WorldWideScience

Sample records for cesium perchlorates

  1. Specific heat and thermodynamic properties of the cesium perchlorate

    International Nuclear Information System (INIS)

    The cesium perchlorate specific heat has been measured in a vacuum adiabatic microcalorimeter in the 10-365 K range. On the basis of the data obtained the thermodynamic functions are calculated. Csub(p)sup(0) (298.15 K) = 110.4+-0.2 J/Kxmol; S0 (298.15 K)=175.9+-0.5 J/Kxmol; H0 (298.15 K) - H0(0)=22280+-50 J/mol; - [G0 (289.15 K) - H0(0)]/T = 101.2+-0.2 J/Kxmol

  2. Perchlorate in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Martinelango, P. Kalyani [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Tian Kang [Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409 (United States); Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)]. E-mail: Sandyd@ttu.edu

    2006-05-10

    There has been no reliable published data on the presence of perchlorate in seawater. Seaweeds are among the most important plant life in the ocean and are good sources of iodine and have been widely used as food and nutritional supplement. Perchlorate is known to inhibit the transport of iodide by the sodium iodide symporter (NIS), present e.g., in the thyroid and mammary glands. With perchlorate being increasingly detected in drinking water, milk and various other foods, increasing the iodide intake through inexpensive natural supplements may be an attractive solution for maintaining iodine assimilation. We report here measurable concentrations of perchlorate in several samples of seawater (detectable in about half the samples analyzed). We also report the iodide and perchlorate concentrations of 11 different species of seaweed and the corresponding bioconcentration factors (BCF) for perchlorate and iodide, relative to the seawater from which they were harvested. All seaweed samples came from the same region, off the coast of Northeastern Maine. Concentrations of iodide and perchlorate in four seawater samples collected from the region near harvest time were 30 {+-} 11 and 0.16 {+-} 0.084 {mu}g l{sup -1}, respectively. Concentrations of both iodide and perchlorate varied over a wide range for different seaweed species; iodide ranging from 16 to 3134 mg kg{sup -1} and perchlorate from 0.077 to 3.2 mg kg{sup -1}. The Laminaria species had the highest iodide concentration; Laminaria digitata is the seaweed species most commonly used in the kelp tablets sold in health food stores. Our sample of L. digitata contained 3134 {+-} 15 mg iodide/kg dry weight. The BCF varied widely for different species, with Laminaria species concentrating iodide preferentially over perchlorate. The iodide BCF (BCF{sub i}) to perchlorate BCF (BCF{sub p}) quotient ranged from 0.66 to 53; L. digitata and L. saccarina having a BCF{sub i}/BCF{sub p} value of 45 and 53, respectively, far

  3. Breastfed infants metabolize perchlorate.

    Science.gov (United States)

    Shelor, C Phillip; Kirk, Andrea B; Dasgupta, Purnendu K; Kroll, Martina; Campbell, Catrina A; Choudhary, Pankaj K

    2012-05-01

    Bifidobacteria are the dominant intestinal bacteria in breastfed infants. It is known that they can reduce nitrate. Although no direct experiments have been conducted until now, inferred pathways for Bifidobacterium bifidum include perchlorate reduction via perchlorate reductase. We show that when commercially available strains of bifidobacteria are cultured in milk, spiked with perchlorate, perchlorate is consumed. We studied 13 breastfed infant-mother pairs who provided 43 milk samples and 39 infant urine samples, and 5 formula-fed infant-mother pairs who provided 21 formula samples and 21 infant urine samples. Using iodine as a conservative tracer, we determined the average urinary iodine (UI) to milk iodine (MI) concentration ratio to be 2.87 for the breastfed infants. For the same samples, the corresponding perchlorate concentration ratio was 1.37 (difference significant, p perchlorate is lost. For the formula fed infant group the same ratios were 1.20 and 1.58; the difference was not significant (p = 0.68). However, the small number of subjects in the latter group makes it more difficult to conclude definitively whether perchlorate reduction does or does not occur. PMID:22497505

  4. Bioelectrical Perchlorate Remediation

    Science.gov (United States)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated

  5. Isotopic mapping of groundwater perchlorate plumes.

    Science.gov (United States)

    Sturchio, Neil C; Hoaglund, John R; Marroquin, Roy J; Beloso, Abelardo D; Heraty, Linnea J; Bortz, Sarah E; Patterson, Thomas L

    2012-01-01

    Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources. PMID:21352209

  6. 2-(Benzenesulfonamidopyridinium perchlorate

    Directory of Open Access Journals (Sweden)

    Xun Li

    2009-06-01

    Full Text Available In the title compound, C11H11N2O2S+·ClO4−, the dihedral angle between the benzene and pyridinium rings is 87.33 (10°. An intramolecular N—H...O interaction, with an S=O-bonded O atom as receptor, occurs in the cation. In the crystal structure, ion pairs occur, being linked by strong N—H...O hydrogen bonds. The perchlorate anion plays a further role in the molecular packing by accepting several weak C—H...O interactions.

  7. Cesium-137

    International Nuclear Information System (INIS)

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Cesium-137

  8. Effect of nitrate on microbial perchlorate reduction

    Science.gov (United States)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  9. Peptide biomarkers as evidence of perchlorate biodegradation.

    Science.gov (United States)

    Bansal, Reema; Crawford, Ronald L; Paszczynski, Andrzej J

    2011-02-01

    Perchlorate is a known health hazard for humans, fish, and other species. Therefore, it is important to assess the response of an ecosystem exposed to perchlorate contamination. The data reported here show that a liquid chromatography-mass spectrometry-based proteomics approach for the detection of perchlorate-reducing enzymes can be used to measure the ability of microorganisms to degrade perchlorate, including determining the current perchlorate degradation status. Signature peptides derived from chlorite dismutase (CD) and perchlorate reductase can be used as biomarkers of perchlorate presence and biodegradation. Four peptides each derived from CD and perchlorate reductase subunit A (PcrA) and seven peptides derived from perchlorate reductase subunit B (PcrB) were identified as signature biomarkers for perchlorate degradation, as these sequences are conserved in the majority of the pure and mixed perchlorate-degrading microbial cultures examined. However, chlorite dismutase signature biomarker peptides from Dechloromonas agitata CKB were found to be different from those in other cultures used and should also be included with selected CD biomarkers. The combination of these peptides derived from the two enzymes represents a promising perchlorate presence/biodegradation biomarker system. The biomarker peptides were detected at perchlorate concentrations as low as 0.1 mM and at different time points both in pure cultures and within perchlorate-reducing environmental enrichment consortia. The peptide biomarkers were also detected in the simultaneous presence of perchlorate and an alternate electron acceptor, nitrate. We believe that this technique can be useful for monitoring bioremediation processes for other anthropogenic environmental contaminants with known metabolic pathways. PMID:21115710

  10. Organic carbon biostimulates rapid rhizodegradation of perchlorate.

    Science.gov (United States)

    Yifru, Dawit D; Nzengung, Valentine A

    2008-12-01

    Previous hydroponics and field studies identified phytodegradation and rhizodegradation as the two main mechanisms by which plants metabolize perchlorate. Plant uptake and phytodegradation of perchlorate is a slower and undesired process that poses ecological risks resulting from phytoaccumulation of some fraction of the perchlorate. Meanwhile, rhizodegradation is a more rapid and favored process involving perchlorate-degrading bacteria utilizing dissolved organic carbon (DOC) as a carbon and energy (electron) source to rapidly degrade perchlorate to innocuous chloride. In the present study, rhizodegradation of perchlorate by willow trees (Salix nigra) was biostimulated using electron sources obtained from natural and artificial carbon sources. In bioreactors provided with carbon sources as 500 mg/L DOC, 25 to 40 mg/L of initial perchlorate concentrations were removed to below the ion chromatography method detection limit of 2 microg/L in approximately 9 d. For planted controls provided with no electron donors, the time required for the complete removal of the same doses of perchlorate was up to 70 d. Enhancement of rhizodegradation by organic carbon reduced the phytoaccumulated fraction of perchlorate by an order of magnitude from approximately 430 to 20 mg/kg. The implication of the present study is that the high fraction uptake and phytoaccumulation of perchlorate in agricultural products and the recycling of perchlorate into the ecosystem can be significantly curtailed by supplying electron donors derived from organic carbon sources to the root zone of plants. PMID:18593217

  11. Perchlorate Removal in groundwater by perchlorate reductases from the perchlorate respiring bacterium, perc1ace

    OpenAIRE

    Frankenberger, William

    2003-01-01

    [Note: See PDF for correct symbols.] Perchlorate (ClO4-) is an important energetic component of solid rocket fuel. The major source of ClO4- pollution is the military, space program and supporting industries. ClO4- is recalcitrant in the environment and is potentially toxic. The California Department of Health Services adopted an action level of 4 ppb for perchlorate in potable water. Microorganisms that reduce ClO4- to chloride and molecular oxygen have been isolated. For designing an effici...

  12. PERCHLORATE PHYTOREMEDIATION USING HARDWOOD TREES AND VASCULAR PLANTS

    Science.gov (United States)

    Perchlorate has contaminated water and soils at several locations in the United States. Perchlorate iswater soluble, exceedingly mobile in aqueous systems, and can persist for many decades under typical ground and surface water conditions. Perchlorate is of concern because of...

  13. Cesium chemistry in irradiated fuel; cesium uranates

    International Nuclear Information System (INIS)

    The physico-chemical behaviour of fission products in nuclear fuel during and after irradiation has been studied extensively during the past decades. In spite of the large amount of chemical, crystallographic and thermodynamic data available, the knowledge on the very complicated UO2-fission product system is still far from complete. The paper discusses the multi variant character of uranium in cesium uranates, which has been assessed by a systematic X-ray Photoelectron Spectroscopy (XPS) study of a series of cesium uranates

  14. Secondary transformation mechanism of paramagnetic centers in irradiated alkali metal perchlorates

    International Nuclear Information System (INIS)

    The EPR method has been used to study thermal transformations of paramagnetic centres (PC) in X-ray irradiated potassium, rubidium and cesium perchlorates. Experimental data make it possible to suppose that diffusion coefficient of O- ion a rather high and this ion is freely diffused already at 262 K. Colliding with [MeClO4]+ centres it is transformed in a molecule of oxygen. Another part of O- is transformed in stable ozonide-ion at 300 K. About room temperature hole centres dissociate with formation of ClO2 radical. It is supposed that part of electron and hole centres is not stabilized but at 77 K it is transformed in stable radiolysis products. This process most effective proceeds in dislocations and on the surface of microcrystals. The suggested model of thermal transformations of primary PC in irradiated perchlorates of alkali metals explains formation of all the finite ion and paramagnetic radiolysis products

  15. PHYTOREMEDIATION OF PERCHLORATE BY TOBACCO PLANTS

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in the plant tissues. The objective of this research was to determine the effectiveness of tobacco plants in phytoremediation, a technology that employs plants to degrade,...

  16. Peptide Biomarkers as Evidence of Perchlorate Biodegradation▿ †

    OpenAIRE

    Bansal, Reema; Crawford, Ronald L.; Paszczynski, Andrzej J.

    2010-01-01

    Perchlorate is a known health hazard for humans, fish, and other species. Therefore, it is important to assess the response of an ecosystem exposed to perchlorate contamination. The data reported here show that a liquid chromatography-mass spectrometry-based proteomics approach for the detection of perchlorate-reducing enzymes can be used to measure the ability of microorganisms to degrade perchlorate, including determining the current perchlorate degradation status. Signature peptides derive...

  17. Perchlorate reduction by microbes inhabiting oil reservoirs

    Science.gov (United States)

    Liebensteiner, Martin; Stams, Alfons; Lomans, Bart

    2014-05-01

    Microbial perchlorate and chlorate reduction is a unique type of anaerobic respiration as during reduction of (per)chlorate chlorite is formed, which is then split into chloride and molecular oxygen. In recent years it was demonstrated that (per)chlorate-reducing bacteria may employ oxygenase-dependent pathways for the degradation of aromatic and aliphatic hydrocarbons. These findings suggested that (per)chlorate may be used as oxygen-releasing compound in anoxic environments that contain hydrocarbons, such as polluted soil sites and oil reservoirs. We started to study perchlorate reduction by microbes possibly inhabiting oil reservoirs. One of the organisms studied was Archaeoglobus fulgidus. This extremely thermophilic archaeon is known as a major contributor to souring in hot oil reservoirs. A. fulgidus turned out to be able to use perchlorate as terminal electron acceptor for growth with lactate (Liebensteiner et al 2013). Genome based physiological experiments indicated that A. fulgidus possesses a novel perchlorate reduction pathway. Perchlorate is first reduced to chlorite, but chlorite is not split into chloride and molecular oxygen as occurs in bacteria. Rather, chlorite reacts chemically with sulfide, forming oxidized sulfur compounds, which are reduced to sulfide in the electron transport chain by the archaeon. The dependence of perchlorate reduction on sulfur compounds could be shown. The implications of our findings as novel strategy for microbiological enhanced oil recovery and for souring mitigation are discussed. Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM and Lomans BP (2013) Archaeal (per)chlorate reduction at high temperature, a matter of abiotic-biotic reactions. Science 340: 85-87

  18. Decorporation of cesium-137

    International Nuclear Information System (INIS)

    Cesium radio-isotopes, especially cesium-137 (137Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, 137Cs is a major contaminant which can cause severe β, γirradiations and contaminations. 137Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the 137Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  19. Analysis of radioactive cesium

    International Nuclear Information System (INIS)

    The procedure of analysis of cesium-137 in environmental samples is described. The standard measurement of cesium-137 is made by using a standard solution and a low background G-M counter system. Precipitation and dust are collected on a stainless steel pan. The collected samples are treated by evaporation and extraction or ion exchange and adsorption method. The sample is then quantitatively analyzed. The measurement of cesium-137 is made according to the standard of measurement. Samples collected from inland water and sea water are also treated by evaporation or ion exchange method. The measurements of cesium-137 are also made. This manual describes how to collect soil samples. The collected soil is dried and treated to make samples for activity measurement. Activity measurement is made according to the standard of measurement, then the data are analyzed. Samples are also collected from sediment of sea bottom or river bottom, agricultural products, milk, marine organisms, and daily foods. This manual describes on the methods to collect samples and the treatment to make samples for measurement. (Kato, T.)

  20. A Colorimetric Bioassay for Perchlorate

    Science.gov (United States)

    Heinnickel, M. L.; Smith, S.; Coates, J. D.

    2007-12-01

    Recognition of perchlorate (ClO4-) as a widespread contaminant across the United States and its potential adverse affects towards human health has motivated the EPA to place ClO4- on its contaminant candidate list for drinking water supplies. While a federal MCL has not yet been set, a recommended public health goal of 1 ppb (μg.L-1) was established by the US EPA in 2002. To date, methods of detection require use of sensitive ion chromatographic equipment that are expensive, time consuming, and require highly trained personnel for use. Our studies are focused on the development of a highly sensitive, simple, and robust colorimetric bioassay based on the primary enzyme involved in microbial ClO4- reduction, the perchlorate reductase (Pcr). A previously published assay used reduced methyl viologen (MV, the dye is reduced with sodium hydrosulfite) as an electron donor to demonstrate Pcr activity. The assay directly correlates the amount of MV oxidized with the amount of ClO4- reduced by assuming a transfer of four electrons. To test this assumption, we compared actual concentrations of MV oxidized to ClO4- reduced in this assay. ClO4- concentrations were determined using a Dionex ICS-500 ion chromatography system, while MV concentrations were determined using a standard curve generated at 578 nm. Comparisons between the two revealed that twelve molecules of MV were oxidized for each molecule of ClO4- reduced. The oxidation of these additional eight MV molecules is explained by the interaction of the dye with chlorite (the product of the Pcr reaction) and other contaminants that could be present in the enzyme prep. This unsettling result indicated this assay would be problematic for the detection of ClO4- in soil, which has many chemicals that could react with MV. To improve upon this assay, we have tried to reduce ClO4- using less reactive dyes and reductants. The reductants ascorbic acid, NADH, and dithiothreitol drive Pcr catalyzed ClO4- reduction, however, they

  1. The Microbiology of Perchlorate in the Environment

    Science.gov (United States)

    Coates, J. D.

    2007-12-01

    In the last decade perchlorate has been identified as an important groundwater component that poses potential health threat. Although primarily sourced anthropogenically, many recent studies have identified significant natural pools throughout the US and the natural mechanisms of its synthesis remain a mystery. As such, the true perchlorate concentrations naturally present in the environment are still unknown making its regulation problematic. Because of its solubility and non-reactivity the fate and transport of perchlorate in the environment is primarily a function of microbial activity. In the last seven years more than forty specialized perchlorate respiring organisms have been identified and characterized. These dissimilatory perchlorate reducing bacteria (DPRB) are metabolically diverse and environmental populations tend to be dominated by two primary genotypes, the Dechloromonas and the Azospira species. As such, the majority of our understanding of this metabolism is based on these organisms. These organisms are readily found in soil and sedimentary environments and often associate with the rhizosphere. Recent research has demonstrated an accumulation of these organisms along plant roots suggesting their catabolism of root exudates and molecular studies has demonstrated their existence as endophytic infections of the stem and leaves of actively growing Brachypodium grass plants although their exact role under these conditions is unknown. These microorganisms are generally not nutritionally fastidious and vitamin supplementation is unnecessary for growth although molybdenum is a required trace element for perchlorate reduction. The Dechloromonas and Azospira species generally grow optimally at pH values near neutrality in freshwater environments. Even so, recent field studies have shown that related deep-branching members of these genera often predominate in sites of adverse pH or salinity with some species being capable of growth and perchlorate respiration

  2. Silver(I) imidazole perchlorate

    International Nuclear Information System (INIS)

    The crystal structure of silver(I) imidazole perchlorate reveals the presence of a planar (Ag+)6 cluster, in which three radiating pairs of Ag+ ions 3.051(1) A apart are disposed on the corners of an equilateral triangle, the inner Ag+ ions being 3.493(1) A apart. Each silver ion carries two linearly co-ordinated imidazole ligands, the whole unit has 32 (D3) symmetry. Exposure to 60Co γ-rays at 77 K results in electron addition to a group of three equivalent silver atoms. The 109Ag, 107Ag, and 14N hyperfine coupling constants show that the total 5s character of the unpaired electron is only ca. 0.55, and delocalisation onto six equivalent nitrogen ligands accounts for ca. 0.25. Low g values suggest that the remaining spin density is in 5p orbitals on silver. There is no indication of delocalisation onto the remaining three Ag+ ions in the cluster. Possible reasons for this selectivity are discussed. The electron-loss centre appears to be a normal Ag2+ complex. It is suggested that marked distortion results in the hole being trapped on one silver rather than being delocalised. (author)

  3. Perchlorate in The Great Lakes: Isotopic Composition and Origin

    OpenAIRE

    Poghosyan, Armen; Sturchio, Neil C.; Morrison, Candice G.; Beloso, Abelardo D., Jr.; Guan, Yunbin; Eiler, John M.; Jackson, W. Andrew; Hatzinger, Paul B.

    2014-01-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ^(18)O, Δ^(17)O) and chlorine (δ^(37)Cl) along with the abundance of the radioactive isotope ^(36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0....

  4. Identification, Characterization, and Classification of Genes Encoding Perchlorate Reductase

    OpenAIRE

    Bender, Kelly S.; Shang, Ching; Chakraborty, Romy; Belchik, Sara M.; Coates, John D.; Achenbach, Laurie A.

    2005-01-01

    The reduction of perchlorate to chlorite, the first enzymatic step in the bacterial reduction of perchlorate, is catalyzed by perchlorate reductase. The genes encoding perchlorate reductase (pcrABCD) in two Dechloromonas species were characterized. Sequence analysis of the pcrAB gene products revealed similarity to α- and β-subunits of microbial nitrate reductase, selenate reductase, dimethyl sulfide dehydrogenase, ethylbenzene dehydrogenase, and chlorate reductase, all of which are type II m...

  5. Environmental biotechnology and microbiology of (per)chlorate reducing bacteria

    NARCIS (Netherlands)

    Mehboob, F.; Schraa, G.; Stams, A.J.M.

    2011-01-01

    Perchlorates are the salts derived from perchloric acid (HClO4). They occur both naturally and through manufacturing. They have been used as a medicine for more than 50 years to treat thyroid gland disorders and are used extensively within the pyrotechnics industry, and ammonium perchlorate is also

  6. Quantitative Detection of Perchlorate-Reducing Bacteria by Real-Time PCR Targeting the Perchlorate Reductase Gene▿

    OpenAIRE

    Nozawa-Inoue, Mamie; Jien, Mercy; Hamilton, Nicholas S.; Stewart, Valley; Scow, Kate M.; Hristova, Krassimira R.

    2008-01-01

    A quantitative real-time PCR assay targeting the pcrA gene, encoding the catalytic subunit of perchlorate reductase, detected pcrA genes from perchlorate-reducing bacteria in three different genera and from soil microbial communities. Partial pcrA sequences indicated differences in the composition of perchlorate-reducing bacterial communities following exposure to different electron donors.

  7. Quantitative detection of perchlorate-reducing bacteria by real-time PCR targeting the perchlorate reductase gene.

    Science.gov (United States)

    Nozawa-Inoue, Mamie; Jien, Mercy; Hamilton, Nicholas S; Stewart, Valley; Scow, Kate M; Hristova, Krassimira R

    2008-03-01

    A quantitative real-time PCR assay targeting the pcrA gene, encoding the catalytic subunit of perchlorate reductase, detected pcrA genes from perchlorate-reducing bacteria in three different genera and from soil microbial communities. Partial pcrA sequences indicated differences in the composition of perchlorate-reducing bacterial communities following exposure to different electron donors. PMID:18245250

  8. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  9. Perchlorate levels in soil and waters from the Atacama Desert.

    Science.gov (United States)

    Calderón, R; Palma, P; Parker, D; Molina, M; Godoy, F A; Escudey, M

    2014-02-01

    Perchlorate is an anion that originates as a contaminant in ground and surface waters. The presence of perchlorate in soil and water samples from northern Chile (Atacama Desert) was investigated by ion chromatography-electrospray mass spectrometry. Results indicated that perchlorate was found in five of seven soils (cultivated and uncultivated) ranging from 290 ± 1 to 2,565 ± 2 μg/kg. The greatest concentration of perchlorate was detected in Humberstone soil (2,565 ± 2 μg/kg) associated with nitrate deposits. Perchlorate levels in Chilean soils are greater than those reported for uncultivated soils in the United States. Perchlorate was also found in superficial running water ranging from 744 ± 0.01 to 1,480 ± 0.02 μg/L. Perchlorate water concentration is 30-60 times greater than levels established by the United States Environmental Protection Agency (24.5 μg/L) for drinking. PMID:24165784

  10. Cesium-137 in biosphere

    International Nuclear Information System (INIS)

    The behaviour of cesium-137 in environment is reviewed. Problems on 137Cs migration in environment, on metabolism andbiological effects are considered. Data on nuclide accumulation in various plants, ways of their entering the man's organism are presented. It is marked that the rate of 137Cs metabolism in the man's organism depends considerably on age, sex, temperature of environment, conditions for activity, water and mineral metabolism and some other factors. It is shown that the annual effective equivalent dose per capita will increase to 2000 yr. up to 1 μSv, that constitutes 0.05% of the average value of irradiation by a natural source

  11. Atmospheric origins of perchlorate on Mars and in the Atacama

    Science.gov (United States)

    Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.

    2010-01-01

    Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.

  12. Plant-mediated transformation of perchlorate into chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nzengung, V.A.; Wang, C. [Univ. of Georgia, Athens, GA (United States). Dept. of Geology; Harvey, G. [AEM, Wright Patterson AFB, OH (United States)

    1999-05-01

    The decontamination of perchlorate-contaminated water by woody plants was investigated in sand and hydroponic bioreactors. Willow trees were found to be the most favorable woody plants with phraetophytic characteristics in comparative screen tests with eastern cottonwoods and Eucalyptus cineria. Willows decontaminated aqueous solutions dosed with 10--100 mg/.L of perchlorate to below the method detection limit of 2 {micro}g/L. Two phytoprocesses were identified as important in the remediation of perchlorate-contaminated water: (1) uptake and phytodegradation of perchlorate in the tree branches and leaves and (2) rhizodegradation. Exposure of rooted willow trees to perchlorate-dosed media stimulated rhizodegradation. Homogeneous degradation studies using media from the root zone of dosed willow trees confirmed that rhizosphere-associated microorganisms mediated the degradation of perchlorate to chloride. Experiments conducted with varying ranges of nitrate concentrations clearly indicated that high nitrate concentrations interfered with rhizodegradation of perchlorate. This study provides evidence that the efficacy of phytoremediation of perchlorate-contaminated environments may depend on the concentration of competing terminal electron acceptors, such as nitrate, and the nitrogen source of the nutrient solution., Since perchlorate does not volatilize from water readily, a perchlorate remediation scheme may involve an intensively cultivated plantation of trees with phraetophytic characteristics and irrigation with the contaminated water.

  13. Perchlorate Exposure and Thyroid Function in Ammonium Perchlorate Workers in Yicheng, China

    Directory of Open Access Journals (Sweden)

    Hongxia Chen

    2014-05-01

    Full Text Available The impact of low level dust on the thyroid function of workers chronically exposed to ammonium perchlorate (AP is uncertain and controversial. The aim of this study was to examine whether workers in China with long-term (>3 years occupational exposure to low levels of AP dust had affected thyroid homeostasis. Mean occupational exposures to AP dust ranged from 0.43 to 1.17 mg/m3. Geometric means of post-shift urinary perchlorate levels were 20.5 µg/L for those exposed and 12.8 µg/L for the controls. No significant differences were found for thyroid function parameters of FT3, FT4, or log TSH or for TPO prevalence or thyroglobulin levels. Additionally, no differences in findings were observed for complete blood count (CBC, serum biochemical profile, or pulmonary function test. Median urinary iodine levels of 172 and 184 µg/L showed that the workers had sufficient iodine intake. This study found no effect on thyroid function from long term, low-level documented exposure to ammonium perchlorate. It is the first study to report both thyroid status parameters and urinary perchlorate, a biomarker of internal perchlorate exposure, in occupationally exposed workers in China.

  14. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS: DEVELOPMENT OF A PLANT KINETIC MODEL

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in plant tissues. This research determined the uptake, translocation, and accumulation of perchlorate in tobacco plants. Three hydroponics growth studies were completed u...

  15. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    OpenAIRE

    Wang, Yue

    2012-01-01

    Perchlorate (ClO4-) has gained attention recently due to its interference with thyroid gland function. In infants and unborn children, inadequate thyroid hormone production can cause mental retardation and thyroid tumors. Since new perchlorate standards will be proposed in 2013, and if a stricter standard is imposed, cost effective technologies will be in high demand. The overall objective of this research was to evaluate two perchlorate bioremediation strategies using indigenous soil bact...

  16. Perchlorate and nitrate in leafy vegetables of North America.

    Science.gov (United States)

    Sanchez, C A; Crump, K S; Krieger, R I; Khandaker, N R; Gibbs, J P

    2005-12-15

    In previous studies trace levels of perchlorate were found in lettuce (Lactuca sativa L.) irrigated with Colorado River water, which is contaminated with low levels of perchlorate from aerospace and defense related industries. In this paper, we report the results of a survey conducted across North America to evaluate the occurrence of perchlorate in leafy vegetables produced outside the lower Colorado River region, and evaluate the relative iodide uptake inhibition potential to perchlorate and nitrate in these leafy vegetables. Conventionally and organically produced lettuce and other leafy vegetable samples were collected from production fields and farmers' markets in the central and coastal valleys of California, New Mexico, Colorado, Michigan, Ohio, New York, Quebec, and New Jersey. Results show that 16% of the conventionally produced samples and 32% of the organically produced samples had quantifiable levels of perchlorate using ion chromatography. Estimated perchlorate exposure from organically produced leafy vegetables was approximately 2 times that of conventional produce, but generally less than 10% of the reference dose recommended by the National Academy of Sciences. Furthermore, the iodide uptake inhibition potential of perchlorate was less than 1% of that of the nitrate present. These data are consistent with those of other reported perchlorate survey work with lettuce, bottled water, breast milk, dairy milk, and human urine, and suggest a wide national presence of perchlorate. PMID:16475313

  17. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  18. Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic culture.

    Science.gov (United States)

    Wen, Li-Lian; Yang, Qiang; Zhang, Zhao-Xin; Yi, Yang-Yi; Tang, Youneng; Zhao, He-Ping

    2016-11-15

    This work evaluated the interaction of perchlorate and trichloroethene (TCE), two common co-contaminants in groundwater, during bioreduction in serum bottles containing synthetic mineral salts media and microbial consortia. TCE at concentrations up to 0.3mM did not significantly affect perchlorate reduction; however, perchlorate concentrations higher than 0.1mM made the reduction of TCE significantly slower. Perchlorate primarily inhibited the reduction of vinyl chloride (VC, a daughter product of TCE) to ethene. Mechanistic analysis showed that the inhibition was mainly because perchlorate reduction is thermodynamically more favorable than reduction of TCE and its daughter products and not because of toxicity due to accumulation of dissolved oxygen produced during perchlorate reduction. As the initial perchlorate concentration increased from 0 to 600mg/L in a set of serum bottles, the relative abundance of Rhodocyclaceae (a putatively perchlorate-reducing genus) increased from 6.3 to 80.6%, while the relative abundance of Dehalococcoides, the only known genus that is able to reduce TCE all the way to ethene, significantly decreased. Similarly, the relative abundance of Proteobacteria (a phylum to which most known perchlorate-reducing bacteria belong) increased from 22% to almost 80%. PMID:27449607

  19. Perchlorate in the Great Lakes: isotopic composition and origin.

    Science.gov (United States)

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean. PMID:25171443

  20. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  1. High ozone increases soil perchlorate but does not affect foliar perchlorate content

    Science.gov (United States)

    Ozone (O3) is implicated in the natural source inventory of perchlorate (ClO4-), a hydrophilic salt that migrates to ground water and interferes with uptake of iodide in mammals, including humans. Tropospheric O3 is elevated in many areas. We previously showed (Grantz et al., 2013; Environmental Pol...

  2. PERCHLORATE IDENTIFICATION IN FERTILIZERS AND ACCUMULATION IN LETTUCE SEEDLINGS

    Science.gov (United States)

    Perchlorate has contaminated groundwater, drinking water and soils at several locations in the U.S. The primary source of contamination at sites that have been investigated to date seems to be from industrial and military operations that use Perchlorate as an oxidizing agent. How...

  3. Thermal decomposition of ammonium perchlorate during gamma-ray irradiation

    International Nuclear Information System (INIS)

    To assess radiation damage effects in propellants, pyrotechnics, and similar materials, thermal decomposition measurements were made on ammonium perchlorate powders and crystals during gamma-ray irradiation. Gas evolution studies were made on single crystals and powders of ammonium perchlorate, both at room temperature and at 2270C. The results are discussed. (U.S.)

  4. 3-(Dicyanomethylidene)indan-1-one-Functionalized Calix[4]arene-Calix[4]pyrrole Hybrid: An Ion-Pair Sensor for Cesium Salts.

    Science.gov (United States)

    Yeon, Yerim; Leem, Soojung; Wagen, Corin; Lynch, Vincent M; Kim, Sung Kuk; Sessler, Jonathan L

    2016-09-01

    A chromogenic calix[4]arene-calix[4]pyrrole hybrid ion pair receptor bearing an indane substituent at a β-pyrrolic position has been prepared. On the basis of solution-phase UV-vis spectroscopic analysis and (1)H NMR spectroscopic studies carried out in 10% methanol in chloroform, receptor 1 is able to bind only cesium ion pairs (e.g., CsF, CsCl, and CsNO3) but not the constituent cesium cation (as its perchlorate salt) or the F(-), Cl(-), or NO3(-) anions (as the tetrabutylammonium salts). It thus displays rudimentary AND logic gate behavior. Receptor 1 shows a colorimetric response to cesium ion pairs under conditions of solid-liquid (nitrobenzene) and liquid-liquid (D2O-nitrobenzene-d5) extraction. PMID:27533478

  5. Bioremediation Potential of Perchlorate Contaminated Deep Vadose Zone

    Science.gov (United States)

    Gal, H.; Ronen, Z.; Weisbrod, N.; Dahan, O.; Nativ, R.

    2007-12-01

    Widespread perchlorate contamination was found in the vadose zone near a plant that manufactures ammonium perchlorate above the coastal aquifer of Israel in Ramat Hasharon. As part of the plant's operations, untreated industrial wastewater was disposed of for over 30 years in unlined wastewater ponds and nearby washes, causing contamination of the unsaturated zone (up to 2200 mg kg-1 sediment at a depth of 20 m) and the groundwater below it (up to 300 mg L-1). In this study, we examined the potential for microbial metabolism of perchlorate reduction in the contaminated deep vadose zone profile by native microbial communities. Microbial reduction of perchlorate was found in three of the four sediment samples taken from different depths. The sediments taken from 1 m (shallowest) and 35 m (deepest- close to the water table) showed the fastest degradation rates, while the sediment taken from 15 m showed the slowest rate. No perchlorate reduction was observed in the sediment taken from 20 m, where perchlorate concentrations were highest. These results were correlated to the viable microorganism counts in the profile. In experiments in which the effect of nitrate was examined, the lag time for perchlorate degradation was found to be inversely correlated to the initial nitrate concentration, while the perchlorate-reduction rates were faster in treatments with higher initial nitrate concentrations. We found no perchlorate degradation as long as nitrate was present in the system: perchlorate reduction was initiated only after all of the nitrate had been reduced. Nitrate-reduction rates were correlated to the initial nitrate concentrations and no lag period was observed. Nitrite was temporarily accumulated during nitrate reduction and was totally reduced, like nitrate, after 4 days. Count of viable microbial communities as well as PCR analysis of the chlorite dismutase gene in the native microbial population exposed to high concentrations of perchlorate (10,000-20,000 mg L-1

  6. Experimental chlorine stable isotope fractionation of perchlorate respiring bacteria

    Science.gov (United States)

    Ader, M.; Coleman, M.; Coates, J.; Chaudhuri, S.

    2006-12-01

    Perchlorate natural occurrences on earth are very limited and seem restricted to extremely arid environments such as nitrate deposits of the Atacama Desert of northern Chile, where perchlorate contents can reach 0.1 to 1%. Anthropogenically sourced perchlorate however is extensively used as a major component of explosives and rocket fuels. Careless disposal of these highly soluble and very stable perchlorates locally led to the contamination of drinking water, now recognised as posing a significant health threat. Recent studies have demonstrated that some microorganisms are able to completely reduce perchlorate to innocuous chloride, and offer a great potential for the bioremediation of contaminated waters. Provided that the isotopic fractionation associated with this reduction is significant, the measurement of the chloride isotopic composition of contaminated water is a powerful tool for monitoring the progress of in-situ remediation. We report here, the characterisation of the isotopic fractionation associated with perchlorate reduction performed by Dechlorosoma suillum strain PS during 3 culture experiments performed in a batch fermentor (anoxic, 37°°C, pH =7). The basal medium contained acetate as the electron donor and perchlorate as the electron acceptor. When possible, chloride salts were replaced by sulphate salts so as to lower the initial chloride content. The paired chlorine isotopic compositions of chloride and perchlorate in solutions sampled throughout the experiment were measured using the method described in Ader et al. 2001. The fractionation between chloride and perchlorate was calculated independently for each sample, using on the one hand the chloride content and isotopic composition and on the other hand the perchlorate content and isotopic composition. The results show that the fractionation is constant within error throughout the experiment for the 3 experiments with a weighted mean of -14.94±0.14‰. This value is much lower than the

  7. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    Science.gov (United States)

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified. PMID:19199051

  8. Cesium in the nutrient cycle

    International Nuclear Information System (INIS)

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland

  9. Cesium contamination of heather honey

    International Nuclear Information System (INIS)

    In heather honey from Lueneburger Heide, FRG, relatively high values of cesium activity were found (up to about 650 Bq/kg). Activity values for heather honey, Calluna vulgaris plants and soil were measured. It is assumed that the origin of this activity is the direct Chernobyl fallout. There may also be a high transfer of cesium from the soil to the Calluna vulgaris plant, but in order to determine the transfer factor, fresh plants are needed, which have grown later than in spring 1986. (author) 21 refs.; 2 figs.; 2 tabs

  10. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  11. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Thermal decomposition of Be(ClO4)2x4H2O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO4)2x4H2O → Be(OH)ClO4+HClO4+3H2O; Be(OH)ClO4 → BeO+HClO4. Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  12. Perchlorates as Powerful Catalysts in Many Important Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    G. Bartoli; L. Sambri; M. Locatelli

    2005-01-01

    @@ 1Introduction For long times, metallic perchlorates have been considered dangerous compounds[1] in that they function as explosives and as incontrollable oxidizers. Therefore, the fear of the great hazard connected with their manufacture and uses had prevented an extensive use both in research laboratories and in industrial processes[2].However, recently it has been cleared that this bad reputation is due to the mistaken association of metallic perchlorates with the oxidizing potential of perchloric acid and the pyrotechnic performances of NH4ClO4.

  13. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  14. Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria.

    Science.gov (United States)

    Ahn, Se Chang; Hubbard, Brian; Cha, Daniel K; Kim, Byung J

    2014-01-01

    Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria. PMID:24410688

  15. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  16. The NAS Perchlorate Review: Adverse Effects?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Richard B.; Corley, Richard; Cowan, Linda; Utiger, Robert D.

    2005-11-01

    To the editor: Drs. Ginsberg and Rice argue that the reference dose for perchlorate of 0.0007 mg/kg per day recommended by the National Academies’ Committee to Assess the Health Implications of Perchlorate Ingestion is not adequately protective. As members of the committee, we disagree. Ginsberg and Rice base their conclusion on three points. The first involves the designation of the point of departure as a NOEL (no-observed-effect level) versus a LOAEL (lowest-observed-adverse- effect level). The committee chose as its point of departure a dose of perchlorate (0.007 mg/kg per day) that when given for 14 days to 7 normal subjects did not cause a significant decrease in the group mean thyroid iodide uptake (Greer et al. 2002). Accordingly, the committee considered it a NOEL. Ginsberg and Rice focus on the fact that only 7 subjects were given that dose, and they 1seem to say that attention should be paid only to the results in those subjects in whom there was a 1fall in thyroid iodide uptake, and that the results in those in whom there was no fall or an increase should be ignored. They consider the dose to be a LOAEL because of the fall in uptake in those few subjects. It is important to note that a statistically significant decrease of, for example, 5% or even 10%, would not be biologically important and, more important, would not be sustained. For example, in another study (Braverman et al. 2004), administration of 0.04 mg/kg per day to normal subjects for 6 months had no effect on thyroid iodide uptake when measured at 3 and 6 months, and no effect on serum thyroid hormone or thyrotropin concentrations measured monthly (inspection of Figure 5A in the paper by Greer et al. suggests that this dose would inhibit thyroid iodide uptake by about 25% if measured at 2 weeks). The second issue involves database uncertainty. In clinical studies, perchlorate has been administered prospectively to 68 normal subjects for 2 weeks to 6 months. In one study (Brabant et al. 1992

  17. Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors.

    Science.gov (United States)

    Sun, Yvonne; Gustavson, Ruth L; Ali, Nadia; Weber, Karrie A; Westphal, Lacey L; Coates, John D

    2009-10-01

    The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly. PMID:19533120

  18. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    Science.gov (United States)

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  19. Determination of Perchlorate in Bottled Water from Italy

    Directory of Open Access Journals (Sweden)

    Patrizia Iannece

    2013-06-01

    Full Text Available Perchlorate is regarded as an emerging persistent inorganic contaminant. It is widely known that perchlorate is an endocrine disruptor as it competitively inhibits iodide transport in the thyroid gland. As drinking water is the major source of human exposure to perchlorate, its occurrence in commercially available bottled waters purchased in different regions of Italy was investigated. Perchlorate was measured using the rapid, sensitive, and selective LC-ESI-MS/MS (liquid chromatography-electrospray tandem mass spectrometry method by multiple reaction monitoring (MRM of the transition 98.8→82.8, which corresponds to the loss of one oxygen atom in the perchlorate ion (ClO4−→ClO3−. The chlorine isotope ratio (35Cl/37Cl was used as a confirmation tool. The limit of quantification (LOQ for this method was 5 ng/L, and the recovery ranged from 94% to 108%. Perchlorate was detected in 44 of the 62 drinking waters tested, with concentrations ranging from <5 to 75 ng/L. These values are similar in magnitude to those reported in drinking water from the USA and do not pose an immediate health concern.

  20. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur.

    Science.gov (United States)

    Ju, Xiumin; Field, Jim A; Sierra-Alvarez, Reyes; Salazar, Margarita; Bentley, Harold; Bentley, Richard

    2007-04-15

    Perchlorate (ClO(4)(-)) contamination of ground and surface water has been recently recognized as a widespread environmental problem. Biological methods offer promising perspectives of perchlorate remediation. Facultative anaerobic bacteria couple the oxidation of organic and inorganic electron-donating substrates to the reduction of perchlorate as a terminal electron acceptor, converting it completely to the benign end-product, chloride. Insoluble inorganic substrates are of interest for low maintenance bioreactor or permeable reactive barrier systems because they can provide a long-term supply of electron donor without generating organic residuals. The main objective of this research was to investigate the feasibility of utilizing elemental sulfur (S(0)) as an insoluble electron donor for the biological reduction of perchlorate. A chemolithotrophic enrichment culture derived from aerobic activated sludge was obtained which effectively coupled the oxidation of elemental sulfur to sulfate with the reduction of perchlorate to chloride and gained energy from the process for cell growth. The enrichment culture grew at a rate of 0.41 or 0.81 1/d in the absence and presence of added organic carbon for cell growth, respectively. The enrichment culture was also shown to carry out sulfur disproportionation to a limited extent as evidenced by the formation of sulfide and sulfate in the absence of added electron acceptor. When nitrate and perchlorate were added together, the two electron acceptors were removed simultaneously after an initial partial decrease in the nitrate concentration. PMID:17009322

  1. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  2. Oxidation of some disubstituted anisole derivatives with ceric perchlorate in perchloric acid solution

    International Nuclear Information System (INIS)

    The influence of concentration of particular reagents on the kinetics of Ce(IV) reduction by 2,6-dimethyl and 3,5-dimethyl-anisole as well as 2-methoxy-5-methyl- and 4-methoxy-2-methyl-aniline in perchloric acid solution was investigated, establishing the stoichiometry of these processes. Some intermediate products - macromolecular, derivatives of p-benzoquinone and 4,4'-diphenoquinone - were separated and identified. The effects of substituents and the conditions of performed oxidation processes on the kind and yields of the resultant products were considered. (author). 22 refs, 1 fig., 1 tab

  3. Perchlorate in The Great Lakes: Distribution, Isotopic Composition and Origin

    Science.gov (United States)

    Poghosyan, A.; Sturchio, N. C.; Jackson, W. A.; Guan, Y.; Eiler, J. M.; Hatzinger, P. B.

