulants . The obtained results compare favorably with data published for cesium removal by coprecipitation or adsorption processes. Besides, CPF seems to be more advantageous

  1. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    International Nuclear Information System (INIS)

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of 137Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having 137Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is designed to

  2. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system

  3. Hot demonstration of proposed commercial cesium removal technology: Progress report

    International Nuclear Information System (INIS)

    Cesium, strontium, and technetium radionuclides constitute a small fraction of the primarily sodium and potassium salts present in supernatants that are being stored in tanks at Hanford, Oak Ridge, Savannah River, and Idaho and must be remediated. Nuclide removal technologies supplied by the US Department of Energy Office of Science and Technology's Efficient Separations and Processing (ESP) Cross-Cutting Program have been previously proposed and tested in small batch and column tests using both simulated and actual supernatants. These technologies must now be tested and the most appropriate ones selected using a flow system of a scale suitable to obtain engineering data that can be applied to the design of pilot-scale equipment. This report describes the operation of the experimental test unit that is located in Building 4501 (ORNL) and the results using the sorbent materials that were tested

  4. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  5. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  6. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    International Nuclear Information System (INIS)

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy's Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite trademark CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration

  7. Ion exchange performance of commercial crystalline silicotitanates for cesium removal

    International Nuclear Information System (INIS)

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A ampersand M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na+. The materials also showed excellent chemical and radiation stability. Together, the high selectivity and stability of the CSTs made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia National Laboratories and UOP have teamed under a Cooperative Research and Development Agreement (CRADA) to develop CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by the Sandia and Texas A ampersand M team consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications

  8. Ion exchange performance of commercial crystalline silicotitanates for cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J. [and others

    1996-03-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A&M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na{sup +}. The materials also showed excellent chemical and radiation stability. Together, the high selectivity and stability of the CSTs made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia National Laboratories and UOP have teamed under a Cooperative Research and Development Agreement (CRADA) to develop CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by the Sandia and Texas A&M team consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications.

  9. Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW-101 Waste Sample

    International Nuclear Information System (INIS)

    The River Protection Project -Waste Treatment Plant (RPP--WTP) will be performing cesium removal from Hanford tank waste supernatants using SuperLig 644 resin. These elutable resins will be used multiple times to process large volumes of radioactive waste samples and will be subjected to chemical and radiation degradation during use at the waste treatment plant (WTP). The RPP--WTP process design assumes that resin batches can be used a minimum of 10 cycles before the resin must be replaced due to degradation. The effects of radiation and chemical degradation on SuperLig 644 and 639 resins were separately studied in the past under static conditions, i.e., in contact with air, water, and simulated waste solutions. To determine the chemical degradation effects under dynamic or column conditions, Battelle, Pacific Northwest National Laboratory (PNNL), and IBC Advanced Technologies conducted multiple load/elute/regenerate cycles with simulated Hanford waste samples. Savannah River Technology Center (SRTC) was contracted to demonstrate the performance of SuperLig 644 and 639 resins to treat repetitively radioactive waste solutions. Six cycles of loading, elution, and regeneration were performed to remove cesium from a Hanford waste sample. Five load/elute/regenerate cycles were carried out to remove technetium from cesium-depleted effluent solutions. The multiple load/elute/regenerate cycles demonstrated that cesium and technetium can be effectively removed from a sample using SuperLig 644 and 639 resins. The percent cesium removal was greater than 99.99 per cent for each of the six cycles

  10. Selective extraction of cesium: from compound to process

    International Nuclear Information System (INIS)

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  11. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  12. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  13. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  14. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  15. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  16. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  17. FULL-SCALE TESTING OF A CAUSTIC SIDE SOLVENT EXTRACTION SYSTEM TO REMOVE CESIUM FROM SAVANNAH RIVER SITE RADIOACTIVE WASTE

    International Nuclear Information System (INIS)

    Savannah River Site (SRS) personnel have completed construction and assembly of the Modular Caustic Side Solvent Extraction Unit (MCU) facility. Following assembly, they conducted testing to evaluate the ability of the process to remove non-radioactive cesium and to separate the aqueous and organic phases. They conducted tests at salt solution flow rates of 3.5, 6.0, and 8.5 gpm. During testing, the MCU Facility collected samples and submitted them to Savannah River National Laboratory (SRNL) personnel for analysis of cesium, Isopar(regsign) L, and Modifier [1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol]. SRNL personnel analyzed the aqueous samples for cesium by Inductively-Coupled Plasma Mass Spectroscopy (ICP-MS) and the solvent samples for cesium using a Parr Bomb Digestion followed by ICP-MS. They analyzed aqueous samples for Isopar(regsign) L and Modifier by gas chromatography (GC)

  18. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Science.gov (United States)

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  19. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    International Nuclear Information System (INIS)

    The expected performance of a proposed ion exchange column using SuperLig(regsign) 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig(regsign) 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig(regsign) 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig(regsign) 644 resin for application in the RPP pretreatment facility

  20. Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater.

    Science.gov (United States)

    Lee, Keun-Young; Kim, Kwang-Wook; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-15

    Finding a striking peculiarity of nanomaterials and evaluating its feasibility for practical use are interesting topics of research. We investigated the application of nanozeolite's outstanding reactivity for a rapid and effective method for radioactive cesium removal in the wastewater generated from nuclear power plant accident, as a new concept. Extremely fast removal of cesium, even without stirring, was achieved by the nanozeolite at efficiencies never observed with bulk materials. The nanozeolite reached an adsorption equilibrium state within 1 min. Cesium adsorption by nanozeolite was demonstrated at reaction rates of orders of magnitude higher than that of larger zeolite phases. This observation was strongly supported by the positive correlation between the rate constant ratio (k2,bulk/k2,nano) and the initial Cs concentrations with a correlation coefficient (R(2)) of 0.99. A potential drawback of a nanoadsorbent is the difficulty of particle settling and separation because of its high dispersivity in solution. However, our results also demonstrated that the nanozeolite could be easily precipitated from the high-salt solution with ferric flocculant. The flocculation index reached a steady state within 10 min. A series of our experimental results met the goal of rapid processing in the case of emergency by applying the well-suited nanozeolite adsorption and flocculation. PMID:26990838

  1. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  2. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal

  3. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  4. Use of molecular sieves zeolite-4A for removal of cesium and strontium from low level waste effluents of BWR origin

    International Nuclear Information System (INIS)

    Zeolite-4A, a synthetic zeolite of Indian origin of type A was tested for its strontium and cesium removal efficiency, under dynamic conditions, from low level liquid effluents, generated during the operation of boiling water reactors at Tarapur nuclear power station. The sorbent could remove significant quantities of both cesium and strontium from a few thousands of bed volumes of low level wastes comprising mainly of regeneration and floor drain wastes. Earlier studies had indicated that copper hexacyanoferrate loaded macroreticular resins are highly selective for cesium and silver chromate impregnated resins could selectively remove radio iodine from waste solutions. Zeolite-13X was identified as a sorbent for cobalt. Based on these studies a multi sorbent process employing zeolite-4A, zeolite-13X, copper hexacyanoferrate and silver chromate loaded macroreticular resins is proposed for treatment of low level effluents of BWR origin which essentially contains cesium, strontium, cobalt and iodine as radioactive contaminants. (author). 9 refs., 4 tabs

  5. A new ion exchanger for the removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    A new exchange potassium copper nickel hexacyanoferrates(II) was prepared. It was characterized by chemical composition and surface area measurements. The removal of cesium from aqueous solution by ion exchange was studied as function of shaking time. pH and concentration of acids, salts and cesium. The data indicates high value of distribution coefficient over a wide range of pH, nitric and hydrochloric acids concentration and in the presence of higher concentration of Na and K ions. A potassium copper nickel hexacyanoferrate(II) column was also tested for elution of cesium using 8 M ammonium nitrate solution. (author)

  6. Removal of cesium from low level waste solutions by copper hexacyanoferrate loaded resins

    International Nuclear Information System (INIS)

    Sorbents for the separation of radio cesium from aqueous solutions were synthesized by incorporating copper hexacyanoferrate (II) in the matrix of anion exchange resins of Indian origin, viz. Indion-810 and Tulsion-A27MP. Their efficiency for the cesium removal was tested under both static and dynamic conditions. The resins were found to be highly selective for radio cesium from a variety of salt and acid solutions. In general, Tulsion-based resins showed more tolerance towards chemical load in the solutions than the other. Pilot column run with Indion-based loaded resin showed that it effectively removed all the cesium activity from few thousands of litres of mixed low level waste streams from reactors, fuel reprocessing plant and nuclear laboratories. (author). 24 refs., 2 figs., 3 tabs

  7. Removal and adsorption of radioactive cesium from contaminated soil caused by the Fukushima Daiichi Nuclear Power Station accident

    International Nuclear Information System (INIS)

    The removal and adsorption of radioactive cesium, 137Cs or 134Cs, from contaminated soil was investigated using various extractants: sodium hydroxide, hydrochloric acid, and sulfuric acid. In this experiment, a sand sample was used as contaminated soil. Although the radioactive cesium could not be removed from the soil by using sodium hydroxide, 64% of the removal efficiency was provided at room temperature when 10 M hydrochloric acid was used. Eighty percent of the radioactive cesium was removed by using 1 M sulfuric acid containing 0.1 M thiourea at 90℃. A more than 90% removal efficiency was obtained by increasing of the volume of sulfuric acid containing thiourea. The same result was obtained using custom-made radioactive cesium removal equipment. The adsorption of the radioactive cesium was also investigated. In an experiment of concerning adsorption, contaminated water containing radioactive cesium was prepared from a contaminated sand sample. More than 96% adsorption was obtained using zeolite (clinoptilolite). However, when commercial activated carbon was used, most the radioactive cesium was hardly removed. The influence of shaking time on the adsorption of radioactive cesium was investigated by a batch-system using zeolite. As a result, a shaking time of at least 5 min showed that the radioactive cesium was quantitatively adsorbed to zeolite. The adsorptive behavior of the radioactive cesium by a flow-system was also examined using zeolite. (author)

  8. Highly Selective Removal of Cesium and Strontium Utilizing a New Class of Inorganic Ion Specific Media

    International Nuclear Information System (INIS)

    Radionuclides such as Cesium-137 and Strontium-90 are key drivers of liquid waste classification at light water reactors and within the DOE tank farm complexes. The treatment, storage, and disposal of these wastes represents a major cost for nuclear power plant operators, and comprises one of the most challenging technology-driven projects for the DOE Environmental Management (EM) program. Selective removal of specified isotopes through ion exchange is a common and proven treatment method for liquid waste, yet various aspects of existing technologies leave room for improvement with respect to both cost and effectiveness. We demonstrate a novel class of inorganic ion-exchangers for the selective removal of cesium and strontium, the first of a growing family of patent-pending, potentially elutable, and paramagnetic ion-exchange materials. These highly selective inorganic ion-exchangers display strong chemical, thermal and radiation stability, and can be readily synthesized from low-cost materials, making them a promising alternative to organic ion-exchange resins and crystalline silico-titanate (CST). The introduction of this new family of highly specific ion-exchange agents has potential to both reduce the cost of waste processing, and enable improved waste-classification management in both nuclear power plants (for the separation of Class A from B/C wastes) and DOE tank farms (for the separation of low level waste (LLW) from high level waste (HLW)). (authors)

  9. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    International Nuclear Information System (INIS)

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste

  10. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    2000-08-23

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

  11. Cesium corrosion process in Fe–Cr steel

    International Nuclear Information System (INIS)

    A cesium corrosion out-pile test was performed to Fe–Cr steel in a simulated fuel pin environment. In order to specify the corrosion products, the corroded area was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A cesium corrosion process in Fe–Cr steel was successfully developed proceeding from both experimental results and thermochemical consideration. The corroded area was mainly formed by Fe layer and Fe depleted oxidized layer. The Fe depleted oxidized layer was formed by Cr0.5Fe0.5 and Cr2O3. The presumed main corrosion reactions were 2Cr+2/3 O2→Cr2O3(ΔG650°C=-894.1kJ/mol) and Cr23C6+46Cs+46O2→23Cs2CrO4+6C(ΔG650°C=-25018.1kJ/mol). Factors of these reactions are chromium, carbon, oxygen and cesium. Therefore, cesium corrosion progression must be dependent on the chromium content, carbon content in the steel, the supply rate of oxygen and temperature which correlated with the diffusion rate of cesium and oxygen into the specimen

  12. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    International Nuclear Information System (INIS)

    Magnetic particles (MAG*SEPSM) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEPSM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEPSM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEPSM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  13. Preliminiary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite trademark CS-100 resin

    International Nuclear Information System (INIS)

    This preliminary flowsheet document describes an ion exchange process which uses Duolite trademark CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process

  14. Removal of radioactive cesium from solutions by zinc ferrocyanide

    Institute of Scientific and Technical Information of China (English)

    LI Bing; LIAO Jiali; WU Jiaojiao; ZHANG Dong; ZHAO Jun; YANG Yuanyou; CHENG Qiong; FENG Yue; LIU Ning

    2008-01-01

    Adsorption of 134Cs from aqueous solution by zinc ferrocyanide, and the effect of experimental conditions on the adsorption were investigated. Preliminary results showed that zinc ferrecyanide was very efficient as an absorbent. Over 98% of 134Cs could be removed by zinc ferrocyanide of 0.33 g.L-1 from 134Cs solution (Co) of one hour and the suitable pH ranged 1~10. No significant differences on 134Cs adsorption were observed at 0~50℃, or in solutions containing Ca2+, Fe3+, Mg2+, HCO3-, CO32-, CI- and SO42-, even though they are 1000 times higher than the anions or cations in groundwater. However, the adsorption rates decreased when solutions contained K+ or Na+. The adsorption process could be described by Freundlich and Langmuir adsorption equations.

  15. Innovative Highly Selective Removal of Cesium and Strontium Utilizing a Newly Developed Class of Inorganic Ion Specific Media - 16221

    International Nuclear Information System (INIS)

    readily to volume reduction (VR) by vitrification without the issues faced with organic resins. In fact, with a simple melting of the KMS-1 media at 650-670 deg. C (i.e., well below the volatilization temperature of Cs, Sr, Mn, Fe, Sb, etc.), a VR of 4:1 was achieved. With true pyrolysis at higher temperatures or by vitrification, this VR would be much higher. The introduction of this new family of highly specific ion-exchange agents has potential to both reduce the cost of waste processing, and enable improved waste-classification management in both nuclear power plants (for the separation of Class A from B/C wastes) and DOE tank farms [for the separation of low level waste (LLW) from high level waste (HLW)]. In conclusion, we demonstrate for the first time a novel inorganic ion-exchanger for the selective removal of Cesium and Strontium. These inorganic ion-exchangers are chemical, thermal and radiation stable. These inorganic ion-exchangers can be synthesized in a cost-effective way which makes them significantly more effective than organic ion-exchange resin and CST. Finally, new thermal options are afforded for their final volume reduction, storage and disposal. (authors)

  16. Removal of uranium, cesium, strontium, toxic metals and radioactive cesium by a photosynthetic bacteria

    International Nuclear Information System (INIS)

    Using immobilized Rhodobacter Sphaeroides SSI on porous silicate ceramics the authors have demonstrated the removal of about 100, 83, and 58% of radioactivity of uranium, strontium, and cobalt and also almost 100% of such toxic metals as mercury, chromium, and arsenic after two or three days treatment. Furthermore, the water sampling from the swimming pools and also the soils from the agricultural fields near Fukushima Daiichi Nuclear Power Plant were found to be decontaminated by using immobilized SSI and/or combined with Lactobacillus casei immobilized on porous glasses with satisfactory results which show the present method might be practical decontamination. (S. Ohno)

  17. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe3O4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  18. Preliminary results from uranium/americium affinity studies under experimental conditions for cesium removal from NPP ''Kozloduy'' simulated wastes solutions

    International Nuclear Information System (INIS)

    We use the approach described by Westinghouse Savannah River Company using ammonium molybdophosphate (AMP) to remove elevated concentrations of radioactive cesium to facilitate handling waste samples from NPP Kozloduy. Preliminary series of tests were carried out to determine the exact conditions for sufficient cesium removal from five simulated waste solutions with concentrations of compounds, whose complexing power complicates any subsequent processing. Simulated wastes solutions contain high concentrations of nitrates, borates, H2C2O4, ethylenediaminetetraacetate (EDTA) and Citric acid, according to the composition of the real waste from the NPP. On this basis a laboratory treatment protocol was created. This experiment is a preparation for the analysis of real waste samples. In this sense the results are preliminary. Unwanted removal of non-cesium radioactive species from simulated waste solutions was studied with gamma spectrometry with the aim to find a compromise between on the one hand the AMP effectiveness and on the other hand unwanted affinity to AMP of Uranium and Americium. Success for the treatment protocol is defined by proving minimal uptake of U and Am, while at the same time demonstrating good removal effectiveness through the use of AMP. Uptake of U and Am were determined as influenced by oxidizing agents at nitric acid concentrations, proposed by Savannah River National laboratory. It was found that AMP does not significantly remove U and Am when concentration of oxidizing agents is more than 0.1M for simulated waste solutions and for contact times inherent in laboratory treatment protocol. Uranium and Americium affinity under experimental conditions for cesium removal were evaluated from gamma spectrometric data. Results are given for the model experiment and an approach for the real waste analysis is chosen. Under our experimental conditions simulated wastes solutions showed minimal affinity to AMP when U and Am are most probably in the

  19. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    International Nuclear Information System (INIS)

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  20. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    International Nuclear Information System (INIS)

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium

  1. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Bong, Sang Bum; Park, Chan Woo; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium.

  2. The effectiveness of radioactive cesium removal countermeasure due to the Prussian blue nonwoven-textile fabrics proposed by International Research Institute for Nuclear Decommissioning

    International Nuclear Information System (INIS)

    The effectiveness of radioactive-cesium removal countermeasure by using Prussian blue is described: The verified technique for practical use to countermeasure of cesium-contaminated water by using nonwoven textile fabrics; the evaluation of effectiveness of cesium adsorbent, Prussian blue, by using model ecosystem of aquatic animals and plants. (M.H.)

  3. Selective removal of cesium and strontium using porous frameworks from high level nuclear waste.

    Science.gov (United States)

    Aguila, Briana; Banerjee, Debasis; Nie, Zimin; Shin, Yongsoon; Ma, Shengqian; Thallapally, Praveen K

    2016-05-21

    Efficient and cost-effective removal of radioactive (137)Cs and (90)Sr found in spent fuel is an important step for safe, long-term storage of nuclear waste. Solid-state materials such as resins and titanosilicate zeolites have been assessed for the removal of Cs and Sr from aqueous solutions, but there is room for improvement in terms of capacity and selectivity. Herein, we report the Cs(+) and Sr(2+) exchange potential of an ultra stable MOF, namely, MIL-101-SO3H, as a function of different contact times, concentrations, pH levels, and in the presence of competing ions. Our preliminary results suggest that MOFs with suitable ion exchange groups can be promising alternate materials for cesium and strontium removal. PMID:27055254

  4. Kinetic studies on the removal of cesium and strontium ions from aqueous solutions using prepared zeolite-A

    International Nuclear Information System (INIS)

    Preparation and characterization of zeolite-A exchanger were carried out for kinetic studies on the removal of cesium and strontium ions from aqueous solutions. Ion exchange experiments were constant ion-concentration and different temperatures in the range from 25 c degree to 60± c degree. Analysis of the respective rate data in accordance with Hellferich model was performed for the calculation of effective diffusion coefficient (Di), activation energy (Ea) and entropy changes (ΔS) of the exchange process of both ions. A simplified first-order kinetic model was achieved to interpret the kinetic data and the effect of temperature on the overall rate constant (K) of adsorption for both ions was studied. The obtained data indicated that prepared zeolite-A exhibited higher affinity for Cs+ ions from their aqueous solutions than the host Na+ ion. The amount adsorbed of cesium ions (mg/g) is much lower than that of zeolite-A. The amount adsorbed of both studied increases by increasing temperature

  5. Removal of cesium ions from contaminated seawater in closed area using adsorptive fiber

    International Nuclear Information System (INIS)

    Insoluble cobalt ferrocyanide (Co-FC) microparticles were impregnated onto a polymer chain grafted onto the surface of a 6-nylon fiber by means of radiation-induced graft polymerization and subsequent precipitation. The resultant Co-FC-impregnated fiber was immersed in either nonradioactive or radioactive cesium (Cs) solution in seawater in an initial Cs concentration range from 60 to 5.0 x 10-4 g-Cs/m3. The adsorption isotherm correlated well with a langmuir-type equation. In addition, the mass-transfer capacity coefficient was determined by fitting the experimental data of the rate of Cs adsorption onto the Co-FC-impregnated fiber to theoretical adsorption curves based on the Cs concentration difference between the bulk and the interface in seawater as a driving force of the overall adsorption rate. Decontamination factors (DFs) as functions of fiber weight and the contact time required for the removal of cesium ions from the contaminated seawater in a closed area were estimated using the above-mentioned values. (author)

  6. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    International Nuclear Information System (INIS)

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (Kd's), decontamination factors (DF), and material loadings (mmol g-1) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The 137Cs level is 1.74E-06 Ci L-1 which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the 90Sr radioactive component was measured to be 6.13E-06 Ci L-1. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium Kd was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium Kd values decreased significantly. Cesium Kd values exceeding 1.0E+07 mL g-1 were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g-1 observed

  7. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  8. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    International Nuclear Information System (INIS)

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  9. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments

  10. Alpha Removal Process Filter Cleaning Recommendations

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is developing a process to treat radioactive waste that is low in cesium-137, but high in strontium-90, plutonium, uranium, and neptunium. Defense Waste Processing Facility (DWPF) personnel asked Savannah River Technology Center (SRTC) personnel to provide recommendations for chemically cleaning the Alpha Removal Process filters. The authors reviewed previous SRTC filter cleaning experience with bench-scale radioactive filters and pilot-scale simulant filters from tests with simulated and actual waste. From reviewing the previous filter cleaning data and assuming the heel in the 512-S filtration system is 85 gallons or less, the authors recommendations and approach to the inquiry are contained in this report

  11. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Awual, Md. Rabiul, E-mail: awual.rabiul@jaea.go.jp [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Yaita, Tsuyoshi [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Taguchi, Tomitsugu [Nano-Structure Synthesis Research Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • DB24C8 crown ether was functionalized for preparation of conjugate adsorbent. • Radioactive {sup 137}Cs can be selectively removed by the conjugate adsorbent. • Adsorbent can effectively capture Cs even in the presence of a high amount Na and K. • Adsorbent is reversible and able to be reused without significant deterioration. - Abstract: Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs–π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  12. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • DB24C8 crown ether was functionalized for preparation of conjugate adsorbent. • Radioactive 137Cs can be selectively removed by the conjugate adsorbent. • Adsorbent can effectively capture Cs even in the presence of a high amount Na and K. • Adsorbent is reversible and able to be reused without significant deterioration. - Abstract: Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs–π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations

  13. Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water

    International Nuclear Information System (INIS)

    The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV reg-sign IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A ampersand M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 104 and 105) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin

  14. Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Bontha, J.R.; Carson, K.J.; Elovich, R.J.; DesChane, J.R.

    1997-10-01

    The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV{reg_sign} IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A&M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 10{sup 4} and 10{sup 5}) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin.

  15. Radioactive contamination of towels with the soil containing radioactive cesium and its removal by washing

    International Nuclear Information System (INIS)

    After the Fukushima Daiichi Nuclear Power Plant Accident, many people are concerned about the contamination of radioactive substances in their ordinary surrounding environment. In this study, we determined the levels of radioactive contamination with 137Cs in towels, very common textile products in our life, after exposing those to the soil collected from a farm field near Fukushima city. Three kinds of towels made from the same cotton fiber with different thickness were exposed to the soil under dry or water-suspension conditions. The radioactivities of 137Cs retained/absorbed were 30-50% of the loaded radioactivity per gram weight of the towel. When their weight and absorbency are taken into consideration, the differences in thickness did not so much affect the above values. Under standard washing condition, which mimic those with household washing machine, almost all the radioactive cesium were removed from the towels contaminated under the dry conditions, whereas only 50-70% were removed when the towels were contaminated under the wet conditions. A commercial soil-release treatment (Preshade-SR) didn't reduce the contamination under both dry and wet conditions, although precessing the towels with silver nano-particles did. (author)

  16. Crystalline silicotitanates--new ion exchanger for selective removal of cesium and strontium from radwastes

    International Nuclear Information System (INIS)

    A new class of inorganic ion exchange material called crystalline silicotitanates (CST) has been developed for radioactive waste treatment in a collaborative effort between Sandia National Laboratories and Texas A ampersand M University. The Sandia National Laboratories Laboratory Directed Research and Development program provided the initial funding for this effort and this report summarizes the rapid progress that was achieved. A wide range of compositions were synthesized, evaluated for cesium (Cs) removal efficiency, and a composition called TAM-5 was developed that exhibits high selectivity and affinity for Cs and strontium (Sr). Tests show it can remove parts per million concentrations of Cs+ from highly alkaline, high-sodium, simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. In experiments with solutions that simulate highly alkaline Hanford defense wastes, the crystalline silicotitanates exhibit distribution coefficients for Cs+ of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 ml/g for solutions adjusted to a pH between 1 and 10. In addition, the CSTs were found to exhibit distribution coefficients for Sr+ greater than 100,000 ml/g and for plutonium of 2,000 ml/g from simulated Hanford waste. The CST crystal structure was determined and positions of individual atoms identified using x-ray and neutron diffraction. The structural information has permitted identification of the ion exchange sites and provided insights into the strong effect of pH on Cs ion exchange. Information on the synthesis, composition, and structure of CST is considered proprietary and is not discussed in this report

  17. Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution.

    Science.gov (United States)

    Kadam, Avinash A; Jang, Jiseon; Lee, Dae Sung

    2016-09-01

    This work focused on the development of pectin-stabilized magnetic graphene oxide Prussian blue (PSMGPB) nanocomposites for removal of cesium from wastewater. The PSMGPB nanocomposite showed an improved adsorption capacity of 1.609mmol/g for cesium, compared with magnetic graphene oxide Prussian blue, magnetic pectin Prussian blue, and magnetic Prussian blue nanocomposites, which exhibited adsorption capacities of 1.230, 0.901, and 0.330mmol/g, respectively. Increased adsorption capacity of PSMGPB nanocomposites was attributed to the pectin-stabilized separation of graphene oxide sheets and enhanced distribution of magnetites on the graphene oxide surface. Scanning electron microscopy images showed the effective separation of graphene oxide sheets due to the incorporation of pectin. The optimum temperature and pH for adsorption were 30°C and 7.0, respectively. A thermodynamic study indicated the spontaneous and the exothermic nature of cesium adsorption. Based on non-linear regression, the Langmuir isotherm fitted the experimental data better than the Freundlich and Tempkin models. PMID:27262093

  18. Results of removing radioactive cesium from the shallow rice fields by planting sunflower

    International Nuclear Information System (INIS)

    Hoping that revival of agriculture in the disaster area by Fukushima nuclear plant accident, the author and others cultivated shallow fields by planting sunflower and measured the cesium concentration absorbed in root, steam and the surrounding soil and also absorptive situation at fixed intervals as the plant grows. They could obtain the results that the sunflower has its maximum ability for cesium absorption and adsorption just before going into bloom. They conclude that the Cs 137-contaminated shallow fields (<15 cm) may be decontaminated with the efficiency of 30%/year assuming the root contamination is 8,000 Bq/kg and twice harvesting per year. (S. Ohno)

  19. Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    JAck D. Law

    2007-09-01

    The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.

  20. Comparison or organic and inorganic ion exchange materials for removal of cesium and strontium from Hanford waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    This work is part of an ESP-CP task to develop and evaluate high-capacity, selective, solid extractants for the uptake of cesium, strontium, and technetium (Cs, Sr, and Tc) from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff, in collaboration with researchers from industry, academia, and national laboratories are investigating these and other novel and commercial ion exchangers for use in nuclear waste remediation of groundwater, HLW, and LLW. Since FY 1995, experimental work at PNNL has focused on small-scale batch distribution (K{sub d}) testing of numerous solid sorbents with actual and simulated Hanford wastes, chemical and radiolytic stability of various organic ion exchanger resins, bench-scale column ion exchange testing in actual and simulated Complexant Concentrate (CC) and Neutralized Current Acid Waste (NCAW), and Tc and Sr removal from groundwater and LLW. In addition, PNNL has continued to support various site demonstrations at the Idaho National Engineering Laboratory, Savannah River Site, West Valley Nuclear Services, Hanford N-Springs, and Hanford N-Basin using technologies developed by their industrial partners. This summary will focus on batch distribution results from the actual waste tests. The data collected in these development and testing tasks provide a rational basis for the selection and direct comparison of various ion exchange materials in simulated and actual HLW, LLW, and groundwater. In addition, prediction of large-scale column loading performance for the materials tested is possible using smaller volumes of actual waste solution. The method maximizes information while minimizing experimental expense, time, and laboratory and process wastes.

  1. Study of the removal of cesium from aqueous solutions by graphene oxide; Estudo da remocao de cesio em solucoes aquosas por oxido de grafeno

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Vanessa N.; Rodrigues, Debora F. [University of Houston (UH), Houston, TX (United States); Vitta, Patricia B. Di [Universidade de Sao Paulo (STRES/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Setor Tecnico de Residuos Quimicos e Solventes; Oshiro, Mauricio T.; Vicente, Roberto; Hiromoto, Goro; Potiens Junior, Ademar; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%.

  2. Selective Removal Of Strontium And Cesium From Simulated Waste Solution With Titanate Ion-Exchangers In A Filter Cartridge Configurations-12092

    International Nuclear Information System (INIS)

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  3. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  4. Process for separating cesium ions from aqueous solutions

    International Nuclear Information System (INIS)

    A precipitation agent is added to the aqueous solution and the resulting precipitate containing Cs+ ions is separated from the solution. By this process, caesium is to be separated selectively compared with other alkaline metal ions with great efficiency from aqueous solutions, particularly aqueous MAW (medium activity waste). This is achieved by using a sodium tetraphenyl borate attracting electrons to the phenyl rings and having substitutes. (orig./PW)

  5. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people's attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio-cesium and -iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.

  6. Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment

    International Nuclear Information System (INIS)

    A large amount of radioactive cesium (Cs) has been released into natural environment following the nuclear accident in Fukushima, Japan in 2011. Much effort has been directed at capturing Cs and remediation of the contaminated environment. However, conventional sorbents, such as Prussian blue and zeolites cannot be easily recovered once spread into an open environment. Here, we develop new nano-sorbent based on the magnetic nanoparticles (MNP) functionalized with Prussian blue (PB) that possess both high Cs adsorption capacity (96 mg Cs/g sorbent) and large distribution coefficient (3.2 × 104 mL/g at 0.5 ppm Cs concentration). The developed sorbents possess good value of saturation magnetization (20 emu/g) allowing for rapid and ease of sorbent separation from the Cs solution after treatment using magnetic field. This Cs magnetic nano-sorbent can offer high potential for the use in large scale remediation of a Cs contaminated environment as well as the possibility of novel Cs decorporation drugs that can be magnetically assisted for accelerated excretion of radiocesium from the human body.

  7. Copper ferrocyanide functionalized magnetic nanoparticles using polyelectrolyte for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Man; Lee, Kune Woo; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, magnetite nanoparticles were coated with copper ferrocyanide for the adsorption of radioactive Cs-137 in an aqueous solution through the grafting of polyethyleneimine. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate Cs-137 from water was also evaluated. Magnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. Since the nuclear accident at the Fukushima Daiichi nuclear power station in 2011, a huge amount of radioactive contaminants has been released into the environment. Among the various radioactive contaminants, cesium (Cs)-137 (137Cs) is the most apprehensive element owing to its long half-life (30.2 years), high solubility in water, and strong radiation emission in the form of gamma rays (γ-rays). Various methods such as ion exchange solvent extraction and precipitation are applied for the remediation of Cs-137 contaminated water. In particular, metal ferrocyanides show a high selectivity toward Cs-137. However, the very fine powder form of metal ferrocyanide causes a difficult separation from water through filtration.

  8. Selective Removal Of Strontium And Cesium From Simulated Waste Solution With Titanate Ion Exchangers In A Filter Cartridge Configuration

    International Nuclear Information System (INIS)

    This report describes experimental results for the selective removal of strontium and cesium from simulated waste solutions using monosodium titanate (MST) and crystalline silicotitanate (CST)-laden filter cartridges. Four types of ion exchange cartridge media (CST and MST designed by both 3M and POROX(regsign)) were evaluated. In these proof-of-principle tests effective uptake of both Sr-85 and Cs-137 was observed. However, the experiments were not performed long enough to determine the saturation levels or breakthrough curve for each filter cartridge. POREX(regsign) MST cartridges, which by design were based on co-sintering of the active titanates with polyethylene particles, seem to perform as well as the 3M-designed MST cartridges (impregnated filter membrane design) in the uptake of strontium. At low salt simulant conditions (0.29 M Na+), the instantaneous decontamination factor (DF) for Sr-85 with the 3M-design MST cartridge measured 26, representing the removal of 96% of the Sr-85. On the other hand, the Sr-85 instantaneous DF with the POREX(regsign) design MST cartridge measured 40 or 98% removal of the Sr-85. Strontium removal with the 3M-design MST and CST cartridges placed in series filter arrangement produced an instantaneous decontamination factor of 41 or 97.6% removal compared to an instantaneous decontamination factor of 368 or 99.7% removal of the strontium with the POREX(regsign) MST and CST cartridge design placed in series. At high salt simulant conditions (5.6 M Na+), strontium removal with 3M-designed MST cartridge only and with 3M-designed MST and CST cartridges operated in a series configuration were identical. The instantaneous decontamination factor and the strontium removal efficiency, under the above configuration, averaged 8.6 and 88%, respectively. There were no POREX(regsign) cartridge experiments using the higher ionic strength simulant solution. At low salt simulant conditions, the uptake of Cs-137 with POREX(regsign) CST cartridge

  9. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATION

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-05-26

    This report describes experimental results for the selective removal of strontium and cesium from simulated waste solutions using monosodium titanate (MST) and crystalline silicotitanate (CST)-laden filter cartridges. Four types of ion exchange cartridge media (CST and MST designed by both 3M and POROX{reg_sign}) were evaluated. In these proof-of-principle tests effective uptake of both Sr-85 and Cs-137 was observed. However, the experiments were not performed long enough to determine the saturation levels or breakthrough curve for each filter cartridge. POREX{reg_sign} MST cartridges, which by design were based on co-sintering of the active titanates with polyethylene particles, seem to perform as well as the 3M-designed MST cartridges (impregnated filter membrane design) in the uptake of strontium. At low salt simulant conditions (0.29 M Na{sup +}), the instantaneous decontamination factor (D{sub F}) for Sr-85 with the 3M-design MST cartridge measured 26, representing the removal of 96% of the Sr-85. On the other hand, the Sr-85 instantaneous D{sub F} with the POREX{reg_sign} design MST cartridge measured 40 or 98% removal of the Sr-85. Strontium removal with the 3M-design MST and CST cartridges placed in series filter arrangement produced an instantaneous decontamination factor of 41 or 97.6% removal compared to an instantaneous decontamination factor of 368 or 99.7% removal of the strontium with the POREX{reg_sign} MST and CST cartridge design placed in series. At high salt simulant conditions (5.6 M Na{sup +}), strontium removal with 3M-designed MST cartridge only and with 3M-designed MST and CST cartridges operated in a series configuration were identical. The instantaneous decontamination factor and the strontium removal efficiency, under the above configuration, averaged 8.6 and 88%, respectively. There were no POREX{reg_sign} cartridge experiments using the higher ionic strength simulant solution. At low salt simulant conditions, the uptake of Cs-137 with

  10. Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon

    International Nuclear Information System (INIS)

    Cs-134, Sr-85, and I-131 were produced by neutron irradiation of CsCl, SrCl2, and K2TeO3, respectively, using the Kyoto University Reactor. These radioactive nuclides were added to river water and seawater to prepare artificially contaminated samples, and the removal of these nuclides using bentonite, zeolite, and activated carbon was then investigated. In the river water samples, Cs-134 and Sr-85 were successfully removed using bentonite and zeolite, and I-131 was removed using activated carbon. In the seawater samples, Cs-134 was removed using bentonite and zeolite, whereas Sr-85 and I-131 were hardly removed at all by these adsorbents. (author)

  11. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic representation of possible mechanisms determining the Cs extraction and immobilization in fly ash during water, methanol or n-MCaS extraction. - Highlights: • nMCaS suspension for cesium extraction and immobilization in fly ash was developed. • Enhanced cesium immobilization was done by nanometallic Ca/CaO methanol suspension. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • nMCaS unique and a highly potential amendment for the remediation of Cs. - Abstract: In this work, the capability of nanometallic Ca/CaO methanol suspension in removing and/or immobilizing stable (133Cs) and radioactive cesium species (134Cs and 137Cs) in contaminated fly ash was investigated. After a first methanol and second water washing yielded only 45% of 133Cs removal. While, after a first methanol washing, the second solvent with nanometallic Ca/CaO methanol suspension yielded simultaneous enhanced removal and immobilization about 99% of 133Cs. SEM-EDS analysis revealed that the mass percent of detectable 133Cs on the fly ash surface recorded a 100% decrease. When real radioactive cesium contaminated fly ash (containing an initial 14,040 Bq kg−1134Cs and 137Cs cumulated concentration) obtained from burning wastes from Fukushima were reduced to 3583 Bq kg−1 after treatment with nanometallic Ca/CaO methanol suspension. Elution test conducted on the treated fly ash gave 100 Bq L−1 total 134Cs and 137Cs concentrations in eluted solution. Furthermore, both ash content and eluted solution concentrations of 134Cs and 137Cs were much lower than the Japanese Ministry of the Environment regulatory limit of 8000 Bq kg−1 and 150 Bq L−1 respectively. The results of this study suggest that the nanometallic Ca/CaO methanol suspension is a highly potential amendment for the remediation of radioactive cesium-contaminated fly ash

  12. Comparison of organic and inorganic ion exchange materials for removal of cesium and strontium from tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    This work is part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff are investigating novel ion exchangers for use in nuclear waste remediation (groundwater, high-level waste (HLW), and low-level waste (LLW)). Waste components targeted for remediation include cesium, strontium, and technetium.