    2013-12-01

    Concentrations, stable chlorine and oxygen isotopic compositions, and 36Cl abundances of perchlorate were investigated in the five Laurentian Great Lakes. Samples were collected during monitoring cruises in 2007 and 2008 of the U.S. EPA's RV Lake Guardian and in 2010 at the water supply intake of Marquette, MI on the southern shore of Lake Superior. Concentrations of perchlorate were measured by IC/MS/MS at 24 locations, including one or two depth profiles in each lake. Mean concentrations (μg/L) are: Superior, 0.06 × 0.01; Michigan, 0.10 × 0.01; Huron, 0.11 × 0.01; Erie, 0.08 × 0.01, and Ontario, 0.09 × 0.01. Concentration vs. depth is nearly constant in each lake, indicating well-mixed conditions. Perchlorate was extracted from near-surface water by passing 15,000 to 80,000 L of water through 1-L cartridges containing Purolite A530E bifunctional anion-exchange resin. In the laboratory, perchlorate was eluted from the resin, purified, and precipitated as a >99% pure crystalline phase. Milligram amounts were recovered from each lake. Chlorine and oxygen isotopic analyses were performed at Caltech using the Cameca 7f-GEO SIMS instrument, following validation of the SIMS method with analyses of USGS-37 and USGS-38 isotopic reference materials. Results indicate a relatively narrow range in δ37Cl values (+2.9 to +3.9 ‰) and a wider range in δ18O values (-4.0 to +4.1 ‰), with a general geographic trend of increasing δ18O from west to east. Oxygen-17 was measured at UIC using dual-inlet IRMS of O2 produced by decomposition of KClO4. Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ17O values (+1.6 ‰ to +2.7 ‰) divided into two distinct groups: Lake Superior (+2.7 ‰) and the other four lakes (~ +1.7 ‰). The isotopic data indicate that perchlorate is dominantly of natural origin, having stable isotopic compositions resembling those of perchlorate from pre-industrial groundwaters in the western USA. The 36Cl

  4. Activity of cesium-134 and cesium-137 in game and mushrooms in Poland

    International Nuclear Information System (INIS)

    The activity of cesium-134 and cesium-137 was measured in mushrooms and game in 1986-1991. The samples were collected all over Poland and most of the measurements were carried out for export purposes. The results indicate that the activity ratio of cesium-137 to cesium-134 in some samples is not comparable to that with fallout after the Chernobyl accident. The analysis of some samples of mushrooms from 1985 showed that the activity of cesium-137 was higher compared to any other foodstuff. The level of contamination varied greatly throughout Poland

  5. Perchlorate, iodine supplements, iodized salt and breast milk iodine content

    International Nuclear Information System (INIS)

    This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which ∼ 150 μg of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: ► Estimated infant exposures to perchlorate were, on a μg/kg basis, ∼ 5 × higher than those of mothers. ► Daily supplements are less effective than iodized salt in providing iodine to lactating women. ► Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

  6. Perchlorate, iodine supplements, iodized salt and breast milk iodine content

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [Department of Epidemiology, School of Public Health, University of North Texas Health Sciences Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Kroll, Martina; Dyke, Jason V.; Ohira, Shin-Ichi; Dias, Rukshan A.; Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-03-15

    This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which {approx} 150 {mu}g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: Black-Right-Pointing-Pointer Estimated infant exposures to perchlorate were, on a {mu}g/kg basis, {approx} 5 Multiplication-Sign higher than those of mothers. Black-Right-Pointing-Pointer Daily supplements are less effective than iodized salt in providing iodine to lactating women. Black-Right-Pointing-Pointer Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

  7. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    Science.gov (United States)

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  8. PIXE analyses of cesium in rice grains

    Science.gov (United States)

    Sugai, Hiroyuki; Ishii, Keizo; Matsuyama, Shigeo; Terakawa, Atsuki; Kikuchi, Yohei; Takahashi, Hiroaki; Ishizaki, Azusa; Fujishiro, Fumito; Arai, Hirotsugu; Osada, Naoyuki; Karahashi, Masahiro; Nozawa, Yuichiro; Yamauchi, Shosei; Kikuchi, Kosuke; Koshio, Shigeki; Watanabe, Koji

    2014-01-01

    The Fukushima nuclear power plant accident released vast amounts of radioactive material into the environment. For instance, 134Cs and 137Cs have half-lives of about 2 and 30 years, respectively, and emit many harmful gamma rays. In 2012, rice with radioactivity >100 Bq/kg was occasionally reported in Fukushima prefecture. To determine where and how cesium accumulates in rice, we grew rice in soil containing stable cesium and investigated the distribution of cesium in rice using particle-induced X-ray emission (PIXE). This study found that cesium is accumulated in bran and germ at high concentrations, and white rice contains 40% of the cesium found in brown rice.

  9. Chlorine isotopic composition of perchlorate in human urine as a means of distinguishing among exposure sources.

    Science.gov (United States)

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentin-Blasini, Liza; Blount, Benjamin C; Ferreccio, Catterina; Steinmaus, Craig M; Sturchio, Neil C

    2016-05-01

    Perchlorate (ClO4(-)) is a ubiquitous environmental contaminant with high human exposure potential. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the western USA (δ(37)Cl=+4.1±1.0‰; (36)Cl/Cl=1 811 (±136) × 10(-15)), and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile (δ(37)Cl=-11.0±1.0‰; (36)Cl/Cl=254 (±40) × 10(-15)). Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways. PMID:25805252

  10. Aluminum-based drinking-water treatment residuals: A novel sorbent for perchlorate removal

    International Nuclear Information System (INIS)

    Perchlorate contamination of aquifers and drinking-water supplies has led to stringent regulations in several states to reduce perchlorate concentrations in water at acceptable levels for human consumption. Several perchlorate treatment technologies exist, but there is significant cost associated with their use, and the majority of them are unable to degrade perchlorate to innocuous chloride. We propose the use of a novel sorbent for perchlorate, i.e. an aluminum-based drinking-water treatment residual (Al-WTR), which is a by-product of the drinking-water treatment process. Perchlorate sorption isotherms (23 ± 1 oC) showed that the greatest amount (65%) of perchlorate removed by the Al-WTR was observed with the lowest initial perchlorate load (10 mg L-1) after only 2 h of contact time. Increasing the contact time to 24 h, perchlorate removal increased from 65 to 76%. A significant correlation was observed between the amounts of perchlorate removed with evolved chloride in solution, suggesting degradation of perchlorate to chloride. - Drinking-water treatment residuals are a low-cost sorbent for perchlorate

  11. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  12. Surface tension of liquid dilute solutions of lead-cesium and bismuth-cesium systems

    International Nuclear Information System (INIS)

    Method of the maximal pressure in a drop was used to measure the surface tension of 15 liquid dilute solutions of lead-cesium system in 0-0.214 at% concentration range and of 12 diluted solutions of bismuth-cesium system in 0-0.160 at.% cesium range from solidification temperature up to 500 dec C. It was found that cesium was characterized as surfactant in lead and bismuth melts. It was established that the temperature coefficient of surface tension changes sufficiently in maximally diluted solutions of alkali metals in bismuth and lead melts. Effect of sodium, potassium, rubidum and cesium on the value of surface tension of lead and bismuth was systematized. Growth of activity in sodium, potassium, rubidium and cesium series was noted

  13. Application of Cesium isotopes in daily life

    International Nuclear Information System (INIS)

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically 133Cesium isotope and radioisotope 137Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  14. Decontamination of radioactive cesium in soil

    International Nuclear Information System (INIS)

    Agricultural soil containing radioactive cesium was decontaminated using an extraction method involving aqueous potassium solutions. Results demonstrated that the potassium solution could extract radioactive cesium from soil artificially contaminated with 137Cs, although extraction rate decreased as time after contamination increased. However, visual examination of radioactivity distribution in soil samples significantly contaminated by the accident at the Fukushima Daiichi nuclear power plant showed that radioactive cesium also existed as insoluble particles. Therefore, reducing the volume of radioactive wastes generated from soil decontamination requires a physical decontamination method combined with chemical treatment. (author)

  15. Studies on cesium uptake by phenolic resins

    International Nuclear Information System (INIS)

    The selective removal of cesium by phenolic ion-exchange resins from highly salted alkaline radioactive solutions was studied. The resins were synthesized by alkaline polycondensation of phenol, resorcinol, catechol, and resorcinol-catechol mixture with formaldehyde and characterized for their moisture regain, ion-exchange (H+ → Na+) capacity, and distribution coefficient (KD) for cesium. The effects of open and sealed curing of the polymers on their properties were studied. The effect of Na+, NaOH, and Cs+ concentration on the uptake of cesium by resorcinol-formaldehyde resin was investigated, in particular. The chemical, thermal, and radiation stabilities of the polymers were also studied

  16. Sorption of cesium on Latvian clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easily assimilate in organism expressly brawn woof. It is a problem if pollutant is a radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas (cesium content after good elute of clays are in table). We establish, that clay treated with 25 % sulfuric acid adsorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays. (author)

  17. Method for monitoring radioactive cesium concentration in water using cesium adsorption disk and GM survey meter

    International Nuclear Information System (INIS)

    A method for monitoring radioactive cesium concentration in water using a cesium adsorption disk and a GM survey meter has been developed to ascertain whether the water quality meets standards on radiological contaminants in water. In this method, both dissolved and suspended forms of radioactive cesium are collected on the cesium adsorption disk by means of filtration of a water sample. Beta count rate of the disk is converted into radioactivity using a conservative calibration factor obtained here. The present method was applied to monitoring of decontaminated water of an outdoor school swimming pool in Date City after Fukushima Daiichi Nuclear Power Plant accident. (author)

  18. Trapping characteristics for gaseous cesium generated from different cesium compounds by fly ash filter

    International Nuclear Information System (INIS)

    The purpose of this study is to evaluate the applicability of the fly ash ceramic foam filter to trap gaseous cesium generated during the OREOX and sintering processes of DUPIC green pellets. The trapping experiments of gaseous cesium generated from different cesium compounds using fly ash filters were carried out in a two-zone furnace under air and hydrogen (Ar/4% H2) conditions. XRD and SEM analyses were used to analyze reaction products of different cesium compounds with fly ash filters. To manufacture ceramic foam filters, fly ash with a Si/Al mole ratio of 2.1 and polyvinyl alcohol as binder were used. Reaction products formed by the trapping reaction of different cesium compounds with fly ash filters were investigated. The major reaction products of gaseous cesium generated from cesium silicate and CsI by fly ash filters indicated that pollucite (CsAlSi2O6) phase was formed under air and hydrogen conditions when the carrier gas velocity was 2 cm/sec. The minimum reaction temperature of fly ash filter with gaseous cesium was determined as about 600 deg. C. Finally, off-gas treatment system of sintering process in a hot cell of lMEF was explained as an application example of fly ash filter for trapping gaseous cesium. (author)

  19. Sintered wire cesium dispenser photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  20. Interaction between perchlorate and iodine in the metamorphosis of Hyla versicolor

    Science.gov (United States)

    Sparling, D.W.; Harvey, G.; Nzengung, V.

    2003-01-01

    Perchlorate (ClO4-) is a water-soluble, inorganic anion that is often combined with ammonium, potassium or other cations for use in industry and agriculture. Ammonium perchlorate, for example, is a potent oxidizer and is used in various military applications including rocket fuel. It has also been found in an historically widely used fertilizer, Chilean nitrate and in other fertilizers. It has been found in ground and surface waters of over 30 states and is considered a human health risk. Because of its similar atomic radius and volume, perchlorate competes with iodide for thyroid uptake and storage and thereby inhibits production of thyroid hormones. Amphibians may be particularly affected by perchlorate because they rely on the thyroid for metamorphosis. This study exposed early larval Hyla versicolor to concentrations of perchlorate ranging from 2.2 to 50 ppm to determine the effects of perchlorate on a native amphibian. In addition, three controls, 0 perchlorate, 0 perchlorate with 0.10 ppm iodide (C + I) and 50 ppm perchlorate + 0.10 ppm iodide (50 + I) were tested. Mortality (metamorphosis. The estimated EC50 for total inhibition of metamorphosis at 70 days of treatment was 3.63 ppm. There was no evidence of inhibition of development with the 50 + I, C + I, or controls, indicating that the presence of small concentrations of iodide could counter the effects of perchlorate. When tadpoles that had been inhibited by perchlorate were subsequently treated with iodide, development through prometamorphosis progressed but mortality was very high.

  1. Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor

    International Nuclear Information System (INIS)

    Microbial reduction of perchlorate with an electrode as the electron donor represents an emerging technology for remediation of perchlorate contamination; it is important to know how perchlorate reduction behaves when nitrate, a co-contaminant of perchlorate is present. We reported that electrons derived from the electrode can be directly transferred to the bacteria with perchlorate or nitrate as the sole electron acceptor. The presence of nitrate, even at the 0.07 mM level, can slow reduction of perchlorate (0.70 mM) as a poised potential of -0.50 V (vs. SCE) was applied to the inoculated cathode. Increasing the concentration of nitrate resulted in a noticeable inhibitory effect on perchlorate reduction. When the nitrate concentration was 2.10 mM, reduction of 0.70 mM perchlorate was totally inhibited. Bacterial community analyses based on 16S rDNA gene analysis with denaturing gradient gel electrophoresis (DGGE) revealed that most of the bacteria newly enriched on the nitrate and/or perchlorate biocathodes were the known electrochemically active denitrifiers, which possibly prefer to reduce nitrate over perchlorate. These results show that nitrate is a more favorable electron acceptor than perchlorate in the bioelectrochemical system where the cathode directly serves as the electron donor

  2. Effect of nitrate, acetate and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil

    OpenAIRE

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Dennis E. Rolston; Hristova, Krassimira R.; Scow, Kate M.

    2011-01-01

    Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially ...

  3. Cesium and strontium ion specific exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  4. Sorption of Cesium on Latvia clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easy assimilates in organism expressly brawn woof. It is a problem if pollutant is radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas. We establish that clay treated with 25% sulfuric acid absorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays

  5. Branched polymeric media: Perchlorate-selective resins from hyperbranched polyethyleneimine

    KAUST Repository

    Chen, Dennis P.

    2012-10-02

    Perchlorate (ClO4 -) is a persistent contaminant found in drinking groundwater sources in the United States. Ion exchange (IX) with selective and disposable resins based on cross-linked styrene divinylbenzene (STY-DVB) beads is currently the most commonly utilized process for removing low concentrations of ClO4 - (10-100 ppb) from contaminated drinking water sources. However, due to the low exchange capacity of perchlorate-selective STY-DVB resins (∼0.5-0.8 eq/L), the overall cost becomes prohibitive when treating groundwater with higher concentration of ClO4 - (e.g., 100-1000 ppb). In this article, we describe a new perchlorate-selective resin with high exchange capacity. This new resin was prepared by alkylation of branched polyethyleneimine (PEI) beads obtained from an inverse suspension polymerization process. Batch and column studies show that our new PEI resin with mixed hexyl/ethyl quaternary ammonium chloride exchange sites can selectively extract trace amounts of ClO4 - from a makeup groundwater (to below detection limit) in the presence of competing ions. In addition, this resin has a strong-base exchange capacity of 1.4 eq/L, which is 1.75-2.33 times larger than those of commercial perchlorate-selective STY-DVB resins. The overall results of our studies suggest that branched PEI beads provide versatile and promising building blocks for the preparation of perchlorate-selective resins with high exchange capacity. © 2012 American Chemical Society.

  6. Sample processing method for the determination of perchlorate in milk

    International Nuclear Information System (INIS)

    In recent years, many different water sources and foods have been reported to contain perchlorate. Studies indicate that significant levels of perchlorate are present in both human and dairy milk. The determination of perchlorate in milk is particularly important due to its potential health impact on infants and children. As for many other biological samples, sample preparation is more time consuming than the analysis itself. The concurrent presence of large amounts of fats, proteins, carbohydrates, etc., demands some initial cleanup; otherwise the separation column lifetime and the limit of detection are both greatly compromised. Reported milk processing methods require the addition of chemicals such as ethanol, acetic acid or acetonitrile. Reagent addition is undesirable in trace analysis. We report here an essentially reagent-free sample preparation method for the determination of perchlorate in milk. Milk samples are spiked with isotopically labeled perchlorate and centrifuged to remove lipids. The resulting liquid is placed in a disposable centrifugal ultrafilter device with a molecular weight cutoff of 10 kDa, and centrifuged. Approximately 5-10 ml of clear liquid, ready for analysis, is obtained from a 20 ml milk sample. Both bovine and human milk samples have been successfully processed and analyzed by ion chromatography-mass spectrometry (IC-MS). Standard addition experiments show good recoveries. The repeatability of the analytical result for the same sample in multiple sample cleanup runs ranged from 3 to 6% R.S.D. This processing technique has also been successfully applied for the determination of iodide and thiocyanate in milk

  7. Removal of cesium from wastewater: A cesium-specific ion exchange resin

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Laboratory (SRL) have applied for a patent for an ion exchange resin that will remove cesium from water. Radioactive cesium-137 is a fission product of nuclear reactor operations. Cesium may enter the water of spent fuel holding basins through defects in fuel cladding. Control of cesium in these basins is desirable to keep personnel exposure to a minimum. Cesium is also present in the waste from reprocessing of defense nuclear reactor fuel. Research has been underway at SRL for over a decade to improve management of high-level reprocessing waste. The current technology separates the waste into soluble and insoluble components. Radioactive constituents are removed from the soluble component stream and combined with the insoluble components, which are then converted to a glass for long-term storage. Cesium is the most radioactive constituent of the soluble components stream. The SRL resin is a resorcinol-formaldehyde condensation polymer highly specific for cesium and is about 10 times more effective in removal of cesium than other ion exchange resins evaluated for use in processing defense nuclear waste. Tests have been run at SRL using both simulated and actual waste streams

  8. Perchlorate exposure in lactating women in an urban community in New Jersey

    International Nuclear Information System (INIS)

    Perchlorate is most widely known as a solid oxidant for missile and rocket propulsion systems although it is also present as a trace contaminant in some fertilizers. It has been detected in drinking water, fruits, and vegetables throughout New Jersey and most of the United States. At sufficiently high doses, perchlorate interferes with the uptake of iodine into the thyroid and may interfere with the development of the skeletal system and the central nervous system of infants. Therefore, it is important to quantify perchlorate in breast milk to understand potential perchlorate exposure in infants. In this study we measured perchlorate in breast milk, urine, and drinking water collected from 106 lactating mothers from Central New Jersey. Each subject was asked to provide three sets of samples over a 3-month period. The average ± SD perchlorate level in drinking water, breast milk, and urine was 0.168 ± 0.132 ng/mL (n = 253), 6.80 ± 8.76 ng/mL (n = 276), and 3.19 ± 3.64 ng/mL (3.51 ± 6.79 μg/g creatinine) (n = 273), respectively. Urinary perchlorate levels were lower than reference range values for women of reproductive age (5.16 ± 11.33 μg/g creatinine, p = 0.03), likely because of perchlorate secretion in breast milk. Drinking water perchlorate levels were ≤ 1.05 ng/mL and were not positively correlated with either breast milk or urine perchlorate levels. These findings together suggest that drinking water was not the most important perchlorate exposure source for these women. Creatinine-adjusted urine perchlorate levels were strongly correlated with breast milk perchlorate levels (r = 0.626, p = < 0.0005). Breast milk perchlorate levels in this study are consistent with widespread perchlorate exposure in lactating women and thus infants. This suggests that breast milk may be a source of exposure to perchlorate in infants. - Research Highlights: → The general population, including infants, is exposed to perchlorate. → Breast milk is a significant

  9. Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor

    International Nuclear Information System (INIS)

    Perchlorate and nitrate were reduced simultaneously in fixed biofilm reactors. Reduction of 1000 μg L-1 perchlorate decreased slightly with the addition of 10-16 mg L-1 NO3-N when excess acetate was supplied while denitrification was complete. When influent acetate was reduced by 50% to well below the stoichiometric requirement, perchlorate reduction decreased by 70% while denitrification decreased by only 20%, suggesting that competition for electrons by nitrate was a factor in inhibition. Reduction of nitrate was favored over perchlorate, even though reactor biofilm had been enriched under perchlorate-reducing conditions for 10 months. When excess acetate was restored, perchlorate and nitrate returned to initial levels. The average most probable numbers of perchlorate- and nitrate-reducing bacteria during excess substrate operation were not significantly different and ranged between 2.0 x 105 and 7.9 x 105 cells cm-2 media surface area. The effect of nitrate on chloride generation by suspensions of perchlorate-reducing populations was studied using a chloride ion probe. The rate of reduction of 2 mM perchlorate decreased by 30% in the presence of 2 mM nitrate when excess acetate was added. When acetate was limited, perchlorate reduction decreased by 70% in the presence of equi-molar nitrate

  10. Detection of Perchlorate Anion on Functionalized Silver Colloids Using Surface-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tio, J.; Wang, W.; Gu, B.

    2005-01-01

    Perchlorate anion interferes with the uptake of iodide by the human thyroid gland and consequently disrupts the regulation of metabolism. Chronic exposure to high levels of perchlorate may lead to the formation of thyroid gland tumors. Although the Environmental Protection Agency (EPA) has not set a maximum contaminant level (MCL) for perchlorate, a draft drinking water range of 4-18 ppb based on 2 liter daily consumption of water has been established. The current EPA approved method for detecting perchlorate uses ion chromatography which has a detection limit of ~1ppb and involves lengthy analytical time in the laboratory. A unique combination of the surface-enhanced Raman scattering (SERS) effect and the bifunctional anion exchange resin’s high selectivity may provide an alternative way to detect perchlorate at such low concentrations and with high specificity. SERS, which uses laser excitation of adsorbed perchlorate anions on silver nanoparticles, has been shown to detect perchlorate anions at concentrations as low as 50 ppb. Normal micro-Raman analysis of perchlorate sorbed onto the resin beads has detected an even lower concentration of 10 ppb. In an effort to integrate these two effects, silver nanoparticles were coated with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride, a functional group similar to that found on the resin bead, and subsequently inserted into different perchlorate concentration environments. This method has resulted in perchlorate detection down to ~10 ppb and a more consistent detection of perchlorate anion at ~50 ppb than that of earlier methods. As suggested by the direct insertion of functionalized silver colloids into perchlorate samples, this technique may potentially allow for the development of a probe using on-site Raman spectrometry to detect significantly low concentrations of perchlorate in situ rather than in the laboratory.

  11. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars

    Science.gov (United States)

    Kral, Timothy A.; Goodhart, Timothy H.; Harpool, Joshua D.; Hearnsberger, Christopher E.; McCracken, Graham L.; McSpadden, Stanley W.

    2016-01-01

    In 2008, the Mars Phoenix Lander discovered perchlorate at its landing site, and in 2012, the Curiosity rover confirmed the presence of perchlorate on Mars. The research reported here was designed to determine if certain methanogens could grow in the presence of three different perchlorate salt solutions. The methanogens tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum and Methanococcus maripaludis. Media were prepared containing 0%, 0.5%, 1.0%, 2%, 5% and 10% wt/vol magnesium perchlorate, sodium perchlorate, or calcium perchlorate. Organisms were inoculated into their respective media followed by incubation at each organism's growth temperature. Methane production, commonly used to measure methanogen growth, was measured by gas chromatography of headspace gas samples. Methane concentrations varied with species and perchlorate salt tested. However, all four methanogens produced substantial levels of methane in the presence of up to 1.0% perchlorate, but not higher. The standard procedure for growing methanogens typically includes sodium sulfide, a reducing agent, to reduce residual molecular oxygen. However, the sodium sulfide may have been reducing the perchlorate, thus allowing for growth of the methanogens. To investigate this possibility, experiments were conducted where stainless steel nails were used instead of sodium sulfide as the reducing agent. Prior to the addition of perchlorate and inoculation, the nails were removed from the liquid medium. Just as in the prior experiments, the methanogens produced methane at comparable levels to those seen with sodium sulfide as the reductant, indicating that sodium sulfide did not reduce the perchlorate to any significant extent. Additionally, cells metabolizing in 1% perchlorate were transferred to 2%, cells metabolizing in 2% were transferred to 5%, and finally cells metabolizing in 5% were transferred to 10%. All four species produced methane at 2% and 5%, but not 10

  12. Relative source contributions for perchlorate exposures in a lactating human cohort

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [University of North Texas Health Sciences Center (United States); Dyke, Jason V. [University of Texas at Arlington (United States); Ohira, Shin-Ichi [Kumamoto University (Japan); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [University of Texas at Arlington (United States)

    2013-01-15

    Perchlorate is an iodine-uptake inhibitor and common contaminant of food and drinking water. Understanding the amount of perchlorate exposure occurring through non-water sources is essential for accurate estimates of human exposure levels, and establishment of drinking water limits for this pervasive contaminant. The study objective was to determine the amount of perchlorate intake derived from diet rather than water. Subjects provided drinking water samples, detailed fluid-intake records, 24 h urine collections and four milk samples for nine days. Samples were analyzed for perchlorate by isotope dilution ion chromatography–tandem mass spectrometry. Amounts of perchlorate derived from drinking water and dietary sources were calculated for each individual. Water of local origin was found to contribute a minor fraction of perchlorate intake. Estimated fraction intake from drinking water ranged from 0 to 36%. The mean and median dose of perchlorate derived from non-water sources by lactating women was 0.18 μg/kg/day (range: 0.06 to 0.36 μg/kg/day.) Lactating women consumed more fluid (mean 2.424 L/day) than has been assumed in recent risk assessments for perchlorate. The data reported here indicate that lactating women may be exposed to perchlorate through dietary sources at markedly higher levels than estimated previously. Exposures to perchlorate from non-water sources may be higher than recent estimates, including those used to develop drinking water standards. - Highlights: ► Residence in an area with perchlorate-contaminated water may be a poor predictor of exposure. ► Exposures to perchlorate from food are likely underestimated. ► The relative contributions for human perchlorate exposures should be weighted more heavily towards non-water sources.

  13. Relative source contributions for perchlorate exposures in a lactating human cohort

    International Nuclear Information System (INIS)

    Perchlorate is an iodine-uptake inhibitor and common contaminant of food and drinking water. Understanding the amount of perchlorate exposure occurring through non-water sources is essential for accurate estimates of human exposure levels, and establishment of drinking water limits for this pervasive contaminant. The study objective was to determine the amount of perchlorate intake derived from diet rather than water. Subjects provided drinking water samples, detailed fluid-intake records, 24 h urine collections and four milk samples for nine days. Samples were analyzed for perchlorate by isotope dilution ion chromatography–tandem mass spectrometry. Amounts of perchlorate derived from drinking water and dietary sources were calculated for each individual. Water of local origin was found to contribute a minor fraction of perchlorate intake. Estimated fraction intake from drinking water ranged from 0 to 36%. The mean and median dose of perchlorate derived from non-water sources by lactating women was 0.18 μg/kg/day (range: 0.06 to 0.36 μg/kg/day.) Lactating women consumed more fluid (mean 2.424 L/day) than has been assumed in recent risk assessments for perchlorate. The data reported here indicate that lactating women may be exposed to perchlorate through dietary sources at markedly higher levels than estimated previously. Exposures to perchlorate from non-water sources may be higher than recent estimates, including those used to develop drinking water standards. - Highlights: ► Residence in an area with perchlorate-contaminated water may be a poor predictor of exposure. ► Exposures to perchlorate from food are likely underestimated. ► The relative contributions for human perchlorate exposures should be weighted more heavily towards non-water sources

  14. Isotopic tracing of perchlorate sources in groundwater from Pomona, California

    International Nuclear Information System (INIS)

    Highlights: • Isotopic analysis of groundwater perchlorate can provide source identification. • Citrus cultivation in Pomona, CA caused perchlorate contamination of groundwater. • Hydrologic modeling and mass balance support interpretation of perchlorate source. - Abstract: The groundwater of Pomona, California, is contaminated with perchlorate (ClO4-). This water is treated to reduce the ClO4- concentration to less than 6 μg L−1 for compliance with California Department of Public Health drinking water regulations. A study of the isotopic composition of oxygen and chlorine in ClO4- has been conducted to determine the source of the contamination. Isotopic compositions were measured for ClO4- samples extracted from 14 wells, yielding ranges of δ18O values from −10.8‰ to −8.0‰, Δ17O values from +4.6‰ to +7.5‰, and δ37Cl values from −12.8‰ to −8.9‰. Evaluation of mixing proportions using published isotopic data for three ClO4- end-members (synthetic, Atacama, and indigenous natural ClO4-) indicates that contamination is dominantly (85–89%) Atacama ClO4- derived from past use of imported Chilean nitrate fertilizer in citrus cultivation. This interpretation is consistent with (1) aerial photography archives showing extensive citrus fields surrounding Pomona in the early- to mid-20th century, (2) mass-balance estimates for ClO4-, and (3) numerical hydrologic models yielding travel-times for ClO4- from fields to wells that are in the range of 15 to >100 years. The hydrologic models predict that ClO4- contamination of Pomona groundwater will persist for decades into the future

  15. 4-(2-Azaniumylethylpiperazin-1-ium bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Reisi

    2011-09-01

    Full Text Available In the title compound, C6H17N32+·2ClO4−, the piperazine ring adopts a chair conformation with the ethylammonium fragment occupying an equatorial position. In the crystal, the dications and perchlorate anions are linked through N—H...O hydrogen bonding and weak C—H...O hydrogen bonding into a three-dimensional supramolecular network.

  16. Genetic Factors That Might Lead to Different Responses in Individuals Exposed to Perchlorate

    OpenAIRE

    Scinicariello, Franco; Murray, H. Edward; Smith, Lester; Wilbur, Sharon; Fowler, Bruce A.

    2005-01-01

    Perchlorate has been detected in groundwater in many parts of the United States, and recent detection in vegetable and dairy food products indicates that contamination by perchlorate is more widespread than previously thought. Perchlorate is a competitive inhibitor of the sodium iodide symporter, the thyroid cell–surface protein responsible for transporting iodide from the plasma into the thyroid. An estimated 4.3% of the U.S. population is subclinically hypothyroid, and 6.9% of pregnant wome...

  17. Purification and Characterization of (Per)Chlorate Reductase from the Chlorate-Respiring Strain GR-1

    OpenAIRE

    Kengen, Servé W. M.; Rikken, Geoffrey B.; Hagen, Wilfred R.; van Ginkel, Cees G.; Stams, Alfons J. M.

    1999-01-01

    Strain GR-1 is one of several recently isolated bacterial species that are able to respire by using chlorate or perchlorate as the terminal electron acceptor. The organism performs a complete reduction of chlorate or perchlorate to chloride and oxygen, with the intermediate formation of chlorite. This study describes the purification and characterization of the key enzyme of the reductive pathway, the chlorate and perchlorate reductase. A single enzyme was found to catalyze both the chlorate-...

  18. Transposon and Deletion Mutagenesis of Genes Involved in Perchlorate Reduction in Azospira suillum PS

    OpenAIRE

    Melnyk, Ryan A.; Clark, Iain C.; Liao, Annette; Coates, John D.

    2013-01-01

    ABSTRACT Although much work on the biochemistry of the key enzymes of bacterial perchlorate reduction, chlorite dismutase, and perchlorate reductase has been published, understanding of the molecular mechanisms of this metabolism has been somewhat hampered by the lack of a clear model system amenable to genetic manipulation. Using transposon mutagenesis and clean deletions, genes important for perchlorate reduction in Azospira suillum PS have been identified both inside and outside the previo...

  19. Extraction of scandium ions by 1-alkyl-3-methyl-2-pyrazoline-5-ones from perchlorate solutions

    International Nuclear Information System (INIS)

    Extraction of acid and interphase distribution of 1-alkyl-3-methyl-2-pyrazoline-5-ones in the system water-chloroform-perchloric acid are studied. Reagents capable to extract scandium cations from subacid solutions in the presence of perchlorate ions. 1-Alkyl-3-methyl-2-pyrazoline-5-ones stratifies aqueous solutions of perchloric acid into two liquid phase. Scandium ions are concentrated in the lower phase having small volume

  20. Radioactive cesium in Finnish mushrooms

    International Nuclear Information System (INIS)

    Surveillance of radioactive cesium in Finnish mushrooms was started in 1986 at STUK. Results of the surveillance programs carried out in Lapland and other parts of Finland are given in this report. More than 2000 samples of edible mushrooms have been analysed during 1986-2008. The 137Cs detected in the mushrooms mainly originates from the 137Cs deposition due to the accident at the Chernobyl nuclear power plant in 1986. The 137Cs concentrations of mushrooms in the end of 1970s and in the beginning of 1980s varied from some ten to two hundred becquerels per kilogram originating from the nuclear weapon test period. The uneven division of the Chernobyl fallout is seen in the areal variation of 137Cs concentrations of mushrooms, the 137Cs concentrations being about tenfold in the areas with the highest deposition compared to those where the deposition was lowest. After the Chernobyl accident the maximum values in the 137Cs concentrations were reached during 1987-88 among most species of mushrooms. The 137Cs concentrations have decreased slowly, being in 2008 about 40 per cent of the maximum values. The 137Cs concentrations may be tenfold in the mushroom species with high uptake of cesium (Rozites caperatus, Hygrophorus camarophyllus, Lactarius trivialis) compared to the species with low uptake (Albatrellus ovinus, Leccinum sp.) picked in the same area. The 137Cs contents in certain species of commercial mushrooms in Finland still exceed the maximum permitted level, 600 Bq/kg, recommended to be respected when placing wild game, wild berries, wild mushrooms and lake fish on the market (Commission recommendation 2003/274/Euratom). Therefore, the 137Cs concentrations of mushrooms should be measured before placing them on the market in the areas of the highest 137Cs deposition, except for Albatrellus ovinus, Boletus sp. and Cantharellus cibarius. The 137Cs concentrations of common commercial mushroom species, Cantharellus tubaeformis and Craterellus cornucopioides often

  1. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  2. Research on decontamination of cesium contaminated soil by electrokinetic process

    International Nuclear Information System (INIS)

    In this research, electrokinetic process was applied for the decontamination of cesium contaminated soil. As a result, about 4.0 times cesium removal was achieved by applying a DC electric field of 80 V/m to comparing zero electric field in treatment for 30 days. Therefore, the electrokinetic process has a possibility to decontamination of cesium contaminated soil. (author)

  3. Uranyl ion behaviour in perchloric media and its extraction by TBP CCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, A. (Centre de Developpement des Materiaux, Commissariat aux Energies Nouvelles, Alger (Algeria)); Benali-Baitich, O. (Universite des Sciences et de la Technologie Houari Boumediene (USTHB), Institut de Chimie, Alger (Algeria))

    The behaviour of uranyl ion in aqueous solution of perchloric acid (O < Cub(HC104) < 13 mol.1/sup -1/) shows that for an acidity higher than 9 mol.1/sup -1/, there is formation of a monoperchlorato complex. The extraction of uranly perchlorate from aqueous perchloric solutions by TBP diluted CC1/sub 4/ as a function of uranium and perchloric acid concentrations enabled us on one hand, to concluded that UO/sub 2//sup + +/ is solvated by 2 TBP molecules, and on the other hand, to determine the composition of the coextracted HC1O/sub 4/ solvated species.

  4. Perchlorate in fish from a contaminated site in east-central Texas

    International Nuclear Information System (INIS)

    Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water. - In perchlorate-contaminated lakes and streams, perchlorate is detected infrequently in fish heads, fillets, and whole bodies, but may be detected more often depending on species and seasonal trends, and always at concentrations higher in the fish than in the water

  5. Cesium ion uptake by moss (Hypnum cupressiforme)

    International Nuclear Information System (INIS)

    Lower land mosses uptake water and minerals from the atmosphere. They can collect metals polluting the air and radioactive fallout elements so they can be suitable for monitoring of these substances. Cesium ion uptake by Hypnum cupressiforme is studied by a radioactive tracer, 134Cs. The quantity of cesium ion in different celluar locations and the capacity of ion uptake is determined. The total capacity is found to be several times 10-3 mol g-1 and is therefore of the same order of magnitude as the cation exchange capacity of ion exchangers. The kinetics and reversibility of the process is studied as well. (orig.)

  6. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  7. Environmental transfer of radio-cesium

    International Nuclear Information System (INIS)

    A large amount of Cs 134 and 137 were emitted from the destroyed reactors of Fukushima Daiichi Nuclear Power Station and deposited on the soil surface of vast area including forests, fields, and residential areas. The present report explains mainly land transfer behaviors of cesium which deposited on the surface soils, absorbed into soil particles as time passed on and finally became difficult to move from the particles (aging effect). Depth-distribution of radio-cesium in rice paddy and grassland as well as the change over years is presented. Changes with the passage of time of Cs 137 concentrations in leaves of spinach, wormwood, and persimmon are also provided. (S. Ohno)

  8. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  9. Containerized Wetland Bioreactor Evaluated for Perchlorate and Nitrate Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dibley, V R; Krauter, P W

    2004-12-02

    The U.S. Department of Energy (DOE) and Lawrence Livermore Laboratory (LLNL) designed and constructed an innovative containerized wetlands (bioreactor) system that began operation in November 2000 to biologically degrade perchlorate and nitrate under relatively low-flow conditions at a remote location at Site 300 known as Building 854. Since initial start-up, the system has processed over 3,463,000 liters of ground water and treated over 38 grams of perchlorate and 148 kilograms of nitrate. Site 300 is operated by the University of California as a high-explosives and materials testing facility supporting nuclear weapons research. The 11-square mile site located in northern California was added to the NPL in 1990 primarily due to the presence of elevated concentrations of volatile organic compounds (VOCs) in ground water. At the urging of the regulatory agencies, perchlorate was looked for and detected in the ground water in 1999. VOCs, nitrate and perchlorate were released into the soil and ground water in the Building 854 area as the result of accidental leaks during stability testing of weapons or from waste discharge practices that are no longer permitted at Site 300. Design of the wetland bioreactors was based on earlier studies showing that indigenous chlorate-respiring bacteria could effectively degrade perchlorate into nontoxic concentrations of chlorate, chlorite, oxygen, and chloride. Studies also showed that the addition of organic carbon would enhance microbial denitrification. Early onsite testing showed acetic acid to be a more effective carbon source than dried leaf matter, dried algae, or milk replacement starter; a nutrient and carbon source used in a Department of Defense phytoremediation demonstration. No inocula were added to the system. Groundwater was allowed to circulate through the bioreactor for three weeks to acclimate the wetland plants and to build a biofilm from indigenous flora. Using solar energy, ground water is pumped into granular

  10. Perchlorate in the Hydrologic Cycle - An Overview of Sources and Occurrence

    Science.gov (United States)

    Stonestrom, D. A.; Jackson, W.; Mayer, K.; Orris, G. J.

    2007-12-01

    Perchlorate (ClO4-) in water and food is of concern due to deleterious health affects associated with hypothyroidism. The presence of widespread perchlorate in 0-to-28 ka-old pristine ground water of the Middle Rio Grande Basin (Plummer et al., 2006, ES&T, DOI:10.1021/es051739h), in ground water >1 mile from agricultural activities in the Southern High Plains (Rajagapolan et al., 2006, ES&T, DOI:10.1021/es052155i), and in unsaturated zones throughout the arid and semiarid southwestern United States (Rao et al., 2007, ES&T, DOI:10.1021/es062853i) clearly indicates that perchlorate is a non-exotic component of the hydrologic cycle, at least in dry environments. The natural system has been greatly perturbed in places by human activities. Most anthropogenic inputs are associated with the manufacture and use of explosives and rocket fuel, providing concentrated sources of excess perchlorate to the hydrologic cycle. Perchlorate-containing fertilizers and irrigation provide dispersed sources within and down-gradient from agricultural areas. Natural sources include photochemically mediated reactions involving ozone at the land surface and in the lower atmosphere. A growing body of work indicates that a small, but persistent, meteoric source acting over thousands of years can explain observed accumulations of unsaturated-zone perchlorate in arid regions. In addition to meteoric sources, oxyanions produced during volcanogenic processes can include appreciable amounts of natural perchlorate. Terrestrial plants take up perchlorate in soil water, with some species of xerophytic succulents concentrating the anion to high levels. Similarly, perchlorate in marine plants indicates that perchlorate is part of marine biochemical cycles. Perchlorate-bearing marine sediments of late Tertiary age suggest that perchlorate has been part of global geochemical cycles for millions of years and, furthermore, can be preserved in the subsurface despite the nearly ubiquitous presence of

  11. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  12. Scintillator handbook with emphasis on cesium iodide

    Science.gov (United States)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  13. Anomalous wetting of helium on cesium

    International Nuclear Information System (INIS)

    The authors report studies of the anomalous wetting of a cesium substrate by a liquid helium film by means of the technique of third sound. A hysteretic pre-wetting transition is observed as a function of the amount of helium in the experimental cell. 10 refs., 2 figs

  14. Physiological and Genetic Description of Dissimilatory Perchlorate Reduction by the Novel Marine Bacterium Arcobacter sp. Strain CAB

    OpenAIRE

    Carlström, Charlotte I.; Wang, Ouwei; Melnyk, Ryan A.; Bauer, Stefan; Lee, Joyce; Engelbrektson, Anna; Coates, John D.

    2013-01-01

    ABSTRACT A novel dissimilatory perchlorate-reducing bacterium (DPRB), Arcobacter sp. strain CAB, was isolated from a marina in Berkeley, CA. Phylogenetically, this halophile was most closely related to Arcobacter defluvii strain SW30-2 and Arcobacter ellisii. With acetate as the electron donor, strain CAB completely reduced perchlorate (ClO4 −) or chlorate (ClO3 −) [collectively designated (per)chlorate] to innocuous chloride (Cl−), likely using the perchlorate reductase (Pcr) and chlorite di...

  15. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Sasidharan [Materials Science and Technology Division (India); Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Krishnakumar, Bhaskaran [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Padinhattayil [Materials Science and Technology Division (India); Nair, Balagopal N. [R and D Centre, Noritake Co. Ltd., Aichi (Japan); Warrier, Krishna Gopakumar [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Unnikrishnan Nair Saraswathy, E-mail: hareesh@niist.res.in [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India)

    2014-06-30

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO{sub 4}{sup −} which is an increasingly important environmental contaminant.

  16. Identification of a Perchlorate Reduction Genomic Island with Novel Regulatory and Metabolic Genes ▿

    OpenAIRE

    Melnyk, Ryan A.; Engelbrektson, Anna; Clark, Iain C.; Carlson, Hans K.; Byrne-Bailey, Kathy; Coates, John D.

    2011-01-01

    A comparative analysis of the genomes of four dissimilatory (per)chlorate-reducing bacteria has revealed a genomic island associated with perchlorate reduction. In addition to the characterized metabolic genes for perchlorate reductase and chlorite dismutase, the island contains multiple conserved uncharacterized genes possibly involved in electron transport and regulation.

  17. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes.

    Science.gov (United States)

    Melnyk, Ryan A; Engelbrektson, Anna; Clark, Iain C; Carlson, Hans K; Byrne-Bailey, Kathy; Coates, John D

    2011-10-01

    A comparative analysis of the genomes of four dissimilatory (per)chlorate-reducing bacteria has revealed a genomic island associated with perchlorate reduction. In addition to the characterized metabolic genes for perchlorate reductase and chlorite dismutase, the island contains multiple conserved uncharacterized genes possibly involved in electron transport and regulation. PMID:21856823

  18. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    International Nuclear Information System (INIS)

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO4− which is an increasingly important environmental contaminant

  19. Terbium nitrate luminescence quenching by eosin in he presence of lithium perchlorate in sulfolane solutions

    International Nuclear Information System (INIS)

    Quenching of terbium nitrate luminescence by anionic dye, eosin, in the presence of lithium perchlorate in sulfolane solutions was studied. Temperature dependence of terbium nitrate luminescence in sulfolane solutions in the presence of perchlorate anions were considered. The values of energy required for water molecular substitution in Tb3+ ion coordination sphere for solvent molecule in electrolyte solution were ascertained

  20. Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions

    NARCIS (Netherlands)

    Liebensteiner, M.; Pinkse, M.W.H.; Schaap, P.J.; Stams, A.J.M.; Lomans, B.P.