  13. Investigations of the method of sodium decontamination from cesium and tritium aiming its utilization or disposal

    International Nuclear Information System (INIS)

    Effective methods of removing cesium and tritium from sodium are submitted. It is shown, that the cleaning from cesium with consecutive use of portions of carbon materials will allow on the orders to reduce amount of sorbent, in which is concentrated cesium. For cleaning from tritium technological process with use of a cold trap and special dosage hydrogen in sodium is offered. The data on required time of cleaning and depth of cleaning at various capacity of hydrogen source are given. (author)

  14. Removal of radioactive cesium (134Cs plus 137Cs) from low-level contaminated water by charcoal and broiler litter biochar

    Science.gov (United States)

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  15. Laboratory plant for the separation of cesium from waste solutions of the PUREX process

    International Nuclear Information System (INIS)

    A laboratory plant for the separation of cesium from a fission product waste solution of the fuel reprocessing is described. The plant consists of two stages. In the first stage cesium is adsorbed on ammonium molybdatophosphate (AMP). Then the adsorbent is dissolved. From the solution cesium is adsorbed on a cationic ion exchanger in the second stage. Then AMP can be reproduced from this solution. For the elution of cesium in the second stage a NH4NO3 solution (3 m) is used. Flow sheet, construction and the control device of the plant are described and the results of tests with a model solution are given. (author)

  16. Denitration of simulated high-level liquid wastes and selective removal of cesium with zeolites

    International Nuclear Information System (INIS)

    Denitration of high-level liquid wastes (HLW) from nuclear fuel reprocessing has been studied. Selective removal of Cs has been also examined with various types of zeolites. The following zeolites were used in this study; Na-synthetic mordenite (NaSM), Na-natural mordenite (NaNM), Na-natural clinoptilolite (NaCP) and H-synthetic mordenites (HSM). The effective denitration is found in the simulated HLW (15 components, 2N HNO3 soln.) containing platinum group elements in the case of the addition of formic acid, and the pH of the solution shows the value of 5.4 when the excess formic acid ([HCOOH]/[HNO3] = 2.0) was added. Platinum group elements may react as a catalyst for the decomposition of nitric acid and the excess formic acid. The break-through properties of NaSM column are poor for the simulated HLW, and the selective removal of Cs appears to be difficult. On the other hand, good results are obtained in the denitrated HLW, i.e., break-through capacity, total capacity and column utilization are 59.4 (meq./100 g zeolite), 147 (meq./100 g zeolite) and 40.4 (%), respectively. The break-through properties of NaSM and NaNM are superior to those of HSM. The break-through capacity and column utilization increase with an increase in column temperature. (author)

  17. Removal of cesium and strontium from high-activity-level water by zeolities

    International Nuclear Information System (INIS)

    The selective removal of Cs and Sr from high-activity-level water (HALW) has been studied by the use of various zeolites. The rate of adsorption of Cs and Sr increased with a decrease in size of zeolite particles, and the adsorption reached almost 100 % after 5 h and 10 h of shaking for Cs and Sr, respectively. High distribution coefficients of Cs (KCs = 104 ∼ 105) were obtained in the solution/zeolite ratio (V/m) region of about 300 to 1000. The presence of sodium ion fairly affected the distribution of Cs+ and Sr2+, and Kd values decreased with increasing concentration of Na+. While the presence of boron almost had no effect on the distribution of Cs; high KCs values (KCs ≥ 105) were obtained below 5000 ppm of boron. Distribution coefficients of Cs and Sr were also independent of the equilibrium pH in neutral and alkaline regions at the ionic strength of 0.1. The removal of Cs and Sr from simulated HALW was effectively achieved by the use of mixed zeolites, and the Kd value was 7.0 x 103 ml/g at the mixing ratio of 48/52 of X/chabazite. (author)

  18. Conceptual study of in-tank cesium removal using an inorganic ion exchange material

    International Nuclear Information System (INIS)

    Presently, the Hanford Site contains approximately 230,000 m3 of mixed waste stored in 177 underground tanks. Approximately 55,000 m3 of this waste is sludge, 90,000 m3 is salt cake, and 80,000 m3 is supernate. Although the pretreatment and final disposal requirements for the waste have not been entirely defined, it is likely that some supernatant pretreatment will be required to remove 137Cs and possibly 90Sr and the transuranic components. The objective of this study was to estimate the number of HLW glass canisters resulting from the use of inorganic ion exchanger materials as in-tank pretreatment technology. The variables in the study were: number of contacts between waste and ion exchange material; ion exchange material; and decontamination requirement. This conceptual study investigates a generic in-tank Cs removal flowsheet using crystalline silico-titanates and IE-96 zeolites, and the impact of each ion exchanger on the number of glass canisters produced. In determining glass formulation, data based on current reference technology was used. Sample calculations from the worksheets and summaries of final calculated results are included at the end of this report

  19. Two-Step Method for Preparation of NaA-X Zeolite Blend from Fly Ash for Removal of Cesium ions

    International Nuclear Information System (INIS)

    Pure zeolites can be synthesized from silica extracts obtained from fly ash by alkaline leaching. The extraction potential of industrial by-product fly ash was investigated under repeated fusion process conditions. The amount of extracted silica was 131.43 g/kg ash while the amount extracted alumina was limited to 41.72 g/kg ash. The results of zeolite synthesis from the Si-bearing extracts demonstrated that pure zeolites with high cation exchange capacity (4.624 m eq/g) can be produced. The sorption potential of synthesized A-X zeolite blend for the removal of cesium ions has been investigated. The influences of ph, contact time and temperature have been reported. Thermodynamic parameters such as changes in Gibbs free energy (δG degree), enthalpy (δH degree) and entropy (δS degree) were calculated. A comparison of kinetic models applied to the sorption data was evaluated for pseudo-first order, pseudo-second order and homogeneous particle diffusion models. The results showed that both the pseudo-second order and the homogeneous particle diffusion models were found to best correlate the experimental rate data

  20. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution

    International Nuclear Information System (INIS)

    In order to identify a more efficient biosorbent for 137Cs, we have investigated the biosorption behavior and mechanism of 137Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of 137Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of 137Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of 137Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of 137Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. - Highlights: • Microorganisms isolated from a cesium solution are considered as a biosorbent to remove cesium ions. • The biosorption equilibrium is fitted well to a Langmuir model with a correlation coefficient of 0.9997. • First attempt to explore biosorption mechanisms using PIXE and EPBS. • Living and dead microorganisms have different biosorption mechanisms. • The biosorption of 137Cs involved a two-step process: passive and active

  1. Removal of 60Co and 134Cs from radioactive process waste water by flotation

    International Nuclear Information System (INIS)

    The removal of 134Cs and 60Co from radioactive process waste water using cetyl pyridinium chloride (CPC) as a collector and cobalt(II) hexacyanoferrate(II) as a precipitant for 60Co and sorbent (ion exchanger) for 13'4Cs was intensively investigated and the best removal conditions could be established. The results indicate that under the optimum conditions removals higher than 96% and 97% could be achieved for Co(II) and Cs(I), respectively. Cobalt(II) hexacyanoferrate(II) was found to have high affinity for cesium and can preferentially remove it in presence of relatively high amounts of other alkali or alkaline earth cations. A two-stage flotation process was successfully tested for the removal of both Cs(I) and Co(II) from waters containing both cations. (author) 59 refs.; 8 figs.; 2 tabs

  2. Using of cesium - 137 for the soil erosion and sedimentation process assessment

    International Nuclear Information System (INIS)

    Soil erosion and the sedimentation of the eroded material in flood plain and water body represent a major problem in many parts of the world. Classical methods for erosion assessment have a lot of disadvantages that can be avoided by measurement of soil radionuclide content. Cs-137 monitoring for erosion and sedimentation assessment has the advantage of giving data about this phenomena mediated on a long time period. Cs-137 is a radioactive isotope with special chemical and physical characteristics that permit its use in long term investigation of the environment problems, especially in erosion and sedimentation process assessment. Cesium is strongly adsorbed on clay fraction of soil and for this reason the soil movement involves the cesium content too. Due to the nuclear tests in atmosphere done especially in the years '50 and the beginning of '60, but mainly due to the nuclear accident from Chernobyl in 1986, a great amount of Cs-137 was deposited on the Romanian territory. The deposition from nuclear test could be considered uniform over Romania, but the deposition of Cs-137 originating from Chernobyl accident was extremely non-uniform because of meteorological conditions from the spring of 1996, when many local rains were registered. In Romania there are several areas strongly affected by erosion especially in the central part of Moldavian Table Land, where many conservation actions were implemented to prevent the environment degradation. To characterize the inventory of Cs-137, samples of soil, sediment and water were taken. The investigated area is located in Moldavia; samples were collected from Tutovei Hill, Moldavian Central Table Land and Moldavian Plain. The erosion rates on the investigated agricultural terraces (located far away from the top of the slope) are high, up to 2 cm/year. The sedimentation has also high values in these areas ranging from 2 to 4 cm/year. (authors)

  3. SU-E-I-49: Simulation Study for Removing Scatter Radiation in Cesium-Iodine Based Flat Panel Detector System

    International Nuclear Information System (INIS)

    Purpose: This study aims to identify the feasibility of a novel cesium-iodine (CsI)-based flat-panel detector (FPD) for removing scatter radiation in diagnostic radiology. Methods: The indirect FPD comprises three layers: a substrate, scintillation, and thin-film-transistor (TFT) layer. The TFT layer has a matrix structure with pixels. There are ineffective dimensions on the TFT layer, such as the voltage and data lines; therefore, we devised a new FPD system having net-like lead in the substrate layer, matching the ineffective area, to block the scatter radiation so that only primary X-rays could reach the effective dimension.To evaluate the performance of this new FPD system, we conducted a Monte Carlo simulation using MCNPX 2.6.0 software. Scatter fractions (SFs) were acquired using no grid, a parallel grid (8:1 grid ratio), and the new system, and the performances were compared.Two systems having different thicknesses of lead in the substrate layer—10 and 20μm—were simulated. Additionally, we examined the effects of different pixel sizes (153×153 and 163×163μm) on the image quality, while keeping the effective area of pixels constant (143×143μm). Results: In case of 10μm lead, the SFs of the new system (∼11%) were lower than those of the other system (∼27% with no grid, ∼16% with parallel grid) at 40kV. However, as the tube voltage increased, the SF of new system (∼19%) was higher than that of parallel grid (∼18%) at 120kV. In the case of 20μm lead, the SFs of the new system were lower than those of the other systems at all ranges of the tube voltage (40–120kV). Conclusion: The novel CsI-based FPD system for removing scatter radiation is feasible for improving the image contrast but must be optimized with respect to the lead thickness, considering the system’s purposes and the ranges of the tube voltage in diagnostic radiology. This study was supported by a grant(K1422651) from Institute of Health Science, Korea University

  4. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  5. Chemical studies on polyaniline titanotungstate as a new composite cation exchanger and its analytical applications for removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    Polyaniline titanotungstate has been synthesized by incorporation of organic polymer polyaniline into the inorganic precipitate of titanotungstate. This material was characterized using IR, X-Ray, SEM and DTA-TGA analysis. The influences of initial concentration of metal ions, particle size and temperature have been reported. The material stability was investigated in water, acids, alkaline solutions, and at high temperature up to 850 degree C. Ion-exchange capacity and distribution coefficients (Kd) for ten metal ions have been determined. It was found that the polyaniline titanotungstate has high affinity and high selectivity for Cs+. The material has high separation for Cs+ ion from other metal ions. The comparison of composite (PATiW) and inorganic material (TiW) was studied and indicated that the composite material is better than the inorganic one in selectivity of Cs+. Thermodynamic parameter of Cs+ exchange process, such as changes in Gibbs free energy (δGo), enthalpy (δHo), and entropy (δSo) have been calculated. It was found that numerical value of δG decrease with an increase in temperature,indicating that the sorption reaction of adsorbent was spontaneous and more favorable at higher temperature. The positive value of δHo corresponds to the endothermic nature of sorption processes and suggested that chemisorptions were the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of Cs+ was evaluated for the pseudo first-order, pseudo second-order, homogeneous particle diffusion, shell model and intraparticle diffusion models. The results showed that Cs+ is sorption onto PATiW and TiW with particle diffusion mechanism. Self diffusion coefficient (Di), Activation energy (Ea) and entropy (δS*) of activation were also computed from thelinearized form of Arrhenius equation. Column studies in acid and alkaline solutions were studied. A kinetic study for removal cesium from milk was investigated.

  6. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  7. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  8. Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides.

    Science.gov (United States)

    Avramenko, Valentin; Bratskaya, Svetlana; Zheleznov, Veniamin; Sheveleva, Irina; Voitenko, Oleg; Sergienko, Valentin

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed. PMID:21208744

  9. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters.

    Science.gov (United States)

    Lai, Yu-Chen; Chang, Yin-Ru; Chen, Man-Li; Lo, Yu-Kuo; Lai, Juin-Yih; Lee, Duu-Jong

    2016-08-01

    Cesium (Cs) removal from contaminated water bodies is an emerging issue after the disaster at the Fukushima Daiichi Nuclear Power Plant. The Prussian blue (PB) is an effective Cs adsorbent but will release hexacyanoferrate fragments from the adsorbent matrix during adsorption. Alginate is an affordable biopolymer for PB particles immobilization. This study synthesized poly(vinyl alcohol) (PVA) and alginate cross-linked matrix for immobilization of PB nano-sized particles and a surface-modified styrene-ethyl styrene divinyl benzene resin and tested their swelling stability and Cs adsorption performance in fresh water and in seawater. The PVA-alginate granules have high structural stability in both fresh water and seawater, with the Cs adsorption capability higher for the former than the latter. The adopted resin effectively remove released PB fragments from the tested granules. The transport and reaction parameters for the granules and for the sand filter bed were estimated. PMID:27132227

  10. Removal processes for arsenic in constructed wetlands.

    Science.gov (United States)

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems. PMID:21549410

  11. Evaluation of improved techniques for the removal of fission products from process wastewater and groundwater: FY 1996 status

    International Nuclear Information System (INIS)

    This report describes laboratory results acquired in the course of evaluating new sorbents for the treatment of radiologically contaminated groundwater and process wastewater. During FY 1996, the evaluation of resorcinol-formaldehyde (R-F) resin for the removal of cesium and strontium from wastewaters was completed. Additionally, strontium sorption on sodium nonatitanate powder was characterized in a series of multicomponent batch studies. Both of these materials were evaluated in reference to a baseline sorbent, natural chabazite zeolite

  12. Removal of silver nanoparticles by coagulation processes

    International Nuclear Information System (INIS)

    Highlights: • This study investigated the removal of AgNP suspensions by four regular coagulants. • The optimal removal efficiencies for the four coagulants were achieved at pH 7.5. • The removal efficiency of AgNPs was affected by the natural water characteristics. • TEM and XRD showed that AgNPs or silver-containing NPs were adsorbed onto the flocs. -- Abstract: Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca2+ and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions

  13. Comparison of organic and inorganic ion exchangers for removal of cesium and strontium from simulated and actual Hanford 241-AW-101 DSSF tank waste

    International Nuclear Information System (INIS)

    A number of organic and inorganic exchangers are being developed and evaluated for cesium removal from Hanford tank wastes. The exchangers of interest that are investigated in this work include powdered (IONSIV reg-sign IE-910; referred to as IE-910) and engineered (IONSIV reg-sign IE-911; referred to as IE-911) forms of the crystalline silico-titanate (CST) inorganic sorbent developed by Sandia National Laboratories (SNL)/Texas A and M and prepared by UOP; a phenol-formaldehyde (CS-100) resin developed by Rohm and Haas; a resorcinol-formaldehyde (R-F) polymer developed at the Westinghouse Savannah River Company (WSRC) and produced by Boulder Scientific; an inorganic zeolite exchanger produced by UOP (IONSIV reg-sign TIE-96; referred to as TIE-96); an inorganic sodium titanate produced by Allied Signal/Texas A and M (NaTi); and a macrocyclic organic resin developed and produced by IBC Advanced Technologies (SuperLig reg-sign 644; referred to as SL-644). Several of these materials are still under development and may not be in the optimal form. The work described in this report involves the direct comparison of the ion exchange materials for the pretreatment of actual and simulated Hanford tank waste. Data on the performance of all of the exchangers with simulated and actual double shell slurry feed (DSSF) is included. The DSSF waste is a mixture of the supernate from tanks 101-AW (70%), 106-AP (20%) and 102-AP (10%). The comparative parameters include radionuclide removal efficiency under a variety of conditions and material properties (e.g., bed density and percent removable water). Cesium and strontium distribution (Kd), lambda (λ = Kd x ρb), and decontamination factors (DF) are compared as a function of exchanger contact duration, solution composition (Na and Cs concentration), exchanger/waste phase ratio, and multiple sequential contacts

  14. Effect of Temperature on the Removal of Cesium and Strontium Ions from Aqueous Solutions Using Zeolite A

    International Nuclear Information System (INIS)

    Ion exchange experiments between synthetic zeolite A and aqueous solutions of cesium and strontium ions were conducted at constant total ion concentrations of 0.1 N and at different temperatures in the range from 25 to 60 degree C. Thermodynamic equilibrium constants, calculated from the corresponding Kielland's plots, were used for the calculation of . δG degree δH degree and δS degree. The obtained data indicated that zeolite A exhibits higher affinity for Cs+ and Sr+2 ions from solution than host Na+ ions

  15. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    International Nuclear Information System (INIS)

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactive dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test

  16. New anaerobic process of nitrogen removal.

    Science.gov (United States)

    Kalyuzhnyi, S; Gladchenko, M; Mulder, A; Versprille, B

    2006-01-01

    This paper reports on successful laboratory testing of a new nitrogen removal process called DEAMOX (DEnitrifying AMmonium OXidation) for the treatment of strong nitrogenous wastewater such as baker's yeast effluent. The concept of this process combines the recently discovered ANAMMOX (ANaerobic AMMonium OXidation) reaction with autotrophic denitrifying conditions using sulfide as an electron donor for the production of nitrite within an anaerobic biofilm. The achieved results with a nitrogen loading rate of higher than 1,000 mg/L/d and nitrogen removal of around 90% look very promising because they exceed (by 9-18 times) the corresponding nitrogen removal rates of conventional activated sludge systems. The paper describes also some characteristics of DEAMOX sludge, as well as the preliminary results of its microbiological characterization. PMID:17163025

  17. Ultrasound-assisted transesterification of crude Jatropha oil using cesium doped heteropolyacid catalyst: Interactions between process variables

    International Nuclear Information System (INIS)

    Transesterification of crude Jatropha oil in the presence of cesium doped heteropolyacid catalyst and assisted by ultrasonic irradiation was investigated. Different Cs heteropolyacid catalysts with different levels of cesium exchange were synthesized and characterized for physical and chemical properties. They were subsequently tested in pre-elementary reaction conditions to identify the most active catalyst. Cs1.5H1.5PW12O40 catalyst showed the highest FAME (fatty acid methyl ester) yield of 81.3% in 60 min while higher Cs levels resulted in poorer activity. Four reaction variables i.e. reaction time (10–50 min), methanol to oil molar ratio (5:1–25:1), ultrasonic amplitude (30–90% of the maximum sonifier power) and catalyst amount (2.5–4.5 w/w oil) were optimized to generate mathematical representation of FAME yield. The highest yield of 90.5% was achieved in just 34 min under the optimum reaction conditions i.e. at an ultrasonic amplitude of ∼60%, and a molar ratio of 25:1. The catalyst was also investigated for possible reusability and leaching under ultrasonic conditions. The reaction was mostly heterogeneous in nature and the catalyst also showed minimal reduction in the activity after three successive reaction runs under the optimum reaction conditions. - Highlights: • Ultrasound-assisted transesterification of crude Jatropha oil. • Properties of cesium doped heteropolyacid catalyst. • Optimization of four reaction variables. • Characterizing the interactions between process variables. • Possible reusability and leaching under ultrasonic conditions

  18. Advanced sludge reduction and phosphorous removal process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia ρ(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous ρ(TP) is 6.0 - 9.0 mg/L in influent, the system still ensures ρ(COD)<23 mg/L, ρ(NH3-N)<3.2 mg/L and ρ(TP)<0.72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91%. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.

  19. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    International Nuclear Information System (INIS)

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met

  20. Micropollutant removal by advanced oxidation processes

    OpenAIRE

    Autin, Olivier

    2012-01-01

    The use of pesticides in agriculture has been associated to high concentrations found in surface waters and ultimately to the tightening of drinking water regulations. Whilst traditional granular activated carbon filtration or ozone are effective barriers for the large majority of pesticides, new polar pesticides such as clopyralid or metaldehyde are not readily removed by such technologies. The use of advanced oxidation processes (AOPs) is suggested as an effective alternative...

  1. Transporting dynamics of radioactive cesium in a forest ecosystem and its discharge processes

    International Nuclear Information System (INIS)

    A lot of radioactive substance including 137Cs, 134Cs fell out to Tohoku and Kanto region in particular Fukushima prefecture after the accident of Fukushima-daiichi nuclear power plant. Generally, cesium tends to attach to clay particle and organic matter. These clay particle and organic matter can potentially flow out from the forest through the river to the downstream not only as particulate matter but also dissolved matter. It is likely that behavior of cesium is similar to sediment locomotion. The objective of this study is to understand transporting dynamics of radioactive cesium inside and outside of the forest. We started investigations on transporting dynamics of cesium in the forest upper stream of Kami-Oguni river in Date city Fukushima prefecture located in about 50 km from the nuclear power plant since July 2012. We conducted river water sampling at 9 points along the river from the uppermost stream to the middle reaches during low flow condition once a month. We also sampled river water during storm event for 5 times in order to capture the change of 137Cs concentration in a flood stage. Samples were filtered and separated into particulate and dissolved matters using glass micro-fiber filters (GF/F). Samples were analyzed their 137Cs concentration by Germanium semiconductor detector at University of Tokyo. During low flow condition, 137Cs was detected only a very small amount both in particulate and dissolved matters. In contrast, during high flow condition, 137Cs was detected about 10-100 times higher than that of during low flow condition in particulate matter. We estimated discharge flux of 137Cs from the forest using the relations between water discharge and 137Cs concentration. It was 0.977 Bq/(m2 day ) (2012/8/31-2013/4/19). In the forest, we set 2 deciduous tree plots (Quercus serrata, Zelkova serrata and so on) and 1 evergreen confer plot (Cyptomeria japonica). Atmospheric depositions of 137Cs with open-rainfall, through-fall and stem-flow were

  2. Transporting dynamics of radioactive cesium in a forest ecosystem and its discharge processes

    Energy Technology Data Exchange (ETDEWEB)

    Iseda, Kohei; Ohte, Nobuhito; Tanoi, Keitaro; Endo, Izuki; Oda, Tomoki; Kato, Hiroyu [Graduate School of Agricultural and Life Sciences, University of Tokyo (Japan)

    2014-07-01

    A lot of radioactive substance including {sup 137}Cs, {sup 134}Cs fell out to Tohoku and Kanto region in particular Fukushima prefecture after the accident of Fukushima-daiichi nuclear power plant. Generally, cesium tends to attach to clay particle and organic matter. These clay particle and organic matter can potentially flow out from the forest through the river to the downstream not only as particulate matter but also dissolved matter. It is likely that behavior of cesium is similar to sediment locomotion. The objective of this study is to understand transporting dynamics of radioactive cesium inside and outside of the forest. We started investigations on transporting dynamics of cesium in the forest upper stream of Kami-Oguni river in Date city Fukushima prefecture located in about 50 km from the nuclear power plant since July 2012. We conducted river water sampling at 9 points along the river from the uppermost stream to the middle reaches during low flow condition once a month. We also sampled river water during storm event for 5 times in order to capture the change of {sup 137}Cs concentration in a flood stage. Samples were filtered and separated into particulate and dissolved matters using glass micro-fiber filters (GF/F). Samples were analyzed their {sup 137}Cs concentration by Germanium semiconductor detector at University of Tokyo. During low flow condition, {sup 137}Cs was detected only a very small amount both in particulate and dissolved matters. In contrast, during high flow condition, {sup 137}Cs was detected about 10-100 times higher than that of during low flow condition in particulate matter. We estimated discharge flux of {sup 137}Cs from the forest using the relations between water discharge and {sup 137}Cs concentration. It was 0.977 Bq/(m2 day ) (2012/8/31-2013/4/19). In the forest, we set 2 deciduous tree plots (Quercus serrata, Zelkova serrata and so on) and 1 evergreen confer plot (Cyptomeria japonica). Atmospheric depositions of {sup 137

  3. Wastewater centrate ammonia removal by chemisorption processes

    International Nuclear Information System (INIS)

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a patent-protected wastewater treatment technology identified as the ThermoEnergy Ammonia Recovery Process TM (ARP). The ARP is a reversible chemisorption process using a zinc-impregnated ion exchange resin, and it is unique in that it removes/reduces the ammonia-nitrogen load in the solids processing liquor of municipal sewage treatment plants and recycles the recovered product into a pelletized ammonium salt that can be used as an agricultural fertilizer. The primary objective of the ARP evaluation was to perform well-defined field and laboratory tests to provide data on process performance. The evaluation process was overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. A pilot scale ARP treatment facility was constructed and tested at the Oakwood Beach Water Pollution Control Plant (WPCP) in Staten Island, New York, from September through December of 1998. While operating during the 3 month period using the anaerobically digested centrate normally produced at the WPCP, the pilot study demonstrated that the ARP process was capable of removing/recovering ammonia with efficiencies ranging from 75-99+ % at influent concentrations exceeding 400 mg/L. During the pilot plant operations, forty-eight (48) complete validated runs of centrate processing were performed. The plant processed the centrate under normal day-to-day conditions at the WPCP, and no special operational considerations were given to the centrifuge operation to accommodate the ARP pilot plant. The Oakwood WPCP operated exactly the way

  4. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  5. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  6. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  7. Functional consortium for denitrifying sulfide removal process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuan [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Ren, Nanqi; Wang, Aijie [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Liu, Lihong [Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Lee, Duu-Jong [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); National Taiwan Univ., Taipei (China). Dept. of Chemical Engineering

    2010-03-15

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10{sup -2} to 10{sup -6} dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10{sup -2} dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10{sup -4} dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10{sup -6} dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach. (orig.)

  8. Separation of radio cesium from acid-Purex solutions by sorption on granulated AMP

    International Nuclear Information System (INIS)

    An organic polymer, poly vinylbutyral was used for the preparation of the composite exchanger containing ammonium molybdo phosphate (AMP) as the active component. The resultant granulated product (AMP-GR) has excellent column properties and stands high flow rates without generating fines. The method of preparation of the granulated sorbent, the batch and breakthrough capacities of the granules for cesium ions, their hydraulic properties and the results of column tests for cesium separation from acidic cesium solutions and simulated high level wastes (HLW) solutions is described. The process can be adapted to remove cesium from HLW solutions and could thus be incorporated in a waste management scheme. (author). 16 refs., 3 figs., 3 tabs

  9. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    International Nuclear Information System (INIS)

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO3 and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO3)

  10. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  11. First-principles study of cesium adsorption to weathered micaceous clay minerals

    Science.gov (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  12. Carbon dioxide removal in gas treating processes

    Energy Technology Data Exchange (ETDEWEB)

    Lidal, H.

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO{sub 2} in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140{sup o}C, for CO{sub 2} loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO{sub 2} into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO{sub 2} in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO{sub 2}/TEG/MEA system for estimation of CO{sub 2} partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs.

  13. Carbon dioxide removal in gas treating processes

    International Nuclear Information System (INIS)

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140oC, for CO2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO2/TEG/MEA system for estimation of CO2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  14. Cesium-137

    International Nuclear Information System (INIS)

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Cesium-137

  15. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.

    Science.gov (United States)

    Mao, Xinyu; Han, Fengxiang X; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2016-03-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants. PMID:26650421

  16. 27 CFR 19.381 - Removals from processing.

    Science.gov (United States)

    2010-04-01

    ... Manufacture of Articles Bottling, Packaging, and Removal of Products § 19.381 Removals from processing... transfer in bond to a bonded wine cellar or to another distilled spirits plant. However, wine may not be removed from the bonded premises of a distilled spirits plant for consumption or sale as wine. Spirits...

  17. Determination of the cesium distribution coefficient in Goiania and Abadia de Goias cities soils

    International Nuclear Information System (INIS)

    In September, 1987, an unauthorized removal of a cesium-therapy unit and its violation caused an accident, where several places of Goiania's city, capital of Goias, Brazil, were contaminated. The removal of the radioactive wastes generated from decontamination process, was made to Abadia de Goias city (near Goiania), where an interim storage was constructed. Soil samples collected from the 57th Street (Goiania) and from the interim storage permitted to determine, through static method, the cesium distribution coefficent for different cesium solution concentrations. Those results allows for some migration/retention evaluations in disposal site selection. Some soils parameters (water content, density, granulometric analysis etc) as well as clay minerals constituents were also determined. (author)

  18. Studies on cesium uptake by phenolic resins

    International Nuclear Information System (INIS)

    The selective removal of cesium by phenolic ion-exchange resins from highly salted alkaline radioactive solutions was studied. The resins were synthesized by alkaline polycondensation of phenol, resorcinol, catechol, and resorcinol-catechol mixture with formaldehyde and characterized for their moisture regain, ion-exchange (H+ → Na+) capacity, and distribution coefficient (KD) for cesium. The effects of open and sealed curing of the polymers on their properties were studied. The effect of Na+, NaOH, and Cs+ concentration on the uptake of cesium by resorcinol-formaldehyde resin was investigated, in particular. The chemical, thermal, and radiation stabilities of the polymers were also studied

  19. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  20. IRON REMOVAL PROCESSES: DESIGN OF NEW SYSTEMS

    Science.gov (United States)

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water also have iron in their water. As a result, arsenic treatment at these sites will most likely b...

  1. Volume reduction of lake sediment and decrease of its cesium content in decontamination process by wet oxidation method

    International Nuclear Information System (INIS)

    Wet oxidation method was applied aiming to decrease cesium contents in lake sediment. In this research, “reactive oxygen water”, that is prepared from hypochlorous acid by contact with metal ceramics, was reacted with three kinds of samples, that is, lake sediment, mixture of lake sediment and fallen leaves, and incineration ash of fallen leaves. Experimental results revealed that sample volume was reduced by means of wet oxidation of organic components in samples and that a large amount of cesium contents were transferred from sample to water phase. (author)

  2. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 104 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  3. Biosorption of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Some fundamental aspects of the biosorption of metals by microbial cells were investigated. These studies were carried out in conjunction with efforts to develop a process to utilize microbial cells as biosorbents for the removal of radionuclides from waste streams generated by the nuclear fuel cycle. It was felt that an understanding of the mechanism(s) of metal uptake would potentially enable the enhancement of the metal uptake phenomenon through environmental or genetic manipulation of the microorganisms. Also presented are the results of a preliminary investigation of the applicability of microorganisms for the removal of 137cesium and 226radium from existing waste solutions. The studies were directed primarily at a characterization of uranium uptake by the yeast, Saccharomyces cerevisiae, and the bacterium, Pseudomonas aeruginosa

  4. Alternate Methods for Eluting Cesium from Spherical Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen [ORNL; Johnson, Heather Lauren [University of Tennessee, Knoxville (UTK)

    2009-02-01

    A small-column ion exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high-level-waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST), an inorganic, non-regenerable sorbent, or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The baseline method for eluting the cesium from the RF resin uses 15 bed volumes (BV) of 0.5 M nitric acid (HNO{sub 3}). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid that would be used to elute the RF resin, using the current elution protocol, exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing environment in the glass melt. Installing a denitration evaporator at SRS is technically feasible but would add considerable cost to the project. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 BV of 0.5 M HNO{sub 3} are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the baseline elution method removes a very small quantity of cesium from the resin. A summary of the elution methods that have been tested are listed.