    2013-01-01

    Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that s

  1. Monitoring of perchlorate in diverse foods and its estimated dietary exposure for Korea populations.

    Science.gov (United States)

    Lee, Ji-Woo; Oh, Sung-Hee; Oh, Jeong-Eun

    2012-12-01

    The perchlorate concentrations in various Korean food samples were monitored, and 663 samples belonging to 39 kinds of food were analyzed. The analysis results revealed that dairy products contain the highest average concentration of 6.34 μg/kg and high detection frequency of over 85%. Fruit and vegetables showed the next highest perchlorate concentration with an average of 6.17 μg/kg. Especially, with its average concentration of 39.9 μg/kg, spinach showed the highest perchlorate level among all target food samples studied. Tomato was followed by spinach, which showed a high perchlorate average concentration of 19.8 μg/kg, and over 7 μg/kg was detected in ham and sausage (avg. 7.31 μg/kg) and in instant noodles (avg. 7.58 μg/kg). Less than 2 μg/kg was detected in fishes, meats and beverages. The exposure dose of perchlorate in Korean by food intake was calculated on the basis of the analyzed perchlorate levels in this study. The daily perchlorate dose to which Korean adults are exposed is 0.04 μg/kg bw/day, which is lower than the RfD (0.7 μg/kg bw/day) value suggested by US NAS. This result indicates that Korean people's current exposure to perchlorate from domestic food consumption is evaluated as safe. PMID:23116718

  2. Photodimerization and photooxygenation of 9-vinylcarbazole catalyzed by titanium dioxide and magnesium perchlorate

    Institute of Scientific and Technical Information of China (English)

    Hajime; Maeda; Mio; Yamamoto; Hideyuki; Nakagawa; Kazuhiko; Mizuno

    2010-01-01

    Photoreaction of 9-vinylcarbazole in acetonitrile in the presence of titanium dioxide and a catalytic amount of magnesium perchlorate gave 3,6-di(9-carbazolyl)-1,2-dioxane as a photooxygenated product via photodimerization of 9-vinylcarbazole.The photoreaction proceeds via an electron transfer mechanism,where magnesium perchlorate accelerated formation of the photo-oxygenated product.

  3. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Science.gov (United States)

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  4. CRYSTALLIZATION KINETICS OF AMMONIUM PERCHLORATE IN AN AGITATED VESSEL

    Directory of Open Access Journals (Sweden)

    Nahidh Kaseer

    2013-05-01

    Full Text Available 31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both methods gave comparable results for growth kinetics estimation. The order of growth process is not more than two. The activation energy for crystal growth of ammonium perchlorate was determined and found  to be equal to 5.8 kJ/ mole.            Finally, the influence of the affecting parameters on the crystal growth rate gives general expression that had an obvious dependence of the growth rate on each variables of concern (temperature, seed size, and stirrer speed .The general overall growth rate expression had shown that super saturation is the most significant variable. While the positive dependence of the stirrer speed demonstrates the importance of the diffusional step in the growth rate model. Moreover, the positive dependence of the seed size demonstrate the importance of the surface integration  step in the growth rate model. All the studied variables tend to suggest that the growth rate characteristics  of ammonium perchlorate from aqueous solution commenced in a batch crystallizer are diffusion kinetic controlled process.

  5. (Dicyanamido)[tris(2-pyridylmethyl)amine]zinc(II) perchlorate

    OpenAIRE

    Shi Guo Zhang; Hong Yan Zhao; Hong Li

    2008-01-01

    In the title complex, [Zn(C2N3)(C18H18N4)]ClO4, the ZnII ion has a slightly distorted trigonal–bipyramidal ZnN5 coordination geometry. The crystal structure is stabilized by weak intermolecular C—H...O and C—H...N hydrogen bonds. In addition, there are relatively close contacts between the O atoms of the perchlorate anion and symmetry-related pyridine rings [O...Cg = 3.179 (3) and 3.236 (3) Å, where Cg is the centroid of a pyridine ring], and between t...

  6. CRYSTALLIZATION KINETICS OF AMMONIUM PERCHLORATE IN AN AGITATED VESSEL

    OpenAIRE

    Nahidh Kaseer; Rafi' J. Yaqub; Ahmed Khalid

    2013-01-01

    31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both me...

  7. Prediction of Particle Size of Ammonium Perchlorate during Pulverisation

    Directory of Open Access Journals (Sweden)

    Sunil Jain

    2006-07-01

    Full Text Available Ammonium perchlorate has been pulverised by an impact mill (air classifier mill to studythe influence of different operating parameters, viz., effect of mill speed, classifier speed, feedrate, and damper opening (suction rate on the particle size. Further based on the differentgrinding parameters, an empirical equation has been developed and used for the prediction ofparticle size. The experimental results indicate that the values are very close to the predictedones. In addition, particle size distribution has also been studied by applying different modelequations and it has been found that Rosin-Rammler model is the most suitable model for thisoperation.

  8. Comparative DFT study of crystalline ammonium perchlorate and ammonium dinitramide.

    Science.gov (United States)

    Zhu, Weihua; Wei, Tao; Zhu, Wei; Xiao, Heming

    2008-05-22

    The electronic structure, vibrational properties, absorption spectra, and thermodynamic properties of crystalline ammonium perchlorate (AP) and ammonium dinitramide (ADN) have been comparatively studied using density functional theory in the local density approximation. The results shows that the p states for the two solids play a very important role in their chemical reaction. From the low frequency to high frequency region, ADN has more motion modes for the vibrational frequencies than AP. The absorption spectra of AP and ADN display a few, strong bands in the fundamental absorption region. The thermodynamic properties show that ADN is easier to decompose than AP as the temperature increases. PMID:18396853

  9. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate.

    Science.gov (United States)

    Ahn, Se Chang; Cha, Daniel K; Kim, Byung J; Oh, Seok-Young

    2011-08-30

    US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO(4)(-)) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21 wastewater was rapidly decreased to an undetectable level in 2 days. This result demonstrated that iron treatment not only removed energetic compounds but also eliminated the toxic constituents that inhibited the subsequent microbial process. PMID:21700387

  10. Characterization of Perchlorate in a New Frozen Human Urine Standard Reference Material

    Science.gov (United States)

    Yu, Lee L.; Jarrett, Jeffery M.; Davis, W. Clay; Kilpatrick, Eric L.; Oflaz, Rabia; Turk, Gregory C.; Leber, Dennis D.; Valentin, Liza; Morel-Espinosa, Maria; Blount, Benjamin C.

    2015-01-01

    Perchlorate, an inorganic anion, has recently been recognized as an environmental contaminant by the U.S. Environmental Protection Agency (EPA). Urine is the preferred matrix for assessment of human exposure to perchlorate. Although the measurement technique for perchlorate in urine was developed in 2005, the calibration and quality assurance aspects of the metrology infrastructure for perchlorate are still lacking in that there is no certified reference material (CRM) traceable to the International System of Units (SI). To meet the quality assurance needs in biomonitoring measurements of perchlorate and the related anions that affect thyroid health, the National Institute of Standards and Technology (NIST) in collaboration with the Centers for Disease Control and Prevention (CDC) developed Standard Reference Material (SRM) 3668 Mercury, Perchlorate, and Iodide in Frozen Human Urine. SRM 3668 consists of perchlorate, nitrate, thiocyanate, iodine, and mercury in urine at two levels that represent the 50th and 95th percentiles, respectively, of the concentrations (with some adjustments) in the U.S. population. It is the first CRM being certified for perchlorate. Measurements leading to the certification of perchlorate were made collaboratively at NIST and CDC using three methods based on liquid or ion chromatography tandem mass spectrometry (LC-MS/MS or IC-MS/MS). Potential sources of bias were analyzed and results were compared for the three methods. Perchlorate in SRM 3668 Level I urine was certified to be 2.70 μg L−1 ± 0.21 μg L−1, and for SRM 3668 Level II urine, the certified value is 13.47 μg L−1 ± 0.96 μg L−1. PMID:22850897

  11. Specific adsorption of perchlorate anions on Pt{hkl} single crystal electrodes.

    Science.gov (United States)

    Attard, Gary A; Brew, Ashley; Hunter, Katherine; Sharman, Jonathan; Wright, Edward

    2014-07-21

    The voltammetry of Pt{111}, Pt{100}, Pt{110} and Pt{311} single crystal electrodes as a function of perchloric acid concentration (0.05-2.00 M) has been studied in order to test the assertion made in recent reports by Watanabe et al. that perchlorate anions specifically adsorb on polycrystalline platinum. Such an assertion would have significant ramifications for our understanding of electrocatalytic processes at platinum surfaces since perchlorate anions at low pH have classically been assumed not to specifically adsorb. For Pt{111}, it is found that OHad and electrochemical oxide states are both perturbed significantly as perchloric acid concentration is increased. We suggest that this is due to specific adsorption of perchlorate anions competing with OHad for adsorption sites. The hydrogen underpotential deposition (H UPD) region of Pt{111} however remains unchanged although evidence for perchlorate anion decomposition to chloride on Pt{111} is reported. In contrast, for Pt{100} no variation in the onset of electrochemical oxide formation is found nor any shift in the potential of the OHad state which normally results from the action of specifically adsorbing anions. This suggests that perchlorate anions are non-specifically adsorbed on this plane although strong changes in all H UPD states are observed as perchloric acid concentration is increased. This manifests itself as a redistribution of charge from the H UPD state situated at more positive potential to the one at more negative potential. For Pt{110} and Pt{311}, marginal changes in the onset of electrochemical oxide formation are recorded, associated with specific adsorption of perchlorate. Specific adsorption of perchlorate anions on Pt{111} is deleterious to electrocatalytic activity in relation to the oxygen reduction reaction (ORR) as measured using a rotating disc electrode (RDE) in a hanging meniscus configuration. This study supports previous work suggesting that a large component of the ORR

  12. Ion Chromatographic Determination of low level Perchlorate in Natural Waters

    International Nuclear Information System (INIS)

    Perchlorate (ClO4-) is a persistent contaminant of drinking-, surface-, and ground-water, and of soils. Possible contributions of ClO4- contamination are the military, the space program, and supporting industries and fertilizers. Perchlorate has long been known to have a negative effect on the thyroid gland. It has been added to the United States Environmental Protection Agency's (EPA) Contaminant candidate List (CCL) in 1998, so that ClO4 can be regulated at a concentration safe to humans. This paper describes the determination of trace level ClO4- in various matrices utilizing ion chromatographic method. The method utilizes a Dionex IonPac AS11 column with suppressed conductivity detection, 1500ul sample loop, and a 100 mN NaOH eluent at a flow rate of 1.0ml/min. These parameters allow a method detection limit (MDL) of 0.277ug/1 and a short retention time of 8 minutes. A quality control, proficiency testing samples from the EPA and a number of environmental samples from New York State (ground water) and California (ground and surface waters) were analyzed by this technique. Concentrations measured were in the range of 1.9-217 ug/1. No evidence of ClO4- was found in various commonly used fertilizers. (author)

  13. Extraction of scandium by benzoylantipyrine from chloride-perchlorate solutions

    International Nuclear Information System (INIS)

    Distribution of scandium complexes in case of extraction by benzoyl-4-antipyrine (BANT) in chloroform from aqueous chloride-perchlorate solutions, depending on extraction, perchlorate-ion and salting out agents concentration, was studied. It has been ascertained that scandium distribution factor is nearly 50 at NaClO4 and BANT concentrations equal to 2 and 0.1 mol/l respectively. Introduction of salting out agents (NaCl, CaCl2) and HCl at a constant content of NaClO4 (0.5 mol/l) increases noticeably scandium extraction. For 0.1 mol/l BANT solution in chloroform the extraction capacity in terms of scandium makes up 1.26 g/l. The optimal conditions for the element extraction have been found, the composition of the complex extracted has been ascertained (Sc:BANT:ClO4- = 1:3:3) and extraction mechanism has been suggested. Influence of interfering elements on scandium distribution factor was studied

  14. Strontium-90 and cesium-137 in milk

    International Nuclear Information System (INIS)

    The milk samples have been collected from 30 prefectures by prefectural public health laboratories and institutes (raw milk: 4 times per year for the report to WHO, and raw and city milk: 2 times per year), and analysed for strontium-90 and cesium-137 content at Japan Chemical Analysis Center. Collected samples were the raw milk and the city ones for the producing districts and the consuming ones, respectively. Three liters of fresh milk were carbonized in each prefectural public health laboratories and institutes, and then it was asked at Japan Chemical Analysis Center. The ask to which both some carriers and hydrochloric acid were added, was destroyed under heating. The nuclides was dissolved into hydrochloric acid and filtrated, after it was added with nitric acid and heated to dryness. The filtrate was radiochemically analysed for strontium-90 and cesium-137 using the method recommended by Science and Technology Agency. (author)

  15. Cesium stress and adaptation in pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Industrialization and acid rain have led to a marked increment on the bioavailability of numerous metals. These metallic pollutants pose a serious threat to the ecosystem due to their ability to interact negatively with living organisms. Thus, considerable effort has been directed towards the development of environmentally-friendly technologies tailored to the management of metal wastes. As microbes are known to adapt to most environmental stresses, they constitute organisms of choice in the study of molecular adaptation processes. The adaptive features may be subsequently engineered for biotechnological applications. Cesium, a monovalent metal with chemical similarities to potassium but no know essential biological function has become a cause of environmental concern owing to its accidental release from the Chernobyl nuclear accident. This study examines the impact of cesium on the soil microbe Pseudomonas fluorescensts, and discusses the possibilities of its use in management of this nuclear waste. 15 refs., 3 figs

  16. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Two kinds of cesium uranates, Cs2UO4 and Cs2U2O7, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U3O8 and Cs2CO3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs2UO4 and Cs2U2O7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs2UO4 and Cs2U2O7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  17. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  18. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    International Nuclear Information System (INIS)

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad

  19. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Stek, M. Jr.; Minard, P.; Cruess, D.F.

    1984-06-01

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad.

  20. Sorption of cesium 137 by steel from sodium melt

    International Nuclear Information System (INIS)

    Sorption of cesium-137 radionuclide by Kh18N10T steel from sodium melt at different temperatures (150-450 deg C) has been studied. Equilibrium coefficients of cesium distribution between sodium and steel are determined, which depend on the conditions of sorption realization, such as cesium concentration in sodium melt, the content of oxygen admixture in sodium and the state of sorbing surface

  1. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  2. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134Cs+137Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134Cs+137Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  3. The relationship between perchlorate in drinking water and cord blood thyroid hormones: First experience from Iran

    Directory of Open Access Journals (Sweden)

    Ashraf Javidi

    2015-01-01

    Full Text Available Background: Considering the controversial information regarding the effects of perchlorate on thyroid function of high risk population as neonates, and given the high prevalence rate of thyroid disorders specially congenital hypothyroidism in our region, this study aims to investigate for the first time in Iran, the relationship between drinking groundwater perchlorate and cord blood thyroid hormones level in an industrial region. Methods: In this cross-sectional study, drinking groundwater perchlorate level of rural areas of Zarinshahr, Isfahan was measured. Simultaneously, cord blood level of thyroid hormones of neonates born in the studied region was measured. Thyroid function test of neonates in regions with low and high perchlorate level were compared. Results: In this study, 25 tap water samples were obtained for perchlorate measurement. Level of cord blood thyroid stimulating hormone (TSH, T4 and T3 of 25 neonates were measured. Mean (standard deviation of perchlorate, TSH, T4 and T3 was 3.59 (5.10 μg/l, 7.81 (4.14 mIU/m, 6.06 (0.85 mg/dl, and 63.46 (17.53 mg/dl, respectively. Mean levels of thyroid function tests were not different in low ( 0.05. Conclusions: Perchlorate did not appear to be related to thyroid function of neonates in the studied industrial region. It seems that iodine status of the regions, as well as other environmental contaminants and genetic background, could impact on its relation with thyroid function of neonates.

  4. A bioassay for the detection of perchlorate in the ppb range.

    Science.gov (United States)

    Heinnickel, Mark; Smith, Stephen C; Koo, Jonathan; O'Connor, Susan M; Coates, John D

    2011-04-01

    A bioassay for the determination of ppb (μg·L(-1)) concentrations of perchlorate has been developed and is described herein. The assay uses the enzyme perchlorate reductase (PR) from the perchlorate-reducing organism Dechloromonas agitata in purified and partially purified forms to detect perchlorate. The redox active dye phenazine methosulfate (PMS) is shown to efficiently shuttle electrons to PR from NADH. Perchlorate can be determined indirectly by monitoring NADH oxidization by PR. To lower the detection limit, we have shown that perchlorate can be concentrated on a solid-phase extraction (SPE) column that is pretreated with the cation decyltrimethylammonium bromide (DTAB). Perchlorate is eluted from these columns with a solution of 2 M NaCl and 200 mM morpholine propane sulfonic acid (MOPS, pH 12.5). By washing these columns with 15 mL of 2.5 mM DTAB and 15% acetone, contaminating ions, such as chlorate and nitrate, are removed without affecting the bioassay. Because of the effect of complex matrices on the SPE columns, the method of standard additions is used to analyze tap water and groundwater samples. The efficacy of the developed bioassay was demonstrated by analyzing samples from 2-17000 ppb in deionized lab water, tap water, and contaminated groundwater. PMID:21384912

  5. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  6. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  7. Distribution and retention of cesium in Swedish boreal forest ecosystems

    International Nuclear Information System (INIS)

    The retention and distribution of cesium in forest environments are being studied at three locations in Sweden. The main part of the cesium found in the soil was recovered in horizons rich in organic matter. The cesium was retained in the soil organic matter in a more or less extractable form. As different soil types have a different distribution pattern of organic matter the distribution of cesium will depend on the forest soil type. The clay content in Swedish forest soils is in general low which will mitigate the retention of cesium in the soil mineral horizons. The cesium present in the tree was considered to be an effect of assimilation by the tissues in the canopy as well as by the roots. The redistribution of cesium within the trees was extensive which was considered to be an effect of a high mobility of cesium in the close system of a forest environment. The cesium will remain in the forest environment for a considerable time but can be removed by forest practice, by leaching out of the soil profile or by the radioactive decay. (au)

  8. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  9. Genetic factors that might lead to different responses in individuals exposed to perchlorate.

    Science.gov (United States)

    Scinicariello, Franco; Murray, H Edward; Smith, Lester; Wilbur, Sharon; Fowler, Bruce A

    2005-11-01

    Perchlorate has been detected in groundwater in many parts of the United States, and recent detection in vegetable and dairy food products indicates that contamination by perchlorate is more widespread than previously thought. Perchlorate is a competitive inhibitor of the sodium iodide symporter, the thyroid cell-surface protein responsible for transporting iodide from the plasma into the thyroid. An estimated 4.3% of the U.S. population is subclinically hypothyroid, and 6.9% of pregnant women may have low iodine intake. Congenital hypothyroidism affects 1 in 3,000 to 1 in 4,000 infants, and 15% of these cases have been attributed to genetic defects. Our objective in this review is to identify genetic biomarkers that would help define subpopulations sensitive to environmental perchlorate exposure. We review the literature to identify genetic defects involved in the iodination process of the thyroid hormone synthesis, particularly defects in iodide transport from circulation into the thyroid cell, defects in iodide transport from the thyroid cell to the follicular lumen (Pendred syndrome), and defects of iodide organification. Furthermore, we summarize relevant studies of perchlorate in humans. Because of perchlorate inhibition of iodide uptake, it is biologically plausible that chronic ingestion of perchlorate through contaminated sources may cause some degree of iodine discharge in populations that are genetically susceptible to defects in the iodination process of the thyroid hormone synthesis, thus deteriorating their conditions. We conclude that future studies linking human disease and environmental perchlorate exposure should consider the genetic makeup of the participants, actual perchlorate exposure levels, and individual iodine intake/excretion levels. PMID:16263499

  10. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback

    Science.gov (United States)

    Petersen, Ann M.; Earp, Nathanial C.; Redmond, Mandy E.; Postlethwait, John H.; von Hippel, Frank A.; Buck, C. Loren; Cresko, William A.

    2016-01-01

    Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs) begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14–18 days post fertilization (dpf). We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development. PMID:27383240

  11. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback.

    Directory of Open Access Journals (Sweden)

    Ann M Petersen

    Full Text Available Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf. We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.

  12. Sorption of cesium in intact rock

    Energy Technology Data Exchange (ETDEWEB)

    Puukko, E. [Univ. of Helsinki, Dept. of Chemistry (Finland)

    2014-04-15

    The mass distribution coefficient K{sub d} is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R{sub d} is determined using crushed rock which causes uncertainty in converting the R{sub d} values to K{sub d} values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs{sup +} and it is sorbed by ion exchange. The tracer used in the experiments was {sup 134}Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  13. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  14. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    International Nuclear Information System (INIS)

    Highlights: → Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. → DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. → Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO4-) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21 wastewater was rapidly decreased to

  15. Effect of nitrate, acetate, and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil.

    Science.gov (United States)

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E; Hristova, Krassimira R; Scow, Kate M

    2011-05-01

    The effect of nitrate, acetate, and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared with unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting that the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration that was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting that either perchlorate or nitrate stimulates the growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  16. A rapid and simple method for the separation of TBP-dodecane by perchloric acid

    International Nuclear Information System (INIS)

    Organic solvents, including TBP etc., are widely used as an extractant, and treated and disposed by storage, incineration, and absorption into absorbent after they were used. Any of those methods does not aim at recycling of solvents, treating concurrently the extractant and the diluent without separating them. In this paper, a test is reported on the TBP-dodecane separation by perchloric acid for a separation test of the diluent from the extractant as a first step toward recycling. Basically this separation method is already reported by P. Mark et al. as a method for the analysis of TBP, but it requires a large amount of perchloric acid. With a further detailed study of the perchloric acid effects on the TBP-dodecane separation, it was made clear that the separation is possible by adding a fixed amount of TBP contacted with perchloric acid to the TBP-dodecane solvent. In this paper, its outline is presented. (author)

  17. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    Science.gov (United States)

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  18. Radioiodine tracers as useful tools in studies of thyrotoxic effects of exogenous bromide and perchlorate ions

    International Nuclear Information System (INIS)

    With the use of 125I and 131I radionuclides, we followed the effects of exogenous bromide and perchlorate ions on the metabolism of iodine and of thyroid hormone in the rat. The presumed thyrotoxic effects of bromide and perchlorate have been confirmed and quantified. Correct assay conditions for the radiometric determination of the enzyme activity of thyroid peroxidase (TPO) have been established. The use of the adapted radiometric assay revealed a divergent influence of bromide and perchlorate ions on the TPO activity in the rat thyroids. Excessive bromide exerted a biphasic effect, depending on the extent of bromide intake in the animals. In contrast, in all the rats that were administered with high amounts of perchlorate were found elevated TPO activities. (author)

  19. Distillation device supplies cesium vapor at constant pressure

    Science.gov (United States)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  20. On the stability of perchlorate ions against reductive attacks in electrochemical systems and in the environment

    Directory of Open Access Journals (Sweden)

    GYŐZŐ G. LÁNG

    2011-08-01

    Full Text Available The problems related to the electrochemical/electrocatalytic stability of perchlorate ions are reviewed in the light of recent experimental results. The electrocatalytic, catalytic, and electrochemical reduction processes are presented and the links between them are outlined. Some possible mechanisms of the complicated reduction processes are discussed. Various methods for the detection of reduction process are presented, e.g. voltammetry, impedance spectroscopy, and radiotracer methods. Environmental aspects and some methods for perchlorate removal and wastewater treatment are briefly summarized.

  1. The perchlorate discharge test with 123I for the diagnosis of the Pendred syndrome in children

    International Nuclear Information System (INIS)

    The method for the diagnosis of the Pendred Syndrome in children by the Perchlorate discharge test using 123I is described. The older child, who has the Pendred Syndrome and the obligatory hearing deficit, frequently has neither a goitre nor hypothyroidism, but other investigations (bone growth, scars and function tests) can also show changes. However a more certain diagnosis of this disorder in children is possible by the perchlorate discharge test using 123I. (orig.)

  2. Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors

    OpenAIRE

    Sun, Yvonne; Gustavson, Ruth L.; Ali, Nadia; Weber, Karrie A.; Westphal, Lacey L.; Coates, John D.

    2009-01-01

    The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were ...

  3. Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks.

    Science.gov (United States)

    Vella, Alfred J; Chircop, Cynthia; Micallef, Tamara; Pace, Colette

    2015-07-15

    We report on the presence of perchlorate in the settleable dust of Malta, a small central Mediterranean island. Both dust fall collected directly as it precipitated from atmosphere over a period of one month and deposited indoor dust from domestic residences were studied. Perchlorate was determined by ion chromatography of water extracts of the collected dusts. Dust fall was collected from 43 towns during 2011 to 2013 and indoor dust was sampled from homes in the same localities. Perchlorate was detected in 108 of 153 samples of dust fall (71%) and in 28 of 37 indoor dust samples (76%). Detectable perchlorate in dust fall ranged from 0.52μgg(-1) to 561μgg(-1) with a median value of 6.2μgg(-1); in indoor dust, levels were from 0.79μgg(-1) to 53μgg(-1) with a median value of 7.8μgg(-1), the highest recorded anywhere to date. Statistical analysis suggested that there was no significant difference in perchlorate content of indoor dust and dust fall. Perchlorate levels in dust fall escalate during the summer in response to numerous religious feasts celebrated with fireworks and perchlorate persists at low μgg(-1) concentrations for several months beyond the summer festive period. In Malta, perchlorate derives exclusively from KClO4, imported for fireworks manufacture. Its residue in dust presents an exposure risk to the population, especially via ingestion by hand to mouth transfer. Our results suggest that wherever intensive burning of fireworks takes place, the environmental impact may be much longer lived than realised, mainly due to re-suspension and deposition of contaminated settled dust in the urban environment. PMID:25828411

  4. Ion and electron thermoemission of cesium alumosilicates

    International Nuclear Information System (INIS)

    Relationships between and electron thermoemission of cesium aluminosilicate were studied. Measurements were made at 5.10-8-5.10-9 Tor and temperatures up to 1400 deg C. The effect of additions refractory metals Ti, Mo, Cu and Ir was studied. Ion thermoemission in the pulse regime was also studied. Conclusions are drawn that capacity depends upon additions. The temperature dependence of thermoionic emission current has two maxima and is characterized by instability in time. A conclusion is drawn that aluminosilicate thermionic cathodes can be reckoned as cathodes of a film type

  5. Cesium-137 in grass from Chernobyl fallout

    International Nuclear Information System (INIS)

    Grass ecosystem was monitored for 137Cs, a relatively long-lived radionuclide, for about 16 years since the Chernobyl reactor accident occurred on April 26, 1986. Cesium-137 in grass gramineae or poaceae the species, ranged from 122.9 Bq kg-1 (September 4, 1986) to 5.8 mBq kg-1 (October 16, 2001) that is a range of five orders of magnitude. It was observed that there was a trend of decreasing 137Cs with time reflecting a removal half-time of 40 months (3 1/3 years), which is the ecological half-life, T ec of 137Cs in grassland

  6. Plutonium and Cesium Colloid Mediated Transport

    Science.gov (United States)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  7. Extraction of radioactive cesium from ash of flammable radioactive material

    International Nuclear Information System (INIS)

    Huge amount of radioactive materials was released by the hydrogen explosion at Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake on March 11, 2011. Suppression of the volume of radioactive materials stored by decontamination works is strongly required since the preparation of storage places is not easy. We are developing the technology for separation and concentration of radioactive cesium using nano-particle, Prussian blue, as a cesium adsorption material which has a high efficiency and good selectivity. We propose a method in which radioactive cesium is extracted from the ash of flammable materials into the water and the Prussian blue nano-particles are added to the water to collect cesium. The volume of radioactive wastes contaminated by cesium is expected to be cut down with these processes. (J.P.N.)

  8. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  9. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  10. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  11. Preliminary analyses for perchlorate in selected natural materials and their derivative products

    Science.gov (United States)

    Orris, G.J.; Harvey, G.J.; Tsui, D.T.; Eldrige, J.E.

    2003-01-01

    Increasing concern about sources of perchlorate contamination in ground and surface waters has led to interest in identifying potential sources of natural perchlorate and products derived from these natural sources. To date, most perchlorate found in ground and surface waters has been attributed to its major uses as an oxidizer in solid propellants for rockets, in fireworks and other explosives, and a variety of other uses of man-made perchlorate salts. However, perchlorate found in the soils, surface water, and ground water of some locations cannot be linked to an anthropogenic source. This paper contains preliminary data on the detection and non-detection of perchlorate in a variety of natural materials and their products, including some fertilizer materials. These data were previously presented at two conferences; once in poster session and once orally (Harvey and others, 1999; Orris and others, 2000). Although the results presented here are included in a journal article awaiting publication, the lack of public information on this topic has led to repeated requests for the data used as the basis for our presentations in 1999 and 2000.

  12. A screened hybrid density functional study on energetic complexes: Cobalt, nickel and copper carbohydrazide perchlorates

    International Nuclear Information System (INIS)

    Graphical abstract: The molecular geometry, electronic structure, infrared spectra, and heats of reaction and formation of cobalt and nickel tris(carbohydrazide) perchlorates as well as copper bis(carbohydrazide) perchlorate are investigated using the HSE screened hybrid density functional. The metal-ligand interaction, thermal stability, and red-shift of the amino stretching vibrations of these complexes are also discussed. Moreover, it is found there is a relationship between the energy gap and impact sensitivity. - Abstract: The molecular geometry, electronic structure, infrared spectra and thermochemical properties of cobalt and nickel tris(carbohydrazide) perchlorates (CoCP and NiCP) as well as copper bis(carbohydrazide) perchlorate (CuCP) were investigated using the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional. The results show that both perchlorate ions coordinate with the copper atom, and the interactions between copper and perchlorate are ionic, whereas all the metal-carbohydrazide interactions are covalent. Due to the delocalization from the σN-H bond orbital to the n*M antibond orbital, the amino stretching vibrations of these complexes show considerable red-shift compared with those of free carbohydrazide ligand. The calculated heats of reaction and formation indicate that the formations of these complexes are exothermic, and the order of their thermal stability is NiCP > CoCP > CuCP. These agree well with the experimental results. Finally, we find that there is a relationship between the energy gap and impact sensitivity.

  13. Mechanistic Studies on the Radiolytic Decomposition of Perchlorates on the Martian Surface

    Science.gov (United States)

    Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-04-01

    Perchlorates—inorganic compounds carrying the perchlorate ion ({{ClO}}4{}-)—were discovered at the north polar landing site of the Phoenix spacecraft and at the southern equatorial landing site of the Curiosity Rover within the Martian soil at levels of 0.4-0.6 wt%. This study explores in laboratory experiments the temperature-dependent decomposition mechanisms of hydrated perchlorates—namely magnesium perchlorate hexahydrate (Mg(ClO4)2·6H2O)—and provides yields of the oxygen-bearing species formed in these processes at Mars-relevant surface temperatures from 165 to 310 K in the presence of galactic cosmic-ray particles (GCRs). Our experiments reveal that the response of the perchlorates to the energetic electrons is dictated by the destruction of the perchlorate ion ({{ClO}}4{}-) and the inherent formation of chlorates ({{ClO}}3{}-) plus atomic oxygen (O). Isotopic substitution experiments reveal that the oxygen is released solely from the perchlorate ion and not from the water of hydration (H2O). As the mass spectrometer detects only molecular oxygen (O2) and no atomic oxygen (O), atomic oxygen recombines to molecular oxygen within the perchlorates, with the overall yield of molecular oxygen increasing as the temperature drops from 260 to 160 K. Absolute destruction rates and formation yields of oxygen are provided for the planetary modeling community.

  14. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  15. High-nitrogen-based pyrotechnics: perchlorate-free red- and green-light illuminants based on 5-aminotetrazole.

    Science.gov (United States)

    Sabatini, Jesse J; Moretti, Jared D

    2013-09-16

    Prototype testing of perchlorate-free hand-held signal illuminants for the US Army's M126 A1 red-star and M195 green-star parachute illuminants are described. Although previous perchlorate-free variants for these items have been developed based on high-nitrogen compounds that are not readily available, the new formulations consist of anhydrous 5-aminotetrazole as the suitable perchlorate replacement. Compared to the perchlorate-containing control, the disclosed illuminants exhibited excellent stabilities toward various ignition stimuli and had excellent pyrotechnic performance. The illuminants are important from both military and civil fireworks perspectives, as the perchlorate-free nature of the illuminants adequately address environmental concerns associated with perchlorate-containing red- and green-light-emitting illuminants. PMID:23950104

  16. Studies on release and deposition behaviour of cesium from contaminated sodium pools and cesium trap development for FBTR

    International Nuclear Information System (INIS)

    Investigations were carried out on the release and deposition behaviour of cesium from sodium pools in air-filled chamber in the temperature range of 673 to 873 K, using Cs-134 to simulate Cs-137. About 0.12 kg of sodium was loaded in a burn-pot together with 92.5 kBq of cesium. Experiments were carried out with 21% oxygen. Natural burning period of sodium and specific activity ratio between cesium and sodium showed a tendency to decrease and release fractions of both the species tended to increase with temperature. From the surface deposited aerosols it was observed that cesium has propensity to settle down closer to the point of release. A cesium trap has been developed for FBTR with RVC as getter material. Absorption kinetics and particle release behaviour studies pointed to its intended satisfactory performance in the plant. (author)

  17. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,mf=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,mf=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,mf=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  18. Microbial uptake of uranium, cesium, and radium

    International Nuclear Information System (INIS)

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed

  19. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  20. Cesium separation Using Electrically Switched Ion Exchange

    International Nuclear Information System (INIS)

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electro-chemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 BV/h, the maxi-mum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked 5-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, break-through began at about 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures

  1. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment

    OpenAIRE

    Anna eEngelbrektson; Christopher eHubbard; Lauren eTom; Aaron eBOUSSINA; Yong Tae eJin; Hayden eWong; Yvette Marisa Piceno; Hans Karl Carlson; Mark eConrad; Andersen, Gary L.; Coates, John D.

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 m...

  2. High-performing red-light-emitting pyrotechnic illuminants through the use of perchlorate-free materials.

    Science.gov (United States)

    Moretti, Jared D; Sabatini, Jesse J; Poret, Jay C

    2014-07-01

    The development of perchlorate-free M662 40 mm illuminating pyrotechnic compositions is described. On the bases of cost, performance, and sensitivity, potassium periodate was determined to be most effective potassium perchlorate replacement in the compositions tested. The optimal periodate-based composition exceeded the performance of the perchlorate-containing control, exhibited low sensitivity values to impact, friction, and electrostatic discharge, and had high thermal onset temperatures. PMID:24939042

  3. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution

    International Nuclear Information System (INIS)

    In order to identify a more efficient biosorbent for 137Cs, we have investigated the biosorption behavior and mechanism of 137Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of 137Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of 137Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of 137Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of 137Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. - Highlights: • Microorganisms isolated from a cesium solution are considered as a biosorbent to remove cesium ions. • The biosorption equilibrium is fitted well to a Langmuir model with a correlation coefficient of 0.9997. • First attempt to explore biosorption mechanisms using PIXE and EPBS. • Living and dead microorganisms have different biosorption mechanisms. • The biosorption of 137Cs involved a two-step process: passive and active

  4. Perchlorate in the San Antonio Segment of the Edwards Aquifer, Texas

    Science.gov (United States)

    Fahlquist, L.; Rajagapolan, S.; Jackson, W. A.

    2007-12-01

    Perchlorate has been detected in drinking-water supplies and can have adverse health effects on humans by disrupting thyroid function. Perchlorate and other constituents were analyzed from ground-water samples that were collected in 2004-06 from 99 wells completed in the San Antonio segment of the Edwards aquifer as part of the U.S. Geological Survey National Water-Quality Assessment Program. The fractured karstic carbonate Edwards aquifer, declared a sole-source aquifer by the U.S. Environmental Protection Agency, supplies nearly one-half million acre-feet per year for drinking water and other uses. Wells were located in a variety of land-use settings that included rangeland, agriculture, and urban; well types included domestic, public, and observation. Perchlorate was detected in 98 percent of the samples, and concentrations ranged from less than 0.05 to 3 micrograms per liter (μg/L). Five samples contained concentrations greater than 1 μg/L and were from wells in the urban northern San Antonio area. The results from three samples that contained perchlorate at concentrations greater than 2 μg/L are anomalous. Chloride concentration ranged from 5.6 to 69 milligrams per liter, typical for freshwater in the Edwards aquifer. No significant (r2 greater than 0.7) correlations were observed when perchlorate concentrations were correlated with depth to water, total depth of well, or concentrations of bicarbonate, nitrate, phosphate, sulfate, bromide, chloride, fluoride, calcium, magnesium, potassium, sodium, strontium, and dissolved solids. Tritium concentrations ranged from 1.2 to 2.9 tritium units in 31 of the 99 samples and indicate at least some fraction of modern water (post-atmospheric nuclear tests). No correlation between apparent tritium age and perchlorate concentration was observed, a possible indication that anthropogenic influences are not affecting observed perchlorate concentrations. The molar ratio of chloride to perchlorate ranged from 17,000 to 320

  5. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  6. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    International Nuclear Information System (INIS)

    Graphical abstract: Schemes of perchlorate reduction in ClO4−/ClO3−–NO3− e−acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO4− reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO3−, ClO4−and NO3−. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO4−–ClO3−, ClO4−–ClO3−–NO3−,and ClO4−–NO3− acceptor systems, while being completely inhibited by the additional O2 in the ClO4−–O2 acceptor system. The reduction proceeded as an order of ClO3−, ClO4−, and NO3− in the ClO4−–ClO3−–NO3− system. KS,vmax, and qmax obtained at different e− acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively

  7. Particle size distribution and perchlorate levels in settled dust from urban roads, parks, and roofs in Chengdu, China.

    Science.gov (United States)

    Li, Yiwen; Shen, Yang; Pi, Lu; Hu, Wenli; Chen, Mengqin; Luo, Yan; Li, Zhi; Su, Shijun; Ding, Sanglan; Gan, Zhiwei

    2016-01-01

    A total of 27 settled dust samples were collected from urban roads, parks, and roofs in Chengdu, China to investigate particle size distribution and perchlorate levels in different size fractions. Briefly, fine particle size fractions (intake is safe to both children and adults in Chengdu, China. However, due to perchlorate mainly existing in fine particles, there is a potential for perchlorate to transfer into surface water and the atmosphere by runoff and wind erosion or traffic emission, and this could act as an important perchlorate pollution source for the indoor environment, and merits further study. PMID:26608047

  8. Americium(3) solvent extraction by oxides of dialkyl(diaryl)[dialkylcarbamoylmethyl]phosphines (CMPO) from perchloric acid solutions

    International Nuclear Information System (INIS)

    Extraction of americium(3) from perchloric acid solutions by CMPO was investigated. It is shown that americium(3) is much more effectively extracted from perchloric acid solutions, than from nitric acid ones, and increase in americium distribution coefficient depends considerably on reagent nature. As a consequence, anomalous aryl effect increases significantly in perchloric acid solutions. The value of anomalous aryl effect depends directly on stoichiometry of extracted complexes in nitric acid and perchloric acid media. Conditions for extractional concentration of americium up to the 100-fold one with small reagent consumption were suggested

  9. Spatial variability and Cesium-137 inventories in native forest

    International Nuclear Information System (INIS)

    With the nuclear fission discovery and development of nuclear weapons in 1940s, artificial radioisotopes were introduced in the environment. This contamination is due to worldwide fallout by superficial nuclear tests realized from early 1950s to late 1970s by USA, former URSS, UK, France and China. One of theses radioisotopes that have been very studied is cesium-137. Cesium-137 has a half-life of 30.2 years and its biological behavior is similar to the potassium. The behavior in soil matrix, depth distribution, spatial variability and inventories values of cesium-137 has been determinate for several regions of the world. In Brazil, some research groups have worked on this subject, but there are few works published about theses properties of cesium-137. The aim of this paper was study the depth distribution, spatial variability, and inventory of cesium-137 in native forest. Two native forests (Mata 1 and Mata UEL) were sampling in region of Londrina, PR. The results shows that there is a spatial variability of 40% for Mata 1 and 42% for Mata UEL. The depth distribution of cesium-137 for two forests presented a exponential form, characteristic to undisturbed soil. Cesium-137 inventory determinate for Mata 1 was 358 Bq m-2 and for Mata UEL was 320 Bq m-2. (author)

  10. Soil Flushing Through a Thick Vadose Zone: Perchlorate Removal Documented at Edwards AFB, California

    Science.gov (United States)

    Battey, T. F.; Shepard, A. J.; Tait, R. J.

    2007-12-01

    There are currently few viable alternatives for perchlorate remediation in the vadose zone, particularly for the relatively thick vadose zones that are typical in the arid southwest where many perchlorate sites occur. Perchlorate in the vadose zone occurs in the form of highly soluble salts that may represent a risk to human or ecological receptors, and may also represent a threat to the underlying groundwater. A soil flushing treatability study was conducted at Edwards Air Force Base in the Mojave Desert of southern California at a site with a 129-foot thick vadose zone consisting primarily of clayey sand. This study utilized an infiltration gallery in conjunction with extraction, treatment, and re-injection of groundwater at the site, which contained perchlorate-contaminated soil and groundwater. The study objective was to evaluate the effectiveness of the infiltration gallery to 1) introduce treated groundwater back into the aquifer and 2) wash the perchlorate from the vadose zone soils to the aquifer. The infiltration gallery consisted of slotted PVC pipes within a highly permeable engineered bed of washed gravel. The initial water introduced into the gallery was amended with potassium bromide tracer. A downhole neutron probe was used to track the movement of the wetting front downward and outward from the gallery. Successive neutron measurements in vertical access tubes revealed that the introduced water reached the 125-foot bottom of the access tubes 14 weeks after the water was introduced into the gallery. The bromide tracer was detected in groundwater immediately below the gallery approximately 1 week later. The infiltration gallery was able to sustain an average flow rate of 2.3 gallons per minute. Prior to infiltration, the perchlorate concentration in groundwater below the gallery was 4,500 µg/L. Approximately 18 weeks after the start of infiltration, a perchlorate spike of 72,400 µg/L was detected below the gallery. The increase in perchlorate

  11. Inhibition of microbial sulfate reduction in a flow-through column system by (perchlorate treatment

    Directory of Open Access Journals (Sweden)

    Anna eEngelbrektson

    2014-06-01

    Full Text Available Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (perchlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (perchlorate (10 mM. Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Perchlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (perchlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved.

  12. Pollution of drug-technical materials by cesium-137

    International Nuclear Information System (INIS)

    Drug-technical raw materials are medicinal plants (flowers, folium, grasses, mushrooms, roots, fruits, berry, kidney, cortex), used in pharmacy. To limit receipt cesium-137 in people body in 1993 in the Republic of Belarus were created 'Temporary permission levels of the cesium-137 radionuclides contents in drug-technical raw materials' were created (TPL-1993). The permission levels of cesium-137 are following: for drug-technical raw material (flowers, folium, grass, mushrooms, roots and other plants parts) - 1850 Bq/kg, for dried up fruits and berries - 2590 Bq/kg. (Author)

  13. Synthesis and peculiarities of the cesium zeolite crystal structure (cesite)

    International Nuclear Information System (INIS)

    An attempt is made to synthesize cesium zeolite by introduction of amorphous seed crystals which correspond by composition with cesium-containing zeolite into the aluminosilicate gel, since this method can produce zeolite with a crystal structure it would not adopt under the usual conditions. It is seen that during crystablization upon introduction of a seed crystal the cesium content in zeolite decreases. A more complete structural elucidation of zeolite obtained by the suggested method was carried out by x0ray and IR spectral analyses. The data of x-ray analysis showed that the structures of synthesized zeolite and binary octagonal pores are similar

  14. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Separation of 137cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137Cs leach rate was 0.001 gm/cm2/d. (author)

  15. Structure, phase transitions and molecular motions in 4-aminopyridinium perchlorate

    Science.gov (United States)

    Czupinski, O.; Bator, G.; Ciunik, Z.; Jakubas, R.; Medycki, W.; Swiergiel, J.

    2002-09-01

    The crystal structure of the 4-aminopyridinium perchlorate (4-apyH)ClO4 has been determined at 100 K by means of x-ray diffraction as monoclinic, with space group P 21, with Z = 8. The crystal undergoes two structural phase transitions: one of first-order type, reversible, at 241/243 K (on cooling/heating respectively) and one of weakly first-order type, irreversible, at 277 K (on heating). The crystal dynamics is discussed on the basis of the temperature dependence of the 1 H nuclear magnetic resonance second moment (M2) and spin-lattice relaxation time T1. Both phase transitions are interpreted in terms of the changes in the motional state of (4-apyH)+ cations and ClO4- anions. The dielectric dispersion studies disclose a relaxation process over the high-temperature phase (above 241 K) in the audio-frequency region. The dielectric results are described by a Cole-Cole equation. The title crystal reveals pyroelectric properties below 241 K. The ferroelastic domain structure of (4-apyH)ClO4 is observed over the whole temperature range studied.

  16. Structure, phase transitions and molecular motions in 4-aminopyridinium perchlorate

    International Nuclear Information System (INIS)

    The crystal structure of the 4-aminopyridinium perchlorate (4-apyH)ClO4 has been determined at 100 K by means of x-ray diffraction as monoclinic, with space group P 21, with Z=8. The crystal undergoes two structural phase transitions: one of first-order type, reversible, at 241/243 K (on cooling/heating respectively) and one of weakly first-order type, irreversible, at 277 K (on heating). The crystal dynamics is discussed on the basis of the temperature dependence of the 1H nuclear magnetic resonance second moment (M2) and spin-lattice relaxation time T1. Both phase transitions are interpreted in terms of the changes in the motional state of (4-apyH)+ cations and ClO4- anions. The dielectric dispersion studies disclose a relaxation process over the high-temperature phase (above 241 K) in the audio-frequency region. The dielectric results are described by a Cole-Cole equation. The title crystal reveals pyroelectric properties below 241 K. The ferroelastic domain structure of (4-apyH)ClO4 is observed over the whole temperature range studied. (author)

  17. Structure, phase transitions and molecular motions in 4-aminopyridinium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Czupinski, O.; Bator, G.; Ciunik, Z.; Jakubas, R. [Faculty of Chemistry, University of Wroclaw, Wroclaw (Poland); Medycki, W.; Swiergiel, J. [Institute of Molecular Physics, PAS, Poznan (Poland)

    2002-09-16

    The crystal structure of the 4-aminopyridinium perchlorate (4-apyH)ClO{sub 4} has been determined at 100 K by means of x-ray diffraction as monoclinic, with space group P 2{sub 1}, with Z=8. The crystal undergoes two structural phase transitions: one of first-order type, reversible, at 241/243 K (on cooling/heating respectively) and one of weakly first-order type, irreversible, at 277 K (on heating). The crystal dynamics is discussed on the basis of the temperature dependence of the {sup 1}H nuclear magnetic resonance second moment (M{sub 2}) and spin-lattice relaxation time T{sub 1}. Both phase transitions are interpreted in terms of the changes in the motional state of (4-apyH){sup +} cations and ClO{sub 4}- anions. The dielectric dispersion studies disclose a relaxation process over the high-temperature phase (above 241 K) in the audio-frequency region. The dielectric results are described by a Cole-Cole equation. The title crystal reveals pyroelectric properties below 241 K. The ferroelastic domain structure of (4-apyH)ClO{sub 4} is observed over the whole temperature range studied. (author)

  18. Iodine-deficient vegetarians: a hypothetical perchlorate-susceptible population?

    Science.gov (United States)

    Fields, Cheryl; Dourson, Michael; Borak, Jonathan

    2005-06-01

    Recent risk assessments of environmental perchlorate have been subject to much debate. A particular concern is whether appropriate susceptible sub-populations have been identified. Iodine-deficient pregnant women, especially vegetarians, have been proposed as such a potential susceptible sub-population, but there is no evidence of iodine deficiency in the US population and the adequacy of iodine nutrition has not been studied in US vegetarians. To understand the possibility that US vegetarians might be iodine deficient, we reviewed the prevalence, demography, and lifestyle characteristics of US vegetarians as well as the world literature on iodine nutrition in vegetarians. Our findings indicate that strict vegetarians and vegans, who comprise probably less than 0.1% of the US population, have higher education, higher incomes, and healthier lifestyles than the general population. Field studies indicate that vegetarian diets need not lead to iodine deficiency and vegans may suffer excess iodine intake. It is remains uncertain whether there are iodine-deficient vegans or pregnant women in the US. Of more general concern is whether the 10-fold default uncertainty factor is needed for intraspecies (i.e., within human) variability to protect such hypothetical susceptible sub-populations. PMID:15896441

  19. Chlorine-36 abundance in natural and synthetic perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Heikoop, Jeffrey M [Los Alamos National Laboratory; Dale, M [NON LANL; Sturchio, Neil C [UNIV OF ILLIONOIS; Caffee, M [PURDUE UNIV; Belosa, A D [UNIV OF ILLINOIS; Heraty, Jr., L J [UNIV OF ILLINOIS; Bohike, J K [RESTON, VA; Hatzinger, P B [SHAW ENIVIORNMENTAL C0.; Jackson, W A [TEXAS TECH; Gu, B [ORNL

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  20. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  1. Widespread occurrence of (per)chlorate in the Solar System

    Science.gov (United States)

    Jackson, W. Andrew; Davila, Alfonso F.; Sears, Derek W. G.; Coates, John D.; McKay, Christopher P.; Brundrett, Maeghan; Estrada, Nubia; Böhlke, J. K.

    2015-11-01

    Perchlorate (ClO4-) and chlorate (ClO3-) are ubiquitous on Earth and ClO4- has also been found on Mars. These species can play important roles in geochemical processes such as oxidation of organic matter and as biological electron acceptors, and are also indicators of important photochemical reactions involving oxyanions; on Mars they could be relevant for human habitability both in terms of in situ resource utilization and potential human health effects. For the first time, we extracted, detected and quantified ClO4- and ClO3- in extraterrestrial, non-planetary samples: regolith and rock samples from the Moon, and two chondrite meteorites (Murchison and Fayetteville). Lunar samples were collected by astronauts during the Apollo program, and meteorite samples were recovered immediately after their fall. This fact, together with the heterogeneous distribution of ClO4- and ClO3- within some of the samples, and their relative abundance with respect to other soluble species (e.g., NO3-) are consistent with an extraterrestrial origin of the oxychlorine species. Our results, combined with the previously reported widespread occurrence on Earth and Mars, indicate that ClO4- and ClO3- could be present throughout the Solar System.

  2. Biosorption of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Some fundamental aspects of the biosorption of metals by microbial cells were investigated. These studies were carried out in conjunction with efforts to develop a process to utilize microbial cells as biosorbents for the removal of radionuclides from waste streams generated by the nuclear fuel cycle. It was felt that an understanding of the mechanism(s) of metal uptake would potentially enable the enhancement of the metal uptake phenomenon through environmental or genetic manipulation of the microorganisms. Also presented are the results of a preliminary investigation of the applicability of microorganisms for the removal of 137cesium and 226radium from existing waste solutions. The studies were directed primarily at a characterization of uranium uptake by the yeast, Saccharomyces cerevisiae, and the bacterium, Pseudomonas aeruginosa

  3. Structure of double hafnium and cesium sulfate

    International Nuclear Information System (INIS)

    The structure of a compound whose formula according to the structural investigation is Cssub(2+x)Hf(SOsub(4))sub(2+x)(HSOsub(4))sub(2-x)x3Hsub(2)O (x approximately 0.7) (a=10.220, b=12.004, c=15.767 A, space group Pcmn) is determined by diffractometric data (2840 reflections, anisotropic refinement, R=0.087). It is build of complex unions [Hf(SO4)4H2O]4-, Cs+ cations and water molecules. Eight O atoms surrounding Hf atom (dodecahedron Hf-O 2.10-2.22 A) belong to four sulphate groups and water molecule. Three sulphate groups are bidentate-cyclic, and one group - monodentate relative to Hf. The structure has a cesium deficit in particular positions

  4. Double manganese(III) cesium triphosphate

    International Nuclear Information System (INIS)

    Double triphosphates have been identified in research on interactions in the P2O5-M2O3-Cs2O-H2O system, where M(III) = Al, Ga, Cr, Fe, at 570-770K, which have the M(III)Cs2 - P3O10 composition; here we report the identification of a new phase made under analogous conditions in a system containing Mn(III) together with some of its physicochemical properties. The product was analyzed for phosphorus by a colorimetric method, for manganese by titration with EDTA, and for cesium by atomic absorption. The x-ray phase analysis was performed with a DRON-3.0 diffractometer. The IR spectra were recorded. Thermogravimetry indicates that the product is MnCs2P3O10·H2O

  5. Microbial Community Structure during Nitrate and Perchlorate Reduction in Ion-exchange Brine Using the Hydrogen-based membrane Biofilm Reactor (MBIR)

    Science.gov (United States)

    Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane ...

  6. NOVEL ASSOCIATIONS BETWEEN URINARY PERCHLORATE AND POTENTIALLY RELEVANT EFFECTS ON RISK FACTORS FOR HEART DISEASE BASED ON NHANES 2001-2002

    Science.gov (United States)

    Perchlorate is a widespread environmental pollutant, and is a thyroid hormone disruptor. A previous population study based on the National Health and Nutrition Examination Survey (NHANES) 2001-2002 database showed that urinary perchlorate concentrations were associated with signi...

  7. Adaptive evolution of Desulfovibrio alaskensis G20 for developing resistance to perchlorate

    Science.gov (United States)

    Mehta-Kolte, M. G.; Youngblut, M.; Redford, S.; Gregoire, P.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Due to its toxic, explosive, and corrosive nature, inadvertent biological H2S production by sulfate reducing microorganisms (SRM) poses significant health and industrial operational risks. Anthropogenic sources are dominated by the oil industry where H2S in reservoir gases and fluids has an associated annual cost estimated at $90 billion globally. Our previous studies have identified perchlorate (ClO4-) as a selective and potent inhibitor of SRM in pure culture and complex microbial ecosystems. However, constant addition of inhibitors like perchlorate to natural ecosystems may result in a new adaptive selective pressure on SRM populations. With this in mind we investigated the ability of Desulfovibrio alaskensis G20, a model oil reservoir SRM, to adapt to perchlorate and develop a resistance. Serial transfers of three parallel cultures with increasing concentrations of perchlorate up to 100 mM were generated and compared to wild-type strains that were transferred for same number of generations in absence of perchlorate. Genome sequencing revealed that all three adapted strains had single non-synonymous single-nucleotide polymorphisms in the same gene, Dde_2265, the sulfate adenylytransferase (ATP sulfurylase (ATPS)) (EC 2.7.7.4). ATPS catalyzes the first committed step in sulfate reduction and is essential in all SRM. IC50s against growth for these evolved strains demonstrated a three-fold increased resistance to perchlorate compared to wild-type controls. These evolved strains also had 5x higher transcriptional abundance of Dde_2265 compared to the wild-type strain. Biochemical characterization of the purified ATPS enzyme from both wild-type and the evolved strain showed that the mutant ATPS from the evolved strain was resistant to perchlorate inhibition of ATP turnover with a KI for perchlorate that was 3x greater relative to the wild-type ATPS. These results demonstrate that a single-base pair mutation in ATPS can have a significant impact on developing

  8. Effects of lanthanum nitrate on growth and chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress

    Institute of Scientific and Technical Information of China (English)

    谢寅峰; 蔡贤雷; 刘伟龙; 陶功胜; 陈倩; 张强

    2013-01-01

    To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi-tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0.1 and 0.5 mg/L La3+alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Fm',ΦPSI and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+showed an optimal mitigative effect, while excess La3+(5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p<0.05). The results suggested that appropriate concentration of La3+could effectively alleviate growth inhibition and injury of A. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II of A. philoxeroides under perchlorate stress.

  9. Perchlorate and Nitrate Remediation Efficiency and Microbial Diversity in a Containerized Wetland Bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jr., B D; Dibley, V; Pinkart, H; Legler, T

    2004-06-09

    We have developed a method to remove perchlorate (14 to 27 {micro}g/L) and nitrate (48 mg/L) from contaminated groundwater using a wetland bioreactor. The bioreactor has operated continuously in a remote field location for more than two years with a stable ecosystem of indigenous organisms. This study assesses the bioreactor for long-term perchlorate and nitrate remediation by evaluating influent and effluent groundwater for reduction-oxidation conditions and nitrate and perchlorate concentrations. Total community DNA was extracted and purified from 10-g sediment samples retrieved from vertical coring of the bioreactor during winter. Analysis by denaturing gradient gel electrophoresis of short, 16S rDNA, polymerase-chain-reaction products was used to identify dominant microorganisms. Bacteria genera identified were closely affiliated with bacteria widely distributed in soils, mud layers, and fresh water. Of the 17 dominant bands sequenced, most were gram negative and capable of aerobic or anaerobic respiration with nitrate as the terminal electron acceptor (Pseudomonas, Acinetobacter, Halomonas, and Nitrospira). Several identified genera (Rhizobium, Acinetobactor, and Xanthomonas) are capable of fixing atmospheric nitrogen into a combined form (ammonia) usable by host plants. Isolates were identified from the Proteobacteria class, known for the ability to reduce perchlorate. Initial bacterial assessments of sediments confirm the prevalence of facultative anaerobic bacteria capable of reducing perchlorate and nitrate in situ.

  10. Assessment of perchlorate-reducing bacteria in a highly polluted river.

    Science.gov (United States)

    Vigliotta, Giovanni; Motta, Oriana; Guarino, Francesco; Iannece, Patrizia; Proto, Antonio

    2010-11-01

    A 1-year monitoring experiment of the Sarno River basin was conducted during 2008 to evaluate the overall quality of the water over time and to compare the results with those obtained previously. The physico-chemical and microbiological characteristics of the water course had not changed appreciably with respect to previous determinations, thus emphasizing the major contribution of untreated urban wastewater to the overall pollution of the river. Moreover, attention was paid to the perchlorate ion, one of the so-called emerging contaminants, which is widespread in natural environments and is known to have adverse effects on the human thyroid gland. Over the entire monitoring program, we did not find appreciable levels of perchlorate, although the particular environmental condition could support its development. Thus, a dedicated study was designed to assess the presence of bacteria that can reasonably reduce perchlorate levels. By enrichment and molecular procedures, we identified α- and β-Proteobacteria strains, classified by 16S rDNA sequences as Dechlorospirillum sp. and Dechlorosoma sp., respectively. Further physiologic characterization and the presence of the alpha subunit gene (pcrA) of the perchlorate reductase in both strains confirmed the presence in the river of viable and active perchlorate dissimilatory bacteria. PMID:20843743

  11. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering.

    Science.gov (United States)

    Hao, Jumin; Han, Mei-Juan; Li, Jinwei; Meng, Xiaoguang

    2012-07-01

    Surface-enhanced Raman scattering (SERS), as one of the most sensitive spectroscopic analysis methods, has been investigated extensively for the detection of environmental contaminants in recent years. In this work, we reported the new development of robust SERS substrates for rapid and sensitive sensing of aqueous perchlorate, a widespread environmental contaminant. The fabrication of the substrates consisted of two simple steps: (a) formation of Ag nanofilms on Cu and surface-roughened Cu foils (Ag/Cu and Ag/rCu nanofilms) using a controllable and inexpensive one-step electroless plating process, and (b) surface modification of the Ag nanofilms with cysteamine (Cys) self-assembly monolayer (SAM) (Cys-Ag/Cu and Cys-Ag/rCu substrates). Due to the strong affinity of -NH(3)(+) groups of the Cys molecules for perchlorate ions, the rapid SERS detection of perchlorate has been realized with a limit of detection (LOD) down to 5 μg L(-1) (ppb) for aqueous samples without need for drying. Various calibration curves with good linear relationships were obtained, indicating the quantification potential of SERS analysis of perchlorate using these new substrates. It was found that the neutral pH yielded the maximum SERS signals, and 85% of original sensitivity was remained in 5 days of storage time in the air, indicating the substrates are fairly stable. Within 10 regeneration-reuse cycles, the SERS signals of perchlorate kept in the range of 85-105% of the original value, verifying its reusability. PMID:22494687

  12. Low-work-function surfaces produced by cesium carbonate decomposition

    Science.gov (United States)

    Briere, T. R.; Sommer, A. H.

    1977-01-01

    Cesium carbonate (Cs2CO3) was heated to the decomposition temperature of approximately 600 C. The nonvolatile decomposition products were condensed on a nickel substrate while the carbon dioxide was removed by pumping. The deposited material is characterized by an effective work function of between 1.05 and 1.15 eV at 450 K and by photoemission in the visible and near-infrared region of the spectrum. It is suggested that the deposited material consists of Cs2O, possibly Cs2O2, and adsorbed cesium. Silver, evaporated from a heated silver bead, produced the typical photoemissive and thermionic properties of a silver-oxygen-cesium (S-1) photocathode. The material may be of interest for thermionic energy converters and for the formation of silver-oxygen-cesium photocathodes.

  13. Sorption of cesium and strontium by arid region desert soil

    International Nuclear Information System (INIS)

    Adsorption and ion exchange in soil systems are the principal mechanisms that retard the migration of nuclear waste to the biosphere. Cesium and strontium are two elements with radioactive isotopes (Cs137 and Sr90) that are commonly disposed of as nuclear waste. The sorption and ion exchange properties of nonradioactive cesium and strontium were studied in this investigation. The soil used in this study was collected at an experimental infiltration site on Frenchman Flat, a closed drainage basin on the Nevada Test Site. This soil is mostly nonsaline-alkali sandy loam and loamy sand with a cation exchange capacity ranging from 13 to 30 me/100g. The clay fraction of the soil contains illite, montmorillonite, and clinoptilolite. Ion exchange studies have shown that this soil sorbs cesium preferentially relative to strontium, and that charge for charge, the exchange-phase cations released from exchange sites exceed the cesium and strontium sorbed by the soil. 38 references, 22 figures

  14. Cesium iodide crystals fused to vacuum tube faceplates

    Science.gov (United States)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  15. Sorption of cesium on Olkiluoto mica gneiss, granodiorite and granite

    International Nuclear Information System (INIS)

    Cesium was selected as a model to study the sorption in bedrock occurring by ion exchange mechanism. The aim of the study was to supplement the existing data on sorption occurring by ion exchange mechanism in bedrock of the candidate sites for spent fuel disposal at Olkiluoto. The sorption of cesium was studied on crushed mica gneiss, tonalite (granodiorite) and granite in artificial groundwaters. Fresh water was represented by Allard water, pH 8 and pH 7, and saline water by Ol-So water, pH 7 and pH 9. In addition, a Na-Ca-Cl brine water and its 1:10 dilution were used as simulants. Cesium concentrations were between 10-8 and 10-3 mol/l. The distribution coefficients of the sorption, Rd and Ra values were determined by batch method. Isotherms were partly non-linear with slopes 0.7 - 1.0 depending on rock and water. At the end of the sorption experiment, the water was analysed for cations exchanged for cesium. The sorption of cesium was also studied as a function of ionic strength. The ionic strength increased in the order Allard < 0l-Br 1:10 < 0l-So < 0l-Br. The sorption of cesium was lower at higher ionic strength and higher Cs concentration. The mineral composition of rocks was determined by thin section analysis, and the sorption distribution ratios on thin sections in the different waters were determined by batch technique. The minerals, that sorbed most cesium were determined by autoradiography. These were biotite, muscovite and chlorite. Cordierite in mica gneiss also sorbed cesium very effectively. (orig.)

  16. Sorption of cesium on Olkiluoto mica gneiss, granodiorite and granite

    Energy Technology Data Exchange (ETDEWEB)

    Huitti, T.; Hakanen, M. [Univ. of Helsinki (Finland). Lab. of Radiochemistry; Lindberg, A. [Geological Survey of Finland, Espoo (Finland)

    1998-09-01

    Cesium was selected as a model to study the sorption in bedrock occurring by ion exchange mechanism. The aim of the study was to supplement the existing data on sorption occurring by ion exchange mechanism in bedrock of the candidate sites for spent fuel disposal at Olkiluoto. The sorption of cesium was studied on crushed mica gneiss, tonalite (granodiorite) and granite in artificial groundwaters. Fresh water was represented by Allard water, pH 8 and pH 7, and saline water by Ol-So water, pH 7 and pH 9. In addition, a Na-Ca-Cl brine water and its 1:10 dilution were used as simulants. Cesium concentrations were between 10{sup -8} and 10{sup -3} mol/l. The distribution coefficients of the sorption, R{sub d} and R{sub a} values were determined by batch method. Isotherms were partly non-linear with slopes 0.7 - 1.0 depending on rock and water. At the end of the sorption experiment, the water was analysed for cations exchanged for cesium. The sorption of cesium was also studied as a function of ionic strength. The ionic strength increased in the order Allard < 0l-Br 1:10 < 0l-So < 0l-Br. The sorption of cesium was lower at higher ionic strength and higher Cs concentration. The mineral composition of rocks was determined by thin section analysis, and the sorption distribution ratios on thin sections in the different waters were determined by batch technique. The minerals, that sorbed most cesium were determined by autoradiography. These were biotite, muscovite and chlorite. Cordierite in mica gneiss also sorbed cesium very effectively. (orig.) 12 refs.

  17. Cesium pre-implantation of embedded biological sections

    International Nuclear Information System (INIS)

    An ion implantation system which allows the implantation of a large surface of a specimen has been used to obtain an homogeneous enrichment with cesium of embedded biological tissues sections. In such a specimen, containing already oxygen at a high concentration, the addition of cesium allows both positive and negative secondary ions to be studied with the highest sensitivity, using the same primary ion source.

  18. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    OpenAIRE

    Wisniewski, Eric; Velazquez, Daniel; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study incl...

  19. Adsorption Behaviour of Liquid 4He on Cesium Substrates

    OpenAIRE

    Iov, Valentin

    2004-01-01

    The aim of this thesis is to investigate the wetting properties of 4He on cesium substrates using optical and electrical methods. Due to the fact that the cesium substrates are deposited at low temperatures onto a thin silver underlayer, it is necessary firstly to study and understand the adsorption of helium on silver. The work presented here is structured as follows: some of the fundamental concepts on the theory of physisorbed films, such as van der Waals interaction, adsorption isotherms ...

  20. Activation energies involved in isothermal dehydration and decomposition of gamma-irradiated magnesium perchlorate (Paper No. RE-23)

    International Nuclear Information System (INIS)

    Gamma-irradiation enhances the acceleratory rate of dehydration as well as decomposition of magnesium perchlorate. Activation energies computed using Arrhenius treatment decreased with rise in radiation dose prior to its thermal dehydration and decomposition. The reduction in the activation energies may be attributed to the strain and stress produced in voids of the samples of magnesium perchlorate due to irradiation. (author)

  1. Martian Chlorine Chemistry: A Study of Perchlorate on the Martian Surface, Evidence of an Ongoing Formation Mechanism and Implications of a Complex Chlorine Cycle

    Science.gov (United States)

    Carrier, Brandi L.

    2015-10-01

    The research presented herein addresses the detection of perchlorate on Mars, evidence of perchlorate in Mars meteorite EETA 79001, determination of the perchlorate parent salts at the Phoenix landing site, and the ongoing formation of perchlorate from chloride minerals as well as from other oxychlorine species. The detection of perchlorate in three samples by the Phoenix Wet Chemistry Laboratory and the implication of these results are discussed. The further detection of perchlorate in Mars meteorite EETA 79001 by ion chromatography and the determination of the parent salts of the perchlorate detected at the Phoenix landing site by electrochemical analyses and ion chromatography are detailed and the implications of the identity of the parent salts are discussed. The possible formation pathways for martian perchlorate are then explored and a possible mechanism for ongoing perchlorate formation on the martian surface is detailed. Perchlorate is shown to be formed upon exposure of chloride minerals, as well as of chlorite and chlorate salts, to current Mars relevant conditions including temperature, pressure, ultraviolet radiation and atmospheric composition. The implications of this ongoing perchlorate formation for the survival and detection of organics, the oxidizing nature of the soil, formation of liquid brines and recurring slope lineae are discussed. Further preliminary experiments have been conducted to investigate the effects of perchlorate formation on the survival and degradation of organic compounds.

  2. Study of strontium and cesium migration in fractured crystalline rock

    International Nuclear Information System (INIS)

    The purpose of this investigation has been to study the retardation and dilution of non-active strontium and cesium relative to a non-absorbing substance (iodide) in a well-defined fracture zone in the Finnsjoen field research area. The investigation was carried out in a previously tracer-tested fracture zone. The study has encompassed two separate test runs with prolonged injection of strontium and iodide and of cesium and iodide. The test have shown that: - Strontium is not retarded, but rather absorbed to about 40% at equilibrium. - At injection stop, 36.3% of the injected mass of strontium has been absorbed and there is no deabsorption. -Cesium is retarded a factor of 2-3 and absorbed to about 30% at equilibrium. - At injection stop, 39.4% of the injected mass of cesium has been absorbed. Cesium is deabsorbed after injection stop (400h) and after 1300 hours, only 22% of the injected mass of cesium is absorbed. (author)

  3. Seasonal variation of cesium 134 and cesium 137 in semidomestic reindeer in Norway after the Chernobyl accident

    Directory of Open Access Journals (Sweden)

    I.M. H. Eikelmann

    1990-09-01

    Full Text Available The Chernobyl accident had a great impact on the semidomestic reindeer husbandry in central Norway. Seasonal differences in habitat and diet resulted in large variations in observed radiocesium concentrations in reindeer after the Chernobyl accident. In three areas with high values of cesium-134 and cesium-137 in lichens, the main feed for reindeer in winter, reindeer were sampled every second month to monitor the seasonal variation and the decrease rate of the radioactivity. The results are based on measurements of cesium-134 and cesium-137 content in meat and blood and by whole-body monitoring of live animals. In 1987 the increase of radiocesium content in reindeer in Vågå were 4x from August to January. The mean reductions in radiocesium content from the winter 1986/87 to the winter 1987/88 were 32%, 50% and 43% in the areas of Vågå, Østre-Namdal and Lom respectively.

  4. A simplified method for obtaining high-purity perchlorate from groundwater for isotope analyses.

    Energy Technology Data Exchange (ETDEWEB)

    vonKiparski, G; Hillegonds, D

    2011-04-04

    Investigations into the occurrence and origin of perchlorate (ClO{sub 4}{sup -}) found in groundwater from across North America have been sparse until recent years, and there is mounting evidence that natural formation mechanisms are important. New opportunities for identifying groundwater perchlorate and its origin have arisen with the utilization of improved detection methods and sampling techniques. Additionally, application of the forensic potential of isotopic measurements has begun to elucidate sources, potential formation mechanisms and natural attenuation processes. Procedures developed appear to be amenable to enable high precision stable isotopic analyses, as well as lower precision AMS analyses of {sup 36}Cl. Immediate work is in analyzing perchlorate isotope standards and developing full analytical accuracy and uncertainty expectations. Field samples have also been collected, and will be analyzed when final qa/qc samples are deemed acceptable.

  5. The effect of various reaction parameters on bioremediation of perchlorate-contaminated water

    International Nuclear Information System (INIS)

    The bioremediation was employed to treat perchlorate-contaminated water. All enrichments and growth of mixed cultures were performed in anaerobic acetate medium. Enrichment cultures were started with activated sludge obtained from a local wastewater treatment plant where it predominantly treats domestic wastewater. Several parameters affecting perchlorate removal were examined through batch experiments, these include the amount of domesticated sludge, the acetate concentration, pH, the C/N ratio and the reaction temperature. The results indicated that acetate was an effective carbon source and electron donor. Under the selected conditions, namely 1.0 g domesticated sludge, an acetate concentration of 1.2 g l-1, pH 8.0, a C/N ratio of 20 at 40 deg, C, 50 mg l-1 perchlorate could be rapidly reduced to non-detectable levels within 24 h

  6. Dracorhodin perchlorate induces the apoptosis of glioma cells.

    Science.gov (United States)

    Chen, Xin; Luo, Junjie; Meng, Linghu; Pan, Taifeng; Zhao, Binjie; Tang, Zhen-Gang; Dai, Yongjian

    2016-04-01

    Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment. PMID:26846469

  7. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors.

    Science.gov (United States)

    Ju, Xiumin; Sierra-Alvarez, Reyes; Field, Jim A; Byrnes, David J; Bentley, Harold; Bentley, Richard

    2008-03-01

    ClO(4)(-) has recently been recognized as a widespread contaminant of surface and ground water. This research investigated chemolithotrophic perchlorate reduction by bacteria in soils and sludges utilizing inorganic electron-donating substrates such as hydrogen, elemental iron, and elemental sulfur. The bioassays were performed in anaerobic serum bottles with various inocula from anaerobic or aerobic environments. All the tested sludge inocula were capable of reducing perchlorate with H2 as electron donor. Aerobic activated sludge was evaluated further and it supported perchlorate reduction with Fe(0) and S(0) additions under anaerobic conditions. Heat-killed sludge did not convert ClO(4)(-), confirming the reactions were biologically catalyzed. ClO(4)(-) (3mM) was almost completely removed by the first sampling time on d 8 with H2 (> or = 0.37mMd(-1)), after 22d with S(0) (0.18mM d(-1)) and 84% removed after 37d with Fe(0) additions (0.085mMd(-1)). Perchlorate-reduction occurred at a much faster rate (1.12mMd(-1)), when using an enrichment culture developed from the activated sludge with S(0) as an electron donor. The enrichment culture also utilized S(2-) and S(2)O(3)(2-) as electron-donating substrates to support ClO(4)(-) reduction. The mixed cultures also catalyzed the disproportionation of S(0) to S(2-) and SO(4)(2-). Evidence is presented demonstrating that S(0) was directly utilized by microorganisms to support perchlorate-reduction. In all the experiments, ClO(4)(-) was stoichiometrically converted to chloride. The study demonstrates that microorganisms present in wastewater sludges can readily use a variety of inorganic compounds to support perchlorate reduction. PMID:17988714

  8. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios

    Science.gov (United States)

    Mukhi, S.; Torres, L.; Patino, R.

    2007-01-01

    The objective of this study was to determine the effect of larval-juvenile exposure to perchlorate, a thyroid hormone synthesis inhibitor, on the establishment of gonadal sex ratios in zebrafish. Zebrafish were exposed to untreated water or water containing perchlorate at 100 or 250 ppm for a period of 30 days starting at 3 days postfertilization (dpf). Recovery treatments consisted of a combination of perchlorate and exogenous thyroxine (T4; 10 nM). Thyroid histology was assessed at the end of the treatment period (33 dpf), and gonadal histology and sex ratios were determined in fish that were allowed an additional 10-day period of growth in untreated water. As expected, exposure to perchlorate caused changes in thyroid histology consistent with hypothyroidism and these effects were reversed by co-treatment with exogenous T4. Perchlorate did not affect fish survival but co-treatment with T4 induced higher mortality. However, relative to the corresponding perchlorate concentration, co-treatment with T4 caused increased mortality only at a perchlorate concentration of 100 ppm. Perchlorate alone or in the presence of T4 suppressed body length at 43 dpf relative to control values. Perchlorate exposure skewed the sex ratio toward female in a concentration-dependent manner, and co-treatment with T4 not only blocked the feminizing effect of perchlorate but also overcompensated by skewing the sex ratio towards male. Moreover, co-treatment with T4 advanced the onset of spermatogenesis in males. There was no clear association between sex ratios and larval survival or growth. We conclude that endogenous thyroid hormone plays a role in the establishment of gonadal sex phenotype during early development in zebrafish. ?? 2006 Elsevier Inc. All rights reserved.

  9. A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic

    Science.gov (United States)

    Bickes, R. W., Jr.; Grubelich, M. C.; Hartman, J. K.; McCampbell, C. B.; Churchill, J. K.

    1994-01-01

    A conventional NSI (NASA Standard Initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium sub-hydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

  10. Linking methane oxidation with perchlorate reduction: a microbial base for possible Martian life

    Science.gov (United States)

    Miller, L. G.; Carlstrom, C.; Baesman, S. M.; Coates, J. D.; Oremland, R. S.

    2011-12-01

    Recent observations of methane (CH4) and perchlorate (ClO4-) within the atmosphere and surface of Mars, respectively, provide impetus for establishing a metabolic linkage between these compounds whereby CH4 acts as an electron donor and perchlorate acts as an electron acceptor. Direct linkage through anaerobic oxidation of methane (AOM) has not been observed. However, indirect syntrophic oxygenase-dependent oxidation of CH4 with an aerobic methane oxidizer is feasible. The pathway for anaerobic dissimilatory perchlorate reduction includes 3 steps. The first 2 are sequential reductions of (1) perchlorate to chlorate and (2) chlorate to chlorite, mediated by perchlorate reductase. The third step is disproportionation of chlorite to chloride and molecular oxygen, mediated by chlorite dismutase. Utilization of thusly derived oxygen by hydrocarbon-degrading organisms in anoxic environments was first demonstrated by Coates et. al. (1998)1, however the link to aerobic methane oxidation was not examined at that time. Here, we systematically explore the potential for several species of aerobic methanotrophs to couple with chlorite during dissimilatory perchlorate reduction. In one experiment, 0.5 kPa CH4 was completely removed in one day from the headspace of combined cell suspensions of Dechloromonas agitata strain CKB and Methylococcus capsulatus in the presence of 5 mM chlorite. Oxidation of labeled 14CH4 to 14CO2 under similar conditions was later confirmed. Another experiment demonstrated complete removal of 0.2 kPa CH4 over several days by Methylobacter albus strain BG8 with strain CKB in the presence of 5 mM chlorite. Finally, we observed complete removal of 0.2 kPa CH4 in bottles containing natural soil (enriched in methanotrophs by CH4 additions over several weeks) and strain CKB and in the presence of 10 mM chlorite. This soil, collected from a pristine lake shoreline, demonstrated endogenous methane, perchlorate, chlorate and chlorite uptake. Other soil and

  11. Dose mapping experiments of refurbished cesium irradiator

    International Nuclear Information System (INIS)

    Full text: Cesium irradiator is a technology demonstration facility for irradiation of food commodities to achieve various purposes like control of sprouting in onion and potato, insect disinfestations of cereals and pulses, quarantine treatment of fresh fruits and vegetables and shelf life extension of perishable foods. The facility was installed in 1968 and recently refurbished with the new control console. The current source strength (137Cs) of the irradiator is 44.3 kCi. The real success of irradiation of food commodities lies in the adequate delivery of radiation dose to achieve the particular purpose of irradiation. Therefore, evaluation of dose distribution pattern in the product trays of the irradiation facility is of paramount importance. Two sets of dose mapping experiments of the product trays of the facility were carried out to find out the dose distribution profile and dose uniformity ratio. Reference standard dosimeter Fricke was used for the experiment. The standardized ionic concentrations of Fricke dosimeter are Ferrous Ammonium Sulphate (FeSO4(NH4)2SO4 6H2O ) - 1 mM, Sodium Chloride (NaCl) - 1 mM, Sulphuric acid (H2SO4) - 400 mM. The Optical Density (O.D) evaluation was carried out using Spectrophotometry with wave length of 304 nm. The dosimetry tray was partitioned into two planes namely bottom plane and top plane using card-board sheets. Polypropylene vials containing Fricke solution were prepared and fixed on the planes. Each plane was containing nine numbers of dosimeters. The product thickness was around 9 cm. The temperatures of irradiation and measurements were 30 deg C and 28 deg C respectively. The first set of experiment was intended to find out the dose distribution profile throughout the irradiation chamber. The dose rate at Dmin position was observed as 3.69 Gy/min with a poor Dose Uniformity Ratio (DUR) of 6.5. In order to improve the dose rate and DUR the second set of the experiment was carried out with modified product geometry

  12. Improvement of cesium retention in uranium dioxide by additional phases

    International Nuclear Information System (INIS)

    The objective of this study is to improve the cesium retention in nuclear fuel. A bibliographic survey indicates that cesium is rapidly released from uranium dioxide in an accident condition. At temperatures higher than 1500 deg C or in oxidising conditions, our experiments show the difficulty of maintaining cesium inside simulated fuel. Two ternary systems are potentially interesting for the retention of cesium and to reduce the kinetics of release from the fuel: Cs2O-Al2O3-SiO2 et Cs2O-ZrO2-SO2. The compounds CsAISi2O6 and Cs2ZrSi6O15 were studied from 1200 deg C to 2000 deg C by thermogravimetric analysis. The volumetric diffusion coefficients of cesium in these structures, in solid state as well as in liquid one, were measured. A fuel was sintered with (Al2O3 + SiO2) or (ZrO2 + SiO2) and the intergranular phase was characterized. In the presence of (Al2O3 + SiO2), the sintering is realized at 1610 deg C in H2. It is a liquid phase sintering. On the other end, with (ZrO2 + SiO2), the sintering is a low temperature one in oxidising atmosphere. Finally, cesium containing simulated fuels were produced with these additives. According to the effective diffusion coefficients that were measured, the additives improved the retention of cesium. We have predicted the improvement that could be hoped for in a nuclear reactor, depending on the dispersion of the intergranular additives, the temperature and the degree of oxidation of the UO2+x. We wait for a factor of 2 for x=0 and more than 8 for x=0.05, up to 2000 deg C. (author). 148 refs., 122 figs., 34 tabs

  13. Cesium and strontium in Black Sea macroalgae

    International Nuclear Information System (INIS)

    The trace level of metals and particularly radioactive ones should be monitored to evaluate the transfer along the trophic chain, assess the risk for biota and can be used for global changes assessment. Plants respond rapidly to all changes in the ecosystem conditions and are widely used as indicators and predictors for changes in hydrology and geology. In this work we represent our successful development and applications of a methodology for monitoring of stable and radioactive strontium and cesium in marine biota (Black Sea algae's). In case of radioactive release they are of high interest. We use ED-XRF, gamma spectrometers and LSC instrumentation and only 0.25 g sample. Obtained results are compared with those of other authors in same regions. The novelty is the connection between the radioactive isotopes and their stable elements in algae in time and space scale. All our samples were collected from Bulgarian Black Sea coast. - Highlights: • An extraction chromatography method for radiochemical separation of Sr and Cs. • Assessment of Sr and Cs accumulation capacity of six Black Sea macroalgae species. • Connection between the isotopes and their stable elements content in algae. • Assessment of Sr and Cs content in ecosystems along the Bulgarian coast

  14. Cesium-137 levels detected in Georgia otters

    International Nuclear Information System (INIS)

    Beginning in the 1940's and continuing through the 50's and early 60's, nuclear devices were tested by aerial detonation in the United States and other countries around the world. Cesium-137 (137Cs) is one of the most important radionuclide by-products due to its abundance and slow decay (30-year half-life). The uptake of 137Cs in animal tissue is the result of its similarity to potassium. The somatic and genetic effects of 137Cs, along with its effect on reproductive cells, can pose great hazards to wildlife species. A reported buildup of 137Cs in white-tailed deer in the lower coastal plain of Georgia during the 1960's was followed by a gradual decline during the 1970's. Although numerous studies have involved terrestrial mammals of Georgia, few have involved aquatic mammals such as the river otter. With continued atmospheric testing by some foreign countries and the increased use of nuclear power as an energy source, there is a need for continued monitoring of radionuclides in wildlife to ascertain the quality of the environment. This study was initiated as part of an overall study of environmental pollutants in the river otter of Georgia and deals with analysis of the 137Cs accumulations in this species

  15. Uptake of cesium ions by human erythrocytes and perfused rat heart: a cesium-133 NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.G.; Murphy, E.; London, R.E.

    1988-05-17

    Cesium-133 NMR studies have been carried out on suspended human erythrocytes and on perfused rat hearts in media containing CsCl. The resulting spectra exhibit two sharp resonances, arising from intra-and extracellular Cs/sup +/, separated in chemical shift by 1.0-1.4 ppm. Thus, intra- and extracellular resonances are easily resolved without the addition of paramagnetic shift reagents required to resolve resonance of the other alkali metal ions. Spin-lattice relaxation times in all cases are monoexponential and significantly shorter (3-4 times) for the intracellular component. When corrections are made for the pulse repetition rate, the total intensity of the intracellular and extracellular Cs/sup +/ resonances in erythrocytes is conserve, implying total observability of the intracellular pool. The uptake of Cs/sup +/ by erythrocytes occurs at approximately one-third the reported rate for K/sup +/ and was reduced by a factor of 2 upon addition of ouabain to the sample. These results indicate that /sup 133/Cs NMR is a promising tool for studying the distribution and transport of cesium ions in biological systems and, in some cases such as uptake by cellular Na,K-ATPase, for analysis of K/sup +/ ion metabolism.

  16. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn

  17. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    International Nuclear Information System (INIS)

    Highlights: • There are radioactively contaminated soils having a radioactive cesium transfer of 0.01. • Micro-PIXE analysis has revealed an existence of phosphorus in a contaminated soil. • Radioactive cesium captured by phosphorus compound would be due to radioactive transfer. -- Abstract: Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ∼0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds

  18. A fundamental study on cesium migration to sodium at low temperature

    International Nuclear Information System (INIS)

    Our experiment study aims to understand the behavior of cesium in severe accident of sodium cooled fast breeder reactor, especially cesium migration rate to sodium. In past study, exact migration rate of cesium to sodium has not been reported because of difficulty of the cesium-sodium interfacial area evaluations of gas bubble. In this study, we developed a pool-type experimental apparatus which can simplify the shape of interfacial area, and measured cesium migration rate in a low temperature range of 200degC to 300degC. The cesium migration rates obtained under the condition that the cesium mixed argon gas flow is the same temperature with sodium vary in the range of 10-3 - 10-1 mol/m2min and increase with increasing the system temperature. The difference of cesium migration rates between non-oxidized sodium surface and oxidized sodium surface is also clearly observed. (author)

  19. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri, E-mail: joskit@igcar.gov.in [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Kutty, K.V. Govindan [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Goswami, M.C. [National Metallurgical Laboratory, Jamshedpur 831 007 (India); Rao, P.R. Vasudeva [Chemistry Group, IGCAR, Kalpakkam 603 102 (India)

    2014-07-01

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs{sub 2}O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (E{sub c}) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth.

  20. Cesium corrosion process in Fe–Cr steel

    International Nuclear Information System (INIS)

    A cesium corrosion out-pile test was performed to Fe–Cr steel in a simulated fuel pin environment. In order to specify the corrosion products, the corroded area was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A cesium corrosion process in Fe–Cr steel was successfully developed proceeding from both experimental results and thermochemical consideration. The corroded area was mainly formed by Fe layer and Fe depleted oxidized layer. The Fe depleted oxidized layer was formed by Cr0.5Fe0.5 and Cr2O3. The presumed main corrosion reactions were 2Cr+2/3 O2→Cr2O3(ΔG650°C=-894.1kJ/mol) and Cr23C6+46Cs+46O2→23Cs2CrO4+6C(ΔG650°C=-25018.1kJ/mol). Factors of these reactions are chromium, carbon, oxygen and cesium. Therefore, cesium corrosion progression must be dependent on the chromium content, carbon content in the steel, the supply rate of oxygen and temperature which correlated with the diffusion rate of cesium and oxygen into the specimen

  1. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs2O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (Ec) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth

  2. The diffusion of cesium, strontium, and europium in silicon carbide

    Science.gov (United States)

    Dwaraknath, S. S.; Was, G. S.

    2016-08-01

    A novel multi-layer diffusion couple was used to isolate the diffusion of strontium, europium and cesium in SiC without introducing radiation damage to SiC and at concentrations below the solubility limit for the fission products in SiC. Diffusion occurred by both bulk and grain boundary pathways for all three fission products between 900∘ C and 1 ,300∘ C. Cesium was the fastest diffuser below 1 ,100∘ C and the slowest above this temperature. Strontium and europium diffusion tracked very closely as a function of temperature for both bulk and grain boundary diffusion. Migration energies ranged from 1.0 eV to 5.7 eV for bulk diffusion and between 2.2 eV and 4.7 eV for grain boundary diffusion. These constitute the first measurements of diffusion of cesium, europium, and strontium in silicon carbide, and the magnitude of the cesium diffusion coefficient supports the premise that high quality TRISO fuel should have minimal cesium release.

  3. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution.