  5. Integrated AMP-PAN, TRUEX, and SREX Flowsheet Test to Remove Cesium, Surrogate Actinide Elements, and Strontium from INEEL Tank Waste Using Sorbent Columns and Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Ronald Scott; Law, Jack Douglas; Todd, Terry Allen; Wood, D. J.; Garn, Troy Gerry; Wade, Earlen Lawrence

    2000-02-01

    Three unit operations for the removal of selected fission products, actinides, and RCRA metals (mercury and lead) have been successfully integrated and tested for extended run times with simulated INEEL acidic tank waste. The unit operations were ion exchange for Cs removal, followed by TRUEX solvent extraction for Eu (actinide surrogate), Hg, and Re (Tc surrogate) removal, and subsequent SREX solvent extraction for Sr and Pb removal. Approximately 45 L of simulated INTEC tank waste was first processed through three ion exchange columns in series for selective Cs removal. The columns were packed with a composite ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) sorbent. The experimental breakthrough data were in excellent agreement with modeling predictions based on data obtained with much smaller columns. The third column (220 cm3) was used for polishing and Cs removal after breakthrough of the up-stream columns. The Cs removal was >99.83% in the ion exchange system without interference from other species. Most of the effluent from the ion exchange (IX) system was immediately processed through a TRUEX solvent extraction flowsheet to remove europium (americium surrogate), mercury and rhenium (technetium surrogate) from the simulated waste. The TRUEX flowsheet test was performed utilizing 23 stages of 3.3-cm centrifugal contactors. Greater than 99.999% of the Eu, 96.3% of the Hg, and 56% of the Re were extracted from the simulated feed and recovered in the strip and wash streams. Over the course of the test, there was no detectable build-up of any components in the TRUEX solvent. The raffinate from the TRUEX test was stored and subsequently processed several weeks later through a SREX solvent extraction flowsheet to remove strontium, lead, and Re (Tc surrogate) from the simulated waste. The SREX flowsheet test was performed using the same centrifugal contactors used in the TRUEX test after reconfiguration and the addition of three stages. Approximately 99.9% of

  6. Integrated AMP-PAN, TRUEX, and SREX Flowsheet Test to Remove Cesium, Surrogate Actinide Elements, and Strontium from INEEL Tank Waste Using Sorbent Columns and Centrifugal Contactors

    International Nuclear Information System (INIS)

    Three unit operations for the removal of selected fission products, actinides, and RCRA metals (mercury and lead) have been successfully integrated and tested for extended run times with simulated INEEL acidic tank waste. The unit operations were ion exchange for Cs removal, followed by TRUEX solvent extraction for Eu (actinide surrogate), Hg, and Re (Tc surrogate) removal, and subsequent SREX solvent extraction for Sr and Pb removal. Approximately 45 L of simulated INTEC tank waste was first processed through three ion exchange columns in series for selective Cs removal. The columns were packed with a composite ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) sorbent. The experimental breakthrough data were in excellent agreement with modeling predictions based on data obtained with much smaller columns. The third column (220 cm3) was used for polishing and Cs removal after breakthrough of the up-stream columns. The Cs removal was >99.83% in the ion exchange system without interference from other species. Most of the effluent from the ion exchange (IX) system was immediately processed through a TRUEX solvent extraction flowsheet to remove europium (americium surrogate), mercury and rhenium (technetium surrogate) from the simulated waste. The TRUEX flowsheet test was performed utilizing 23 stages of 3.3-cm centrifugal contactors. Greater than 99.999% of the Eu, 96.3% of the Hg, and 56% of the Re were extracted from the simulated feed and recovered in the strip and wash streams. Over the course of the test, there was no detectable build-up of any components in the TRUEX solvent. The raffinate from the TRUEX test was stored and subsequently processed several weeks later through a SREX solvent extraction flowsheet to remove strontium, lead, and Re (Tc surrogate) from the simulated waste. The SREX flowsheet test was performed using the same centrifugal contactors used in the TRUEX test after reconfiguration and the addition of three stages. Approximately 99.9% of

  7. Sodium removal by alcohol process: Basic tests and its application

    International Nuclear Information System (INIS)

    We have various methods for sodium removal; an alcohol cleaning process, a steam cleaning process and a direct burning process. Sodium removal by the alcohol process has a lot of advantages, such as causing no alkali corrosion to steel, short processing time and easy operation. Therefore the alcohol process was selected for the 1MWt double wall tube straight type steam generator. We have already had some experiences of the alcohol process, while still needed to confirm the sodium removal rate in the crevice and to develop an on-line sodium concentration monitoring method in alcohol during sodium removal. We have conducted the small scale sodium removal test with flowing alcohol where the sodium removal rate in the crevice and the alcohol conductivity were measured as functions of sodium concentration in alcohol and alcohol temperature. The sodium removal of the DWTSG was conducted by the devised alcohol process safely and efficiently. The process hour was about 1 day. Visual inspection during dismantling of the DWTSG showed no evidence of any un-reacted sodium. (author)

  8. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents (137Cs and 90Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  9. Trapping characteristics for gaseous cesium generated from different cesium compounds by fly ash filter

    International Nuclear Information System (INIS)

    The purpose of this study is to evaluate the applicability of the fly ash ceramic foam filter to trap gaseous cesium generated during the OREOX and sintering processes of DUPIC green pellets. The trapping experiments of gaseous cesium generated from different cesium compounds using fly ash filters were carried out in a two-zone furnace under air and hydrogen (Ar/4% H2) conditions. XRD and SEM analyses were used to analyze reaction products of different cesium compounds with fly ash filters. To manufacture ceramic foam filters, fly ash with a Si/Al mole ratio of 2.1 and polyvinyl alcohol as binder were used. Reaction products formed by the trapping reaction of different cesium compounds with fly ash filters were investigated. The major reaction products of gaseous cesium generated from cesium silicate and CsI by fly ash filters indicated that pollucite (CsAlSi2O6) phase was formed under air and hydrogen conditions when the carrier gas velocity was 2 cm/sec. The minimum reaction temperature of fly ash filter with gaseous cesium was determined as about 600 deg. C. Finally, off-gas treatment system of sintering process in a hot cell of lMEF was explained as an application example of fly ash filter for trapping gaseous cesium. (author)

  10. Accumulation of uranium, cesium, and radium by microbial cells: bench-scale studies

    International Nuclear Information System (INIS)

    This report describes bench-scale studies on the utilization of microbial cells for the concentration and removal of uranium, radium, and cesium from nuclear processing waste streams. Included are studies aimed at elucidating the basic mechanism of uranium uptake, process development efforts for the use of a combined denitrification-uranium removal process to treat a specific nuclear processing waste stream, and a preliminary investigation of the applicability of microorganisms for the removal of 137Cs and 226Ra from existing waste solutions

  11. Microbial uptake of uranium, cesium, and radium

    International Nuclear Information System (INIS)

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed

  12. Cesium separation Using Electrically Switched Ion Exchange

    International Nuclear Information System (INIS)

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electro-chemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 BV/h, the maxi-mum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked 5-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, break-through began at about 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures

  13. Optimization and validation of a chemical process for uranium, mercury and cesium leaching from cemented radioactive wastes

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) is developing a treatment and long-term management strategy for a legacy cemented radioactive waste that contains uranium, mercury and fission products. Extracting the uranium would be advantageous for decreasing the waste classification and reducing the cost of long-term management. Consequently, there are safety and economic and environmental incentives for the extraction of uranium, mercury and cesium before subjecting the cemented waste to a stabilization process. The mineralogical analysis of the surrogate cemented waste (SCW) indicated that uranium forms calcium uranate, CaUO4, occurring as layers of several millimeters or as grains of 20 μm. Hg is found mostly as large (∼50 μm) and small grains (5-8 μm) of HgO. The chemical leachability of three key elements (U, Hg, and Cs) from a SCW was studied with several leaching materials. The results showed that the most promising approach to leach and recover U, Hg, and Cs is the direct leaching of the SCW with H2SO4 in strong saline media. Operating parameters such as particle size, temperature, pulp density, leaching time, acid and salt concentrations, number of leaching/rinsing step, etc. were optimized to improve key elements solubilization. Sulfuric leaching in saline media of a SCW (U5) containing 1182 ppm of U, 1598 ppm of Hg, and 7.9 ppm of Cs in the optimized conditions allows key elements recovery of 98.5 ± 0.4%, 96.6 ± 0.1%, and 93.8 ± 1.1% of U, Hg, and Cs respectively. This solubilization process was then applied in triplicate to seven other SCW prepared with different cement, liquid ratio and at different aging time and temperature. Concentrated sulfuric acid is added to the slurry until the pH is about 2, which causes the complete degradation of cement and the formation of CaSO4. At this pH, the acid consumption is moderate and the formation of amorphous silica gel is avoided. Sulfuric acid is particularly useful because it produces a leachate that is

  14. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na+, Cs+ and K+ likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  15. Equilibrium data for cesium ion exchange of Hanford CC and NCAW tank waste

    International Nuclear Information System (INIS)

    Hanford alkaline waste storage-tank contents will be processed to remove the soluble salts. A major fraction of these solutions will require cesium recovery to produce a low-level waste (LLW). The technology for decontamination of high-level alkaline waste and sludge wash waters is being developed. At the request of Westinghouse Hanford Company (WHC), the Pacific Northwest Laboratory (PNL) has studied several ion exchange materials for the recovery of cesium from Hanford waste tanks. The WHC program was divided into tow main tasks, (1) to obtain equilibrium data for cesium ion exchange, and (2) to evaluate ion exchange column performance. The subject of this letter report is the measurement of batch distribution coefficients for several ion exchange media for a range of operating conditions for two types of waste; complexant concentrate (CC) and neutralized current acid waste (NCAW)

  16. Silicate Removal in Aluminum Hydroxide Co-Precipitation Process

    OpenAIRE

    Chiharu Tokoro; Shinya Suzuki; Daisuke Haraguchi; Sayaka Izawa

    2014-01-01

    The removal mechanisms of silicate using an aluminum hydroxide co-precipitation process was investigated and compared with an adsorption process, in order to establish an effective and validated method for silicate removal from wastewater. Adsorption isotherms, XRD and FT-IR analyses showed that silicate uptake occurred by adsorption to boehmite for initial Si/Al molar ratios smaller than two, but by precipitation of poorly crystalline kaolinite for the ratios larger than two, in both co-pre...

  17. A comparative evaluation of IONSIV reg-sign IE-911 and chabazite zeolite for the removal of radiostrontium and cesium from wastewater

    International Nuclear Information System (INIS)

    Natural chabazite zeolite was selected as the baseline treatment technology for the removal of fission products, namely 90Sr and 137Cs, from near-neutral-pH process wastewater and groundwater. The sorbent IONSIV reg-sign IE-911, a crystalline silicotitanate manufactured by UOP, was recently tested in this capacity and found to compare extremely well against the baseline material. This paper presents and compares the results of similar batch and column tests performed using both materials, and summarizes the physical and chemical characteristics of the sorbents

  18. A comparative evaluation of IONSIV{reg_sign} IE-911 and chabazite zeolite for the removal of radiostrontium and cesium from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; DePaoli, S.M.; Guo, B.

    1998-11-01

    Natural chabazite zeolite was selected as the baseline treatment technology for the removal of fission products, namely {sup 90}Sr and {sup 137}Cs, from near-neutral-pH process wastewater and groundwater. The sorbent IONSIV{reg_sign} IE-911, a crystalline silicotitanate manufactured by UOP, was recently tested in this capacity and found to compare extremely well against the baseline material. This paper presents and compares the results of similar batch and column tests performed using both materials, and summarizes the physical and chemical characteristics of the sorbents.

  19. Method for removing cesium from aqueous liquid, method for purifying the reactor coolant in boiling water and pressurized water reactors and a mixed ion exchanged resin bed, useful in said purification

    International Nuclear Information System (INIS)

    The invention relates to a method for removing cesium from an aqueous liquid, and to a resin bed containing a mixture of an anion exchange resin and cation exchange resin useful in said purification. In a preferred embodiment, the present invention is a method for purifying the reactor coolant of a presurized water or boiling water reactor. Said method, which is particularly advantageously employed in purifying the reactor coolant in the primary circuit of a pressurized reactor, comprises contacting at least a portion of the reactor coolant with a strong base anion exchange resin and the strong acid cation exchange resin derived from a highly cross-linked, macroporous copolymer of a monovinylidene aromatic and a cross-linking monomer copolymerizable therewith. Although the reactor coolant can sequentially be contacted with one resin type and thereafter with the second resin type, the contact is preferably conducted using a resin bed comprising a mixture of the cation and anion exchange resins. 1 fig., refs

  20. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  1. Electro-coagulation-flotation process for algae removal.

    Science.gov (United States)

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view. PMID:20042280

  2. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm2, pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 109-1.55 x 109 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m3. The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  3. Electro-coagulation-flotation process for algae removal

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shanshan, E-mail: luck81919@hotmail.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, Hei Longjiang (China); Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, Hei Longjiang (China)

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm{sup 2}, pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10{sup 9}-1.55 x 10{sup 9} cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m{sup 3}. The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  4. The removal of anionic surfactants from water in coagulation process.

    Science.gov (United States)

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  5. Optimizing processes for biological nitrogen removal in Nakivubo wetland, Uganda

    OpenAIRE

    Kyambadde, Joseph

    2005-01-01

    The ability of Nakivubo wetland (which has performed tertiary water treatment for Kampala city for the past 40 years) to respond to pollution and to protect the water quality of Inner Murchison Bay of Lake Victoria was investigated. The aim of this study was to assess the capacity of Nakivubo wetland to remove nitrogen from the wastewater after its recent encroachment and modification, in order to optimize biological nitrogen removal processes using constructed wetland technology. Field studi...

  6. COD Removal of Different Industrial Wastewater by Fenton Oxidation Process

    OpenAIRE

    Yogita Sindhi*1

    2014-01-01

    Advanced oxidation processes are possibly one of the most effective methods for the treatment of wastewater containing organic products (effluents from chemical and agrochemical industries, the textile industry, paints, dyes, etc.).Fenton process is a one of advanced oxidation process. Fenton’s process have been extensively used for the removal of COD, TOC, dyes, phenolic compounds other organic chemicals from industrial and municipal wastewater. In this study, the laboratory s...

  7. Process selection for removal of sodium from PFBR components

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor of 500 MWe capacity using sodium coolant is under detailed design stage at Indira Gandhi Centre for Atomic Research Kalpakkam. This paper discusses, in detail, the process selection aspects for removal of sodium from components considering various factors such as safety, effectiveness of the process, corrosion aspects, waste generated and economy. (author)

  8. Nitrite removal from marine aquaculture wastewater using electrochemical process

    International Nuclear Information System (INIS)

    The hazardous and toxic nature of some of the constituent such as nitrite in the aquaculture wastewater is of major concern. Present study focuses the removal of nitrite from the aquaculture wastewater prior to disposal. Effect of certain operational parameters such as electrode material, current density, initial pH, and electrode spacing on nitrite removal from aquaculture wastewater was elucidated. Better nitrite removal efficiency achieved when nickel used as compared to stainless steel, graphite and aluminum electrodes. Nitrite removal is positively related to the current density however, increase is up to 31.4% when current density increased from 2.5 to 9.3 mA/cm/sup 2/. Further increase in current density does not improve the process efficiency. Removal efficiency of electrochemical process decreased with the increase in initial pH of test solution. However, with the passage of time this difference is diminishing. This may be attributed to the presence of higher amount of hypochloric acid which does not dissociate at lower pH values. Subsequently faster oxidation of nitrite achieved during first few minutes of test runs. Amount of available hypochloric acid reduced at high pH values and oxidation of nitrite reduced subsequently. Rate of nitrite removal found to be increased as the inter-electrode spacing decreased up to an optimal spacing of 3 cm which showed highest nitrite removal. Further reduction in spacing does not augment the removal efficiency probably due to the formation of scale on cathode surface and passivation of electrode which suppressed further oxidation process. (author)

  9. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    This paper describes the implementation of a simulation benchmark for studying the influence of control strategy implementations on combined nitrogen and phosphorus removal processes in a biological wastewater treatment plant. The presented simulation benchmark plant and its performance criteria...... conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...... are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...

  10. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  11. Distribution and retention of cesium in Swedish boreal forest ecosystems

    International Nuclear Information System (INIS)

    The retention and distribution of cesium in forest environments are being studied at three locations in Sweden. The main part of the cesium found in the soil was recovered in horizons rich in organic matter. The cesium was retained in the soil organic matter in a more or less extractable form. As different soil types have a different distribution pattern of organic matter the distribution of cesium will depend on the forest soil type. The clay content in Swedish forest soils is in general low which will mitigate the retention of cesium in the soil mineral horizons. The cesium present in the tree was considered to be an effect of assimilation by the tissues in the canopy as well as by the roots. The redistribution of cesium within the trees was extensive which was considered to be an effect of a high mobility of cesium in the close system of a forest environment. The cesium will remain in the forest environment for a considerable time but can be removed by forest practice, by leaching out of the soil profile or by the radioactive decay. (au)

  12. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD−1 d−1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD−1 d−1. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  13. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  14. Evaluation of improved techniques for the removal of fission products from process wastewater and groundwater: FY 1997 status

    International Nuclear Information System (INIS)

    The primary goals of this effort in FY 1997 were to survey local end users of wastewater treatment technology and then to evaluate recently available treatment processes in light of user needs. Survey results indicate that local sites are confronted with a limited, and shrinking, budget for treating aqueous waste streams. Therefore, a process will be selected primarily on the basis of sorbent costs, use of existing equipment, and disposal costs for spent processing materials. Current laboratory testing and economic studies have been directed toward addressing the technical issues specific to the removal of 90Sr and 137Cs from groundwater and process wastewater. This year's efforts have concentrated on evaluating the engineered form of crystalline silicotitanates (CSTs) for near neutral pH applications. Both powder and pellet forms of CST can be obtained through UOP; this task evaluated only the engineered form of the sorbent for wastewater remediation. Preliminary experimental efforts included measuring the average particle size, surface water content, total sodium content, ion exchange capacity, and equilibration mixing time. The as received material contains approximately 10% fines, which adhere to the CST pellet. The cesium and strontium ion-exchange capacities, based on multiple contacts with 50 ppm of the metal, are 0.8 meq/g and 1.1 meq/g, respectively. Batch tests indicated that an equilibrium mixing time of 100 h was required for cesium sorption. Group 2 cations (Sr, Ca, and Mg) required greater than 500 h. Particle diffusion coefficients were estimated for each of these cations from the batch studies

  15. Evaluation of improved techniques for the removal of fission products from process wastewater and groundwater: FY 1997 status

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; DePaoli, S.M.; Guo, B.

    1998-02-01

    The primary goals of this effort in FY 1997 were to survey local end users of wastewater treatment technology and then to evaluate recently available treatment processes in light of user needs. Survey results indicate that local sites are confronted with a limited, and shrinking, budget for treating aqueous waste streams. Therefore, a process will be selected primarily on the basis of sorbent costs, use of existing equipment, and disposal costs for spent processing materials. Current laboratory testing and economic studies have been directed toward addressing the technical issues specific to the removal of {sup 90}Sr and {sup 137}Cs from groundwater and process wastewater. This year`s efforts have concentrated on evaluating the engineered form of crystalline silicotitanates (CSTs) for near neutral pH applications. Both powder and pellet forms of CST can be obtained through UOP; this task evaluated only the engineered form of the sorbent for wastewater remediation. Preliminary experimental efforts included measuring the average particle size, surface water content, total sodium content, ion exchange capacity, and equilibration mixing time. The as received material contains approximately 10% fines, which adhere to the CST pellet. The cesium and strontium ion-exchange capacities, based on multiple contacts with 50 ppm of the metal, are 0.8 meq/g and 1.1 meq/g, respectively. Batch tests indicated that an equilibrium mixing time of 100 h was required for cesium sorption. Group 2 cations (Sr, Ca, and Mg) required greater than 500 h. Particle diffusion coefficients were estimated for each of these cations from the batch studies.

  16. Cesium chemistry in irradiated fuel; cesium uranates

    International Nuclear Information System (INIS)

    The physico-chemical behaviour of fission products in nuclear fuel during and after irradiation has been studied extensively during the past decades. In spite of the large amount of chemical, crystallographic and thermodynamic data available, the knowledge on the very complicated UO2-fission product system is still far from complete. The paper discusses the multi variant character of uranium in cesium uranates, which has been assessed by a systematic X-ray Photoelectron Spectroscopy (XPS) study of a series of cesium uranates

  17. Process and device for residual heat removal in a PWR

    International Nuclear Information System (INIS)

    This new process for residual heat remover in a PWR is characterized by the use of the pressurizer relief tank. After cooling by the steam generator, the primary water is taken at the upper part of the pressurizer, then expanded and condensed in the pressurized relief tank. A pump recycles this water and introduces it in the primary circuit

  18. Effects of process parameters on material removal rate in WEDM

    Directory of Open Access Journals (Sweden)

    H. Singh

    2009-01-01

    Full Text Available Purpose: In this paper, the effects of various process parameters of WEDM like pulse on time (TON, pulse offtime (TOFF, gap voltage (SV, peak current (IP, wire feed (WF and wire tension (WT have been investigatedto reveal their impact on material removal rate of hot die steel (H-11 using one variable at a time approach. Theoptimal set of process parameters has also been predicted to maximize the material removal rate.Design/methodology/approach: The experimental studies were performed on ELECTRONICA SPRINTCUTWEDM machine.Findings: The material removal rate (MRR directly increases with increase in pulse on time (TON and peakcurrent (IP while decreases with increase in pulse off time (TOFF and servo voltage (SV.Practical implications: Wire electrical discharge machining (WEDM is a specialized thermal machiningprocess capable of accurately machining parts which have varying hardness, complex shapes and sharp edgesthat are very difficult to be machined by the traditional machining processes. The practical technology of theWEDM process is based on the conventional EDM sparking phenomenon utilizing the widely accepted noncontacttechnique of material removal.Originality/value: We can say that the wire feed and wire tension are neutral input parameters.

  19. Effect of laser beam non-uniformity and the AC stark shift on the two-photon resonant three-photon ionization process of the cesium atom

    International Nuclear Information System (INIS)

    The Ac Stark effect and the effect of laser beam non-uniformity on the two-photon resonant three-photon ionization spectrum of cesium is investigated. The non-uniformity due to the temporal and the spatial variations of the pumping laser makes the ionization spectrum non-symmetric and shifts the peak frequency of the excited-state population from the peak frequency of the ionization yield. The order of the non-linearity of the ionization process is also studied near resonances, and it is found that the minimum of the curve is close to the peak frequency of the excited-state spectrum. Ways of applying these results to studies of autoionizing states are suggested

  20. Evaluation of Chilled Methanol Processes for Acid Gas Removal

    OpenAIRE

    Piña Dreyer, Manuel

    2011-01-01

    As the main goal achieved with this master thesis, a plant design was constructed for an acid gas removal process with methanol operating at low temperatures. First, a bibliographical research was made in terms of sour gas treatment; with special focus of physical absorption processes involving methanol as the solvent to achieve separation; such as Rectisol and Ifpexsol. The literature research was extended to thermodynamic data; compiling equilibrium values for binary systems between methano...

  1. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  2. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  3. Solution Plasma Process for Template Removal in Mesoporous Silica Synthesis

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu

    2010-12-01

    The plasma discharge in aqueous solution was scientifically studied and applied to template removal in mesoporous silica synthesis. Highly dispersed spherical mesoporous silica particles were synthesized by the ternary surfactant system containing the Pluronic P123 copolymer (EO20PO69EO20), sodium dodecylbenzene sulfonate, and 1,1,2,2,3,3,4,4,4-nonafluoro-1-butane sulfonate, via the sol-gel method in acid solutions. The solution plasma process (SPP), instead of conventional thermal calcinations, was used to remove the template. The mechanism of the removal of the organic template occurred via oxidation by the hydroxyl radicals generated during discharge. The transformation of a mesopore structure from a disordered wormlike structure to a hexagonally arranged structure was observed by X-ray diffraction analysis and was confirmed by transmission electron microscopy. The results of the thermal analysis and functional group identification of mesoporous silica after SPP showed evidence of organic template removal. The surface area calculated using the Brunauer-Emmett-Teller (BET) theory and the mean pore diameter results could be used to evaluate the plasma efficiency, demonstrating that this method does not affect the pore size in the case of discharge in a solution of pH 3 compared with the results of thermal calcination. Hence, SPP was proved to be highly efficient for organic template removal, exhibiting short consumption time and less contamination.

  4. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Long half life and easy availability from high level wastes make 137Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137Cs loaded on AMP .Phosphate glasses containing Na2O, P2O5, B2O3, Fe2O3, Al2O3 and SiO2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10-4 to 10-6 gm/cm2/day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  5. Advanced oxidation processes for wastewater reuse - removal of micropollutants

    OpenAIRE

    James, Christopher P.

    2013-01-01

    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Tests employed low concentrations of a range of emerging contaminants of concern, and the water quality varied by blending of waters from different sources. Under optimum H2O2 and lamp power...

  6. Process for the removal of impurities from combustion fullerenes

    Science.gov (United States)

    Alford, J. Michael; Bolskar, Robert

    2005-08-02

    The invention generally relates to purification of carbon nanomaterials, particularly fullerenes, by removal of PAHs and other hydrocarbon impurities. The inventive process involves extracting a sample containing carbon nanomaterials with a solvent in which the PAHs are substantially soluble but in which the carbon nanomaterials are not substantially soluble. The sample can be repeatedly or continuously extracted with one or more solvents to remove a greater amount of impurities. Preferred solvents include ethanol, diethyl ether, and acetone. The invention also provides a process for efficiently separating solvent extractable fullerenes from samples containing fullerenes and PAHs wherein the sample is extracted with a solvent in which both fullerenes and PAHs are substantially soluble and the sample extract then undergoes selective extraction to remove PAHs. Suitable solvents in which both fullerenes and PAHs are soluble include o-xylene, toluene, and o-dichlorobenzene. The purification process is capable of treating quantities of combustion soot in excess of one kilogram and can produce fullerenes or fullerenic soot of suitable purity for many applications.

  7. Trophic position and metabolic rate predict the long-term decay process of radioactive cesium in fish: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    Full Text Available Understanding the long-term behavior of radionuclides in organisms is important for estimating possible associated risks to human beings and ecosystems. As radioactive cesium (¹³⁷Cs can be accumulated in organisms and has a long physical half-life, it is very important to understand its long-term decay in organisms; however, the underlying mechanisms determining the decay process are little known. We performed a meta-analysis to collect published data on the long-term ¹³⁷Cs decay process in fish species to estimate biological (metabolic rate and ecological (trophic position, habitat, and diet type influences on this process. From the linear mixed models, we found that 1 trophic position could predict the day of maximum ¹³⁷Cs activity concentration in fish; and 2 the metabolic rate of the fish species and environmental water temperature could predict ecological half-lives and decay rates for fish species. These findings revealed that ecological and biological traits are important to predict the long-term decay process of ¹³⁷Cs activity concentration in fish.

  8. Use of advanced oxidation processes for removal of micropollutants

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    One of the big challenges of modern water treatment is the handling of micropollutants. These are compounds found in very low concentrations, often at ppt or ppb level, but are still capable of having a potent effect on the environment, and possibly humans as well. One of the emerging technologies...... for removal of micropollutants is the use of advanced oxidation processes (AOPs). AOPs use highly reactive hydroxyl radicals to degrade the micropollutants, but the processes are very energy intensive, which may limit their applications. To investigate the feasibility of introducing AOPs in the Danish...

  9. Dissociative excitation of cesium atom upon e-CsOH collisions

    International Nuclear Information System (INIS)

    The process of dissociative excitation of cesium atom in collisions with mono-kinetic molecules of cesium hydroxide is studied. It is established that behaviour of dissociative excitations the cesium atom in spectral series corresponds of to the grade dependence of cross sections on the main quantum number of the upper level. The values of constants, characterizing the behaviour of cross sections in the eight spectral series of the cesium atom are determined

  10. Study on removal of cadmium by hybrid liquid membrane process

    International Nuclear Information System (INIS)

    Removal of cadmium as a hazardous heavy metal is studied by applying a new design of hybrid cell for liquid membrane process. Tri-iso-octyl amine (TIOA) is used as the carrier in the organic phase. The concentration of cadmium in the samples is measured by atomic absorption spectroscopy. The effect of various parameters including type of supporting membrane, pH of feed and stripping phases, initial concentration of cadmium, carrier concentration, solvent nature, and also organic film resistance on mass transfer rate and removal efficiency are studied. The effect of temperature on mass transfer flux is studied by proposing a prediction model. The optimum carrier concentration is found to be about 0.05 M. The appropriate values of pH for feed and stripping phases are about 3 and 13, respectively.

  11. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P.; Hamilton, Choo Y.

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  12. Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hengxuan; Zhao, Xuan, E-mail: zhxinet@tsinghua.edu.cn; Wei, Jiying; Li, Fuzhi

    2014-08-15

    Highlights: • A novel pathway of synthesizing magnetic hexacyanoferrate material was developed. • The synthesized material can offer a high capacity for sorption of cesium. • The material can offer a fast removal of cesium in kinetic performance. • The fine M-PTH particle can be easily separated from wastewater for recirculation. - Abstract: The rapid development of the nuclear power plant in China leads to increasing attention to the treatment of low-level radioactive wastewater (LLRW). One of possibilities is the application of inorganic adsorbent like potassium titanium hexacyanoferrate (PTH), which can exhibit the effective adsorption of cesium. In this paper, the PTH material was optimized by means of being loaded on magnetite substrate. The synthesized material (magnetic PTH, M-PTH), with a particle size of less than 100 nm, can offer a high capacity and favorable kinetic performance, however, without difficulties of separation from the LLRW due to its magnetic characterizations. The batch experiments demonstrate that cesium sorption isotherm of M-PTH coincide well with Langmuir model. The calculated capacity amounts to 0.517 mmol/g, approximately 1.5 times the capacity of zeolite materials. The sorption process follows the pseudo-second-order sorption model. In the initial phase the rate-controlling step is intraparticle diffusion. With the Cs accumulation on the particle surface, external diffusion performs an important role together with intraparticle diffusion.

  13. Process for simultaneously removing sulfur oxides and particulates

    International Nuclear Information System (INIS)

    A gas purification process is described comprising the steps of: withdrawing a particulate-laden gaseous stream comprising particulates and sulfur oxides from a combustor of a processing unit selected from the group consisting of a catalytic cracking unit, a synthetic fuels plant, a coal liquefaction plant, a gasification plant, a power plant, a paper mill, a steel mill, and a waste treatment facility; removing large gross particulates from the particulate-laden gaseous stream in at least one cyclone by passing the particulate-laden gaseous stream through at least one cyclone; feeding the particulate-laden gaseous stream to a vessel after the particulate-laden gaseous stream has been passed through at least one cyclone, the vessel having a bed of sulfur oxide capturing and particulate-removing material comprising at least one member selected from the group consisting of adsorbers and adsorbers with at least one promoter thereon, the adsorbers substantially comprising an oxide of at least one metal selected from the group consisting of aluminum, bismuth, manganese, yttrium, antimony, tin, a rare earth metal, a Group Ia metal, and Group 2a metal, and the promoter selected from the group consisting essentially of a rare earth metal, a Group 8 metal, chromium, vanadium, rhenium, and combinations thereof; substantially decreasing the concentration of both particulates and sulfur oxides in the particulate-laden gaseous stream in the vessel; and the decreasing comprising simultaneously removing a substantial portion of the particulates and a substantial portion of the sulfur oxides from the particulate-laden gaseous stream by passing the particulate-laden gaseous stream through a portion of the bed of sulfur oxide-capturing and particulate-removing material in the vessel

  14. A process for containment removal and waste volume reduction to remediate groundwater containing certain radionuclides, toxic metals and organics

    International Nuclear Information System (INIS)

    A project to remove groundwater contaminants by an improved treatment process was performed during 1990 October--1992 March by Atomic Energy of Canada Limited for the United States Department of Energy, managed by Argonne National Laboratory. The goal was to generate high-quality effluent while minimizing secondary waste volume. Two effluent target levels, within an order of magnitude, or less than the US Drinking Water Limit, were set to judge the process effectiveness. The program employed mixed waste feeds containing cadmium, uranium, lead, iron, calcium, strontium-85-90, cesium-137, benzene and trichlorethylene in simulated and actual groundwater and soil leachate solutions. A combination of process steps consisting of sequential chemical conditioning, cross-flow microfiltration and dewatering by low temperature-evaporation, or filter pressing were effective for the treatment of mixed waste having diverse physico-chemical properties. A simplified single-stage version of the process was implemented to treat ground and surface waters contaminated with strontium-90 at the Chalk River Laboratories site. Effluent targets and project goals were met successfully

  15. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  16. Laccase oxidation and removal of toxicants released during combustion processes.

    Science.gov (United States)

    Prasetyo, Endry Nugroho; Semlitsch, Stefan; Nyanhongo, Gibson S; Lemmouchi, Yahia; Guebitz, Georg M

    2016-02-01

    This study reports for the first time the ability of laccases adsorbed on cellulose acetate to eliminate toxicants released during combustion processes. Laccases directly oxidized and eliminated more than 40% w/v of 14 mM of 1,4-dihydroxybenzene (hydroquinone); 2-methyl-1,4-benzenediol (methylhydroquinone); 1,4-dihydroxy-2,3,5-trimethylbenzene (trimethylhydroquinone); 3-methylphenol (m-cresol); 4-methylphenol (p-cresol); 2-methylphenol (o-cresol); 1,3-benzenediol (resorcinol); 1,2-dihydroxybenzene (catechol); 3,4-dihydroxytoluene (4-methylcatechol) and 2-naphthylamine. Further, laccase oxidized 2-naphthylamine, hydroquinone, catechol, methylhydroquinone and methylcatechol were also able to in turn mediate the elimination of >90% w/v of toxicants which are per-se non-laccase substrates such as 3-aminobiphenyl; 4-aminobiphenyl; benz[a]anthracene; 3-(1-nitrosopyrrolidin-2-yl) pyridine (NNN); formaldehyde; 4-(methyl-nitrosamino-1-(3-pyridyl)-1-butanone (NNK); 2-butenal (crotonaldehyde); nitric oxide and vinyl cyanide (acrylonitrile). These studies demonstrate the potential of laccase immobilized on solid supports to remove many structurally different toxicants released during combustion processes. This system has great potential application for in situ removal of toxicants in the manufacturing, food processing and food service industries. PMID:26408262

  17. Evaluation and comparison of SuperLig{reg_sign} 644, resorcinol-formaldehyde and CS-100 ion exchange materials for the removal of cesium from simulated alkaline supernate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Bray, L.A.; Eloviche, R.J. [Pacific Northwest Lab., Richland, WA (United States); Bruening, R.L.; Decker, R.M. [IBC Advanced Technologies, Inc., Provo, UT (United States); Kafka, T.M.; White, L.R. [3M Co., St. Paul, MN (United States)

    1995-03-01

    PNL evaluated three polymeric materials for Cs removal efficiency from a simulated Hanford Neutralized Current Acid Waste (NCAW) supernatant liquid using 200 mL ion exchange columns. Cs loadings (mmole Cs/g resin) were 0.20, 0.18, and 0.039 for Super Lig 644, R-F, and CS-100 (0.045, 0.070, 0.011 mmole Cs/mL resin). Elution of each resin material with 0.5 M HNO{sub 3} required 3.5, 7.0, and 3.2 cv to reach 0.1 C/C{sub 0} for the respective materials, resulting in volume compressions of 27, 20, and 6.9. Peak Cs concentrations during elution was 185, 38.5, and 27.8 C/C{sub 0}. SuperLig 644 had the highest Cs loading per gram in NCAW and the greatest volume compression on aci elution. Because of high density and poor elution, R-F had the highest Cs loading per unit volume and lower volume compression. CS-100, the baseline material for Cs removal at Hanford, was inferior to both SuperLig 644 and R-F in terms of Cs loading and selectivity over sodium.

  18. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  19. Decorporation of cesium-137

    International Nuclear Information System (INIS)

    Cesium radio-isotopes, especially cesium-137 (137Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, 137Cs is a major contaminant which can cause severe β, γirradiations and contaminations. 137Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the 137Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  20. Challenges to natural process restoration: common dam removal management concerns

    Science.gov (United States)

    Collins, M. J.; Tullos, D. D.; Bellmore, J. R.; Bountry, J.; Connolly, P. J.; Shafroth, P. B.; Wilcox, A. C.

    2015-12-01

    Practitioners must make dam removal decisions in spite of uncertainty about physical and ecological responses. This can result in implementing structural controls or other interventions at a site to avoid anticipated negative effects, sometimes even if a given concern is not warranted. We used a newly available dam removal science database and other information sources to explore seven frequently raised issues we call "Common Management Concerns" (CMCs), investigating their occurrence and the contributing biophysical controls. We describe these controls to enable managers to better assess if further analyses are warranted at their sites before interventions are planned and implemented. The CMCs addressed are: rate and degree of reservoir sediment erosion; drawdown impacts on local water infrastructure; excessive channel incision; downstream sediment aggradation; elevated turbidity; colonization of reservoir sediments by non-native plants; and expansion of invasive fish. The relative dearth of case studies available for many CMCs limited the generalizable conclusions we could draw about prevalence, but the available data and established understanding of relevant processes revealed important biophysical phenomena controlling the likelihood of CMC occurrence. To assess CMC risk, we recommend managers concurrently evaluate if site conditions suggest the ecosystem, infrastructure, or other human uses will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other important factors like watershed disturbance history, natural variability, and dam removal tradeoffs. Better understanding CMCs and how to evaluate them will enable practitioners to avoid unnecessary interventions and thus maximize opportunities for working with natural processes to restore river

  1. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  2. Synthesis of poly(acrylic acid-maleic acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions

    International Nuclear Information System (INIS)

    A novel composite material of SiO2-Al2O3 based on poly(acrylic acid-maleic acid) was synthesized by irradiated with 60Co γ-rays at a dose of 25 KGy. The composite material was characterized using FTIR, TGA and BET surface area. Adsorption of 134Cs from HNO3 was studied as a function of contact time, temperature and concentration of Cs. Sorption behavior of 134Cs in different concentration of HCl, HNO3, acetic acid, ascorbic acid, citric acid, NaCl and NaNO3 solutions has been investigated. It can be concluded that the P(AA-MA)/SiO2/Al2O3 is promising adsorbent for Cs removal from acidic liquid radioactive waste. (author)

  3. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  4. Cesium ion uptake by moss (Hypnum cupressiforme)

    International Nuclear Information System (INIS)

    Lower land mosses uptake water and minerals from the atmosphere. They can collect metals polluting the air and radioactive fallout elements so they can be suitable for monitoring of these substances. Cesium ion uptake by Hypnum cupressiforme is studied by a radioactive tracer, 134Cs. The quantity of cesium ion in different celluar locations and the capacity of ion uptake is determined. The total capacity is found to be several times 10-3 mol g-1 and is therefore of the same order of magnitude as the cation exchange capacity of ion exchangers. The kinetics and reversibility of the process is studied as well. (orig.)

  5. Particulate removal processes and hydraulics of porous gravel media filters

    Science.gov (United States)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal

  6. Extraction of radioactive cesium from ash of flammable radioactive material

    International Nuclear Information System (INIS)

    Huge amount of radioactive materials was released by the hydrogen explosion at Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake on March 11, 2011. Suppression of the volume of radioactive materials stored by decontamination works is strongly required since the preparation of storage places is not easy. We are developing the technology for separation and concentration of radioactive cesium using nano-particle, Prussian blue, as a cesium adsorption material which has a high efficiency and good selectivity. We propose a method in which radioactive cesium is extracted from the ash of flammable materials into the water and the Prussian blue nano-particles are added to the water to collect cesium. The volume of radioactive wastes contaminated by cesium is expected to be cut down with these processes. (J.P.N.)

  7. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    OpenAIRE

    Lin, Katie

    2012-01-01

    In Denmark and many other European countries, drinking water is exclusively or mainly based on groundwater. Treatment of the groundwater is rather simple, only including aeration and a subsequent filtration process. The filtration process may take place over to steps. Step 1: Filtration in a pre-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener a...

  8. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    biological processes and the interaction between them. Some studies have indicated a direct competition between iron and ammonium removal when oxygen is limited, and both processes may have a negative effect on the manganese removal (de Vet et al., 2009; Tekerlekopoulou et al., 2008). However the reasons for.......g. flocculation) and physical (e.g. membrane filtration) based technologies. The removal of dissolved manganese and iron is important. If manganese and iron enter the distribution system, the water will become coloured and have a metallic taste, and it may cause problems in the distribution network due to...... precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal of...