    Science.gov (United States)

    Tang, Youneng; Zhao, Heping; Marcus, Andrew K; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2012-02-01

    A multispecies biofilm model is developed for simultaneous reduction of nitrate and perchlorate in the H(2)-based membrane biofilm reactor. The one-dimension model includes dual-substrate Monod kinetics for a steady-state biofilm with five solid and five dissolved components. The solid components are autotrophic denitrifying bacteria, autotrophic perchlorate-reducing bacteria, heterotrophic bacteria, inert biomass, and extracellular polymeric substances (EPS). The dissolved components are nitrate, perchlorate, hydrogen (H(2)), substrate-utilization-associated products, and biomass-associated products (BAP). The model explicitly considers four mechanisms involved in how three important operating conditions (H(2) pressure, nitrate loading, and perchlorate loading) affect nitrate and perchlorate removals: (1) competition for H(2), (2) promotion of PRB growth due to having two electron acceptors (nitrate and perchlorate), (3) competition between nitrate and perchlorate reduction for the same resources in the PRB: electrons and possibly reductase enzymes, and (4) competition for space in the biofilm. Two other special features are having H(2) delivered from the membrane substratum and solving directly for steady state using a novel three-step approach: finite-difference for approximating partial differential and/or integral equations, Newton-Raphson for solving nonlinear equations, and an iterative scheme to obtain the steady-state biofilm thickness. An example result illustrates the model's features. PMID:22191376

  4. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    Science.gov (United States)

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  5. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  6. ISSUES IN MANAGING THE RISKS ASSOCIATED WITH PERCHLORATE IN DRINKING WATER

    Science.gov (United States)

    Perchlorate (ClO4-) contamination of ground and surface waters has placed drinking water supplies at risk in communities throughout the US, especially in the West. Several major assessment studies of that risk in terms of health and environmental impact are ...

  7. Trace determination of perchlorate using electromembrane extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Kiplagat, I.K.; Doan, T.K.O.; Kubáň, Pavel; Boček, Petr

    2011-01-01

    Roč. 32, č. 21 (2011), s. 3008-3015. ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional research plan: CEZ:AV0Z40310501 Keywords : electromembrane extraction * perchlorate * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  8. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    Science.gov (United States)

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Stams, Alfons J M

    2010-09-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts. PMID:20680263

  9. Periodate salts as pyrotechnic oxidizers: development of barium- and perchlorate-free incendiary formulations.

    Science.gov (United States)

    Moretti, Jared D; Sabatini, Jesse J; Chen, Gary

    2012-07-01

    In a flash: pyrotechnic incendiary formulations with good stabilities toward various ignition stimuli have been developed without the need for barium or perchlorate oxidizers. KIO(4) and NaIO(4) were introduced as pyrotechnic oxidizers and exhibited excellent pyrotechnic performance. The periodate salts may garner widespread use in military and civilian fireworks because of their low hygroscopicities and high chemical reactivities. PMID:22639415

  10. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat.

    Science.gov (United States)

    The Food Quality Protection Act and Safe Drinking Water Act mandate the EPA to identify potential health risks associated with chemicals that act on the endocrine system. Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the...

  11. Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water

    Science.gov (United States)

    Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru

    2012-01-01

    The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…

  12. DISTRIBUTION OF PERCHLORATE IN SAMPLES OF SODIUM NITRATE (CHILE SALTPETER) FERTILIZER DERIVED FROM NATURAL CALICHE

    Science.gov (United States)

    Two lots of sodium nitrate fertilizer derived from Chilean caliche were analyzed to determine the distribution of perchlorate throughout the material. Although our samples represent a limited amount, we found that distribution was essentially homogeneous in any 100-g portion. Whe...

  13. Radioiodine tracers as useful tools in studies of thyrotoxic effects of exogenous bromide and perchlorate ions

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Stanislav

    2012-01-01

    Roč. 291, č. 2 (2012), s. 405-408. ISSN 0236-5731 R&D Projects: GA ČR(CZ) GA304/08/0256 Institutional research plan: CEZ:AV0Z50110509 Keywords : bromide * perchlorate * radioiodine tracer * thyroid hormone Subject RIV: ED - Physiology Impact factor: 1.467, year: 2012

  14. Preparation and Analysis of Solid Solutions in the Potassium Perchlorate-Permanganate System.

    Science.gov (United States)

    Johnson, Garrett K.

    1979-01-01

    Describes an experiment, designed for and tested in an advanced inorganic laboratory methods course for college seniors and graduate students, that prepares and analyzes several samples in the nearly ideal potassium perchlorate-permanganate solid solution series. The results are accounted for by a theoretical treatment based upon aqueous…

  15. 高氯酸诺氟沙星铜(Ⅱ)%Norfloxacin Coppe(Ⅱ) Perchlorate

    Institute of Scientific and Technical Information of China (English)

    谢永荣; 叶琼; 熊仁根

    2004-01-01

    The hydrothermal treatment of Cu(ClO4)2·6H2O and Norfloxacin (H-Norf) afforded [Cu(H-Noff)2(ClO4)2] (1) in which center Cu has a square planar geometry while perchlorate just acts as charge balance anions. CCDC:140821.

  16. Radiation decomposition of ammonium perchlorate in the presence of composite rocket propellant ingredients

    International Nuclear Information System (INIS)

    Radiolysed ammonium perchlorate (AP) oxidises aqueous iodide ions more when it is irradiated in combination with either aluminium, hydroxy terminated polybutadiene (HTPB), copper chromite or iron oxide. The influence is large in the case of AP + HTPB and AP + Copper chromite. (author)

  17. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    Science.gov (United States)

    Hatzinger, P.B.; Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    Environmental context. Perchlorate (ClO4-) and nitrate (NO3-) are common co-contaminants in groundwater, with both natural and anthropogenic sources. Each of these compounds is biodegradable, so in situ enhanced bioremediation is one alternative for treating them in groundwater. Because bacteria typically fractionate isotopes during biodegradation, stable isotope analysis is increasingly used to distinguish this process from transport or mixing-related decreases in contaminant concentrations. However, for this technique to be useful in the field to monitor bioremediation progress, isotope fractionation must be quantified under relevant environmental conditions. In the present study, we quantify the apparent in situ fractionation effects for stable isotopes in ClO4- (Cl and O) and NO3- (N and O) resulting from biodegradation in an aquifer. Abstract. An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br- as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (18O/37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ???0.8 (18O/15N), which is within the range of values

  18. Systematics of Natural Perchlorate in Precipitation, Soils, and Plants at the Amargosa Desert Research Site, Nye County, Nevada

    Science.gov (United States)

    Andraski, B. J.; Stonestrom, D. A.; Jackson, W. A.; Rajagopalan, S.; Taylor, E. M.

    2007-12-01

    Naturally occurring perchlorate is known to be associated with nitrate deposits of the hyperarid Atacama Desert in Chile, and recent large-scale sampling has identified a substantial reservoir (up to 1 kg/ha) of natural perchlorate in diverse unsaturated zones of the arid and semiarid Southwestern United States (Rao et al., 2007, ES&T, DOI: 10.1021/es062853i). The objective of the Amargosa Desert work is to develop a better understanding of the deposition, accumulation, and biological cycling of perchlorate in arid environments. Occurrence of perchlorate was evaluated by sampling shallow soil profiles up to 3 m in depth at four different locations and at two different time periods, and by sampling dominant plant species growing near the subsurface profiles. Deposition of perchlorate was evaluated by analyzing both bulk deposition (precipitation plus dry fall, collected under oil) collected on site and wet deposition samples collected by the National Atmospheric Deposition program at a nearby site. Soil samples and atmospheric-deposition samples were tested for both perchlorate (ClO4- ) and major anions. Perchlorate concentrations (0.2-20 µg/kg) were variable with depth in soil profiles and generally correlated most highly with chloride (Cl-) and nitrate (NO3-), although the intensity of these relations differed among profiles. Plant concentrations were generally above 1 mg/kg, suggesting ClO4- accumulation. Concentrations of ClO4- were generally much greater in total deposition than wet deposition samples, indicating a substantial dryfall component of meteoric deposition. This presentation will present the mass distribution and variability of perchlorate in bulk deposition, soils, and plants. Reasons for observed relations between subsurface concentrations of perchlorate and other anions will be explored.

  19. Dissociative excitation of cesium atom upon e-CsOH collisions

    International Nuclear Information System (INIS)

    The process of dissociative excitation of cesium atom in collisions with mono-kinetic molecules of cesium hydroxide is studied. It is established that behaviour of dissociative excitations the cesium atom in spectral series corresponds of to the grade dependence of cross sections on the main quantum number of the upper level. The values of constants, characterizing the behaviour of cross sections in the eight spectral series of the cesium atom are determined

  20. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  1. Cesium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of 137Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of 137Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope 137Cs releases have resulted in a negligible risk to the environment and the population it supports

  2. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  3. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  4. Spins and magnetic moments of rubidium and cesium nuclides far from stability

    International Nuclear Information System (INIS)

    Previous studies at ISOLDE have concerned spins and magnetic moments of neutron-deficient rubidium and cesium isotopes. Here, the main results obtained, and, in the case of cesium, new moment measurements are briefly discussed also the results from measurements on neutron-rich nuclides of rubidium and cesium. (orig./AH)

  5. Environmental application of cesium-137 irradiation technology: Sludges and foods

    Science.gov (United States)

    Sivinski, Jacek S.

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation.

  6. Environmental application of cesium-137 irradiation technology: sludges and foods

    International Nuclear Information System (INIS)

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation. (author)

  7. Dating of mine waste in lacustrine sediments using cesium-137

    Science.gov (United States)

    Rember, W. C.; Erdman, T. W.; Hoffmann, M. L.; Chamberlain, V. E.; Sprenke, K. F.

    1993-11-01

    For over a century Medicine Lake in northern Idaho has received heavy-metal-laden tailings from the Coeur d'Alene mining district. Establishing the depositional chronology of the lake bottom sediments provides information on the source and rate of deposition of the tailings. Cesium-137, an isotope produced in the atmosphere by nuclear bomb tests, was virtually absent in the environment prior to 1951, but reached its apex in 1964. Our analysis of cesium-137 in the sediments of Medicine Lake revealed that 14 cm of fine-grained tailings were deposited in the lake from 1951 to 1964 and tailing deposition downstream was greatly reduced by the installation of tailings dams in the district in 1968. Cesium-137 analysis is accomplished by a fairly simple gamma-ray counting technique and should be a valuable tool for analyzing sedimentation in any lacustrine environment that was active during the 1950s and 1960s.

  8. Cesium 137 in oils and plants from Guatemala

    International Nuclear Information System (INIS)

    Since 1990 the project of radioactive and environmental contamination started in Guatemala. Studies about the radioactive contamination levels are made within the framework of this project. Cesium-137 has been an interest radionuclide, because it is a fission product released to the environment by the use of nuclear weapons and nuclear power plants accidents. The sampling consisted in collection of soil and grass in 20 provinces of Guatemala, one point by province, and it was made in 1990. The cesium-137 concentration in the samples, was determined by gamma spectrometry, using an hyper pure germanium detector. The results show the presence of radioactive contamination in soil and grass due to cesium-137, at levels that might be considered as normal. The levels found are not harmful for human health, and its importance is the fact that can be used as reference levels for the environmental radioactivity monitoring in Guatemala

  9. Study of radiatively sustained cesium plasmas for solar energy conversion

    Science.gov (United States)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  10. On the compartmental modeling of cesium migration in soils

    International Nuclear Information System (INIS)

    The prediction of the migration of radionuclides in soil following deposition after a nuclear accident is important for both external dose and plant uptake prediction. In this paper, the validity conditions of compartment models for cesium migration in soils are investigated. A compartment model is derived from a diffusion-convection model. The model considers free and bound cesium compartments and is applied to measured profiles of 137Cs of undisturbed soil in Northern Greece. It is concluded that the rate of cesium transfer must vary linearly with depth and that from measured equilibrium profiles, the ratios of model parameters can be determined but not the parameters themselves. This model is applied to measured profiles of 137Cs in soil due to wet deposition following the Chernobyl accident

  11. Thallous and cesium halide materials for use in cryogenic applications

    International Nuclear Information System (INIS)

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  12. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    Science.gov (United States)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-01

    High concentrations of cesium (Cs+) inhibit plant growth but the detailed mechanisms of Cs+ uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs+, chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs+ tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs+ concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs+. Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs+ tolerance enhancer isolated here renders plants tolerant to Cs+ by inhibiting Cs+ entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  13. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    DEFF Research Database (Denmark)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-01-01

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using...... Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs......(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for...

  14. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    Science.gov (United States)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    The presence of methane (CH4) in the atmosphere of Mars is controversial yet the evidence has aroused scientific interest, as CH4 could be a harbinger of extant or extinct microbial life. There are various oxidized compounds present on the surface of Mars that could serve as electron acceptors for the anaerobic oxidation of CH4, including perchlorate (ClO4-). We examined the role of perchlorate, chlorate (ClO3-) and chlorite (ClO2-) as oxidants linked to CH4 oxidation. Dissimilatory perchlorate reduction begins with reduction of ClO4- to ClO2- and ends with dismutation of chlorite to yield chloride (Cl-) and molecular oxygen (O2). We explored the potential for aerobic CH4 oxidizing bacteria to couple with oxygen derived from chlorite dismutation during dissimilatory perchlorate reduction. Methane (0.2 kPa) was completely removed within several days from the N2-flushed headspace above cell suspensions of methanotrophs (Methylobacter albus strain BG8) and perchlorate reducing bacteria (Dechloromonas agitata strain CKB) in the presence of 5 mM ClO2-. Similar rates of CH4 consumption were observed for these mixed cultures whether they were co-mingled or segregated under a common headspace, indicating that direct contact of cells was not required for methane consumption to occur. We also observed complete removal of 0.2 kPa CH4 in bottles containing dried soil (enriched in methanotrophs by CH4 additions over several weeks) and D. agitata CKB and in the presence of 10 mM ClO2-. This soil (seasonally exposed sediment) collected from the shoreline of a freshwater lake (Searsville Lake, CA) demonstrated endogenous CH4 uptake as well as perchlorate, chlorate and chlorite reduction/dismutation. However, these experiments required physical separation of soil from the aqueous bacterial culture to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although dissimilatory reduction of ClO4- and ClO3- could be inferred from the

  15. Physiological and genetic description of dissimilatory perchlorate reduction by the novel marine bacterium Arcobacter sp. strain CAB.

    Science.gov (United States)

    Carlström, Charlotte I; Wang, Ouwei; Melnyk, Ryan A; Bauer, Stefan; Lee, Joyce; Engelbrektson, Anna; Coates, John D

    2013-01-01

    A novel dissimilatory perchlorate-reducing bacterium (DPRB), Arcobacter sp. strain CAB, was isolated from a marina in Berkeley, CA. Phylogenetically, this halophile was most closely related to Arcobacter defluvii strain SW30-2 and Arcobacter ellisii. With acetate as the electron donor, strain CAB completely reduced perchlorate (ClO4(-)) or chlorate (ClO3(-)) [collectively designated (per)chlorate] to innocuous chloride (Cl(-)), likely using the perchlorate reductase (Pcr) and chlorite dismutase (Cld) enzymes. When grown with perchlorate, optimum growth was observed at 25 to 30°C, pH 7, and 3% NaCl. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations were dominated by free-swimming straight rods with 1 to 2 polar flagella per cell. Strain CAB utilized a variety of organic acids, fructose, and hydrogen as electron donors coupled to (per)chlorate reduction. Further, under anoxic growth conditions strain CAB utilized the biogenic oxygen produced as a result of chlorite dismutation to oxidize catechol via the meta-cleavage pathway of aerobic catechol degradation and the catechol 2,3-dioxygenase enzyme. In addition to (per)chlorate, oxygen and nitrate were alternatively used as electron acceptors. The 3.48-Mb draft genome encoded a distinct perchlorate reduction island (PRI) containing several transposases. The genome lacks the pcrC gene, which was previously thought to be essential for (per)chlorate reduction, and appears to use an unrelated Arcobacter c-type cytochrome to perform the same function. IMPORTANCE The study of dissimilatory perchlorate-reducing bacteria (DPRB) has largely focused on freshwater, mesophilic, neutral-pH environments. This study identifies a novel marine DPRB in the genus Arcobacter that represents the first description of a DPRB associated with the Campylobacteraceae. Strain CAB is currently the only epsilonproteobacterial DPRB in pure culture. The genome of strain CAB lacks the pcrC gene found in all

  16. Determination of perchlorate in drinking water by ion chromatography using macrocycle-based concentration and separation methods.

    Science.gov (United States)

    Lamb, John D; Simpson, David; Jensen, Bryce D; Gardner, Joseph S; Peterson, Quinn P

    2006-06-16

    Macrocycle-based ion chromatography provides a convenient, reliable method for the determination of perchlorate ion, which is currently of great interest to the environmental community. This study shows that effective perchlorate determinations can be made using standard conductimetric detection by combining an 18-crown-6-based mobile phase with an underivatized reversed-phase mobile phase ion chromatography (MPIC) column. One unique feature of this method is the flexibility in column capacity that is achieved through simple variations in eluent concentrations of 18-crown-6 and KOH, facilitating the separation of target analyte anions such as perchlorate. Using a standard anion exchange column as concentrator makes possible the determination of perchlorate as low as 0.2 ug/L in low ionic strength matrices. Determination of perchlorate at the sub-ug/L level in pure water and in spiked local city hard water samples with high background ion concentrations can be achieved this way. However, like other IC techniques, this method is challenged to achieve analyses at the ug/L level in the demanding high ionic strength matrix described by the United States Environmental Protection Agency (EPA) (1,000 mg/L chloride, sulfate and carbonate). We approached this challenge by use of the Cryptand C1 concentrator column, provided by Dionex Corporation, to effectively preconcentrate perchlorate while reducing background ion concentrations in the high ionic strength matrix. The retention characteristics of the concentrator column were studied in order to maximize its effectiveness for perchlorate determinations. The method makes possible the determination of perchlorate at the 5 ug/L level in the highest ionic strength matrix described by the EPA. PMID:16516902

  17. Perchlorate content of plant foliage reflects a wide range of species-dependent accumulation but not ozone-induced biosynthesis

    International Nuclear Information System (INIS)

    Perchlorate (ClO4−) interferes with uptake of iodide in humans. Emission inventories do not explain observed distributions. Ozone (O3) is implicated in the natural origin of ClO4−, and has increased since pre-industrial times. O3 produces ClO4−in vitro from Cl−, and plant tissues contain Cl− and redox reactions. We hypothesize that O3 exposure may induce plant synthesis of ClO4−. We exposed contrasting crop species to environmentally relevant O3 concentrations. In the absence of O3 exposure, species exhibited a large range of ClO4− accumulation but there was no relationship between leaf ClO4− and O3, whether expressed as exposure or cumulative flux (dose). Older, senescing leaves accumulated more ClO4− than younger leaves. O3 exposed vegetation is not a source of environmental ClO4−. There was evidence of enhanced ClO4− content in the soil surface at the highest O3 exposure, which could be a significant contributor to environmental ClO4−. -- Highlights: • Exposure to ozone in crop species does not induce accumulation nor biosynthesis of perchlorate. • Older leaves accumulate more perchlorate than younger leaves. • Soil surface may accumulate perchlorate following exposure to ozone. • Species differ greatly in accumulation of perchlorate from the rhizosphere, independent of ozone. • Ozone exposed vegetation is not a candidate source of environmental perchlorate. -- Exposure of crop species to ozone did not lead to biosynthesis or greater accumulation of foliar perchlorate. Older leaves accumulated more perchlorate than younger leaves

  18. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    Science.gov (United States)

    Sturchio, N.C.; Böhlke, J.K.; Beloso, A.D., Jr.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  19. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    International Nuclear Information System (INIS)

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met

  20. A method for reducing the cesium-137 content in meat

    International Nuclear Information System (INIS)

    Reports a study of a method for reducing the amount of cesium-137 in meat from wild animals. The method is intended for use in the kitchen and is based on a combined leaching and mechanical process. (K.A.E.)

  1. Cesium-137 Levels Detected in Otters from Austria

    Directory of Open Access Journals (Sweden)

    Gutleb A.C.

    1991-02-01

    Full Text Available Pollution seems to be one of the most important causes for the decline of the European otter (Lutra lutra. The accident in the Chernobyl nuclear power plant added another aspect to environmental pollution. Few data on cesium-137 contents in otters are available, so levels were measured in 3 otters from Austria. All levels found were very low.

  2. Fission-product tellurium and cesium telluride chemistry revisited

    International Nuclear Information System (INIS)

    The chemistry of fission-product tellurium is discussed with a focus on conditions in an operating CANDU reactor and in an accident scenario, i.e., a loss of coolant accident (LOCA). Cesium telluride, Cs2Te, is likely to be one of the most abundant tellurium species released to containment. Available thermodynamic data on gas phase Cs2Te is not complete; hence the volatility of cesium telluride was studied by Knudsen-cell mass spectrometry. Cesium telluride was found to vapourize incongruently, becoming more tellurium-rich in the condensed phase as vapourization progressed. Vapour-phase species that were observed were elemental cesium and tellurium, CsTe, Cs2Te, Cs2Te2 and Cs2Te3. Second-law enthalpies and entropies were obtained for many of these species, and a third-law value, ΔH298o, of 186 ± 2 kJ·mol-1 was obtained for Cs2Te. (author)

  3. Discovery of Cesium, Lanthanum, Praseodymium and Promethium Isotopes

    OpenAIRE

    May, E.; Thoennessen, M

    2011-01-01

    Currently, forty-one cesium, thirty-five lanthanum, thirty-two praseodymium, and thirty-one promethium, isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  4. Strontium-90 and cesium-137 in fresh water

    International Nuclear Information System (INIS)

    Japan Chemical Analysis Center has analysed the strontium-90 and Cesium-137 contents in fresh water from 7 prefectures in Japan by the commission of Science and Technology Agency of Japanese Government. The method described in ''Radioactivity Survey Data in Japan No. 43 (NIRS-RSD-43, 1977) was applied to the analysis of these two radionuclides in samples. (author)

  5. Cesium ion desorption ionization with Fourier transform mass spectrometry

    International Nuclear Information System (INIS)

    Cesium ions (Cs+) are used for the production of the feed ions necessary to obtain Fourier transform mass spectra (FTMS). The molecule chosen for the initial study of this Cs+ desorption ionization (DI-FTMS) was vitamin B-12 because of its nonvolatile, thermally labile character. 21 references

  6. Membrane-based separation technologies for cesium, strontium, and technetium

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, T.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with 3M, St. Paul, Minnesota, working in cooperation with IBC Advanced Technologies, American Fork, Utah.

  7. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  8. Cesium-137 Levels Detected in Otters from Austria

    OpenAIRE

    Gutleb A.C.; Mraz, G.

    1991-01-01

    Pollution seems to be one of the most important causes for the decline of the European otter (Lutra lutra). The accident in the Chernobyl nuclear power plant added another aspect to environmental pollution. Few data on cesium-137 contents in otters are available, so levels were measured in 3 otters from Austria. All levels found were very low.

  9. A Reservoir of Natural Perchlorate in Unsaturated Zones of Arid and Semi-Arid Regions, Southwestern USA

    Science.gov (United States)

    Rao, B. A.; Stonestrom, D. A.; Anderson, T. A.; Orris, G. J.; Rajagapolan, S.; Sandvig, R. M.; Scanlon, B. R.; Walvoord, M. A.; Jackson, W.

    2006-12-01

    Natural perchlorate (ClO4-) is generally present in unsaturated zones of steppe-to-desert regions of the arid and semi-arid southwestern United States. The perchlorate is associated with atmospherically deposited chloride that has accumulated throughout the Holocene. To assess this natural reservoir, we analyzed unsaturated-zone profiles from ten sites across Nevada, New Mexico, Texas, and Utah for perchlorate and other anions. The sampled sites represent a wide range of precipitation (0.1 0.5 m yr-1), dominant vegetation, soil type, underlying geology, and include five distinct ecological regions: Chihuahuan, Mojave, and southern Great Basin deserts; Arizona-New Mexico semi-desert; and Texas High Plains dry steppe. Concentrations of perchlorate correlated closely with chloride and bromide. The perchlorate reservoir (up to 1 kg ha-1) is sufficiently large to impact groundwater when natural recharge during pluvial periods or induced recharge after conversion to agriculture flushes accumulated salts from the unsaturated zone. This little explored source can explain perchlorate in milk and other agricultural products far from anthropogenic contamination, and should be considered when evaluating overall exposure risk.

  10. Selective extraction of cesium: from compound to process

    International Nuclear Information System (INIS)

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  11. Demonstration test for decontamination technology of cesium-contaminated ash

    International Nuclear Information System (INIS)

    KEPCO Engineering and Construction Company (KEPCO E and C), architecture and engineering company of nuclear power plant, developed the 'decontamination technology of cesium-contaminated ash' in the basis of pre-owned 'decontamination technology of cesium-contaminated soil'. The new technology was demonstrated in Fukushima prefecture during 12 days from November 5, 2013, in order to verify the performance. Demonstration equipment (CEDECON-DA), with a capacity of treatment of 20 ℓ per batch, can be carried in a container in order to promote the ease of transportation and in-situ installation. Through the demonstration test it was verified the superior performance and the possibility of commercialization. This technique comprises of cesium separation and cesium coagulation processes. Briefly speaking, the principal of this process is as follows; cesium is separated from ash, detached to the coagulation and then deposited. The decontaminated ash can be disposed of into municipal landfills as conventional non-radioactive waste. The present technology is evaluated such that the disposal amount of radioactive waste will be significantly reduced. The ash with average concentration of 6,200 Bq/kg from a conventional incineration plant was used for the demonstration test. Each separate performance test has been carried out under acid, neutral and alkaline conditions, respectively. The test result for alkaline condition showed the highest decontamination ratio of 82-85% and the volume reduction ratio of 95%. Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center (RANDEC) performed the radiation protection management, activity measurement and evaluation in the demonstration test results. (author)

  12. Some aspects of cesium deposition in Transilvania (Romania)

    International Nuclear Information System (INIS)

    Following the accident of the Chernobyl atomic electric power station, a great quantity of radionuclides (∼100MCi) escaped from the reactor. It was estimated that 13% of the inventory activity of cesium representing 1.5-2 MCi left the reactor. The radioactive deposits were very nonuniform for the same distance and in the same direction from Chernobyl nuclear center having a close dependence upon direction and speed of wind and pluviometric conditions. The rains, especially the storms, spectacularly increased the radioactive fallout. Although, for the first two-three days, subsequent to accident, the meteorological conditions were favorable for Romania, after April 29/30, because of the changing in the wind direction on SW (initial it was N and NW) the countries were on this direction - Romania, Bulgaria, Greece, former Yugoslavia - began to be intensely contaminated with radioactive fallout. In Romania, the radioactive cloud passing coincided with abundant rains, especially on the direction mentioned above. On this direction, the cesium deposits are of 8-2 times larger than other Romanian regions. The torrential rain which fell on May 1st 1986, in the western side of Cluj Napoca town caused an intense contamination especially with short-life isotopes as Te, I, Ba, La, Mo. Medium and long-life isotopes as Ru, Zr, Cs, Sr were present in large quantities in this area.too. For the total contribution the value obtained was 1130 kBq/m2, much larger than the average in Romania. This work presents data about cesium content of pollen samples gathered daily between 1-30 May 1986; cesium deposits in five areas and some measurements in connection with cesium mitigation in soils

  13. Kinetics of oxidation of uranium(IV) by permanganate ion in aqueous perchlorate media

    International Nuclear Information System (INIS)

    The kinetics of oxidation of uranium(IV) by permanganate ion in 1.0 mol dm-3 perchloric acid solution has been investigated using a stopped-flow spectrophotometer. The reaction was found to be second order overall and first order in the concentrations of both reactants. The catalytic effect of the perchlorates of Hg2+, Cu2+, and Fe3+ on the reaction rate has been investigated. The activation parameters were evaluated and found to be ΔS not= 30.52 ± 1.22 kJ-1 mol-1, ΔH not= 62.89 ± 1.87 kJ mol-1, and ΔG not=53.79 ± 1.44 kJ mol-1. A tentative mechanism consistent with the kinetics is discussed. (author)

  14. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar

    Science.gov (United States)

    Nikolakakos, George; Whiteway, James A.

    2015-10-01

    A sample of magnesium perchlorate hexahydrate was subjected to the water vapor pressure and temperatures found at the landing site of the Phoenix Mars mission. Laser Raman scattering was applied to detect the onset of deliquescence and provide a relative estimate of the quantity of water taken up and subsequently released by the sample. As the temperature of the sample decreased at the same rate as measured on Mars during the evening, significant uptake of water from the atmosphere was observed to occur prior to the frost point temperature being reached. As the temperature was lowered further, the relative humidity over ice increased to 100% and frost formed on the surface surrounding the perchlorate sample. Freezing of the brine film was observed at the eutectic temperature of -67°C, and thawing occurred at a temperature of -62°C.

  15. trans-Tetraaquabis[bis(pyridin-3-ylmethanone-κN]manganese(II bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2012-01-01

    Full Text Available In the title complex, [Mn(C11H8N2O2(H2O4](ClO42, the Mn2+ ion is located on an inversion center with the slightly distorted N2O4 octahedral coordination sphere comprising N-atom donors from two monodentate trans-related bis(pyridin-3-ylmethanone ligands and four water ligands. The two perchlorate anions are linked to the mononuclear complex molecule through water O—H...O hydrogen bonds while inter-complex water O—H...N(pyridine interactions form an infinite chain structure extending along the b axis. The perchlorate anions also function as inter-unit links through water O—H...O hydrogen bonds which, together with water O—H...O(carbonyl interactions, give a three-dimensional framework structure.

  16. Thermal behavior of aluminum powder and potassium perchlorate mixtures by DTA and TG

    International Nuclear Information System (INIS)

    In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 μm particle size has a fusion temperature about 647 deg. C, but this temperature for 18 μm powder is 660 deg. C. Pure potassium perchlorate has an endothermic peak at 300 deg. C corresponding to a rhombic-cubic transition, a fusion temperature around 590 deg. C and decomposes at 592 deg. C. DTA curves for Al5/KClO4 (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 deg. C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture

  17. Thermal behavior of aluminum powder and potassium perchlorate mixtures by DTA and TG

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, S.M. [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)]. E-mail: pourmortazavi@yahoo.com; Fathollahi, M. [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Hajimirsadeghi, S.S. [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Hosseini, S.G. [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2006-04-01

    In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 {mu}m particle size has a fusion temperature about 647 deg. C, but this temperature for 18 {mu}m powder is 660 deg. C. Pure potassium perchlorate has an endothermic peak at 300 deg. C corresponding to a rhombic-cubic transition, a fusion temperature around 590 deg. C and decomposes at 592 deg. C. DTA curves for Al{sub 5}/KClO{sub 4} (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 deg. C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture.

  18. Radiation-chemical behaviour of Rh(3) in perchloric and nitric acid media

    International Nuclear Information System (INIS)

    Rhodium(3) behaviour in solutions of concentrated (> 1 mol/l) nitric and perchloric acids under 60Co gamma radiation with dose rate of 3.5 Gy/s has been studied. It is shown that in case of nitrate solution irradiation by doses up to 2x104 Gy, rhodium(3) concentration does not change. Rhodium(3) proved to be stable in perchlorate solutions in case of irradiation by doses up to 3x104 Gy; however, in the presence of organic acids and alcohols its reduction to methane occurred. Kinetic characteristics of rhodium(3) reduction by ethyl alcohol by the doses up to 4x104 Gy have been ascertained, reduction mechanism being considered. 6 refs.; 4 figs.; 1 tab

  19. Experimental investigation on the heterogeneous kinetic process of the low thermal decomposition of ammonium perchlorate particles

    Energy Technology Data Exchange (ETDEWEB)

    Longuet, Baptiste [Laboratoire Energetique Explosions et Structures Universite d' Orleans (Germany); Gillard, Philippe [Laboratoire Energetic Explosions et Structures, Universite d' Orleans, Bourges (France)

    2009-02-15

    The thermal decomposition of ammonium perchlorate has been extensively studied in the past. Nevertheless, the various results published illustrate, on the one hand, significant differences regarding the influence of different parameters on the decomposition and on the other hand, a lack of useful quantitative laws to predict the thermal behaviour of this crystal under a range of conditions (temperature, duration of exposure, presence of confinement). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Electric conductivity of gel-polymeric electrolytes with Ca, Mg and Zn perchlorate salts

    OpenAIRE

    NIKOLA CVJETICANIN; SLAVKO MENTUS

    1999-01-01

    The gel-polymeric electrolytes were prepared with calcium, magnesium and zinc perchlorates dissolved in propylene carbonate together with poly (acrylo nitrile) or poly(methyl methacrylate) as a solution immobilizing polymers. The electric conductivity of these electrolytes was examined in the dependence of temperature and solvent content, at a constant salt-to-polymer concentration ratio. The electrolyte compositions were outlined having the conductivity close to 10-3 S cm-1. It was demonstra...

  1. Non-aqueous titrimetric assay of gabapentin in capsules using perchloric acid as titrant

    OpenAIRE

    Sameer A. M. Abdulrahman; KANAKAPURA BASAVAIAH

    2011-01-01

    Two simple, rapid, accurate and inexpensive methods using visual and potentiometric titrimetric techniques are described for the determination of gabapentin (GBP) in bulk drug as well as in capsules. The methods are based on the neutralization reaction of the primary amino group of GBP with acetous perchloric acid as titrant in anhydrous acetic acid medium. The end point was detected either visually using crystal violet as indicator or potentiometrically using a modified glass electrode SCE e...

  2. Electrochromic iridium oxide films: Compatibility with propionic acid, potassium hydroxide, and lithium perchlorate in propylene carbonate

    OpenAIRE

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-01-01

    Porous thin films of It oxide were prepared by reactive dc magnetron sputtering onto unheated substrates. The crystallite size was similar to 5 nm, and a small amount of unoxidized Ir was present. The electrochromic performance was studied by optical transmittance measurements and cyclic voltammetry applied to films in aqueous and non-aqueous electrolytes, specifically being 1 M propionic acid, 1 M potassium hydroxide (KOH), and 1 M lithium perchlorate in propylene carbonate (Li-PC). Cyclic v...

  3. Disproportionation of plutonium IV in concentrated solutions of plutonium in perchloric acid

    International Nuclear Information System (INIS)

    This work was carried out to study the dependence of the PuIV disproportionation reaction in perchloric acid solution on the plutonium concentration up to 20 g/l. Solutions of such high plutonium concentration have not previously been studied. It was found that the bimolecular rate constant and the equilibrium constant of the disproportionation reaction were not appreciably different from their values at lower concentrations. (author)

  4. Radiometric quantification of thyrotoxic and goitrogenic effects of exogenous bromide and perchlorate ions

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Stanislav

    Bratislava: Slovenská technická univerzita, 2012, s. 152-156. ISBN 978-80-227-3722-7. [Priemyselná toxikológia 2012 /32./. Svit, Vysoké Tatry (SK), 20.06.2012-22.06.2012] R&D Projects: GA ČR(CZ) GA304/08/0256 Institutional research plan: CEZ:AV0Z50110509 Keywords : bromide * perchlorate * radiometric assay * thyroid peroxidase Subject RIV: ED - Physiology

  5. The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments.

    Science.gov (United States)

    Brundrett, Maeghan; Horita, Juske; Anderson, Todd; Pardue, John; Reible, Danny; Jackson, W Andrew

    2015-10-01

    Due to the high volume of crude oil released by the Deepwater Horizon oil spill, the salt marshes along the gulf coast were contaminated with crude oil. Biodegradation of crude oil in salt marshes is primarily limited by oxygen availability due to the high organic carbon content of the soil, high flux rate of S(2-), and saturated conditions. Chlorate, nitrate, and perchlorate were evaluated for use as electron acceptors in comparison to oxygen by comparing oil transformation and mineralization in mesocosms consisting of oiled salt marsh sediment from an area impacted by the BP Horizon oil spill. Mineralization rates were determined by measuring CO2 production and δ (13)C of the produced CO2 and compared to transformation evaluated by measuring the alkane/hopane ratios over a 4-month period. Total alkane/hopane ratios decreased (~55-70 %) for all treatments in the following relative order: aerated ≈ chlorate > nitrate > perchlorate. Total CO2 produced was similar between treatments ranging from 550-700 mg CO2-C. The δ (13)C-CO2 values generally ranged between the indigenous carbon and oil values (-17 and -27‰, respectively). Oil mineralization was greatest for the aerated treatments and least for the perchlorate amended. Our results indicate that chlorate has a similar potential as oxygen to support oil mineralization in contaminated salt marshes, but nitrate and perchlorate were less effective. The use of chlorate as a means to promote oil mineralization in situ may be a promising means to remediate contaminated salt marshes while preventing unwanted secondary impacts related to nutrient management as in the case of nitrate amendments. PMID:25854211

  6. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P.; Martin-Torres, F. Javier; Navarro-Gonzalez, R.; Paz-Zorzano, Maria; Stern, J. C.; McKay, C. P.

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  7. Evaluation of the natural attenuation potential of a complex pollution plume (chlorate, perchlorate, 1,2dichloroethane and vinyl chloride) by autochthonous microbial communities

    OpenAIRE

    Harris-Hellal, Jennifer; Joulian, Catherine; Hube, Daniel; Coulon, Stéphanie; Guérin, Valérie; Garrido, Françis

    2013-01-01

    Artificially synthetized chloride-based-oxyanions such as perchlorate (ClO4-) and chlorate (ClO3-), are used in a vast number of applications such as military and aerospace industry; they are also used as herbicides and in pyrotechnic applications. Due to their very high solubility, perchlorate and chlorate are readily transported in water systems and can thus end up in drinking water. Ingestion of perchlorate may affect iodine uptake by the human thyroid and thus thyroidal hormone production...

  8. Kinetics of thermal decomposition of nano magnesium oxide catalyzed ammonium perchlorate

    International Nuclear Information System (INIS)

    Arrhenius kinetic parameters of ammonium perchlorate (AP) catalyzed with nano-sized magnesium oxide (MgO) has been determined in this work. Nano particles of MgO with an average size of approximately 20 to 30 nm have been used to catalyze the AP. The particles were characterized using Scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques before mixing with AP. Simultaneous Thermal Analysis (STA) shows that MgO nanoparticles have a strong catalytic effect on the thermal decomposition of ammonium perchlorate. The addition of MgO nano particles reduces the two stage decomposition of ammonium perchlorate to a single stage. Arrhenius kinetic parameters of pure and the catalyzed AP have been calculated using non isothermal kinetic approach based on Kissinger method. The comparison of the thermal behavior and kinetic parameters of pure and catalyzed AP has also been carried out to elucidate the reaction mechanism. The results show that the activation energy of the catalyzed AP has increased from 138.1 kJ/mole to 159.1kJ/mole. The rate of reaction, however, has increased in the catalyzed AP showing that it has become more reactive by the addition of MgO nano particles. The enthalpy of activation has increased by 16 percent in the catalyzed AP. (author)

  9. Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    Science.gov (United States)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R.

    2012-07-01

    Simulated Thermal Evolved Gas Analyzer (TEGA) analyses have shown that a CO2 release detected between 400°C and 680°C by the Phoenix Lander's TEGA instrument may have been caused by a reaction between calcium carbonate and hydrated magnesium perchlorate. In our experiments a CO2 release beginning at 385 ± 12°C was attributed to calcite reacting with water vapor and HCl gas from the dehydration and thermal decomposition of Mg-perchlorate. The release of CO2 is consistent with the TEGA detection of CO2 released between 400 and 680°C, with the amount of CO2 increasing linearly with added perchlorate. X-ray diffraction (XRD) experiments confirmed CaCl2 formation from the reaction between calcite and HCl. These results have important implications for the Mars Science Laboratory (MSL) Curiosity rover. Heating soils may cause inorganic release of CO2; therefore, detection of organic fragments, not CO2 alone, should be used as definitive evidence for organics in Martian soils.

  10. Temporal and spatial variation of perchlorate in streambed sediments: results from in-situ dialysis samplers

    International Nuclear Information System (INIS)

    The fate of perchlorate (ClO4-) in streambed sediments is becoming a concern due to the increasing number of groundwater and surface water contamination sites in the United States. Dialysis samplers were deployed at three sites over a period of 1 year to determine the vertical distribution of ClO4-in sediment pore water. Results indicated that the spatial and temporal ClO4-penetration into sediments could be affected by numerous factors, such as temperature, microbial degradation, ClO4-surface water concentration, and sediment physico-geological properties. In general, maximum ClO4-penetration into sediments at the studied sites was 30 cm below the sediment-water surface. The vertical sequential depletion of electron acceptors in sediments suggested that microbial reduction was responsible for ClO4-depletion in stream sediments. Biodegradation of ClO4-occurred over a seasonally variable active depth zone of 1-10 cm. Results implied that there was a rapid natural attenuation potential of perchlorate in saturated near-surface sediments. -Perchlorate may be rapidly attenuated in saturated near-surface sediments

  11. Widespread occurrence of perchlorate in water, foodstuffs and human urine collected from Kuwait and its contribution to human exposure.

    Science.gov (United States)

    Alomirah, Husam F; Al-Zenki, Sameer F; Alaswad, Marivi C; Alruwaih, Noor A; Wu, Qian; Kannan, Kurunthachalam

    2016-06-01

    Perchlorate is a thyroid hormone-disrupting compound and is reported to occur widely in the environment. Little is known on human exposure to perchlorate in Kuwait. In this study, 218 water samples, 618 commonly consumed foodstuffs and 532 urine samples collected from Kuwait were analysed to assess the exposure of the Kuwaiti population to perchlorate. For the estimation of daily intake of perchlorate, food consumption rates were obtained from the National Nutrition Survey in the State of Kuwait (NNSSK). The results showed that leafy vegetables accounted for a major share of perchlorate exposure among the Kuwaiti population at 0.062 µg kg(-)(1) bw day(-)(1) (36.2%), followed by fruits at 0.026 µg kg(-)(1) bw day(-)(1) (15.3%) and non-leafy vegetables at 0.017 µg kg(-)(1) bw day(-)(1) (10.1%). The urinary perchlorate geometric mean (GM) concentrations ranged from 8.51 to 17.1 µg l(-)(1) for the five age groups, which were higher than those reported in other countries. The estimated urinary perchlorate exposure for the Kuwaiti general population was 0.42 µg kg(-)(1) bw day(-)(1), which was higher than that reported for the United States. The dietary intake of perchlorate for the Kuwaiti population ranged from 0.14 to 0.67 µg kg(-)(1) bw day(-)(1) for the five age groups, with a mean total daily intake of 0.17 µg kg(-)(1) bw day(-)(1) for the general population. The highest estimated dietary mean daily intake of perchlorate (0.67 µg kg(-)(1) bw day(-)(1)) was found for children at 3-5 years. The estimated dietary perchlorate exposure in Kuwait is higher than the recommended mean reference dose (RfD) but lower than that of provisional maximum tolerable daily intake (PMTDI) set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). PMID:27248576

  12. Distribution and retention of cesium and strontium in Swedish boreal forest ecosystems

    International Nuclear Information System (INIS)

    The retention and distribution of cesium, and to some extent strontium, in forest environments are being studied at three sites in Sweden. The main part of the cesium found in the soil was recovered in horizons rich in organic matter. The cesium was retained in the soil organic matter in a more or less extractable form. As different soil types have a different distribution pattern of organic matter, the distribution of cesium will depend on the forest soil type. The clay content in Swedish forest soils is, in general, low which will mitigate the retention of cesium in the soil mineral horizons. The cesium and strontium present in the trees was considered to be an effect of assimilation by the tissues in the canopy as well as by the roots. The redistribution of cesium within the trees was extensive which was considered to be the effect of a high mobility of cesium in the trees. The recovery of strontium-90 in pines, in relation to the deposition rate was higher compared to the relative recovery of cesium-137, 30 years after deposition. The cesium and strontium will remain in the forest environment for a considerable time but can be reduced by forest practice, by leaching out of the soil profile or by radioactive decay

  13. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment.