  9. Analysis of radioactive cesium

    International Nuclear Information System (INIS)

    The procedure of analysis of cesium-137 in environmental samples is described. The standard measurement of cesium-137 is made by using a standard solution and a low background G-M counter system. Precipitation and dust are collected on a stainless steel pan. The collected samples are treated by evaporation and extraction or ion exchange and adsorption method. The sample is then quantitatively analyzed. The measurement of cesium-137 is made according to the standard of measurement. Samples collected from inland water and sea water are also treated by evaporation or ion exchange method. The measurements of cesium-137 are also made. This manual describes how to collect soil samples. The collected soil is dried and treated to make samples for activity measurement. Activity measurement is made according to the standard of measurement, then the data are analyzed. Samples are also collected from sediment of sea bottom or river bottom, agricultural products, milk, marine organisms, and daily foods. This manual describes on the methods to collect samples and the treatment to make samples for measurement. (Kato, T.)

  10. Low-work-function surfaces produced by cesium carbonate decomposition

    Science.gov (United States)

    Briere, T. R.; Sommer, A. H.

    1977-01-01

    Cesium carbonate (Cs2CO3) was heated to the decomposition temperature of approximately 600 C. The nonvolatile decomposition products were condensed on a nickel substrate while the carbon dioxide was removed by pumping. The deposited material is characterized by an effective work function of between 1.05 and 1.15 eV at 450 K and by photoemission in the visible and near-infrared region of the spectrum. It is suggested that the deposited material consists of Cs2O, possibly Cs2O2, and adsorbed cesium. Silver, evaporated from a heated silver bead, produced the typical photoemissive and thermionic properties of a silver-oxygen-cesium (S-1) photocathode. The material may be of interest for thermionic energy converters and for the formation of silver-oxygen-cesium photocathodes.

  11. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  12. Significant enhancement of negative secondary ion yields by cluster ion bombardment combined with cesium flooding.

    Science.gov (United States)

    Philipp, Patrick; Angerer, Tina B; Sämfors, Sanna; Blenkinsopp, Paul; Fletcher, John S; Wirtz, Tom

    2015-10-01

    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment. PMID:26378890

  13. Cesium ion exchange using actual waste: Column size considerations

    International Nuclear Information System (INIS)

    It is presently planned to remove cesium from Hanford tank waste supernates and sludge wash solutions using ion exchange. To support the development of a cesium ion exchange process, laboratory experiments produced column breakthrough curves using wastes simulants in 200 mL columns. To verify the validity of the simulant tests, column runs with actual supernatants are being planned. The purpose of these actual waste tests is two-fold. First, the tests will verify that use of the simulant accurately reflects the equilibrium and rate behavior of the resin compared to actual wastes. Batch tests and column tests will be used to compare equilibrium behaviors and rate behaviors, respectively. Second, the tests will assist in clarifying the negative interactions between the actual waste and the ion exchange resin, which cannot be effectively tested with simulant. Such interactions include organic fouling of the resin and salt precipitation in the column. These effects may affect the shape of the column breakthrough curve. The reduction in column size also may change the shape of the curve, making the individual effects even more difficult to sort out. To simplify the evaluation, the changes due to column size must be either understood or eliminated. This report describes the determination of the column size for actual waste testing that best minimizes the effect of scale-down. This evaluation will provide a theoretical basis for the dimensions of the column. Experimental testing is still required before the final decision can be made. This evaluation will be confined to the study of CS-100 and R-F resins with NCAW simulant and to a limited extent DSSF waste simulant. Only the cesium loading phase has been considered

  14. Advanced CO2 removal process control and monitor instrumentation development

    Science.gov (United States)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  15. Process and system for removing impurities from a gas

    Energy Technology Data Exchange (ETDEWEB)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  16. Study of Chemical Decontamination Process for CRUD Removal

    International Nuclear Information System (INIS)

    Chalk River Unidentified Deposit (CRUD) is a technical term in nuclear engineering which is an accumulated material on external fuel rod cladding surfaces in nuclear power plants. It is a corrosion product which is composed of either dissolved ions or solid particles such as Ni, Fe and Co. It consists mainly of NiO and NiFe2O4. It can affect to reduce fuel lifetime, degrade heat transfer to the coolant, and threaten human health and environment. Therefore, decontamination process is essential for reducing occupational exposures, limiting potential releases and uptakes of radioactive materials, allowing the reuse of components, and facilitating waste management process. In this paper, we have conducted the synthesis of Cobalt ferrite as power foam to use for decontamination process. In dissolution test of Co ferrite and Ni ferrite, oxalic acid shows the most effective chemical decontamination reagent to remove the contaminants. Generally, the dissolved amount of cobalt and nickel increases at low pH condition and as the temperature goes higher, dissolved amount of cobalt and iron are much higher

  17. Study of Chemical Decontamination Process for CRUD Removal

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seongsik; Kim, Won-Seok; Kim, Jungjin; Um, Wooyong [POSTECH, Pohang (Korea, Republic of)

    2015-05-15

    Chalk River Unidentified Deposit (CRUD) is a technical term in nuclear engineering which is an accumulated material on external fuel rod cladding surfaces in nuclear power plants. It is a corrosion product which is composed of either dissolved ions or solid particles such as Ni, Fe and Co. It consists mainly of NiO and NiFe{sub 2}O{sub 4}. It can affect to reduce fuel lifetime, degrade heat transfer to the coolant, and threaten human health and environment. Therefore, decontamination process is essential for reducing occupational exposures, limiting potential releases and uptakes of radioactive materials, allowing the reuse of components, and facilitating waste management process. In this paper, we have conducted the synthesis of Cobalt ferrite as power foam to use for decontamination process. In dissolution test of Co ferrite and Ni ferrite, oxalic acid shows the most effective chemical decontamination reagent to remove the contaminants. Generally, the dissolved amount of cobalt and nickel increases at low pH condition and as the temperature goes higher, dissolved amount of cobalt and iron are much higher.

  18. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  19. Comparison of organic and inorganic ion exchangers for removal of cesium and strontium from simulated and actual Hanford 241-AW-101 DSSF tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Bray, L.A.; Carlson, C.D. [and others

    1996-01-01

    Pacific Northwest National Laboratory (Northwest National Laboratory) conducted this study as a joint effort between the ``Develop and Test Sorbents`` task for the Efficient Separations and Processing Cross-Cutting Program (ESP) and the ``Batch Testing of Crystalline Silico-Titanates (CSTs)`` subtask, which is part of the Northwest National Laboratory Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. The objective of the study is to investigate radionuclide uptake of the newly produced CST materials under a variety of solution conditions and to compare the results obtained for this material with those obtained for other commercial and experimental exchangers.

  20. Comparison of organic and inorganic ion exchangers for removal of cesium and strontium from simulated and actual Hanford 241-AW-101 DSSF tank waste

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory (Northwest National Laboratory) conducted this study as a joint effort between the ''Develop and Test Sorbents'' task for the Efficient Separations and Processing Cross-Cutting Program (ESP) and the ''Batch Testing of Crystalline Silico-Titanates (CSTs)'' subtask, which is part of the Northwest National Laboratory Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. The objective of the study is to investigate radionuclide uptake of the newly produced CST materials under a variety of solution conditions and to compare the results obtained for this material with those obtained for other commercial and experimental exchangers

  1. Cesium Removal From Tanks 241-AN-103 and 241-SX-105 and 241-AZ-101 and 241-AZ-102 Composite For Testing In Bench Scale Steam Reformer

    International Nuclear Information System (INIS)

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  2. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  3. Combination process of limited filamentous bulking and nitrogen removal via nitrite for enhancing nitrogen removal and reducing aeration requirements.

    Science.gov (United States)

    Guo, Jianhua; Peng, Yongzhen; Yang, Xiong; Gao, Chundi; Wang, Shuying

    2013-03-01

    Limited filamentous bulking (LFB) activated sludge process was proposed by Guo et al. (2010) to increase the removal of tiny suspended particulates in the clarifier and reduce aeration energy consumption. However, when the use of LFB process, ammonium removal efficiency would be compromised due to low dissolved oxygen (DO). In this study, the combination process of nitrogen removal via nitrite and LFB was achieved to enhance nitrogen removal and reduce aeration energy consumption by controlling low DO levels (0.5-1.0 mg L(-1)) in a lab-scale anoxic-oxic reactor (V=66 L) treating real domestic wastewater at room temperature. Above 85% of nitrite accumulation ratio was steadily maintained during continuous operation period. The combined process improved the total nitrogen (TN) removal by about 20% in comparison to the traditional process via the nitrate pathway, and also reduced the specific aeration energy consumption by 35%. COD, ammonium and TN removal efficiencies were up to 86%, 94% and 75%, respectively. The process proved effective in achieving a steady LFB state, whereby sludge volume index between 150 and 250 mL g(-1) was sustained for long-term operation. The microbial community structure was analyzed by fluorescence in situ hybridization, which indicated ammonia-oxidizing bacteria out-competed nitrite-oxidizing bacteria. Moreover, the filaments Type 0041 and Microthrix parvicella proliferated with limited abundance. The results indicated the combination process of LFB and nitrogen removal via nitrite under low DO was a feasible solution for saving energy and enhancing nitrogen removal when treating domestic wastewater. PMID:23305749

  4. Removal of radionuclides from process streams - a review

    International Nuclear Information System (INIS)

    This report details the origin and control of radium 226, thorium 230 and lead 210 contamination of mill effluent streams from conventional and non-conventional milling of uranium ores, reviews the basic chemistry of the radionuclides as it relates to potential alternatives for control and presents these alternatives along with a summary of published cost data. The conclusions from the study indicate that the current technology, using sulphuric acid processing, solubilizes only a comparatively small quantity of the radionuclides, with the solid containing approximately the same concentration as the original ore. Present technolgy does not provide for complete removal and isolation of the radionuclides. Current practice for control of thorium 230 in liquid effluents by neutralization is adequate to meet present Governmental guidelines. Radium in solution is presently being controlled by precipitation with barium chloride but levels of less than 3 pCi/L of soluble radium could be difficult if not impossible to achieve consistently by this treatment. Indications are that the concentration of lead 210 in liquid effluent may exceed present guidelines. No specific control procedures are employed for lead 210. Methods of isolating radium 226 are required for treating effluents from conventional milling as well as from alternative processes under development. Ion exchange is suggested as a means of isolating these radionuclides. (OT)

  5. Superfund TIO videos. Set A. Removal process: Planning and initiating removals, managing removals, non-CERCLA funded removals. Part 3 Audio-Visual

    International Nuclear Information System (INIS)

    The videotape is divided into three sections. Section 1 outlines the major components of planning and initiating a removal, such as identifying appropriate response actions, preparing an Action Memorandum (AM), projecting the cost of the removal, obtaining site access, setting up a command post, and overseeing the development of the required plans. The resources available to the OSC to conduct a removal also are discussed. Section 2 discusses the OSC's role in managing the removal and describes how to obtain resources and how to manage site activities and monitor costs. The statutory limits of a removal and the importance of documenting site activities accurately and completely also are outlined. Section 3 outlines the OSC's role in removal actions conducted by parties other than EPA OSCs. Discussed are CERCLA removals conducted by PRPs, States, Federal facilities and Indian tribes. Underground Storage Tank (UST) assessment and removal under Resource Conservation and Recovery Act (RCRA) authority is also discussed

  6. Modeling of thermal-hydraulic processes in passive heat removal systems for fast sodium cooled reactors

    International Nuclear Information System (INIS)

    The processes of heat removal in passive decay heat removal systems in a BN-1200 reactor are discussed. The analysis of the assumptions and limitations of one-dimensional equations for unsteady natural convection in closed circuits are performed. Integrated models of hydraulic processes that ensure the removal of residual heat in the BN-type reactor are developed

  7. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    OpenAIRE

    Bo Li; Guangxue Wu

    2014-01-01

    Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characte...

  8. Kinetic and Equilibrium Studies of Cesium-137 Adsorption on Olive Waste from Aqueous Solutions Kinetic and Equilibrium Studies of Cesium-137 Adsorption on Olive Waste from Aqueous Solutions

    International Nuclear Information System (INIS)

    The agricultural by-product olive pomace either in its raw material or carbonized form was used for the removal of 137Cs from aqueous solutions. Experimental studies were conducted to evaluate and optimize some affecting factor such as contact time, adsorbent dosage, ph value and initial 137Cs concentration ions. The sorption process was described by pseudo first-order, pseudo second-order and Intra-particle diffusion models. Data have been interpreted in terms of Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The obtained data showed that 120 minutes are sufficient time to attain equilibrium and maximum % removal of 137Cs was found 80% and 99% for raw olive pomace and its carbonized form, respectively. The maximum sorption capacity of raw and carbonized adsorbent for cesium removal was 0.360 and 0.565 mol/g respectively.

  9. Present and perspective of enhanced biological phosphorus removal process; Seibutsugakuteki rin jokyoho no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [National Inst. of Bioscience and Human-Technology, Tsukuba (Japan)

    1997-02-05

    Biological phosphorus removal process utilizing anaerobic and aerobic conditions, mechanism of phosphorus removal, and microbes relating to phosphorus removal are outlined, and future problems are discussed. By mixing waste water and sludge under anaerobic condition followed by treatment under aerobic condition, phosphorus content in sludge increases to enable biological phosphorus removal. More microbes with high polyphosphorus accumulating performance are acquired by the anaerobic/aerobic process than other microbes with the result of their preferential increase, and the process has high phosphorus removal characteristic than the general treatment process. Microbes relating to phosphorus removal, immobilization of polyphosphate accumulating microbes, and phosphorus acquiring and releasing characteristics of immobilized mycelium are discussed. Application of gel entrapped immobilized mycelium to phosphorus removal and problems in biological phosphorus removing methods are described. 18 refs., 12 figs.

  10. Development of hexacyanoferrate complex on the absorbent matrix (Amberlite XAD-4) for the removal of cesium from neutral and acidic waste streams in reproceesing plants (Paper No. AL-43)

    International Nuclear Information System (INIS)

    The important role of support material on the performance of K2MFe(CN)6(M is the transition metal with oxidation state II) ion exchanger for selective absorption of cesium is described in this paper. The material erosion and chemical decomposition have been overcome using macroporous absorbent type resin. (author)

  11. Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorus removal process: effect of iron.

    Science.gov (United States)

    Jia, Wenlin; Wang, Qian; Zhang, Jian; Yang, Weihua; Zhou, Xiaowei

    2016-08-01

    The short- and long-term influences of ferric iron (Fe(III)) on nutrients removal and nitrous oxide (N2O) emission during SNDPR process were evaluated. According to the continuous cycle experiments, it was concluded that the addition of Fe(III) could lower the nitrogen removal of the following cycle during SNDPR process, which was mainly induced by the chemical removal of phosphorus. However, the impacts were transitory, and simultaneous nitrogen and phosphorus removal would recover from the inhibition of Fe(III) after running certain cycles. Moreover, the addition of Fe(III) could stimulate N2O emission transitorily during SNDPR process. However, if Fe(III) was added into reactor continuously, the nitrogen removal would be improved, especially at low Fe load condition. It was because that the activity of NO reductase was enhanced by the addition of Fe. However, the low Fe load in reactor would induce more N2O emission. When Fe(III) load was 40 mg/L in the reactor, the N2O yield was 10 % higher than control. The TN removal was weakened when Fe(III) load reached to 60 mg/L, and the N2O yield was lower than control, due to the inhibition of the high Fe load on denitrification enzymes. PMID:27137189

  12. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Separation of 137cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137Cs leach rate was 0.001 gm/cm2/d. (author)

  13. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  14. Removal of Engineered Nanomaterials Through Conventional Water Treatment Processes

    OpenAIRE

    Honda, Ryan

    2014-01-01

    The overall aim of this PhD research was to identify mechanisms involved in the removal of nanomaterials in conventional water treatment. This project was developed based upon the need for assessing current water treatment infrastructure, and its capacity of effectiveness in removing nanomaterials. The bulk of this dissertation investigated "primary treatment" steps of coagulation, flocculation, and sedimentation, simulated by full-scale and micro-scale jar tests. The remainder of the diss...

  15. Vitrification of cesium-contaminated organic ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, T.N. Jr. [Clemson Univ., SC (United States)

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  16. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  17. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  18. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  19. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    International Nuclear Information System (INIS)

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial 'cold' simulated waste results and confirmed the selective removal provided by ligand-particle web technology

  20. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  1. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-02-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents

  2. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-03-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the

  3. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS; TOPICAL

    International Nuclear Information System (INIS)

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO(sub x) control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO(sub 2) to SO(sub 3). The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic(regsign) Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents

  4. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS; TOPICAL

    International Nuclear Information System (INIS)

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO(sub 2) to SO(sub 3). The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic(regsign) Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the

  5. Cesium-137 in biosphere

    International Nuclear Information System (INIS)

    The behaviour of cesium-137 in environment is reviewed. Problems on 137Cs migration in environment, on metabolism andbiological effects are considered. Data on nuclide accumulation in various plants, ways of their entering the man's organism are presented. It is marked that the rate of 137Cs metabolism in the man's organism depends considerably on age, sex, temperature of environment, conditions for activity, water and mineral metabolism and some other factors. It is shown that the annual effective equivalent dose per capita will increase to 2000 yr. up to 1 μSv, that constitutes 0.05% of the average value of irradiation by a natural source

  6. Stationary point of the radiometric control of cesium contamination of agricultural animals

    International Nuclear Information System (INIS)

    Stationary point of the radiometric control of cesium contamination of an agricultural animals. Is intended for vital measurements of the contents of radiocesium in muscular tissue of a cattle. Can be used on cattle-breeding farms, providing points, in meat factories and personal facilities. As a base means for accommodation of the control point the motor-car is used. Design of the car allows to automate operations on deployment of the control point on a place and translation of one to a transport mode. Limits of measured specific activity of cesium contamination of a cattle is up 5*10-9 to 5*10-6 Ci/kg. The basic error on the bottom limit of measurement at confidence coefficient 0,95 is no more than 30%. Measurement time for the bottom limit of determined specific activity is no more than 30 s. There is automatic measurement mode. Type of a power is 220 V, 50 Hz. Range of working temperatures is up -15 to +35 centigrade. Relative humidity is no more than 98% at 25 centigrade. External gamma background is till 0.035 mR/h. Time of installation and dismantle of stationary control point is no more than 1,5 hours. The direct radiometric control in divo allows to fulfil and to use biotechnological process of removing of cesium isotopes from body of animals for decrease of levels of radioactive contamination

  7. Cesium-137 in grass from Chernobyl fallout

    International Nuclear Information System (INIS)

    Grass ecosystem was monitored for 137Cs, a relatively long-lived radionuclide, for about 16 years since the Chernobyl reactor accident occurred on April 26, 1986. Cesium-137 in grass gramineae or poaceae the species, ranged from 122.9 Bq kg-1 (September 4, 1986) to 5.8 mBq kg-1 (October 16, 2001) that is a range of five orders of magnitude. It was observed that there was a trend of decreasing 137Cs with time reflecting a removal half-time of 40 months (3 1/3 years), which is the ecological half-life, T ec of 137Cs in grassland

  8. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    Science.gov (United States)

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  9. Operation and control of SBR processes for enhanced biological nutrient removal from wastewater

    OpenAIRE

    Puig Broch, Sebastià

    2008-01-01

    In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with ...

  10. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  11. Extraction of rubidium and cesium from micas following sulfate-extraction technology

    International Nuclear Information System (INIS)

    Results are presented of semicommercial tests of procedure of rubidium and cesium extraction from micas. Micas has been processed by the 40% solution of sulphuric acid at boiling temperature. Separate extraction of cesium and rubidium from the solution with arylalkylsubstituted phenol has been conducted after alum crystallization and decomposition by lime. Pure rubidium carbonate and technical cesium carbonate with their 80 and 95% extraction, respectively, are prepared

  12. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs

  13. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process

    International Nuclear Information System (INIS)

    An electrochemical reactor was built and used to remove arsenite from water. In this reactor, arsenite can be oxidized into arsenate, which was removed by electro-coagulation process simultaneously. The reactor mainly included dimension stable anode (DSA) and iron plate electrode. Oxidation of arsenite will occur at the DSA electrode in the electrochemical process. Meantime, the iron ions can be generated by the electro-induced process and iron oxides will form. Thus, the arsenic was removed by coagulation process. Influencing factors on the removal of arsenite were investigated. It is found that Ca2+ and Mg2+ ions promoted the removal of arsenite. However, Cl-, CO32-, SiO32-, and PO43- ions inhibited the arsenic removal. And, it is observed that the inhibition effect was the largest in the presence of PO43-. Furthermore, it is observed that the removal efficiency of arsenate is the largest in the pH value of 8. Increase or decrease of pH value did not benefit to the arsenite removal. Fourier transform infrared spectra were used to analyze the floc particles, it is suggested that the removal mechanism of As(III) in this system seems to be oxidative of As(III) to As(V) and to be removed by adsorption/complexation with metal hydroxides generated in the process.

  14. Modelling and automation of the process of phosphate ion removal from waste waters

    OpenAIRE

    L. Lupa; P. Negrea; Negrea, A.; A. Iovi; L. Cocheci; G. Mosoarca

    2008-01-01

    Phosphate removal from waste waters has become an environmental necessity, since these phosphates stimulate the growth of aquatic plants and planktons and contribute to the eutrophication process in general. The physicochemical methods of phosphate ion removal are the most effective and reliable. This paper presents studies on the process of phosphate ion removal from waste waters resulting from the fertiliser industry’s use of the method of co-precipitation with iron salts and with calcium h...

  15. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  16. Cesium stress and adaptation in pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Industrialization and acid rain have led to a marked increment on the bioavailability of numerous metals. These metallic pollutants pose a serious threat to the ecosystem due to their ability to interact negatively with living organisms. Thus, considerable effort has been directed towards the development of environmentally-friendly technologies tailored to the management of metal wastes. As microbes are known to adapt to most environmental stresses, they constitute organisms of choice in the study of molecular adaptation processes. The adaptive features may be subsequently engineered for biotechnological applications. Cesium, a monovalent metal with chemical similarities to potassium but no know essential biological function has become a cause of environmental concern owing to its accidental release from the Chernobyl nuclear accident. This study examines the impact of cesium on the soil microbe Pseudomonas fluorescensts, and discusses the possibilities of its use in management of this nuclear waste. 15 refs., 3 figs

  17. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale-up. St...

  18. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-07-03

    longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  19. Atmospheric removal processes for high molecular weight organochlorines

    International Nuclear Information System (INIS)

    Factors influencing the atmospheric removal of polychlorinated biphenyls (PCB) and the chlorinated insecticides p,p'-DDT, chlordane, and toxaphene were investigated in the city of Columbia, South Carolina, and at the North Inlet estuary on the South Carolina coast. Dry deposition velocities (V/sub d/) for individual organochlorines (OC) varied by 1--2 orders of magnitude from day to day, and in Columbia log V/sub d/ was correlated with average wind velocity. Higher V/sub d/ were observed for the less volatile OC, reflecting a greater degree of attachment to aerosols. Average V/sub d/(cm/s) in Columbia were: Aroclor 1016=< or =0.04, Aroclor 1254=0.43, chlordane=0.068, and p,p'-DDT=1.3. The trend in V/sub d/ paralleled th percentages of these OC retained by a glass fiber filter during high volume air sampling, V/sub d/ for Aroclor 1254 and p,p'-DDT at North Inlet were about 3--4 times lower than those in Columbia. Toxaphene was the most prevalent OC in precipitation at North Inlet, with concentrations exceeding 100 ng/1 during the late summer and early fall. Average washout ratios at North Inlet were: Aroclor 1254=94, p, p'-DDT=87, chlordane=8.4, and toxaphene=246. Dry and wet removal rates for Aroclor 1254 and p,p'-DDT were more similar than might be expected from the large difference (more than 2 orders of magnitude) in their reported vapor pressures, although the vapor pressure for Aroclor 1254 is not accurately known. The similarity of PCB and p,p'-DDT removal rates suggests an explanation for the fact that PCB and p,p'-DDT ratios in seawater are about the same as those in the ocean atmosphere

  20. Steady state recycling chromatography with solvent removal-effect of solvent removal constraints on process operation under ideal conditions.

    Science.gov (United States)

    Siitonen, Jani; Sainio, Tuomo

    2014-05-01

    Steady state recycling chromatography (SSR) offers a means to reduce eluent consumption and increase productivity in preparative and production scale chromatographic separations. Even better performance is obtained with an integrated process by coupling solvent removal unit to the chromatographic separation unit. Here a design method for SSR with an integrated solvent removal unit (SSR-SR) is presented. The method is more practical than previous work as the effect of physical constraints, such as solubility or viscosity, imposed on the amount of solvent removed is included. The method holds under ideal conditions for binary systems with competitive Langmuir isotherm model. The design equations allow calculation of the regions of feasible operating parameters when either the maximum concentrations in the solvent removal unit or of the solution fed into the chromatographic column is restricted. The method was applied to analyze the performance of different SSR-SR configurations in two case studies: the separation of mandelic acid enantiomers and the separation of EMD 53986 enantiomers. The benefits of SSR-SR are relatively small under ideal conditions but the design method developed here can give a good starting point for designing SSR-SR processes under non-ideal conditions. PMID:24685160

  1. Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests

    International Nuclear Information System (INIS)

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. 237Np and 243Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU

  2. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during

  3. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..

  4. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    Science.gov (United States)

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. PMID:23764599

  5. Development on the technology for tritium removal processes (II)

    International Nuclear Information System (INIS)

    In order to decrease tritium exposure to workers, the ratio of which is up to 40% of total exposure, tritium removal facility is getting to be one of the considerable parameters in Korea, due to the next CANDUs to be operated at Wolsung NPP. For investigating the column characteristics of cryogenic distillation of H2/D2 system, a preliminary distillation apparatus for Ar/N2 distillation was designed and manufactured. It consisted of a distillation column (20 mm diameter, 500 mm height), a reboiler and a condenser, surrounded with a liquid nitrogen jacket and a vacuum insulating box. Several kinds of packing materials including Dixon ring will be tested. Computer simulation showed that the reaching time for steady-state was approximately 20 minutes, while the concentration ratio between the top and the lower art was around 2000. (Author)

  6. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  7. A Comparative Study of the Bacterial Community in Denitrifying and Traditional Enhanced Biological Phosphorus Removal Processes

    OpenAIRE

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-lei; Sun, Fei-Yun

    2014-01-01

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphoru...

  8. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-15

    Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors. PMID:26410699

  9. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    International Nuclear Information System (INIS)

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  10. Optimization of pyrene removal from contaminated soil by electrokinetic remediation process

    OpenAIRE

    Abbas Rezaee; Seyedenayat Hashemi; Seyed Mohammad Mousavi; Mohammad Reza Nikodel; Hossein Ganjiidoust

    2014-01-01

    ABSTRACT The electrokinetic remediation process has been intensively investigated by many researchers as a novel technique to remove different pollutants from soil. The process utilizes a direct-current electric field to soils to insert some process such as electroosmosis and electrolytic migration. In the present study, the removal of pyrene as a model of polycyclic aromatic hydrocarbons (PAHs) were optimized using response surface methodology (RSM) based on central composite design (CCD)...

  11. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  12. Removal of Cryptosporidium by wastewater treatment processes: a review.

    Science.gov (United States)

    Nasser, Abidelfatah M

    2016-02-01

    Cryptosporidium is a protozoan parasite that infects humans and various animal species. The environmental stability and the low infectious dose of Cryptosporidium facilitate its transmission by water and food. Discharge of untreated wastewater may result in waterborne or foodborne Cryptosporidium outbreaks, therefore a suitable treatment may prevent its dissemination. Most studies on the prevalence of Cryptosporidium oocysts in wastewater have reported a concentration range between 10 and 200 oocysts/L and a prevalence of 6 to 100%. Activated sludge has been found to be ineffective for the removal of Cryptosporidium oocysts. Stabilization ponds and constructed wetlands are efficient for the reduction of Cryptosporidium from wastewater, especially when the retention time is longer than 20 days at suitable sunlight and temperature. High rate filtration and chlorine disinfection are inefficient for the reduction of Cryptosporidium from effluents, whereas ultrafiltration and UV irradiation were found to be very efficient for the reduction of Cryptosporidium oocysts. Adequate tertiary treatment may result in high quality effluent with low risk of Cryptosporidium for unrestricted irrigation and other non-potable applications. PMID:26837825

  13. Specific interaction of cesium with the surface of calcium silicate hydrates

    International Nuclear Information System (INIS)

    The sorption of cesium at the calcium silicate hydrates (CSH) surface was investigated, both through sorption isotherm data and by solid-state NMR experiments. The sorption ability of CSH towards cesium is favored for low solid Ca/Si molar ratios, in agreement with the negative surface charge they develop then. A significant proportion of these sorbed cesium cations remains tightly bound to the surface sites forming, in dehydrated CSH, inner-sphere complexes, which can not be removed by alcohol washing. Chloride seems to present a lower affinity for CSH, even for high Ca/Si molar ratios, where the surface charge becomes positive. (orig.)

  14. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-12-10

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

  15. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  16. Results Of Cesium Mass Transfer Testing For Next Generation Solvent With Hanford Waste Simulant AP-101

    International Nuclear Information System (INIS)

    SRNL has performed an Extraction, Scrub, Strip (ESS) test using the next generation solvent and AP-101 Hanford Waste simulant. The results indicate that the next generation solvent (MG solvent) has adequate extraction behavior even in the face of a massive excess of potassium. The stripping results indicate poorer behavior, but this may be due to inadequate method detection limits. SRNL recommends further testing using hot tank waste or spiked simulant to provide for better detection limits. Furthermore, strong consideration should be given to performing an actual waste, or spiked waste demonstration using the 2cm contactor bank. The Savannah River Site currently utilizes a solvent extraction technology to selectively remove cesium from tank waste at the Multi-Component Solvent Extraction unit (MCU). This solvent consists of four components: the extractant - BoBCalixC6, a modifier - Cs-7B, a suppressor - trioctylamine, and a diluent, Isopar L(trademark). This solvent has been used to successfully decontaminate over 2 million gallons of tank waste. However, recent work at Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Savannah River National Laboratory (SRNL) has provided a basis to implement an improved solvent blend. This new solvent blend - referred to as Next Generation Solvent (NGS) - is similar to the current solvent, and also contains four components: the extractant - MAXCalix, a modifier - Cs-7B, a suppressor - LIX-79(trademark) guanidine, and a diluent, Isopar L(trademark). Testing to date has shown that this 'Next Generation' solvent promises to provide far superior cesium removal efficiencies, and furthermore, is theorized to perform adequately even in waste with high potassium concentrations such that it could be used for processing Hanford wastes. SRNL has performed a cesium mass transfer test in to confirm this behavior, using a simulant designed to simulate Hanford AP-101 waste.

  17. The water vapor nitrogen process for removing sodium from LMFBR components

    International Nuclear Information System (INIS)

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  18. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  19. Biological removal of methanol from process condensate for the purpose of reclamation

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ming; YANG Min; ZHANG Yu; GAO Meng-chun; ZHANG Jing

    2004-01-01

    The biological removal of methanol from condensate of ammonia manufacturing processes for the purpose of reclamation using contact type reactor was studied. Methanol of 60 mg/L was removed completely under an HRT of 1.12 h. Optimal inorganic nutrient dose was determined on evaluating methanol removal performance and dehydrogenase activities (DHA) under different nutrition doses. The optimal inorganic nutrient dose only gave an increase of conductivity of ca. 10 μs/cm2 in the effluent on treating synthetic condensate containing methanol of 30 mg/L. The results demonstrated that biological removal of methanol was effective for the purpose of recovering the methanol-bearing condensate.

  20. Simultaneous Removal of Turbidity and Humic Acid Using Electrocoagulation/Flotation Process in Aqua Solution

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid-Mohammadi

    2015-06-01

    Full Text Available In this study, the applicability of the Electrocoagulation/Flotation (ECF process in batch operation was investigated for the simultaneous removal of turbidity and Humic acid (HA using Fe and Al electrodes. The effects of solution pH (3 - 12, electrical potentials (10 - 30 V, initial turbidity concentration (300 - 1200 NTU, and reaction time (10 - 30 minutes with or without HA were investigated in an attempt to achieve higher turbidity removal efficiency. The batch experimental results revealed that with initial turbidity of 300 NTU, at voltage of 30 V, after 30 minutes reaction times, and at pH values of 6 and 8, the ECF process for Fe and Al electrodes removed over 97% and 88% of turbidity, respectively. The percentage of turbidity removal from solution dropped with a decrease in voltages for both electrodes. The results displayed that the Fe-Fe electrode arrangement attained the highest performance for turbidity removal rate. As a result, ECF process was shown to be a very efficient, cost-effective, and promising process for efficient treatment of high turbid water. Regarding HA, the results showed that in ECF process over 67% and 43% of UV254 has been removed for Al and Fe electrodes, respectively at the optimum pH, 30 minutes reaction time and 30 V applied voltage. Thus, it can be considered that Fe and Al are the best electrodes for removing turbidity and HA, respectively.

  1. Treatment of high strength leachate by biological nutrient removal processes

    International Nuclear Information System (INIS)

    This study describes the performance of a pilot-scale A/O system with respect to not only conventional wastewater quality parameters, but also specific volatile and semi-volatile organics. Hydraulic loadings were increased from 1.0 to 3.0 m3/d in two stages. The leachate was characterized by highly variable BOD, COD, TKN, and NH3-N concentrations ranging from 540-7185, 2040-8470, 501-1294, and 321-1000 mg/l respectively with over 91% of the BOD and 95% of the COD in soluble form. Concentrations of VOCs primarily benzene, chlorobenzene, ethylbenzene, toluene, o-xylene, m and p-xylene, 1,1-dichloroethane, and trichloroethylene ranging from 0.2 to 81.4 μg/l were reduced to below detection levels in the A/O system. At the three loadings investigated in the study i.e. 1, 2, and 3 m3 /d, the system affected excellent removals of organics and nitrogen, with reductions of soluble BOD (SBOD), total BOD, soluble COD (SCOD), COD, TKN, NH3-N, and total nitrogen of 91-100%, 87-97%, 65-93%, 57-91%, 84-96%, 99.96-99.97%, and 81-90% respectively. At the various loadings investigated in this study, effluent concentrations of SBOD, BOD,COD, SCOD, TKN, NH3-N, and nitrates as low as 4, 56, 685, 608, 35.2, 0.6, and 28.8 mg/l respectively were routinely achieved. Furthermore, despite operating at high mixed liquor solids in the 5000-6500 mg/l range, and the adversely long hydraulic residence time in the clarifier of 2 days, effluent total and volatile suspended solids concentrations of about 50 and 30 mg/l were achieved. The A/O system was not only capable of achieving the required sewer discharge criteria but it also demonstrated the achievability of surface discharge criteria, thus eliminating the need for additional treatment at the municipal wastewater treatment facilities. The system operated in a very stable fashion resisting the wide fluctuations in influent quality. (author)

  2. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li+ + K, Na+ + K, K+ + K, and Rb+ + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG)

  3. Study on the removal of toxic substance from river water using O3-GAC process

    Institute of Scientific and Technical Information of China (English)

    杨玉楠; 孙志荣; 王宝贞; 杨敏; 李文兰

    2004-01-01

    This paper studied on the removal of toxic substance from river water using O3-GAC process. The result of GC/MS analysis indicated that the number of organic compound species was decreased by 55. 1%. The species of toxic substance of raw water also dec reased from 16 to 5. The total removal rate of CODMn andUV254were 45% ~ 72% and 60% ~ 80% following O3-GAC treatment. It reflected that this process had a good effective on removing unsaturation organic which absorb UV and toxic organic containing nitrogen. The results of Ames test indicated that raw water had a relatively strong mutagicity on TA 98. The O3-GAC process had a good ability in removing mutagen in water. The effluent water' s mutagicity is minus. The results of the study indicated that the effluent of the O3-GAC process was meet the demand of drinking water.

  4. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...

  5. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-03-01

    Full Text Available Sludge retention time (SRT is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O in biological nutrient removal (BNR processes. Four laboratory-scale sequencing batch reactors (SBRs, namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities.

  6. Evaluation of improved technologies for the removal of 90Sr and 137Cs from process wastewater and groundwater: FY 1995 status

    International Nuclear Information System (INIS)

    A number of new sorbents are currently being developed for the removal of 90Sr and 137Cs from contaminated, caustic low-level liquid waste (LLLW). These sorbents are potentially promising for use in the cleanup of contaminated groundwater and process wastewater containing the two radionuclides. The goal of this subtask is to evaluate the new sorbents to determine whether their associated treatment technology is more selective for the decontamination of wastewater streams than that of currently available processes. Activities during fiscal year 1995 have included completing the characterization of the standard treatment technology, ion exchange on chabazite zeolite. Strontium and cesium sorption on sodium-modified zeolite was observed in the presence of elevated concentrations of wastewater components: sodium, potassium, magnesium, and calcium. The most significant loss of nuclide sorption was noted in the first 0- to 4-meq/L addition of the cations to a wastewater simulant. Radionuclide sorption on the pretreated zeolite was also determined under dynamic flow conditions. Resorcinol-formaldehyde (R-F) resin, which was developed at the Savannah River Site, was selected as the first new sorbent to be evaluated for wastewater treatment. Nuclide sorption on this resin was greater when the resin had been washed with ultrapure water and air dried prior to use

  7. Application of Moving Bed Biofilm Process for Biological Organics and Nutrients Removal from Municipal Wastewater

    OpenAIRE

    M. Kermani; B BINA; Haji Movahedian; Amin, M. M.; M. Nikaein

    2008-01-01

    In this study, experiments have been conducted to evaluate the organics and nutrients removal from synthetic wastewater by a laboratory scale moving bed biofilm process. For nutrients removal, moving bed biofilm process has been applied in series with anaerobic, anoxic and aerobic units in four separate reactors. Moving bed biofilm reactors were operated continuously at different loading rates of nitrogen and Phosphorus. During optimum conditions, close to complete nitrification with average ...

  8. Effective virus inactivation and removal by steps of Biotest Pharmaceuticals IGIV production process

    OpenAIRE

    Dichtelmüller, Herbert O.; Flechsig, Eckhard; Sananes, Frank; Kretschmar, Michael; Dougherty, Christopher J.

    2012-01-01

    The virus validation of three steps of Biotest Pharmaceuticals IGIV production process is described here. The steps validated are precipitation and removal of fraction III of the cold ethanol fractionation process, solvent/detergent treatment and 35 nm virus filtration. Virus validation was performed considering combined worst case conditions. By these validated steps sufficient virus inactivation/removal is achieved, resulting in a virus safe product.

  9. Adsorption Process of Sulfur Removal from Diesel Oil Using Sorbent Materials

    OpenAIRE

    Isam A. H. Al Zubaidy; Fatma Bin Tarsh; Noora Naif Darwish; Balsam Sweidan Sana Abdul Majeed; Aysha Al Sharafi; Lamis Abu Chacra

    2013-01-01

    The removal of organo-sulfur compounds (ORS) from diesel fuel is an important aspect of all countries to reduce air pollution by reducing the emission of toxic gases such as sulfur oxides and other polluted materials. One of the easily and fast method to remove sulfur from diesel oil is the adsorption desulfurization process. Adsorption-desulfurization process of diesel fuel was proposed and examined. Local diesel fuel of 410 ppm sulfur content was treated with commercial activated carbon and...

  10. Ammonium removal from municipal wastewater with application of ion exchange and partial nitritation/Anammox process

    OpenAIRE

    Malovanyy, Andriy

    2014-01-01

    Nitrogen removal from municipal wastewater with application of Anammox process offers cost reduction, especially if it is combined with maximal use of organic content of wastewater for biogas production. In this study a new technology is proposed, which is based on ammonium concentration from municipal wastewater by ion exchange followed by biological removal of ammonium from the concentrated stream by partial nitritation/Anammox process. In experiments on ammonium concentration four the most...

  11. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    OpenAIRE

    Oyuna Tsydenova; Valeriy Batoev; Agniya Batoeva

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fe...

  12. Development of a water-jet assisted laser paint removal process

    International Nuclear Information System (INIS)

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet

  13. Development of a water-jet assisted laser paint removal process

    Energy Technology Data Exchange (ETDEWEB)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K., E-mail: aknath@mech.iitkgp.ernet.in

    2013-12-01

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet.

  14. Application of Moving Bed Biofilm Process for Biological Organics and Nutrients Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2008-01-01

    Full Text Available In this study, experiments have been conducted to evaluate the organics and nutrients removal from synthetic wastewater by a laboratory scale moving bed biofilm process. For nutrients removal, moving bed biofilm process has been applied in series with anaerobic, anoxic and aerobic units in four separate reactors. Moving bed biofilm reactors were operated continuously at different loading rates of nitrogen and Phosphorus. During optimum conditions, close to complete nitrification with average ammonium removal efficiency of 99.72% occurred in the aerobic reactor. In the aerobic reactor, the average specific nitrification rate was 1.8 g NOx-N kg VSS-1 h-1. The results of the average effluent soluble COD concentration from each reactor showed that denitrification process in the second anoxic reactor consumed most of the biodegradable organic matter. As seen from the results, denitrification rate has increased with increasing NOx-N loading in the second anoxic reactor. The aerobic phosphate removal rate showed a good correlation to the anaerobic phosphate release rate. Moreover, phosphate removal rate showed a strong correlation to the phosphate loading rate in the aerobic reactor. In optimum conditions, the average SCOD, total nitrogen and phosphorus removal efficiencies were 96.9, 84.6 and 95.8%, respectively. This study showed that the moving bed biofilm process could be used as an ideal and efficient option for the total nutrient removal from municipal wastewater.

  15. Evaluation of organic and inorganic adsorbents for the removal of uranium and plutonium from process streams

    Energy Technology Data Exchange (ETDEWEB)

    Herald, W.R.; Koenst, J.W.; Luthy, D.F.

    1977-01-01

    Mound Laboratory is evaluating macroporous, ion exchange resins for the removal of plutonium, uranium, and various colloids from process waste treatment effluents. A number of organic ion exchange resins were evaluated for removal of /sup 238/Pu(IV), /sup 238/Pu(VI), and /sup 233/U(VI) from water using batch isotherm tests. The capacity and equilibrium distribution coefficients were compared with each other and with bone char, an inorganic adsorbent consisting of hydroxyapatite (HAP). The various types of adsorbents showed that the extent of removal and the equilibrium coefficients (Kd) were functions of pH. For removal of polymeric plutonium, /sup 238/Pu(IV), the best results were achieved using the inorganic adsorbent, bone char (hydroxyapatite), at pH 7. However, macroporous, weak base, anion exchange resins also showed reasonable Kd values at pH 7. Therefore, the best removal of polymeric plutonium can be achieved using chemisorption or weak base anionic exchange, indicating strongly ionized anions. Excellent results for removal of /sup 238/Pu(VI) were achieved using macroporous, strong base, anion exchange resins and macroporous, strong acid, cation exchange resins. For removal of ionic /sup 233/U(VI), the strongly acidic cation exchangers gave the better results; the Kd values were on the order of 10/sup 2/ better than bone char. Again, performance was strongly dependent upon pH. Adsorbent resins which remove constituents by physical adsorption did not perform well for uranium removal.

  16. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri, E-mail: joskit@igcar.gov.in [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Kutty, K.V. Govindan [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Goswami, M.C. [National Metallurgical Laboratory, Jamshedpur 831 007 (India); Rao, P.R. Vasudeva [Chemistry Group, IGCAR, Kalpakkam 603 102 (India)

    2014-07-01

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs{sub 2}O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (E{sub c}) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth.

  17. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs2O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (Ec) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth

  18. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes

  19. Ammonia, nitrite and nitrate nitrogen removal from polluted source water with ozonation and BAC processes

    International Nuclear Information System (INIS)

    Studies on the removal of ammonia-, nitrite-, and nitrate nitrogen with ozonation (O3), sand filtration (SF), biological activated carbon (BAC), SF-BAC, and/or O3-BAC processes were carried out in two pilot plants and a full scale plant, respectively. The results showed that all of the tested processes exhibited certain nitrogen removal efficiencies, of which both the O3-SF-BAC and O3-BAC processes were most effective and efficient in removing ammonia nitrogen, with mean removal efficiencies of some 90 and 80 percent, respectively. Ozonation was found able to oxidize some organic nitrogen into ammonia, and nitrite ion into nitrate ion. It was also found out, with interest, that the O3-BAC process can carry the nitrification process to the end under sufficient DO content, as well as more hydrocarbon substrates through ozonation that are more easily assimilated by some strains of nitrobacter that can multiply heterotrophically in its carbon beds. In the BAC process, both the DO and easily assimilated substrate contents were too low in its carbon beds due to no ozonation to sustain nitrobacter growth; but the nitrite conversion bacteria, like nitrosomas, can survive under such conditions. As a result, nitrite or nitrate ion content increased multiply in the effluents from BAC or O3-BAC processes over their influents, respectively. The removal mechanisms of various processes for the three forms of nitrogen were studied and discussed, and the optimum design parameters were determined as well

  20. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M

    2004-08-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes.

  1. Uranium removal from organic solutions of PUREX process

    International Nuclear Information System (INIS)

    During the uranium extraction process with tributyl phosphate (TBP) in nitric medium, a bi solvated, non hydrated complex is formed, of formula UO2(NO3)2TBP, which is soluble in the diluent, a paraffin hydrocarbon. As it is known that some uranium salts, for instance the nitrate, when dissolved in organic solvents, like isopropanol, can be discharged as complex molecules at the cathode of an electrodeposition cell, it was decided to apply this technique to uranium loaded TBP solutions. From preliminary experiments resulted a practical possibility for the analytical control through the alpha measurement of electro deposits. This technique could be applied as well to the treatment of depleted organic streams carrying undesirable alpha activity, because the so treated solutions become deprived of uranium. This work presents the curves obtained working at constant voltage with uranium-loaded TBP solutions, the determination of the optimal operation voltage in these conditions, the electrodeposition yield for electro polished copper and stainless steel cathodes and the tests of reproducibility of deposits. A summary of the results obtained operating the high voltage supply at constant power is also presented. (Author)

  2. Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant

    International Nuclear Information System (INIS)

    The Hanford Waste Treatment and Immobilization Plant (WTP) will use cesium ion exchange to remove Cs-137 from Low Activity Waste (LAW) down to a maximum activity of 0.3 Ci/m3 in the Immobilized LAW (ILAW) product. The WTP Project baseline for cesium ion exchange is the elutable SuperLig(R) 644 (SL-644) resin (registered trademark of IBC Advanced Technologies, Inc., American Fork, UT) or a U. S. Department of Energy (DOE) approved equivalent. SL-644 is solely available through IBC Advanced Technologies. The WTP Project is conducting a three-stage process for selecting and qualifying an alternative ion exchange resin. Resorcinol formaldehyde (RF) is being pursued as a potential alternative to SL-644, to provide a backup resin supply. Resin cost relative to SL-644 is a primary driver. Phase I of the testing plan examined the viability of RF resin and recommended that a spherical form of RF resin be examined further. Phases II and III, now underway, include batch testing to determine the isotherm of this resin, kinetics to address the impacts of bead diameter and high sodium feed levels on processing Hanford waste with the resin, and multicycle column testing to determine how temperature and chemical cycling affects waste processing. Phases II and III also examine resin performance against simulated WTP feeds, radiolytic and thermal stability, and scale-up to pilot scale performance. We will discuss early results obtained from Phase II testing here

  3. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.

    Science.gov (United States)

    Yao, Weikun; Wang, Xiaofeng; Yang, Hongwei; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin; Wang, Yujue

    2016-01-01

    This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents. PMID:26610192

  4. Impact of activated sludge process configuration on removal of micropollutants and estrogenicity.

    Science.gov (United States)

    Ogunlaja, O O; Parker, W J

    2015-01-01

    The efficacy of three different wastewater treatment configurations, conventional activated sludge (CAS), nitrifying activated sludge (NAS) and biological nutrient removal (BNR) for removal of selected micropollutants from authentic wastewater was investigated. The processes were also characterized based on their proficiency to reduce the estrogenic activity of the influent wastewater using the in vitro recombinant yeast assay. The removal efficiency of trimethoprim improved with the complexity of the three treatment process configurations. Ibuprofen, androstendione, sulfamethoxazole, nonyl-phenol, estrone and bisphenol-A had moderate to high removals (>65%) while carbamazepine and meprobamate remained recalcitrant in the three treatment process configurations. The removal of gemfibrozil was better in the NAS than in BNR and CAS treatment configurations. The yeast estrogen screen (YES) assay analyses showed an improvement in estrogenicity removal in the BNR and NAS treatment configurations as compared to the CAS treatment configuration. Comparing the estrogenic responses from the three treatment configurations, the removal efficiencies followed the order of BNR=NAS>CAS and all were greater than 81%. PMID:26177411

  5. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Daghrir, Rimeh, E-mail: rimeh.daghrir@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Drogui, Patrick, E-mail: patrick.drogui@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Delegan, Nazar, E-mail: delegan@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada)

    2014-01-01

    The degradation of chlortetracycline in synthetic solution and in municipal effluent was investigated using a photoelectrocatalytic oxidation process under visible irradiation. The N-doped TiO{sub 2} used as photoanode with 3.4 at.% of nitrogen content was prepared by means of a radiofrequency magnetron sputtering (RF-MS) process. Under visible irradiation, higher photoelectrocatalytic removal efficiency of CTC was recorded using N-doped TiO{sub 2} compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The photoelectrocatalytic process operated at 0.6 A of current intensity during 180 min of treatment time promotes the degradation of 99.1 ± 0.1% of CTC. Under these conditions, removal rates of 85.4 ± 3.6%, 87.4 ± 3.1% and 55.7 ± 2.9% of TOC, TN and NH{sub 4}{sup +} have been recorded. During the treatment, CTC was mainly transformed into CO{sub 2} and H{sub 2}O. The process was also found to be effective in removing indicator of pathogens such as fecal coliform (log-inactivation was higher than 1.2 units). - Highlights: •PECO process is a feasible technology for the treatment of MWW contaminated by CTC. •99.1% ± 0.1% of CTC was degraded by PECO using N-doped TiO{sub 2}. •85.4% ± 3.6% of TOC removal and 97.5% ± 1.2% of COD removal were achieved. •87.4% ± 3.1% of TN removal and 55.7% ± 2.9% of NH{sub 4}{sup +} removal were recorded. •More than 94% of fecal coliform was removed (abatement > 1.2-log units)

  6. Cesium in the nutrient cycle

    International Nuclear Information System (INIS)

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland

  7. Cesium contamination of heather honey

    International Nuclear Information System (INIS)

    In heather honey from Lueneburger Heide, FRG, relatively high values of cesium activity were found (up to about 650 Bq/kg). Activity values for heather honey, Calluna vulgaris plants and soil were measured. It is assumed that the origin of this activity is the direct Chernobyl fallout. There may also be a high transfer of cesium from the soil to the Calluna vulgaris plant, but in order to determine the transfer factor, fresh plants are needed, which have grown later than in spring 1986. (author) 21 refs.; 2 figs.; 2 tabs

  8. Vitrification of spent organic ion exchange resins- 137Cesium volatility during oxidation

    International Nuclear Information System (INIS)

    Organic ion exchange (IX) resins are used to purify coolant water in nuclear power plants. The spent IX resins contain 137Cesium as major long-lived radioisotope. Their vitrification requires complete combustion of organic matter. 137Cesium volatility during their oxidation is most important factor for selection of oxidation procedure. Based on TGA studies, copper and vanadate catalysts were selected respectively for cationic and anionic IX resins to oxidise them at 500-700 degC. Experiments were conducted with 137Cesium and catalyst loaded cationic and anionic resins. About 56 to 60% 137Cesium was released from cationic resins in 3 hours. 137Cesium release from cationic resins could be brought down to 19 to 22% by addition of glass formers. The 137Cesium releases from anionic resins were nearly same for 2 hours heating. In absence of glass formers, the catalyst on anionic resins formed molten mass, which was difficult to remove. Experiment with one litre of 137Cesiuin loaded mixed cationic and anionic resins released 16.8% 137Cesium to off gases and formed a slag having specific gravity of 1.73 due to difficulty in oxidising last traces of carbon. The volume reduction factor achieved was 18.2 as against 68 expected for complete oxidation of IX resins. The higher volume reduction factor can be achieved by using improved oxidation procedure in scaling up studies. (author)

  9. Removal of oil pollutants in seawater as pretreatment of reverse osmosis desalination process

    International Nuclear Information System (INIS)

    Weathered oil contaminated seawater (WOCS) was used to investigate the behaviour of soluble oil components in seawater in various pretreatment processes for removal of oil pollutants in seawater. The various pretreatment processes were a reverse osmosis desalination process in combination with advanced oxidation processes, ultrafiltration, coagulation, GAC adsorption, biological treatment and separation with a low pressure RO membrane. WOCS was prepared by mixing oil, nutrients and fresh seawater which was exposed to sunlight to simulate photooxidation and microbial degradation of oil in the marine environment. It was found that WOCS contained soluble components with relatively small molecular size, which are refractory to biodegradation and difficult to remove by advanced oxidation processes (AOPs), UF membrane or coagulation using FeCl3 or PAC as flocculants. However, DOC in WOCS (OCWOCS) was easily adsorbed to GAC. Low pressure RO membranes with higher salt rejection rate could remove more OCWOCS compared to those of lower salt rejection rate. (Author)

  10. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  11. Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex

    International Nuclear Information System (INIS)

    Sorption of cesium from nitric acid medium by potassium nickel hexacyanoferrate, KNiFC, was investigated using the batch technique. The effect of hydrogen ion concentration on the distribution coefficient of cesium has been studied in the pH range 1-5.5. The effect of particle size, the temperature on the sorption equilibrium and rate of uptake of cesium were investigated. The temperature effect on both sorption equilibrium and rate of uptake was found to be limited. The kinetic study shows that the sorption is controlled by particle diffusion mechanism. The diffusivity of cesium ions into different particle sizes of KNiFC, the activation energy, and the entropy change of the sorption process were calculated. The effect of the presence of cobalt ions on the equilibrium and the rate of uptake of cesium is presented. (author)

  12. Ionizing mechanisms in a cesium plasma irradiated with a ruby laser

    Science.gov (United States)

    Shimada, K.; Robinson, L. B.

    1975-01-01

    A cesium filled diode--laser plasmadynamic converter was built to investigate the feasibility of converting laser energy to electrical energy at large power levels. Experiments were performed with a pulsed ruby laser to determine the quantity of electrons and cesium ions generated per pulse of laser beam and to determine the output voltage. A current density as high as 200 amp/sq cm from a spot of approximately 1 sq mm area and an open circuit voltage as high as 1.5 volts were recorded. A qualitative theory was developed to explain these results. In the operation of the device, the laser beam evaporates some of the cesium and ionizes the cesium gas. A dense cesium plasma is formed to absorb further the laser energy. Results suggest that the simultaneous absorption of two ruby laser photons by the cesium atoms plays an important role in the initial ionization of cesium. Inverse bremsstrahlung absorption appears to be the dominant mechanism in subsequent processes. Recombinations of electrons and cesium ions appear to compete favorably with the simultaneous absorption of two photons.

  13. Modelling and automation of the process of phosphate ion removal from waste waters

    Directory of Open Access Journals (Sweden)

    L. Lupa

    2008-03-01

    Full Text Available Phosphate removal from waste waters has become an environmental necessity, since these phosphates stimulate the growth of aquatic plants and planktons and contribute to the eutrophication process in general. The physicochemical methods of phosphate ion removal are the most effective and reliable. This paper presents studies on the process of phosphate ion removal from waste waters resulting from the fertiliser industry’s use of the method of co-precipitation with iron salts and with calcium hydroxide as the neutralizing agent. The optimal process conditions were established as those that allow achievement of a maximum degree of separation of the phosphate ions. The precipitate resulting from the co-precipitation process was analysed for chemical composition and establishment of thermal and structural stability, and the aim was also to establish in which form the phosphate ions in the formed precipitate can be found. Based on these considerations, the experimental data obtained in the process of phosphate ion removal from waste waters were analysed mathematically and the equations for the dependence of the degree of phosphate separation and residual concentration versus the main parameters of the process were formulated. In this paper an automated scheme for the phosphate ion removal from waste waters by co-precipitation is presented.

  14. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process.

    Science.gov (United States)

    Shi, Jing; Lu, Xiwu; Yu, Ran; Zhu, Wentao

    2012-10-01

    An anaerobic-anoxic/nitrifying (A(2)N) two sludge process coupled with induced crystallization (IC) called A(2)N-IC process was developed for wastewater nutrient removal and phosphorus recovery. The performances of A(2)N-IC process in comparison with A(2)N process at different COD to phosphorus (COD/P) feeding ratios were investigated. The results indicated that A(2)N-IC achieved not only high and stable nutrient removal but also phosphorus recovery. Calcium phosphorus crystals were formed in the crystallization reactor in A(2)N-IC. Moreover, the incorporation of chemical induced crystallization improved biological phosphorus removal. In A(2)N-IC process, phosphorus removal efficiency was consistently maintained at 99.2%, whereas in A(2)N it decreased from 93.0% to 65.7% with the decrease of feeding COD/P ratio. The COD and ammonia removal efficiencies were regardless of feeding COD/P ratio in the two processes. PMID:22858484

  15. Rapid and economical indicator for evaluating arsenic removal with minimum aluminum residual during coagulation process.

    Science.gov (United States)

    Kang, Meea; Chen, Hong; Sato, Yuko; Kamei, Tasuku; Magara, Yasumoto

    2003-11-01

    Detection of various types of contaminants in water treatment plant by sophisticated analytical methods such as inductively coupled plasma/mass spectrometry and gas chromatography/mass spectrometry requires hours to days to provide the results. Because naturally occurring ultraviolet (UV) active compounds are commonly present in almost all source waters and can be rapidly monitored by UV absorbance at 260 nm (E260), the extent of correlation between the removal efficiency of E260 and the removal efficiency of As(V) with minimum soluble residual Al by coagulation process was investigated. Percentage removals for E260 were well correlated to those of As(V). When sufficient alum or polyaluminum chloride (PACl) was added for 60-65% removal of E260, 90-95% removal of As(V) was achieved with minimum soluble residual Al regardless of the initial level of turbidity, E260, and As(V). As E260 analysis is precisely available even by an unskilled plant operator in a few minutes, E260 removal efficiency appears to be the promising economical indicator for monitoring the effectiveness of the coagulation process for the removal of contaminants with minimum residual Al. PMID:14568045

  16. Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dehghani

    2016-01-01

    Full Text Available Background High levels of nitrate anion are frequently detected in many groundwater resources in Fars province. Objectives The present study aimed to determine the removal efficiency of nitrate from aqueous solutions by electrocoagulation process using aluminum and iron electrodes. Materials and Methods A laboratory-scale batch reactor was conducted to determine nitrate removal efficiency using the electrocoagulation method. The removal of nitrate was determined at pH levels of 3, 7, and 11, different voltages (15, 20, and 30 V, and operation times of 30, 60, and 75 min, respectively. Data were analyzed using the SPSS software version 16 (Chicago, Illinois, USA and Pearson’s correlation coefficient was used to analyze the relationship between the parameters. Results Results of the present study showed that the removal efficiency was increased from 27% to 86% as pH increased from 3 to 11 at the optimal condition of 30 V and 75 min operation time. Moreover, by increasing the reaction time from 30 V to 75 min the removal efficiency was increased from 63% to 86%, respectively (30 V and pH = 11. Pearson’s correlation analysis showed that there was a significant relationship between removal efficiency and voltage and reaction time as well (P < 0.01. Conclusions In conclusion, the electrocoagulation process can be used for removing nitrate from water resources because of high efficiency, simplicity, and relatively low cost.

  17. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

    Institute of Scientific and Technical Information of China (English)

    Hongxun HOU; Shuying WANG; Yongzhen PENG; Zhiguo YUAN; Fangfang YIN; Wang GAN

    2009-01-01

    The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evalu-ate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L)was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, pO3-4, and TN were 88.2%, 92.6%, 87.8%,and 73.1%, respectively, when the steady state of the pilotscale A2/O OD plant was reached during 31-73d,demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2- could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2- as the electron receptor was higher than that with NO3- when the initial concentration of either NO2- or NO3 was 40 mg/L.

  18. Comparison Between the Efficiency of Advanced Oxidation Process and Coagulation for Removal Organophosphorus and Carbamat Pesticides

    OpenAIRE

    A.R Rahmani; M.T. Samadi; M Khodadadi

    2011-01-01

    Background and Objectives: Water pollution by pesticides has adverse effects on the environment and human health, as well .In recent years, advanced oxidation processes, have been gone through to a very high degree for pesticides removal. Poly-Aluminum chloride (PAC) used for water treatment, can be effective on pesticides removal. The aim of this research was to study the use of UV/O3 and PAC in the removal of pesticides from drinking water.Materials and Methods: In this descriptive- an...

  19. Cesium-137 inventory of the undisturbed soil areas in the Londrina Region, Parana, Brazil

    International Nuclear Information System (INIS)

    Cesium-137 is an artificial radionuclide introduced in the environment through the radioactive fallout of the superficial tests of nuclear weapons. The cesium-137 deposition occurred to middles of the 1980-decade and, due to the Chernobyl accident, great part of Europe had a additional fallout of cesium-137. The contaminations of this accident do not have reached Southern Hemisphere. Cesium-137 is an alkaline metal, high electropositive, that in contact with the soil is strongly adsorbed to the clay in the FES (Frayed Edge Sites) and RES (Regular Edge Sites) positions, and it movement by chemical processes in the soil is insignificant. Because of this, cesium-137 became a good soil marker, and its movement is related to the soil movement particles, so that the cesium-137 have been used in the study of the soil redistribution processes, as a tool of quantifying the rates of soil losses and gain. To use this methodology, it is necessary the knowledge of the reference inventory of cesium-137, that is given as function of the total concentration of cesium-137 deposited in an area by the radioactive fallout. If a sampling point presents less cesium-137 than the reference inventory, this point is considered a point with soil loss; otherwise, the point is considered a point with soil deposition. To evaluate the cesium-137 inventory in the Londrina region, four areas of the undisturbed soil were sampling in grid of 3x3, with a distance of 9 meters among the points. Of these four sampling areas, three areas were of native forest (labeled Mata1, Mata2 and Mata UEL), and one was a pasture area. Cesium-137 inventory was 223 ± 41 Bq m-2, 240 ± 65 Bq m-2 and 305 ± 36 Bq m-2 for Mata UEL, Mata1 and Mata2, respectively, and of 211 ± 28 Bq m-2 for the native pasture. Considering the deviation in each value, it is not possible to conclude that there are differences among the values of cesium-137 inventory, so that the average reference inventory of cesium-137 for the Londrina

  20. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  1. The effect of key process operational conditions on enhanced biological phosphorus removal from wastewater

    OpenAIRE

    Carvalheira, Mónica Isabel Gonçalves

    2014-01-01

    Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) c...

  2. Development of a novel process for the removal of selected organic compounds from waste streams

    OpenAIRE

    Enright, Deirdre

    2015-01-01

    peer-reviewed The aim of this research work was to develop a solid regenerable catalytic adsorbent for the removal of organics from industrial wastewater. This was to be achieved by a two-step process. The first step involved the removal of the aqueous contaminant of concern by adsorption onto a selective adsorbent/catalyst. The second step involved the oxidation of this adsorbed pollutant into carbon dioxide, water and nitrogen whilst minimising the formation of nitrogen oxides. 2-nitroph...

  3. Optimization and Modelling of Chemical Oxygen Demand Removal by ANAMMOX Process Using Response Surface Methodology

    OpenAIRE

    Ali Jalilzadeh; Ramin Nabizadeh; Alireza Mesdaghinia; Aliakbar Azimi; Simin Nasseri; Amir Hossein Mahvi; Kazem Naddafi

    2013-01-01

    A systematic model for chemical oxygen demand (COD) removal using the ANAMMOX (Anaerobic AMMonium OXidation) process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration e...

  4. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  5. Comparisons of Three Advanced Oxidation Processes in Organic Matter Removal from Esfahan Composting Factory Leachate

    Directory of Open Access Journals (Sweden)

    karimi B.

    2011-06-01

    Full Text Available Backgrounds and Objectives: Wet air oxidation (WAO is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate.The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachateMaterial and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sample to 3Lit autoclave reactor and adding 10 bar pressure at temperature of 100, 200 and 300 °C and pressure (10 bars with retention time of 30, 60 and 90 min. leachate sample in 18 stages from composting factory in Isfahan in the volume of 20 lit was taken and the three methodsWAO, WPO, and a combination of WAO/GAC were used for pre-treatments. Pure oxygen and 30% hydrogen peroxide was used as oxidation agent.Results: The result shows significant improvement on the removal rate of COD (7.8-33.3%, BOD5 (14.7-50.6%by WAO process.The removal efficiency of 4.6-34% COD, 24-50% BOD, was observed in the reactor.Adding theGACto the reactor improved removal efficiency of all parameters.Combination Process (WAO/GAC removed 48% of COD, 31-43.6% of BOD.Combination process demonstrated higher efficiency than two other previous methods as BOD5/COD ratio of 90% achieved.Conclusion: The WAO process presented in this paper is efficient for pretreatment of leachate, And the modified WPO process remove organic materials and ammonia moreover WAO/GAC can be considered as an excellent alternative treatment for removing reluctant organic matter (COD, BOD5 and organic nitrogen compounds, which found in leachate.

  6. Standard practice for fluorescent liquid penetrant testing using the Solvent-Removable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for fluorescent penetrant examination utilizing the solvent-removable process. It is a nondestructive testing method for detecting discontinuities that are open to the surface, such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination solvent-removable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the fluorescent solvent-removable liquid penetrant examination of materials and parts. Agreement by th...

  7. Standard practice for visible penetrant testing using Solvent-Removable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for visible penetrant examination utilizing the solvent-removable process. It is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a visible penetrant examination method using the solvent-removable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the visible, solvent-removable liquid penetrant examination of materials and parts. Agreement ...

  8. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    Science.gov (United States)

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200%, recycle ratio 2 of 100%, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51%, while the role of denitrification and phosphorus removal removed partial TN (14%). Furthermore, nitrogen was further removed (11%) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84%. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination. PMID:26411352

  9. REMOVAL OF TOXIC METALS IN ELECTROPLATING WASH WATER BY A DONNAN DIALYSIS PROCESS

    Science.gov (United States)

    A program was conducted to develop anion-exchange membranes to be used in the removal of copper, cadmium, and zinc, as their complex cyanide anions, from cyanide process electroplating wash waters by a Donnan dialysis process. For these laboratory studies, simulated wash waters p...

  10. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.;

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...

  11. Preparation, structure and application of a new ecomaterials cesium ion-sieve

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new ecomaterials cesium ion-sieve (Cs-IS), which has high selectivity to cesium and excellent acid resistance, is prepared with zirconyl molybdopyrophosphate as its matrix by specific chemical sieve-making means. Cs-IS has large exchange capacity ( 1.83mmol@g-1) and high distribution coefficient (4.09 x 104 mL@ L-1) in the medium of 3 mol@ L- 1 HNO3. In the static exchange with strongly acidic high-level radioactive liquid waste (HLLW) (3 mol@ L-1 HNO3), Cs-IS exhibits high exchange rate for cesium (above 96.53 % ) and large separation factor (greater than 958.41). These indicate the possible use of Cs-IS in cesium-137 selective removal and recovery from highly saline acidic HLLW system.

  12. DETERMINATION OF PRINCIPLE COMPONENT AFFETING MATERIAL REMOVAL RATE IN ELECTROCHEMICAL MACHINING PROCESS

    Directory of Open Access Journals (Sweden)

    SURESH H. SUREKAR

    2012-05-01

    Full Text Available Electrochemical Machining process is non- conventional, non-mechanical machining process in which material removal from the workpiece is done by means of Principle of Electrolysis. As in electrolysis in electrochemical machining two electrodes are used of which one is positive (Anode and other is negative (Cathode. Thematerial removal rate in electrochemical machining is determined by Faraday’s Law of Electrolysis and is affected by number of the parameters controllable and non controllable. Each and every parameter is having its own effect on material removal process. Among all the parameters any one is having highest impact on the response or material removal rate and other is having less impact than the first and so on. Optimization of parameters is important in every machining process because the response or result is affected by each parameter. The parameter which has highest impact if optimized and controlled tightly then the response of the process is not deviated to the large extent. Optimization of parameters is done by designing orthogonal array and Taguchi Methodology. Principal Component is determined for getting high material removal rate.

  13. Improvement of cesium leaching resistance of solidified borate wastes with copper-ferrocyanide-vermiculite adsorbent

    International Nuclear Information System (INIS)

    Removal of cesium from deionized water, sea water, and lime water with copper ferrocyanide (CFC) and porous media including silica gel, bentonite, vermiculite, and zeolite were investigated; CFC and vermiculite were incorporated to prepare a compound adsorbent which was used to improve the Cs-leaching resistance of solidified borate wastes. It was shown that the Cs-removal efficiency by CFC is largely affected by pHs of the solutions, good cesium removal occurs in pHs ranged from 3 to 12 and the best from 7 to 10; the effect of Cs concentration is significantly only from lime water for Cs > 10-6 M at high pH and is insignificant from other solutions. Vermiculite and zeolite were shown to have better removal efficiency than silica gel and bentonite, and vermiculite was chosen to incorporate with CFC to make compound adsorbents because of its good compatibility with CFC. Compound adsorbents with different CFC contents were used as additives in the solidification of borate radwaste for improving the cesium leaching resistance of waste forms. Experimental results showed that the measured, cesium leaching index following ANSI/ANS 16.1, was increased from 7.96 to 9.76 by adding 0.25% of a compound adsorbent containing 20% CFC and 80% vermiculite, which indicated that the CFC-vermiculite compound adsorbent is very useful for improving cesium leaching resistance of the solidified borate radwastes

  14. A method for reducing the cesium-137 content in meat

    International Nuclear Information System (INIS)

    Reports a study of a method for reducing the amount of cesium-137 in meat from wild animals. The method is intended for use in the kitchen and is based on a combined leaching and mechanical process. (K.A.E.)

  15. Influence of carbon source and temperature on the denitrifying phosphorus removal process

    Institute of Scientific and Technical Information of China (English)

    WANG Yayi; WANG Shuying; PENG Yongzhen; Zhu Guibing; LING Yunfang

    2007-01-01

    To supply the valuable operating parameters for the popular usage of the new denitrifying phosphors removal process,it is essential to study the dominant biochemical reactions and the characteristics of denitriflying phosphorus removing bacteria(DPB).Thus,parallel batch experiments using DPB sludge were carried out to assess the effect of substrates(sewage,HAc,and endogenous carbon source)on denitriflying dephosphorus removal efficiency in this study.The results showed that the initial specific phosphorus release rate increased with the high concentration of the short-chain volatile fatty acids ratio in the influent,and sufficient phosphorus was released by DPB.This improved the subsequent denitrification and phosphorus uptake efficiency.The specific endogenous denitrification mainly relies on the internal carbon source(PHB)stored by poly-P bacteria.Denitrifying phosphorus removing bacteria were very hungry when the internal PHB was consumed.Consequently,the specific endogenous denitrification rate was low and the phosphorus uptake did not happen.On the other hand,in the experiment,the denitrifying phosphorus removal performance under two temperature conditions(8-10℃ and 25-26℃)was also investigated and analyzed.It was found that the lower temperature decreased the specific phosphorus release and uptake rate,but did not inhibit the denitrifying phosphorus removal completely.Therefore,the negative influence of the low temperature on the overall phosphorus removal was not significant.

  16. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process.

    Science.gov (United States)

    Limoli, Alice; Langone, Michela; Andreottola, Gianni

    2016-07-01

    In this study, ammonia stripping by means of a turbulent mixing process followed by pH neutralization was investigated as a simple and cost-effective ammonia removal technique to treat raw manure digestate. Batch tests conducted using CaO, NaOH and H2O2 to control pH and temperature and combinations thereof showed that sodium hydroxide was the most suitable chemical, as it is easy to handle, minimizes treatment time and costs, does not increase the solid content of the sludge and allows to easily control the stripping process. NaOH dosage mainly depended on buffering capacity rather than on total solid content. The analysis of the ammonia stripping process indicated that ammonia removal was strongly dependent on pH, and ammonia removal rate followed the pseudo-first-order kinetics. Total solid content slightly influenced TAN removal efficiency. When NaOH was applied to treat raw digestate at pH 10 and mean temperature of 23 ± 2 °C, TAN removal efficiency reached 88.7% after 24 h of turbulent mixing stripping, without reaching inhibitory salinity levels. Moreover, pH neutralization with sulfuric acid following the stripping process improved raw digestate dewaterability. PMID:27031295

  17. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    International Nuclear Information System (INIS)

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury

  18. Electrokinetic removal of petroleum hydrocarbon from residual clayey soil following a washing process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chil-Sung [Greenviro Co. Ltd., DaeSong, Pohang, Gyeongbuk (Korea); Yang, Jung-Seok [KIST-Gangneung Institute, Gangneung (Korea); Kim, Kyung-Jo [Department of Environmental Engineering, Kumoh National Institute of Technology, Gyeongbuk (Korea); Baek, Kitae

    2010-02-15

    This study investigates total petroleum hydrocarbon (TPH) removal from residual clayey soil, after a washing procedure, using an electrokinetic process. Eight electrokinetic experiments were carried out to investigate the characteristics of TPH removal. When 0.1 M MgSO{sub 4} or 0.1 M NaOH was used as an electrolyte, the electric current rapidly increased within the first 100 or 200 h, respectively. A negatively charged soil surface resulted in a more negative zeta potential and greater electroosmotic flow toward the cathode. Therefore, the accumulated electroosmotic flow (EOF) when using 0.1 M NaOH as the anolyte-purging solution was higher than when using 0.1 M MgSO{sub 4}. Although the energy consumption for the two purging solutions was similar, the efficiencies of TPH removal when 0.1 M MgSO{sub 4} and 0.1 M NaOH with surfactant were used were 0 and 39%, respectively, because the electroosmotic flow rate increased with TPH removal efficiency. When 5% isopropyl alcohol (IPA) was used as a circulation solution, the electric current increased but the TPH removal was similar to that using water. In terms of energy consumption, the use of a surfactant-enhanced electrokinetic process with NaOH as electrolyte was effective in removing TPHs from low-permeability soil. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Removal of phenols from water accompanied with synthesis of organobentonite in one-step process.