    Science.gov (United States)

    Engelbrektson, Anna; Hubbard, Christopher G; Tom, Lauren M; Boussina, Aaron; Jin, Yong T; Wong, Hayden; Piceno, Yvette M; Carlson, Hans K; Conrad, Mark E; Anderson, Gary; Coates, John D

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved. PMID:25071731

  14. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    International Nuclear Information System (INIS)

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the Λ scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The |Fg = 3> → |Fe = 4> resonance pumping can result in the ground state |Fg = 4, mF = 4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg = 4> → |Fe = 3> transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field. (atomic and molecular physics)

  15. Electrode activation in cesium-free negative ion sources

    International Nuclear Information System (INIS)

    Features of emission electrode activation leading to enhancement of negative ion emission in cesium-free discharges are discussed. In some ion sources with cesium-free discharges, the emission of negative ions has been increased significantly by emission electrode activation using strong heating of the negative biased electrode by discharge plasma. A simple explanation of this enhancement is that it is due to an accumulation on the emission surface of the plasma electrode of impurities with low ionization potential that decreases in surface work function and increases the secondary emission of negative ions similar to ''Cesiation.'' The negative biasing of emission surface is important for accumulation and trapping the impurities on the emission surface. To effectively control the activation process it is important to directly detect the evolution of the work function and the impurity concentration during electrode activation with enhancement of negative ion emission.

  16. Trapping and cooling cesium atoms in a speckle field

    International Nuclear Information System (INIS)

    We present the results of two experiments where cold cesium atoms are trapped in a speckle field. In the first experiment, a YAG laser creates the speckle pattern and induces a far-detuned dipole potential which is a nearly-conservative potential. Localization of atoms near the intensity maxima of the speckle field is observed. In a second experiment we use two counterpropagating laser beams tuned close to a resonance line of cesium and in the lin perpendicular to lin configuration, one of them being modulated by a holographic diffuser that creates the speckle field. Three-dimensional cooling is observed. Variations of the temperature and of the spatial diffusion coefficient with the size of a speckle grain are presented. (orig.)

  17. Cesium exchange reaction on natural and modified clinoptilolite zeolites

    International Nuclear Information System (INIS)

    Cesium cation exchange reaction with K, Na, Ca and Mg ions on natural and modified clinoptilolite has been studied. Batch cation-exchange experiments were performed by placing 0.5 g of clinoptilolite into 10 ml or 20 ml of 1 x 10-3M CsCl solution for differing times. Two type deposits of clinoptilolite zeolites from, Nizny Hrabovec (NH), Slovakia and Metaxades (MX), Greece were used for ion-exchange study. The distribution coefficient (Kd) and sorption capacity (Γ) were evaluated. For the determination of K, Na, Ca and Mg isotachophoresis method, the most common cations in exchange reaction was used. Cesium sorption was studied using 137Cs tracer and measured by γ-spectrometry. (author)

  18. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  19. Strontium-90 and cesium-137 in air-borne dust

    International Nuclear Information System (INIS)

    Under the commission of Science and Technology Agency, Japan Chemical Analysis Center and prefectural public health laboratories and institutes have determined the levels of strontium-90 and cesium-137 in air-borne dust samples. Dust samples were collected by the aspiration of 3000 m3 or more air at 1.0 -- 1.5 m above the ground surface in 10 prefectural public health laboratories and institutes. The samples collected during three months were combined, and were forwarded to Japan Chemical Analysis Center after carbonization. These samples were ashed in an electric muffle furnance at Japan Chemical Analysis Center. The ash to which both some carriers and hydrochloric acid were added, was destroyed under heating. The solution was dissolved into hydrochloric and filtered, after it was added with nitric acid and heated to dryness. The filtrate was radiochemically analysed for strontium-90 and cesium-137 with low background beta-ray spectrometer. (author)

  20. Cesium and lead uptake by CSH phases of hydrated cement

    International Nuclear Information System (INIS)

    As Kd from radwaste elements in concrete systems show a wide range of values, a modelling of cesium and lead immobilization in Calcium Silicate Hydrate (CSH, xCaO.SiO2.H2O, with 0.7 (aged cements)SiOH) and precipitation equilibria. Values of Kd from cesium and lead in CSH matrix can thus be calculated with Ca/Si evolution and ionic strength effect. Predictive calculations have been carried out with success with different Ca/Si ratios, ionic strengths and liquid/solid ratios, and results are well superimposed with experimental isotherm data. If the CSH really allow accounting for the radwaste behavior in hydrated cement matrices, this model can be used in safety assessment calculations, with varying pH and [Ca2+] as cement degradation state parameters. Copyright (2001) Material Research Society

  1. New thermodynamic regularity for cesium over the whole liquid range

    CERN Document Server

    Ghatee, M H

    2001-01-01

    In this paper we derive an equation of state for liquid cesium based on a suggested potential function in accord to the characteristics large attraction and soft repulsion at the asymptotes of interaction potentials. By considering the interaction of nearest adjacent atoms in dense fluid, the equation of state predicts that the isotherm is linear function of, where is the compression factor, is the molar volume, and is the molar density. The linear parameters are identified as interaction coefficients related to attraction and repulsion, and are used to evaluate the molecular parameters with interesting implications. The isotherm is intended to resolve the particular thermodynamic properties of alkali metals, which have been known for their unusual change of the nature of intermolecular force as the characteristic metal-nonmetal transition range is approached. When applied to liquid cesium, the isotherms persist linear over the whole liquid range including the metal non-metals transition range and at the crit...

  2. Strontium-90 and cesium-137 in air-borne dust

    International Nuclear Information System (INIS)

    The levels of strontium-90 and cesium-137 in airborne dust have been determined by Japan Chemical Analysis Center under the contact with Science and Technology Agency. Dust samples were collected at 1.0 -- 1.5m above the ground surface with electrostatic precipitators or on filter papers by each prefectural public health laboratories and institutes in 9 prefectures, and these samples were forwarded to Japan Chemical Analysis Center after the carbonization. These samples were asked in an electric muffle furnance at Japan Chemical Analysis Center. The ask to which both some carriers and hydrochloric acid were added, was destroyed under heating. The solution was dissolved into hydrochloric acid and filtered, after it was added with nitric acid and heated to dryness. The filtrate was analysed for strontium-90 and cesium-137 using the method recommended by science and Technology Agency. (author)

  3. Cesium-137, a drama recounted; Cesio-137, um drama recontado

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Suzane de Alencar

    2013-01-15

    The radiological accident with Cesium-137, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. Cesium-137, a drama recounted is a textual experimentation based on real events and characters picked out from statements reported in various narratives about the radiological accident. (author)

  4. Rapid measurement of perchlorate in polar ice cores down to sub-ng L(-1) levels without pre-concentration.

    Science.gov (United States)

    Peterson, Kari; Cole-Dai, Jihong; Brandis, Derek; Cox, Thomas; Splett, Scott

    2015-10-01

    An ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS) method has been developed for rapid and accurate measurement of perchlorate in polar snow and ice core samples in which perchlorate concentrations are expected to be as low as 0.1 ng L(-1). Separation of perchlorate from major inorganic species in snow is achieved with an ion chromatography system interfaced to an AB SCIEX triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Under optimized conditions, the limit of detection and lower limit of quantification without pre-concentration have been determined to be 0.1 and 0.3 ng L(-1), respectively, with a linear dynamic range of 0.3-10.0 ng L(-1) in routine measurement. These represent improvements over previously reported methods using similar analytical techniques. The improved method allows fast, accurate, and reproducible perchlorate quantification down to the sub-ng L(-1) level and will facilitate perchlorate measurement in the study of natural perchlorate production with polar ice cores in which perchlorate concentrations are anticipated to vary in the low and sub-ng L(-1) range. Initial measurements of perchlorate in ice core samples from central Greenland show that typical perchlorate concentrations in snow dated prior to the Industrial Revolution are about 0.8 ng L(-1), while perchlorate concentrations are significantly higher in recent (post-1980) snow, suggesting that anthropogenic sources are a significant contributor to perchlorate in the current environment. PMID:26297465

  5. Migration behavior of cesium in compacted sodium montmorillonite

    International Nuclear Information System (INIS)

    For safety assessments of geological disposal of high-level radioactive wastes, it is important to study the migration behavior of radioactive nuclides in compacted bentonite. In the present study, the apparent diffusion coefficients and activation energies of the diffusion were determined for cesium ions in compacted montmorillonite, a major clay mineral in bentonite. The activation energies obtained in the present study were 32.9 to 52.9 kJ mol-1, clearly higher than for the diffusion of cesium ions in free water, 16.2 kJ mol-1. The activation energies for Na-montmorillonite specimens with dry densities of 1.0, 1.2, and 1.4 x 103 kg m-3 were similar at approximately 34 kJ mol-1. When the dry density of the Na-montmorillonite specimens increases, the activation energy also increases, to reach 52.9 kJ mol-1 at 1.8 x 103 kg m-3. These findings suggest that the cesium in the compacted Na-montmorillonite diffuses with a different process from that in free water. Basal spacings were determined by the X-ray diffraction method for water-saturated, compacted Na-montmorillonite specimens. Three-water layer hydrate in the interlamellar space was observed for the Na-montmorillonite with dry densities of 1.0, 1.2, and 1.4 x 103 kg m-3, where the activation energies for the diffusion were nearly constant. Only the two-water layer hydrate was found in the Na-montmorillonite with dry densities of 1.6 and 1.8 x 103 kg m-3, in which the activation energy increases with the dry density. It is possible that the basal spacing could affect the migration behavior of cesium in compacted Na-montmorillonite. (author)

  6. Radioactive cesium. Dynamics and transport in forestal food-webs

    International Nuclear Information System (INIS)

    This report summarises results from a radioecological study during 1994-1995 concerning turnover, redistribution and loss of radioactive Cesium (134 and 137) in boreal forest ecosystems, as well as uptake and transfer in important food-chains over moose, vole and vegetation. The basis for this report are 9 publications published 1994-95. These reports are presented in summary form. 9 refs, 17 figs

  7. Optimized production of a cesium Bose-Einstein condensate

    OpenAIRE

    Kraemer, Tobias; Herbig, Jens; Mark, Michael; Weber, Tino; Chin, Cheng; Naegerl, Hanns-Christoph; Grimm, Rudolf

    2004-01-01

    We report on the optimized production of a Bose-Einstein condensate of cesium atoms using an optical trapping approach. Based on an improved trap loading and evaporation scheme we obtain more than $10^5$ atoms in the condensed phase. To test the tunability of the interaction in the condensate we study the expansion of the condensate as a function of scattering length. We further excite strong oscillations of the trapped condensate by rapidly varying the interaction strength.

  8. Cesium dihydrophosphate monocrystal growth and certain of their properties

    International Nuclear Information System (INIS)

    Crystals of cesium dihydrophosphate (centrisymmetrical, monoclinic, point symmetric group 2/m) are obtained by methods involving solvent evaporation and temperature reduction. At -122 deg C, a ferroelectric phase transition occurs, and at 230 and 265 deg C first-kind transitions, which are not accompanied by composition changes. CsH2PO4 solubility substantially increases with higher medium acidity, and remains approximately constant in alkali medium

  9. Behaviour of radioactive cesium in northern boreal forest ecosystems

    International Nuclear Information System (INIS)

    Full text: In 1997-2001 a large number of environmental samples have been collected from the Muddusjaervi area in Finnish Lappland. These samples include soil, water, sediment, vegetation and fish samples. Radioactive contamination in this subarctic environment has mainly resulted from the nuclear weapons test fallout in the 1950s and 1960s. Chernobyl accident did not considerably increase the contamination level in this area. The Laboratory of Radiochemistry, University of Helsinki, has been studying the behaviour of fallout radionuclides in the environment and in food chains in Lappland from the beginning of the 1960s. The study area lies in the middle of northern reindeer herding area where accumulation of radioactive cesium has been observed in food chains. In this paper we report on the behaviour of radioactive cesium in soil columns. The soil in this area is typically nutrient-poor podzolic soil. Altogether thirty soil columns were collected and they were divided into horizons (litter, organic and mineral layers). The activity concentrations of the horizons were determined by gamma spectrometry. In general, cesium has been concentrated mainly in the litter and organic layers and it has not been migrated considerably to mineral layers. To study the long term behaviour of cesium in soil the activity concentrations have been compared to those found in earlier decades and to the activity concentrations earlier determined for other radionuclides, especially for Pu. A further major objective was to study runoff of radionuclides from ground to lakes and brooks and therefore many of the soil samples were collected from various distances from lakes and brooks. (author)

  10. Detection of the actinides and cesium from environmental samples

    Science.gov (United States)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  11. Corrections to our results for optical nanofiber traps in Cesium

    CERN Document Server

    Ding, D; Choi, K S; Kimble, H J

    2012-01-01

    Several errors in Refs. [1, 2] are corrected related to the optical trapping potentials for a state-insensitive, compensated nanofiber trap for the D2 transition of atomic Cesium. Section I corrects our basic formalism in Ref. [1] for calculating dipole-force potentials. Section II corrects erroneous values for a partial lifetime and a transition wavelength in Ref. [1]. Sections III and IV present corrected figures for various trapping configurations considered in Refs. [1] and [2], respectively.

  12. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 104 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  13. Studies on the Separation of Cesium From Fission Products

    Institute of Scientific and Technical Information of China (English)

    QIANLi-juan; ZHANGSheng-dong; GUOJing-ru; CUIAn-zhi; YANGLei; WUWang-suo

    2003-01-01

    135Cs is a long-life fission product. When measuring its thermal cross section, we must separate radiochemical purity cesium from fission products. Except for decontaminating radio- nuclides, others which can be activated must be avoided to come into solution. So ion exchanger is used. Inorganic ion exchangers have received increased attention because of their high resistance to radiation and their very efficient separation of alkali metal ions.

  14. Extraction of rubidium and cesium from micas following sulfate-extraction technology

    International Nuclear Information System (INIS)

    Results are presented of semicommercial tests of procedure of rubidium and cesium extraction from micas. Micas has been processed by the 40% solution of sulphuric acid at boiling temperature. Separate extraction of cesium and rubidium from the solution with arylalkylsubstituted phenol has been conducted after alum crystallization and decomposition by lime. Pure rubidium carbonate and technical cesium carbonate with their 80 and 95% extraction, respectively, are prepared

  15. Investigations of the method of sodium decontamination from cesium and tritium aiming its utilization or disposal

    International Nuclear Information System (INIS)

    Effective methods of removing cesium and tritium from sodium are submitted. It is shown, that the cleaning from cesium with consecutive use of portions of carbon materials will allow on the orders to reduce amount of sorbent, in which is concentrated cesium. For cleaning from tritium technological process with use of a cold trap and special dosage hydrogen in sodium is offered. The data on required time of cleaning and depth of cleaning at various capacity of hydrogen source are given. (author)

  16. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  17. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  18. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage.

    Science.gov (United States)

    Balk, Melike; van Gelder, Ton; Weelink, Sander A; Stams, Alfons J M

    2008-01-01

    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 mum in diameter and 2 to 8 mum in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70 degrees C, with an optimum at 55 to 60 degrees C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter(-1) with an optimum at 10 g liter(-1). Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor. PMID:17981952

  19. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  20. Transition of cesium in food chains [after Chernobyl catastrophe

    International Nuclear Information System (INIS)

    An investigation of 25,000 samples of foodstuffs and feedstuffs in Czechoslovakia, contaminated by fall-out cesium after the accident in the Chernobyl nuclear power plant, performed from May 5, 1986 to March 31, 1988, revealed that both the values of cesium transfer-factors in food--animal tissues--milk transitions and the values of biological half-life of cesium are functions of internal and external conditions of contamination. Organism individuality as the main internal condition causes the variance of about +/- 50% of the mean value of the respective transfer-factor. Through the external conditions, mainly the environmental contamination level, type of ingested food and time of ingestion, the mean values of transfer-factors are influenced up to 500%, e.g. to the value of 0.5. But this value converges with growing up contamination of food and environment to the limit of 0.3. The first two to three biological half-lives after the last ingestion of contaminated food are up to ten-times shorter than those at stabilized state

  1. Cesium transfer to agricultural crops for three years after Chernobyl

    International Nuclear Information System (INIS)

    In 1986 about 50 farms in the fallout region were selected for sampling at fixed sites of the soil surface layer and of the grassland and grain crops to come. The aim was to cover the different soil types and the farming practices of the region during studies on the transfer levels and on the change with time in transfer of cesium to the crops. It was found that the transfer level, as expected, was much higher for the grassland than for the grain crops. However, within both groups of considerable variation in the transfer level for the same year as measured by the transfer factors has occurred. For the former crops it can be concluded that the transfer factor during year 1 depends on the interception capacity of the plant cover and on the dilution by growth i.e on soil fertility and on fertilization level. In the following years the cesium TF-value for the grass cover was reduced by a factor from 2 to about 10. The reduction rate differed above all between the organic soils and the mineral soils and should largely depend on the type of the grass cover, on the different cesium fixing capacities of the two soil groups and on the potassium fertilization level. On ploughed land the transfer by root uptake to grain crops was about one magnitude lower than the transfer to the hey crops. (orig.)

  2. Example of cesium sorption database in natural minerals

    International Nuclear Information System (INIS)

    In the database of the National Institute for Materials Science (MatNavi), the adsorption data of cesium, strontium, and iodine have been published. Among these data, the authors picked up the data of cesium adsorption against natural ores, which were measured and compiled by the authors, graphically expressed them for clarifying the overall trends, and described each mineral’s adsorption characteristics and future challenges. The partition coefficients for the following minerals are compiled: bentonite, acid clay, montmorillonite, beidellite, vermiculite, illite, mordenite, zeolite, etc. Many of the recorded data in MatNavi are the data obtained in the systems without existence of a large amount of competing ions. On the other hand, in the accumulated water at the Fukushima Daiichi Nuclear Power Station, competing ions due to seawater are contained. In the immersion liquid of incineration fly ash and the immersion liquid of plants/vegetation, too, competing ions are considered to be contained. Accumulation of adsorption data under different solution conditions are considered important. In addition, the concentrations of radioactive cesium in decontamination target are lower values by 5-7 orders, compared with the lower limit of 0.01 ppm in the existing data. In face of experiments, the influence of adsorption to containers and filters cannot be neglected. (A.O.)

  3. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    OpenAIRE

    Houssni El-Saied; Samya El-Sherbiny; Omnia Ali; Wafaa El-Saied; Said Rohyem

    2013-01-01

    In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+) on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the...

  4. Mobility of cesium through the Callovo-Oxfordian claystones under partially saturated conditions

    International Nuclear Information System (INIS)

    The diffusion of cesium was studied in an unsaturated core of Callovo-Oxfordian claystone, which is a potential host rock for retrievable disposal of high-level radioactive wastes. In-diffusion laboratory experiments were performed on rock samples with water saturation degrees ranging from 81% to 100%. The analysis of both cesium concentration monitoring in the source reservoir and postmortem cesium rock concentration profile of the samples was carried out using a chemical-transport code where the sorption of cesium was described by a multi-site ion-exchange model. The results showed that cesium exhibited a clear trend related to the saturation degree of the sample. The more dehydrated the rock sample, the slower the decrease of cesium concentration, and the thinner the penetration depth of cesium was. The effective diffusion coefficient (De) for cesium decreased from 18.5 *10-11 m2 s-1 at full-saturation to 0.3 * 10-11 m2 s-1 for the more dehydrated sample. This decrease is almost 1 order of magnitude higher than that for tritiated water (HTO), although a similar behavior could have been expected, since cesium is known to diffuse in the same parts of the pore space as HTO in fully saturated claystones. (authors)

  5. Cesium transport in Four Mile Creek of the Savannah River Plant

    International Nuclear Information System (INIS)

    The behavior of a large radioactive cesium release to a Savannah River Plant (SRP) stream was examined using a stable cesium release to Four Mile Creek. Measurements following the release show that most of the cesium released was transported downstream; however, sorption and desorption decreased the maximum concentration and increased the travel time and duration, relative to a dye tracer, at sampling stations downstream. The study was made possible by the development of an analytical technique using ammonium molybdophosphate and neutron activation that permitted the measurement of stable cesium concentrations as low as 0.2 μg/L

  6. Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan.

    Science.gov (United States)

    Kakehi, Shigeho; Kaeriyama, Hideki; Ambe, Daisuke; Ono, Tsuneo; Ito, Shin-Ichi; Shimizu, Yugo; Watanabe, Tomowo

    2016-03-01

    Large quantities of radioactive materials were released into the air and the ocean as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, caused by the 2011 Tohoku earthquake and the subsequent major tsunami off the Pacific coast. There is much concern about radioactive contamination in both the watershed of the Abukuma River, which flows through Fukushima Prefecture, and its estuary, where it discharges into the sea in Miyagi Prefecture. We investigated radioactive cesium dynamics using mixing diagrams obtained from hydrographic observations of the Abukuma River Estuary. Particulate radioactive cesium dominates the cesium load in the river, whereas the dissolved form dominates in the sea. As the salinity increased from <0.1 to 0.1-2.3, the mixing diagram showed that dissolved radioactive cesium concentrations increased, because of desorption. Desorption from suspended particles explained 36% of dissolved radioactive cesium in estuarine water. However, the dissolved and particulate radioactive cesium concentrations in the sea decreased sharply because of dilution. It is thought that more than 80% of the discharged particulate radioactive cesium was deposited off the river mouth, where the radioactive cesium concentrations in sediment were relatively high (217-2440 Bq kg(-1)). Radioactive cesium that was discharged to the sea was transported southward by currents driven by the density distribution. PMID:26698826

  7. Laboratory plant for the separation of cesium from waste solutions of the PUREX process

    International Nuclear Information System (INIS)

    A laboratory plant for the separation of cesium from a fission product waste solution of the fuel reprocessing is described. The plant consists of two stages. In the first stage cesium is adsorbed on ammonium molybdatophosphate (AMP). Then the adsorbent is dissolved. From the solution cesium is adsorbed on a cationic ion exchanger in the second stage. Then AMP can be reproduced from this solution. For the elution of cesium in the second stage a NH4NO3 solution (3 m) is used. Flow sheet, construction and the control device of the plant are described and the results of tests with a model solution are given. (author)

  8. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs2O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  9. Radioactive cesium content in selected food products. Pt. 1. Radioactive cesium content in dried milk (1987-1988)

    International Nuclear Information System (INIS)

    The content of radioactive cesium in dried and dried skimmed milk from selected dairies was double determined. The highest content was found in samples from milk from OSM Siedlce (98 Bq/kg) and skimmed milk from Radzyn Podlaski and Ostroleka, (the former 90, the latter 62 Bq/kg). The lowest level of radioactive cesium was observed in samples from dried milk from Sieradz, Slups, Wrzesnia, Olecko and Elblag (about or below 10 Bq/kg). Although those levels of contamination with radiocesium did not exceed values recommended by FAO they were determined as high for year 1987/88 as compared milk dates from previous 1985 year. (author). 13 refs, 4 tabs

  10. Radioactive cesium. Dynamics and transport in forestal food-webs; Radioaktivt cesium. Dynamik och transport i skogliga naeringsvaevar

    Energy Technology Data Exchange (ETDEWEB)

    Palo, T.; Nelin, P. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Animal Ecology; Bergman, R.; Nylen, T. [FOA NBC Defence, Umeaa (Sweden)

    1995-12-01

    This report summarises results from a radioecological study during 1994-1995 concerning turnover, redistribution and loss of radioactive Cesium (134 and 137) in boreal forest ecosystems, as well as uptake and transfer in important food-chains over moose, vole and vegetation. The basis for this report are 9 publications published 1994-95. These reports are presented in summary form. 9 refs, 17 figs.

  11. Cesium and strontium exchange properties of marsh soils

    International Nuclear Information System (INIS)

    The cesium and strontium exchange properties of some typical marsh soils of the estuary and lower river Weser region were described. Soil samples were taken according to the existing soil maps 1:25000 of Lower Saxony e.g. a “sea marsh soil”. a “brackish marsh soil”, and a “river marsh soil”. The exchange properties were determined by Cs/Ca and Sr/Ca exchange curves (Q/I relations) as generally used in soil potassium research. In addition to the Q/I relations the following investigations were carried out: - Cs and Sr desorption experiments (one time equilibration with Ca++ solutions) - Cs and Sr reexchange experiments (eight times equilibration with water, Ca++, Ba++, and K+ solutions) - the naturally-occuring Cs and Sr contents of the soils including amounts caused by imissions or fallout, respectively - clay mineral composition and swelling of layer silicates due to saturation with Ca++, Sr++, Cs+, and K+ ions. Q/I relations as well as desorption and reexchange experiments indicated strong cesium and low strontium fixation by the soils investigated. This was considered the reason for the stronger transfer of Sr from soil to plants as compared with Cs. Furthermore, the reexchange experiment revealed nearly complete reversibility of the Sr sorption reactions by equilibration with the divalent cations Ca++ and Ba++ and some Sr fixation after treatment with K+ solutions. However, cesium was much better reexchanged by K+ than by Ca++ and Ba++ ions. This led to the conclusion that Cs fixed in interlayer positions of clay minerals could be remobilized by potassium and ammonium fertilization. The naturally-occuring Cs contents of the soils were found to be below the detection limit of the analytical methods used. The contents of naturally-occuring exchangeable Sr, however, was in agreement with the amounts of “labile Sr” as derived from the Sr/Ca exchange curves. Concerning the cesium exchange properties a clear distinction between “sea and river marsh

  12. Elastic and inelastic scattering of cesium, cesium iodide, and cesium chloride by argon and xenon in the crossed atomic and molecular beams

    International Nuclear Information System (INIS)

    Velocity and angular distributions of cesium atoms and two cesium halide molecules scattered by rare gas atoms have been measured for the following systems at the indicated initial relative collision energies, anti E: Cs + Ar, anti E = 0.94, 1.29, and 1.85 kcal/mole; Cs + Xe, E = 1.15, 1.91, and 3.10 kcal/mole; Csl + Ar, anti E = 1.06, 1.46, and 2.08 kcal/mole; CsI + Ar, anti E = 1.36, 1.63, and 1.94 kcal/mole; CsI + Xe, anti E = 1.52, 2.52, and 4.09 kcal/mole. At the collision energies indicated the atom-atom scattering can only be elastic. Thus the experiments with those systems can be used for apparatus calibration and a standard of comparison for the diatom-atom experiments. The velocity distributions in the diatom-atom systems are analyzed for the relative contributions of elastic and inelastic scattering

  13. Light and variable 37Cl/35Cl ratios in rocks from Gale Crater, Mars: Possible signature of perchlorate

    Science.gov (United States)

    Farley, K. A.; Martin, P.; Archer, P. D.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairén, A. G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2016-03-01

    Cl isotope ratios measured on HCl thermally evolved from as-yet-unknown phases in sedimentary rocks and sand in Gale Crater provide unexpected insights to the Martian surficial Cl cycle. The seven samples yield δ37Cl values ranging from - 1 ± 25 ‰ to - 51 ± 5 ‰. Five analyses from two samples of the Sheepbed mudstone (Yellowknife Bay study area) are analytically indistinguishable with a mean δ37Cl of - 11 ± 7 ‰ (1 σ). In contrast, four mudstones/sandstones from the Kimberley and Pahrump study areas also yielded indistinguishable ratios, but with a mean δ37Cl of - 43 ± 6 ‰. The Rocknest sand deposit gave a highly uncertain δ37Cl value of - 7 ± 44 ‰. These light and highly variable δ37Cl values are unique among known solar system materials. Two endmember models are offered to account for these observations, and in both, perchlorate, with its extreme ability to fractionate Cl isotopes, is critical. In the first model, SAM is detecting HCl from an oxychlorine compound (e.g., perchlorate) produced from volcanic gas emissions by atmospheric chemical reactions. Similar reactions in Earth's atmosphere may be responsible for the isotopically lightest known Cl outside of this study, in perchlorate from the Atacama Desert. Some of the Gale Crater δ37Cl values are more negative than those in Atacama perchlorate, but because reaction mechanisms and associated fractionation factors are unknown, it is impossible to assess whether this difference is prohibitive. If the negative δ37Cl signal is produced in this fashion, the isotopic variability among samples could arise either from variations in the relative size of the reactant chloride and product perchlorate reservoirs, or from variations in the fraction of perchlorate reduced back to chloride after deposition. Such reduction strongly enriches 37Cl in the residual perchlorate. Perchlorate reduction alone offers an alternative endmember model that can explain the observed data if SAM measured HCl derived

  14. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation.

    Science.gov (United States)

    Guan, Xiangyu; Xie, Yuxuan; Wang, Jinfeng; Wang, Jing; Liu, Fei

    2015-04-01

    Although microbial reduction of perchlorate (ClO4(-)) is a promising and effective method, our knowledge on the changes in microbial communities during ClO4(-) degradation is limited, especially when different electron donors are supplied and/or other contaminants are present. Here, we examined the effects of acetate and hydrogen as electron donors and nitrate and ammonium as co-contaminants on ClO4(-) degradation by anaerobic microcosms using six treatments. The process of degradation was divided into the lag stage (SI) and the accelerated stage (SII). Quantitative PCR was used to quantify four genes: pcrA (encoding perchlorate reductase), cld (encoding chlorite dismutase), nirS (encoding copper and cytochrome cd1 nitrite reductase), and 16S rRNA. While the degradation of ClO4(-) with acetate, nitrate, and ammonia system (PNA) was the fastest with the highest abundance of the four genes, it was the slowest in the autotrophic system (HYP). The pcrA gene accumulated in SI and played a key role in initiating the accelerated degradation of ClO4(-) when its abundance reached a peak. Degradation in SII was primarily maintained by the cld gene. Acetate inhibited the growth of perchlorate-reducing bacteria (PRB), but its effect was weakened by nitrate (NO3(-)), which promoted the growth of PRB in SI, and therefore, accelerated the ClO4(-) degradation rate. In addition, ammonia (NH4(+)), as nitrogen sources, accelerated the growth of PRB. The bacterial communities' structure and diversity were significantly affected by electron donors and co-contaminants. Under heterotrophic conditions, both ammonia and nitrate promoted Azospira as the most dominant genera, a fact that might significantly influence the rate of ClO4(-) natural attenuation by degradation. PMID:25382499

  15. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  16. Development of Biosensors for Real Time Analysis of Perchlorate in Water

    OpenAIRE

    Frankenberger, William T.; Okeke, Benedict C.; Cheng, Quan Jason

    2006-01-01

    Perchlorate (ClO4 -) contamination of ground water is a widespread problem in the U.S., which can adversely affect human health and wildlife. Current methods for detecting and quantifying ClO4 - in water are time consuming, expensive, and subject to error due to complex procedures and various interferences. Thus, there is an urgent need to develop a method that can accurately detect and measure low concentrations of ClO4 - in the field. This study reports the construction of a ClO4 -- reducta...

  17. Bis(1,10-phenanthroline)lithium perchlorate: crystal structure and dissociation of complex in acetone

    International Nuclear Information System (INIS)

    Composition of solid phase formed in acetone at concentration ratios of 1,10-phenanthroline (phen) and LiClO4 near 2:1 is established. Molecular structure of bis(1,10-phenanthroline)lithium perchlorate is determined by X-ray structural analysis: space group Pnna, a=7.191(2), b=39.929(9), c=14.494(3) A, Z=8, Dx=1.490 g/cm3. Data of IR spectroscopy in acetone denotes dissociation of the Li(phen)2ClO4 complex for the 1:1 composition complex and molecule phen in the solution equilibrium with the solid phase

  18. Lanthanide perchlorate complexes of quinoline-1-oxide and isoquinoline-2-oxide

    OpenAIRE

    Kalyanasundaram, R; Navaneetham, NS; Soundararajan, S.

    1985-01-01

    Complexes of lanthanide perchlorates with quinoline-1-oxide and isoquinoline-2-oxide have been isolated for the first time characterised by analysis, conductance and IR, NMR and electronic spectoral studies. The complexes of quinoline-1-oxide have the composition $Ln(QNO)_8$$(ClO_4)_3$ where Ln = La, Pr or Nd and $Ln(QNO)_7$ where Ln = Gd, Dy, Ho, Er, Yb. The isoquinoline-2-oxide complexes analyse for the formula $Ln(IsoQNO)_7(ClO_4)_3$ where Ln = La-Yb.

  19. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. ...

  20. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    Balk, M.; Mehboob, F.; Gelder, van, M.; Rijpstra, I.; Sinninghe-Damsté, J.S.; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually a...

  1. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    Balk, M.; Mehboob, F.; van Gelder, T; Rijpstra, W.I.C.; J. S. Sinninghe Damsté; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. ...

  2. 2-(2-Hydroxy-3-methoxyphenyl-1H-benzimidazol-3-ium perchlorate

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2012-06-01

    Full Text Available In the title molecular salt, C14H13N2O2+·ClO4−, the ring systems in the cation are almost coplanar [dihedral angle = 5.53 (13°]. Intramolecular N—H...O and O—H...O hydrogen bonds generate S(6 and S(5 rings, respectively. In the crystal, the two H atoms involved in the intramolecular hydrogen bonds also participate in intermolecular links to acceptor O atoms of the perchlorate anions. A simple intermolecular N—H...O bond also occurs. Together, these form a double-chain structure along [101].

  3. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08

    Energy Technology Data Exchange (ETDEWEB)

    Steinmaus, Craig, E-mail: craigs@berkeley.edu [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St. 16th Floor, Oakland, CA 94612 (United States); Miller, Mark D., E-mail: ucsfpehsumiller@gmail.com [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St. 16th Floor, Oakland, CA 94612 (United States); Cushing, Lara, E-mail: lara.cushing@berkeley.edu [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 93720-3050 (United States); Blount, Benjamin C., E-mail: bkb3@cdc.gov [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F47, Atlanta, GA (United States); Smith, Allan H., E-mail: ahsmith@berkeley.edu [Arsenic Health Effects Research Group, 1950 Addison St., Suite 204, University of California, Berkeley, CA 94704 (United States)

    2013-05-15

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using data from the 2007–2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference=0.40 μg/dl, 95% confidence interval=0.14–0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference=1.07 μg/dl, 95% confidence interval=0.55–1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. -- Highlights: ► Recent data suggest that essentially everyone in the US is exposed to perchlorate. ► Perchlorate exposure may be associated with lower thyroid hormone levels. ► Some groups may be more susceptible to

  4. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08

    International Nuclear Information System (INIS)

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using data from the 2007–2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference=0.40 μg/dl, 95% confidence interval=0.14–0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference=1.07 μg/dl, 95% confidence interval=0.55–1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. -- Highlights: ► Recent data suggest that essentially everyone in the US is exposed to perchlorate. ► Perchlorate exposure may be associated with lower thyroid hormone levels. ► Some groups may be more susceptible to

  5. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    International Nuclear Information System (INIS)

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 ± 15 Bq.m-2 for South region to 15 ± 2 Bq.m-2 for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  6. Vacuum squeezed light for atomic memories at the D2 cesium line

    CERN Document Server

    Burks, Sidney; Giacobino, Elisabeth; Laurat, Julien; Ortalo, Jérémie; Jia, Xiaojun; Villa, Fabrizio; Chuimmo, Antonino

    2008-01-01

    We report the experimental generation of squeezed light at 852 nm, locked on the Cesium D2 line. 50% of noise reduction down to 50 kHz has been obtained with a doubly resonant optical parametric oscillator operating below threshold, using a periodically-polled KTP crystal. This light is directly utilizable with Cesium atomic ensembles for quantum networking applications

  7. Ionizing mechanisms in a cesium plasma irradiated with a ruby laser

    Science.gov (United States)

    Shimada, K.; Robinson, L. B.

    1975-01-01

    A cesium filled diode--laser plasmadynamic converter was built to investigate the feasibility of converting laser energy to electrical energy at large power levels. Experiments were performed with a pulsed ruby laser to determine the quantity of electrons and cesium ions generated per pulse of laser beam and to determine the output voltage. A current density as high as 200 amp/sq cm from a spot of approximately 1 sq mm area and an open circuit voltage as high as 1.5 volts were recorded. A qualitative theory was developed to explain these results. In the operation of the device, the laser beam evaporates some of the cesium and ionizes the cesium gas. A dense cesium plasma is formed to absorb further the laser energy. Results suggest that the simultaneous absorption of two ruby laser photons by the cesium atoms plays an important role in the initial ionization of cesium. Inverse bremsstrahlung absorption appears to be the dominant mechanism in subsequent processes. Recombinations of electrons and cesium ions appear to compete favorably with the simultaneous absorption of two photons.

  8. Peculiarities of presence of cesium-137 in soil at Azgir test site grounds

    International Nuclear Information System (INIS)

    The granulometric composition of soil and the distribution of cesium-137 by soil fractions at the Azgir test site was determined. The characterization of cesium-137 presence in the layer of the thickness of 1 cm of the surface soil was gave. (author)

  9. Velocity Distribution of Effective Atoms in a Small Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, the velocity distribution of effective atoms in a small optically pumped cesium beam frequency standard has been achieved from the Fourier transforms of the experimentally recorded Ramsey patterns. The result fits well with the theoretical calculation. The second order Doppler shift correction of the small cesium atomic clock is obtained from the velocity distribution of effective atoms.

  10. Cesium-134 and cesium-137 in honey bees and cheese samples collected in the U.S. after the Chernobyl accident

    International Nuclear Information System (INIS)

    As a result of the Chernobyl accident on April 25, 1986, possible radioactive contamination of honey bees and cheese sampled in several areas of the United States were measured. Of bees collected in May and June of 1986 in both Oregon and New York, only those from Oregon showed detectable levels of cesium-134 (T1/2 = 2.05 years), a radionuclide which would have originated from the Chernobyl incident. Cheese produced in Oregon and New York before the accident showed only cesium-137 (T1/2 = 30.23 years) but cheese produced afterwards (May and September, 1986) in Oregon contained cesium-134. Cheese produced in Ohio and California at the time of the accident and thereafter contained only cesium-137. In general, the levels of radioactivity were higher in the West coast samples as compared to those taken in the East. The levels of radioactivity detected were considered to be toxicologically of no consequence. (author)

  11. Cesium ion exchange using actual waste: Column size considerations

    International Nuclear Information System (INIS)

    It is presently planned to remove cesium from Hanford tank waste supernates and sludge wash solutions using ion exchange. To support the development of a cesium ion exchange process, laboratory experiments produced column breakthrough curves using wastes simulants in 200 mL columns. To verify the validity of the simulant tests, column runs with actual supernatants are being planned. The purpose of these actual waste tests is two-fold. First, the tests will verify that use of the simulant accurately reflects the equilibrium and rate behavior of the resin compared to actual wastes. Batch tests and column tests will be used to compare equilibrium behaviors and rate behaviors, respectively. Second, the tests will assist in clarifying the negative interactions between the actual waste and the ion exchange resin, which cannot be effectively tested with simulant. Such interactions include organic fouling of the resin and salt precipitation in the column. These effects may affect the shape of the column breakthrough curve. The reduction in column size also may change the shape of the curve, making the individual effects even more difficult to sort out. To simplify the evaluation, the changes due to column size must be either understood or eliminated. This report describes the determination of the column size for actual waste testing that best minimizes the effect of scale-down. This evaluation will provide a theoretical basis for the dimensions of the column. Experimental testing is still required before the final decision can be made. This evaluation will be confined to the study of CS-100 and R-F resins with NCAW simulant and to a limited extent DSSF waste simulant. Only the cesium loading phase has been considered

  12. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  13. Cesium Eluate Evaporation Solubility and Physical Property Behavior

    International Nuclear Information System (INIS)

    The baseline flowsheet for low activity waste (LAW) in the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) includes pretreatment of supernatant by removing cesium using ion exchange. When the ion exchange column is loaded, the cesium will be eluted with a 0.5M nitric acid (HNO3) solution to allow the column to be conditioned for re-use. The cesium eluate solution will then be concentrated in a vacuum evaporator to minimize storage volume and recycle HNO3. To prevent the formation of solids during storage of the evaporator bottoms, criteria have been set for limiting the concentration of the evaporator product to 80 percent of saturation at 25 degrees C. A fundamental element of predicting evaporator product solubility is to collect data that can be used to estimate key operating parameters. The data must be able to predict evaporator behavior for a range of eluate concentrations that are evaporated to the point of precipitation. Parameters that were selected for modeling include solubility, density, viscosity, thermal conductivity, and heat capacity. Of central importance is identifying the effect of varying feed components on overall solubility. The point of solubility defines the upper limit for eluate evaporation operations and liquid storage. The solubility point also defines those chemical compounds that have the greatest effects on physical properties. Third, solubility behavior identifies intermediate points where physical property data should be measured for the database. Physical property data (density, viscosity, thermal conductivity, and heat capacity) may be an integral part of tracking evaporator operations as they progress toward their end point. Once the data have been collected, statistical design software can develop mathematical equations that estimate solubility and other physical properties

  14. Extraction-spectrophotometric determination of niobium with 1,2,4,6-tetraphenylpyridinium perchlorate and thiocyanate

    International Nuclear Information System (INIS)

    1,2,4,6-Tetraphenylpyridinium (TPP+) as the acetate or perchlorate was used as a counter ion in the spectrophotometric determination of Nb(V) by extraction into toluene of the anionic Nb(V) -thiocyanate complex from 4 to 6 M hydrochloric acid. The molar absorptivity of the ion-association complex, whose composition was shown to be NbOCl(SCN)3-.TPP+, was 2.82 x 104 l mol-1cm-1 at 395 nm. Beer's law was obeyed over the range 0.1 to 2.5 μg ml-1 of Nb(V). The method was applied to the determination of niobium in standard steels and ores with good precision and accuracy. 1-(4'-Nitrophenyl)-2,4,6-triphenylpyridinium (nitro-TPP+) perchlorate was also synthesised and used in the spectrophotometric determination of Nb(V), but did not show advantages over TPP+. The fluorescence of TPP+ and Nb(V)-SCN--TPP+ solutions in toluene also disappeared when nitro-TPP+ was used, owing to the paramagnetic effect of the NO2 group. (author)

  15. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  16. 123Iodine scintigraphy and perchlorate discharge test in the diagnosis of congenital hypothyroidism

    International Nuclear Information System (INIS)

    Aim: Thirty eight children suffering from congenital primary permanent hypothyroidism were studied to determine the diagnostic impact of 123I scintigraphy in comparison to laboratory findings and ultrasonography. Methods: In all patients 123I scintigraphy was performed after intravenous administration of 3,7 MBq 123I. If accumulation of the radiotracer in thyroid tissue occured a perchlorate discharge test was performed subsequently. Results: Scintigraphy revealed athyrosis in 7 children. In 9 children a lingual thyroid was observed. Deficiency in iodine organification was diagnosed by a significant discharge of 123I in 15 patients. In four of these children the diagnosis of Pendred's syndrome could be established. Ectopic thyroid tissue could be demonstrated only by scintigraphy where clinical examination and sonography failed in the diagnosis in all cases. Hypoplasia of the thyroid gland as it was diagnosed in 2 cases by ultrasonography appeared to be unlikely because of normal 123I uptake was seen in these patients. In 2 patients with scintigraphic proven athyrosis an orthotopic gland had been falsely considered by ultrasound. In 44% of our patients the final diagnosis could only be established if 123I scintigraphy and perchlorate discharge test were performed. Conclusion: This findings suggest that scintigraphy is indispensible in the correct diagnostic work up of congenital hypothyroidism. (orig.)