    Science.gov (United States)

    Ma, Jianfeng; Zhu, Lizhong

    2007-08-01

    A novel technology of wastewater treatment was proposed based on simultaneously synthesis of organobentonite and removal of organic pollutants such as phenols from water in one-step, which resulted that both surfactants and organic pollutants were removed from water by bentonite. The effects of contact time, pH and inorganic salt on the removal of phenols were investigated. Kinetic results showed that phenols and cetyltrimethylammonium bromide (CTMAB) could be removed by bentonite in 25 min. The removal efficiencies were achieved at 69%, 92% and 99%, respectively, for phenol, p-nitrophenol and beta-naphthol at the initial amount of CTMAB at about 120% cation exchange capacity of bentonite. Better dispersion property and more rapid bentonite sedimentation were observed in the process. The results indicated that the one-step process is an efficient, simple and low cost technology for removal of organic pollutants and cationic surfactants from water. The proposed technology made it possible that bentonite was applied as sorbent for wastewater treatment in industrial scale. PMID:17433412

  20. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  1. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H2O2/Fe2+), UV, UV/H2O2, photo-Fenton (UV/H2O2/Fe2+), ozonation and peroxone (ozone/H2O2) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H2O2/Fe2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  2. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study.

    Science.gov (United States)

    Dong, Huiyu; Yuan, Xiangjuan; Wang, Weidong; Qiang, Zhimin

    2016-08-01

    The occurrence and removal of 19 antibiotics (including four macrolides, eight sulfonamides, three fluoroquinolones, three tetracyclines, and trimethoprim) were investigated in two ecological (constructed wetland (CW) and stabilization pond (SP)) and two conventional wastewater treatment processes (activated sludge (AS) and micro-power biofilm (MP)) in a county of eastern China. All target antibiotics were detected in the influent and effluent samples with detection frequencies of >90%. Clarithromycin, ofloxacin, roxithromycin and erythromycin-H2O were the dominant antibiotics with maximum concentrations reaching up to 6524, 5411, 964 and 957 ng/L, respectively; while the concentrations of tiamulin, sulfamerazine, sulfathiazole, sulfamethazine, sulfamethizole and sulfisoxazole were below 10 ng/L. Although the mean effluent concentrations of target antibiotics were obviously lower than the influent ones (except ciprofloxacin), their removals were usually incomplete. Principal component analysis showed that the AS and CW outperformed the MP and SP processes and the AS performed better than the CW process in terms of antibiotics removal. Both the AS and CW processes exhibited higher removal efficiencies in summer than in winter, indicating biological degradation could play an important role in antibiotics removal. Because of the incomplete removal, the total concentration of detected antibiotics increased in the mixing and downstream sections of a local river receiving the effluent from a typical wastewater treatment facility practicing AS process. Nowadays, ecological wastewater treatment processes are being rapidly planned and constructed in rural areas of China; however, the discharge of residual antibiotics to the aquatic environment may highlight a necessity for optimizing or upgrading their design and operation. PMID:27127893

  3. An ECG signal processing algorithm based on removal of wave deflections in time domain.

    Science.gov (United States)

    Kim, Jungkuk; Kim, Minkyu; Won, Injae; Yang, Seungyhul; Lee, Kiyoung; Huh, Woong

    2009-01-01

    This paper introduces a new approach to process biomedical signals by surgically removing wave deflections in time domain. The method first determines the epochs of high frequency deflections, cuts out them from the signal, and then connects the two disconnected points. To determine the epoch of a deflection to be removed, four slope trace waves are used to isolate the deflection based on signal characteristics of amplitude, slope, duration, and distance from neighboring deflections. The method has been applied to simulated data and MIT-BIH arrhythmia database to show its practical efficacy in the case of baseline wandering removal. It is found that the method has the capability to identify and remove high frequency deflections appropriately, leaving low frequency deflection such as baseline drifting. PMID:19963498

  4. Contribution on the influence of steel ladle processing (LF) upon the nitrogen removal rate

    International Nuclear Information System (INIS)

    Nitrogen, which is present in the composition of steel either dissolved or as a gas, represents an element, which is generally unwanted, except for the cases when the aim is to obtain nitrides or to increase the austenitic domain in stainless steels. The paper shows the results obtained in increasing the nitrogen removal rate during the secondary treatment of steel meant for oil industry pipes, into a Ladle Furnace-type installation. The processed data allowed the determination of variation domains, respectively graphical and analytical correlations between the nitrogen removal rate and the parameters of the secondary treatment process (bubbling duration, steel temperature and argon pressure)

  5. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  6. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  7. Water-decontamination process-improvement tests and considerations

    International Nuclear Information System (INIS)

    Previous tests showed that the SDS process was suitable for removal of bulk radioactive contaminants (cesium and strontium) from the TMI-2 water. However, the polishing treatment did not provide water which could meet interim storage specifications. Further tests have identified modifications to provide sufficient decontamination and permit increased sorbent loadings

  8. Performance of Ozonation Process as Advanced Treatment for Antibiotics Removal in Membrane Permeate

    Directory of Open Access Journals (Sweden)

    Thanh Cao Ngoc Dan

    2016-06-01

    Full Text Available There was an investigation into the removal of 6 types of antibiotics from hospital wastewater through membrane bioreactor (MBR treatment and ozonation processes. Six types of antibiotics, namely, Sulfamethoxazole (SMZ, Norfloxacin (NOR, Ciprofloxacin (CIP, Ofloxacin (OFL, Erythromycin (ERY, and Vancomycin (VAN which had high detection frequencies in collected samples from hospital wastewater treatment plant (HWTPs. After MBR treatment, the removal efficiencies of SMZ, NOR, OFL, and ERY were 45%, 25%, 30%, and 16%, respectively. Among of them, almost no elimination was observed for CIP and VAN since their concentrations increased by 0.24 ± 0.18 (μg·l-1 and 0.83 ± 0.20 (μg·l-1, respectively. Then, residues of the antibiotics were removed from the MBR effluent by the ozonation process. The overall removal efficiencies of SMZ, NOR, CIP, OFL, ERY, and VAN were approximately 66 %, 88 %, 83 %, 80 %, 93 %, and 92 %, respectively. The reason might be depended on different ozone consumption of those antibiotics (ABS in a range of 313 to 1681 μg ABS·gO--1. Consequently, the ozonation process performed better in the antibiotics removal (e.g. CIP and VAN so ozonation could be considered as important support for the MBR treatment to reduce the risk of antibiotic residues.

  9. Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process.

    Science.gov (United States)

    Chen, Shen-Yi; Lu, Li-An; Lin, Jih-Gaw

    2016-06-01

    This study conducted a completely autotrophic nitrogen removal over nitrite (CANON) process in a continuous anoxic upflow bioreactor to treat synthetic wastewater with TMAH (tetramethylammonium hydroxide) ranging from 200 to 1000mg/L. The intermediates were analyzed for understanding the metabolic pathway of TMAH biodegradation in CANON process. In addition, (15)N-labeled TMAH was used as the substrate in a batch anoxic bioreactor to confirm that TMAH was converted to nitrogen gas in CANON process. The results indicated that TMAH was almost completely biodegraded in CANON system at different influent TMAH concentrations of 200, 500, and 1000mg/L. The average removal efficiencies of total nitrogen were higher than 90% during the experiments. Trimethylamine (TMA) and methylamine (MA) were found to be the main biodegradation intermediates of TMAH in CANON process. The production of nitrogen gas with (15)N-labeled during the batch anaerobic bioreactor indicated that CANON process successfully converted TMAH into nitrogen gas. PMID:26879202

  10. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    Science.gov (United States)

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  11. Chemical and radiation stability of SuperLig reg-sign 644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    International Nuclear Information System (INIS)

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ''Develop and Test Sorbents.'' The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig reg-sign 644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig reg-sign 644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study

  12. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    Science.gov (United States)

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  13. Arsenic removal in water by means of coagulation-flocculation processes

    International Nuclear Information System (INIS)

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  14. Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process

    International Nuclear Information System (INIS)

    Hybrid integrated fixed film activated sludge is a promising process for the enhancement of nitrification, denitrification and phosphorus removal in conventional activated sludge systems that can be used for upgrading biological nutrient removal, particularly when they have space limitations or need modifications that will require large monetary expenses. In this research, successful implementation of hybrid integrated fixed film activated sludge process at temperate zone wastewater treatment facilities has been studied by the placement of fixed film media into aerobic, anaerobic and anoxic zones. The primary objective of this study was to investigate the incorporation of enhanced biological phosphorus removal into hybrid integrated fixed film activated sludge systems and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. A pilot-scale anaerobic-anoxic-oxic configuration system was used. The system was operated at different mean cell residence times and influent chemical oxygen demand/total phosphorus ratios and with split influent flows. The experimental results confirmed that enhanced biological phosphorus removal could be incorporated successfully into hybrid integrated fixed film activated sludge system, but the redistribution of biomass resulting from the integration of fixed film media and the competition of organic substrate between enhanced biological phosphorus removal and denitrification would affect performances. Also, kinetic analysis of the reactor with regarding to phosphorus removal has been studied with different kinetic models and consequently the modified Stover-Kincannon kinetic model has been chosen for modeling studies and experimental data analysis of the hybrid integrated fixed film activated sludge reactor

  15. Application of Electrochemical Process in Removal of Heavy Metals from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Mostafaii Gh.1 PhD,

    2016-08-01

    Full Text Available Aims Municipal landfill leachate contains high concentrations of heavy metals, organics, ammonia. The efficeincy of electrochemically removal of heavy metals from landfill leachate was studied. Materials & Methods The leachate was obtained from Kahrizak landfill in south of Tehran. The experiments were carried out by batch process. The 2liter batch reactor was made of glass. There were eight anodes and cathodes electrodes. The electrodes were placed vertically parallel to each other and they were connected to a digital DC power supply. The pH and conductivity were adjusted to a desirable value using NaOH or H2SO4, and NaCl. All the runs were performed at constant temperature of 25°C. In each run, 1.5liter of the leachate was placed into the electrolytic cell. Samples were extracted every 10min and then filtered through a mixed cellulose acetate membrane (0.42μm. The amount of Lead, Zinc and Nickel removal was measured at pH=7 and in current density of 0.5, 0.75, and 1A. Findings When current density and time reaction increased, removal efficiency of heavy metals such as Lead, Zinc and Nickel increased. At initial pH=7, density 1A and reaction time= 60min, Lead, Nickel and Zinc were removed up to 86, 93 and 95%, respectively. Conclusion Electrochemical process can be proposed as a suitable technique to remove heavy metal from landfill leachate.

  16. The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage.

    Science.gov (United States)

    Ma, Bin; Zhang, Shujun; Zhang, Liang; Yi, Peng; Wang, Junmin; Wang, Shuying; Peng, Yongzhen

    2011-09-01

    The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage was examined in this study. The obtained results showed that total nitrogen (TN) could be efficiently removed by 88.38% when influent TN and chemical oxygen demand (COD) were 45.87 and 44.40 mg/L, respectively. In the first stage, nitritation was instantly achieved by the bioaugmentation strategy, and can be maintained under limited oxygen condition (below 0.2mg/L). The ratio of nitrite to ammonium in the effluent of the nitritation reactor can be controlled at approximate 1.0 by adjusting aeration rate. In the second stage, anammox was realized in the upflow anaerobic sludge blanket (UASB) reactor, where the total nitrogen removal rate was 0.40 kg Nm(-3)d(-1) under limited-substrate condition. Therefore, the organic matter in sewage can be firstly concentrated in biomass which could generate biogas (energy). Then, nitrogen in sewage could be removed in a two-stage autotrophic nitrogen removal process. PMID:21719278

  17. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions

    International Nuclear Information System (INIS)

    Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O3 and O3/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O3 combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O3/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O3/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O3/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated

  18. PERFORMANCE EVALUATION OF ELECTROCOAGULATION PROCESS FOR DIAZINON REMOVAL FROM AQUEOUS ENVIRONMENTS BY USING IRON ELECTRODES

    Directory of Open Access Journals (Sweden)

    E. Bazrafshan, A. H. Mahvi, S. Nasseri, M. Shaieghi

    2007-04-01

    Full Text Available The present study investigates the removal of pesticide by electrocoagulation process. A glass tank in 1.56 L volume with four iron plate electrodes was used to perform the experiments. The electrodes connected to a DC power supply (bipolar mode. The tank was filled with synthetic wastewater were which contained diazinon pesticide in concentration of 10, 50 and 100 mg/L. The percent of diazinon removal was measured at pH= 3, 7 and 10 and in electric potential range of 20-40V by thin layer chromatography method. The results indicated that initial concentration of diazinon can affect efficiency removal and for higher concentrations of diazinon, higher electrical potential or more reaction time is needed. The results showed that for a given time, the removal efficiency increased significantly with increase of voltage. The highest electrical potential (40V produced the quickest treatment with >99% diazinon reduction occurring after 60 min. The final pH for iron electrodes was always higher than initial pH. Finally it can be concluded that electrocoagulation process (using iron electrodes is a reliable, efficient and cost-effective method for removal of diazinon from aqueous environments, especially designed for pH=3 and voltage=40V.

  19. Evaluation of selected risk elements removal processes from wastewater in constructed wetlands.

    OpenAIRE

    Mrázková, Ivana

    2008-01-01

    The purpose of this bachelor work is to provide a literature survey aimed at the processes responsible for removal of selected risk elements (arsenate, lead, nickel, Merkury, kadmium and manganese) during the wastewater treatment in constructed wetlands. Also, constructed wetlands are compared with conventional treatment plants.

  20. Optimization of pyrene removal from contaminated soil by electrokinetic remediation process

    Directory of Open Access Journals (Sweden)

    Abbas Rezaee

    2014-01-01

    Full Text Available ABSTRACT The electrokinetic remediation process has been intensively investigated by many researchers as a novel technique to remove different pollutants from soil. The process utilizes a direct-current electric field to soils to insert some process such as electroosmosis and electrolytic migration. In the present study, the removal of pyrene as a model of polycyclic aromatic hydrocarbons (PAHs were optimized using response surface methodology (RSM based on central composite design (CCD. The electrokinetic experiment was performed using an electrokinetic setup that includes an electric power supply, a plexiglass soil box and two square stainless steel electrodes electrodes. In the optimum condition, electrode type, moisture and voltage were determined as stainless steel, 30% and 12 volt, respectively. Pyrene removal efficiency in optimum condition estimated 80.05 %. Analysis of variance (ANOVA exhibited a reasonable correlation coefficient between the predicted and experimental values (R2=0.95.These results showed that electrokinetic remediation process could be applied as an efficient technique for pyrene removal.

  1. Process for removal of adhering or dust deposits in plants handling uranium hexafluoride

    International Nuclear Information System (INIS)

    Deposits containing oxygen, of the type UO2F2 or its hydrate are removed in a UF6 plant by this process. The deposits are first treated with gaseous BBr3 or PBr and then with fluorine, iodine heptafluoride or other halogen fluorides. (DG)

  2. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water

    International Nuclear Information System (INIS)

    Highlights: → Very high removal efficiency of cadmium was achieved by electrocoagulation. → Alternating current (AC) avoids oxide layer and corrosion on anode surface. → Good current transfer between anode and cathode results more removal efficiency. → Compact treatment facility and complete automation. → Aluminum alloy anode prevents residual aluminum in treated water. - Abstract: In practice, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using aluminum alloy as anode and cathode. The results showed that the removal efficiency of 97.5 and 96.2% with the energy consumption of 0.454 and 1.002 kWh kl-1 was achieved at a current density of 0.2 A/dm2 and pH of 7.0 using aluminum alloy as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

  3. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Subramanyan, E-mail: vasudevan65@gmail.com [CSIR-Central Electrochemical Research Institute, Karaikudi 630 006 (India); Lakshmi, Jothinathan; Sozhan, Ganapathy [CSIR-Central Electrochemical Research Institute, Karaikudi 630 006 (India)

    2011-08-15

    Highlights: {yields} Very high removal efficiency of cadmium was achieved by electrocoagulation. {yields} Alternating current (AC) avoids oxide layer and corrosion on anode surface. {yields} Good current transfer between anode and cathode results more removal efficiency. {yields} Compact treatment facility and complete automation. {yields} Aluminum alloy anode prevents residual aluminum in treated water. - Abstract: In practice, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using aluminum alloy as anode and cathode. The results showed that the removal efficiency of 97.5 and 96.2% with the energy consumption of 0.454 and 1.002 kWh kl{sup -1} was achieved at a current density of 0.2 A/dm{sup 2} and pH of 7.0 using aluminum alloy as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

  4. Development and Implementation of a Novel Sulfur Removal Process from H2S Containing Wastewaters.

    Science.gov (United States)

    Daigger, Glen T; Hodgkinson, Andrew; Aquilina, Simon; Fries, M Kim

    2015-07-01

    A novel process for removing sulfur from wastewater containing dissolved sulfide has been developed and implemented in a membrane bioreactor (MBR) process treating anaerobically pretreated industrial (pulp and paper) wastewater at the Gippsland Water Factory. Controlled oxygen addition to the first bioreactor zone (constituting 27.7% of the total bioreactor volume) to create oxygen-limiting conditions, followed by oxygen-sufficient conditions in the remaining zones of the bioreactor, provide the necessary conditions. Dissolved sulfide is oxidized to elemental sulfur in the first zone, and the accumulated sulfur is retained in the bioreactor mixed liquor suspended solids (MLSS) in the remaining zones. Accumulated sulfur is removed from the process in the waste activated sludge (WAS). Oxidation of dissolved sulfide to elemental sulfur reduces the associated process oxygen requirement by 75% compared to oxidation to sulfate. Microscopic examinations confirm that biological accumulation of elemental sulfur occurs. Process performance was analyzed during a nearly 2-year commissioning and optimization period. Addition of air in proportion to the process influent dissolved sulfide loading proved the most effective process control approach, followed by the maintenance of dissolved oxygen concentrations of 1.0 and 1.5 mg/L in the two downstream bioreactor zones. Sufficient oxygen is added for the stoichiometric conversion of dissolved sulfide to elemental sulfur. Enhanced biological phosphorus removal also occurred under these conditions, thereby simplifying supplemental phosphorus addition. These operating conditions also appear to lead to low and stable capillary suction time values for the MBR mixed liquor. PMID:26163497

  5. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  6. Process for the removal of radium from acidic solutions containing same

    Science.gov (United States)

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  7. Development of a model describing virus removal process in an activated sludge basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.; Shiragami, N. Unno, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-06-20

    The virus removal process from the liquid phase in an activated sludge basin possibly consists of physicochemical processes, such as adsorption onto sludge flocs, biological processes such as microbial predating and inactivation by virucidal components excreted by microbes. To describe properly the virus behavior in an activated sludge basin, a simple model is proposed based on the experimental data obtained using a poliovirus type 1. A three-compartments model, which include the virus in the liquid phase and in the peripheral and inner regions of sludge flocs is employed. By using the model, the Virus removal process was successfully simulated to highlight the implication of its distribution in the activated sludge basin. 17 refs., 8 figs.

  8. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  9. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  10. Evaluation of Solid-Liquid Separation Technologies to Remove Sludge and Monosodium Titanate from SRS High Level Waste

    International Nuclear Information System (INIS)

    The Salt Disposition Systems Engineering Team selected three cesium removal technologies for further development to replace the In Tank Precipitation (ITP) process: small tank tetraphenyl-borate (TPB) precipitation, crystalline silicotitanate (CST) ion exchange, and caustic solvent extraction. As a pretreatment step for the CST and solvent extraction flowsheets, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and plutonium. The resulting slurry is filtered to remove the sludge and MST. The filtrate is either contacted with CST in an ion exchange column or processed through a solvent extraction system to remove cesium.This report describes the evaluation of alternate solid -liquid separation technologies. The other tasks will be described in separate reports

  11. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna

    2006-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  12. Comparison efficiency of both sonochemical and sonochemical/hydrogen peroxide processes forcyanide removal from aqueous solutions

    OpenAIRE

    Reza Shokohi; Amir Hossein Mahvi; Ziaeddin Bonyadi

    2009-01-01

    (Received 5 October, 2009 ; Accepted 23 December, 2009)AbstractBackground and purpose: Cyanide is a species of high toxicity that is found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Entrance of it to existing environment contains a hazardous to health. The purpose of this study was to compare efficiency of both sonochemical and sonochemical / hydrogen peroxide processes for cyanide removal from aqueous solutions.Materials and ...

  13. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna; Pulgarin, César

    2007-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  14. REMOVAL OF CADMIUM FROM INDUSTRIAL EFFLUENTS BY ELECTROCOAGULATION PROCESS USING IRON ELECTRODES

    Directory of Open Access Journals (Sweden)

    E. Bazrafshan, A. H. Mahvi, S. Nasseri, A. R. Mesdaghinia, F. Vaezi, Sh. Nazmara

    2006-10-01

    Full Text Available The object of this study is the evaluation of cadmium removal from industrial wastewater by electrocoagulation process. For this study a glass tank in 1.56 L volume with four plate electrode was used to do experiments. The electrodes made of iron and connect to the positive and negative pole of DC power supply (bipolar mode. The tank was filled with synthetic wastewater that was containing cadmium ion in concentration 5, 50 and 500 mg/L and then it was started up. The percent of cadmium ion removal was measured at pH 3, 7 and 10 and in electric potential range of 20, 30 and 40 volts. At the end of each stage of experiment, volume of produced sludge was measured. The results obtained at different electrical potential showed that initial concentration of cadmium can effect on efficiency removal and for higher concentration of cadmium, higher electrical potential or more reaction time is needed. On the other hand, if the initial concentration increases, the time required of process should increase too. The final pH for iron electrodes was always higher than initial pH. As expected, the results showed that for a given time, the removal efficiency increased significantly with increase of current density. The highest electrical potential (40V produced the quickest treatment with >99% cadmium reduction occurring after only 20 min. The result showed that, in this process, the use of different electrical potentials can provide a wide range of pH for doing this process and electrocoagulation process (using iron electrodes is a reliable, safety, efficient and cost-effective method for removal of cadmium from industrial effluents, especially designed for pH =10 and voltage = 40V.

  15. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    International Nuclear Information System (INIS)

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate

  16. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  17. Development of an adsorbent for both cesium and strontium

    International Nuclear Information System (INIS)

    Described is the development of the adsorbent in the title at the process of developing the agent to adsorb each element. For cooling the reactors injured by the Fukushima Nuclear Power Plant Accident by the earthquake and tsunami on the day before (Mar. 11, 2011), fresh/ sea water is supplied in the reactor and flows out contaminated with radioactive elements in the turbine building and then in the treatment plant to remove oil and cesium for re-circulation to the reactor. Water from the plant still contains radioisotopes derived from fission, like 90Sr/90Y at 1.2 x 108 Bq/L and 137Cs/137mBa at 6.1 x 103 Bq/L, and from activation of reactor materials. Before the plant, the water contains 137Cs at the level as high as 4.1 x 107 Bq/L. Authors have examined various agents to adsorb 90Sr and 137Cs with a measure of partition coefficient Kd (L of the artificial sea water/kg) and have come to find out the adsorbent in the title: it is derived from the Cs-adsorbing crystalized silico-titanate (CST). The adsorbent is obtainable by surface treatment of CST with NaOH and has high Kds of >1 x 103 and >1 x 104 L/kg for Sr and Cs, respectively, while other ordinary adsorbents' Kds are: artificial zeolite 1-10 x 102/1-10 x 101 for Sr/Cs, respectively; natural one 0.1-10 x 101/1-10 x 102; ferrocyanide 0.1-10 x 101/1-10 x 104, and CST 1 x 101/>1 x 104. When 1 m3 of the present adsorbent is used, >99% of Cs and Sr can be removable in >3,000 m3 of contaminated water, suggesting its usefulness for dealing with water after the Accident. (T.T.)

  18. Electrokinetic decontamination of porous media. Experimental study and modeling of the cesium transport through cementitious materials

    International Nuclear Information System (INIS)

    The aim of this work is to study the nuclear decontamination of cementitious materials by an electrokinetic method. Special attention is given to the understanding of the mechanisms leading to the removal of radioelements from the material. First, a bibliographic research allowed us to reduce the study to a normalized mortar and to cesium ions. This choice was confirmed by the experimental study of interactions between the contaminant and the material. Next, the efficiency of the electrokinetic decontamination was experimentally shown in laboratory conditions and electromigration was identified as the main transport phenomenon. Then, a numerical model was implemented in order to describe the ionic transport by electromigration. The results obtained were compared to experiments. Finally, some applications and developments of the electrokinetic process were proposed. (author)

  19. Organic Micropollutants Removal from Water by Oxidation and Other Processes:QSAR Models, Decision Support System and Hybrids of Processes

    KAUST Repository

    Sudhakaran, Sairam

    2013-08-01

    The presence of organic micropollutants (OMPs) in water is of great environmental concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown alarming effects on aquatic life. OMPs are included in the priority list of contaminants in several government directorate frameworks. The low levels of OMPs concentration (ng/L to μg/L) force the use of sophisticated analytical instruments. Although, the techniques to detect OMPs are progressing, the focus of current research is only on limited, important OMPs due to the high amount of time, cost and effort involved in analyzing them. Alternatively, quantitative structure activity relationship (QSAR) models help to screen processes and propose appropriate options without considerable experimental effort. QSAR models are well-established in regulatory bodies as a method to screen toxic chemicals. The goal of the present thesis was to develop QSAR models for OMPs removal by oxidation. Apart from the QSAR models, a decision support system (DSS) based on multi-criteria analysis (MCA) involving socio-economic-technical and sustainability aspects was developed. Also, hybrids of different water treatment processes were studied to propose a sustainable water treatment train for OMPs removal. In order to build the QSAR models, the ozone/hydroxyl radical rate constants or percent removals of the OMPs were compiled. Several software packages were used to 5 compute the chemical properties of OMPs and perform statistical analyses. For DSS, MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of natural and advanced water treatment processes. The QSAR models satisfied both chemical and statistical criteria. The DSS resulted in natural treatment and ozonation as the preferred processes for OMPs removal. The QSAR models can be used as a screening tool for OMPs removal by oxidation. Moreover, the

  20. An Electrokinetic Process Coupled Activated Carbon Barrier for Nickel Removal from Kaolinite

    Directory of Open Access Journals (Sweden)

    Ahmad Jamshidi Zanjani

    2012-06-01

    Full Text Available Electrokinetic (EK remediation coupled with activated carbon barrier was evaluated to remove nickel (500 mg/kg from kaolinite. Laboratory experiments were performed by applying a constant voltage to create electric field strength of 1 or 1.25 V/cm for 3 days. Findings showed that the barrier filled with activated carbon could prevent the formation of reverse electro-osmotic flow, which had an adverse effect on the Ni(II removal. Application of activated carbon barrier into EK process resulted in an increase of Ni migration from 11 to 47%.

  1. An Electrokinetic Process Coupled Activated Carbon Barrier for Nickel Removal from Kaolinite

    OpenAIRE

    Ahmad Jamshidi Zanjani; Mohsen Saeedi; Chih-Huang WENG

    2012-01-01

    Electrokinetic (EK) remediation coupled with activated carbon barrier was evaluated to remove nickel (500 mg/kg) from kaolinite. Laboratory experiments were performed by applying a constant voltage to create electric field strength of 1 or 1.25 V/cm for 3 days. Findings showed that the barrier filled with activated carbon could prevent the formation of reverse electro-osmotic flow, which had an adverse effect on the Ni(II) removal. Application of activated carbon barrier into EK process resul...

  2. Optimization of an Sbr process for nitrogen removal from concentrated wastewater via nitrite

    International Nuclear Information System (INIS)

    The results of an experimentation carried out on a pilot-scale Sbr for nitrogen removal via nitridation-denitration are reported. The experimentation was carried out in the period July October 2007 and was aimed at achieving design data for the upgrade of a full scale wastewater treatment plant (WWTP), following the new regulations issued by Lombardy Regional Authority for the discharge of effluents into sensitive areas. One aspect that has been considered in the upgrade is nitrogen removal from the supernatant coming from anaerobic sludge digestion. The experimental results provided sound design data based on real biological activity measurements and operational process parameters such as oxygen and organic carbon requirements.

  3. Removal of micro-pollutants from drinking water with advanced oxidation processes

    OpenAIRE

    Sander, Fabian

    2009-01-01

    This thesis determines the feasibility of ozone gas and ultraviolet (UV)technologies to reduce pollutants from drinking water. The merging of both techniques, ozone and UV, is known as a so called advanced oxidation process (AOP). ITT Wedeco is developing new technologies to meet the growing concern of water works to remove micro-pollutants from their water. The emphasis of this work was put on the formation of the oxidation by-product bromate and the removal of the solvent 1.4 dioxane fr...

  4. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Manikopoulos, C.N.

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures.

  5. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    International Nuclear Information System (INIS)

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures

  6. possibilities of isotope separation of radioactive cesium by ion cyclotron resonance

    International Nuclear Information System (INIS)

    The transmutation of radioactive wastes is of high interest in order to reduce as much as possible the difficulties induced by their storage. In the case of radioactive cesium waste, cesium 137 which presents a short life time (30 years) is difficult to handle due to its high thermal load and and radiation level; cesium 135 is a long life time isotope with high mobility in storage glasses. As the processes of transmutation are different for cesium 135 and cesium 137 and as the neutron consumption is very high, it would be necessary to proceed to a preliminary isotope separation and it would not be worth to transmute the stable 133 isotope of cesium. Peculiar problems linked with cesium physico-chemical properties such as ionisation rat, vapour pressure, cooling of the components of the separation elements, especially the collector part, are discussed. It is shown that a high density plasma (1012 cm -3), with low ionic temperature (1 eV), good for isotope separation, can be achieved easily. It must be noticed that the cooling with water has to be avoided due to chemical reactions. After having defined the unitary separative element, different enrichment strategies and arrangements of the separative elements are proposed. An economic estimation with our code RICAN is given. (author)

  7. Comparison efficiency of both sonochemical and sonochemical/hydrogen peroxide processes forcyanide removal from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Reza Shokohi

    2009-01-01

    Full Text Available (Received 5 October, 2009 ; Accepted 23 December, 2009AbstractBackground and purpose: Cyanide is a species of high toxicity that is found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Entrance of it to existing environment contains a hazardous to health. The purpose of this study was to compare efficiency of both sonochemical and sonochemical / hydrogen peroxide processes for cyanide removal from aqueous solutions.Materials and methods: This study has been used from a productive set of 500w power ultrasound waves in of two frequencies 35 kHz and 130 kHz. Experiments were performed with different initial ratio 1/1, 1/3 and 1/5 and at initial cyanide concentrations varying from 2.5 to 75 mg/L. in this study, Effects of parameters such as pH; time, initial cyanide concentration, hydrogen peroxide/ cyanide and frequency on removal efficiency of mention processes have been studied.Results: The results of the study showed that the maximum removal efficiency of cyanide had been achieved to 74% by sonochemical process at frequency of 130 kHz, at time of 90 min, at pH of 11, at initial cyanide concentration of 2.5 mg/l and with initial ratio of 1/5. However in similar condition, removal efficiency of cyanide had been achieved to 85% by sonochemical/ hydrogen peroxide process.Conclusion: The results of the study showed that rates of cyanide degradation under different conditions had always been quite low, and also the rate of cyanide degradation was first high but it was later substantially reduced. Results of the study showed that efficiency of sonochemical/hydrogen peroxide process is more than of sonochemical process for cyanide removal from aqueous solutions. Also removal efficiency of cyanide has direct relationship with pH, frequency, hydrogen peroxide and time; however, it has reverse relationship with cyanide concentration for process.J Mazand Univ Med Sci 2009; 19(73: 60-67 (Persian.

  8. Demonstration test for decontamination technology of cesium-contaminated ash

    International Nuclear Information System (INIS)

    KEPCO Engineering and Construction Company (KEPCO E and C), architecture and engineering company of nuclear power plant, developed the 'decontamination technology of cesium-contaminated ash' in the basis of pre-owned 'decontamination technology of cesium-contaminated soil'. The new technology was demonstrated in Fukushima prefecture during 12 days from November 5, 2013, in order to verify the performance. Demonstration equipment (CEDECON-DA), with a capacity of treatment of 20 ℓ per batch, can be carried in a container in order to promote the ease of transportation and in-situ installation. Through the demonstration test it was verified the superior performance and the possibility of commercialization. This technique comprises of cesium separation and cesium coagulation processes. Briefly speaking, the principal of this process is as follows; cesium is separated from ash, detached to the coagulation and then deposited. The decontaminated ash can be disposed of into municipal landfills as conventional non-radioactive waste. The present technology is evaluated such that the disposal amount of radioactive waste will be significantly reduced. The ash with average concentration of 6,200 Bq/kg from a conventional incineration plant was used for the demonstration test. Each separate performance test has been carried out under acid, neutral and alkaline conditions, respectively. The test result for alkaline condition showed the highest decontamination ratio of 82-85% and the volume reduction ratio of 95%. Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center (RANDEC) performed the radiation protection management, activity measurement and evaluation in the demonstration test results. (author)

  9. Towards defect free EUVL reticles: Carbon and particle removal by single dry cleaning process, and pattern repair by HIM

    NARCIS (Netherlands)

    Koster, N.B.; Molkenboer, F.T.; Veldhoven, E. van; Oostrom, S.

    2011-01-01

    We report on our findings on EUVL reticle contamination removal, inspection and repair. We show that carbon contamination can be removed without damage to the reticle by our plasma process. Also organic particles, simulated by PSL spheres, can be removed from both the surface of the absorber as well

  10. Thin film removal mechanisms in ns-laser processing of photovoltaic materials

    International Nuclear Information System (INIS)

    The removal of thin films widely used in photovoltaics (amorphous silicon, tin oxide, zinc oxide, aluminum, and molybdenum) is studied experimentally using multi-kHz Q-switched solid-state lasers at 532 nm and 1064 nm wavelengths. The processing ('scribing') is performed through the film-supporting glass plate at scribing speeds of the order of m/s. The dependence of the film removal threshold on the laser pulse duration (8 ns to 40 ns) is investigated and the results are complemented by a multi-layer thermal model used for numerical simulations of the laser-induced spatio-temporal temperature field within the samples. Possible film removal mechanisms are discussed upon consideration of optical, geometrical, thermal and mechanical properties of the layers.

  11. Optimization and Modelling of Chemical Oxygen Demand Removal by ANAMMOX Process Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ali Jalilzadeh

    2013-01-01

    Full Text Available A systematic model for chemical oxygen demand (COD removal using the ANAMMOX (Anaerobic AMMonium OXidation process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration equal to 28.75 mg-N/L, pH 7.72, and temperature 31.3°C. Finally, the analysis of the optimum conditions, performed by the response surface method, predicted COD removal efficiency of 81.07% at the optimum condition.

  12. Comparison Between the Efficiency of Advanced Oxidation Process and Coagulation for Removal Organophosphorus and Carbamat Pesticides

    Directory of Open Access Journals (Sweden)

    A.R Rahmani

    2011-10-01

    Full Text Available Background and Objectives: Water pollution by pesticides has adverse effects on the environment and human health, as well .In recent years, advanced oxidation processes, have been gone through to a very high degree for pesticides removal. Poly-Aluminum chloride (PAC used for water treatment, can be effective on pesticides removal. The aim of this research was to study the use of UV/O3 and PAC in the removal of pesticides from drinking water.Materials and Methods: In this descriptive- analytical survey, specific concentrations of pesticides (1,5,10,15,20 ppm;namely Diazinon, Chlorpyrifos, Carbaril were prepared through addition to deionized water. Dichloromethane was used for samples' extraction, samples extracted with Liquid- Liquid & Solid-phase extraction , finally entered bath reactor at pH (6,7,9 .The samples then exposed to UV/O3at contact time of (0.5,1,1.5 and 2 hours . In the PAC pilot , the effects of various concentrations of pesticides, and PAC - ranging (12/24 and 36 ppm were investigated for the efficacy of pesticides removal. All samples analyzed by GC/MS/MS and HPLC. Results: It was found that in UV/O3 reactor, with the rise of pH, decrease in pesticides concentration, and rise of contact time, the efficiency of removal increased too. In the PAC pilot, increase in PAC concentration and decrease in pesticides concentration , both increased the efficiency. Besides, both of the methods showed high efficiencies in the removal of both pesticides,i-e. halogenated Organophosphorus (Chlorpyrifos , non- halogenated Organophosphorus (Diazinon at the degree of over (%80 ; In case of carbamate pesticides (e.g. Carbaril efficiency was over (>%90. One-Way Anova & Two -Way Anova were used to analyze the obtained data.Conclusion: According these results these two methods are suggested for the removal of pesticides from aqueous solutions.

  13. Removal of uranium from spent salt from the moltensalt oxidation process

    International Nuclear Information System (INIS)

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  14. Superfund TIO videos. Set A. Identifying PRPS. Removal process: Removal site evaluation. Part 2. Audio-Visual

    International Nuclear Information System (INIS)

    The videotape is divided into three sections. Section 1 details the liability of Potentially Responsible Parties (PRPs) and describes the four classes of PRPs: current owners and operators, former owners and operators, generators, and transporters (if they selected the site). Section 2 lists the goals of the Potentially Responsible Party (PRP) search and explains how to identify key players during the PRP search. How to plan and conduct the PRP search is also outlined. Section 3 outlines the steps involved in conducting a removal site evaluation. A discussion of when to conduct a removal preliminary assessment, a removal site inspection, and an Engineering Evaluation/Cost Analysis (EE/AC) also is covered

  15. Removing transuranic waste from water: The TRU/Clear process system

    International Nuclear Information System (INIS)

    A major advance toward solving some of the most intractable problems of environmental cleanup is the TRU/Clear Process System invented by a team of researchers at the Los Alamos National Laboratory (LANL). This process was developed to extract and remove the final trace amounts of the radioactive elements called transuranic (TRU) elements from wastewater streams produced by nuclear facilities. The system, which is completely compatible with existing wastewater treatment technologies, is potentially capable of removing other toxic heavy metals, such as arsenic, mercury, and cadmium, as well as hazardous organic contaminants from wastewater. Future users of the LANL system might include electronics manufacturers and chemical production plants as well as the nuclear industry. The process defines a new chemistry and chemical technology for wastewater treatment that makes a near-zero discharge of pollutants feasible in the near future, while reducing overall waste management costs

  16. Laboratory simulated slipstream testing of novel sulfur removal processes for gasification application

    International Nuclear Information System (INIS)

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is investigating an Early Entrance Coproduction Plant (EECP) concept to evaluate integrated electrical power generation and methanol production from coal and other carbonaceous feedstocks. Research, development and testing (RD and T) that is currently being conducted under the project is evaluating cost effective process systems for removing contaminants, particularly sulfur species, from the generated gas which contains mainly synthesis gas (syngas), CO2 and steam at concentrations acceptable for the methanol synthesis catalyst. The RD and T includes laboratory testing followed by bench-scale and field testing at the SG Solutions Gasification Plant located in West Terre Haute, Indiana. Actual synthesis gas produced by the plant was utilized at system pressure and temperature for bench-scale field testing. ConocoPhillips Company (COP) developed a sulfur removal technology based on a novel, regenerable sorbent - S Zorb trademark - to remove sulfur contaminants from gasoline at high temperatures. The sorbent was evaluated for its sulfur removal performance from the generated syngas especially in the presence of other components such as water and CO2 which often cause sorbent performance to decline over time. This publication also evaluates the performance of a regenerable activated carbon system developed by Nucon International, Inc. in polishing industrial gas stream by removing sulfur species to parts-per-billion (ppb) levels. (author)

  17. Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater.

    Science.gov (United States)

    Gouider, Mbarka; Mlaik, Najwa; Feki, Mongi; Sayadi, Sami

    2011-08-01

    The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively. PMID:21905410

  18. Removal of odorous materials in carbonization process of dyeing wastewater sludge

    International Nuclear Information System (INIS)

    From drying process in a carbonization facility of dyeing wastewater sludge, noxious and odorous materials such as NH3, H2S, and Volatile Organic Compound (VOCs) contained in the sludge are emitted. In previous studies Regenerative Thermal Oxidizer (RTO) was verified as the most efficient method to eliminate them; nevertheless, it was very expensive to establish and operate because of fuel consumption. To estimate the feasibility of a water spray tower and bio-filter system, laboratory scale experiments for NH3, H2S, and toluene gas carried out. In case of water spray experiment for the single gas, the removal rate of NH3 and H2S increased as decreasing the concentration, increasing the liquid/ gas ratio, and increasing the retention time. Toluene was eliminated as low as 20% regardless of the above operating parameters. The removal rates of NH3 and H2S were 88∼98% and 80∼83%, respectively. For the mixed gas, the removal rates of NH3 and toluene was a little dropped, but H2S was eliminated slightly more as compared with single gas experiment. Water spray system was not effective for toluene, but it was removed over 90% in bio-filter system. Retention time of gas in bio-filter bed might be an important operating parameter and its optimal condition was considered to 60 seconds. It is experimentally verified that odorous material was very effectively removed by a water spray tower and bio-filter combined system. (author)

  19. Sulfates removal by the GYP-CIX process following lime treatment

    International Nuclear Information System (INIS)

    The treatment of acid mine drainage by limiting results in the discharge of water saturated in gypsum and containing residual metal concentrations. These waters may exceed drinking and irrigation water standards for TDS, sulfates and some metals. The scaling nature of the saturated gypsum solution makes it unsuitable for industrial use and makes further processing difficult and costly. This paper discusses a novel ion exchange process that is suitable to desalinate large volumes of mine and industrial waters with a TDS of up to 6,500 mg/l which is also high in calcium and sulfates, to meet effluent discharge specifications. The GYP-CIX process is a continuous fluidized bed ion-exchange process that effectively removes calcium sulfate from gypsum saturated waters. It uses low cost chemicals such as lime and sulfuric acid for resin regeneration. The only waste product is gypsum and the treated water produced meets standards for reuse or discharge. This process consists of a two stage operation. The first is the removal of cations in a multistage continuous loading train, using cation exchange resin. The second operation is the removal of anions, again in a multistage continuous loading train using anion exchange resin

  20. Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene

    International Nuclear Information System (INIS)

    Most of the procedures developed for the extraction of cobalt, strontium and cesium by solid phase extraction do not employ simultaneous extraction of them. In this study, rapid simultaneous removal of Co2+, Sr2+ and Cs+ on microcrystalline naphthalene as solid-phase extractant was investigated. These ions were allowed to form chelates with oxine and then adsorbed on freshly microcrystalline naphthalene from aqueous solutions. The solid phase extraction procedure (SPE) was optimized by using model solution containing Co2+, Sr2+ and Cs+ in batch system. The effects of different parameters such as variation in pH, reagent concentration, standing time, naphthalene solution concentration and contact time on the simultaneous removal of these ions was studied. The obtained results indicated that, sorption was found to be rapid, and the percentage removal of Co2+, Sr2+ and Cs+ was found to be 98, 79 and 68% within 10 min, respectively. The kinetics of the sorption process was investigated to understand the kinetic characteristics of sorption of metal chelates onto microcrystalline naphthalene. The developed procedure has been successfully applied to the removal and recovery of 60Co and 134Cs from liquid radioactive waste. The parameters can be used for designing a plant for treatment of wastewater economically.

  1. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    OpenAIRE

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. ...

  2. Development of a new process for radium removal from uranium mining and milling effluents

    International Nuclear Information System (INIS)

    This paper describes the on-going pilot scale development of a new treatment process designed to remove radium-226 from uranium milling effluents. Presently, decants from Canadian uranium mining and milling tailings areas are treated with barium chloride to remove radium-226 prior to discharge into the environment. This is usually accomplished in large natural or man-made ponds which provide an opportunity for a (Ba,Ra)SO/sub 4/ precipitate to form and subsequently settle. At some treatment facilities sand filtration is used as a polishing step. The new process involves the use of a fluidized bed to facilitate the deposition of a (Ba,Ra)SO/sub 4/ precipitate on a free-draining granular medium of high surface area. Incoming radium-226 activity levels have consistently been reduced by 90-99% and effluent levels of 0.37 Bq/L (10 pCi/L) or less have been achieved, depending on the influent activity levels. Testing of the process as a polishing step demonstrated radium removal efficiencies up to 60% when the process influent was already less than 0.19 Bq/L (5 pCi/L). The process has been operated at temperatures ranging from 260C down to 0.30C with no reduction in efficiency. In contrast to treatment times in the order of days for conventional settling pond systems and hours for mechanical stirred tank/filtration systems, the new process is able to achieve these radium removal efficiencies in times on the order of one minute

  3. Sequential Remediation Processes for Effective Removal of Oil from Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Deepika Dave

    2011-01-01

    Full Text Available Problem statement: Over 2.2 billions of oil and oil products are transported every year and often these activities can result in air, water and soil contamination. Expousure to petroleum products can cause health problems to humn and animals and affect marine animals and wildlife habitats. Approach: The objective of this study was to develop a technology for the remediation of soil contaminated with petroleum hydrocarbons. The remediation method included three processes: (a an effective soil washing process for the removal of the hydrocarbons from the contaminated soil, (b an efficient water decontamination process using peat moss as an oil absorbent and (c an effective bioremediation process for converting the oil in peat moss into carbon dioxide and water. Results: The results showed that water is an effective solvent for the removal of oil from contaminated soil. It has also been determined that peat moss is an effective absorbent and could be used to remove oil from the contaminated water. Peat can absorb 12.6 times its weight liquid (water/oil. The bioremediation process was effective in degrading the oil into harmless carbon dioxide and water products. About 77.65% of the THC was removed within 60 days of bioremediation. The hemophilic microbial population in the compost quickly acclimatized to the hydrocarbon as was evident from the immediate rise in the reactor temperature. The C: N ratio decreased from 30:1-12:1 indicating the degradation of organic C in the petroleum hydrocarbons and the peat. Urea was a very effective source of nitrogen in initiating and maintaining intense microbial respiration activity. Conclusion: A sequential processes for the remediation of oil contaminated soil was developed. These included soil washing, absorption of oil from water using peat and bioremediation of contaminated peat. A degradation model was developed and used to calculate the time required for a complete degradation. The model indicated that a

  4. Activity of cesium-134 and cesium-137 in game and mushrooms in Poland

    International Nuclear Information System (INIS)

    The activity of cesium-134 and cesium-137 was measured in mushrooms and game in 1986-1991. The samples were collected all over Poland and most of the measurements were carried out for export purposes. The results indicate that the activity ratio of cesium-137 to cesium-134 in some samples is not comparable to that with fallout after the Chernobyl accident. The analysis of some samples of mushrooms from 1985 showed that the activity of cesium-137 was higher compared to any other foodstuff. The level of contamination varied greatly throughout Poland

  5. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    International Nuclear Information System (INIS)

    The purpose of this report is to document the results of bench-scale testing completed to remove 137Cs and 90Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing

  6. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    Science.gov (United States)

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge. PMID:24964811

  7. Occurrence and removal of phenolic endocrine disrupting chemicals in the water treatment processes

    Science.gov (United States)

    Lv, Xuemin; Xiao, Sanhua; Zhang, Gang; Jiang, Pu; Tang, Fei

    2016-03-01

    This paper evaluated the occurrence and removal efficiency of four selected phenolic endocrine disrupting chemicals (bisphenol A (BPA), octylphenol (OP), nonylphenol (NP) and diethylstilbestrol (DES)) in two drinking waterworks in Jiangsu province which take source water from Taihu Lake. The recombined yeast estrogen screen (YES) and liquid chromatography tandem mass spectrometry (LC-MS/MS) were applied to assess the estrogenicity and detect the estrogens in the samples. The estrogen equivalents (EEQs) ranged from nd (not detected) to 2.96 ng/L, and the estrogenic activities decreased along the processes. Among the 32 samples, DES prevailed in all samples, with concentrations ranging 1.46–12.0 ng/L, BPA, OP and NP were partially detected, with concentrations ranging from nd to 17.73 ng/L, nd to 0.49 ng/L and nd to 3.27 ng/L, respectively. DES was found to be the main contributor to the estrogenicity (99.06%), followed by NP (0.62%), OP (0.23%) and BPA (0.09%). From the observation of treatment efficiency, the advanced treatment processes presented much higher removal ratio in reducing DES, the biodegradation played an important role in removing BPA, ozonation and pre-oxidation showed an effective removal on all the four estrogens; while the conventional ones can also reduce all the four estrogens.

  8. Removal of cadmium from cadmium-contaminated red soils using electrokinetic soil processing

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; LI Cheng-feng; ZENG Guang-ming; YUE Xiu; LI Xin; XU Wei-hua; TANG Chun-fang; YUAN Xing-zhong

    2005-01-01

    To investigate the feasibility of electrokinetic soil processing on the removal of Cd from Cd-contaminated red soils, a laboratory experiment was conducted. A constant direct current density of 0.5mA/cm2 was applied. The result shows that the Cd-removal efficiency is remarkably pH-dependent, which is caused by the change of Cd retention capacity of the red soils under different pH conditions. The initial Cd concentration is 1.490g/kg and over 79% of it is removed from the red soils after treatment for 96h. The energy expenditure per unit volume at the end of experiment is about 77.6kW·h/m3 and the capital consumed by the whole experiment is 42.6RMB Yuan/m3, which suggests that the electrokinetic soil processing is a promising technology for remedying Cd-contaminated red soils due to its high removal efficiency and low energy consumption.

  9. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  10. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu®) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 105 and 4.7 ± 0.2 × 109 M−1 s−1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  11. Process optimization for the removal of environmental contaminants from fish oils

    Directory of Open Access Journals (Sweden)

    Maes Jeroen

    2010-03-01

    Full Text Available Fish oils are rich in nutritionally valuable omega-3 components, mainly eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids. Unfortunately, they could also be contaminated with a series of toxic pollutants like PCDD/Fs and PCBs. This article focuses on the methods for removal of these unwanted compounds and at the same time preserving the nutritional quality of fish oil. Adsorption, deodorization, packed column stripping, and a combination of processes are reviewed here. Activated carbon at 0.5% dosage was efficient in adsorbing PCDD/Fs and no- PCBs, but only 58% of the mo- PCBs could be removed. Adsorption treatment did not significantly alter the quality of the oil. Simple packed column stripping and/or deodorization removed no-PCBs, and especially mo-PCBs in a better manner, its efficiency increasing with temperature. Nutritional properties were preserved until 210°C, beyond which significant EPA and DHA degradation was observed. Combination of activated carbon treatment and deodorization was a good method to remove contaminants, yet preserving the nutritional quality of fish oil. At deodorization temperature of 190°C and 0.1% AC dosage, the total contamination level of PCDD/Fs and dioxin-like PCBs could be reduced, independent of the process sequence, from 35 to below 10 pg TEQ/g, in accordance with the European Union (EU regulation.

  12. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    Science.gov (United States)

    Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. ?? 2007 Elsevier B.V. All rights reserved.

  13. "Effect of Coagulants on Electrochemical Process for Phosphorus Removal from Activated Sludge Effluent"

    Directory of Open Access Journals (Sweden)

    AR Mesdaghinia

    2003-10-01

    Full Text Available According to Environmental Protection Organization of Iran, maximum permissible concentration of residual phosphorus in treated municipal wastewater is 1 mg /l-P. The total average phosphorus concentration in raw municipal wastewater is about 8 mg / l; about 70 percent of the incoming phosphorus normally is discharged with secondary treatment plant effluents. In this research, the role of adding different kinds of coagulants on phosphorus removal efficiency of an electrochemical process was investigated. The research is a bench scale experimental type using batch system for elec. process with direct current. Samples were collected from an extended aeration effluent. The used electrode was steel type and its total effective area was 336 cm2. In each run 1500 ml of sample was placed in an electrolytic cell equipped with magnetic stirrer. The results show that phosphorus removal efficiency increases by increasing of DC and reaction time. Minimum rate of current/percentage of removal was obtained for 0.6amp current and under the same conditions minimum rate of reaction time/percentage of removal was provided in 15 min. In 6min reaction time and 0.6amp current, adding poly aluminum chloride (PAC up to about 27 mg/l could improve the efficiency up to about 50%. But under the same condition, similar results were not observed in 12min reaction time. Besides, adding alum or ferrous sulfate showed similar behavior to PAC. Electrochemical treatment without addition of coagulants and thereby without any changes on the primary characteristics of the sample can remove the phosphorus up to about 93%. But in the case of sufficient reaction time for electrochemical process, adding coagulants can not improve the efficiency and in comparison to a chemical precipitation alone, the use of electrochemical treatment can not reduce the required doses of coagulants in short reaction time.

  14. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  15. Stoichiometric deduction of activated sludge process for organic carbon and nitrogen removal

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-yong; ZOU Lian-pei

    2009-01-01

    The activated sludge process (ASP) is the most generally applied biological wastewater treatment method. The ASP for the removal of organic carbon and nitrogen can be looked as the combination of eight processes. In order to set up an ASP model, the stoichiometric coefficients should be deduced so that the stoichiometric matrix can be presented. The important assumptions and simplifications behind the model for ASP are enumerated. Using the matrix, mass balance equation and consistent units, the stoichiometric coefficients in the eight processes are exclusively deduced one by one.

  16. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N{sub 2} and H{sub 2}-D{sub 2} distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N{sub 2} distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H{sub 2}, HD, D{sub 2}, HT, DT, T{sub 2}) distillation column showed good performance after comparison with the result of a JAERI code, and a H{sub 2}-D{sub 2} distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H{sub 2}-D{sub 2} distillation process was suggested. A feasibility on modification of H{sub 2}-D{sub 2} distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author).

  17. Enhanced biological nitrogen removal in MLE combined with post-denitrification process and EF clarifier.

    Science.gov (United States)

    Chung, C M; Cho, K W; Kim, Y J; Yamamoto, K; Chung, T H

    2012-05-01

    A modified ludzack ettinger reactor (MLE) combined with a post-denitrification reactor (PDMLE) using electroflotation (EF) as a secondary clarifier was investigated on its feasibility and process performance. Results indicated that higher mixed liquor suspended solids (MLSS) concentrations in bioreactor (5,350 ± 352 mg L(-1)) were maintained via the highly concentrated return sludge (16,771 ± 991 mg L(-1)) from the EF clarifier and the effluent suspended solids (SS) concentrations continued relatively low, representing effluent SS concentration of 1.71 ± 1.16 mg L(-1), compared with GS-A2O process during the operation of four months. The denitrification was improved by combining MLE process with post-denitrification based on endogenous decay (i.e. no additional carbon source was added), resulting in the removal efficiencies of TN were about 91 and 59% for the influent C/N ratio of 10 and 5, respectively, revealing relatively high nitrogen removal as compared with EF-A2O and gravity settling (GS)-A2O processes as a control. The nitrogen balance analysis indicates that pre-denitrification and post-denitrification contributed to 78 and 22% of TN removed, respectively. PMID:21947625

  18. Removal of Xylene fromWaste Air Stream Using Catalytic Ozonation Process

    Directory of Open Access Journals (Sweden)

    H Mokarami

    2010-10-01

    Full Text Available "n "n "nBackgrounds and Objectives: Volatile organic compounds (VOCs are one of the common groups of contaminants encountered in the industrial activities, emitted through air stream into the atmosphere. To prevent the human and environmental health from the adverse effects of VOCs, air streams containing VOCs need to be treated before discharging to environment. This study was aimed at investigating the catalytic ozonation process for removing xylene from a contaminated air stream."nMaterials and Methods: In the present work, a bench scale experimental setup was constructed and used for catalytic ozonation of xylene. The performance of catalytic ozonation process was compared with that of single adsorption and ozonation in removal of several concentration of xylene under the similar experimental conditions."nResults: The results indicated that the efficiency of catalytic ozonation was higher than that of single adsorption and ozonation in removal of xylene. The emerging time and elimination capacity of xylene for inlet concentration of 300 ppm was 1.4 and 5.8 times of those in adsorption system. The activated carbon acted as catalyst in the presence of ozone and thus attaining the synergistic effect for xylene degradation."nConclusion: catalytic ozonation process is an efficient technique the treatment of air streams containing high concentrations of xylene. The adsorption systems can also be simply retrofitted to catalytic ozonation process and thereby improving their performance for treating VOCs.

  19. Study into an organization for collecting, processing and removing of radioactive waste

    International Nuclear Information System (INIS)

    This report presents the results of a study into a new organization for the collection, processing and removal of radioactive waste. At present these activities are carried out by the Dutch Energy Research Foundation (ECN). The new organization has to offer guarantees for a qualititatively responsible retrieval and processing of radioactive waste. It also has to be certain that the waste offered will not be send back, or even refused, if stagnation occurs in the removal. Finally the tariffs have to be not so prohibitive that they hinder a responsible handling with radioactive waste by the producers. An organization is advised which is self-employed with regard to management, directorate and materials. It is recommended to submit this organization in a limited liability company. This form of government may be supplemented optionally with a slight form of a cooperative association. (author). 10 refs.; 3 figs.; 11 tabs

  20. Empirical models for NOx and SO2 removal in a double stage flue gas irradiation process

    International Nuclear Information System (INIS)

    A multidimensional regression method has been applied to construct empirical model equations of NOx and SO2 removal efficiency in e-b process for a two-stage irradiation system based on results achieved for the EPS Kaweczyn pilot plant. The influence of different parameters such as dose, temperature, gas humidity and ammonia stoichiometry have been studied. Model equations describe with satisfactory accuracy experimental results. Therefore obtained models equations can be used for prediction of NOx and SO2 removal efficiency in e-b process during two-stage irradiation of flue gases, particularly in the case of scale-up. The results will be implemented in the industrial electron beam flue gas treatment installation being constructed at EPS Pomorzany, Dolna Odra PS Group SA, Poland (flue gas flow 270,000 N m3/h, total beam power of applied accelerators 1.2 MW). (author)

  1. Preparedness for a nuclear accident. Removal of radioiodine from soil by chemical processing

    International Nuclear Information System (INIS)

    Processing environmental samples for analysis can result in loss of target or bystander radionuclides. Removal of carrier-free 131I from soil samples by chemical processes was evaluated in the presence and absence of iodide carrier, H2O2, and AgNO3. Soil samples spiked with 131I and 134Cs tracer were boiled under reflux for 30 min in HNO3 and combinations of aforementioned reagents. Spectroscopic analysis revealed the greatest removal of radioiodine (45 ± 1 %) was achieved using AgNO3 and carrier; the lowest (7 ± 1 %) was achieved by refluxing with H2O2 and HNO3. The results quantify the effect of iodide carrier and suggest the preferential interaction of H2O2 with iodide instead of soil organic matter. (author)

  2. Development of column grade ammonium molybdo phosphate granules for the separation of cesium from acidic waste streams in reprocessing plants (Paper No. AL-44)

    International Nuclear Information System (INIS)

    Ammonium molybdo phosphate(AMP) microcrystals can be converted into granular form suitable for column operations if a suitable binder is used. The column filled with such AMP granules, can be effectively used to remove cesium from the reprocessing waste streams prior to final disposal. But difficulty arises as most of the monomers affect AMP. A process has been developed to obtain AMP in granualar form suitable for column operations which does not alter the capacity, kinetics and stability of the exchanger. The performance of the grunular form AMP in treating acidic waste streams of reprocessing plants has been described here. (author)

  3. Ammonia removal in the carbon contactor of a hybrid membrane process.

    Science.gov (United States)

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC. PMID:25459222

  4. Optimization of energy consumption for NOx removal in multistage gas irradiation process

    International Nuclear Information System (INIS)

    Previously reported results of the tests performed on industrial pilot plant for EB flue gas treatment has proved the theoretical assumption that multistage gas irradiation leads to power consumption savings in comparison with single gas irradiation process. In this paper the results of theoretical and experimental studies are presented concerning optimization of the ratio of dose distribution between the particular stages. Nonuniform dose distribution causes further decrease in power consumption for NOx removal. (Author)

  5. An iron-facilitated chemical and biological process for phosphorus removal and recovery during wastewater treatment

    OpenAIRE

    Zhao, Kang; 趙鈧

    2013-01-01

    Phosphorus (P) is an important pollutant of concern in wastewater that causes eutrophication and algal blooms in water body. On the other hand, P is a valuable natural resource for agricultural and industrial use. With the rapid depletion of mineral phosphorus on earth, there is a need to recover phosphorus from wastewater. In this study, a new chemical and biological process facilitated with iron dosing has been developed for P removal and recovery during wastewater treatment. The system con...

  6. Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Schmidt, Jens Ejbye; Angelidaki, Irini

    2008-01-01

    blanket (UASB) reactor, partial oxidation), nitrogen (oxygen-limited autotrophic nitrification-denitrification, OLAND) and phosphorus (phosphorus removal by precipitation as struvite, PRS) from pig manure were tested. Results obtained showed that microfiltration was unsuitable for pig manure treatment...... with sequential separation by decanter centrifuge, post-digestion in UASB reactor, partial oxidation and finally OLAND process. This combination resulted in reduction of the total organic, nitrogen and phosphorus contents by 96%, 88%, and 81%, respectively....

  7. Guidance for Removal of Fetal Bovine Serum from Cryopreserved Heart Valve Processing

    OpenAIRE

    Brockbank, Kelvin G.M.; Heacox, Albert E.; Schenke-Layland, Katja

    2010-01-01

    Bovine serum is commonly used in cryopreservation of allogeneic heart valves; however, bovine serum carries a risk of product adulteration by contamination with bovine-derived infectious agents. In this study, we compared fresh and cryopreserved porcine valves that were processed by 1 of 4 cryopreservation formulations, 3 of which were serum-free and 1 that utilized bovine serum with 1.4 M dimethylsulfoxide. In the first serum-free group, bovine serum was simply removed from the cryopreservat...

  8. Comparisons of Three Advanced Oxidation Processes in Organic Matter Removal from Esfahan Composting Factory Leachate

    OpenAIRE

    karimi B.; Ehrampoush M.H.; Mokhtari M.; Ebrahimi A

    2011-01-01

    Backgrounds and Objectives: Wet air oxidation (WAO) is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate.The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachateMaterial and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sam...

  9. PIXE analyses of cesium in rice grains

    Science.gov (United States)

    Sugai, Hiroyuki; Ishii, Keizo; Matsuyama, Shigeo; Terakawa, Atsuki; Kikuchi, Yohei; Takahashi, Hiroaki; Ishizaki, Azusa; Fujishiro, Fumito; Arai, Hirotsugu; Osada, Naoyuki; Karahashi, Masahiro; Nozawa, Yuichiro; Yamauchi, Shosei; Kikuchi, Kosuke; Koshio, Shigeki; Watanabe, Koji

    2014-01-01

    The Fukushima nuclear power plant accident released vast amounts of radioactive material into the environment. For instance, 134Cs and 137Cs have half-lives of about 2 and 30 years, respectively, and emit many harmful gamma rays. In 2012, rice with radioactivity >100 Bq/kg was occasionally reported in Fukushima prefecture. To determine where and how cesium accumulates in rice, we grew rice in soil containing stable cesium and investigated the distribution of cesium in rice using particle-induced X-ray emission (PIXE). This study found that cesium is accumulated in bran and germ at high concentrations, and white rice contains 40% of the cesium found in brown rice.

  10. Review and assessment of technologies for the separation of cesium from acidic media

    International Nuclear Information System (INIS)

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and open-quote other close-quote technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development

  11. Fate and removal of typical pharmaceuticals and personal care products by three different treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu-jie; Chen, Wei; Zheng, Xiao-ying, E-mail: zhxyqq@hhu.edu.cn; Wang, Xing-nan; Huang, Xi

    2013-03-01

    The presence and distribution of typical of pharmaceuticals and personal care products (PPCPs), which comprise two types of polycyclic musks (PCMs) including Galaxolide (HHCB) and Tonalide (AHTN) as well as six types of estrogens containing estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), diethylstilbestrol (DES), and bisphenol A (BPA), were investigated at two wastewater treatment plants (WWTPs) in Jiangsu, China. Only raw wastewater was treated in WWTP A while WWTP B was serving an urban-industrialized area. In the influent, the concentrations of EE2 (2193–4437 ng L{sup −1}), E2 (1126–1170 ng L{sup −1}), and DES (268–421 ng L{sup −1}) were generally higher than the previously reported values, whereas the concentrations of HHCB (306–316 ng L{sup −1}), E1 (29–129 ng L{sup −1}), E3 (53 ng L{sup −1}), and BPA (26–176 ng L{sup −1}) were much lower than those reported in other previous studies. In addition, AHTN was not detected in either WWTP and E3 was not found in WWTP B. The detected processes including anaerobic/oxic process (A/O), combined orbal oxidation ditch process (C-orbal OD) and anaerobic/anoxic/anoxic/oxic membrane biological reactor (A/A/A/O-MBR) showed higher removal efficiencies for HHCB (67–71%) and EE2 (87%) than those in other previous studies. Besides, the total hydraulic retention time (HRT) ranged between 6.7 and 20.0 h, sludge retention time (SRT) ranged between 8 and 23 d, and water temperature ranged from 24.8 to 28.2 °C. The removal efficiencies for estrogens in biological processes were related to the following factors: the level of hydrophobic estrogens, the type of removal process (C-orbal OD was consistently less efficient in removing estrogens than A/O and A/A/A/O-MBR), and a high SRT or HRT (A/A/A/O-MBR with higher SRT and HRT showed higher and more stable removal of hydrophobic estrogens). - Highlights: ► We investigated 8 kinds of PPCPs in each unit at 2 WWTPs with different

  12. Biological Behavior of Anammox Process for Municipal Wastewater Treatment: Effect of Ammonia Removal and Other Parameters

    Directory of Open Access Journals (Sweden)

    R. Nabizadeh

    2012-09-01

    Full Text Available Historically, nitrogen compound due to major environmental and public health problems have been considered. Anaerobic ammonium oxidation processes were proposed by many advantages such as; novelty, promising method and cost-effective. In this work, we used of anommax process for a wastewater with high C:N ratios and the main parameter likes pH; temperature, NO2/NH4 ratio and behavior of COD, ammonium and nitrite during operation time of 55 days were evaluated. High efficiency in nitrite and ammonium removal is observed at pH values between 7.5 to 8 and operation times between 9 to 23 days. Furthermorethe variation of the nitrite/ammonium ratio done dependence to pH, and a higher ratio was associated with higher pH values. And lower values of NO2/NH4 ratio have occurred with decrease of pH at third phase of anommax process. The average elimination efficiency of COD was occurred about 89.22%, but the removal efficiency of COD in anommax reactor was obtained about 49.5%. Furthermorethe removal efficiency of ammonium and nitrite were provided about 50% for each.

  13. An atmospheric-pressure plasma process for C2F6 removal.

    Science.gov (United States)

    Chang, M B; Yu, S J

    2001-04-15

    Perfluorocompounds (PFCs) are widely used in the semiconductor industry for plasma etching and chemical vapor deposition (CVD). They are relatively inert gases that intensely absorb infrared radiation and, therefore, aggravate the greenhouse effect. A bench-scale experimental system was designed and constructed to evaluate the effectiveness of C2F6 conversion by using dielectric barrier discharges (DBD) with atmospheric-pressure plasma processing. Experimental results indicated that the removal efficiency of C2F6 increased with applications of higher voltage and frequency. Combined plasma catalysis (CPC) is an innovative way for abatement of PFCs, and experimental results revealed that combining plasma generation with catalysts could effectively enhance C2F6 removal efficiency achieved with DBD. The major products of C2F6 with DBD processing include CO2, COF2, and CO, when O2 was included in the discharge process. Experimental results indicated that as high as 94.5% of C2F6 were removed via CPC at applied voltage of 15 kV, frequency of 240 Hz in the gas stream of N2:Ar:O2:C2F6 = 50:40:10:0.03. PMID:11329706

  14. A wet abrasive blasting process for smooth micromachining of glass by ductile-mode removal

    International Nuclear Information System (INIS)

    This paper describes the ductile removal behavior of a Pyrex glass substrate in a wet blasting process with an aqueous fine abrasive slurry of 4 µm Al2O3 particles in water. Glass was removed in a ductile cutting mode when the blasting was carried out with low applied pressure or with a long nozzle distance. Although the removal rate in the ductile mode was much lower than with brittle-mode blasting, a smooth surface within a roughness of 50 nm Ra was obtained. Using ductile-mode blasting, a micro groove with a smooth surface (roughness <50 nm Ra) was successfully obtained. The profile of the micro groove was U-shaped, in contrast to the V-shaped profile obtained with conventional brittle-mode blasting. Ductile-mode blasting was also used for surface finishing after a rough pre-blasting process. The roughness of the pre-blasted surface was reduced from 200 nm Ra to about 100 nm Ra by the finishing process

  15. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  16. Accumulation of nuclear fission products by vegetable crops and their removal during processing

    International Nuclear Information System (INIS)

    The accumulation and turn over of 90Sr and 137Cs throughout the growth cycle of a vegetable crop was studied as well as the removal of these radionuclides in several vegetables by washing, blanching, freezing, canning, and pickling procedures. The results indicated that radiocontamination of vegetable crops with 137Cs would result in greatest internal concentrations if exposure occurred early in the growth cycle of the plant, whereas, the greatest contamination by 90Sr would occur from exposure during the middle of the growing period. Pulse labelling experiments were employed to examine turn over of radionuclides in kale. No net efflux of radionuclides from plants following exposure to either radionuclide was observed. Of the processing treatments employed on several types of vegetables, a combination of pickling and canning of cucumbers resulted in the greatest decontamination - 94% for 137Cs and 65% for 90Sr. Canning was highly effective in reducing radionuclide concentrations in beans and kale. However, freezing significantly reduced the radionuclide content of only 137Cs in kale. Preparatory procedures prior to processing did not significantly reduce radionuclide levels except for 137Cs in beans. The combination of washing, blanching, and canning sweet potatoes exposed to radionuclides resulted in the removal of 1.4% 137Cs and 26.5% 90Sr relative to unprocessed controls. The blanching process resulted in a transfer of radioactivity from the peel to the core, indicating that skins of contaminated potatoes should be removed prior to thermal treatment

  17. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  18. Removal of iopromide and degradation characteristics in electron beam irradiation process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Minhwan; Yoon, Yeojoon; Cho, Eunha; Jung, Youmi [Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710 (Korea, Republic of); Lee, Byung-Cheol [Quantum Optics Laboratory, Korea Atomic Energy Research Institute, 1045, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Paeng, Ki-Jung [Department of Chemistry, Yonsei University, 234 Maeji, Heungup, Wonju 220-710 (Korea, Republic of); Kang, Joon-Wun, E-mail: jwk@yonsei.ac.kr [Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710 (Korea, Republic of)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The second-order kinetic was fitted in overall removal tendency of iopromide. Black-Right-Pointing-Pointer In the electron beam/H{sub 2}O{sub 2} process, enhanced removal rate of iopromide was observed. Black-Right-Pointing-Pointer The iopromide removal rate increased in the presence of OH{center_dot} scavengers. Black-Right-Pointing-Pointer The mineralization was mainly performed in the electron beam/H{sub 2}O{sub 2} condition. Black-Right-Pointing-Pointer The e{sub aq}{sup -} mainly attacks the iodo-group, whereas the OH{center_dot} reacts non-selectively. - Abstract: The aim of this study is to evaluate the removal efficiency of iopromide using electron beam (E-beam) irradiation technology, and its degradation characteristics with hydroxyl radical (OH{center_dot}) and hydrated electron (e{sub aq}{sup -}). Studies are conducted with different initial concentrations of iopromide in pure water and in the presence of hydrogen peroxide, bicarbonate ion, or sulfite ion. E-beam absorbed dose of 19.6 kGy was required to achieve 90% degradation of 100 {mu}M iopromide and the E-beam/H{sub 2}O{sub 2} system increased the removal efficiency by an amount of OH{center_dot} generation. In the presence of OH{center_dot} scavengers (10 mM sulfite ion), the required dose for 90% removal of 100 {mu}M iopromide was only 0.9 kGy. This greatly enhanced removal was achieved in the presence of OH{center_dot} scavengers, which was rather unexpected and unlike the results obtained from most advanced oxidation process (AOP) experiments. The reasons for this enhancement can be explained by a kinetic study using the bimolecular rate constants of each reaction species. To explore the reaction scheme of iopromide with OH{center_dot} or e{sub aq}{sup -} and the percent of mineralization for the two reaction paths, the total organic carbon (TOC), released iodide, and intermediates were analyzed.

  19. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters.

    Science.gov (United States)

    Taheran, Mehrdad; Brar, Satinder K; Verma, M; Surampalli, R Y; Zhang, T C; Valero, J R

    2016-03-15

    Pharmaceutically active compounds (PhACs), which find their way easily into the water sources, are emerging as a major concern for drinking water quality and aquatic species. Therefore, their removal from water sources is a priority from environmental point of view. During the past decade, different methods including membrane separation, adsorption systems and chemical transformation have been evaluated for removal of these compounds. This paper reviews different aspects of PhAC removal by using membrane separation processes, as they have been conventionally known to show high potential in the production of superior quality drinking and industrial water. In brief, osmosis membranes can efficiently remove almost all PhACs though its operational cost is relatively high and nanofiltration (NF) membranes are highly influenced by electrostatic and hydrophobic interaction. Moreover, the efficiency of membrane bioreactors (MBRs) is difficult to predict due to the complex interaction of compounds with microorganisms. To improve the performance and robustness of membrane technology, it is suggested to combine membranes with other systems, such as activated carbon and enzymatic degradation. PMID:26789358

  20. Nitrogen removal for low-carbon wastewater in reversed A~2/O process by regulation technology

    Institute of Scientific and Technical Information of China (English)

    张智; 陈杰云; 谢丽华; 范功端; 尹晓静; 李勇

    2009-01-01

    Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.