  17. Sol-gel preparation of a di-ureasil electrolyte doped with lithium perchlorate

    International Nuclear Information System (INIS)

    Solid polymer electrolytes (SPEs) synthesized by the sol-gel process and designated as di-ureasils have been prepared through the incorporation of lithium perchlorate, LiClO4, into the d-U(2000) organic-inorganic hybrid network. Electrolytes with lithium salt compositions of n (where n indicates the number of oxyethylene units per Li+ ion) between ∞ and 0.5 were characterized by conductivity measurements, cyclic voltammetry at a gold microelectrode, thermal analysis and Fourier transform Raman (FT-Raman) spectroscopy. The conductivity results obtained suggest that this system offers a quite significant improvement over previously characterized analogues doped with lithium triflate [S.C. Nunes, V. de Zea Bermudez, D. Ostrovskii, M.M. Silva, S. Barros, M.J. Smith, R.A. Sa Ferreira, L.D. Carlos, J. Rocha, E. Morales, J. Electrochem. Soc. 152 (2) (2005), A429]. 'Free' perchlorate ions, detected in all the samples examined, are identified as the main charge carriers in the sample that yields the highest room temperature conductivity (n = 20). In the di-ureasils with n ≤ 10 ionic association is favoured and the ionic conductivity drops

  18. Nano-Ammonium Perchlorate: Preparation, Characterization, and Evaluation in Composite Propellant Formulation

    Science.gov (United States)

    Kumari, A.; Mehilal; Jain, S.; Jain, M. K.; Bhattacharya, B.

    2013-07-01

    Nanomaterials are finding applications in explosives and propellant formulations due to their large surface area and high surface energy. This high surface energy is responsible for the low activation energy and increase in burning rate of the composition. Therefore, a successful attempt has been made to prepare nano-ammonium perchlorate using a nonaqueous method by dissolving ammonium perchlorate (AP) in methanol followed by adding the dissolved AP to the hydroxyl-terminated polybutadiene (HTPB), homogenization, and vacuum distillation of the solvent. The nano-AP thus formed was characterized using a NANOPHOX particle size analyzer (Sympatec, Germany), transmission electron microscopy (FEI, Hillsboro, OR), X-ray diffraction (PANalytical B.V., The Netherlands) and scanning electron microscopy (Ikon Analytical Equipment Pvt. Ltd., Mumbai, India) for particle size, purity, and morphology, respectively. The thermal behavior of nano-AP was also studied using differential thermal analysis-thermo gravimetric analysis (DTA-TGA). The data indicated that the particle size of the prepared AP was in the range of 21-52 nm and the thermal decomposition temperature was lower than that of coarse AP. Characterized nano-AP was subsequently used in composite propellant formulation up to 5% with 86% solid loading and studied for different properties. The results showed a 14% increase in burning rate in comparison to standard propellant composition with desired mechanical properties.

  19. Cesium-137 inventory of the undisturbed soil areas in the Londrina Region, Parana, Brazil

    International Nuclear Information System (INIS)

    Cesium-137 is an artificial radionuclide introduced in the environment through the radioactive fallout of the superficial tests of nuclear weapons. The cesium-137 deposition occurred to middles of the 1980-decade and, due to the Chernobyl accident, great part of Europe had a additional fallout of cesium-137. The contaminations of this accident do not have reached Southern Hemisphere. Cesium-137 is an alkaline metal, high electropositive, that in contact with the soil is strongly adsorbed to the clay in the FES (Frayed Edge Sites) and RES (Regular Edge Sites) positions, and it movement by chemical processes in the soil is insignificant. Because of this, cesium-137 became a good soil marker, and its movement is related to the soil movement particles, so that the cesium-137 have been used in the study of the soil redistribution processes, as a tool of quantifying the rates of soil losses and gain. To use this methodology, it is necessary the knowledge of the reference inventory of cesium-137, that is given as function of the total concentration of cesium-137 deposited in an area by the radioactive fallout. If a sampling point presents less cesium-137 than the reference inventory, this point is considered a point with soil loss; otherwise, the point is considered a point with soil deposition. To evaluate the cesium-137 inventory in the Londrina region, four areas of the undisturbed soil were sampling in grid of 3x3, with a distance of 9 meters among the points. Of these four sampling areas, three areas were of native forest (labeled Mata1, Mata2 and Mata UEL), and one was a pasture area. Cesium-137 inventory was 223 ± 41 Bq m-2, 240 ± 65 Bq m-2 and 305 ± 36 Bq m-2 for Mata UEL, Mata1 and Mata2, respectively, and of 211 ± 28 Bq m-2 for the native pasture. Considering the deviation in each value, it is not possible to conclude that there are differences among the values of cesium-137 inventory, so that the average reference inventory of cesium-137 for the Londrina

  20. Characterization of quantum efficiency and robustness of cesium-based photocathodes

    Science.gov (United States)

    Montgomery, Eric J.

    High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-current electron beams for photoinjection applications like free electron lasers. In photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser wavelengths to maintain high current density. But faced with contamination, heating, and ion back-bombardment, the highest efficiency photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the work herein presents careful, focused studies on cesium-based photocathodes, particularly motivated by the cesium dispenser photocathode. This is a novel device comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under controlled heating cesium diffuses from the reservoir through the porous substrate and across the surface to replace cesium lost to harsh conditions---recently shown to significantly extend the lifetime of cesium-coated metal cathodes. This work first reports experiments on coated metals to validate and refine an advanced theory of photoemission already finding application in beam simulation codes. Second, it describes a new theory of photoemission from much higher quantum efficiency cesium-based semiconductors and verifies its predictions with independent experiment. Third, it investigates causes of cesium loss from both coated metal and semiconductor photocathodes and reports remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details continued advances in cesium dispenser design with much-improved operating characteristics: lower temperature

  1. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; GENG; Tao; YAN; Shubin; LI; Gang; ZHANG; Jing; WANG; Junmin; PENG; Kunchi; ZHANG; Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  2. Cesium fallout in Norway after the Chernobyl accident

    International Nuclear Information System (INIS)

    Results of country-wide measurements of 137Cs and 134 Cs in soil samples in Norway after the Chernobyl accident are reported. The results clearly demonstrates that municipalities in the central part of southern Norway, Troendelag and the southern part of Nordland, have been rather heavily contaminated. The total fallout of 137Cs and 134Cs from the Chernobyl accident in Norway is estimated to 2300 TBq and 1200 TBq, respectively. This is approximately 6% of the cesium activity released from the reactor

  3. Sensitive Detection of Cold Cesium Molecules by Radiative Feshbach Spectroscopy

    OpenAIRE

    Chin, Cheng; Kerman, Andrew J.; Vuletić, Vladan; Chu, Steven

    2002-01-01

    We observe the dynamic formation of $Cs_2$ molecules near Feshbach resonances in a cold sample of atomic cesium using an external probe beam. This method is 300 times more sensitive than previous atomic collision rate methods, and allows us to detect more than 20 weakly-coupled molecular states, with collisional formation cross sections as small as $\\sigma =3\\times 10^{-16}$cm$^2$. We propose a model to describe the atom-molecule coupling, and estimate that more than $2 \\times 10^5$ $Cs_2$ mo...

  4. Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex

    International Nuclear Information System (INIS)

    Sorption of cesium from nitric acid medium by potassium nickel hexacyanoferrate, KNiFC, was investigated using the batch technique. The effect of hydrogen ion concentration on the distribution coefficient of cesium has been studied in the pH range 1-5.5. The effect of particle size, the temperature on the sorption equilibrium and rate of uptake of cesium were investigated. The temperature effect on both sorption equilibrium and rate of uptake was found to be limited. The kinetic study shows that the sorption is controlled by particle diffusion mechanism. The diffusivity of cesium ions into different particle sizes of KNiFC, the activation energy, and the entropy change of the sorption process were calculated. The effect of the presence of cobalt ions on the equilibrium and the rate of uptake of cesium is presented. (author)

  5. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  6. Investigation of the behavior during incineration of cesium adsorbed in vegetation waste

    International Nuclear Information System (INIS)

    The decontamination of wood and grass contaminated by radioactive cesium released after a nuclear power plant accident is a significant problem. During this research, the behavior of radioactive cesium during incineration was investigated experimentally. Non-radioactive cesium chloride was adsorbed into sunflower and wood pellet samples, and was burned in a lab-scale fluidized bed combustor. Up to 70% of the cesium was transferred to fly ash, which is captured in the quartz filter of the exhaust line. The concentration of cesium in the fly ash is 10 times greater than in the bottom ash, as the amount of fly ash makes up approximately 20% of the entire ash content. Careful management is vital when handling and disposing of fly ash generated from the incineration of vegetation waste. (author)

  7. Photo-association of cold cesium atoms. Formation and characterisation of a cold cloud of diatomic cesium molecules

    International Nuclear Information System (INIS)

    In a photo-association process, two colliding cold cesium atoms absorb one photon to form an ultracold molecule, electronically excited in a well defined ro-vibration level. Because of the small initial kinetic energy of the free atoms, the photo-association is resonant and permits high resolution spectroscopy of long-range states. We report spectra for states correlated to the excited limit 6S+6P. The 1u (6S+6P3/2) state is a pure long-range molecules. It hardly consists in a molecule, but rather in a pair of two atoms linked at 1, 5 nm by the multipolar electrostatic interaction. The intensity modulation of spectral lines for a given vibrational progression reflects the nodal structure of the radial s-wave function of two ground state atoms. The photo-association of the state 0g-(6S +6P3/2) of polarized atoms permits determining the scattering length of the triplet state of cesium (aT = -530 a0) and the Van der Waals parameter of the molecular ground state (C6 = 6510 u.a.). Photo-association of cold cesium atoms also leads to the formation of translationally cold molecules in singlet and triplet fundamental states after spontaneous emission of the excited molecules. Various schemes are characterized. The particular double-well shape of 0g-(6S+6P3/2) and 1u(6S+6P3/2) states creates a Condon point at intermediate distance. These states constitute ideal cases for very efficient formation of cold molecules. The cold molecular cloud is analyzed: temperatures as low as 20 micro-Kelvin are measured and the distribution of the ro-vibrational levels is studied. The efficiencies of the photo-association process and of the formation of cold molecules are measured, and compared with theoretical calculations. (author)

  8. Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal-Organic Framework.

    Science.gov (United States)

    Colinas, Ian R; Silva, Rachel C; Oliver, Scott R J

    2016-02-16

    We report the capture of ppm-level aqueous perchlorate in record capacity and kinetics via the complete anion exchange of a cationic metal-organic framework. Ambient conditions were used for both the synthesis of silver 4,4'-bipyridine nitrate (SBN) and the exchange, forming silver 4,4'-bipyridine perchlorate (SBP). The exchange was complete within 90 min, and the capacity was 354 mg/g, representing 99% removal. These values are greater than current anion exchangers such as the resins Amberlite IRA-400 (249 mg/g), Purolite A530E (104 mg/g), and layered double hydroxides (28 mg/g). Moreover, unlike resins and layered double hydroxides, SBN is fully reusable and displays 96% regeneration to SBN in nitrate solution, with new crystal formation allowing the indefinite cycling for perchlorate. We show seven cycles as proof of concept. Perchlorate contamination of water represents a serious health threat because it is a thyroid endocrine disruptor. This noncomplexing anionic pollutant is significantly mobile and environmentally persistent. Removal of other anionic pollutants from water such as chromate, pertechnetate, or arsenate may be possible by this methodology. PMID:26765213

  9. Anomalous aryl strengthening of americium and europium complexes during extraction by alkylenediphosphine dioxides from perchloric acid media

    International Nuclear Information System (INIS)

    Extraction of americium and europium from perchlorate environments by solutions of three types of methylenediphosphine dioxides, namely (C6H5)P(O)(CH2)sub(n)(O)P(C6H5)2, (C6H5)2P(O)CH2(O)P(C8H17)2 and (C8H17)2P(O)(CH2)sub(n)(O)P(C8H17)2 has been studied (n is 1 or 2 ) The diluents used have been dichlorethane and chloroform. In perchlorate environments the distribuiton coefficients of americium and europium have proved to be by about 3 orders of magnitude higher than in nitric acid environments, i.e. in perchlorate media the complexes are far more stable. Separation coefficients of americium and REE in perchloric acid soutions are much higher than in nitrate environments. The average value of Am/Eu separation coeffecient at 1-5 M acidity was about 6 (with dichlorethane as diluent) or about 7 (with chloroform as diluent). The complexes essentially exist as trisolvated. Americium complexes display anomalous stability increase upon being diluted: by about 2 orders of magnitude with dichlorethane and by up to 3 orders of magnitude with chloroform used as diluent

  10. Transportable cesium irradiator (TPCI): Final safety analysis report: Revision 1

    International Nuclear Information System (INIS)

    This Final Safety Analysis Report describes the Transportable Cesium Irradiator (TPCI) and assesses the hazards associated with its operation. The TPCI consists of a mobile, lead-shielded, irradiation unit with support equipment mounted within an enclosed trailer. The irradiation unit has two basic compartments; a source chamber sized to mate with the transportation cask which houses the source capsules, and an irradiation chamber formed as a large shielded cylinder (drum) with a window. The irradiation chamber is mounted on a large diameter support bearing. As this chamber is rotated its window moves from the product access door, where produce is inserted or extracted, to a position in line with a similar window in the source chamber. When the windows are aligned the produce is irradiated, while the back wall of the irradiation chamber shields the product access door. The TPCI is designed to be transported throughout the continental United States. The transportation cask containing the cesium source capsules is transported separately from the irradiation unit and is installed when the TPCI unit has been readied for operation at a particular site. The transportation cask is a separate unit and is documented in a separate FSAR

  11. Morphological and electrical properties of zirconium vanadate doped with cesium

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2014-09-01

    Full Text Available Cesium doped zirconium vanadate ZrV2O7 with different Cs dopant content (Cs/Zr varied from 0 to 0.5 in weight ratio were fabricated by hydrothermal technique at 120 °C for 60 min. The synthesized materials are thermally treated using microwave technique. The structural and morphological properties of the synthesized materials and thermally treated samples were investigated using XRD and SEM respectively. It was evident that all synthesized specimens have cubic phase structural without any extra phase but after heat treatment Orthorhombic phase appear with doped samples. However, the morphological structure of the doped synthesized materials has transferred from nanoparticles into rods aspect with heat treatment for the different dopant ratio. Moreover, the electrical properties of both the synthesized and thermally treated materials are studied by AC impedance measurements. The results indicated that the ionic conductivity of Cs-doped ZrV2O7 materials decreased by increasing the dopant ratio while that thermally treated samples the ionic conductivity increase by increasing the dopant ratio. Finally, the concentration of cesium dopants is found to play crucial role in tuning the morphology and electrical properties of nanostructures.

  12. A study of strontium and cesium sorption on granite

    International Nuclear Information System (INIS)

    The diffusion and sorption of cesium and strontium in crushed granite particles is discussed. Sorption experiments have been performed with one granite from Finnsjoen outside Forsmark on the east coast of Sweden and one granite from the Stripa mine in central Sweden. Granite samples have been crushed and screened, and six different particle size fractions from 0.10-0.12 mm to 4-5 mm of each rock have been used in the experiments. The initial concentrations of inactive cesium and strontium were 10-15 ppm. The experimental data indicate that the amount of sorption is dependent not only on the mass of granite particles, but also to some extent on the size of the particles. An attempt has been made to distinguish between sorption on external surfaces and inner surfaces. The amount of external surface adsorption was found to vary from 15-40 % of the total adsorption capacity for the particle size fraction 0.10-0.12 mm to a few percent or less for the largest particles used. (Auth.)

  13. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    International Nuclear Information System (INIS)

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light

  14. Radiation doses resulting from incorporated radioactive cesium isotopes

    International Nuclear Information System (INIS)

    Age-dependent dose factors are given for inhaled or ingested cesium isotopes, which have been calculated on the basis of published data on the biokinetics of cesium in the human organism. Tabulated data are presented for Cs-129, Cs-130, Cs-131, Cs-132, Cs-134, Cs-135, Cs-136, Cs-137(+Ba-137m), and Cs-138. Comparison of results obtained for adults with relevant data published by the ICRP (1978), the NCRP (1977), and Schwarz (1982) shows very good agreement. More significant deviations are however found when comparing the results with data given in the Federal German Radiation Protection Ordinance, both with regard to adults and to infants, particularly refering to the lung data and to those for the gastro-intestinal tract and the skeleton. These discrepancies are primarily due to improved models developed since the time the Radiation Protection Ordinance has been issued, (respiratory and gastro-intestinal tracts), and to improvements achieved with the dosimetric concepts (calculation of dose for bone surfaces instead of the whole skeleton). The dose factors for newborn given by the publication in hand are significantly lower than those given in the Ordinance (for infants); this is a result of age-dependent retention functions having been considered for this publication. The reliability of the dose factor calculations for various ages, pregnant women and fetuses is discussed and quantified. (orig./HP)

  15. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  16. Studies on cesium sorption in hydrous zirconium and titanium oxides

    International Nuclear Information System (INIS)

    Significant quantities of 137Cs (T1/2 = 30.1 y) and 90Sr (T1/2 = 28.5 y) are produced as fission products in nuclear reactors. These long-lived gamma-emitting radionuclides, regarded as a waste few decades ago, are being termed now as valuables owing to the upsurge in the utilization of these radioisotopes in the area of medicine, food irradiation, and sewage treatment technologies in recent years. For long-term waste management it is necessary to minimize the volume and toxicity of the waste. Selective recovery and utilization of these radionuclides from the waste is the concept of growing interest to many researchers. Inorganic sorbents are proven candidates for the separation and recovery of cesium and strontium from aqueous waste streams. They are chemically durable and stable against ionizing radiation. In addition, these materials can be converted into unleachable ceramic form for final disposal. Hydrous metal oxides belong to a particular class of inorganic ion exchangers extensively investigated for various applications in nuclear waste treatment. The present study deals with the preparation of hydrous zirconium and titanium oxide and the studies aimed at separation of cesium from aqueous wastes

  17. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun-Hai; Zeng Xian-Jin; Li Qing-Meng; Huang Qiang; Sun Wei-Min

    2013-01-01

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations.The process,described by a three-level model with the A scheme,shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms.The |Fg =3> → |Fe-4> resonance pumping can result in the ground state |Fg =4,mF =4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg =4.To enhance the anisotropy in the ground state,we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg =4> → |Fe =3>transition,in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.

  18. Diffusion of strontium, technetium, iodine and cesium in granitic rock

    International Nuclear Information System (INIS)

    The migration of strontium, technetium, iodine and cesium in granitic rock has been studied. Rock samples were taken from drilling cores in granitic and granodioritic rock, and small (2x2x2 cm) rock tablets from the drilling cores were exposed to a groundwater solution containing one of the studied elements at trace levels. The concentration of the element versus penetration depth in the rock tablet was measured radiometrically. The sorption on the mineral faces and the diffusion into the rock were studied by an autoradiographic technique. The cationic strontium and cesium have apparent diffusivities of 10-13 - 10-14 m2/s. The migration is confined to microfissures or filled fractures containing e.g., calcite, epidote or chlorite or in veins with high capacity minerals (e.g. biotite). The anionic iodine and technetium have apparent diffusivities of about 10-14 m2/s. These species migrate along mineral boundaries and in open fractures and to a minor extent in high capacity mineral veins. (orig.)

  19. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  20. Thermoemission and adsorption properties of diborides of transition metals of IV-V groups in cesium vapours

    International Nuclear Information System (INIS)

    Emission and adsorption properties of titanium, zirconium, hafnium, vanadium diborides were studied in vacuum and cesium vapours. Some regularities were established in changes of thermoemission properties in transition from one boride to another. Under pressures p0K interaction of these diborides with cesium plasma is of adsorption character. Evaluation of absorption properties for the diborides in cesium vapours showed for oprimal surface coating with cesium the adsorption energy for cesium ions is qsub(a)=(1.1/1.3) eV and work function is phi sub(min)=(1.25/1.45) eV

  1. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples

    International Nuclear Information System (INIS)

    The method developed for cesium concentration from large freshwater samples was tested and adapted for analysis of cesium radionuclides in seawater. Concentration of dissolved forms of cesium in large seawater samples (about 100 L) was performed using composite absorbers AMP-PAN and KNiFC-PAN with ammonium molybdophosphate and potassium–nickel hexacyanoferrate(II) as active components, respectively, and polyacrylonitrile as a binding polymer. A specially designed chromatography column with bed volume (BV) 25 mL allowed fast flow rates of seawater (up to 1,200 BV h-1). The recovery yields were determined by ICP-MS analysis of stable cesium added to seawater sample. Both absorbers proved usability for cesium concentration from large seawater samples. KNiFC-PAN material was slightly more effective in cesium concentration from acidified seawater (recovery yield around 93 % for 700 BV h-1). This material showed similar efficiency in cesium concentration also from natural seawater. The activity concentrations of 137Cs determined in seawater from the central Pacific Ocean were 1.5 ± 0.1 and 1.4 ± 0.1 Bq m-3 for an offshore (January 2012) and a coastal (February 2012) locality, respectively, 134Cs activities were below detection limit (-3). (author)

  2. Development of cesium trapper and single-gas-bubble injector into sodium pool

    International Nuclear Information System (INIS)

    On the core disruptive accident in the sodium cooled fast breeder reactor, in fuel pins the cesium fission product with a high hazard is transferred to the sodium coolant together with noble gas including fission product, and the cesium accumulates on the cover gas area because of its low migration rate to sodium. The high temperature and high pressure in the cover gas due to the decay heat of fission products including cesium cause the leakage of cesium to the outside of reactor vessel. However the exact migration rate of cesium to sodium has not been reported because of difficulty on the evaluation of the interfacial area of large gas bubble (Minges et al., 1986). In this study, we developed a cesium trapper composed of β”-alumina cylindrical container and a single-gas-bubble injector without wettability. We confirmed that a single argon gas bubble was steadily produced in our injector. Bhaga proposed the bubble shape region map, which correlates the bubble shape with Reynolds number, Eotvos number and Morton number of the bubble ejected into sodium pool. The bubble shapes were estimated to be always ellipsoidal. We could successfully confirmed that the liquid sodium can be separated from liquid sodium cesium mixture by using β”-alumina, whose separation rate was found to be calculated by the Faraday's law of electrolysis. (author)

  3. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Manikopoulos, C.N.

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures.

  4. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    International Nuclear Information System (INIS)

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures

  5. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  6. Vitrification of spent organic ion exchange resins- 137Cesium volatility during oxidation

    International Nuclear Information System (INIS)

    Organic ion exchange (IX) resins are used to purify coolant water in nuclear power plants. The spent IX resins contain 137Cesium as major long-lived radioisotope. Their vitrification requires complete combustion of organic matter. 137Cesium volatility during their oxidation is most important factor for selection of oxidation procedure. Based on TGA studies, copper and vanadate catalysts were selected respectively for cationic and anionic IX resins to oxidise them at 500-700 degC. Experiments were conducted with 137Cesium and catalyst loaded cationic and anionic resins. About 56 to 60% 137Cesium was released from cationic resins in 3 hours. 137Cesium release from cationic resins could be brought down to 19 to 22% by addition of glass formers. The 137Cesium releases from anionic resins were nearly same for 2 hours heating. In absence of glass formers, the catalyst on anionic resins formed molten mass, which was difficult to remove. Experiment with one litre of 137Cesiuin loaded mixed cationic and anionic resins released 16.8% 137Cesium to off gases and formed a slag having specific gravity of 1.73 due to difficulty in oxidising last traces of carbon. The volume reduction factor achieved was 18.2 as against 68 expected for complete oxidation of IX resins. The higher volume reduction factor can be achieved by using improved oxidation procedure in scaling up studies. (author)

  7. possibilities of isotope separation of radioactive cesium by ion cyclotron resonance

    International Nuclear Information System (INIS)

    The transmutation of radioactive wastes is of high interest in order to reduce as much as possible the difficulties induced by their storage. In the case of radioactive cesium waste, cesium 137 which presents a short life time (30 years) is difficult to handle due to its high thermal load and and radiation level; cesium 135 is a long life time isotope with high mobility in storage glasses. As the processes of transmutation are different for cesium 135 and cesium 137 and as the neutron consumption is very high, it would be necessary to proceed to a preliminary isotope separation and it would not be worth to transmute the stable 133 isotope of cesium. Peculiar problems linked with cesium physico-chemical properties such as ionisation rat, vapour pressure, cooling of the components of the separation elements, especially the collector part, are discussed. It is shown that a high density plasma (1012 cm -3), with low ionic temperature (1 eV), good for isotope separation, can be achieved easily. It must be noticed that the cooling with water has to be avoided due to chemical reactions. After having defined the unitary separative element, different enrichment strategies and arrangements of the separative elements are proposed. An economic estimation with our code RICAN is given. (author)

  8. Effect of Triethanolamine and Benzaldehyde on the Storage Stability of Polystyrene- Ammonium Perchlorate Propellant

    Directory of Open Access Journals (Sweden)

    K. Kishore

    1986-10-01

    Full Text Available The effect of triethanolamine and benzaldehyde on the stability of polystyrene has been studied by dynamic thermogravimetry (TG. Slower decomposition of polymer in the presence of these compounds indicates their inhibiting ability on the oxidation of the polymer. The burning rate measurements of polystyrene (PS/ammonium perchlorate (AP propellants at ambient temperature and pressure shows an increase with the storage time. The percentage change in the burning rate of the propellants containing aldehyde and amine is less during the ageing which indicates the increased stability of the propellants. The safe-life time of the propellants for the ballistic stability has been calculated from the activation energy for the ageing process using an Arrhenius type equation. The safe-life of the propellants containing triethanolamine and benzaldehyde is more than the neat propellant.

  9. Potentiometric Electronic Tongue to Resolve Mixtures of Sulfide and Perchlorate Anions

    Directory of Open Access Journals (Sweden)

    Deivy Wilson

    2011-03-01

    Full Text Available This work describes the use of an array of potentiometric sensors and an artificial neural network response model to determine perchlorate and sulfide ions in polluted waters, by what is known as an electronic tongue. Sensors used have been all-solid-state PVC membrane selective electrodes, where their ionophores were different metal-phtalocyanine complexes with specific and anion generic responses. The study case illustrates the potential use of electronic tongues in the quantification of mixtures when interfering effects need to be counterbalanced: relative errors in determination of individual ions can be decreased typically from 25% to less than 5%, if compared to the use of a single proposed ion-selective electrode.

  10. Structure and properties of 2-cyanopyridinium perchlorate [2-CNPyH][ClO4

    Science.gov (United States)

    Czupinski, O.; Wojtas, M.; Zaleski, J.; Jakubas, R.; Medycki, W.

    2006-03-01

    The crystal structure of 2-cyanopyridinium perchlorate, [2-CNPyH][ClO4], has been determined at 100 (phase II) and 293 K (phase I). It is monoclinic P 21 at 100 K and orthorhombic P 212121 at 293 K. The dynamic properties of the crystal were studied by differential scanning calorimetry, dilatometry, pyroelectric, dielectric, proton (1H NMR), chlorine (35Cl NMR) magnetic resonance spectroscopies and the infrared method. The crystal undergoes a structural phase transition (\\mathrm {I\\rightarrow II} ) at 170 K characterized by a complex mechanism involving both 'order-disorder' and 'displacive' contributions. It reveals pyroelectric properties below 170 K. The dielectric relaxation existing over phase I is due to the motion of the cyano group, whereas the dynamics of the [ClO4]- anions is reflected in the significant dielectric increment around the \\mathrm {I\\rightarrow II} phase transition.

  11. Structure and properties of 2-cyanopyridinium perchlorate [2-CNPyH][ClO4

    International Nuclear Information System (INIS)

    The crystal structure of 2-cyanopyridinium perchlorate, [2-CNPyH][ClO4], has been determined at 100 (phase II) and 293 K (phase I). It is monoclinic P 21 at 100 K and orthorhombic P 212121 at 293 K. The dynamic properties of the crystal were studied by differential scanning calorimetry, dilatometry, pyroelectric, dielectric, proton (1H NMR), chlorine (35Cl NMR) magnetic resonance spectroscopies and the infrared method. The crystal undergoes a structural phase transition (I →II) at 170K characterized by a complex mechanism involving both 'order-disorder' and 'displacive' contributions. It reveals pyroelectric properties below 170K. The dielectric relaxation existing over phase I is due to the motion of the cyano group, whereas the dynamics of the [ClO4]- anions is reflected in the significant dielectric increment around the I →II phase transition

  12. Degradation study of trichloroethylene and perchloric ethylene using high energy electron beam generated in industrial accelerator

    International Nuclear Information System (INIS)

    The pollution of potable water with chlorinated hydrocarbons, mainly trichloroethylene (TCE) and perchloric ethylene (PCE), is seriously increasing the problem of contamination of water, specially in highly industrialized areas. Recent studies show that depuration by ionizing radiation has been considered a possible alternative to the control of water pollution, wherein the process by ionizing radiation converts TCE and PCE into approximately 100% carbon dioxide ions. Water samples containing TCE e PCE were submitted to radiation in the pilot plant installed in the industrial electron accelerator at IPEN from Radiation Dynamics, Dynamitron II, of 1,5 MeV - 25 m A, with doses varying from 2 kGy to 8 kGy, being its parameters analyzed before and after irradiation TCE and PCE concentrations were determined by the gas chromatography method by liquid-liquid extraction using a gas chromatograph, model CG 90, with an electron capture detector. (author). 5 refs, 4 figs

  13. Thyroid scintigraphy and perchlorate discharge test in the diagnosis of congenital hypothyroidism

    International Nuclear Information System (INIS)

    Quantitative thyroid scanning using low doses of technetium-99m sodium pertechnetate was performed on 147 infants (55 males and 92 females) with congenital hypothyroidism detected through the national neonatal screening programme. Thirty-two (21.8%) were athyrotic, while 62 (42.2%) had an ectopic thyroid and 53 (36%) had a eutopic gland with increased 99mTc uptake (mean 17%; range, 5%-38%). The perchlorate discharge test (PDT) was performed in nine of the infants with ectopic glands and 15 with eutopic glands; the findings were consistent with an organification defect in 22 cases (seven ectopic and 15 eutopic). Thyroid scintigraphy and PDT can add useful aetiological, genetic and prognostic information in the clinical evaluation of infants with congenital hypothyroidism detected by neonatal screening. (orig.). With 4 figs., 1 tab

  14. Promethium-147 extraction with 1,1-diantipyrylalkanes from perchlorate solutions

    International Nuclear Information System (INIS)

    Conditions for quantitative extraction of indicator amounts of promethium-147 from perchlorate solutions with 1,1-diantipyrylalkanes are found. The composition of oxtracted complexes is identified. Extraction concentration constants are calculated. The dependence between the extraction capacity and reagent structure is established. Promethium-147 is used as a radioactive label when studying La3+, Ce3+, Pr3+, Nd3+, Sm3+, Lu3+ extraction. The concentration constants of r.e.e. extraction with diantipyrylmethane are 3.1x1010; 3.5x1010; 3.5x1010; 3.8x1010; 4.0x1010; 6.2x1010, respectively, when μ=0.2

  15. Non-aqueous titrimetric assay of gabapentin in capsules using perchloric acid as titrant

    Directory of Open Access Journals (Sweden)

    SAMEER A.M. ABDULRAHMAN

    2011-06-01

    Full Text Available Two simple, rapid, accurate and inexpensive methods using visual and potentiometric titrimetric techniques are described for the determination of gabapentin (GBP in bulk drug as well as in capsules. The methods are based on the neutralization reaction of the primary amino group of GBP with acetous perchloric acid as titrant in anhydrous acetic acid medium. The end point was detected either visually using crystal violet as indicator or potentiometrically using a modified glass electrode SCE electrode system. Both methods are applicable over the range 1.0-16.0 mg of GBP and the titration reaction follows a 1:1 stoichiometry. The methods were successfully applied to the determination of GBP in capsules. The validity of the proposed methods was further ascertained by parallel determination by a reference method and by recovery studies via standard-addition technique.

  16. Thyroid scintigraphy and perchlorate discharge test in the diagnosis of congenital hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    El-Desouki, M. [Dept. of Medicine, King Saud Univ., Riyadh (Saudi Arabia); Al-Jurayyan, N. [Dept. of Paediatrics, King Saud Univ., Riyadh (Saudi Arabia); Al-Nuaim, A. [Div. of Endocrinology, King Saud Univ., Riyadh (Saudi Arabia); Al-Herbish, A. [Dept. of Paediatrics, King Saud Univ., Riyadh (Saudi Arabia); Abo-Bakr, A. [Dept. of Paediatrics, King Saud Univ., Riyadh (Saudi Arabia); Al-Mazrou, Y. [Ministry of Health, Riyadh (Saudi Arabia); Al-Swailem, A. [Ministry of Health, Riyadh (Saudi Arabia)

    1995-09-01

    Quantitative thyroid scanning using low doses of technetium-99m sodium pertechnetate was performed on 147 infants (55 males and 92 females) with congenital hypothyroidism detected through the national neonatal screening programme. Thirty-two (21.8%) were athyrotic, while 62 (42.2%) had an ectopic thyroid and 53 (36%) had a eutopic gland with increased {sup 99m}Tc uptake (mean 17%; range, 5%-38%). The perchlorate discharge test (PDT) was performed in nine of the infants with ectopic glands and 15 with eutopic glands; the findings were consistent with an organification defect in 22 cases (seven ectopic and 15 eutopic). Thyroid scintigraphy and PDT can add useful aetiological, genetic and prognostic information in the clinical evaluation of infants with congenital hypothyroidism detected by neonatal screening. (orig.). With 4 figs., 1 tab.

  17. Effect of Microwave Heating on the Leaching of Lateritic Nickel Ore in Perchloric Acid

    International Nuclear Information System (INIS)

    In this study, the leaching conditions of Sivrihisar (Adatepe) limonite type lateritic ore in acidic medium were investigated. Leaching experiments were carried out using conventional and microwave-assisted method. The effects of stirring speed, leaching temperature, perchloric acid concentration, solid/liquid ratio and particle size on conventional leaching were determined. Microwave-assisted leaching was carried out by using the optimum results of the conventional leaching. The pre-heating process was applied on different microwave powers (0, 90, 180, 360 and 600 W) and pre-processing time (0, 1, 3, 5, 7, 10, 15 and 20 min). These experimental results demonstrated that acid leaching was a convenient method for Ni extraction from lateritic ore. The higher dissolution and the higher Ni recoveries in the microwave-assisted leaching process were obtained in less leach time. (author)

  18. Hydration of some trivalent metal ions extracted as perchlorates with trioctylphosphine oxide in hexane

    International Nuclear Information System (INIS)

    Perchlorates of Sc3+, Y3+, La3+, and Eu3+ have each been extracted from 0.1 mol x dem-3 aqueous solution of μ=1 with trioctylphosphine oxide (TOPO) in hexane. The hydration number of the extracted salts has been determined by Karl Fischer titration. Sc3+, Y3+, and Eu3+ are extracted as the tetra- and hexa-solvates of TOPO but the assumption of octa-solvate on addition to the tetra-solvate explains the extraction data of La3+ well. The hydration number of tetra-solvates is 2(Sc3+ and Eu3+), 3(Y3+) and probably 4 for La3+ ion. That of hexa-and octa-solvates is 4-5. (author)

  19. Hydration and Solvation of Metal Perchlorates Extracted with Trioctylphosphine Oxide in Hexane

    International Nuclear Information System (INIS)

    Perchlorates of Sc3+, Y3+, La3+, and Eu3+ have each been extracted from 0.1 mol dm-3 aqueous solution of μ=1 with trioctylphosphine oxide (TOPO) in hexane. The hydration number of the extracted salts has been determined by Karl Fischer titration. Sc3+, Y3+, and Eu3+ are extracted as the tetra- and hexa-solvates of TOPO but the assumption of octa-solvate on addition to the tetra-solvate explains the extraction data of La3+ well. The hydration number of tetra-solvates is 2 (Sc3+ and Eu3+), 3 (Y3+) and probably 4 for La3+ ion. That of hexa-and octa- solvates is 4-5. (author). 1 tabs

  20. Extraction of lanthanide and scandium perchlorates by podands bearing diphenylphosphorylacetamide terminal groups

    International Nuclear Information System (INIS)

    Interphase distribution of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Y and Sc perchlorate trace amounts between HClO4 aqueous solutions and phosphorus-containing podands with two end groups Ph2P(O)CH2C(O)NH- connected by di- and triethylene glycol chain in dichlorethane has been studied. Stoichiometry of extracted complexes is determined, effect of HClO4 concentration in aqueous phase and nature of organic solvent on the efficiency of metal ion transitions in organic phase are treated. Studied compounds reveal higher extraction ability regarding to metal ions in HClO4 solutions as compared with the same ability of (dibutylcarbamoylmethyl)diphenylphosphine oxide. Possibility for the using macroporous polymer sorbents impregnated by studied podands for the separation and concentration of rare earth(III) and Sc(III) ions from aqueous solutions containing ClO4- anions has been demonstrated

  1. A Consideration for Design of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene Composite Propellant

    Science.gov (United States)

    Kohga, Makoto

    Specific impulse and burning rate characteristics are the important properties for the propellant design. Because of the requirements for the preparation of ammonium perchlorate (AP)/hydroxyl-terminated polybutadiene (HTPB) composite propellant, there is an upper limit content, φ of AP contained propellant. Specific impulse and burning rate increase with increasing the AP content. The specific impulse, Ispφ and the burning rate, rφ of the propellant prepared at φ, rφ are the highest values of the propellant prepared with AP used as an oxidizer. It is necessary for the propellant design to estimate φ, Ispφ and rφ. The φ, Ispφ and rφ are closely associated with the specific surface area, Swp measured by air-permeability method. Therefore, these values are estimated with Swp. A process for the design of AP/HTPB composite propellant would be proposed in this study.

  2. Large Angular Jump Mechanism Observed for Hydrogen Bond Exchange in Aqueous Perchlorate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Minbiao; /SLAC, PULSE /Stanford U., Phys. Dept.; Odelius3, Michael; /Stockholm U.; Gaffney1, K.J.; /aff SLAC, PULSE

    2010-06-11

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO{sub 4} solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extract an average jump angle of 49 {+-} 4{sup o}, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO{sub 4} solution.

  3. Complexes of rare-earth perchlorates with ditbutyl amides of di, tri and tetraglycolic acids

    OpenAIRE

    Premlatha, C; Soundararajan, S

    1981-01-01

    New complexes of lanthanide perchlorates with di-t-butyl amides of di, tri and tetraglycolic acids have been synthesised. The complexes have the general formula Ln(DiGA)3(ClO4)3; Ln(TriGA)2 (ClO4)3 and Ln(TetGA)2 (C1O4)3, where Ln = La-Yb and Y and DiGA = N,N′, di-t-butyl diglycolamide, TriGA N,N′, di-t-butyl triglycolamide and TetGA = N,N′ di-t-butyl tetraglycolamide, respectively. The complexes have been characterized by analysis, electrolytic conductance, infrared,1H and13C nuclear magneti...

  4. A New Pumping-Probing Scheme for the Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    陈景标; 朱程锦; 王凤芝; 杨东海

    2001-01-01

    A new pumping-probing scheme for the optically pumped cesium beam frequency standard has been experimentally tested in our laboratory. The stability of the optically pumped cesium beam frequency standard was measured by comparing its 10 MHz output with an HP5071A commercial cesium atomic clock. The result shows that the frequency stability for the 1 s and 30000s sample times are 1.2 × 10-11 and 3.7 × 10-13, respectively. It was proved that the new pumping scheme works well.

  5. A new ion exchanger for the removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    A new exchange potassium copper nickel hexacyanoferrates(II) was prepared. It was characterized by chemical composition and surface area measurements. The removal of cesium from aqueous solution by ion exchange was studied as function of shaking time. pH and concentration of acids, salts and cesium. The data indicates high value of distribution coefficient over a wide range of pH, nitric and hydrochloric acids concentration and in the presence of higher concentration of Na and K ions. A potassium copper nickel hexacyanoferrate(II) column was also tested for elution of cesium using 8 M ammonium nitrate solution. (author)

  6. Application of Cesium isotopes in daily life; Aplicacoes dos isotopos do Cesio no cotidiano

    Energy Technology Data Exchange (ETDEWEB)

    Jordao, B.O.; Quaresma, D.S.; Carvalho, R.J., E-mail: bjordan@on.br, E-mail: dansq@on.br, E-mail: carvalho@on.br [Observatorio Nacional (ON/LPTF), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Tempo e Frequencia; Peixoto, J.G.P., E-mail: guilherm@ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Metrologia das Radiacoes Ionizantes

    2014-07-01

    In the world of science, the desire of the scientific community to discover new chemical elements is crucial for the development of new technologies in various fields of knowledge. And the main chemical element addressed by this article is Cesium, but specifically {sup 133}Cesium isotope and radioisotope {sup 137}Cesium, exemplifying their physical and chemical characteristics, and their applications. This article will also show how these isotopes have provided researchers a breakthrough in the field of radiological medicine and in time and frequency metrology. (author)

  7. Cesium leaching from {gamma}-irradiated CsA and CsX zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Enrique [Universidad Autonoma Metropolitana, Iztapalapa, A. P. 55-532, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 Mexico, D.F. (Mexico)], E-mail: lima@xanum.uam.mx; Ibarra, Ilich A.; Lara, Victor [Universidad Autonoma Metropolitana, Iztapalapa, A. P. 55-532, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 Mexico, D.F. (Mexico); Bosch, Pedro [Instituto de Investigaciones en Materiales, A. P. 70-360, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Bulbulian, Silvia [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, 11801 Mexico, D.F. (Mexico)

    2008-12-30

    The present study discusses the effect of {gamma}-irradiation on Cs{sup +}-exchanged X and A zeolites. The incorporation of Cs{sup +} ions into A and X zeolites was performed using three different cesium salts (chloride, nitrate or acetate). Cs{sup +} ions immobilized into the vitrified zeolites by thermal treatment are located in different sites of the zeolite networks. It is found that {gamma}-irradiation favors cesium retention depending on the cesium precursor salt used in the cationic exchange step.

  8. Specific interaction of cesium with the surface of calcium silicate hydrates

    International Nuclear Information System (INIS)

    The sorption of cesium at the calcium silicate hydrates (CSH) surface was investigated, both through sorption isotherm data and by solid-state NMR experiments. The sorption ability of CSH towards cesium is favored for low solid Ca/Si molar ratios, in agreement with the negative surface charge they develop then. A significant proportion of these sorbed cesium cations remains tightly bound to the surface sites forming, in dehydrated CSH, inner-sphere complexes, which can not be removed by alcohol washing. Chloride seems to present a lower affinity for CSH, even for high Ca/Si molar ratios, where the surface charge becomes positive. (orig.)

  9. First-principles study of cesium adsorption to weathered micaceous clay minerals

    Science.gov (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  10. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  11. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  12. Increasing the Space Charge Limit and Other Effects of Cesium Seeding in Hydrogen Negative Ion Sources

    International Nuclear Information System (INIS)

    The role of cesium seeding in increasing the negative ion current in volume sources is described. By a reduction in the local plasma potential the current of extracted electrons is vastly reduced. As a result, cesium increases the fraction of the transverse space charge limit available to the ions by as much as a factor of three. In addition, cesium can increase the total space charge limit by injection of Cs+ into the presheath-a newly recognized phenomenon consistent with experimental measurements and determined from application of a Double-Vlasov model for negative ion extraction

  13. Investigation of adsorption and wetting of 3He on cesium and cesiated glass

    International Nuclear Information System (INIS)

    Experiments have been carried out to investigate the binding of 3He on cesium substrates, using optical pumping to spin-polarize the atoms. The behavior of 3He on the walls at low temperature can be analyzed through the evolution of the nuclear magnetization of the sample. Preliminary results are presented, including: (1) adsorption studies of gaseous 3He on cesiated glass; (2) magnetic relaxation time of polarized liquid 3He on cesium and cesiated glass; (3) evidence for wetting of liquid 3He on cesium. 8 refs., 2 figs

  14. Effect of Perchlorates on Electron Radiolysis of Glycine with Application to Mars

    Science.gov (United States)

    Góbi, Sándor; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-05-01

    This work explores the radiolytic decomposition of glycine (H2NCH2COOH) under simulated Martian conditions in the presence of perchlorates ({{{ClO}}4}-), which are abundant oxidizers on the surface of Mars, by energetic electrons at 10, 160, 210, and 260 K, mimicking the radiation exposure of the Martian regolith in the first 5-10 cm depths over about 250 million years. Our experiments present quantitative evidence that the rate constants of the glycine decomposition in the presence of magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were a factor of about two higher than that of the pure glycine, suggesting that energetic oxygen atoms (O) released from the {{{ClO}}4}- have a significant effect on the decomposition rates and accelerate them by providing a unique oxidizing environment in the radiolyzed samples. Hence, two decay mechanisms exist: radiolysis by the electrons and oxidation by the O atoms. Within the Mars-relevant temperature range covering 160-260 K, the destruction rates are nearly temperature invariant with rates varying as little as 5%. Further, the formation rates of carbon dioxide (CO2) and carbon monoxide (CO) are both accelerated in the presence of {{{ClO}}4}- by a factor of three to five, supporting our conclusion of an active oxygen-initiated chemistry. In addition, the degradation rates are significantly higher than the formation rates of CO2 and CO. This suggests that, besides the decarboxylation, alternative degradation pathways such as a polymerization of glycine must exist. Finally, besides CO2 and CO, three alternative products were identified tentatively: methylamine (CH3NH2), methane (CH4), and ammonia (NH3).

  15. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  16. Determinations of cesium-134, cesium-137 and potassium-40 as a measure of intrauterine exposure to rays and contamination of human milk after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    In order to gain better insights into the degree of intrauterine exposure to rays after the Chernobyl reactor accident, placental measurements of the activity levels of cesium-134 and cesium-137 were carried out in 125 expectant mothers from the Munich area using four thallium-activated sodium iodine crystal detectors. The lower limit of detection determined for this technique was 1-2 bq/kg. Parallel tests were performed on human milk samples to establish their contents of cesium-137 and potassium-40. The ultrapure germanium detector used for this purpose measured levels down to a detection threshold of 1 bq/l. In a total of 13 placentae (10 %) and 56 milk samples (57%) the activity of cesium-137 was found to be so low as to preclude detection. The highest values measured were 18.6 bq/kg for the placentae and 10.6 bq/l for the milk samples. The activity concentrations of potassium-40 were frequently seen to exceed those of cesium-137, the highest value determined here being 73.6 bq/l. The author has come to the conclusion that the alleged increases in radiation levels remain within the range of variations generally expected to occur with natural radiation. Mothers are not discouraged from breast-feeding, even though their attention must be drawn to the fact that the rates of malignant diseases and genetic damage tend to rise on a global scale. (KST)

  17. Diffusion of water, cesium and neptunium in pores of rocks

    International Nuclear Information System (INIS)

    Teollisuuden Voima Oy (TVO) is investigating the feasibility to dispose of spent nuclear fuel within Finland. The present plan calls for the repository to be located in crystalline rock at a depth of several hundred meters. The safety assessment of the repository includes calculations of migration of waste nuclides. The flow of waste elements in groundwater will be retarded through sorption interaction with minerals and through diffusion into rock. Diffusion is the only mechanism retarding the migration of non-sorbing species and, it is expected to be the dominating retardation mechanism of many of the sorbing elements. In the investigation the simultaneous diffusion of tritiated water (HTO), cesium and neptunium in rocks of TVO investigation sites at Kivetty, Olkiluoto and Romuvaara were studied. (11 refs., 33 figs., 9 tabs.)

  18. Cesium-137 accident lessons in Goiania, Goias State, Brazil

    International Nuclear Information System (INIS)

    This document relates the experience obtained by several professionals which had an important role in the cesium-137 accident occurred in Goiania, Goias State, Brazil in September, 1987. It's divided into chapters, according to the action area - medical, nursing, social assistance, odontological and psychological. At first, some notions of radioprotection are explained, followed by the accident history and by the doctors and nurses action during the emergency phase and the medical, odontological, social and psychological assistance to the victims. The social assistance report shows some statistical data about the economic, occupational and social conditions of the accident victims. It is shown some information about the health institutions and the sanitary care in the ionizing radiation and about the occupational radiological protection in Goiania

  19. Coherence properties of nanofiber-trapped cesium atoms

    CERN Document Server

    Reitz, D; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-01-01

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time $T_2^\\ast=0.6$ ms and an irreversible dephasing time $T_2^\\prime=3.7$ ms. By theoretically modelling the signals, we find that, for our experimental parameters, $T_2^\\ast$ and $T_2^\\prime$ are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  20. Coherence Properties of Nanofiber-Trapped Cesium Atoms

    Science.gov (United States)

    Reitz, D.; Sayrin, C.; Mitsch, R.; Schneeweiss, P.; Rauschenbeutel, A.

    2013-06-01

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ˜200nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T2*=0.6ms and an irreversible dephasing time of T2'=3.7ms. By modeling the signals, we find that, for our experimental parameters, T2* and T2' are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  1. Trade study for the disposition of cesium and strontium capsules

    International Nuclear Information System (INIS)

    This trade study analyzes alternatives for the eventual disposal of cesium and strontium capsules currently stored at the Waste Encapsulation and Storage Facility as by-product. However, for purposes of this study, it is assumed that at some time in the future, the capsules will be declared high-level waste and therefore will require disposal at an offsite geologic repository. The study considered numerous alternatives and selected three for detailed analysis: (1) overpack and storage at high-level waste canister storage building, (2) overpack at the high-level waste vitrification facility followed by storage at a high-level waste canister storage building, and (3) blend capsule contents with other high-level waste feed streams and vitrify at the high-level waste vitrification facility

  2. Norbadione A: synthetic approach and cesium complexation studies

    International Nuclear Information System (INIS)

    This work was dedicated to the study of the synthesis and complexation studies of norbadione A: a pigment originating from a mushroom. A synthetic approach, based on a double Suzuki-Miyaura coupling, was developed. This strategy was applied with high yields to the synthesis of various norbadione A analogues, as well as to the synthesis of simple pulvinic acids. Access to functionalized precursors of the molecule was also studied and the final coupling remains to be done. Besides, a speciation study based on electro-spray ionization mass spectrometry was conducted with norbadione A and one of the analogues. This study allowed the assessment of the cesium complexation abilities of each molecule. Structural data was also obtained and complexation constants were calculated. Finally, norbadione A and various synthetic products have been tested via high-throughput screening methods and strong antioxidant properties were observed. Other biological results are also reported. (author)

  3. Comparative study of cesium adsorption on dioctahedral and trioctahedral smectites

    International Nuclear Information System (INIS)

    Bentonites which are characterized by good rheological, mineralogical and chemical stability is considered used as sealing barriers in multibarrier Slovak system of deep geological repository for high-level radioactive waste and spent nuclear fuel. In Slovak Republic there are several significant deposits of bentonite, which are characterized by appropriate adsorption properties and meet the geotechnical requirements for this type of barriers. Study of adsorption properties of bentonites and other smectites is an essential step for developing the migration model long-lived corrosion and activation products, and fission products of uranium. Nuclear wastes contain the most important nuclear fission products, radioisotopes 134Cs and 137Cs. The present paper investigates and compares the cesium adsorption properties of Slovak and North America bentonites composed mainly of dioctahedral smectite montmorillonite (J, L, SAz-1 and STx-1) and trioctahedral smectites saponite (SapCa-2) and hectorite (SHCa-1). (author)

  4. Quality assurance program plan for cesium legacy project

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Cesium Legacy Project. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of cask transportation, project related operations within the 324 Building, and waste management as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations, Central Waste Complex Operations, etc.) are covered in other appropriate QAPPs. The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents

  5. Quantitative analysis of cesium in synthetic lithium molten salts

    International Nuclear Information System (INIS)

    An analytical technique for fission products in lithium molten salts of spent PWR (Pressurized Water Reactor) fuels has been studied for the establishment of optimum chemical engineering process and the evaluation of process material balance in developing Direct Oxide Reduction Process with lithium metal. As part of the basic research, synthetic dissolver solutions of lithium chloride containing trace amounts of fission product elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Y, Cs, Ru, Rh, Pd, Mo, Zr, Cd, Ba, Sr, Te and Se) was prepared and used in establishing the selective separation technique of cesium from lithium chloride matrix using cation exchange chromatography. Its recovery was measured by flame atomic absorption spectrometry and the reliability of this technique was evaluate

  6. Vector Cesium Magnetometer for the nEDM Experiment

    International Nuclear Information System (INIS)

    Full text: We use optical pumping combined with magnetic resonance in a Cesium vapor cell in order to measure the magnetic field. A Vector Cs Magnetometer uses multiple laser beams to follow the dynamics of the spin in 3D. The 3D signal is used to extract the Larmor frequency of the spins, and to extract the direction of the magnetic field through the path of the spins. The magnetometer was successfully tested in a proof of principle experiment. Its measured performance is ∼50 pT/Hz1/2 for the directions perpendicular to the magnetic field, and ∼500 fT/Hz1/2 for the direction parallel to the magnetic field. (author)

  7. Cesium and strontium sorption behavior in amended agricultural soils

    Science.gov (United States)

    Mehmood, Khalid; Hofmann, Diana; Burauel, Peter; Vereecken, Harry; Berns, Anne E.

    2014-05-01

    Biogas digestates and biochar are emerging soil amendments. Biochar is a byproduct of pyrolysis process which is thermal decomposition of biomass to produce syngas and bio-oil. The use of biochar for soil amendment is being promoted for higher crop yields and carbon sequestration. Currently, the numbers of biogas plants in Germany are increasing to meet the new energy scenarios. The sustainability of biogas industry requires proper disposal options for digestate. Biogas digestates being rich in nutrients are beneficial to enhance agricultural productions. Contrary to the agronomical benefits of these organic amendments, their use can influence the mobility and bioavailability of soil contaminants due to nutrients competition and high organic matter content. So far, the impact of such amendments on highly problematic contaminants like radionuclides is not truly accounted for. In the present study, sorption-desorption behavior of cesium and strontium was investigated in three soils of different origin and texture. Two agricultural soils, a loamy sand and a silty soil, were amended with biochar and digestate in separate experiments, with field application rates of 25 Mg/ha and 34 Mg/ha, respectively. For comparison a third soil, a forest soil, was incubated without any amendment. The amendments were mixed into the top 20 cm of the field soils, resulting in final concentrations of 8-9 g biochar/Kg soil and 11-12 g digestate/Kg soil. The soils were incubated for about six months at room temperature. Sorption-desorption experiments were performed with CsCl and SrCl2 after pre-equilibrating the soils with CaCl2 solutions. The amendments with field application rates did not have a significant effect on the relevant soil parameters responsible for the sorption behavior of the two radionuclides. Comparatively, the soil type lead to distinctive differences in sorption-desorption dynamics of the two radionuclides. Cesium showed a higher affinity for silty soil followed by

  8. Elastic scattering of sodium and cesium atoms at ultracold temperatures

    Institute of Scientific and Technical Information of China (English)

    Zhang Ji-Cai; Wang Ke-Dong; Liu Yu-Fang; Sun Jin-Feng

    2011-01-01

    The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture,the interspecies s-wave scattering lengths,the effective ranges and the p-wave scattering lengths are calculated by the quantal method and the semiclassical method,respectively. The s-wave scattering lengths are 512.7ao for the singlet state and 33.4ao for the triplet state. In addition,the spin-change and elastic cross sections are also calculated,and the g-wave shape resonance is found in the total elastic cross sections.

  9. Hot demonstration of proposed commercial cesium removal technology: Progress report

    International Nuclear Information System (INIS)

    Cesium, strontium, and technetium radionuclides constitute a small fraction of the primarily sodium and potassium salts present in supernatants that are being stored in tanks at Hanford, Oak Ridge, Savannah River, and Idaho and must be remediated. Nuclide removal technologies supplied by the US Department of Energy Office of Science and Technology's Efficient Separations and Processing (ESP) Cross-Cutting Program have been previously proposed and tested in small batch and column tests using both simulated and actual supernatants. These technologies must now be tested and the most appropriate ones selected using a flow system of a scale suitable to obtain engineering data that can be applied to the design of pilot-scale equipment. This report describes the operation of the experimental test unit that is located in Building 4501 (ORNL) and the results using the sorbent materials that were tested

  10. Sorption of cesium on bentonite: The role of calcite

    International Nuclear Information System (INIS)

    Full text: Since bentonite is investigated for its use in Engineered Barriers Systems as backfill material, many studies of their surfaces properties have been performed in the past years to qualify and quantify adsorption on their surfaces, which can be one of the major processes limiting migration of radionuclides away from a disposal site. Nevertheless, most of these studies concerned simplified systems, such as Na-montmorillonite in mono-electrolyte solution. As ion-exchange processes are of importance in water-clays interactions, adsorption of natural major ions has also to be taken into account for natural systems. The aim of this work is (i) to quantify the sorption of the natural major cations on the montmorillonite surface, (ii) to compare the sorption of cesium, in two different systems, a simple one (Na-montmorillonite in NaNO3 0.05 Mol.L-1) and a complex one (natural bentonite in a synthetic natural water) and then (iii) to assess the influence of the natural major ions on this sorption, and to identify the role of the calcite phase present in bentonite. The methodology used consists in several batch experiments, first considering a very simple solution (NaNO3), then using mixtures of two different electrolytes, and lastly using a synthetic natural water. A surface complexation model, describing the surface of clays as a mixture of ion-exchange and complexation surface sites, is used to provide interpretations and quantifications of the sorption processes. Observed results indicate that affinity for the montmorillonite surface is greatest for Ca, then Mg and then K. The sorption of cesium is strongly affected by the presence in solution of Ca, witch can come from the partial dissolution of calcite. (author)

  11. Sorption of cesium on bentonite: The role of calcite

    International Nuclear Information System (INIS)

    Full text: Since bentonite is investigated for its use in Engineered Barriers Systems as backfill material, many studies of their surfaces properties have been performed in the past years to qualify and quantify adsorption on their surfaces, which can be one of the major processes limiting migration of radionuclides away from a disposal site. Nevertheless, most of these studies concerned simplified systems, such as Na-montmorillonite in mono-electrolyte solution. As ion-exchange processes are of importance in water-clays interactions, adsorption of natural major ions has also to be taken into account for natural systems. The aim of this work is (i) to quantify the sorption of the natural major cations on the montmorillonite surface; (ii) to compare the sorption of cesium, in two different systems, a simple one ( Na-montmorillonite in NaNO3 0.05 Mol.L-1) and a complex one (natural bentonite in a synthetic natural water) and then; (iii) to assess the influence of the natural major ions on this sorption, and to identify the role of the calcite phase present in bentonite. The methodology used consists in several batch experiments, first considering a very simple solution (NaNO3), then using mixtures of two different electrolytes, and lastly using a synthetic natural water. A surface complexation model, describing the surface of clays as a mixture of ion-exchange and complexation surface sites, is used to provide interpretations and quantifications of the sorption processes. Observed results indicate that affinity for the montmorillonite surface is greatest for Ca, then Mg and then K. The sorption of cesium is strongly affected by the presence in solution of Ca, witch can come from the partial dissolution of calcite. This study is one part of a work supported by ANDRA on the retention properties of bentonite materials. (author)

  12. Vitrification of cesium-contaminated organic ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, T.N. Jr. [Clemson Univ., SC (United States)

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  13. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  14. Removal and adsorption of radioactive cesium from contaminated soil caused by the Fukushima Daiichi Nuclear Power Station accident

    International Nuclear Information System (INIS)

    The removal and adsorption of radioactive cesium, 137Cs or 134Cs, from contaminated soil was investigated using various extractants: sodium hydroxide, hydrochloric acid, and sulfuric acid. In this experiment, a sand sample was used as contaminated soil. Although the radioactive cesium could not be removed from the soil by using sodium hydroxide, 64% of the removal efficiency was provided at room temperature when 10 M hydrochloric acid was used. Eighty percent of the radioactive cesium was removed by using 1 M sulfuric acid containing 0.1 M thiourea at 90℃. A more than 90% removal efficiency was obtained by increasing of the volume of sulfuric acid containing thiourea. The same result was obtained using custom-made radioactive cesium removal equipment. The adsorption of the radioactive cesium was also investigated. In an experiment of concerning adsorption, contaminated water containing radioactive cesium was prepared from a contaminated sand sample. More than 96% adsorption was obtained using zeolite (clinoptilolite). However, when commercial activated carbon was used, most the radioactive cesium was hardly removed. The influence of shaking time on the adsorption of radioactive cesium was investigated by a batch-system using zeolite. As a result, a shaking time of at least 5 min showed that the radioactive cesium was quantitatively adsorbed to zeolite. The adsorptive behavior of the radioactive cesium by a flow-system was also examined using zeolite. (author)

  15. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique.

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott; Cooper, Marcia A.

    2015-02-01

    The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25 o C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052 glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300 o C.

  16. Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae)

    International Nuclear Information System (INIS)

    Effects of water contamination with perchlorate and hexavalent chromium [Cr (VI)] on the mosquito Culex quinquefasciatus were assessed. The chronic (10-day) LC5s values for perchlorate and chromium were 74 ± 8.0 mg/L and 0.41 ± 0.15 mg/L, respectively. Relative Growth Index, a measure of growth and mortality rates in a population, was significantly reduced within 5 days for levels of perchlorate as low as 25 mg/L and for levels of chromium as low as 0.16 mg/L. Neither compound altered wing length of surviving adults. In combination, contaminants were synergistic, causing 14% more mortality than predicted. Acute (24-h) LC5 values for perchlorate and Cr (VI) were 17,000 ± 3200 and 38 ± 1.3 mg/L, respectively. Effects on mosquito larvae in contaminated environments are likely to be observed for Cr (VI) but not for perchlorate, which generally does not occur at levels as high as those shown here to affect larval mosquitoes. - While pollution with hexavalent chromium may adversely affect Culex quinquefasciatus larvae, levels of perchlorate currently in the environment will not impact these insects

  17. Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)]. E-mail: mary.sorensen@email.ucr.edu; Jensen, Peter D. [Department of Entomology, University of California, Riverside, CA 92521 (United States); Walton, William E. [Department of Entomology, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2006-12-15

    Effects of water contamination with perchlorate and hexavalent chromium [Cr (VI)] on the mosquito Culex quinquefasciatus were assessed. The chronic (10-day) LC{sub 5}s values for perchlorate and chromium were 74 {+-} 8.0 mg/L and 0.41 {+-} 0.15 mg/L, respectively. Relative Growth Index, a measure of growth and mortality rates in a population, was significantly reduced within 5 days for levels of perchlorate as low as 25 mg/L and for levels of chromium as low as 0.16 mg/L. Neither compound altered wing length of surviving adults. In combination, contaminants were synergistic, causing 14% more mortality than predicted. Acute (24-h) LC{sub 5} values for perchlorate and Cr (VI) were 17,000 {+-} 3200 and 38 {+-} 1.3 mg/L, respectively. Effects on mosquito larvae in contaminated environments are likely to be observed for Cr (VI) but not for perchlorate, which generally does not occur at levels as high as those shown here to affect larval mosquitoes. - While pollution with hexavalent chromium may adversely affect Culex quinquefasciatus larvae, levels of perchlorate currently in the environment will not impact these insects.

  18. Separation of radio cesium from acid-Purex solutions by sorption on granulated AMP

    International Nuclear Information System (INIS)

    An organic polymer, poly vinylbutyral was used for the preparation of the composite exchanger containing ammonium molybdo phosphate (AMP) as the active component. The resultant granulated product (AMP-GR) has excellent column properties and stands high flow rates without generating fines. The method of preparation of the granulated sorbent, the batch and breakthrough capacities of the granules for cesium ions, their hydraulic properties and the results of column tests for cesium separation from acidic cesium solutions and simulated high level wastes (HLW) solutions is described. The process can be adapted to remove cesium from HLW solutions and could thus be incorporated in a waste management scheme. (author). 16 refs., 3 figs., 3 tabs

  19. New separation techniques of cesium by redox type ion exchange materials

    International Nuclear Information System (INIS)

    RIECS method, new cesium separation method, was developed in which a porous strong base anionic exchanger with copper ferrocyanide (CuFC) and inhibitor were used. Cesium could be separated from the high concentration nitric solution. By developing new impregnation method, large amount of CuFC was impregnated into the micropolar porous resin and silica gel pores. KFC adhered to outside of pores was recovered. Good complex with CuFC was prepared by use of copper chloride in ethyl alcohol solution. The adsorption ratio of cesium increased radically to 80% level in the very small range of hydrazine concentration 1.7 to 2.4x10-4M. The adsorption-desorption ratio of cesium did not decrease by repeating it seven times. The glassificated materials decreased large amount of γ-ray unless increase of volume could be produced by built RIECS method in the high level waste processing system. (S.Y.)

  20. Preparation, structure and application of a new ecomaterials cesium ion-sieve

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new ecomaterials cesium ion-sieve (Cs-IS), which has high selectivity to cesium and excellent acid resistance, is prepared with zirconyl molybdopyrophosphate as its matrix by specific chemical sieve-making means. Cs-IS has large exchange capacity ( 1.83mmol@g-1) and high distribution coefficient (4.09 x 104 mL@ L-1) in the medium of 3 mol@ L- 1 HNO3. In the static exchange with strongly acidic high-level radioactive liquid waste (HLLW) (3 mol@ L-1 HNO3), Cs-IS exhibits high exchange rate for cesium (above 96.53 % ) and large separation factor (greater than 958.41). These indicate the possible use of Cs-IS in cesium-137 selective removal and recovery from highly saline acidic HLLW system.

  1. Cesium-137 in Lake Michigan sediments: areal distribution and correlation with other man-made materials

    International Nuclear Information System (INIS)

    Grab samples of sediment were collected at 530 locations in Lake Michigan, primarily in the southeastern quarter of the lake. Each sample was analysed in the field and in the laboratory for fallout cesium-137. Twenty-five of the samples collected near the mouth of the St. Joseph River, were also analysed in the laboratory for 11 other man-made materials known to be discharged into the river. Two statistical methods were used to determine if cesium-137 can be used as an environmental tracer to predict the areal distributions of other man-made materials. The results show fallout cesium-137 to be a moderate to good tracer for locating areas of accumulation of plutonium-238, plutonium-239, zinc, copper, chromium, lead, dieldrin, DDT and PCB in sediment. Little or no correlation is found between fallout cesium-137 and strontium-90 or nickel. (author)

  2. Candlestick oven with a silica wick provides an intense collimated cesium atomic beam

    Science.gov (United States)

    Pailloux, A.; Alpettaz, T.; Lizon, E.

    2007-02-01

    This article shows that readily available glass and silica fibers and braids are suitable capillary structure for recirculating ovens, such as candlestick ovens, becoming then an alternative wick material to conventional metal based capillary structures. In order to study wettability and capillarity of metallic liquid cesium on borosilicate and silica microstructures, samples were selected, prepared, and tested experimentally. The contact angle of cesium on silica glass was roughly measured: θ =35°±10°. A commercially available silica braid was then introduced inside a candlestick oven to transfer the metallic liquid cesium from the cold reservoir to the hot emission point of the candlestick. A collimated cesium atomic beam of intensity of 2×1016at./ssr was obtained, stable and reproducible. Furthermore, this modified oven is easy to handle daily.

  3. Fission of Multiply Charged Cesium and Potassium Clusters in Helium Droplets - Approaching the Rayleigh Limit

    CERN Document Server

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kuhn, Martin; Scheier, Paul; Echt, Olof

    2016-01-01

    Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as $Cs_{19}^{3+}$ are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.

  4. Assessment of food calcium radioprotection effectiveness against cesium-137, added alone and with iodine-131

    International Nuclear Information System (INIS)

    New fish product with addition of food calcium had radioprotective properties, resulted in decreased cesium-137 content in organs and tissues of animals by 40-60% and lesser changes in differential blood count and biochemical indexes of blood serum

  5. Cold cesium molecules produced directly in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Shan; Ji Zhong-Hua; Yuan Jin-Peng; Zhao Yan-Ting; Ma Jie; Wang Li-Rong; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magnetooptical trap with a good signal-to-noise ratio.These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology.The production rate of ultracold cesium molecules is up to 4× 104 s-1.We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy.We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters,which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.

  6. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. PMID:22464752

  7. Removal of cesium from low level waste solutions by copper hexacyanoferrate loaded resins

    International Nuclear Information System (INIS)

    Sorbents for the separation of radio cesium from aqueous solutions were synthesized by incorporating copper hexacyanoferrate (II) in the matrix of anion exchange resins of Indian origin, viz. Indion-810 and Tulsion-A27MP. Their efficiency for the cesium removal was tested under both static and dynamic conditions. The resins were found to be highly selective for radio cesium from a variety of salt and acid solutions. In general, Tulsion-based resins showed more tolerance towards chemical load in the solutions than the other. Pilot column run with Indion-based loaded resin showed that it effectively removed all the cesium activity from few thousands of litres of mixed low level waste streams from reactors, fuel reprocessing plant and nuclear laboratories. (author). 24 refs., 2 figs., 3 tabs

  8. Biological effects of cesium-137 injected in beagle dogs of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C. [and others

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.

  9. Total deposition of cesium-137 measured in Finland during the exercise `RESUME 95` in August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Geer, L.E. De; Vintersved, I.; Arntsing, R. [National Defence Research Establisment, Nuclear Detection Group, Stockholm (Sweden)

    1997-12-31

    In the exercise called `RESUME 95` the Nuclear Detection Group from the National Defence Research Establishment in Stockholm participated with field gamma ray measurements combined with soil sampling and profile measurements. The results are presented in this report for the measurements of cesium-137. We considered the measurements of cesium-137 at the airfield the most important part of the in-situ exercise. Data was of course collected also for cesium-134 and natural radionuclides but time has not permitted a full analysis of these radionuclides. The methodology would, however, be the same as applied for cesium-137. Less attention was paid for area II and due to limited personnel resources the search exercise was not fully carried out. (au).

  10. Cs2 ‘diffuse bands’ emission from superheated cesium vapor

    Science.gov (United States)

    Pichler, G.; Makdisi, Y.; Kokaj, J.; Thomas, N.; Mathew, J.; Beuc, R.

    2016-07-01

    Thermal emission from superheated cesium vapor was studied to very high temperatures from 700 °C to 1000 °C. This was performed in the vapor condition only and with no liquid cesium present in the all-sapphire cell. We observed a number of atomic and molecular spectral features simultaneously in emission and absorption, especially peculiar thermal emission of cesium dimer diffuse bands (2 3Πg → a 3∑u + transitions) around 710 nm coexisting with absorption bands around first resonance lines at 852 and 894 nm. We performed appropriate calculations of the diffuse band emission profiles and compared them with measured profiles. We also performed absorption measurements and compared observed diffuse band profiles with calculated ones. Possible applications of the observed phenomena will be discussed in terms of the solar energy conversion using dense cesium vapor.

  11. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  12. Distribution of cesium 137 between different sorption sites of soils contaminated by Chernobyl catastrophe products

    International Nuclear Information System (INIS)

    The results of investigation of distribution of cesium 137 ions between different sorption sites of soils contaminated by Chernobyl catastrophe products are received. Using NH42 and Sr2+ as ousted cations the portion of radionuclide adsorbed by specific (FES) and regular (RES) exchangeable sites have been determined. The distribution of cesium 137 ions and its exchangeable form between soils and liquid phases of water saturated soils have been established. The distribution coefficients have been evaluated. The behavior of cesium 137 in a system 'soil - solution' with different contribution of FES and RES sites into radionuclide adsorption were considered. Effect of solution acidity and cation concentration compete for exchangeable adsorption have been analyzed. Higher cesium 137 mobility during its transfer from solid phase into solution in soils, where content of specific adsorption sites is limited, was revealed

  13. [Value of radioactive cesium content in selected food products. I. Content of radioactive cesium in dried milk (1987-1988)].

    Science.gov (United States)

    Skibniewska, K A; Smoczyński, S S; Werner, B

    1993-01-01

    The content of radioactive cesium in dried and dried skimmed milk from selected dairies was double determined. The highest content was found in samples from milk from OSM Siedlce (98 Bq/kg) and skimmed milk from Radzyń Podlaski and Ostrołeka, (the former 90, the latter 62 Bq/kg). The lowest level of radioactive caesium was observed in samples from dried milk from Sieradz, Słupsk, Września, Olecko and Elblag (about or below 10 Bq/kg). Although those levels of contamination with radiocesium didn't exceed values recommended by FAO they were determined as high for year 1987/88 as compared milk data from previous 1985 year. PMID:8016538

  14. Fabrication and performance of fl y ash granule filter for trapping gaseous cesium

    Directory of Open Access Journals (Sweden)

    Park Jang Jin

    2015-09-01

    Full Text Available Although a disk-type fly ash filter has shown a good performance in trapping gaseous cesium, it has difficulty in charging filters into a filter container and discharging waste filters containing radioactive cesium from a container by remote action. To solve the difficulty of the disk-type fly ash filter, five types of granule filters, including a ball type, tube type, and sponge-structure type have been made. Among them, the best filter type was chosen through simple crucible tests. The five types of granule filters packed into containers were loaded into five alumina crucibles of 50 cc. Five grams of CsNO3 was used as a gaseous cesium source. They were then placed in a muffle furnace and heated to 900°C and maintained for 2 hours. After the experiment, the weights of the cesium trapped filters were measured. Among the five types of granule filters, the sponge-structure type granule filter was the best, which has the highest trapping capacity of cesium. Its capacity is 0.42 g-Cs/g-filter. The chosen sponge-structure type granule filters and disk-type filters have been tested using a two-zone tube furnace. Cs volatilization and Cs trapping zones were maintained at 900 and 1000°C, respectively. Sixteen grams of CsNO3 was used as a gaseous cesium source. The cesium trapping profile of the sponge-structure type granule filters was almost similar to that of the disk-type fly ash filters. For both cases, cesium was successfully trapped within the third filter.

  15. Calculations of neutron and proton radii of cesium isotopes. Final report, April 23--September 30, 1993

    International Nuclear Information System (INIS)

    This task involved the calculation of neutron and proton radii of cesium isotopes. The author has written a computer code that calculates radii according to two models: Myers 1983 and FRDM 1992. Results of calculations in both these models for both cesium and francium isotopes are attached as figures. He is currently interpreting these results in collaboration with D. Vieira and J.R. Nix, and they expect to use the computer code for further studies of nuclear radii

  16. Thermoemission and adsorption properties of tungsten alloy with osmium in cesium atoms flow

    International Nuclear Information System (INIS)

    Thermoemission and absorption properties of (110) and (100) planes of monocrystal of W+0.5%Os melt in a flux of cesium atoms are studied. Despite the fact that the electron work function from planes (100) and (110) was only 0.05 eV different it turned out during adsorption of Cs atoms that plane (110) adsorbes cesium atoms much better and reduces the work function to a greater extent

  17. Dosage of cesium 137 in radioactive wastes by the application of sodium tetraphenylborate

    International Nuclear Information System (INIS)

    A simple technique of the dosage of 137Cs has been developed. The technique consists in the formation of cesium tetraphenyl borate, followed by a double extraction with isoamyl acetate, and washing of the organic phase. The counting of known parts of the cesium solution assaying of its purity by γ spectrometry enable the determination of the 137Cs. The yield is about 98 per cent. (authors)

  18. Contribution of the pectin in the cesium elimination in organism. results of analysis on Belarus children

    International Nuclear Information System (INIS)

    The results make appear that the cesium 137 would be eliminated less quick than what the ICRP considered for its models. Pectin would accelerate the cesium elimination but less quick than what is announced by its promotors. Politically speaking, the pectin is ignored by the officials of medicine and radiation protection at the pretext that its efficiency is not proved but no study is made. (N.C.)

  19. Iodine and cesium behavior during the first PBF Severe Fuel Damage Test

    International Nuclear Information System (INIS)

    The results of iodine and cesium measurements made during the Severe Fuel Damage Scoping Test at the Power Burst Facility are presented. On-line gamma spectroscopy and grab samples of the test effluent were used to measure the isotopic release histories at four locations in the effluent sampling system. Total release fractions, release rates, analysis of filter debris, and sample line deposition characteristics are discussed. Iodine and cesium release rate constants measured during the experiment are compared with published NRC data

  20. Iodine and cesium behavior during the first PBF severe fuel damage test

    International Nuclear Information System (INIS)

    The results of iodine and cesium measurements made during the Severe Fuel Damage Scoping Test at the Power Burst Facility are presented. On-line gamma spectroscopy and grab samples of the test effluent were used to measure the isotopic release histories at four locations in the effluent sampling system. Total release fractions, release rates, analysis of filter debris, and sample line deposition characteristics are discussed. Iodine and cesium release rate constants measured during the experiment are compared with published NRC data

  1. Iodine and cesium behavior during the first PBF Severe Fuel Damage test: Chapter 4

    International Nuclear Information System (INIS)

    The results of iodine and cesium measurements made during the Severe Fuel Damage Scoping Test at the Power Burst Facility are presented. On-line gamma spectroscopy and grab samples of the test effluent were used to measure the isotopic release histories at four locations in the effluent sampling system. Total release fractions, release rates, analysis of filter debris, and sample line deposition characteristics are discussed. Iodine and cesium release rate constants measured during the experiment are compared with published NRC data

  2. Poly[[tetrakis(μ2-pyrazine N,N′-dioxide-κ2O:O′erbium(III] tris(perchlorate

    Directory of Open Access Journals (Sweden)

    James D. Buchner

    2010-09-01

    Full Text Available The title three-dimensional coordination network, {[Er(C4H4N2O24](ClO43}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-antiprismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001 and (110 and interact with the coordination network through C—H...O hydrogen bonds.

  3. Bis(μ-bis{[4-(2-pyridylpyrimidin-2-yl]sulfanyl}methanedisilver(I bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Hai-Bin Zhu

    2010-12-01

    Full Text Available In the macrocyclic centrosymmetric dinuclear complex, [Ag2(C19H14N6S22](ClO42, the AgI atom, bis{[4-(2-pyridylpyrimidin-2-yl]sulfanyl}methane (2-bppt ligand and perchlorate anion each lie on a twofold rotation axis. The 2-bppt ligand chelates two four-coordinated AgI atoms through its two bipyridine-like arms. The O atoms of the perchlorate anion are disordered each over two positions of equal occupancy. Adjacent complex molecules are linked by π–π interactions between the pyridine and pyrimidine rings [centroid–centroid distance = 3.663 (8 Å].

  4. Poly[[tetrakis(μ2-pyrazine N,N′-dioxide-κ2O:O′holmium(III] tris(perchlorate

    Directory of Open Access Journals (Sweden)

    James D. Buchner

    2010-09-01

    Full Text Available The title three-dimensional coordination network, {[Ho(C4H4N2O24](ClO43}n, is isostructural to that of other lanthanides. The Ho+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square anti-prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001 (110 and interact with the coordination network through C—H...O hydrogen bonds.

  5. Enhanced electronic injection in organic light-emitting diodes by incorporating silver nanoclusters and cesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Chung; Gao, Chia-Yuan [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Sze, Po-Wen [Department of Electro-Optical Science and Engineering, Kao Yuan University, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-10-01

    Highlights: • The localized electric field around SNCs is enhanced. • When the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained. • The structure for efficient electron injection is critical to characteristics of the device. - Abstract: The influence of the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure (CSC-EIS) on the performance of organic light-emitting diodes is investigated in this study. The silver nanoclusters (SNCs) are introduced between the electron-injection layers by means of thermal evaporation. When the CSC-EIS replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained because the electron-injection barrier between the cathode and the electron-transport layer is remarkably reduced from 1.2 to 0 eV. In addition, surface plasmon resonance effect will cause the enhanced localized electric field around the SNCs, resulting that electron-injection ability is further enhanced from the cathode to the emitting layer.

  6. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    International Nuclear Information System (INIS)

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO3 and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO3)

  7. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  8. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    International Nuclear Information System (INIS)

    Highlights: ► Prussian blue was sealed in cavities of diatomite using carbon nanotubes. ► The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. ► Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  9. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  10. Test evaluation of a cesium vapor source and regulator for thermionic space power systems

    International Nuclear Information System (INIS)

    This paper presents the results of nearly 8000 hours of testing of a fully developed cesium vapor source on the integrated TOPAZ II Ya-21U thermionic space power system. The test period included 4000 hours of system thermal vacuum operation and evaluation by Russian specialists at the Central Design Bureau for Machine Building (CDBMB), St. Petersburg, Russia; nearly 4000 hours of thermal vacuum tests at the Thermionic Systems Evaluation Test (TSET) laboratory; and mechanical tests at the Sandia National Laboratories (SNL), Albuquerque, NM. Testing of the non-nuclear Ya-21U system provided significant information for evaluation and characterization of the cesium vapor source that could not be obtained by development and qualification testing of only components. The Ya-21U system and cesium vapor source were subjected to excessive, unplanned stress levels during the system evaluation tests which resulted in leakage of oxygen into the cesium subsystem and cesium vapor from the TFEs. The information and experience gained during the thermionic system evaluation test are useful for improvement of future cesium vapor subsystem designs, test support equipment, and system test procedures. copyright 1996 American Institute of Physics

  11. Review and assessment of technologies for the separation of cesium from acidic media

    International Nuclear Information System (INIS)

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and open-quote other close-quote technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development

  12. Individual difference of concentration of radio cesium on olive flounder (Paralichthys olivaceus)

    International Nuclear Information System (INIS)

    Marine organisms were contaminated with radio cesium released from TEPCO Fukushima Nuclear Power Plants and coastal fisheries are still restricted. Olive flounder is one of the most important fishery species in Japan and live in coastal area. About one hundred of olive flounder were caught in northern and southern part of Fukushima prefecture and the concentrations of radio cesium in muscle of them were measured individually. The averages of concentration (with standard deviations) of total radio cesium in the muscle of the fish were 87.0 (72.3) Bq/kg-wet and 101 (104) Bq/kg-wet in the northern and southern coasts, respectively. Seventy percent of the results were distributed between 50 and 150 Bq/kg-wet but some of them were much higher (and much lower) than the average. According to the individuals with under 200 Bq/kg-wet of radio cesium collected in northern part of Fukushima, the concentrations of radio cesium were correlated to the amounts of 15N in the muscles. It suggests that the concentration of radio cesium in olive flounder might be influenced by the species of prey organisms that individual flounder predated a certain period before catch. (author)

  13. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  14. Reactions between cerium(IV) and methyl-6-x-derivatives of aniline in perchloric acid solutions

    International Nuclear Information System (INIS)

    The oxidation of 2,6-dimethyl-, 2-isopropyl-6-methyl, 2-chloro-6-methyl-and 2-methyl-6-nitro aniline with cerium(IV) in perchloric acid solutions has been examined. It has been found that the concentration of hydrogen ions and the basicity of nitrogen atom in the amine group decide about the resultant intermediate products. Some of these products can be practically prepared using cerium(IV) as an oxidizing agent. (author). 16 refs, 1 tab

  15. X-ray, vibrational spectra and quantum chemical studies on a new semiorganic crystal: 4-Chloroanilinium perchlorate

    Science.gov (United States)

    Anitha, R.; Athimoolam, S.; Gunasekaran, M.; Anitha, K.

    2014-11-01

    A new semi-organic material 4-chloroanilinium perchlorate was synthesized and grown as a single crystal by slow evaporation solution growth technique. A good X-ray quality single crystal was selected from the grown crops and used for the single crystal diffraction studies. The asymmetric part of the unit cell contains a 4-chloroanilinium cation and a perchlorate anion. The protonation on the N site of the chloroaniline is confirmed from the CN bond distance and the deprotonation on perchloric acid is confirmed from ClO bond geometry. The molecular aggregations are stabilized through intricate three dimensional hydrogen bonding network formed by the classical NH⋯O hydrogen bonds. It form two infinite chains running along the b-axis of the unit cell which are cross-linked through another NH⋯O bond leading to alternate ring R44(12) motifs. These ring and chain motifs lead to alternate hydrophilic and hydrophobic layers along c-axis of the unit cell. The presence of different functional groups and the nature of their vibrations were identified in experimental vibrational studies through Infra-Red and Raman measurements in the range of 4000-400 cm-1. The optimized molecular structure, vibrational mode, computed spectra, molecular properties and NBO analysis of the 4-chloroanilinium perchlorate were found out by quantum chemical calculations with HF and DFT/B3LYP methods invoking 6-311++G(d,p) basis sets. Computed geometrical parameters and harmonic frequencies of fundamental, combination and overtone transitions were found in satisfactory agreement with the experimental data. The electronic properties such as HOMO and LUMO energies were carried out.

  16. Evaluation of the Protective Effects of Emilia sonchifolia Linn. (DC.) on Perchlorate-Induced Oxidative Damage

    OpenAIRE

    D. Gayathri Devi; Y. Lija; T.R. Cibin; Biju, P.G.; V. Gayathri Devi; Annie Abraham

    2006-01-01

    Emilia sonchifolia Linn. (DC.) is a traditionally used medicinal plant seen in most tropical and subtropical regions worldwide. Various parts of the plant are used for the treatment of diseases like asthma, intermittent fevers, breast cancer, ophthalmia, nyctalopia etc. We have isolated the flavonoid fraction from E. sonchifolia (whole plant). Female albino rats were fed with 0.2% sodium perchlorate to induce oxidative stress. The flavonoid fraction of the plant was fed along with sodium perc...

  17. Monitoring of radionuclides in the environment. Part. 4. Factors influencing depth profiles of radioactive cesium in soils

    International Nuclear Information System (INIS)

    In order to evaluate the vertical migration behavior of radioactive cesium, which contaminated by the Fukushima Dai-ichi NPP accident, the distribution of radioactive cesium in different type of soils, e.g., bare ground, grass land, conifer forest floor were measured on October 2011, 2012, 2013, in Abiko, Chiba, Japan. Even three years after the deposition, most of radioactive cesium were deposited in the depths of within 5 cm at anywhere in this area. Depth profiles of radioactive cesium in soil was significantly correlated with organic matter content in soils (r=0.82; p<0.0001), whereas the factors such as potassium ion and ammonium ion in soil, stable cesium content, and clay mineral content were not correlated clearly. This indicates that the vertical migration rate of radioactive cesium is very slow and it would be influenced by organic matter in soil, not just clay. (author)

  18. 2,5-Bis[2-({bis[3-(dimethylazaniumylpropyl]azaniumyl}methylphenyl]-1,3,4-oxadiazole hexakis(perchlorate sesquihydrate

    Directory of Open Access Journals (Sweden)

    Vieri Fusi

    2012-12-01

    Full Text Available In the title hydrated salt, C36H66N8O6+·6ClO4−·1.5H2O, the asymmetric unit consists of a hexaprotonated [H6L]6+ cation, five perchlorate anions in general positions, two on twofold rotation axes (one of which is disordered, and two water molecules of crystallization in general positions, one of them disordered around a twofold crystallographic axis. In the [H6L]6+ cation, two strong intramolecular N—H...N hydrogen bonds occur, involving the N atoms of the oxadiazole ring as acceptors and the closest NH+ groups of each dipropylenetriamine unit. In the crystal, the [H6L]6+ cations form channels along the a-axis direction, in which the perchlorate counter-ions and the water molecules are lodged. The crystal packing features a network of N—H...O and O—H...O hydrogen bonds involving the NH+ groups of the [H6L]6+ cation, the perchlorate anions and the water molecules.

  19. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms.

    Science.gov (United States)

    Liebensteiner, Martin G; Oosterkamp, Margreet J; Stams, Alfons J M

    2016-02-01

    Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth. PMID:26104311

  20. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes

    KAUST Repository

    Yoon, Jaekyung

    2009-09-01

    Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L-1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m-1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and ClO4 - rejection follows the order LFC-1 (>90%) > MX07 (25-95%) ≅ ESNA (30-90%) > GM (3-47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and ClO4 - rejection follows the order CaCl2 < KCl ≅ K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding NO3 - (71-74%) than the ESNA NF membrane (11-56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (CrO4 2 -, SO4 2 -, and HAsSO4 2 -) the rejection (38-56%) is fairly proportional to the ri,s/rp ratio (0.32-0.62) for the ESNA