  1. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    Science.gov (United States)

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). PMID:23540811

  2. High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source.

    Science.gov (United States)

    Yang, Jiachun; Zhang, Li; Fukuzaki, Yasuhiro; Hira, Daisuke; Furukawa, Kenji

    2010-12-01

    This study focused on high-rate nitrogen removal by the anaerobic ammonium oxidation (Anammox) process with a sufficient inorganic carbon (IC) source. Experiments were carried out in an up-flow column Anammox reactor fed with synthetic inorganic wastewater for 110 days. The IC source was added into the influent tank in the form of bicarbonate. The results confirmed the positive impact of inorganic matter on stimulating Anammox activity. After the addition of sufficient IC, the nitrogen removal rate sharply increased from 5.2 to 11.8 kg-Nm(-3)day(-1) within only 32 days. NO(2)-N inhibition was not observed even at NO(2)-N concentrations greater than 460 mgN/L, indicating the enriched Anammox consortium adapted to high NO(2)-N concentrations. The ratio of NO(2)-N removal, NO(3)-N production and NH(4)-N removal for the reactor was correspondingly changed from 1.21:0.21:1 to 1.24:0.18:1. Simultaneously, the sludge volume index of the Anammox granules decreased markedly from 36.8 to 21.5 mL/g, which was attributed to the implementation of proper operational strategy. In addition, DNA analysis revealed that a shift from the KSU-1 strain to the KU2 strain occurred in the Anammox community. PMID:20709538

  3. Fuzzy Control of Nitrate Recirculation and External Carbon Addition in A/O Nitrogen Removal Process

    Institute of Scientific and Technical Information of China (English)

    马勇; 彭永臻; 王淑莹; 王晓莲

    2005-01-01

    Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict.Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parazneter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at-86 mV and -90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.

  4. Demonstration of an integrated catalytic SO2/NOx/particulate removal process

    International Nuclear Information System (INIS)

    A new technology for the integrated catalytic removal of SO2, NOx and particulate has been developed in Europe and will be demonstrated at the Ohio Edison Niles Plant - Unit 2 in Niles, Ohio as part of the Department of Energy Clean Coal Technology Program II. Two applications of this process, one 30 MW industrial and one 300 MW utility are currently under construction in Italy and Denmark, respectively. Pilot scale applications of this technology have yielded greater than 95% removal of both sulfur dioxide (SO2) and nitrogen oxides (NO4). Particulate emissions of less than 1 mg/Nm3 (0.0004 gr/SCF) are inherent to the process. Salable, technical grade sulfuric acid and usable heat are the only by-products. Ammonia, used to reduce nitrogen oxides, is the only reagent required. This demonstration project will treat a 35 MW equivalent slipstream from a 108 MW boiler burning 3.2% sulfur Ohio coal. The objectives of this four year project are to demonstrate the process using U.S. high sulfur coal, verify the scale-up potential of pilot plant results, further quantify and qualify the consumables and products of the process and verify the predicted low O and M costs. This paper describes the WSA-SNOX process and the Niles Demonstration project. The two-year testing program to assess the performance and economic competitiveness of the process is outlined and a brief discussion of estimated full-scale costs is also presented

  5. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  6. New separation techniques of cesium by redox type ion exchange materials

    International Nuclear Information System (INIS)

    RIECS method, new cesium separation method, was developed in which a porous strong base anionic exchanger with copper ferrocyanide (CuFC) and inhibitor were used. Cesium could be separated from the high concentration nitric solution. By developing new impregnation method, large amount of CuFC was impregnated into the micropolar porous resin and silica gel pores. KFC adhered to outside of pores was recovered. Good complex with CuFC was prepared by use of copper chloride in ethyl alcohol solution. The adsorption ratio of cesium increased radically to 80% level in the very small range of hydrazine concentration 1.7 to 2.4x10-4M. The adsorption-desorption ratio of cesium did not decrease by repeating it seven times. The glassificated materials decreased large amount of γ-ray unless increase of volume could be produced by built RIECS method in the high level waste processing system. (S.Y.)

  7. Evaluation and comparison of SuperLig reg-sign 644, resorcinol-formaldehyde and CS-100 ion exchange materials for the removal of cesium from simulated alkaline supernate

    International Nuclear Information System (INIS)

    PNL evaluated three polymeric materials for Cs removal efficiency from a simulated Hanford Neutralized Current Acid Waste (NCAW) supernatant liquid using 200 mL ion exchange columns. Cs loadings (mmole Cs/g resin) were 0.20, 0.18, and 0.039 for Super Lig 644, R-F, and CS-100 (0.045, 0.070, 0.011 mmole Cs/mL resin). Elution of each resin material with 0.5 M HNO3 required 3.5, 7.0, and 3.2 cv to reach 0.1 C/C0 for the respective materials, resulting in volume compressions of 27, 20, and 6.9. Peak Cs concentrations during elution was 185, 38.5, and 27.8 C/C0. SuperLig 644 had the highest Cs loading per gram in NCAW and the greatest volume compression on aci elution. Because of high density and poor elution, R-F had the highest Cs loading per unit volume and lower volume compression. CS-100, the baseline material for Cs removal at Hanford, was inferior to both SuperLig 644 and R-F in terms of Cs loading and selectivity over sodium

  8. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    International Nuclear Information System (INIS)

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the Λ scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The |Fg = 3> → |Fe = 4> resonance pumping can result in the ground state |Fg = 4, mF = 4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg = 4> → |Fe = 3> transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field. (atomic and molecular physics)

  9. Cesium-137, a drama recounted; Cesio-137, um drama recontado

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Suzane de Alencar

    2013-01-15

    The radiological accident with Cesium-137, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. Cesium-137, a drama recounted is a textual experimentation based on real events and characters picked out from statements reported in various narratives about the radiological accident. (author)

  10. Comparison of two PAC/UF processes for the removal of micropollutants from wastewater treatment plant effluent: process performance and removal efficiency.

    Science.gov (United States)

    Löwenberg, Jonas; Zenker, Armin; Baggenstos, Martin; Koch, Gerhard; Kazner, Christian; Wintgens, Thomas

    2014-06-01

    Two hybrid membrane processes combining powdered activated carbon (PAC) adsorption with ultrafiltration (UF) were investigated regarding operational performance and efficiency to remove organic micropollutants from municipal wastewater treatment plant effluent. A pressurized PAC/UF (pPAC/UF) and a submerged PAC/UF (sPAK/UF) system were operated continuously over a period of six months. Both UF membrane systems showed good compatibility with the application of PAC showing no abrasion or other negative impacts. The pPAC/UF system reached permeability values up to 290 L/(m² h bar) at high fluxes of 80 L/(m² h) compared to the sPAC/UF with a permeability of up to 200 L/(m² h bar) at fluxes of up to 23 L/(m² h). Surface analysis of both membranes with scanning electron microscopy revealed no membrane deterioration after the six-month period of operation. On the surface of the pressurized membrane the formation of a PAC layer was observed, which may have contributed to the high permeability by forming a protective coating. Five micropollutants, i.e. sulfamethoxazole, carbamazepine, mecoprop, diclofenac and benzotriazole in ambient effluent concentrations were investigated. Both PAC/UF systems removed 60-95% of the selected micropollutants at a dosage of 20 mg PAC/L and 4 mg Fe(3+)/L. However, extreme peak loads of sulfamethoxazole with concentrations of up to 30 μg/L caused a considerable performance decrease for more than a week. PMID:24631942

  11. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik; Kymmel, Mogens

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which...... denitrification momentarily occurs. This approach serves to increase the denitrification rate on demand, thereby allowing the accumulation of nitrate and nitrite during periods of peak nitrogen loading to be reduced or avoided. A pilot plant demonstration of the control strategy using acetate as COD source is...

  12. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  13. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  14. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    Science.gov (United States)

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater. PMID:26512324

  15. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  16. Thermal spray vitrification process for the removal of lead oxide contained in organic paints

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, J.; Chen, J.; Bancke, G.A.; Herman, H.; Berndt, C.C. [State Univ. of New York, Stony Brook, NY (United States); Breslin, V.T. [Marine Science Research Center, Stony Brook, NY (United States)

    1995-12-31

    The US Environmental Protection Agency (US-EPA) regulations have necessitated the removal and containment of toxic lead from lead oxide containing paints. The Thermal Spray Vitrification Process (TSVP) is a novel technique in which a glass powder of appropriate composition is flame sprayed onto the painted surface to achieve removal and vitrification of the lead. Two different glass systems, i.e., alkali silicate and ferrous silicate, were chosen for detailed study. Appropriate amounts of raw materials were mixed, fused, quenched, ground and sieved to obtain the spray quality powders. Grit blasted mild steel coupons were used as test substrates for the spray parameter optimization studies; while those coupons with lead oxide containing organic paint were used for the lead removal experiments. The powders and deposits were investigated using Microtrac particle size analysis (for powders), optical microscopy, XRD and SEM. The remnant lead in the panel was measured using a specially prepared X-Ray Fluorescence (XRF) system. The lead leach rate was recorded as per US-EPA approved Toxicity Characteristic Leaching Procedure (TCLP). The results of this study have shown that lead oxide can be successfully removed form the paint by flame spraying a maximum of three layers of glass onto the painted surface. It is possible to obtain much higher lead removal rate with ferrous silicate glass as compared to alkali silicate glass is much higher than the ferrous silicate glass. The in situ vitrification has not been completely optimized; however, the lead containing glass coating can be remelted in situ or on site to enhance the vitrification of the lead which had been absorbed in the glass coating.

  17. Sensitivity of cesium chemistry to the O/U radio in UO2+x

    International Nuclear Information System (INIS)

    The effect of O/U ratio on chemical reactivity was investigated in a cesium-iodide/uranium/tungsten system at temperatures up to 2200 K. It was found that slight changes in the oxidation of the urania had a large effect on reactivity. Crushed fresh fuel samples showed little reaction with CsI; however, slightly hyperstoichiometric fuel showed considerable reaction. The tungsten participated in the reaction by removing excess oxygen from the urania, eventually leading to a cesium tungstate species that was analyzed by Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) techniques. (author)

  18. Removal of cyclops in pre-oxidizing cooperation water treatment process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Zooplankton cyclops propagates profusely in waterbody, cannot be effectively inactivated by conventional disinfection process, and becomes a troublesome drinking water treatment problem. In this work, the qualitative and quantitative experimental studies were carried out on inactivation of zooplankton cyclops using oxidants, such as chlorine (Cl2), chlorine dioxide (ClO2), ozone (O3), hydrogen peroxide (H2O2), ozone/hydrogen peroxide (O3/H2O2), chloramines (Cl2-NH3) and potassium permanganate (KMnO4). The influences of various factors include different oxidant dosages, organic substance contents and pH values. The results showed that currently available oxidants used all might inactivate cyclops in some extent. According to the experimental results, chlorine dioxide, ozone, ozone/hydrogen peroxide and chloramines can be selected as effective oxidants for inactivating cyclops because of their strong inactivation abilities. Then the synergic removal effects on cyclops with ozone,ozone/hydrogen peroxide pre-oxidation followed by conventional water treatment processes were investigated. The results showed that ozone and ozone/hydrogen peroxide pre-oxidation can inactivate cyclops effectively, which then can be removed thoroughly by conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.65 mg/L of ozone and 6 mg/L of hydrogen peroxide, with the inactivation rate being 62% before conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.8 mg/L of ozone, with the inactivation rate being 50% before conventional water treatment processes. For different oxidants, when removal rate was the best, the inactivation rate was not the same. These results may provide reference and model for actual waterworks.

  19. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. PMID:26143588

  20. Laser tattoo removal as an ablation process monitored by acoustical and optical methods

    Science.gov (United States)

    Cencič, Boris; Gregorčič, Peter; Možina, Janez; Jezeršek, Matija

    2013-07-01

    Strength of the laser-tissue interaction varies even within a single tattoo because of the inhomogeneous distribution of the tattoo pigment embedded in the skin. A monitoring system is therefore developed for simultaneous monitoring of the laser tattoo removal process based on acoustical and optical techniques. A laser-beam-deflection probe is used for measuring the acoustical signals accompanying the breakdown, and a CCD camera captures the level and the spatial distribution of the plasma radiation. Using these methods we examine the degree of excitation-pulse absorption within the pigment and the degree of the structural changes of the skin. A Nd:YAG laser with a top-hat beam profile, designed for tattoo removal, is used as the excitation source in our experiments. Special attention is given to structural changes in the skin, which depend on the applied fluence. Tattoo removal with multiple pulses is also analyzed. Experiments are made in vitro (skin phantoms) and ex vivo (marking tattoos on the pig skin). The presented results are important for the understanding and optimization of the process used in medical therapies.

  1. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal.

    Science.gov (United States)

    He, Ruo; Liu, Xin-Wen; Zhang, Zhi-Jian; Shen, Dong-Sheng

    2007-09-01

    A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition. PMID:17071082

  2. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal.

    Science.gov (United States)

    Gao, Shanshan; Du, Maoan; Tian, Jiayu; Yang, Jianyu; Yang, Jixian; Ma, Fang; Nan, Jun

    2010-10-15

    Electro-coagulation-flotation (ECF) is one of the most promising technologies that offers an attractive alternative to conventional coagulation and flotation. In this study, the effectiveness and mechanisms of algae removal by ECF process using aluminum electrodes was investigated in the presence of Cl(-) ions. The results showed that the addition of Cl(-) ions (1.0, 3.0, 5.0 and 8.0 mM) had a promoting effect on the algae removal in terms of both the cell density and chlorophyll-a, which could be attributed to the following two reasons. Firstly, active chlorine could be generated in the ECF when Cl(-) ions were present. The electrochemically generated active chlorine was demonstrated to be effective for the inactivation of algae cells with the aid of the electric field in the ECF. Secondly, the Cl(-) ions in the algae solution could enhance the release of Al(3+) from the aluminum electrodes in the ECF. Through SEM-EDX analysis, pitting corrosion and alleviated formation of oxide film by Cl(-) ions were observed on the anode surface. When considering that Cl(-) ions are universally present in natural waters, the effects of Cl(-) on ECF process for algae removal are of great significance. PMID:20667652

  3. Removal of Zn(II) from dilute aqueous solutions and radioactive process wastewater by foam separation

    International Nuclear Information System (INIS)

    Ion, precipitate and adsorbing colloid flotations of zinc(II) from dilute aqueous solutions have been investigated over a wide pH range using the anionic surfactant Aerosol OT or the cationic collector cetyl pyridinium chloride. In case of adsorbing colloid flotation (ACF) iron oxyhydroxide and aluminium hydroxide were used, either separately or together, as coprecipitants. The precipitate flotation curves were compared with the corresponding theoretical one calculated from the data published for Zn(II) hydrolysis. In addition to the effect of pH on the percent removal the effects of collector concentration, ionic strength, bubbling time and metal ion concentration were investigated and the optimum conditions were established. High removals could be achieved especially with ACF. The results obtained are discussed with respect to the chemical state of zinc, the ionization behaviour of the collectors and properties of the coprecipitants. The developed ACF process was applied to the removal of 65Zn from radioactive process wastewater. (author). 45 refs., 6 figs., 4 tabs

  4. Removal of heteroatoms and metals from heavy oils by bioconversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.

    1996-06-01

    Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

  5. SOFT SENSOR FOR BETTER CONTROL OF CARBON DIOXIDE REMOVAL PROCESS IN ETHYLENE GLYCOL PLANT

    Directory of Open Access Journals (Sweden)

    NADEEM M. KHALFE

    2011-03-01

    Full Text Available Low carbon dioxide in cycle gas loop of ethylene glycol (EG plant improves catalyst selectivity and overall economics of the plant. Carbon dioxide produced as a byproduct in ethylene oxide reactor is removed by the Benfield process. In this process, the carbonate and bicarbonate ratio in lean carbonate solution is considered as an important quality control (QC variable as the efficiency of carbon dioxide removal largely depends on it. In the event of a process malfunction or operating under suboptimal condition, the CO2 content in the cycle gas loop will continue to rise until corrective action is taken after obtaining lab results for carbonate and bicarbonate ratio. This time consuming sampling process can be overcome by implementing a technological solution in form of an accurate and robust mathematical model capable of real time QC variable prediction. For well understood processes, the structure of the correlation for QC variables as well as the choice of the inputs may be well known in advance. However, the Benfield process is too complex and the appropriate form of the correlation and choice of input variables are not obvious. Here, knowledge of the processes, operating experience and statistical methods were applied in developing the soft sensor. This paper describes a systematic approach to the development of inferential measurements of carbonate and bi¬carbonate ratio using Support Vector Regression (SVR analysis. Given histo¬rical process data, a simple SVR-based soft sensor model is found capable of identifying and capturing the cause and effect relationship between operating variables (model inputs and QC variables (model outputs. Special care was taken to choose input variables, so that the final correlation and regression coefficient make senses from process engineering point of view. The developed soft sensor was implemented in commercial ethylene glycol plant in an Exa¬quantum interface and was found to satisfactorily predict

  6. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    Science.gov (United States)

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies. PMID:26271772

  7. Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process

    International Nuclear Information System (INIS)

    It has been shown that the laser shock cleaning (LSC) method is effective for eliminating micron- and submicron-scale particulates from solid surfaces. In the LSC process, a high-power laser pulse induces optical breakdown of the ambient gas close to the solid surface to be cleaned and the subsequently-created shock wave followed by a high-speed flow stream detaches the particles. Therefore, there should be a strong correlation between the dynamics of the shock wave and the cleaning performance. In this work, experimental analyses are conducted to measure the cleaning performance using micron-sized alumina particles attached to a silicon surface. The experimental data showing the particle-removal performance are compared with the results of the dynamics of the laser-induced shock waves, leading to a simple model for particle removal by the LSC scheme in the continuum-flow regime

  8. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  9. Process of removing manganeses and radium for a uranium tailing pond and its application effect

    International Nuclear Information System (INIS)

    Aimed at high manganese and radium concentrations in the effluent of a uranium tailing pond, a process of removing manganese and radium by using aeration and manganese sand filtering method was presented. The process flow and the application of the process in the waster water treatment of the tailing pond were introduced. The run results showed that the manganese and radium concentrations in the treated waster water were in the range of 0.7-1.3 mg/L and 0.36-0.70 Bq/L respectively, and the treated waster water has reached the discharge standard. The process was stable and easy to manage, but its running cost was high. (authors)

  10. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  11. Process evaluation of an alternating aerobic-anoxic process applied in a sequencing batch reactor for nitrogen removal

    Institute of Scientific and Technical Information of China (English)

    ZENG Wei; PENG Yongzhen; WANG Shuying

    2007-01-01

    In order to improve the nitrogen removal efficiency and save operational cost,the feasibility of the alternating aerobic-anoxic process(AAA process)applied in a sequencing batch reactor(SBR)system for nitrogen removal was investigated.Under sufficient influent alkalinity,the AAA process did not have an advantage over one aerobicanoxic(OAA)cycle on treatment efficiency because microorganisms had an adaptive stage at the alternating aerobic-anoxic transition,which would prolong the total cycling time.On the contrary,the AAA process made the system control more complicated.Under deficient influent alkalinity,when compared to OAA,the AAA process improved treatment efficiency and effluent quality with NH4+-N in the effluent below the detection limit.In the nitrification.the average stoichiometric ratio between alkalinity consumption and ammonia oxidation is calculated to be 7.07 mg CaCO3/mg NH4+-N.In the denitrification,the aver age stoichiometric ratio between alkalinity production and NO3- -N reduction is about 3.57 mg CaCO3/mg NO3- -N.As a result,half of the alkalinity previously consumed during the aerobic nitrification was recovered during the subsequent anoxic denitrification period.That was why the higher treatment efficiency in the AAA process was achieved without the supplement of bicarbonate alkalinity.If the lack of alkalinity in the influent was less than 1/3 of that needed.there is no need for external alkalinity addition and treatment efficiency was the same as that under sufficient influent alkalinity.Eyen if the lack of alkalinity in the influent was more than 1/3 of that needed.the AAA process was an optimal strategy because it reduced the external alkalinity addition and saved on operational cost.

  12. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    Science.gov (United States)

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.

  13. Removal of mercury from solids using the potassium iodide/iodine leaching process

    International Nuclear Information System (INIS)

    Potassium iodide (KI) and iodine (I2) leaching solutions have been evaluated for use in a process for removing mercury from contaminated mixed waste solids. Most of the experimental work was completed using surrogate waste. During the last quarter of fiscal year 1995, this process was evaluated using an actual mixed waste (storm sewer sediment from the Oak Ridge Y-12 Site). The mercury content of the storm sewer sediment was measured and determined to be approximately 35,000 mg/kg. A solution consisting of 0.2 M I2 and 0.4 M KI proved to be the most effective leachant used in the experiments when applied for 2 to 4 h at ambient temperature. Over 98% of the mercury was removed from the storm sewer sediment using this solution. Iodine recovery and recycle of the leaching agent were also accomplished successfully. Mathematical model was used to predict the amount of secondary waste in the process. Both surrogate waste and actual waste were used to study the fate of radionuclides (uranium) in the leaching process

  14. Detection of the actinides and cesium from environmental samples

    Science.gov (United States)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  15. Simulation and energy performance assessment of CO2 removal from crude synthetic natural gas via physical absorption process

    Institute of Scientific and Technical Information of China (English)

    Wanjun Guo; Fei Feng; Guohui Song; Jun Xiao; Laihong Shen

    2012-01-01

    The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process.A simplified process simulation of the Selexol process concerning power requirement and separation performance was developed.The assessment indicates that less pressure difference between crude SNG and absorption pressure favors the energy performance of CO2 removal process.When both crude SNG and absorption pressures are 20 bar,CO2 removal process has the best energy performance.The optimal specific power consumption of the CO2 removal process is 566 kJ/kgCO2.The sensitivity analysis shows that the CO2 removal efficiency would significantly influence the total power consumption of the removal process,as well as higher heating value (HHV) and CO2 content in SNG.However,the specific power consumption excluding crude SNG and SNG compressions changes little with the variance of CO2 removal efficiency.If by-product CO2 is compressed for CO2 capture,the process would turn into a CO2-sink for the atmosphere.Correspondingly,an increase of 281 kJ/kgCO2 in specific power consumption is required for compressing the separated CO2.

  16. Surface tension of liquid dilute solutions of lead-cesium and bismuth-cesium systems

    International Nuclear Information System (INIS)

    Method of the maximal pressure in a drop was used to measure the surface tension of 15 liquid dilute solutions of lead-cesium system in 0-0.214 at% concentration range and of 12 diluted solutions of bismuth-cesium system in 0-0.160 at.% cesium range from solidification temperature up to 500 dec C. It was found that cesium was characterized as surfactant in lead and bismuth melts. It was established that the temperature coefficient of surface tension changes sufficiently in maximally diluted solutions of alkali metals in bismuth and lead melts. Effect of sodium, potassium, rubidum and cesium on the value of surface tension of lead and bismuth was systematized. Growth of activity in sodium, potassium, rubidium and cesium series was noted

  17. Immobilisation and solidification of cesium on 11 A calcium silicate hydroxy hydrate column

    International Nuclear Information System (INIS)

    Calcium silicate hydrate closely resembling silicate mineral 11 A tobermorite has been synthesised by hydrothermal treatment of lime and silica at 175 degC. The synthetic mineral exhibits selectivity for Cs+ in the presence of strong solutions of alkali and alkaline earth cations, viz, Na+, K+, Mg2+, Ca2+, Sr2+, etc. The Al-substituted form of this mineral effectively separates cesium ion when used as an exchanger in column of size 35x5 mm (hxr). It is possible to remove 98.65±0.5%Cs+ from a mixed solution of cesium and sodium (0.0001N Cs+ + 0.5N Na+). Column separation of cesium from simulated intermediate level waste solution shows that from the first run ∼ 76% Cs+ can be immobilised on a small column, 18x10mm (hxr), having 2.0 g of exchanger. (author)

  18. Application of Cesium isotopes in daily life

    International Nuclear Information System (INIS)

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically 133Cesium isotope and radioisotope 137Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  19. Decontamination of radioactive cesium in soil

    International Nuclear Information System (INIS)

    Agricultural soil containing radioactive cesium was decontaminated using an extraction method involving aqueous potassium solutions. Results demonstrated that the potassium solution could extract radioactive cesium from soil artificially contaminated with 137Cs, although extraction rate decreased as time after contamination increased. However, visual examination of radioactivity distribution in soil samples significantly contaminated by the accident at the Fukushima Daiichi nuclear power plant showed that radioactive cesium also existed as insoluble particles. Therefore, reducing the volume of radioactive wastes generated from soil decontamination requires a physical decontamination method combined with chemical treatment. (author)

  20. Sorption of cesium on Latvian clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easily assimilate in organism expressly brawn woof. It is a problem if pollutant is a radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas (cesium content after good elute of clays are in table). We establish, that clay treated with 25 % sulfuric acid adsorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays. (author)

  1. Removal of sulphite-reducing clostridia spores by full-scale water treatment processes as a surrogate for protozoan (oo)cysts removal

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Willemsen-Zwaagstra, J.; Hiemstra, P.; Medema, Gerriet Jan; Kooij, D. van der

    2000-01-01

    At eight full-scale water treatment plants in the Netherlands the removal of spores of sulphite-reducing clostridia (SSRC) was determined. By sampling and processing large volumes of water (1 up to 500 litres) SSRC were detected after each stage of the treatment. This enabled the assessment of the r

  2. Retrospection of recent 30-year changes in the process of soil wind erosion in the Luanhe River Source Area of North China using Cesium-137

    International Nuclear Information System (INIS)

    The Luanhe River Source Area belongs to typical semi-arid, agro-pastoral ecotone of North China. It is very important for the prevention and treatment of soil erosion in North China to analyze and evaluate quantitatively the recent 30-year changes in the process of soil wind erosion in this area. Based on long field observations, soil samples from different depths in a representative wind-deposited soil profile in the Luanhe River Source Area were collected. Then the 137Cs activity of soil samples from different depths in the soil profile was determined using a GEM series HPGe (high-purity germanium) coaxial detector system (ADCAM-100), and their soil properties, such as the soil particle fraction and so on, were analyzed. According to the detected 137Cs activity of different depths, a continuous time sequence of the wind-deposited soil profile in the study area was established. Furthermore, through assumption on a soil relative wind erosion intensity index (SWEI), recent 30-year changes in the process of soil wind erosion in the Luanhe River Source Area were retrospected . The analysis results revealed that weaker soil wind erosion occurred in the study area from the 1970s to the early 1980s and from the late 1980s to the mid to late 1990s. Conversely, intense periods of soil wind erosion occurred in the mid-1980s and from the late 1990s to 2002.

  3. Electrode activation in cesium-free negative ion sources

    International Nuclear Information System (INIS)

    Features of emission electrode activation leading to enhancement of negative ion emission in cesium-free discharges are discussed. In some ion sources with cesium-free discharges, the emission of negative ions has been increased significantly by emission electrode activation using strong heating of the negative biased electrode by discharge plasma. A simple explanation of this enhancement is that it is due to an accumulation on the emission surface of the plasma electrode of impurities with low ionization potential that decreases in surface work function and increases the secondary emission of negative ions similar to ''Cesiation.'' The negative biasing of emission surface is important for accumulation and trapping the impurities on the emission surface. To effectively control the activation process it is important to directly detect the evolution of the work function and the impurity concentration during electrode activation with enhancement of negative ion emission.

  4. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; KP Brooks; LK Jagoda

    2000-08-02

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft{sup 2}, at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to

  5. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    International Nuclear Information System (INIS)

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft2, at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to pre

  6. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, Marisa, E-mail: marisa.punzi@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Nilsson, Filip [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Anbalagan, Anbarasan [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Britt-Marie [School of Education and Environment, Kristianstad University, SE-291 88 Kristianstad (Sweden); Jönsson, Karin [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Mattiasson, Bo; Jonstrup, Maria [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2015-07-15

    Highlights: • COD and UV absorbance were effectively reduced. • The treated effluents were non-toxic to Artemia salina and Vibrio fischeri. • The real textile wastewater was mutagenic. • Mutagenicity persisted after bio treatment and even more after a short ozonation. • Higher ozone doses completely remove mutagenicity. - Abstract: A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy.

  7. Remote cutting and removal of chemical processing cell's concrete pedestal bases

    International Nuclear Information System (INIS)

    As part of the decommissioning of the Chemical Process Cell (CPC) at the West Valley Demonstration Project (WVDP), three 2.24 m (7 ft -4 in) diameter blocks of steel reinforced concrete had to be removed from the floor of the CPC. These blocks, which were cast into the CPC floor and covered with stainless steep as part of the floor liner, had to be cut free from the floor prior to removal in one piece. Tooling was developed to remotely cut the pedestal within 13 mm (1/2 in) of the floor with a 240 M Pa (35,000 psi) abrasive water-jet cutting system. Two of the pedestals weighed 20 Mg (22 1/2 tons) each with only a 14.5 Mg (16-ton) overhead hoist available for handling. Special fixtures were developed which allowed the pedestals to be tipped over onto a transfer car. The transfer car was also a WVNS design, specifically built for pedestal removal. The pedestals were ultimately transferred into an outer room for placement in metal boxes for disposal

  8. Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?

    Science.gov (United States)

    Nguyen, D Duc; Ngo, H Hao; Guo, W; Nguyen, T Thanh; Chang, Soon W; Jang, A; Yoon, Yong S

    2016-09-01

    This paper evaluated a novel pilot scale electrocoagulation (EC) system for improving total phosphorus (TP) removal from municipal wastewater. This EC system was operated in continuous and batch operating mode under differing conditions (e.g. flow rate, initial concentration, electrolysis time, conductivity, voltage) to evaluate correlative phosphorus and electrical energy consumption. The results demonstrated that the EC system could effectively remove phosphorus to meet current stringent discharge standards of less than 0.2mg/L within 2 to 5min. This target was achieved in all ranges of initial TP concentrations studied. It was also found that an increase in conductivity of solution, voltages, or electrolysis time, correlated with improved TP removal efficiency and reduced specific energy consumption. Based on these results, some key economic considerations, such as operating costs, cost-effectiveness, product manufacturing feasibility, facility design and retrofitting, and program implementation are also discussed. This EC process can conclusively be highly efficient in a relatively simple, easily managed, and cost-effective for wastewater treatment system. PMID:27155077

  9. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity

    International Nuclear Information System (INIS)

    Highlights: • COD and UV absorbance were effectively reduced. • The treated effluents were non-toxic to Artemia salina and Vibrio fischeri. • The real textile wastewater was mutagenic. • Mutagenicity persisted after bio treatment and even more after a short ozonation. • Higher ozone doses completely remove mutagenicity. - Abstract: A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy

  10. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    Science.gov (United States)

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. PMID:27396522

  11. NOx/SO2 removal with no waste - the SNOX process

    International Nuclear Information System (INIS)

    A no waste, NOx/SO2 removal technology entitled SNOX is currently being demonstrated in Niles, Ohio at the Ohio Edison Niles Generating Plant. This project is part of the second round of the Department of Energy Clean Coal Technology Program. The demonstration project will treat a 35 MWe slipstream from a 108 MWe boiler burning 3.2% sulfur Ohio coal. The objectives of this four-year project are to demonstrate the SNOX technology using high sulfur coal, quality and quantify the consumables and products of the process, and verify the operating and maintenance costs. This paper describes the SNOX Process and the Niles Demonstration Project. Initial results from the eighteen month testing program and a discussion of the market potential of the SNOX Process are also presented. 3 refs., 3 tabs

  12. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2014-01-01

    The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...... operation and rejection of disturbances. Three novel control strategies were developed, evaluated, and benchmarked against each other: a feedforward control (control structure 1 – CS#1), a rule-based feedback control (CS#2), and a feedforward–feedback controller, in which the feedback loop updates the set...... satisfactorily. Thus, the appropriate design will depend on the specific disturbances in the influent generated in the upstream units of the wastewater treatment plant....

  13. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review

    Directory of Open Access Journals (Sweden)

    Wei Li

    2010-01-01

    Full Text Available In most countries, sanitary landfill is nowadays the most common way to eliminate municipal solid wastes (MSWs. However, sanitary landfill generates large quantity of heavily polluted leachate, which can induce ecological risk and potential hazards towards public health and ecosystems. The application of advanced oxidation processes (AOPs including ozone-based oxidation, Fenton oxidation, electrochemical oxidation, and other AOPs to treatment of landfill leachate was reviewed. The treatment efficiency in term of chemical oxygen demand (COD of various AOPs was presented. Advantages and drawbacks of various AOPs were discussed. Among the AOPs reviewed, Fenton process should be the best choice, not only because it can achieve about 49~89% of COD removal with COD ranging from 837 to 8894 mg/L, but also because the process is cost-effective and simple in technological aspect, there is no mass transfer limitation (homogeneous nature and both iron and hydrogen peroxide are nontoxic.

  14. THE USE OF BIOFILTRATION PROCESS TO REMOVE ORGANIC MATTER FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Dorota Papciak

    2016-07-01

    Full Text Available The article describes the research on the removal of organic matter from natural underground water using biofiltration process. The study was carried out in semi-technical scale on a model filter composed of activated carbon WD-extra. The development of biological activity in a biosorption bed, as well as observations on the relationship between the processes of sorption and biodegradation was evaluated based on the Eberhardt, Madsen, Sontheimer (EMS test. Leading operation control parameters of biologically active carbon filter BAF included: change of TOC content, dissolved oxygen and permanganate index. To evaluate the colonization of granular carbon determination of ATP value was used. The presence of the biofilm was found by observation using light and scanning microscopes. The organic compounds in the water taken were adsorbed 100% and 70% biodegradable. The combination of sorption process with biodegradation until depletion of activated carbon adsorption capacity allowed in the initial phase of coalbed work for the removal of organic matter in approx. 100% . Formation of biofilm at the right time allowed to extend the filtration cycle and helped lower the TOC by 70%, i.e. from 10 mg C/l to 3-4 mg C/l.

  15. Recycling of bleach plant filtrates by electrodialysis removal of inorganic non-process elements.; TOPICAL

    International Nuclear Information System (INIS)

    Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of

  16. Degradation Kinetics of Fe-EDTA in Hydrogen Sulfide Removal Process

    OpenAIRE

    R. Saelee; Bunyakan, C.

    2012-01-01

    Available data on the degradation of Fe-EDTA liquid redox H2S removal processes are reviewed, and the effect of H2S molar flow rate, the initial concentration of Fe(III)EDTA, and the presence of sodium citrate in Fe-EDTA solution were investigated in this study. The semibatch with continuous flow of H2S containing biogas was used under a wide range of experimental conditions; p H = 7 . 0 , H2S molar flow rate, H 2 S (1.08 × 10−3–3.40 × 10−3 mol/h), the initial concentration of Fe(III)EDTA, ...

  17. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates.Biological occurrence of simultaneous nitrification and denitrifieation was verified in the aspect of nitrogen mass balance and alkalinity.The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate.In each experimental run the floe sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.

  18. Ammonia removal from leachate by photochemical process using H2O2

    Directory of Open Access Journals (Sweden)

    Giovani Archanjo Brota

    2010-08-01

    Full Text Available In this work, it was studied the optimization of the photochemical process using H2O2/UV in order to reduce the concentration of ammonia in leachate. It was used landfills leachate previously treated in the development of studies. A photochemical reactor with the capacity of 1.7 liters equipped with refrigeration system and recirculation of leachate was employed in the research. The influence of temperature, the light bulb power, the concentration of H2O2 and treatment time were tested during the study. A removal of 97% of ammonia was observed at 90 min.

  19. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    Science.gov (United States)

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters. PMID:23589270

  20. Pre-Conceptual Design for Northstar 99Mo Process Tritium Removal System

    International Nuclear Information System (INIS)

    In this report we describe a preliminary concept for a Tritium Removal System (TRS) to remove tritium that is generated in the 99Mo production process. Preliminary calculations have been performed to evaluate an approximate size for the system. The concept described utilizes well-established detritiation technology based on catalytic oxidation of tritium and tritiated hydrocarbons to water in a high temperature (400 °C) reactor and capture of water in a molecular sieve bed. The TRS concept involves use of a single system that would cycle through each of the seven online target systems and remove tritium that has been accumulated after one week's run time. The TRS would perform cleanup operations on each target system for a period of approximately 24 hours. This would occur while the system is still online and just prior to target replacement, so tritium levels would at their minimum values for target replacement. In the concept, during normal operation a small fraction (1%) of the helium recirculating in the system would be diverted through the TRS and returned to the flow loop. With this approach sufficient levels of detritiation can be accomplished in a 24 hour period. In the study it was found that because of the need to maintain low oxygen levels in the system (<100 ppm) this increases the size of the catalytic reactor. As a result of this finding, consideration should be given to other methods for removing tritium from the system. Other methods such as catalytic exchange of tritium with an unsaturated organic compound and subsequent trapping on activated carbon or molecular sieve could offer advantages of reducing reactor size and operation at lower reactor temperature. However the most significant advantage of such an approach would be the ability to operate in very low oxygen environments, which would eliminate any concerns for oxidation of the target.